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Introduction to partitioning-based clustering
methods with a robust example∗

Sami Äyrämö† Tommi Kärkkäinen‡

Abstract

Data clustering is an unsupervised data analysis and data mining technique,
which offers refined and more abstract views to the inherent structure of a data
set by partitioning it into a number of disjoint or overlapping (fuzzy) groups.
Hundreds of clustering algorithms have been developed by researchers from
a number of different scientific disciplines. The intention of this report is to
present a special class of clustering algorithms, namely partition-based meth-
ods. After the introduction and a review on iterative relocation clustering algo-
rithms, a new robust partitioning-based method is presented. Also some illus-
trative results are presented.

1 Introduction

Data clustering, by definition, is an exploratory and descriptive data analysis tech-
nique, which has gained a lot of attention, e.g., in statistics, data mining, pattern
recognition etc. It is an explorative way to investigate multivariate data sets that
contain possibly many different data types. These data sets differ from each other
in size with respect to a number of objects and dimensions, or they contain differ-
ent data types etc. Undoubtedly, the data clustering belongs to the core methods
of data mining, in which one focuses on large data sets with unknown underlying
structure. The intention of this report is to be an introduction into specific parts
of this methodology called cluster analysis. So called partitioning-based clustering
methods are flexible methods based on iterative relocation of data points between
clusters. The quality of the solutions is measured by a clustering criterion. At each
iteration, the iterative relocation algorithms reduce the value of the criterion func-
tion until convergence. By changing the clustering criterion, it is possible to con-
struct robust clustering methods that are more insensitive to erroneous and missing
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1



data values than classical methods. Surprisingly, most of ”real-data” is of this form
[81, 13, 54]. Hence, in the end of this report, an example of robust partitioning-based
cluster analysis techniques is presented.

Next to this introduction, various definitions for cluster analysis and clusters are
discussed. Thereafter, in the third section, a principle of partitioning-based clus-
tering is presented with numerous examples. A special treatment is given for the
well-known K-means algorithm. The fourth chapter consists of discussion about
robust clustering methods. In the sixth section, a novel partitioning-based method,
which is robust against outliers and based on the iterative relocation principle in-
cluding the treatment for missing values, is introduced. The last section contains
the final summary for the report.

2 What is cluster analysis?

Cluster analysis is an important element of exploratory data analysis. It is typically
directed to study the internal structure of a complex data set, which can not be
described only through the classical second order statistics (the sample mean and
covariance). Already in 1967, MacQueen [92] stated that clustering applications are
considered more as an aid for investigators to obtain qualitative and quantitative
understanding of a large amount of multivariate data than only a computational
process that finds some unique and definitive grouping for the data. Later, due
to its unsupervised, descriptive and summarizing nature, data clustering has also
become a core method of data mining and knowledge discovery. Especially during
the last decade, the increasing number of large multidimensional data collections
have stepped up the development of new clustering algorithms [54, 56, 118].

Generally speaking, the classification of different things is a natural process for
human beings. There exist numerous natural examples about different classifica-
tions for living things in the world. For example, various animal and plant species
are the results of unsupervised categorization processes made by humans (more
precisely, domain experts), who have divided objects into separate classes by us-
ing their observable characteristics [45]. There were no labels for the species before
someone generated them. A child classifies things in an unsupervised manner as
well. By observing similarities and dissimilarities between different objects, a child
groups those objects into the same or different group.

At the time before the computers came available, clustering tasks had to be per-
formed manually. Although it is easy to visually perceive groups from a two- or
three-dimensional data set, such ”human clustering” is not likely an inconsistent
procedure, since different individuals see things in different ways. The measure of
similarity, or the level and direction one is looking at the data, are not consistent
between different individuals. By direction we mean the set of features (or combi-
nations of features) that one exploits when classifying objects. For example, people
can be classified into a number of groups according to the economical status or the
annual alcohol consumption etc. These groupings will not necessarily capture the
same individuals [37]. The direction where the user is looking at the data set de-
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pends, for example, on her/his background (position, education, profession, culture
etc.). It is clear that such things vary a lot among different individuals [70].

Numerous definitions for cluster analysis have been proposed in the literature.
The definitions differ slightly from each other in the way to emphasize the different
aspects of the methodology. In one of the earliest books on data clustering, Ander-
berg [5] defines cluster analysis as a task, which aims to ”finding of ”natural groups”
from a data set, when little or nothing is known about the category structure”. Bailey [8],
who surveys the methodology from the sociological perspective, defines that ”clus-
ter analysis seeks to divide a set of objects into a small number of relatively homogeneous
groups on the basis of their similarity over N variables.” N is the total number of vari-
ables in this case. Moreover, Bailey notes that ”Conversely variables can be grouped
according to their similarity across all objects.”. Hence, the interest of cluster analysis
may be in either grouping of objects or variables, or even both (see also [37, p.154-
155]). On the other hand, it is not rare to reduce the number of variables before the
actual object grouping, because the data can be easily compressed by substituting
the correlating variables with one summarizing and representative variable. From
the statistical pattern recognition perspective, Jain et al. [69] define cluster analysis
as ”the organization of collection of patterns (usually represented as a vector of measure-
ments, or a point in a multidimensional space) into clusters based on similarity”. Hastie et
al. [58] define the goal of cluster analysis from his statistical perspective as a task ”to
partition the observations into groups (”clusters”) such that the pairwise dissimilarities be-
tween those assigned to the same cluster tend to be smaller than those in different clusters”.
Tan et al. [118] states from data mining point of view that ”Cluster analysis divides
data into groups that are meaningful, useful, or both.”. By meaningful they refer to clus-
ters that capture the natural structure of a data set, whereas the useful clusters serve
only as an initial setting for some other method, such as PCA (principal component
analysis) or regression methods. For these methods, it may be useful to summarize
the data sets beforehand.

The first definition emphasizes the unknown structure of the target data sets,
which is one of the key assumptions in cluster analysis. This is the main difference
between clustering (unsupervised classification) and classification (supervised classifica-
tion). In a classification task the category structure is known a priori, whereas the
cluster analysis focuses on the object collections, whose class labels are unknown.
Jain et al. [71] suggest that the class labels and all other information about data
sources, have an influence to the result interpretation, but not to the cluster forma-
tion process. On the other hand, the domain understanding is often of use during
the configuration of initial parameters or correct number of clusters.

The second and third definitions stress the multi-dimensionality of the data ob-
jects (observations, records etc.). This is an important notion, since the grouping
of objects that possess more than three variables is no easy matter for a human be-
ing without automated methods. Naturally, most of the aforementioned definitions
address the notion of similarity. Similarity is one of the key issues of cluster analy-
sis, which means that one of the most influential elements of cluster analysis is the
choice of an appropriate similarity measure. The similarity measure selection is a
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data-dependent problem. Anderberg [5] does not use term ”similarity”, but instead
he talk about the degree of ”natural association” among objects. Based on the afore-
mentioned definitions and notions, the cluster analysis is summarized as ”analysis
of the unknown structure of a multidimensional data set by determining a (small) number of
meaningful groups of objects or variables according to a chosen (dis)similarity measure”. In
this definition, the term meaningful is understood identically with Tan et al. [118].

Even though the visual perception of data clusters is a suitable method up to
three dimensions, in more than three dimensional space the visual perception turns
to a complex task and computers become indispensable. As we know that a hu-
man classifier is an inconsistent classifier, also different algorithms produce differ-
ent groupings even for the same data set. Hence, there exist not any universally best
clustering algorithm [4, 71]. On this basis, Jain et al. [71] advise one to try several
clustering algorithms when trying to obtain the best possible understanding about
data sets. Based on the authors experience and theoretical considerations, Kaufman
et al. [79] propose six clustering algorithms (PAM, CLARA, FANNY, AGNES, DI-
ANA and MONA) that they believe to cover a major part of the applications. PAM
is a partitioning-based K-medoid method that divides the data into a given number
disjoint clusters. CLARA, which also partitions a data set with respect to medoid
points, scales better to large data sets than PAM, since the computational cost is re-
duced by sub-sampling the data set. FANNY is a fuzzy clustering method, which
gives a degree for memberships to the clusters for all objects. AGNES, an agglom-
erative hierarchical clustering method produce a tree-like cluster hierarchy using
successive fusions of clusters. The result provides a solution for different values of
K. DIANA is also a hierarchical method, but it proceeds in an inverse order with
respect to AGNES. At the beginning, DIANA puts all objects into one cluster and
continues by splitting each cluster up to two smaller ones at each step. MONA is
also a divisive algorithm, but the separation of objects into groups is carried out by
using a single variable. The set of methods, which was just presented, should give a
quite overall view to the internal structure of any data set. As mentioned earlier, the
result interpretation step is a human process, in which one may utilize different vi-
sualization techniques (e.g., PCA and MDS (multidimensional scaling) [56]). After the
interpretation, priori domain knowledge and any other problem related information
are integrated to the clusters.

The development of clustering methods is very interdisciplinary. Contributions
have been made, for example, by psychologists [96], biologists [121, 72], statisticians
[42], social scientists [8], and engineers [70]. Naturally, various names for cluster
analysis have emerged, e.g., numerical taxonomy, automatic classification, botryol-
ogy, and typological analysis [79, p.3]. Also unsupervised classification [118, 69],
data segmentation [58], and data partition [106] are used as synonyms for data clus-
tering. Later, when data mining and knowledge discovery have grown further off
the other original fields, and constituted its own separate scientific discipline, it has
also contributed in a great amount to the development of clustering methods. The
special focus has been on the computationally efficient algorithms for large data sets
[54, 56, 118, 34]. Perhaps due to the interdisciplinary nature of the cluster analysis,
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the same methods are often invented with different names on different disciplines.
There exist huge amount of clustering applications from many different fields,

such as, biological sciences, life sciences, medical sciences, behavioral and social
sciences, earth sciences, engineering and information, policy and decision sciences
to mention just a few [5, 70, 79, 69, 37, 123]. This emphasizes the importance of data
clustering as a key technique of data mining and knowledge discovery [56, 54, 34,
48, 12, 47, 118], pattern recognition [120, 31, 32, 71, 45] and statistics [29, 58].

The range of clustering applications is very wide. It may be analysis of soft-
ware modules and procedures [93, 127, 128], grouping customers of similar behavior
in marketing research [13], classification of unknown radar emitters from received
radar pulse samples [87], optimal placement of radioports in cellular networks [1],
identification of subtypes of schizophrenia [60], archeological applications [3], peace
science applications (identification of international conflicts [122]), P2P-networks
[104] etc. The list above could be almost endless. It also contains some quite ex-
otic examples.

2.1 The main elements of cluster analysis

Although the intuitive idea behind cluster analysis is simple, the successful com-
pletion of the tasks presume a large number of correct decisions and choices from
several alternatives. Anderberg [5] states that there appears to be at least nine major
elements in a cluster analysis study before the final results can be attained. Because
the current real-world data sets contain missing values as well, we complete this
element list with data presentation and missing data strategy [86, 75].

1. Data presentation.

2. Choice of objects.

3. Choice of variables.

4. What to cluster: data units or variables.

5. Normalization of variables.

6. Choice of (dis)similarity measures.

7. Choice of clustering criterion (objective function).

8. Choice of missing data strategy.

9. Algorithms and computer implementation (and their reliability, e.g., conver-
gence)

10. Number of clusters.

11. Interpretation of results.
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These are the most significant parts of the general clustering process. Jain et al. [71]
suggest that the strategies used in data collection, data representation, normaliza-
tion and cluster validity are as important as the clustering strategy itself. According
to Hastie et al. [58, p.459], choice of the best (dis)similarity measure is even more im-
portant than the choice of clustering algorithms. This list could be also completed
by validation of the resulting cluster solution [70, 4]. Validation is, on the other
hand, closely related to the estimation of the number of clusters and to the result
interpretation. For example, the visual exploration of the obtained solutions can be
considered a kind of validation technique.

2.2 What is a cluster?

”Do not forget that clusters are, in large part, on the eye of the beholder.”[35]
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Figure 1: Illustration about the ambiguous number of clusters. On the left, there are
seven clusters that are generated from a normal distribution using a set of differ-
ent location and scatter parameters. Correspondingly, on the right, there are seven
clusters that are drawn from the Laplace distribution using the same location and
scatter parameters as in the normal case. It is not straightforward to say how many
clusters there are, especially in the Laplace-case, because the clusters are inherently
more spread in all directions.

Although the visual recognition of clusters from a two-dimensional view is usu-
ally easy, it is hard to give a formal definition for a cluster. Many authors with
contributions in the clustering literature address the lack of the universal and for-
mal definition of a cluster. However, at the same time, they agree that giving one is
an intractable problem [118, 123, 37, 79, 4, 25]. The notion of a cluster depends on
the application and it is usually weakly defined [118]. The goal of the cluster analy-
sis task effects to the definition as well. Depending on the application, clusters have
different shapes and size. Moreover, even the number of inherent clusters in the
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data is not unambiguous, because it depends on the resolution (local versus global)
one is looking at the data [70, 118]. See Figure 1.

Typically clustering methods yield a data description in terms of clusters that
possess strong internal similarities [31]. Often one defines the cluster in terms of in-
ternal cohesion (homogeneity) and external isolation (separation). Hence, the clus-
ter is often simply considered as a collection of objects, which are similar to one
another within the same cluster and dissimilar to the objects in other clusters [54].
An interesting connection to the software engineering is recognized, when we no-
tice that the principle is very similar with the common software architecture rule on
”loose coupling and strong cohesion”. Such architecture aims to localize effects caused
by code modifications (see, e.g., Bachmann et al. [7]). The software components
with a large number of mutual links can be considered close to each other. Hence, a
good software architecture should contain clearly separated ”component clusters”.

Some common definitions are collected from the clustering literature and given
below [70, 4].

• ”A Cluster is a set of entities which are alike, and entities from different clus-
ters are not alike.”

• ”A cluster is an aggregation of points in the space such that the distance be-
tween two points in the cluster is less than the distance between any point in
the cluster and any point not in it.”

• ”Clusters may be described as connected regions of a multidimensional space
containing a relatively high density of points, separated from other such regions
by a region containing a relatively low density of points.”

Although the cluster is an application dependent concept, all clusters are compared
with respect to certain properties: density, variance, dimension, shape, and separa-
tion [4]. The cluster should be a tight and compact high-density region of data points
when compared to the other areas of space. From compactness and tightness, it fol-
lows that the degree of dispersion (variance) of the cluster is small. The shape of the
cluster is not known a priori. It is determined by the used algorithm and clustering
criteria. Separation defines the degree of possible cluster overlap and the distance
to each other. Fuzzy clustering methods produce overlapping clusters by assigning
the degree of the membership to the clusters for each point [10, 11]. Traditional par-
titioning clustering methods, such as K-Means, and hierarchical methods produce
separated clusters , which means that each data point is assigned to only one cluster.
A cluster is defined in a dimension of its variables and, if having a round shape, it is
possible to determine its radius. These are the measurable features for any cluster,
but it is not possible to assign universal values or relations to them. Perhaps, the
most problematic features are shape and size.
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3 Partitioning-based clustering algorithms

Perhaps the most popular class of clustering algorithms is the combinatorial opti-
mization algorithms a.k.a. iterative relocation algorithms. These algorithms mini-
mize a given clustering criterion by iteratively relocating data points between clus-
ters until a (locally) optimal partition is attained. In a basic iterative algorithm, such
as K-means- or K-medoids, convergence is local and the globally optimal solution
can not be guaranteed. Because the number of data points in any data set is always
finite and, thereby, also the number of distinct partitions is finite, the problem of
local minima could be avoided by using exhaustive search methods. However, this
is truth only in theory, since finding the globally optimal partition is known to be
NP-hard problem and exhaustive methods are not useful in practice. The number
of different partitions for n observations into K groups is a Stirling number of the
second kind, which is given by

S(K)
n =

1

K!

i=K∑
i=0

(−1)K−i

(
K

i

)
in.

This shows that enumeration of all possible partitions is impossible for even rela-
tively small problems. The problem is even more demanding when additionally the
number of clusters is unknown. Then the number of different combinations is the
sum of the Stirling numbers of the second kind:

i=Kmax∑
i=1

S(i)
n ,

where Kmax is the maximum number of cluster and it is obvious that Kmax <= n.
The fact is that exhaustive search methods are far too time consuming even with
modern computing systems. Moreover, it seems be an infinite race between com-
puter power and amount of data, which both have increased constantly during the
last years. Therefore, more practical approach than exhaustive search is the iterative
optimization.

3.1 Iterative relocation algorithm

The iterative optimization clustering starts with an initial partition. Quality of this
partition is then improved by applying a local search algorithm to the data. Sev-
eral methods of this type are often categorized as a partitioning cluster method
(a.k.a. non-hierarchical or flat methods [32]). A general iterative relocation algo-
rithm, which provides a baseline for partitioning-based (iterative relocation) clus-
tering methods is given in Algorithm 3.1 (see, [55],[37, pp.99-100] or [4, p.45]).

Algorithm 3.1. Iterative relocation algorithm

Input: The number of clusters K, and a database containing n objects from some
Rp.
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Output: A set of K clusters, which minimizes a criterion function J .

Step 1. Begin with an initial K centers/distributions as the initial solution.

Step 2. (Re)compute memberships for the data points using the current cluster
centers.

Step 3. Update some/all cluster centers/distributions according to new member-
sips of the data points.

Step 4. Repeat from Step 2. until no change to J or no data points change cluster.

Using this framework, iterative methods compute the estimates for cluster cen-
ters, which are rather referred to as prototypes or centroids. The prototypes are
meant to be the most representative points for the clusters. The mean and median
are typical choices for the estimates. On the other hand, some methods, such as the
EM-algorithm [15, 28], estimate a set of parameters that maximizes the likelihood
of the chosen distribution model for a data. The best-known of the prototype-based
algorithms are K-means and K-medoids, whereas the EM-algorithm is probably the
most popular distribution-based algorithm [55]. The methods differ in the way they
represent clusters, but they are mostly based on the same general algorithmic prin-
ciple, which is given by Algorithm 3.1. K-means is discussed more thoroughly later
in this work.

Three changeable elements compose the general relocation algorithm: 1) initial-
ization, 2) reassignment of data points into clusters and 3) update of the cluster
parameters. Although the heuristical, computational and statistical properties are
defined through the realization of these elements, there are also other influencing
factors, such as treatment of missing data values that must be considered in algo-
rithm development.

3.1.1 Initialization

Due to the non-convex nature of criterion functions, the iterative relocation methods
are often trapped into one of the local minima. Then the quality of a final clustering
solution depends on the initial partition. A simple approach is to run the partition-
based algorithms by starting from with several initial conditions. Another, more
sophisticated way is to use some heuristic for finding an optimal initialization. In
general, the initialization of the partition-based clustering algorithms is an impor-
tant matter of interest (previous studies, e.g., [5, 95, 102, 16, 78, 80, 2, 59, 39, 116]).

3.1.2 Main iteration

The reassignment of data points and the update of prototypes (or parameters) con-
struct the pass through data that improves the quality of the clustering. There are
two main types of passes: nearest centroid sorting pass (a.k.a. K-means pass) and hill-
climbing pass [4] or [5, p.160-162]. Let us further refer to the passes by NCS-pass and
HC-pass, respectively.
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The NCS-pass simply assigns data points to the cluster with the nearest proto-
type. Aldenfelder [4] divides the NCS-passes into combinatorial and noncombinatorial
cases. In the former case, cluster centers are recomputed immediately after the reas-
signment of a data point (c.f. MacQueen’s K-means and its variant [5]). In the latter
case, the cluster centers are recomputed only after all data points are reassigned to
the closest cluster centers (c.f. Forgy’s K-means and Jancey’s variant [41, 5]). The
NCS-pass approach implicitly optimizes a particular statistical criterion (e.g., tr(W)
for K-means) by moving data points between the clusters based on distance to the
cluster centers, whereas the HC-pass moves the points from a cluster to another only
if the move optimizes the value of a statistical criterion.

3.1.3 Problem of unknown number of clusters

The name of a partitioning-based clustering method is usually of form K-”estimates”
(sometimes, mostly in context of fuzzy clustering, also C-”estimates” is used, see
[113, 10, 11, 123], and articles therein), which is due to the tendency to partition a
data set into a fixed number K clusters. Another well-known class of clustering al-
gorithms, namely hierarchical algorithms, produce a set of solutions with different
numbers of clusters, which are then presented by a hierarchical graphical structure
called dendrogram. See Figure 2. Although, the hierarchical methods provide some
information about the number of clusters, they are not very feasible for data min-
ing problems. First, quadratic memory requirement of the dissimilarity matrix is
intractable for large data sets. Secondly, construction of the dissimilarity matrix is
troublesome for incomplete data, because distances between data points lying in
different subspaces are not directly comparable. This opens up another interesting
problem: estimation of the correct number of clusters for partitioning-based algo-
rithms. Several techniques are developed and tested for the estimation of the num-
ber of clusters, see e.g., [33, 30, 96, 5, 37, 43, 57, 82, 74, 119, 105, 50, 101, 114, 117].
A graphical technique based on the comparison of cluster tightness and separation
was presented by Rousseeuw [107].

3.2 K-means clustering

Basically K-means is an iterative process that divides a given data set into K dis-
joint groups. K-means is perhaps the most widely used clustering principle, and
especially, the best-known of the partitioning-based clustering methods that utilize
prototypes for cluster presentation (a.k.a representative-based algorithm by Estivill-
Castro [35]). Quality of K-means clustering is measured through the within-cluster
squared error criterion (e.g., [5, p.165] or [58])

min
c∈Nn,{mk}K

i=1∈Rp
J , for J (c, {mk}K

k=1, {xi}n
i=1) =

n∑
i=1

‖xi −m(c)i
‖2 (3.1)

subject to
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Figure 2: A sample (n = 30) from a two dimensional normal distribution f(x) =
1
2
N2((0 0)T , I2) + 1

2
N2((10 10)T , I2) in the left figure is clustered using the hierar-

chical single-linkage method. The result is visualized using a dendrogram tree.

(c)i ∈ {1, . . . , K} for all i ∈ {1, . . . , n},
where c is a code vector for partition that contains the cluster membership for each
object. m(c)i

is the mean of the cluster, where the data point xi is assigned. The sam-
ple mean leads to a unique minimum of the within-cluster variance, from which it
follows that the problem actually corresponds to the minimization of

∑K
i=1 trace(Wi),

where Wi is the within-group covariance matrix of the ith cluster. Thus, the K-means
clustering is also referred to as a variance minimization technique [79, p.112]. Actu-
ally in 1963, before the invention of any K-means algorithm, the minimum variance
optimization technique was used by Ward [73], who proposed an hierarchical algo-
rithm that begins with each data points as its own cluster and proceed by combining
points that result in the minimum increase in the error sum of squares value (This
method is later referred to both as the Ward’s method, e.g., [37, 5] and the pairwise
nearest neighbor algorithm (PNN), e.g., [62]).

As such, K-means clustering tends to produce compact clusters, but not take into
account the between-cluster distances. The use of the squared l2-norm makes the
problem formulation extremely sensitive towards large errors, which means that the
formulation is non-robust in statistical sense (see, e.g. [65]). However, due to its im-
plementational simplicity and computational efficiency, K-means has remained its
position as an extremely popular principle for many kind of cluster analysis tasks.
It also requires less memory resources than, for instance, hierarchical methods, in
which computation is often based on the dissimilarity matrix. By courtesy of its
computational efficiency, K-means is also applied to initialization of other more ex-
pensive methods (e.g., EM-algorithm [14, 16]). The K-means algorithm, which is
used to minimize the problem of K-means, has a large number of variants which are
described next.

11



3.2.1 K-means algorithms

K-means type grouping has a long history. For instance, already in 1958, Fisher
[40] investigated this problem in one-dimensional case as a grouping problem. At
that time, algorithms and computer power were still insufficient for larger-scale
problems, but the problem was shown to be interesting with concrete applications.
Hence, more efficient procedures than exhaustive search was needed. The seminal
versions of the K-means procedure were introduced in the Sixties by Forgy [41] (c.f.
discussion in [92]) and MacQueen [92] (see also [5] and [12]). These are perhaps
the most widely used versions of the K-means algorithms [79, p.112]. The main
difference between Forgy’s and MacQueen’s algorithms is the order, in which the
data points are assigned to the clusters and the cluster centers are updated. The
MacQueen’s K-means algorithm updates the ”winning” cluster center immediately
after every assignment of a data point and all cluster centers one more time after all
data points have become assigned to the clusters. The Forgy’s method updates the
cluster centers only after all data points are assigned to the closest cluster centers.
Moreover, another difference is that the Forgy’s method iterates until converged
while the MacQueen’s basic algorithm performs only one complete pass through
data. The starting points of the MacQueen’s algorithm are often the first K data
points in the data set.

In 1982, Lloyd [88] presented a quantization algorithms for pulse-code modula-
tion (PCM) of analog signals. The algorithm is often referred to as Lloyd’s algorithm
and it is actually equivalent with the Forgy’s K-means algorithm in a scalar case.
Although Lloyd’s paper was published not until 1982, the unpublished manuscript
from 1957 is referred, for example, in articles from 1977 and 1980 by Chen [22] and
Linde et al. [85], respectively1. A basically similar algorithm for multidimensional
cases was presented by Chen in [22]. Linde et al. generalized the Lloyd’s algorithm
to a vector quantization algorithm [85]. This algorithm is often referred to as the
Generalized Lloyd’s Algorithm (GLA) in signal and image processing context. Hence,
two main types of the K-means method have been discovered more than once on
different disciplines.

The time complexity of the Forgy’s K-means isO(npKt) (t is the number of itera-
tions) [32]. A convergence proof for the algorithm is given by Selim et al. [110]. Be-
cause of the algorithmic details, the MacQueen’s and Forgy’s algorithms are also re-
ferred to as online- and batch-K-means algorithms, respectively (see, e.g., [14, 111]).
One should note that many times, as in [14, 111], the convergent variant [5] of the
MacQueen’s K-means algorithm is behind the online clustering, although the Mac-
Queen’s basic K-means algorithm is referred. In [14], the numerical experiments
suggest that the online K-means algorithm converges faster during the first few
passes through the data and, thereafter, batch version outperforms it. However,
the online clustering may be useful in real-time applications, which have to respond
to inputs in extremely short time, or receive the data in a stream of unknown length,

1According to a author’s note in [88], the manuscript of this article was written and circulated for
comments at Bell Laboratories already in 1957.
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or if there is not enough memory available to store a data set as a complete block
[10].

3.2.2 Drawbacks

Despite the wide popularity of the ordinary K-means algorithms, there are some
significant defects that have led to development of numerous alternative versions
during the past years (see, e.g., [102, 16]):

• Sensitivity to initial configuration. Since the basic algorithms are local search
heuristics and K-means cost function is non-convex, it is very sensitive to the
initial configuration and the obtained partition is often only suboptimal (not
the globally best partition).

• Lack of robustness. As the sample mean and variance are very sensitive estimate
against outliers. So-called breakdown point is zero, which means that one
gross errors may distort the estimate completely. The obvious consequent is
that the k-means problem formulation is highly non-robust as well.

• Unknown number of clusters. Since the algorithm is a kind ”flat” or ”non-hier-
archical” method [32], it does not provide any information about the number
of clusters.

• Empty clusters. The Forgy’s batch version may lead to empty clusters on un-
successful initialization.

• Order-dependency. The MacQueen’s basic and converging variants are sensitive
to the order in which the points are relocated. This is not the case for the batch
versions.

• Only spherical clusters. K-means presumes the symmetric Gaussian shape for
cluster density functions. From this it follows that a large amount of clean data
is usually needed for successful clustering.

• Handling of nominal values. The sample mean is not defined for nominal values.

In order to solve the previous problems many variants for the original versions have
been developed.

3.2.3 Enhanced variants of K-means algorithm

It seems that the development of the clustering algorithms has been very intensive
during the sixties. As we know, the rapid development of PC computer systems
during the eighties and still growing data storages led to the invention of knowledge
discovery and data mining concepts. It seems that this developed has led again
to the growing interest in clustering algorithms. Hence, a lot of variants for the
traditional K-means algorithms have emerged during the last ten years. Many of
these try to solve the known drawbacks of the K-means procedures.
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The general version of the iterative relocation algorithm (Algorithm 3.1) provides
a lot of optional elements to be implemented in different ways, when building an
iterative relocation algorithm for solving the problem of K-means. First, there are
many ways to generate an initial partition or cluster prototypes for a data set. Sec-
ondly, there are many ways to arrange the relocation of the data points and update
of the prototypes (for example, see [37, p.100]). The data points can be assigned to
the nearest cluster or to the one that leads to the largest reduction in the value of the
objective function. The cluster prototypes can be updated, either after every single
reassignment of a data point, or alternatively after a fixed number of reassignments.
Therefore, it is not necessarily surprising that the K-means clustering algorithm re-
ceives a somewhat many-sided treatment in the clustering literature. Although the
differences among the variants were not always would not seem remarkable, the
algorithms may well produce different final partitions for one data despite starting
with the equal initial conditions.

Together with the basic K-means procedure, MacQueen [92] presented a ”coar-
sening-refining” variant that estimates also the correct number of clusters. It starts
with a user specified number of clusters, and then coarsens and refines clustering
according to input parameters during the process. After each assignment, all pairs
of cluster means whose distance to each other is less than the coarsening parameter
will be merged. On the other hand, every time a data point is processed in order to
make an assignment to a cluster, its distance to the closest cluster mean is compared
with the refining parameter. If the distance exceeds the parameter value, a new
cluster must be created.

Another variant that also tries to determine the number of clusters is called ISO-
DATA2. This is a quite elaborate algorithm for which several versions exist [5, pp.170–
171]. The weakness of the method is the set of complex input parameters, e.g., the
desired number of clusters, standard deviation parameter, lumping parameters etc.
that are required from the users. If the user is looking at the data from data mining
perspective, which means a minimal amount of prior assumptions and information,
the use of this algorithm may prove to be complicated.

Jancey’s variant is a modification for the Forgy’s K-means method [5, p.161–162],
which is expected to accelerate convergence and avoid inferior local minima. In
this variant the new cluster center is not the mean of the old and added points, but
the new center is updated by reflecting the old center through the mean of the new
cluster.

In order to avoid poor suboptimal solutions, a number of different initialization
methods for K-means(-type) methods have been developed and evaluated through
numerical experiments (c.f., the references in 3.1.1). Zhang et al. [125] suggested to
run so called K-Harmonic Means algorithm prior to K-means. They reported that in
comparison to the K-means algorithm, K-Harmonic Means is more insensitive to ini-
tial configurations, but slower convergence near the solution. An accelerated, k− d-
tree-based variant for the K-means clustering is proposed by Pelleg et al. [100]. The

2This is not the same procedure as the the one called Basic Isodata in [31, p.201], e.g., [5, 120].
Basic Isodata is actually the same as the Forgy’s K-means.
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authors suggest this method for initialization of the ordinary K-means algorithm as
well. As a problem the authors report the scalability with respect to the number
of dimensions, which is due to the use of the kd-tree structure. One of the most
interesting approaches for avoiding poor quality minima in clustering problems, is
LBG-U method, which is presented as a vector quantization method [44]. Since the
LBG-algorithm [85] is equivalent with the Forgy’s K-means clustering algorithm,
LBG-U method can also be used as a clustering method. The idea of the LBG-U is to
repeat the LBG-algorithm until convergence. After each run, the cluster center with
the minimum utility is moved to a new point. The mean vector that possesses the
minimum utility is the one that contributes least to the overall sum of squared errors
when removed. The new point is chosen close to the mean of the cluster that gen-
erates most of the distortion error for clustering. LBG-U is good from data mining
point of view, because it does not require extra parameters for any operation when
compared to the basic K-means algorithms. It also converges since the algorithm
will be terminated if the last run do not produce reduction to the value of the error
function.

The increase of the computer power has enabled also the use of more intensive
methods for solving the drawbacks of the K-means-type algorithms. In order to
avoid poor local solutions, a number of genetic algorithm based methods have been
developed [83, 9, 91]. Likas et al. propose the global k-means clustering algorithm
[84], which is a deterministic and incremental global optimization method. It is also
independent on any initial parameters and employs K-means procedure as a local
search procedure. Since the exhaustive global K-means method is computationally
relatively expensive, a faster variant of the algorithm and a k − d-tree-based ini-
tialization method are also given in the paper in order to reduce the computational
cost.

As the requirements for dealing with very large data sets that are often even
too large to be loaded to RAM3 have been constantly growing, the scalability of
the K-means algorithms have become an important issue. A scalable single-pass
version of the K-means algorithm, which is based on identification of data that can
be compressed, the region of data that must be maintained and regions that can be
discarded, is introduced in [18]. An enhanced version of the previous is proposed
in [38]. These methods can be used efficiently for searching multiple solutions using
different initial conditions, since the information about the compressible regions,
retained and discarded data can be reused. An efficient ”disk-based” algorithm,
Relational K-means, for clustering large high-dimensional data sets inside a relational
database is given in [99]. Disk-based refers to efficient organization of data matrices
to a hard disk drive.

A number of methods for estimation of K, the correct number of clusters, have
been developed and experimented for partition-based methods in general. It is not
so much algorithm-specific issue, but a more general problem covering all partition-
based methods that are based on solving the clustering problems for a specific K. A
common approach is to use some validity measure to evaluate the goodness of the

3RAM (random access memory) is a temporary fast access memory of a computer system.
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obtained solution (see references in Section 3.1.3).
The problem of empty clusters may occur with the Forgy’s batch-type algorithms.

One cluster center may become empty when all points are closer to the other centers.
Consequently the empty cluster is never updated during the process thereafter. The
risk of empty clusters exists also for many other batch-type partitioning-based clus-
tering methods, but not for the MacQueen’s type single pass algorithms. However,
on large data sets with a small number of clusters, the probability of empty clus-
ters is quite small. The problem is worse, for example, in sub-sampling methods
due to the reduced number of data points. In order to avoid this problem in a sub-
sampling-based initialization method, Bradley et al. [16] introduce a variant for the
K-means algorithm, which is called KMeansMod. KMeansMod repeats the K-means
process until all K clusters are non-empty. The empty clusters are re-initialized with
the worst fitting points.

The order-dependency problem concerns mainly MacQueen’s type sequential K-
means algorithms that perform the assignment and recomputation steps for one
point at a time. It is not a problem for the batch-type K-means algorithms, because
all points are processed at once. The tendency to spherical-shaped clusters depends
on the problem setting. In prototype-based clustering we are usually interested in
finding such clusters, in which points are close to each other and presented by a one
central/representative point. Any connected and arbitrary shaped cluster may not
necessarily be of interest. If the cohesiveness of cluster areas is the only criterion
for cluster structure, points in the same cluster can be anyhow very distant to each
other. For example, some of the hierarchical (e.g., single-link) and density-based
methods are biased to connected, possibly arbitrary shape, cluster areas.

Extensions of the K-means-type algorithms to deal with mixed and categorical
data types are represented in [103, 63, 64, 49, 109]. Algorithms for clustering binary
data streams are represented in [98].

The lack of robustness is due to the sensitive squared l2-norm in the cluster cen-
ter estimation, that is, the sample mean is chosen as the location estimator of each
cluster center, see Equation 3.1. The sample mean is straightforward and fast to
compute (closed-form solution exists), but at the same time, it is extremely sensitive
to any gross errors, which inevitably exist in real-world data sets. This questions the
usability of K-means on noisy and incomplete data sets. A solution to this problem
is discussed more thoroughly in this report.

4 Robust clustering

A problem of many classical clustering methods is their sensitivity to erroneous and
missing values that unfortunately exist in real-world data sets. For example, in the
K-means methods, each cluster center is represented by the sample mean. The sam-
ple mean is extremely sensitive toward outlying values. Because the sample mean
suffers from the lack of robustness, only a few erroneous or missing data values may
distort the estimates so completely that the inherent cluster structure of the data set
will not be uncovered. By robustness we mean that the estimator tolerates small
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deviations from the assumed model and avoids ”catastrophes” in the case of larger
deviations [65]. Robustness and efficiency are contradicting goals for statistical es-
timators (see, e.g., in [65, 124, 24]). The relative efficiency says which one of two
consistent estimators gives correct values in probability.

Definition 4.1. Let {x1, . . . , xn} be a sample of a random variable X and θ an interest-
ing parameter. T1(x1, . . . , xn) and T2(x1, . . . , xn) are estimators of θ. Relative efficiency
of T1 and T2 is defined by ratio

effR(T1, T2) =
E [(T1(x1, . . . , xn)− θ)2]

E [(T2(x1, . . . , xn)− θ)2]
,

where E is the expected value.

Hence, the smaller the variance of an estimator, the more efficient the estimator.
On the other hand, as the robustness against deviations gets higher, the variance
of the estimator tends to grow. For example, in comparison to the sample mean
the relative efficiency of the trimmed sample mean estimator is poor, because the
tails of a sample are ignored in the computation. The trimming leads to the loss of
data, which again causes larger variance to the estimates and, thereby, higher risk
for inaccurate results. The estimators possessing the highest practical breakdown
point value (50%) will not be completely ”broken down” even though nearly half of
the data were contaminated.

Robust partitioning-based algorithms are, for example, K-medoids [58], PAM,
CLARA [79] and CLARANS [97]. These are called as medoids-based clustering al-
gorithms, since the prototypes are restricted to be chosen among the data points.
K-medoids-based algorithms are more insensitive to outliers and noise when com-
pared to K-means, but also computationally more expensive. In order to reduce the
computational load of the basic PAM algorithm on large data sets, enhanced algo-
rithms CLARA and CLARANS are proposed. CLASA [23] is another variant, which
exploits the simulated annealing method for finding better cluster medoids. The
K-medoids algorithms are invariant to translations and orthogonal transformations
of objects, but not invariant to affine transformations that change the inter-object
distances [79, p.119]. K clusters are always found, so that the problem of empty
clusters is avoided. The sensitive estimate of the K-means procedures can be sub-
stituted also with other robust estimates, such as the coordinate-wise median [5,
p.166]) or the spatial median [75, 36]. In [19, 17], Bradley et al. reformulate the
K-coordinate-wise medians problem into a bilinear programming form. The last
two variants do not restrict the prototypes to be chosen among the data points.
As a coordinate-wise order-statistic, the coordinate-wise median together with l1-
distance (’city-block’-distance) in the assignment step, is inherently more appropri-
ate for discrete (e.g., questionnaire data) than continuous data. The spatial median
is more appropriate for continuous and high-dimensional problems in Rp, since its
statistical efficiency improves as the number of dimensions grows [20]. We have
also developed a computationally efficient algorithm that scales well with respect
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to the number of dimensions [76]. Later, we will present a spatial median clustering
algorithm with missing data treatment. Robust clustering algorithms are proposed,
e.g., [46, 112, 6, 68]. Robust methods for fuzzy clustering are presented in [27]. Dur-
ing the last years, robust clustering techniques have also been integrated into some
statistical software products, such as S-PLUS [115].

4.1 Measure of robustness

Robustness measures the sensitivity of an estimators to any observation in a data
set. Let X represent a data set of size n × p. Then functional T = T (X) is any
arbitrary estimator for an interesting parameter on a data set X. The most common
measure of robustness is the breakdown point, which defines the smallest fraction
of contamination that can cause the estimator T to take values arbitrarily far from
T (X) [108]. A formal definition for the finite-sample breakdown point is given by

ε∗n(T,X) = min{m

n
: bmax(m,T,X) = ∞}. (4.1)

bmax(m,T,X) defines the maximum bias caused by contamination as follows

bmax(m,T,X) = sup
X′
‖T (X′)− T (X)‖, (4.2)

where the supremum is over all possible X′s. Here X′ denotes all contaminated
samples obtained by replacing m data points by arbitrary values (this allows also
extremely distant outliers) [65, 108]. This definition of the breakdown point is inde-
pendent on any probability distribution. The less robust an estimator is, the closer
to zero its breakdown point gets (e.g., for the sample mean ε∗n = 1/(n + 1)) [66]. On
the other hand, the highest possible breakdown point for any translation equivari-
ant estimator is 1

2
(cf. Theorem 4.1). The upper limit is clear due to the obvious truth

that if more than half of the data is contaminated, it is impossible to decide which
part of data is good and which part is bad.

Theorem 4.1. (Lopuhaä et al. [89]). Let X = {x1, . . . ,xn} be a collection of n points in
Rp. When Tn is translation equivariant, then ε∗(Tn,X) ≤ b(n + 1)/2c/n, where buc
denotes the nearest integer less than or equal to u.

As we are interested to diminish the effect of extremely outlying points, the
breakdown point of the estimator is our main interest. The coordinate-wise sample
median and the spatial median are estimators with a bounded influence function
and high breakdown value (50%), which makes them insensitive to a finite amount
of gross errors. Alternative tools for measuring robustness are influence curves,
sensitivity curves, local shift-sensitivity and rejection point [126, 52, 61, 65, 53, 51].

4.2 Spatial median

The spatial median is one of the multivariate generalizations for the univariate (pop-
ulation or sample) median. In univariate case, the (marginal) median is known as a

18



robust multivariate estimate of location, which possess the highest possible break-
down point (50%). In geometric sense, the spatial median can be defined as a point
of Euclidean space Rp, from which the sum of absolute distances to a given set of
n points attains its minimum value. Thus, it also provides the solution for a well-
known facility location problem, which gains a lot of interest among the location
science and operations research communities (e.g., [90]). A typical problem in this
context is, for example, finding the optimal location of a warehouse with respect to
a set of retail stores. The spatial median is referred to by several names, such as,
multivariate L1-estimator, multivariate L1-median, Weber point, or Fermat-Weber
point [89, 108, 26].

The spatial median is one special case of the M-estimators [65].
Definition 4.2. Any estimate Tn, defined by a minimum problem of the form

Tn = arg min
Tn

n∑
i=1

ρ(xi; Tn), (4.3)

or by an implicit equation
n∑

i=1

ψ(xi; Tn) = 0, (4.4)

where ψ is an arbitrary function, ψ(x, θ) = (∂/∂θ)ρ(x, Tn), is said to be an M-estimate
(or a maximum likelihood type estimate).

The location M-estimator is defined as follows:

Tn = arg min
Tn

n∑
i=1

ρ(xi − Tn), (4.5)

or
n∑

i=1

ψ(xi − Tn) = 0. (4.6)

By altering ρ a large assortment of location M-estimators can be constructed. Usu-
ally ρ is strictly convex so that ψ becomes strictly monotone and correspondingly Tn

unique.
Hence, the problem of the spatial median is given by

min
u∈Rp

J 1
2 (u), for J 1

2 (u) =
n∑

i=1

‖u− xi‖2, (4.7)

which clearly satisfies the conditions of definition (4.3).
The gradient of the convex cost function f(u,xi) = ‖u− xi‖2 is well-defined and

unique for all u 6= xi. However, case u = xi leads to the use of a sub-gradient, which
is characterized by condition ‖ξ‖2 ≤ 1 (cf. inliers in statistics [21]). Thus the (local)
extremity of (4.7) is characterized by means of a sub-gradient, which reads as

∂J 1
2 (u) =

n∑
i=1

ξi, with

{
(ξi)j =

(u−xi)j

‖u−xi‖2 , for ‖u− xi‖2 6= 0,

‖ξi‖2 ≤ 1, for ‖u− xi‖2 = 0.
(4.8)
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As pointed out in [77] problem (4.7) is a non-smooth optimization problem [94],
which means that it can not be described by using the classical (C1) differential cal-
culus. In a recent paper by the authors of this report, a reformulated problem and an
efficient iterative SOR-based algorithm are presented [76]. The algorithm is easily
generalized to missing data.

The spatial median is orthogonally equivariant, which makes it insensitive to all
orthogonal transformations, such as rotation of a data set, that preserve the Euclid-
ean distances between data points. The breakdown point (50%) of the estimator
is independent on the number of dimensions (see Theorem 4.2 and Figures 3 and
4). In univariate case the spatial median corresponds to the coordinate-wise sample
median.

Theorem 4.2. (Lopuhaä et al. [89]). Let X = {x1, . . . ,xn} ∈ Rp be a random sample.
Then the L1 estimator has breakdown point ε∗(Tn,X) = b(n + 1)/2c/n.

The asymptotic normality of the spatial median is shown by Brown [20]. The
normal efficiency in the univariate case is ( 2

π
= 0.637), which is reasonable as the

estimator is equivalent with the coordinate-wise sample median in this case. Brown
shows that the efficiency improves as the number of dimensions grows. The relative
normal efficiency equals with the sample mean as the number of dimensions goes
to infinity. Hence, it is justified to characterize the spatial median as an inherently
multivariate estimate of location.

In order to make a choice between the coordinate-wise and spatial median, we
can compare their influence curves. A continuous influence function provides safety
against inliers, which means that not any single observation can fully determine the
value of an estimator. The influence function of the coordinate-wise sample median
is not continuous at zero, from which it follows that the estimate is very sensitive to
one or two middle values of a data set. This leads to extreme sensitivity to rounding
or grouping of these points [21]. In other words, the local-shift sensitivity of the
coordinate-wise median is asymptotically infinite at the central part of the influence
curve. The robustness of the spatial median improves against such inliers as the
dimension of the problem space grows. Unlike the coordinate-wise median, the
spatial median lies always inside the convex hull of a sample as well.

5 A robust clustering algorithm with treatment for miss-
ing data

A robust partitioning-based clustering method is proposed by Estivill-Castro and
Yang [36]. The method computes the spatial median when estimating the most rep-
resentative point of a cluster. It is a robust variant of the K-means method. A similar
method with different algorithmic details and treatment for missing data is derived
by Kärkkäinen and Äyrämö in [75].

A convenient way to indicate the available data is to define a projector matrix,
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Figure 3: Illustration about the sensitive of the sample mean towards the contami-
nated part of the data. One can see that larger the proportion (λ) of the outliers, more
distorted the sample mean becomes whereas the spatial median remains relatively
stable.

which separates the missing and existing values:

(pi)j =

{
1, if (xi)j exists
0, otherwise

By further denoting Pi = Diag{pi}we can, for example, redefine the problem of the
spatial median given in (4.7):

min
u∈Rp

J 1
2 (u), for J 1

2 (u) =
n∑

i=1

‖Pi(u− xi)‖2, (5.1)
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Figure 4: The remoteness of the bunch of outliers (15% in this case) does not in-
fluence the spatial median whereas the sample mean becomes significantly broken
down.

Exactly similar projector technique can be applied to distance calculation.
The algorithm follows the principles of the general iterative relocation algorithm

3.1 in Section 3.1.

Algorithm 5.1. K-spatialmedians algorithm

Required input parameters: Data set X = {x1, . . . ,xn} ∈ Rp, the number of clusters
K and the maximum number of iterations maxit.

Optional input parameters: Initial cluster centers {m0
k}K

k=1 or n × 1 code vector c0 ∈
{1, . . . , K}, which defines an initial partition.

Output parameters: Final cluster centers {m∗
k}K

k=1 and code vector (partition) c∗.

Step 1.(Initialization.) If centers {m0
k}K

k=1 are given then go to Step 2. Else if an initial
partition c0 is given then go to Step 3. If neither centers nor partition is given
as input then initialize centers {m0

k}K
k=1, assign each data point {xi}n

i=1 to the
closest center and go to Step 3. Set t = 0.

Step 2.(Reassignment.) Reassign each data point in {xi}n
i=1 to a new cluster Cr if

min
r 6=(ct)i

‖xi −mt
r‖ < ‖xi −mt

(ct)i
‖.

Update (ct)i for all relocated points.

Step 3.(Recomputation.) Update the cluster centers of the current partition by mini-
mizing (5.1) for all k ∈ {1, . . . , K}.

Step 4.(Stopping.) If no reassignments of data points between cluster centers then
stop. Otherwise t = t + 1 repeat from step 2.
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Because we are mainly calculating in continuous space, an obvious choice of the
dissimilarity measure is the Euclidean distance. In the case of discrete data, the
coordinate-wise median for the prototype estimation and l1-distance for distance
are more appropriate.

In Step 3. problem (4.7) is solved, for example, using SOR-based algorithm given
in [76]. In order to deal with incomplete data sets, a strategy for the missing data
treatment must be included in the algorithms. Since we do not want to be involved
in making hypotheses on the distributions of unknown cluster-wise data, we chose
to apply a strategy, which employs only available data values in the calculation
of the distances and estimates [86]. From this it follows that all computations are
restricted to the existing fields of the original data.

5.1 Comparison of the new robust method to K-means
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Figure 5: This figure shows the error distributions for K-Means (left) and K-
spatialmedians (right) methods when they were used to cluster the data represented
in the right plot of Figure 1. There are no missing values in the data set.

In this section some comparison on the behavior of the Forgy’s K-means and the
new K-spatialmedians clustering methods are presented. As a test data, we use the
bivariate data sets represented in Figure 1. The clusters in the data sets are generated
from normal and laplace distribution.

Figure 6 shows the four outliers that are added to the data by randomly disturb-
ing four observations. One can see that it is difficult to figure out the seven distinct
clusters since the view is more distant from the data. Error distributions in Figure 7
show that the performance of K-means is significantly reduced by disturbing only
one percent of the data whereas the spatial median clustering produce relatively
good clusterings.
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Figure 6: The data represented in the right plot of Figure 1 after disturbing one
percent of the observations. There are no missing values in the data set.
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Figure 7: This figure shows the error distributions for K-Means (left) and K-
spatialmedians (right) methods when they were used to cluster the data represented
in the right plot of Figure 1 after disturbing one percent of the observations. There
are no missing values in the data set.

6 Discussion

In this report we have given an introduction to the cluster analysis and reviewed
partition-based clustering algorithms. A new robust algorithm is introduced as an
example. An important field of data mining applications is the data mining context.
As the data mining concentrates on large real-world data sets, missing and erro-
neous values are often encountered. Hence, we need automated clustering methods
that compress the data into prototypes with minimal user inputs. This diminishes
the need of statistical and computational skill of the end users. The algorithmic de-
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tails that we have chosen for treatment of missing data and robust estimation are a
step toward automated clustering procedures. The approach relieves the end users
from most of the priori manipulations of the data sets, for example, estimation of the
missing values or removing outliers. The algorithms (iterative clustering and SOR-
based prototype estimation) are also fast enough to solve the problems on large data
sets as well. As future work, we should find a way to obtain the globally optimal
solutions. This is mainly an initialization problem. Moreover, a heuristic for estima-
tion of the natural number of clusters may be useful. Although, as it was shown in
this report, there is not always the correct number of clusters. The number of clus-
ters depends also on the way one looking at the data. In order to efficiently utilize
the results, visualization methods are needed as well. A review of the multidimen-
sional visualization methods is given in [67].
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