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Mining road traffic accidents∗

Sami Äyrämö† Pasi Pirtala‡ Janne Kauttonen§

Kashif Naveed¶ Tommi Kärkkäinen‖

Abstract

This report presents the results from the research study on applying large-
scale data mining methods into analysis of traffic accidents on the Finnish roads.
The data sets collected from traffic accidents are huge, multidimensional, and
heterogeneous. Moreover, they may contain incomplete and erroneous values,
which make its exploration and understanding a very demanding task. The
target data of this study was collected by the Finnish Road Administration be-
tween 2004 and 2008. The data set consists of more than 83000 accidents of
which 1203 are fatal. The intention is to investigate the usability of robust clus-
tering, association and frequent itemsets, and visualization methods to the road
traffic accident analysis. While the results show that the selected data mining
methods are able to produce understandable patterns from the data, finding
more fertilized information could be enhanced with more detailed and compre-
hensive data sets.

1 Introduction

Killing more than 1,2 million and injuring between 20 and 50 million people every
year, and thereby being the ninth most common cause of death in 2004, road traffic
remains among the most central public health problems in the world [1]. A tragic
fact is that among the young people aged between 15 and 29 years, a road traffic
injury is the most common cause of death worldwide. While WHO reports that 90%
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Figure 1: Trend curve, goals and recent estimates of road traffic accidents in Finland.
The MSE estimate starts from 2003 due to the changes in the compilation of statistics
in 2003. *The statistic not yet confirmed.

of the road traffic deaths occur in low-income or middle-income countries, about
39,000 people were killed in Europe and 1,400 in the five Nordic countries in 2008
[23]. In 2001, the EU set itself the goal of halving the yearly number of road deaths
by 2010, but two years before the deadline it is already clear that the goal will not be
reached [23].

In Finland, 344 people were killed in 2008, which makes 65 people per million
inhabitants (http://www.stat.fi). With this number Finland holds the 10th position
among the 27 EU countries in road deaths per million population [23]. Although
Finland performs better than the EU average of 79 road deaths per million inhabi-
tants, it is dropped down to middle level in EU in the pace of reducing road deaths.
Figure 1 shows the progress in Finland over the past decades. While Finland has
achieved remarkable improvements in the road safety over the past two decades,
the good progress has decelerated during the last ten years so that the government
target of 250 road deaths per year by the year 2010 has become unattainable for
Finland.
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When considered internationally, the yearly numbers of road deaths on the Finnish
roads are at fairly satisfactory level, but the problem is that there has been only very
slow progress during the last few years. Given the suffering experienced by the
bereaved people, long-term consequences of the seriously injured victims and the
increased load for the health care system, the road accident numbers can still be con-
sidered high in Finland. There are not many other individual causes that would kill
or injure as many people as the road traffic does. Therefore, it is extremely impor-
tant to keep on searching for new methods that will help us to reduce the number of
road deaths. It seems that the recent actions have not been effective enough, because
the decrease in the number of road deaths has almost stagnated during the last five
years. Regenerating the good progress rate, and thereby catching up the top EU
member states in the road safety development speed may require that completely
new approaches must be found by the road and traffic safety administrators. Effec-
tive political or legislative resolutions and influential investments require thorough
investigations and powerful analysis methods. Because traditional statistical ana-
lyzes are based on hypothesis testing on complete small scale samples, the findings
are strongly driven by the analysts’ prior assumptions. Data mining and knowledge
discovery takes a different approach to the data analysis [29].

Data mining is an approach that focuses on searching for new and interesting
hypotheses than confirming the present ones. Therefore, it can be utilized for find-
ing yet unrecognized and unsuspected facts. In this study, feasibility and utility of
data mining methods in the context of road traffic safety is studied. As data mining
covers a large and versatile set of methods for large-scale data analysis, exploratory
and descriptive methods are emphasized in this study. The intention is to find out
whether robust clustering together with association and itemsets mining techniques
is able to elicit reasonable, and hopefully novel, unsuspected and interesting facts
from road traffic accident data.

The data used in the experiments consists of 83509 road traffic accidents in Fin-
land between 2004 and 2008. Of these accidents, 17,649 injured and 1,203 caused
death of at least one involved victim. Due to the small percentage of fatal accidents,
it is important to include the whole data in the analysis of road network safety. Uni-
form distribution of the fatal road accidents over the 78,141 kilometers of highways
of which Finnish Road Administration is in charge (www.tiehallinto.fi), yields one
accident for every 65km during the five years period considered in this study. Even
if the most of the accidents concentrate on the high volume main roads (class I and
II), which account for 13,264 kilometers in total, it is still justified to expect that a
significant amount of hidden information reside in those over 80,000 non-fatal acci-
dents. Particularly fortuitous near-miss cases can be informative even if no one was
killed or injured. The problem of how to recognize them from the data mass can be
likely assisted with data mining techniques.

This report presents some results on real-world road traffic accident data. The re-
sults are neither conclusive nor exhaustive when it comes to determining or explain-
ing the causes of traffic accidents. Instead of being conclusive, the results demon-
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strate the capabilities of data mining and knowledge discovery in the field under
this study.

1.1 Related work

Despite the wide variety of data mining applications, not so many research or de-
velopment efforts in the context of road safety have been made. In this section a
set of research efforts from this field are reviewed. Most of these studies have been
accomplished in Europe, but some results from more exotic countries are available.
The reports by WHO [28, 1], for example, show that differences in road traffic safety
are huge between various countries around the world.

In Belgium, wide-range of research on mining road traffic data has been carried
out by several researcher [16, 15, 11]. The researchers have applied, for example,
model-based clustering methods, information criterion measures, and association
analysis algorithms on traffic accident data.

Geurts et al. [16] used model-based clustering to cluster 19 central roads of the
city of Hasselt for three consecutive three years time periods: 1992-1994, 1995-1997,
and 1998-2000. Data consisted of 45 attributes that were very similar attributes used
in this study, expect some more detailed variables, such as characteristics of the
road user, fatigue, and rough physical geographic characteristics. They found out
that that by clustering and generating frequent itemsets the circumstances that fre-
quently occur together can be identified. Their analysis shows that different policies
should be considered towards different accident clusters.

Geurts et al. [15] used data from the region of Walloon Brabant between 1997 and
1999. The data consisted of 1861 injurious accidents of which 81 were fatal. While
they also used very similar attributes to this study, some more detailed variables
were collected, such as characteristics of the road user, fatigue, and rough physical
geographic characteristics. They found out novel explanations for traffic accidents
”black” zones by frequent itemset mining and explained why accidents concentrate
on certain road segments. They also found many interesting interaction patterns be-
tween accident factors which suggest that co-occurence of different factors depend
on the accident zone.

The results by Depaire et al. [11] indicate that by clustering the roads into groups
with equal accident frequencies enhance the understanding on traffic accidents. The
data was limited to the Brussels capital region and accident with two involved road
users. The final data set contained 29 variables and 4028 accidents over the period
between 1997 and 1999. While the data contain very similar variables to the ones
used in this research, some more detailed variables were collected, for example,
hidden pedestrian, missing safety (e.g., wearing a helmet or safety belt), passen-
ger positions in the vehicle, behavior (ignores red light, passes incorrectly, makes
an evasive maneuver etc.) and accident dynamics (constant speed, acceleration,
braking, not moving). Furthermore, detriment counts were calculated using a spe-
cific formula and the numbers of slightly and severely injured and deaths. Each
cluster was characterized with cluster-specific attributes that should be affected for
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enhancing road safety. Vehicle type, road type, and age were the main variables
that contributed to the clustering result. They found out that 1) cluster models can
reveal new variables influencing the injury outcome, 2) independent variables may
have different influence on the injury outcome depending on the cluster, and 3) the
effect of a single independent variable can differ in direction between different traf-
fic accident types. A lot of this information may have remained hidden in the large
heterogeneous full data set without clustering. While the results are promising, they
could be further enhanced with more extensive traffic accident data.

Anderson [4] presented two-step methodology for profiling road accident hotspots.
The first step identifies spatially high density accident zones by using Geographical
Information Systems (GIS) and Kernel Density Estimation method. The second step
recognizes the similar zones by adding environmental and land use data to the acci-
dent zones and classifies the hotspots by K-means clustering. The target data from
the London area in the UK were collected by the Metropolitan Police between 1999-
2003. The environmental attributes represented, for instance, road length, cycle lane
length, pedestrian crossings, traffic lights, bus stops, schools, and speed cameras.
The clustering process produced a meaningful hierarchical structure of five groups
including 15 clusters altogether. The clusters described the spatial and environmen-
tal features of the accident hotspots.

Abugessaisa [2] from Linköping University (Sweden) developed a conceptual
three-layer model that should advance the sharing of domain knowledge and com-
munication between the information system developers and road safety organiza-
tions. Abugessaisa found out that visual and explorative data mining tools (e.g.,
dendrograms, K-means clustering, and self-organizing maps) may assist domain
experts in observing hidden relationships and similarities in the road accident data
sets and, thereby, formulate new and interesting hypotheses.

Sirviö and Hollmen [31] from Helsinki University of Technology (Finland) in-
vestigated the use of hybridized methods, including data clustering, principal com-
ponent analysis, Markovian models, and neural networks in forecasting road con-
ditions of Southern Finland. The results show that Markovian models are more
straightforward and efficient than neural networks with the studied problem, but
the authors suggested further research on clustering and neural network methods.

Chong et al. [9] also present interesting results for different machine learning
techniques (neural networks, decision trees, support vector machines, and hybrid
decision tree-neural network method) on the GES automobile accident data set that
is collected from the United States. Their results show that hybrid decision tree-
neural network approaches outperforms the single classifiers in traffic accident clas-
sifier learning.

In some studies the target data sets have been collected from countries with ex-
tremely high accident numbers like Korea and Ethiopia [32, 33, 36]. In [32], Sohn et
al. compare neural network, decision tree, and logistic regression classifiers to build
up classification models for accident severity prediction on traffic accident data set
from Korea. Data set consists of 79 variables including many details, such as driver’s
education, violent driving, speed of car before the accident, rule violation, type and
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status of driving licence, protective device, median barrier, injured body part, ve-
hicle inspection status, loading condition, distance from driver’s residence, curve
radius, and the length of tunnel. The data contained 11564 accidents that were split
into training data (60%) and validation data (40%) respectively. The class variable
was the accident type (death, major injury, minor injury, injury report and property
damage). After the variable selection 22 variable were used in classification. They
found out that classifier accuracies were not significantly different on traffic acci-
dent data, but that decision trees produced the most understandable results. The
protective device (e.g., seat belt) turned out to be the most significant factor to the
accident severity.

In order to enhance the classification accuracy achieved in [32], Sohn and Lee [33]
applied data fusion, ensemble and clustering algorithms to improve the accuracy
of individual classifiers on road traffic accident data from Korea. As a result, the
authors suggest that due to the large variations of observations in Korean road traffic
accident data, the accidents should be clustered and then fit a classification model
for each cluster accordingly.

Tesema et al. [36] applied adaptive regression trees to build a decision support
system for classifying injuries into the predefined classes: fatal, serious, slight, and
property damage. The data consisted of 5207 accidents described by 36 variables of
which 13 were used in the classification. The data was obtained from Addis Ababa
Traffic Office and collected between September 1995 to March 2005. The generated
rules indicated that, for instance, accident cause, accident type, driver’s age, road
surface type, road condition, vehicle type, and light condition are important vari-
ables in the classification of accident severity. The authors concluded that their clas-
sification model is able to support the traffic officers at Addis Ababa Traffic Office
when they are planning and making decisions in traffic control activities.

1.2 Preliminaries

Terms data, information and knowledge are used with the following meanings herein
(see, [37, 34]):

• Data consist of not yet interpreted symbols, such as simple facts, measure-
ments, or observations.

• Information consist of structured data with meaning.

• Knowledge emerges from information after interpretation and association with
a context.

Concerning the formulae throughout the report, we denote by (x)i the ith com-
ponent of a vector x ∈ Rp. Without parenthesis, xi represents one element in the set
of vectors {xi}n

i=1. The lq-norm of a vector x is given by

‖x‖q =

(
n∑

i=1

|(x)i|q
)1/q

, q < ∞.
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2 Data mining and knowledge discovery

Briefly, data mining (DM) and knowledge discovery in databases (KDD) refer to
analysis of huge digital data sets. Hand et al. [19] define ”data mining is the analysis of
(often large) observational data sets to find unsuspected relationships and to summarize the
data in novel ways that are both understandable and useful to the data owner.” The need
for data mining arises from the huge digital data repositories. Data repositories
are swelling both due to the increasing number of ways to measure different real-
world phenomena and declined prices of digital storing facilities. In addition to the
amount of data, quality of data (errors, missing data etc.) is another challenge. The
digital data storages are often collected without any statistical sampling strategies
[19].

While the traditional data analysis techniques have become inefficient to handle
huge data sets, they are also based on the prior assumptions on data. In overall,
data mining is more about the search than confirmation of hypotheses. Hence, data
mining is not only concerned with algorithmic capabilities, but it also provide tools
to accomplish analyzes without strong assumptions or knowledge on the data a pri-
ori. While the well-known data mining problem of ”the curse of dimensionality” (e.g.,
[19]) pose requirements for the methods, at the same time it hinders analysts or
decision makers from identifying previously unrecognized dependencies and simi-
larities from the data.

Due to the explorative and descriptive nature, intelligible representation and vi-
sualization of the found patterns and models are essential for the successful mining
process, particularly when the domain expert has limited knowledge of the data
mining methodology.

While data mining is typically related to the algorithms, knowledge discovery
from databases usually refers to the overall process [14]. Margaret Dunham [12]
defines knowledge discovery in databases as ”...the process of finding useful informa-
tion and patterns in data”. Data mining represents the step where the algorithms are
applied to the target data.

This research on mining road traffic accidents is conducted according to the two-
level knowledge mining (KM) process instead of the traditional KDD model [5]. The
KM model provides well-defined interface for domain and method experts. The
steps of the process are shown in the Figure 2.

2.1 Data mining tasks

Depending on the application, the target data, or the predefined goal of the analysis,
various methods can be applied to the data mining task. Hand et al. [19] define the
main types of DM tasks in the following way:

Exploratory Data Analysis (a.k.a. EDA) means explorative analysis of a data set, in
which interesting and unexpected structures are visually observed from data.
Graphical representation techniques, such as histograms, pie charts, scatter
plots, and so on, are frequently utilized, but in case of high dimensional data
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Figure 2: Knowledge mining process.

involving more than three dimensions, dimension reduction techniques, such
as PCA and MDS, are needed to transform the data into a low-dimensional
space. One should note that while a data miner is always performing search
for unexpected novelties from data, she/he is rather exploring than confirm-
ing or discarding hypotheses. On this basis, the whole data mining and knowl-
edge discovery methodology can be considered as an explorative data analysis
approach.

Descriptive modelling is based on methods that describe a high-dimensional data
set in a refined way without strong prior assumptions about the underlying
classes and structures. Cluster analysis, segmentation, density estimation, and
dependency modelling techniques are typically applied in this case.

Predictive modelling utilizes classification and regression techniques. A value of a
particular variable is predicted from the values of the other known variables.
In classification, the predicted variable is categorical (e.g., fatality of an acci-
dent), whereas in regression the variable is quantitative (e.g., traffic volume
on a given road). Hence, predictive models are based on prior knowledge
about the classes. Predictive data mining techniques are, for example, neural
networks, nearest-neighbor classifiers, decision trees, and Bayes classifiers.

Discovery of patterns and rules searches for frequent itemsets, association rules and
sequential patterns from data. Market basket analysis is the traditional exam-
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ple. A large number of pattern and rule mining methods are based on the
so-called Apriori principle [3].

Retrieval by content refers to finding interesting patterns from large data sets us-
ing, for example, a set of keywords. This approach is utilized in retrieval of
documents or images from large databases. World-Wide-Web search engines
are examples of the retrieval-by-content applications (for example, Google).

While the aforementioned classification is quite detailed, it is quite common to
speak roughly about descriptive and predictive tasks (e.g., [35]).

The methods needed to accomplish the data mining tasks are typically made up
of four elements [19]. Model or pattern structure determines an underlying struc-
ture or functional form of the data. Score function expresses how strictly a model
fits the target data. In other words, it measures the error between a model and data.
The best model produces the smallest error. Optimization and search methods are
needed to minimize the error of model or pattern structure. The search methods
are of two types: parameter search methods for a given model and model search
from a model space. A parameter search problem is usually formulated through
an optimization problem, for example, minimization of the least squares error. The
pattern/model search problems are often solved by heuristic search techniques (e.g.,
the problem of best number of clusters). Data management strategy concerns the
efficient data access during the model search or optimization phase. In data mining
applications, the target data sets may exceed the capacity of primary data storages.
Therefore, data management should not constitute a bottleneck for the advanced
search and optimization algorithms.

Data mining methods and algorithms are introduced in many specific books (see,
for example, [18, 12, 19]). Moreover, various related and useful methods that have
been adapted to data mining requirements can be found in the literature in statistics,
artificial intelligence, machine learning, pattern recognition, and database technol-
ogy.

2.2 Frequent itemsets and association rule mining

A frequent itemset generation algorithm digs out frequently occurring itemsets, sub-
sequences, or substructures from large data sets. A common example of frequent
itemset applications is market basket analysis. Market basket analysis is a process
that helps retailers to develop their marketing strategies by finding out associations
between different items that customers place in their shopping baskets. Besides mar-
ket basket data, frequent itemsets mining has been applied in, for example, bioin-
formatics and web mining.

Before illustrating the method with an example, a set of definitions are given. Let
I = {i1, i2, . . . , im} be a set of items (e.g., a set of products sold by a grocery store)
and T = {t1, t2, . . . , tn} be a set of database transactions (e.g., a purchase transaction
in a grocery store) where each transaction ti contains a subset of items chosen from
I . A set of items is referred to as an itemset. An itemset that contains k items is
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Accident Gender Age Alcohol Speed limit Fatals
1 M Young Yes ≥ 100 Yes
2 M Young Yes 70− 90 Yes
3 M Middle No 70− 90 Yes
4 F Young No ≤ 60 Yes
5 M Old No 70− 90 Yes

Table 1: Example traffic accident data.

an k-itemset. For example, the set {Bread, Milk, Beer} is a 3-itemset. The null (or
empty) set is an itemset that does not contain any items. The occurrence frequency
of an itemset (aka support count) is the number of transactions that contain the
particular itemset. Transaction width is defined as the number of items included in
the transaction.

In market basket analysis, the item-wise details, such as the quantity or the price
of products sold, are usually ignored. Consequently, the items are represented as
binary variables whose value is one when the item is present in a shopping basket
and zero otherwise. If the presence of an item is considered more important than its
absence (or vice versa), and item is considered as an asymmetric binary variable.

In the case of road traffic accident data, the concept of item must be treated in a
slightly different way to the straightforward market basket application. While a typ-
ical market basket data deals only with the boolean associations (presence/absence),
traffic accident analysis must usually be able to handle a heterogeneous set of differ-
ent items and attribute types. Therefore, continuous attributes must be categorized
into a smaller number of intervals within the range of attribute values using dis-
cretization or concept hierarchy formation techniques.

Mining of frequent itemsets using an artificial accident data given in Table 1 will
be illustrated next. The data set contains five fictitious accidents that are described
with four explanatory variables and one consequential variable. The frequent item-
sets are generated according to apriori algorithm [3].

The relative minimum support threshold is fixed to 40%, which is equivalent with
the minimum support count two. From this it follows that all such k-itemsets that
appear in less than two accidents are discarded. Let us start the search of frequent
itemsets by finding all the frequent 1-itemsets from the sample data. One can easily
observe that there exist five items that satisfies the minimum support requirement.
The attribute ’Gender’ has value ’male’ in four out of five accidents, which gives 80%
support. Similarly, four other frequent attribute-value pairs are found from ’Age’,
’Alcohol’, and ’Speed limit’ attributes. All the discovered frequent 1-itemsets are
listed in the Table 2. During the next iteration 2-itemsets are searched. According
to the Apriori principle all nonempty subsets of a frequent itemset must also be
frequent. This means that all the 1-itemsets included in 2-itemsets must satisfy the
minimum support threshold. The last iteration generates the 3-itemsets and finally
we have the set of frequent itemsets listed in Table 1.
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Size Itemsets support
1 {Gender = M} 0.8

{Age = young} 0.6
{Alcohol = no} 0.6
{Alcohol = yes} 0.4
{Speed limit = 70-90} 0.6

2 {Gender = M, Age = young} 0.4
{Gender = M, Speed limit = 70-90} 0.6
{Gender = M, Alcohol = yes} 0.4
{Gender = M, Alcohol = no} 0.4
{Age = young, Alcohol = yes} 0.4
{Alcohol = no, Speed limit = 70-90} 0.4

3 {Gender = M, Age = young, Alcohol = yes} 0.4
{Gender = M, Alcohol = no, Speed limit = 70-90} 0.4

Table 2: Frequent itemsets generated from the artificial accident data.

Association rule mining extract association rules from a given frequent itemset.
For example, one may obtain rule {Gender = M} −→ {Alcohol = no} from the ficti-
tious data in Table 1. The left side of the rule {Gender = M} is antecedent and the
right side {Alcohol = no} is consequent of the rule. The association rules are usually
assessed in terms of support and confidence. The support of the above rule is 0,4.
Confidence of a rule is obtained by dividing the support count of the rule by the
support count of the antecedent. Hence the confidence for the rule {Gender = M}
−→ {Alcohol = no} is 2/4 = 0.5. Confidence measures the reliability of the infer-
ence derived from an association rule. One should note that the association does
not necessarily mean causality between the items in the antecedent and consequent
of a rule. Depending on the data, association rule mining algorithms may produce
millions of rules, for which one may need to use also other interestingness measures
besides support and confidence. In this study, we rank the rules according to lift
measure, which computes the ratio between the rule’s confidence and the support
of the itemset appearing in the rule consequent.

A typical rule mining algorithm consists of two subtasks: frequent itemset gen-
eration and rule generation. The former finds the frequent itemsets that satisfy the
minimum support requirement and the latter extract all the rules that satisfy the con-
fidence requirement. Many techniques for rule mining are presented, for instance,
by Tan et al. in [35].

2.3 Data clustering

Data clustering is a descriptive data analysis technique that is also related to unsu-
pervised data classification [19, 35]. It is one of the core methods of data mining. As
a result of data clustering the target data set is divided into groups (clusters) that are
meaningful and/or useful. A cluster can be defined, for example, as ”a set of enti-
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ties which are alike, and entities from different clusters are not alike [22].” Cluster
models provide valuable information about similarities, densities, and correlations
of multivariate data objects and attributes. Depending on the application, the num-
ber of objects and dimensions may vary, but in data mining applications both are
often huge. Unlike supervised classification, data clustering does not exploit any
information about cluster memberships of data objects.

Clustering methods can be roughly grouped into two categories: partitioning
and hierarchical methods. Other methods, such as density-based DBSCAN [13],
fall somewhere in between the two major categories. Partitioning-based methods,
such as K-means or K-spatialmedians [27, 5] are efficient methods that consume less
memory than, for instance, hierarchical methods. This is a considerable advantage
with large-scale data analysis tasks.

When considered purely from numerical perspective, the prototype-based data
clustering problems, such as K-means or K-spatialmedians, are characterized as
non-convex global optimization problems. However, the most fundamental prob-
lem in data clustering is to define such a score function that yields the most charac-
teristic and informative clusters for the given data. Depending on the chosen valid-
ity measure, a local optimum may yield a more acceptable cluster structure than the
global optimum. In fact, cluster models can not be generally evaluated regarding
the numerical outcome of the method, since one analyst may see the value of the
obtained clusters in completely different way than another. Hence, cluster validity
is also a philosophical issue.

2.3.1 Clustering example

Figure 3 provides an artificial example of bivariate data clustering problem. The
data consisting of three clusters is given in Table 3. We have 15 observations that are
each described using two variables. An example of optimal K-means clustering is
presented by marking each cluster by an individual symbol. The cluster prototypes
are represented by the sample means (see the pentagram markers in Figure 3).

2.4 Robust prototype-based clustering methods

In this research, we are going to apply and evaluate feasibility of a robust prototype-
based method on mining road traffic accident data. The principal idea of prototype-
based data clustering is the following: for a set of n-dimensional data points (vec-
tors) {zi}N

i=1 (zi ∈ Rn), a prototype-based clustering method finds a partition where
intra-cluster distances are minimized and inter-cluster distances maximized. The
number of clusters is denoted by K typically. Depending on the method each cluster
is represented by, for instance, the sample mean, median or some other multivariate
location estimator. K-means is definitely the best-known prototype-based clustering
method [27].

In this study, we have chosen to use a robust and reliable prototype-based clus-
tering method, namely K-spatialmedians, which is based on a statistically robust es-
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id v1 v2
1 -0.4 -1.2
2 -0.5 1.0
3 -1.1 -0.6
4 -2.6 0.6
5 -1.1 1.1
6 6.0 4.7
7 5.5 4.1
8 5.5 5.9
9 5.6 6.9

10 5.4 4.2
11 4.0 -2.1
12 4.3 -2.8
13 3.1 -1.8
14 4.2 -1.6
15 3.5 -2.4

Table 3: Artificial bivariate data.

−4 −2 0 2 4 6 8
−4

−2

0

2

4

6

8

Figure 3: Artificial bivariate cluster data.
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timation of prototypes and the K-means-wise expectation-maximization (EM) strat-
egy [27, 10, 5]. According to a classical book by Huber [21] ”robustness signifies insen-
sitivity to small deviations from the assumptions”. A small deviation from the assump-
tions may refer either to gross errors in a minor part of the data or small errors in
a large part of the data. The primary goal of the robust procedures is to safeguard
against those errors. A typical deviant in a data set is an outlier, which is an outlying
observation with one or more data values that deviates significantly from the main
bulk of the data [7]. An outlier can be caused, for example, by a failure in a data ac-
quisition system or by a human mistake. On the other hand, an outlying value may
also be a correct measurement of an object with deviating features. For instance,
extremely high breath test value may be due to heavy drinking, measurement error,
or misused encoding (e.g., 9,99). Another type of deviation from the complete and
normal data sets are missing data that may exist due to various reasons [26]. The
missing data mechanism may be fully unknown, which makes the estimation of the
correct value difficult. With large data sets, manual missing data or outlier analy-
sis and replacement is an insurmountable task, but if not taken into account, they
prevent precise and correct inferences from erroneous and incomplete real-life data
sets.

Robust estimation of prototypes can be realized by using the spatial median in-
stead of the sample mean (in K-means) [24, 25]. When compared to the common
traditional methods, K-spatialmedians provide prototypes that are more robust to
extreme data values and gross errors. The breakdown point of the spatial median
is 50%, which means that at least 50% of data points have to become disturbed in
order to change the estimate infinitely. Note that in the univariate case the spa-
tial median coincides with the coordinate-wise median. In addition to prototypes,
robustness of the whole clustering method depends on the initialization approach,
which determines the search space neighborhood. K-spatialmedians algorithm is re-
liable in the sense that it will not be failed by anomalous numerical conditions. This
means that empty or singleton clusters and non-smoothness of the problems will
not crash the method. Even if there exist no closed-form solution for the problem,
the spatial median estimate be approximated precisely and in short time using the
iterative Weiszfeld method that is accelerated with the successive over-relaxation
step [25]. Although the use of robust estimates leads to computationally more in-
tractable problems in general terms, the previous results indicate that the reduced
number of clustering iterations obtained by a refinement initialization strategy com-
pensates the cost of the estimator [6].

2.4.1 K-spatialmedians algorithm

At first the score function of the robust clustering method is defined. Based on the
well-known K-means score function, a more general K-estimates clustering problem
is defined in [5]:
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min
c∈NN ,mk∈Rn

J (c, {mk}K
k=1) =

N∑
i=1

‖Pi(zi −m(c)i
)‖α

q (2.1)

subject to (c)i ∈ {1, . . . , K} for all i = 1, . . . , N ,

where c is a code vector, which represents the assignments of the data points to the
clusters and m(c)i

is the prototype estimate (e.g., the sample mean in the K-means
method) of the cluster, in which data point zi is assigned to. Pi is the diagonal
projector matrix where the jth diagonal element equals to one given the jth element
exists in xi, and otherwise jth element of Pi equals to zero. On computer platforms
(e.g., MATLAB) each diagonal matrix Pi of size p2 are implemented as p × 1 vector
for minimizing the memory usage.

By choosing q = α = 2 one obtains the aforementioned problem of K-means.
However, by choosing q = 2α = 2 one obtains the robust formulation, the prob-
lem of K-spatialmedians. This is the score function of the robust K-spatialmedians
clustering method. By using Pi projections all available data values are exploited
without need for manual or computerized missing data strategies.

The K-spatialmedians method finds K clusters from a given data set so that the
sum of the cluster-wise Euclidean distances is minimized. This is obtained by a
search method that iterates between the following two steps:

1. Reassign data points to their closest cluster prototypes according to Euclidean
distance.

2. Update prototypes (computation of the sample spatial for each cluster).

If no more reassignments occur, then the algorithm terminates. As previously men-
tioned, the algorithm follows the well-known expectation-maximization (EM) strat-
egy [10] and guarantees only a locally optimal solution. The prototypes are updated
using the SOR-accelerated iterative Weiszfeld algorithm [25].

Computational complexity of the K-spatialmedians algorithm is O(NnKtEM tSOR),
where tEM is the number of clustering iterations and tSOR is the number of SOR-
iterations. Usually, n,K, tEM , tSOR ¿ N , which means that the number of data
points contributes the most to the computational cost. tSOR depends on the required
accuracy of the spatial median estimates. tEM is usually very small, especially
for the reasonably initialized robust clustering. Therefore, a clustering refinement
method is used for the initialization step in this study. The clustering refinement is
a density-estimation based method and the idea was initially presented by Bradley
and Fayyad [8]. Their experiments indicate that the quality of the K-means cluster-
ing can be improved with this initialization method. The K-spatialmedians is shown
to be more tolerable to noise and gross errors than the original K-means-based re-
finement approach and also comparable from the computational point-of-view [6].
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Figure 4: Two bivariate clusters with a single outlier. On the right-side the corre-
sponding univariate distributions.
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Figure 5: Example of principal components for bivariate data.

2.5 Dimension reduction

Dimension reduction and feature selection are also closely related to many data min-
ing methods. From the perspective of the knowledge mining process, dimension re-
duction techniques can be used either for data preprocessing before the actual data
mining step or they can be used as tools for exploring and visualizing the data. In
data visualization, dimensionality of the data is reduced before the data exploration
step. Common data visualization tools are, e.g., parallel coordinates and numerous
plotting techniques (scatter, trellis, star, box plots etc.) [19, 35, 18]. The weakness
of such methods is that high-dimensional data are not necessarily scattered or clus-
tered in an interesting way in any direction of an individual coordinate or pair of
coordinates (see Figure 4). Therefore, transformations that preserve the directions of
maximal variances or class-discrimination are needed. Principal component analy-
sis (PCA) is perhaps the best-known of such methods [20]. PCA finds the orthogonal
directions that maximize the variability of the high-dimensional data (see Figure 5).
The data points and cluster centers can be projected onto the most informative prin-
cipal component axes. In data visualization two or three most informative axes are
used in the data representation. A reduced dimension is obtained by projecting the
original high-dimensional data from the original Rp space into the low dimensional
Rq space (p À q) determined by the principal components.

Let us assume that X is a mean-centered and standardized p-dimensional data
set. The q-dimensional projection yi of any vector xi ∈ X is obtained by

yi = Axi,

where A is an orthogonal q × p transformation matrix. In the classical PCA method
A is defined by the eigenvectors of the covariance matrix for X. Let Σ be the covari-
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ance matrix of X. Eigenvectors ei and the corresponding eigenvalues λi for Σ are
obtained as a solution of the problem:

Σei = λiei, for i = 1, . . . , p.

By substituting the largest eigenvectors to the rows of A, one obtains a transfor-
mation matrix that can be used to map the points from the original space onto the
low-dimensional orthogonal representation. In the case of data clustering, one can
also determine the principal component directions using cluster prototypes. A lot
of computational resources can be saved by using a small number of prototypes for
computation of principal projections. Moreover, by using prototypes as an input
data for PCA the low-dimensional data will likely preserve the most discrimina-
tive directions of the original data, because the prototypes usually try to maximize
between-cluster distances.

While the principal component mapping produces a linear projection of data,
multidimensional scaling (MDS) produces a non-linear transformation [20, 19]. MDS
is based on the idea about preserving the pairwise distances between the data points.
Let dij be the distance (e.g., Euclidean distance) between two p-dimensional obser-
vations xi and xj . A standard MDS finds a set of q-dimensional (q < p) vectors
{x′1, . . . ,x′n} which minimizes a cost function given by

JMDS({x′1, . . . ,x′n}) =
n∑

i=1

n∑
j=i+1

(dij − d′ij)
2,

where d′ij is the distance between the unknown q-dimensional vectors x′i and x′j . The
cost function must be minimized by using an appropriate optimization algorithm.
Perhaps the most popular variant of MDS is the Sammon’s mapping given by

JSammon({x′1, . . . ,x′n}) =
n∑

i=1

n∑
j=i+1

(dij − d′ij)
2

dij

.

By normalizing the pairwise distances in the original space, smaller distances are
weighted. While MDS requires only pairwise distances and generalizes to any dis-
similarity measure, it takes a lot of computational resources for large data sets.

3 The accident mining research process

Knowledge mining process steps (Figure 2) can be employed for enhancing com-
munication between domain experts and data mining method developers. In this
chapter we describe the realized analysis process by following the knowledge min-
ing process.

KM1. Domain analysis

Although a road traffic accident is a familiar concept for anybody, continuous do-
main analysis must be carried on by the road administration. This enables timely
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decisions and actions under the constantly changing circumstances. As a result of
domain analysis interesting variables are measured and stored in databases for fur-
ther analysis. Note that domain analysis and data gathering do not necessitate the
further data mining efforts.

KM2. Goal setting

Based on the administrative responsibilities and existing data sources, the goal of
the knowledge mining is specified together with the academic data mining researcher.
In this study, the goal is to accomplish preliminary study on utilization of clustering
and association rule mining techniques on road traffic accident data sets. A spe-
cial effort is put on finding methods for detecting and understanding previously
unknown risk factors behind fatal accidents and classifying the potential accident
locations.

KM3. Data selection

After the initial experiments on the data set from Middle-Finland region were ac-
complished the study was extended to cover the whole Finland data. The data set
consist of all the registered road traffic accidents on the Finnish road network dur-
ing the years 2004–2008. It contains 83509 accidents including 1203 fatal and 17649
injurious accidents. Because the data were distributed into several tables and files,
data integration was needed. Some duplicate values, such as a binary drunken driv-
ing variable and the permille count of alcohol, were pruned. Also some irrelevant
attributes, for example, the dates related to the administrative processing, were re-
moved. The following datasets were used in the Traffic accidents research project.

Accident The accident dataset contains the detailed information about accidents
like accident severity (fatal, non-fatal etc), accident location (region, district,
county, road number, road segment, distance from the start of road segments,
address etc), temporal data like year, month, day, hour, and date, environment
variables like weather, temperature, and lightness, road conditions like surface
type, road width, walkways, junction types, traffic lights, speed limits, road
works, heavy and light traffic volumes etc, the accident type like turn and hit,
overtake, animal hit, the number of injuries, casualties, vehicle type and and
so on.

Persons The Person dataset contains the information of the people involved in the
accident like accused driver, non-accused driver, alcohol involved etc.

Participants The participants dataset contains the information about the other par-
ticipants like vehicles, animals etc.

Population density Finnish Road Administration considers the population density
as a possible and potential risk for the traffic accidents. The population den-
sity of the areas around the road network is defined in the population density
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repository. The population information is recorded against the road number,
starting segment, ending segment, starting distance from the starting segment,
ending distance from the ending segment. The interesting fact is that the pop-
ulation density may remain the same over several road segments or may vary
even within one segment after a small distance. As the population density
is an independent repository, in order to retrieve the population density in-
formation for each traffic accident location, the population density and traffic
accidents repositories were integrated together.

Altogether, 32 variables were qualified for further analysis as a result of data selec-
tion. Finally, the population densities at the accident locations were integrated to
the accident data set from a separate database. The integration of the population
density attribute is based on the mapping of the road number, road segment, and
distance attributes between the road network and population density data sets. The
complete set of target clustering attributes is presented in Table 4. The authors want
to emphasize that none of the used variables risk the privacy of the involved victims.

KM4.1. Data preprocessing

Before employing any data mining method all the attributes were integrated into
a single data matrix and inconsistencies were removed from data. Although miss-
ing value were not preprocessed (e.g., imputation) there are cases where a missing
value has a meaningful explanation. For instance, a missing value in the traffic lights
attribute indicates that there exist no traffic lights at the accident place. Thus, all the
missing values in the traffic lights attribute were replaced by zeros. In the original
data there exist four separate attributes for a pedestrian/bicycle way that were re-
placed by one binary valued pedestrian/bicycle way attribute which indicates whether
there exist pedestrian/bicycle way or not. Weekday and hour information were cat-
egorized into ten class that were defined by the road administration representatives
(see Table 5 in Appendix 1).

KM4.2. Data transformation

The target data set contains many different types of attributes on different scales.
These must be transformed and scaled before the actual mining methods can be em-
ployed effectively [30]. The nominal attributes are transformed by creating binary-
valued pseudo variables for each label value. After the binarization all the attributes
are normalized. Typically all attributes values are transformed to the equal range,
e.g., [0, 1] by linear scaling transform, or another option is to normalize the stan-
dard deviations or median absolute deviations of the data distributions. We chose
to transform the ratio and interval type of attributes to the range [0, 1] and binary-
valued attributes to the range [0.25, 0.75]. By using smaller range for the binary-
valued attributes we prevent them having maximal weight in all distance compu-
tations. The rationale is that zero and one of a binary attribute represent lower and
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ATTRIBUTE NAME TYPE VALUES
Accident-specific attributes
accident type nominal 0,. . . ,99
accident category nominal 1,. . . ,13
accident scene nominal 1,. . . ,9
heavy traffic involved nominal yes/no
number of involved vehicles/animals ratio 1,. . .
number of killed persons ratio 0,. . . ,23
number of injured persons ratio 0,. . . ,24
Driver-specific attributes
gender binary male/female
drunken driver binary yes/no
age ratio 5,. . . ,98
Road-specific attributes
population density nominal 0,. . . ,6
road pavement nominal 0,. . . ,6
traffic lights nominal 0,. . . ,4
speed limit type nominal 1,. . . ,6
motor/semi-motor highway nominal 1,. . . ,3
functional road class nominal 1,. . . ,4
maintenance class nominal 1,. . . ,8
pedestrian/bicycle way binary yes/no
arterial highway binary yes/no
speed limit ratio 20,. . . ,120
average daily traffic volume ratio 9,. . . ,88610
average daily heavy traffic volume ratio 0,. . . ,8359
number of roadways ratio 0,. . . ,4
roadway width ratio 35,. . . ,379
sight distance 150m ratio 0,. . . ,100
sight distance 300m ratio 0,. . . ,100
sight distance 460m ratio 0,. . . ,100
Circumstance-specific attributes
time nominal 1,. . . ,10
road condition nominal 1,. . . ,6
lightness nominal 1,. . . ,4
weather nominal 1,. . . ,7
temperature interval -36,. . . ,+35
Others attributes (only for interpretation)
month nominal 1,. . . ,12
region nominal 1,. . . ,14

Table 4: Road accident attributes.
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upper halves of the range, respectively. Instead of giving full-weight for the at-
tribute, the values are scaled to the most representative points of the halves, that
are 0.25 and 0.75. After the transformation, all attributes where some constant value
exist in more than 95% of observations are removed, but taken into account again
during the interpretation. 67 variables were used as input for the clustering method.

KM4.3. Method and parameter selection

In this pilot-study we chose to try the fast and robust k-spatialmedians algorithm in
the clustering task. Our previous studies have shown that the method may produce
more stable clusterings than, for example, the classical K-means method [27]. The
SOR-based K-spatialmedians algorithm is also comparable with respect to computa-
tion cost due to the lesser number of clustering iterations. The K-spatialmedians al-
gorithm projects all computational operations to the all existing values which means
that no special missing value handling is needed.

KM4.4. Mining

All the computation were performed using MATLAB 7.5.0.338 (R2007b) software
installed on HP ProLiant DL585 server with four AMD Opteron 885 (2,6GHz) dual
core processors, 64GB of memory, and 64-bit x86 64 Red Hat Enterprise Linux Server
release 5.3 OS. According to preliminary test runs we chose to use K=7 as a num-
ber of clusters. For the initialization so called clustering refinement principle was
chosen (for more details, see [6]). Despite clustering refinement is based on sub-
samples, we chose not to apply subsampling strategy and used the whole data for
each run. The number of refinement runs on the whole data was ten. Thereafter
the obtained ten sets of seven prototypes were clustered by starting once from each
set of prototypes. The prototypes with the smallest error were chosen as the initial
clustering for the final clustering run. The maximum number of algorithm iterations
was always 100.

KM4.5. Visualization

The clustering results are presented using PCA and MDS dimension reduction tech-
niques, introducing the most characteristic attribute values for each cluster, and
mining the frequent itemsets from the clusters using the Apriori method.

KM5. Interpretation/evaluation

The outcomes of the data mining process were evaluated through the numerical and
visual representations in several meetings between the road administration and the
data mining research group. The results were also discussed in a public multidisci-
plinary seminar in the presence of e.g., several road traffic safety, road adminstration
and police representatives.
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KM6. Utilization

The results published in this report will be used for developing knowledge among
the road administrative and traffic safety related people for planning the further
actions and projects in the field.

4 Data mining results

Based on the KM process described in the previous section we obtained seven dis-
joint groups (subsets) of the analyzed data. In this section these groups, i.e. clusters
are interpreted separately. In short we obtained interpretable groups of accidents
with varying risk levels. Due to the small relative number of fatal accidents (1203
fatal accidents in the whole data), the cluster-wise percentages of fatal accidents are
naturally small. However, deviations between the clusters may indicate the need
for a more thorough analysis of non-fatal accidents in the clusters of many fatalities.
Therefore, it is important to define and discuss all the characteristic cluster features.
Tables and figures of the summary statistics of the most significant attribute-value
pairs are presented in Appendices 1-3. The table references will not be repeatedly
used in the following discussions.

Tables in Appendix 1 show that different clusters possess varying proportions
of fatal and injurious accidents. Table 6 reveals that cluster 7 have clearly higher
percentages of fatal accidents than the other clusters.

Figure 6 presents the attribute ranking with respect to entropy-based clustering
information gain. Entropy measures the impurity of a set of data. The range of
each variable is divided into K (the number of clusters) bins of equal width. If all
prototypes fall into at most one bin, entropy is the lowest. Other way round, entropy
is highest when each prototype falls into a separate bin. If the information gain
equals for a set of variables, then these variables are ranked with respect to their
standard deviations.

Information Gain based attribute ranking indicates that the road characteristics
dominates the clustering results. For instance, clusters 3 and 7 seem to be quite
similar with respect to many attributes. The accidents have occurred on quite similar
roads, but cluster 3 consist of almost completely animal accidents and based on
lightness variables many accidents during the dark time of the day while cluster 7
contains more single vehicle accidents in daylight. Later we will see that despite
the similar road conditions the severity of accident consequences are very different.
The most significant InfoGain variable, that is the percentage of class I main road
accidents, shows similarities with PCA-plot in Figure 9. By this way one obtained
initial understanding about cluster similarities for more detailed cluster analysis.

4.1 Cluster 1: Motor- and semi-motorway accidents

Cluster 1 is the motorway cluster in which accidents happen mainly on multi-roadway
main roads where the speed limit is mainly 80, 100, or 120 km/h. These roads are
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Figure 6: The most significant clustering attributes (from top to bottom) according
to Information-Gain standard deviation measures.

characterized by the high traffic volumes and accidents occur during the morning
and afternoon rush hours, especially Friday afternoon. The percentages of fatal and
injurious accidents are very close to the average level of the whole data. The age
distribution is slightly more skewed towards the 20-34 years old drivers than the
full data.

Despite the high speed limits, the consequences are not more severe than the av-
erage of the data, because the separated opposing traffic lanes prevent the head-on
collisions, and ramps, acceleration and deceleration lanes prevent the fatal inter-
section accidents. The most typical types of accidents are single vehicle run-offs,
overtaking and head-to-tail collisions, and animal hits. While the overall number of
accidents accumulated to December, January and June, the fatal accidents occurred
most often in January and September. It seems that bad weather conditions have
most impact on motor- and semimotorways. The percentages of bad weather (rain,
snowfall, and sleeting) and road conditions (water in the ruts, snow, and slush) are
among the highest in this cluster. This may indicate the need for more expeditious
ploughing, gravelling and salting or variable speed limits. In overall, this cluster
indicates that higher traffic volumes and speed limits do not increase the accident
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risk as far as the head-on and intersection collisions are prevented with separated
roadways and ramps.

4.2 Cluster 2: Alcohol-involved connecting road accidents

Cluster 2 consists mainly of animal, run-off, and head-on collision accidents on
small connecting roads between the build-up areas with low maintenance prior-
ity. Despite the fact that this cluster represents the largest proportion (15,4%) of
drink-drivers the severity of consequences do not differ much from the whole data
averages. This may be due to the low traffic volumes which reduce the probability
of head-on collision in single vehicle loss-of-control accidents. On the other hand,
speed limits are low on the connecting roads which naturally reduce risk of head-on
collisions. The role of alcohol can be seen in the fatal accidents of which 32,5% are
caused by drink-drivers. Speeding by young drivers is probably another explana-
tion to the fatal accidents, because in contrast to the overall accident distributions
by month and age, the accidents happen mainly in summer and the proportion of
young drivers is high among the fatal accidents. Moreover, a large part of the ac-
cidents occurred in the weekend nights. The large number of head-on collisions in
curve may be also related with the narrow roadways and low maintenance priori-
ties.

4.3 Cluster 3: animal hits

This cluster is a clear anomaly among the others by consisting almost entirely of
animal hits. Risk of personal injury is clearly lowest of all. The driver in this cluster
is typically a 25-64 years old man which is correspondingly seen in the high median
age. The interesting detail is that the driver’s median age among the fatal accidents
is very low. Fifty percent of the fatal accidents were caused by the drivers under
thirty years old, while the same age group have caused only 21.3% of all the cluster
three accidents. Alcohol is involved only in one fatal case in this age group. On
the other hand, even if the middle-aged drivers caused 3150 (20,6%) out of 15279
accidents, they were very seldom involved in the fatal cases, since only two (5%)
out of total forty fatal accidents were caused by the 40-49 years old drivers. For a
comparison, the group of 50-59 years old drivers caused seven (17,5%) out of forty
fatal accidents which is very close to their proportion (19,9%) of cluster 3 accidents
overall. The different consequences among the age groups may appear due to sev-
eral reasons. Young drivers are usually more prone to speeding, but their cars are
probably not as well equipped as the cars owned by the middle-aged drivers. On
the other hand, the drivers over fifty years old may be more prone to fatal body in-
juries than the drivers under fifty years. Although alcohol is often related with the
severe accidents by young drivers, drink-driving has almost no role in this cluster.
In overall, the used data set does not provide enough detailed information about
speeding, vehicle defects, protective devices (airbag), or type of fatal injuries, which
makes it impossible to assess the underlying reasons. From the road network point-
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of-view, the animal hits occur most often on one roadway main and regional road-
ways outside densely populated areas where the speed limits vary between 70 and
100km/h. According to common knowledge most of the animal hits are driven late
in the evening or early in the morning in dark and wet autumn weather (see, Figures
16 and 10).

4.4 Cluster 4: Built-up area accidents

This cluster consists of accidents that are mainly happened inside built-up areas.
The risk of fatalities is lower and the risk of personal injuries higher than in the
whole data. This may be due to the low speed inside the build-up areas. The
weekly distribution of accident times concentrates on the afternoon rush hours.
The monthly distribution of all the accidents accumulates to December and Jan-
uary, while the fatal accidents concentrate on the period between June and October.
Young drivers and alcohol have significant proportions in this cluster. On the other
hand, in this cluster female drivers are involved more often than in the others, but
their proportion is still only 28,4%. It is particularly noteworthy that the proportion
of young drivers is larger among the fatal accidents than in overall among the clus-
ters. While the overall distribution of accident types is diverse, the proportions of
intersection, moped, bicycle, and pedestrian accidents are highest of all the clusters.
Differently to other clusters, 9,1% of the accidents have occurred at crosswalks or on
pedestrian/bicycle ways. This is not surprising since this is well-known character-
istic feature to the built-up areas.

4.5 Cluster 5: Low-speed multi-lane roadway accidents

Cluster 5 consists of accidents that have happened on high traffic volume low-speed
limit (50-80km/h) multilane roadways during the afternoon rush hours. A heavy
vehicle has been involved in 24,4% of the accidents. The most representative ac-
cident types in this cluster are single vehicle run-offs, turning, overtaking, lane
change, intersection, and head-to-tail accidents. 31% of the accidents are either a
rear-end collision with a braking car or with a car standing due to a traffic obstruc-
tion. Because of the multiple roadways head-on collisions are not common for clus-
ter 5. While the proportion of personal injuries equals to the whole data average, the
proportion of fatal accidents is clearly smaller than the whole data average. While
the age attribute follows very closely the distribution of the whole data, the highest
5% percentile of the drivers in the fatal accidents are at least 86 years old. This is,
however, based on only thirty fatal accidents which means that the five percents is
a result of two fatal cases by the oldest age group.

4.6 Cluster 6: Low traffic volume regional highways

Cluster 6 represents accidents that have mainly occurred on low traffic volume re-
gional roads in sparsely populated areas. About 70% of the roads have oil gravel
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pavement. The accidents have occurred for large part during the afternoon rush
hours, but mainly in weekend evenings. The age distribution is almost equal with
the whole data, but the median age in the fatal accidents (44 years) is five years
over the whole data fatal accident median (39 years). The number of drink-driving
cases is slightly higher than the average of whole the data. While the proportion of
accidents resulting in one or more injured victims equals with the whole data, the
proportion of fatal accidents exceeds the whole data count. While single vehicle ac-
cidents and animal hits dominate this cluster, the head-on collisions and relatively
high speed limits increase the percentage of fatal accidents. 30,2% and 8,0% of fatal
and all the accidents in cluster 6 are head-on collisions, respectively, which show
the high risk of two lane roads without median barriers. The accidents concentrate
to November and December, but there is a peak in the number of fatal accidents in
August. Overall, in this cluster the median temperature is lowest. While the mainte-
nance priority is also low, it is not surprising that the accidents concentrate to winter
time in this cluster.

4.7 Cluster 7: Fatal main road accidents

Cluster 7 is the most severe one with having the highest percentages of fatal (3,0%)
and injurious (28,0%) accidents. The cluster consists of accidents that have hap-
pened on one roadway class I main roads during morning and afternoon rush hours.
The speed limit is 80 or 100 km/h in 83,3% of the accidents. A heavy vehicle is in-
volved in 22,8% of the accidents. The accidents are distributed to both statistical
built-up areas and sparsely populated areas. Driver attributes (gender, age, and
drink-driving) are equally distributed with the whole data. The monthly accident
distribution is bimodal with peaks in December-January and July. The distribution
of the fatal accidents is slightly concentrated to the summer season, but there are
also lot of accidents in January. About 30% of the accidents in this cluster have hap-
pened on icy, snowy, or slushy road surface and and 11% while snowing or sleeting.

4.8 Dimension reduction and visualization

Figures 7 and 9 depict the clusters prototypes through a two-dimensional MDS and
PCA plots, respectively. The PCA plot is produced by using 0,5% samples from
clusters and the K-means and K-spatialmedians prototypes. The transformation ex-
ploits all available data values. The MDS plot is created by the Sammon mapping
stress function (MATLAB Statistics Toolbox Version 6.1 (R2007b)) that is initialized
by PCA. The default MATLAB input parameter values were used. The data is sam-
pled (0,5% of each cluster) before the transformation. The dissimilarity matrix is
computed by following the principles of the Gower’s general similarity measure
[17]. Figure 8 presents the relationships of the inter-point distances between the
original and scaled data space. The Shepard plot shows that the small distance
are slightly under-estimated and large distances over-estimated. As the Sammon’s
mapping methods does not handle co-located points, all zero distances were re-
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Figure 7: Sammon’s mapping plot of the K-spatialmedians cluster prototypes. K-
means prototypes are marked by ’X’. The cluster data points are represented by
0.5% samples of the whole clusters.

placed by the square root of machine epsilon. The transformation is performed us-
ing the combined data consisting of K-means and K-spatialmedians prototypes and
the cluster data samples.

In both figures cluster centers obtained by the K-means method [27] are also pre-
sented for comparison. The results show that robust spatial median based method
produce almost equal centers while being also robust against noise and gross errors.
By comparing the figures we notice that the prototypes have very similar geometry
for the both low dimensional projections. This supports the inter-cluster reliability
of the clustering result. Figures 7 and 9 indicate that clusters 1 and 5 are somewhat
similar. This is logical since they both consists of accidents on high traffic volume
roads with multiple roadways. Clusters 3 and 7 are close to each other regarding the
type of accident locations. Cluster 3 consist mainly of animal accidents and cluster
7 severe collisions on main roads. Clusters 4 and 6 consist of accidents in built-up
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Figure 8: The Shepard plot of the inter-point distances with respect to the original
Gower distances in Sammon’s mapping.

areas and on small regional roads. Alcohol is quite often involved in these clusters.
Cluster 2 is the small gravel road cluster with low maintenance priority where the
number of alcohol cases is the highest. In overall, it seems that low dimensional
plots provide a baseline for assessing similarities between the clusters.

4.9 Frequent itemsets and association analysis of cluster 7

In addition to robust cluster analysis, we also made an experiment using the fre-
quent itemset and association rules mining methods as a tool in cluster presentation
and interpretation. Table 11 shows the maximal frequent itemsets that are generated
from cluster 7 with minimum support equal to 0,5. Because the number of rules is
huge, we restricted the search to the itemsets of size eight and chose the twenty
itemsets with the highest support. Table 11 shows that most of itemsets correspond
to the resuls of cluster analysis. Some of the item are so frequent that they repeat
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Figure 9: PCA plot of the K-spatialmedians cluster prototypes. K-means prototypes
are marked by ’X’. The cluster data points are represented by 0,5% samples of the
whole clusters.

in most itemsets while some, possibly interesting items do not show up due to the
infrequent occurrences. The frequent itemsets support the interpretation made by
cluster analysis. The accidents happen mainly on asphalt pavement single roadway
roads. The accident scene is usually roadway and the driver’s gender is male.

In order to avoid the most frequent items the generation of maximal itemsets
were restricted to the fatal accidents of cluster 7. The results are shown in Table 12.
The results show very small difference to the maximal frequent itemsets generated
from the whole cluster. Cluster 7 clearly consists of accidents caused by a male
driver on class I main roads in good weather conditions and daylight.

In addition to frequent itemsets, we also generated association rules from cluster
7. We ended up to use constraints on consequent part of the rule, because other-
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wise it was very difficult to generate non-trivial rules. Without constraints most of
the obtained rules are very obvious, for example {no pedestrian/bicycle way, number of
involved = 2, accident type=head-on collision on straight stretch −→ accident class=head-
collision} or {accident place=roadway, number of involved=2, accident type=head-on col-
lision on straight stretch −→ accident class=head-on collision}. Since the overall pro-
portion of fatal accidents is even in the most severe cluster only 3,0%, the support
for any item sets restricted by the fatality requirement can not be greater than 3,0.
Therefore, the support counts are very low. Nevertheless, we can assess different
rules by using other measures such as lift metric. Table 13 shows the twenty con-
strained association rules ordered by their lift values. The rules may seem obvious,
but they indeed describe cluster 7 quite well. The first rule is a very good example of
accidents that lead to the highest fatality proportion of cluster 7. A single roadway
road with relatively high speed limit (100km/h) and a male driver colliding with a
heavy vehicle on straight stretch of a road is, without questions, a fatal combination.
The second rule is almost equal with the first one. Overall, the twenty rules confirm
that a head-on collision with a heavy truck on main roads where the driving speed
are high are the most risk accidents. If we consider the interestingness or novelty
of the found rules, this did not reveal any unexpected information about the data.
While the rules may sound trivial findings, they show that combined clustering and
rule mining can reveal the most dangerous conditions. With the used accident data
it seems not possible to generate more detailed or unexpected rules from accident
conditions, because the data does not contain very detailed information about acci-
dent locations or preceding moments that led to accidents.

4.10 Discussion

The obtained results show undoubtedly that using descriptive data mining meth-
ods, it is possible to create reasonable knowledge from the road traffic accident data.
While the results seem quite obvious, it is also significant that they are very reason-
able. It is interesting to observe that severity of accidents varies between the clusters.
The considered clusters were still rather large. When the accidents in the Middle-
Finland region were plotted on the road map, they were still difficult interpret due
to the large number of accidents per cluster. One should perhaps select a small sam-
ple of accidents from a high risk cluster, for example, restrict to a certain region, and
analyze those accident locations more thoroughly. The sample could consists, for
example, of one hundred accidents that are most similar to the cluster prototype.
Another option is to construct nested structure by clustering the current clusters hi-
erarchically. Then one could inspect the most risky clusters and not only concentrate
on the one with fatal accidents, but also on interesting subsets of non-fatal accidents
that are similar to the fatal ones.

Different approaches of data mining clearly support each other. The attribute
ranking graph, low-dimensional projections together with frequent itemsets and as-
sociation rules gives straightforward information about cluster similarities and in-
teresting and meaningful attributes. In this report we do not analyze all the clusters
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thoroughly, but we have shown that the most significant features can be recognized
without exploring the complete cluster data. After the explorative cluster analysis,
more thorough investigation on the most important clusters can be done using the
categorized cluster data tables.

5 Conclusion

Overall, most fatal accidents seem to happen conditions on single roadway main
roads outside built-up areas where the speed limit varies typically between 80-
100km/h. Multi-lane motor- or semi-motor highways are much safer, because the
head-on collisions are prevented and side-collisions are not as critical as head-on im-
pacts. Aged drivers have relatively large contribution to the high risk accidents in
class I and II main roads. Despite animal accidents are common in Finland, the risk
of death is not very high in such accidents. Young drivers are more often involved in
the accidents that happen in built-up areas or small roads. Alcohol is often involved
in the accidents caused by a young driver and the accidents are typically single ve-
hicle run-off accidents. Figures 21-26 show the cluster-wise distributions by the age
groups. The results show that young drivers have clearly the highest number of
accidents, but the proportions of middle-aged drivers are relatively higher in fatal
accidents than in the non-fatal accidents.

With the current data it is possible to recognize the risky road segments and the
road user groups responsible for accidents in certain environments. However, it is
not possible to find out very strict details for enhancing road construction plans from
this data. More detailed location specific information from accident locations and
situations are needed. The lack of detailed accident-specific data hinders the analy-
sis from the road network engineering point of view, because it is currently difficult
to analyze the local defects in a particular road segment that might cause further ac-
cidents. For example, the data contain no information about seasonal speed limits,
”no passing” zones, roundabouts, priority, median barriers, uphill/downhill de-
grees, curve radius, gravelling, salting, speeding, traffic rule violations (use of seat
belts or helmet, and aggressive/reckless/careless driving), type of vehicle (cross-
country vehicle, trailer, etc.), vehicle defects, protective devices (airbag), status/type
of driving licence, number of years with licence, apparent suicide cases, sleepiness,
etc. The literature review shows that many of these attributes have been available
in other international case studies. Without all this information it is difficult to eval-
uate the role of road building, deliberateness of accidents and so on. This means
that there remains a lot of accidents that are not caused by the road conditions. On
the other hand, there are accident that are perhaps caused by insufficient road traffic
plans.

Although descriptive data mining methods are clearly able to uncover reason-
able information from the selected traffic accident data set, the results remain at
very general level so that they do not yet provide much previously unknown new
knowledge for the traffic accident experts. Therefore, more detailed data is needed
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for finding novel facts from data. Data mining seems to produce very understand-
able and useful results.
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Appendix 1: Tables

Table 5: Encoding of the accident time.
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Table 6: Driver information.
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Table 7: Road information.
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Table 8: Road information.
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Table 9: Accident information.
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Table 10: Accident types.
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Appendix 2: Graphs

Figure 10: Accident time distributions by months (all accidents).

Figure 11: Accident time distributions by months (accidents without personal in-
jures).
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Figure 12: Accident time distributions by months (non-fatal injurious accidents).

Figure 13: Accident time distributions by months (fatal accidents).
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Figure 14: Time distribution of accident occurrence times by weekdays and hours in
cluster 1.

Figure 15: Time distribution of accident occurrence times by weekdays and hours in
cluster 2.
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Figure 16: Time distribution of accident occurrence times by weekdays and hours in
cluster 3.

Figure 17: Time distribution of accident occurrence times by weekdays and hours in
cluster 4.
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Figure 18: Time distribution of accident occurrence times by weekdays and hours in
cluster 5.

Figure 19: Time distribution of accident occurrence times by weekdays and hours in
cluster 6.
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Figure 20: Time distribution of accident occurrence times by weekdays and hours in
cluster 7.

Figure 21: Driver’s age distributions in the accidents.
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Figure 22: Driver’s age distributions in the accidents not causing personal injuries.

Figure 23: Driver’s age distributions in non-fatal injurious accidents.
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Figure 24: Driver’s age distributions in fatal accidents.

Figure 25: Driver’s age distributions in fatal accidents excluding drink drivers.
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Figure 26: Age distributions in fatal accidents by drink drivers.
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Appendix 3: Itemsets and association rules

Table 11: Maximal frequent itemsets generated from all the accidents in cluster 7.
Relative minimum support 0.5. Totally 2296 itemsets satisfied the minimum support
requirement 0.5 of which 100 were maximal. The twenty largest maximal itemsets
are shown.
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Table 12: Maximal frequent itemsets generated from the fatal accidents in cluster 7.
Relative minimum support 0.5. Totally 2548 itemsets satisfied the minimum support
requirement 0.5 of which 70 were maximal. The twenty largest maximal itemsets are
shown.
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Table 13: Constraint association rules generated from the fatal accidents in cluster
7. Only rules with fatal accident as a consequence are accepted. Relative minimum
support 0.75% (that is 141 out of 18471 accidents). Minimum condfidence 0.3. Size of
the rule set 2-6. Totally 2755 rules were found. Twenty best according to Lift-value
are shown.
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