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Abstract

We continue the study of the operator of generalized Maxwell equations and
completely discover the behavior of the solutions of the time-harmonic equa-
tions as the frequency tends to zero. Thereby we identify degenerate operators
in terms of special ‘polynomially growing’ solutions of a corresponding static
problem, which must be added to the ‘usual’ Neumann series in order to de-
scribe the low frequency asymptotic adequately.
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1 Introduction and main results

We continue (and finish) our studies started in [25] and [26] on the low frequency
behaviour of the solution operator

Lo L29H(Q) — LA4r(q)

(F.G)  +— (B H) ;Y s> 12

of the generalized' time-harmonic Maxwell equation
divH +iweE =F , rot B +iwpH =G

shortly written as
(M +iwA)(E,H) = (F,G) (1.1)

with homogeneous (Dirichlet) electric boundary condition
I'E =0

(modeling a perfect conductor) in an exterior domain 2 C RY of dimension N € N
(i.e. a connected open set with compact complement), where I'; := .* denotes the
tangential trace and ¢ : 92 — () the natural embedding of the boundary. We note

that the range of £,, is even contained in R{(Q) x D{*!(Q). Here (E, H), (F,G) are
0 div
rot 0 |/
where following Weyl [55] and to remind of the electro-magnetic background rot
resp. div denotes the exterior derivative resp. co-derivative

pairs of alternating differential forms of rank ¢ resp. ¢ + 1 and M =

rot=d  resp. div = (—1)% x dx*

'Here ‘generalized’ means the framework of alternating differential forms.
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on ¢- resp. (¢+ 1)-forms and * the usual Hodge star isomorphism . Furthermore, the
frequencies w will be taken from the upper half plane C; = {z € C: Imz > 0} . We
define

L3oP(Q) :=L29(Q) x L2(Q) , qpeZ , seR |

2,9
loc

where L2(Q) is the Hilbert space of all differential forms F € L
p°E € L*1(Q)?, equipped with the scalar product

(Q2) satisfying

Q

Here A denotes the exterior product and the bar complex conjugation.

We are going to model inhomogeneous, anisotropic and nonsmooth media by
A = [8 2] and linear L*-transformations ¢ and x on ¢- and (¢ + 1)-forms, i.e.
dielectricity and permeability. Moreover, our right hand sides (F, G) from L2%7t1(Q2)
under consideration do not have to be necessarily compactly supported.

The study of wave scattering at low frequencies was pioneered by Lord Rayleigh
[36]. His contributions provide the foundation on which almost all subsequent work
is based. Low frequency asymptotics for Maxwell’s boundary value problem have
been given, for instance, by Miiller and Niemeyer [23], Stevenson [37], Kleinman
[11], Werner [49, 50, 51, 52, 54], Kress [12], Ramm [33], Kriegsmann and Reiss [13],
Ramm, Weaver, Weck and Witsch [35], Athanasiadis, Costakis and Stratis [5] as well
as by Picard [30] and Weck and Witsch [40]. We also should mention the book of
Dassios and Kleinman [7]. Ramm and Somersalo [34] and Lassas [15] considered
the low frequency limit from the point of view of inverse problems.

In none of the works cited above the calculation of the higher order terms in
a suitable expansion in terms of the frequency is analyzed. Ammari and Nédélec
proved in [2, 4] such expansions. They reformulated the exterior boundary value
problem in a truncated bounded domain using an ‘exterior electromagnetic opera-
tor’, called by Monk [19] the “electric to magnetic Calderon operator” or by Colton
and Kress [6] the ‘electric to magnetic boundary component map’, which is the
counterpart of the Dirichlet to Neumann operator for Helmholtz” equation. Unfor-
tunately due to the asymptotic expansion of the exterior electromagnetic operator
their method requires exact nonlocal radiation conditions, which leads to nonlocal
boundary conditions on a sphere. Thus, it is not possible to identify the expected
Neumann series part of the corresponding static solution operator in the solution.
Furthermore, they discuss only the case

0 —curl| . A .o

( Luﬂ 0 ] —iw(Id+A))(E, H) = —iwA(F,G) :

where (F, () is the time independent part of a time-harmonic incoming wave and A
some compactly supported perturbation.

2Here p(r) := (14 72)/2? and r(z) = |z| for z € RV .



To overcome these problems and limitations and to identify the usual Neumann
series part of a static solution operator Weck and Witsch started in [41, 42, 43, 44]
an detailed analysis of the low frequency behavior of solutions of Helmholtz” equa-
tion. In [45] their new method was completed. They identified degenerate correc-
tion operators in terms of special ‘polynomially growing’ solutions to a correspond-
ing static problem, which must be added to the ‘usual’ Neumann series in order to
describe the low frequency asymptotic adequately. With the help of [46], where a
calculus for spherical coordinates suited for differential forms has been established,
they were able to apply and extend their methods to the case of generalized linear
elasticity.

Now in this paper we transfer their “‘Weck-Witsch-method’ to the case of gener-
alized Maxwell equations. Hereby we again utilize [46] as an important tool and
also the preliminary works [25, 26, 27]. Thus, throughout this paper we will use the
notations introduced in these papers.

All these low frequency investigations are not only motivated by the problem in
its own right, but also by its applications to the large time behavior of solutions to
the initial boundary value problems for the (generalized) wave equation and to the
existence proofs for nonlinear (generalized) wave equations. In this context we may
refer to Eidus’ principle of limiting amplitude [9] and, for instance, the papers of
Werner [53] as well as Morgenréther and Werner [20, 21].

In [25] we studied the time-harmonic solutions of (1.1). Since the linear operator

M 101‘7(9) x DITH(Q) C \L229+1(Q) —  Z\L204+1(Q)
(E,H) — 1AT'M(E,H)

is selfadjoint, we were able to obtain radiation solutions (£, H) for nonvanishing
real frequencies and right hand sides (F,G) € Li"i"”l(ﬁ) by means of Eidus’ lim-

iting absorption principle [8] (approaching from tfle upper half plane C,). These
solutions are elements of Li(qul (©2) and satisfy the Maxwell radiation condition, i.e.

- - 1N ¢ R -
($ +1d)(B, H) € 12%7(Q) S:L% ( 1)O*R*] . R=drA

(see [25, section 2] for details). In other words the resolvent (M — w)~! of M and
hence also £, = i(M —w) 'A~! may be extended continuously to the real axis. Then
using the fundamental solution of Helmholtz’ equation in the whole space RY we
showed that eventually eigenvalues of M do not accumulate even at w = 0. This
makes £, well defined on the whole of L2%41(Q) for small frequencies 0 # w € C, .
Finally we proved in [25, Corollary 4.5] that £, restricted to the closed subspace
Reg?’(Q)% of L249+1(Q) converges to the static solution operator £, as w tends to

zero in the norm of bounded linear operators from Reg??(12) to fig(Q) x DIT(Q) for
all s € (1/2,N/2) and t < s — (N + 1)/2. Here Reg?°(f2) consists of solenoidal resp.

3See Definition 2.1



irrotational forms and

Lo © Reg®(Q) — (R%,(Q) x DT(Q)) N A~ Reg??(Q)
(F.G) +— (E, H)

where (E, H) € L>#"'(Q) is the unique solution of the (decoupled) static Maxwell
problem

rot K =G , diveE =0 , U'E =0 , eE1BY(Q) ,
divH=F |, rotuH=0 , JuH=0 , pHLB"YQ) |,

which may be written shortly as

o

(B, H) € (RL,(Q) x DA Q) NA T Reg?(Q) A M(E,H)=(F,G)

The special forms from ]%q(Q) resp. Bt (Q) possess compact resp. bounded sup-
ports in  and they play the role of the Dirichlet forms .H?(Q) resp. ,-1HI(Q),
where ,H(Q) = ,HI(Q) and for ¢ € R (in classical or strong terms)

L) = {E e LY (Q) : 1ot E=0, divvE =0, ,"E =0}

Due to the existence of a nontrivial kernel of the Maxwell operator these (or other)
orthogonality constraints are necessary.

In the bounded domain case it is just an easy exercise to show that £, is approx-
imated by Neumann'’s series of £, or £ = A £ for small frequencies w, i.e.

L,= —(—iw)_1H+Z(_iw)j Lo L7 Mg ’ (1.2)

=0

where II and II,., = Id —AIl are projections onto the kernel of M and its orthogo-
nal complement in L2497 (Q2) . In the case of an exterior domain this low frequency
asymptotic holds no longer true, because due to Poincare’s estimate for Maxwell
equations the static solution operator maps data from a polynomially weighted
Sobolev space to solutions belonging to a less weighted Sobolev space. So a pri-
ori it is not clear, in which way one may define higher powers of a static solution
operator.

In [26] we took care of some electro-magneto static problems and were able to
prove that an (not obvious and relatively complicated) iteration process of a suitable
static solution operator L still holds true [26, Theorem 5.10]. This gives meaning to
the powers £’ of £ as continuous linear operators on subspaces of Reg!?(Q) even
for exterior domains. As a byproduct we proved a generalized spherical harmonics
expansion suited for Maxwell equations, which will be used frequently in this paper
as well.



Now in this paper, which is the third and last one of our little series, we analyze
the solution formula (1.2) and try to give meaning to it in exterior domains in the
sense of an asymptotic expansion

[
—_

Lo+(—iw) M=) (miw) LoL ey =0(w]’) , JeEN; . (1.3)

<
I
o

Thereby we follow closely the ideas of Weck and Witsch [45] and [47, 48]. Due to
our exterior boundary value problems there arise three major complications:

1. With growing J we have to use stronger norms for the data and obtain esti-
mates in weaker norms for the solutions.

2. As II and II,., already indicate we need weighted Hodge-Helmholtz decom-
positions of L24971(Q) respecting inhomogeneities A. In [27] we presented
results, which will meet our needs. In fact we proved topological direct de-
compositions

Ly#17HQ) = (ATrig(Q) + Regl () NLIH(Q)

Y

where Tri¢(Q) = ITL2%71(Q) and Reg? ™ !(Q) = T, L29"1(Q) . We note

Trif(Q) € RY(Q) x DI Q)
Reg? () C Reg?(2) € 4DY(Q2) x (RI™ ()

are only subspaces of L7**"(Q) with t < s and t < N/2 and even not of
L2449t (Q) if s > N/2. (See Lemma 3.8, [27])

3. We have to correct (1.3) by special operators I'; .

More precisely for J € Ny and s, —t > 1/2 we shall look for asymptotic estimates
like

—_

| Lo(F.G) + (—iw) '"TI(F,G) = ) (—iw)! Lo L TLee(F,G)

(3

<
I
=)

SN (1.4)

- Z(_ iw)jJerle(Fv G)HL%M“(Q) - O(|W|J) H(Fv G)HL%‘M“(Q)
i=0

=

Hereby the O-symbols are always meant for w — 0 and uniformly with respect to
w€ Cyy\ {0} and (F,G), where C ; = {w € Cy : [w| <&} for somew > 0.



Throughout this paper we will make the following
General Assumptions:

o We restrict our considerations to ranks of forms
1<g<N-2

and odd space dimensions N > NV > 3. Hence, of course the most interesting
case of the classical Maxwell equations, N = 3 and ¢ = 1, is covered. The
treatment of even dimensions (especially NV = 2) would increase the complex-
ity of our calculations considerably due to the appearance of logarithmic terms
in the fundamental solution for Helmholtz” equation (Hankel functions). But
there is no reasonable doubt that our methods can be used to obtain similar
results in any even dimension as well.

e We fix a radius ry > 0 and some radii r,, := 2"ry, n € N, such that
RY\ Q c U,

Moreover, we remind of the cut-off functions 7, /7 and n from [14, (3.1), (3.2),

(3.3)]. n satisfies suppn = A,, , supp Vnp = A,, NU,, . Here for r > 0

U ={z eR" :|z| <r} , A ={zeR":|z[>r}

e For simplicity 2 C RY may have a Lipschitz boundary. In fact, 2 only needs to
have the Maxwell local compactness property MLCP from [14, Definition 3.1,
Remark 3.2], i.e. the inclusions

R(Q) N D(Q) — L24(Q)

loc

have to be compact for all ¢, as well as the static Maxwell property SMP from

[26, section 4], i.e. the existence of special forms B?($2) and B¢"(£2) must be
guaranteed. Anyhow, Lipschitz domains possess these properties.

e We assume ¢ = Id +Z and p = Id +/i to be 7-C!-admissible (see [25, Definitions
2.1, 2.2]) linear transformations on ¢- resp. (¢ + 1)-forms with some rate of
decay 7 > 0, which will vary throughout this paper. The greek letter 7 always
stands for the order of decay of the perturbations ¢ and /i. Clearly we then
have A = Id+A. Hence, our transformations may have L*-entries, which
are only assumed to be C! in A,, and asymptotically homogeneous, i.e. 9* A
decays like 7~7~1%! for all multi-indices a with |a| < 1 with some order T at
infinity.



We may describe our results shortly as follows:

1.

We shall identify degenerate correction operators I'; by a recursion which in-
volves only special solutions £} and H}, as well as their powers

Efx=CFNES, 00, HIF=LNAOH,)

o,m’

of £ of our homogeneous static boundary value problems

Wt B, =0 , diveEf, =0 , JEL, =0 , eBf LB(Q)
divH, =0 , rotpH, =0 , JuHf =0 , pHf LB™(Q) |,
but with inhomogeneities at infinity, namely
Ef,—*D%) ‘decays’, i.e. belongs to Lig ~(Q) :
2

HY, — "R ‘decays’, i.e. belongs to Lqu“Nl Q) :

2

where the special growing tower forms * D% and * Rt from [26, section 2]

behave like 7*7° at infinity. (See Lemma 2.4, Remark 2.5, Lemma 2.6, Defini-
tion 3.4, Definition 3.12)

On the “trivial’ subspace Tri!(€2) the solution operator £, behaves like the di-
vision by the frequency, i.e.

iwLl, AN(F,G) = (F,G) , vV (F,G) e Tril(Q)
(See (3.40))

We shall identify closed subspaces Reg?” (Q2) of L2471 (Q) (and of Reg?’(?)),
the ‘spaces of regular convergence’, for whose elements (F, G) the “usual’ Neu-
mann expansion

[
—_

| Lo(F.G) = ) (=iw) Lo L7(F, G)|| 201 gy = O(IwP) [ (F.G) ] 2001

.
Il
o

holds true. We are also able to characterize the spaces of regular convergence
by orthogonality relations with the aid of the special static solutions E};* and
HF. (See Theorem 2.3, Lemma 2.15)

For (F,G) € Reg? () we obtain the corrected Neumann expansion

J-1 J—-N
| £.(F,G) - ZU<— iw) Lo LI(F,G) — ZO (=il ™V L(F G) || 2aas g
J= J=

= 0(Jwl”) H (F,G) HLE"““(Q)

and for general (F,G) € L>971(Q) we get the fully corrected Neumann ex-
pansion (1.4). (See Main Theorem)



5. Concerning our media A = Id +A we shall distinguish between two kinds of
assumptions on our inhomogeneities:

(a) A has compact support. Then we may always choose 7, such that
supp A C U,

b) A ‘decays’ with a rate 7 > 0 at infinity in the sense of A is 7-C'-admissible.
( y y

In the first case our results will hold for any J , whereas in the second case only
J < J with some J depending on 7 are allowed.

Due to [26], [46] and originally [18] we have to exclude a discrete set of ‘bad’
weights, namely

I'=(No+N/2)U(1-N/2—Ny)={n+N/2,1—-n—N/2:n € Ny}
Our main result of this paper reads as follows:
Main Theorem Let J € Nand s € R\ 1 as well as

s>J+1/2 ,
t <min{N/2-J -2, -1/2} )
7>max {(N +1)/2, s — t}

Then there exists some & > 0, such that the asymptotic

J-1 J-N
Lo+(—iw) = (—iw) Lo L Tey — Y (—iw) ™ 7T, = O(|w|”)
j=0 j=0

holds uniformly with respect to C 5\ {0} > w — 0 in the norm of bounded linear operators
from L299t1(Q) to L2 (Q) . This asymptotic also holds true for J = 0, if we replace the
assumptions on t and T by

t<s—(N+1)/2 , t<-—1/2

and
7>max{(N+1)/2,s+1— N/2}



Remark A These asymptotics remain valid even in stronger norms. In the norm of bounded

linear operators from L2491 (Q) to fo{;’(Q) x DI (Q) we obtain the estimate if we assume
additionally t < s — (N + 1)/2 in the case J = 1. In the (strongest) norm of bounded

linear operators from L2%1t1(Q) to IO{Z(Q) x DI () the estimate holds true if we assume
additionally t < —3/2 and moreover t < s — (N +3)/2if J € {0,1}.

Remark B Using the estimate (ii) instead of (i) from Theorem 2.3 during our considerations
in section 3 we would achieve asymptotics with the small o-symbol instead of O. As an
example we obtain (for nearly the same s, t and 7)

J J-N+1
Lo+(—iw) =) (—iw) Lo LT — Y (—iw)™'T; = o(|w]’)
j=0 j=0

Choosing here J = 1 we may easily conclude the differentiability of £, inw =0
as an operator acting on Reg? ™" (2) = I1,,L2%71(2) . We obtain

Corollary Let s € (3/2,00) \ Land t < min{N/2 — 3, —1/2} as well as
7 >max{(N+1)/2, s —t}

Then .
Cyo dwr—iLl, € B(Reg? ' (Q), RI(Q) x DgH(Q))

is differentiable in w = 0 with derivative A=' L*.

Remark C Formally our solution of (1.1) satisfies the perturbed Helmholtz type equation

e~ 1div u~trot 0 9 e . 1
({ K ot div} +6?) (B, H) = (A™'M —iw)A " (F,G)
and
iwdiveE = div F , iwrot uH =rotG ,
which imply
e~ tdiv p~trot +rotdive 0 9
( [ 0 ptrot et div +divrot p T > (B, H)

_ ( 1 [rot div 0

1 . 1
0 diVW‘JA—f—A M_MU)A (F,G)

1w
We note A = divrot +rotdiv. Due to this formula and under certain reqularity restric-

tions on (F, G) the cases ¢ = 0 and ¢ = N —1 are equivalent to scalar (perturbed) Helmholtz
problems for E and H , since E for ¢ = 0 and H for ¢ = N — 1 are scalar functions. The first

10



case ¢ = 0, i.e. a Helmholtz equation with homogeneous Dirichlet boundary condition for
E, has already been discussed in [45] or [48] and even for the most complicated case N = 2
in [29]. The other case ¢ = N — 1 corresponds to a Helmholtz equation with homogeneous or
inhomogeneous Dirichlet boundary condition iwpH = G on 0 for H and can be handled
analogously to the case ¢ = 0 using an adequate extension operator.

However, also in the case ¢ = N — 1 our techniques work. The only difference is that
now some exceptional ‘tower forms” occur. Due to their appearance we have to tackle some
additional difficulties and the correction operators occur already at the power w™ =2 instead of
wN"Vin the case 1 < q < N — 2. At this point we note in passing that for more reqular data
from Reg??(Q2) the correction operators appear primarily at the power w™ for 1 < ¢ < N—2
and at Nt ifg=N—1.

2 The spaces of regular convergence

First let us remind of the special tower forms
Dy, . TR

and their properties from [26, section 2], which will be used frequently throughout
this paper. The main tool for their construction is the spherical coordinate calculus
developed in [46]. Hence, we shall use also many notations and results from this
paper. From this point of view the paper at hand demonstrates also an application
of [46].

Utilizing [26, Corollary 5.12] we define some special data spaces recursively by

Definition 2.1 LetJ € Nand s € (J — N/2,00) \ L as well as 7 > max{0, s — N/2} and
T>J—s—1.Forj=1,...,J we define the ‘spaces of reqular convergence’ via

Reg?"(Q2) := (DI(Q) x oRII(Q)
Reg?(Q) := {(F,G) € Reg?(Q) : LI(F,G) € Reggf’j(g)}

S

We will denote Reg?? (Q) the “space of reqular convergence of order j’.
Remark 2.2 We have
Regl’ () = {(F,G) € Regt®(Q) : L(F,G) € LY%(Q)}

In words, the space of reqular convergence Reg?” (Q) is characterized by the following prop-
erty: For (F,G) € Reg? (Q) and j = 0,. .., J no tower-forms nD¢ or nR%™" appear in the

powers L7 (F,G).

Clearly for the selfadjoint operator M introduced in [25] the resolvent-formula
hold for nonreal frequencies. Our next step is to show that this formula still holds
true for real frequencies and L, acting on Reg?’(f2) up to the order J. Then L, is
approximated by the usual Neumann sum up to the order J .

11



For the purpose of a short notation let us put for J € Ny

Loyi=Ly,— XJ:(— iw)! Lo L7 , Ly_1:=L,
§=0
Theorem 2.3 LetJ € Nyand s € (J +1/2,00) \ Las well as
7> max {(N +1)/2,s — N/2}

Moreover, let & be as in [25, Lemma 4.2]. Then for all w € C, ; \ {0} on Reg?’ (Q2)

Loi1=(—iw) L, L? , Lo3=(—iw) (L, —Lo) L7
Furthermore, for s € (J+1/2,J + N/2)\Tandt <t:=s—J — (N +1)/2

(@) H Loy (F,G) ”Lf*q’qﬂ(ﬂ) - O<|W|J) ”(F’ G) HL?M“(Q) ’

(if) | £oa(F. )] 201 = (W) [(F. O] 2001 g
hold uniformly with respect to (F,G) € Reg?”? (9).
Proof: £, L' (F, G) is well defined by [25, Theorem 2.17], since

LI(F,G) € Reg??,(Q) C L2477(Q)

>3
holds for j =0, ...,J. Thus, also
J-1
(E,H) =Y (—iw) Lo L(F,G)+ (—iw)! L, LY (F,G)
§=0

is well defined. Because of s > J +1/2 > J 4+ 1 — N/2 even J + 1 powers of £ may
be applied to (F, G) by [26, Corollary 5.12]. We get

(B H) =) (—iw) Lo L(F,G) + (—iw) (L, — Lo) L' (F,G)

J=0

Furthermore, (E,H) € R ,(Q2) X qu_ll(ﬂ) satisfies the radiation condition. Since
2

MLy = 1d and (M + iwA) L, = Id we obtain (M + iwA)(E, H) = (F,G), which
yields (£, H) = L,(F,G).
Noting s — J € (1/2, N/2) we may apply [25, Lemma 4.2 (iv)] to

£3(F,G) € Rea!®,(9)
and obtain uniformly in w € C,  \ {0} and (F, G) € Reg?” (Q2) the estimate

| €0 B (F G g gy < | £F. O zagiry < A (F. Oz

12



(We observe that £7 is continuous by [26, Corollary 5.12].) Analogously using [25,
Corollary 4.5] we may estimate
H (‘Cw - ‘CO) EJ(F7 G) ”Ltg,q,ﬁl S || ﬁw - ‘CO

S CH Lw _['0

BH,fu LYF,G) HLif_’]q“(Q)
BS—J,EH (F,G) HL?W“(Q)

(@)

again uniformly inw € C, ;,\ {0} and (F,G) € Reg?’(Q2), which completes the proof

since | £, — Lo ||Bh”w—ﬂ0>0. |

Now our aim is to characterize Reg?” (2) utilizing orthogonality constraints. To
realize this we need special growing Dirichlet-forms, which will be defined in the
following lemma. Let us remind of the topological isomorphisms

Max, == . Max?_, , i))ffc?zcu = P OMar?t]
for some s € (1 — N/2,00) \ [ introduced in [26, Theorem 4.6].

Lemma 2.4 Leto € NyaswellasT > o and 7 > N/2 — 1. Then for the counting indices
(m,n) € {1,...,ud} x {1,..., u@"'} the ‘special growing Dirichlet-forms’

E;r,m = (Id - maxs_l ma&:)n +Dg:(r)n )

—_— ] —
H}, :=(1d—Max, Max,)n* RL°

are well defined and belong to Li"iﬁia(Q) resp. L2<’Q+u1 (Q2) . These are the unique solutions
2

of the electro-magneto static problems

Maz, E,, = (0,0,0) ; E}, — D% decays ,
%XMH;:’VL = (07 0, O) ) H;:n - +Rg:;170 decays

Remark 2.5 To be more precise: £}, and H}, are the unique solutions of

Ef € 30 nBI(Q)* o EL—TDR LM (@)
pHY, € e dGH@QNBT @ L H, = TR € L2 ()

2

Here on one hand we used Mag, resp. May ., as formal mappings, e.g.

May, = (dive-,rot -, (e-,BI), ..., (e, BL)) ,

— -1
and on the other hand 9Max_" resp. DMax, as the inverse operators.

13



Proof: Uniquenessis clear by [26, Lemma 3.8] and the properties of Be (Q),B1H(Q),
see [26, section 4]. Let us assume the well definedness of £}, for a moment. Since

Max, ES,, = (0,0,0)

holds we obtain £, € .H! (Q) N BY(Q)*. Moreover, Ef, — *D ¢ Lifiﬁ(Q)
2

because May_' maps in fact to Liq_ ~ () and finally the integrability of £}, is de-
termined by the form n*™DZ%° , which belongs to Li‘i v__(§2) by [26, Remark 2.5].

Analogously we may handle H;, , which would prove the lemma.
So it remains to show that £}, is well defined. (Then surely /], is well defined

as well by similar arguments.) With supp n N supp IC;Z = () and [26, Remark 2.5]

Mar. n* DL, = (div(en™ DEy,), rot(n " DEy,), 0)
= (Caiv,y " DY, + div(én* D)), Crory " DLV, 0)

o,m>
o
< ODi_—la—%_H—_;_l(Q) X OR?,;’_XI(Q) X qu

holds. Now —o0 — N/2+4+ 7+ 1 >1— N/2since 7 > ¢ and thus

Mar. " DL, € W ~(Q)

N
>1-5

Because also 7 > N/2 — 1 and using [26, Theorem 4.6] we get the well definedness
of May_ ' Max. n* DY and thus of E,, . We note

Max.n* Dy, € WiQ) (2.1)
ifr>s+o0+N/2—1. u
Our next step is to define powers of £ on the special forms
A(E7,,.0) , A0, Hf,)
using [26, Theorem 5.10]. Let us introduce a new notation. For k € Ny we define
Efx:=LNAES, 0, HIx:=rLA0HT,)

The next lemma shows that these definitions are well defined.
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Lemma 2.6 LetJ, 0 €Ny, se€ (J+1—N/2,00)\laswellasT > o+ s+ N/2—1and
7> J — 5. Moreover, let (m,n) € {1,...,ul} x {1,...,ud™}and j € {0,...,J}. Then
J powers of L on E}0 and H;? are well defined and for even j

B —n(* D

o,m’

0) € (D¢

s—j—1

HEJ —n(0,*RIEH) € {0} x (RIFL () B yRet (37 15))

Q) ByDUI ) x {0}

s—j—1

s—j—1 s—j—1
as well as for odd j
Ef3 —n(0, 'R € {0} x (R (Q) B pRe ' @00T))
HZJ —n(tD%1.0) € (DL_,_,(2) ByDIT ) x {0}

hold. Furthermore,
Bl H) e L2t x(Q)

o,m? <—0—j—

and thus
B33 HET e L2Y(Q) — t>o0+j+N/2

o,m?’

More precisely: There exist unique constants &%, (7% € C and unique forms

eg, (gRg —Jj— 1(9)) ﬂDZ —Jj— 1(52)0]3(1(§2>L )
B € (uDI_ () NRIT (@) B @
such that for even j
E;:';"ZL: (+Dgin7 Z gjom D?, ) (6gm,0) )
1e705
HEZ =n(0, " REY) + 3 70, B5™) + (0, h,)
JeFty
and for odd j
Ef =n(0, R+ > 70, RS +(0,8,,)
JGH;J+J1 <1J
Hi =n("D,0)+ Y &7"n(D},0) + (e],,,0)
1e795
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Remark 2.7 By [26, Remark 2.4] we even have for odd j < J

Ef3 —n(0. " RIE) € {0} x oRIL (35T )

s—j—1\Us—5—-1>
H:nj - 77(+Dg’£,0) € ODijfl(jgj—Sjj—bQ) x {0} )

since then also " Re is irrotational and n* D%, solenoidal. Moreover, the coefficients
satisfy the following recursion:

j+lol _ +j,00 ae,<J _

Cll 51 ) Ie js_j_l ) (= m,n ,
j+l,0l _ rjol 79+1,<J _

€1J - CJ ) J € gsfjfl , (= m,n

Then clearly the next recursion holds as well:

j+2,00 _ +j,00 79,57 _

ng 51 ) Ie js_j_l ) (= m,n ,
j4+2,00 _ rjo,0 Aa+1,<j _

CQJ —SJ ) J e gs—j—l , (= m,n

Proof: We only have to show that £ and H;) are elements of the domain of defi-
nition of £ (and then clearly of £7) from [26, Theorem 5.10]. Then all our assertions
follow by [26, Theorem 5.10], [26, Remark 5.11] and [26, Remark 2.5]. We note that
the integrability of the forms is always determined by the integrability of the tower
forms with positive sign. Again we only discuss E};) = (¢E/,,,0), for example.

By Lemma 2.4 and (2.1) as well as [26, Theorem 4.6] we observe
eEf, €D ({IYuT?,Q) ,  I:=(+0,0,m) (2.2)

by [26, Remark 2.5] since 7 > ¢ + s + N/2 — 1. Hence, utilizing [26, Theorem 5.10]
£’ may be applied to E;;% and the lemma would be proved.

Unfortunately we ignored a trifle in this argument. Here the same problem oc-
curs as in [26], namely the appearance of the exceptional tower forms, which was
solved by a second order approach in this paper. A similar approach will help here.
The point is that (2.2) only holds true for g # 1 in the first sight. In fact for ¢ = 1 and
s > N/2 we have to deal with the exceptional tower form D}, = ‘R(l)ﬁ = R} with
I :=(—,1,0,1), which would cancel our iteration process in the case of appearance.
Now in this special case (2.2) reads correctly as: ¢ £, is an element of (D} .(2) and
contained in

(e'R1_4(9) N DL_,(€)) @D} ({1} UTe,) @ R ({1})

It remains to show that R} does not occur even in the exceptional case. We try the
ansatz
Usm = 7)+R3ﬁn + Ugm ;

to find a solution of the problem

wote divUpn =0, Usw— "R, €127 4 (Q)

16



Thus, we are led to search a solution of

rot e~ div g, = —rote” " divyT R}, , Ugm € LiQ_ﬁ () . (2.3)
2

Using once more 7 > 0 + s + N/2 — 1 and [26, Remark 2.5] we obtain that

rot et div 77+RL2,’},L = Crot div,n+Rc2;’}n + rot £div 77+Rc27’,1m

is an element of L2<27 (Q) C L22(Q), where e ! = Id+¢ is 7-C'-admissible

U*%+T+1

as well. Therefore, rot e divy™R%,, € 0]10%3((2) lies in the range of ,,sAZ_, from [26,
Lemma 7.1] and we get some u,,, € D(;0tA2_,) solving (2.3). But then

By = divUym € (D;,l(sz) @D ({I}U 5381)) M oDL ()
= oD}, ({1} U, Q)
(Compare to [26, Remark 7.4].) and

[e)

e By € HL_x_ (QNBY Q) , e B, —Dl, e L2 ()
2 2

—0

ie e 'E,,, = E},, by Lemma 2.4 and Remark 2.5. So in fact £, and ¢E;,, do not
feature exceptional tower forms. u

2.1 Compactly supported inhomogeneities

In this subsection we develop some results especially for compactly supported in-
homogeneities A . In fact we assume 7 to be so large, such that

supp Ac U, (2.4)

holds. Then in particular A = Id on supp 7.
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Corollary 2.8 LetJ, 0 € Nyaswellas (m,n) € {1,...,pd}x{1,..., ud™} and moreover
j €{0,...,J}. Then there exist unique constants £ (3% € C, such that in suppn for
even j

+J + q,J E JUm q
Eo,m_ Do’m? + £ D[7 )

Iej® ,<J
+.J + pg+1 Jcrn q+1
Hid = (0" REM)+ > 7" (0, RS
J63q+1 ,<J
and for odd j
E+,j = (0 +Rq+1] J,o,m O RQ+1
om ( ’ o,m + C ) ’
J63q+1 ,<Jj
HYJ = ("D%,0)+ Y &7™(Df,0)
1€3%<7

hold. These series converge uniformly in supp n together with all their derivatives even after
multiplication by arbitrary powers of r. (Compare with [46, p. 1033], [48, Theorem 1] and
[26, Theorem 2.6].) The constants £-°> and (7> coincide with those of Lemma 2.6, whenever
they co-exist.

Proof: We show the representation for some even j and (E,0) := E;} . The other
representations may be proved in a similar way.
We have div E = 0 and (MA')*(E,0) = (0,0) in Q. Hence, M?*(F,0) van-
ishes in suppn. For J + N/2 < s ¢ [ we see by Lemma 2.6
E=E-"'Dy,— » &7"DjeLy’; i(suppn) C LY (supp)

q9,<J
Iejs —j—1

and ) L
div E =0 , MT(E0) = (0,0)

supp 7 supp 7

Now the generalized spherical harmonics expansion [26, Theorem 2.6] yields with

unique constants £ € C the representation

E = ) g'mDi
SHPP Ieﬁqéj\:‘]qéj
s—j—1
and therefore the assertion follows immediately. |

Next we want to characterize
Reg?” (Q)

by orthogonality constraints using the growing Dirichlet-forms. For this we need
some special properties of the tower-forms. As in [26] we introduce the first order
differential operator with compactly supported coefficients C := Cx , := An —nA,
the commutator of A and the multiplication by 7.
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Lemma 2.9 Let u and v be reqular tower-forms corresponding to some finite set of indices.
Then the cut-off function 1 may be chosen, such that

(Cu,v)124 =0
holds, except for the special cases

<09Dqk; 7_9Dq£>L2q7£0 o= <CGR‘1]€ ﬁRq£>L2,q§éO

o,m’ o,m’ n

~ U:’Y,m:njeﬁz—: (kag)6{(072)7(171)7(270)}
and
0 gk 9 pgl
(C°DZy "R >L2q7é0

a,m’

& o=7y,m=n,00=—, (k) €{02),(20)}
Remark 2.10 In the special cases we have
(C~D¥r DL )., =—(CTDL .~ DI, =(C RY TRY

o,m? o,m? m>L2q
—re(k,0) = (0,2)

N+20
=—(CHRIY, "RE N ., =141 (k. 0) = (1,1)
—e L (k0 =(2,0)
and
<C Dg’:n7+Rq m>L2q o <C+Dg’:n’7Rqﬁn>L2q = <C Ram7+DQk >L2q

) =1, (k) =(0,2)
_ C +RqZ —DqJC ) — wa’ 9 9 9
(O R D)z =IN35\ 1 (o) = (2.0)

Proof: From [48, (31)] with a = b = 1 we have (Cu,v)124 = —(u, Cv)12.4 for suitable
g-forms u, v. Using the spherical calculus presented in [46] we compute for tower-
forms u, v

(Cu, v)12.4 —/ rV N Cu, vy dr
Ry
= \/R 7”N_1<<IOC1/\j pU(T’>, pv(r)>L2,q71(SN71) + <TC7V— TU(T)7 TU(T)>L2,q(SN—1)> dT
+
:/R rN—l(FﬁN)rﬁ<<pu(1) 1) oy s (SN~ + (Tu(1) >L2q gN- )> dr
+

Ry -

(2.5)

Here we put
(U, v)(ry = <pu(r), PU(T)>L2,q71(SN71) + <TU(T),TU(T)>L2#(SN71)
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and « := hom(u), § := hom(v). We note that pu and 7u are homogeneous of degree
a as functions of r, i.e. pu(r) = r*pu(1) and 7u(r) = r°ru(1). Furthermore, we
denote by I, for suitable ¢, ¢ the first order ordinary differential operator

Lop(t) =20 ()¢ (t) + ¢'(t) + (N — 1)t~/ ()

Since the spherical eigenforms 77, and S¢, present an orthonormal system in
L29(SN=1), the expression (u, v)(;) only may differ from zero in the cases

U= (’Dg”'jn , v = ”Dg:fn , k —leven ,
u= "Rg;’; , v = ﬂRg:f,,L , k — { even ,
u = (’Dg”'fn , v = ﬂRgfﬂ , k, ¢ even ,
U= "Rgf; , V= ﬁDgzﬁl , k, ¢ even

with 0,9 € {+, —}. We may assume additionally that our tower forms under con-
sideration are at most of height K and index Z. According to [45, Lemma 2 (i)] we
may choose the cut-off function 7 (resp. 7, 1), such that for given j € Ny

/ﬁ’(r)rjdrzéo,j ,  —j<j<j , je€Z (2.6)
R

holds. Let us pick some j > N + 2(1 + K + Z). In the four cases above we have
degrees of homogeneities a = ’h* and 8 = "L’ . Because of

N-2+a+p3¢e[-},]]

and (2.6) the integral (2.5) can only differ from zero, if N — 2+ a + 3 = 0. But if
09 = +, then either

N—-2+"h 4+ h =N -2+ k+0+20#0
or
N—-2+"h"4+"h =N-24+k+0—-20—-2N#0
since k + / is even and N odd. So only 69 = — is possible and we get
N—2+ b+ hl=N-2+"hf+ hi=-2+k+¢=0

& (k,0) € {(0,2),(1,1),(2,0)} ,

where the possibility of £ = ¢ = 1 has to be excluded in the two last cases, where k, ¢
are even. Thus, we have proved the essential assertions of the lemma.
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Let us calculate one of the special integrals as an example:
- Pak i _ (1 0\ /[~ pak i
<C Dg,rrw +Dg,m>L2,q - ( ha - +h0)< Dg,rm +Dg,m>(1)
=(k—-¢—20—N)

“af ol (W) 4 (¢ + Th9) (@' + Fh)) ., (k6) = (0,2)
—aq+1,0+aq+1,0

“ad el (Wit + (¢ + Tho)(@ +Thy)) (K, 0) = (2,0)

(=2=20—N)((wd)*+(¢'=0=N)(¢'+2+0)) _ +o _
TR e =~V o (k0 =(0,2
_ —20—N __ _
R QQUHIVV)((—q}IF r s , (k,0) = (1,
—20— wg +(¢'+2—0— '+0)) _ '+o _
2(2—20—N)((1—20—N) : - _Jgf+20— ) k,ﬁ) - (2> 0)

Lemma 2.11 In the same sense Lemma 2.9 holds for all tower-forms, if one pays attention

to —ng’ = 0 and ‘Ré\f = 0. Besides in the special cases we get for the exceptional tower-
forms

(CDyT, " D). = —(CFDeY, Do) = (C ™Ryt TRo Yo
= —(CTRYY, " R)?).n = —(C Ry, "Ry )pan = (C TRy, Ryy)
= _<07D(J)\,[171’17+Dé\j;171>L2,N—1 = <C+D(])Y;1717 7Dé\7717171>L2,N—1 =1

L21

Summing up we obtain

Remark 2.12 For tower-forms u, v the scalar product (C'u, v)12.4 can only differ from zero,

if u and v possess different signs £ as well as equal eigenvalue and counting indices o and
m. . Additionally in the cases u = *DZ% v = FD2! oru = *RLY , v =FRL! the heights

(k, €) must belong to {(0,2), (1,1), (27, 0)} as well as in the cases u = Dk v = TR
or in reverse order even to {(0,2), (2,0)}.

Now let us return to our static solutions. We put
L200TH(Q) i= 1 L299TH(Q) = . 12(Q) x 1 L2T(Q)

with scalar product (-, * )i2ga41(0) = (A7, - )L2a0+1(q) , See [25, section 2].
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Lemma 2.13 Let s € (2 — N/2,00) \ Land (F,G) € Reg?"(Q) with representation

Lo(F,G) = (E,H)+ Y em(D},0)+ Y nm(0,R}™)

4,0 Zq+1,0
€3’ Jeg

where (B, H) € (Poi‘j_l(ﬂ) Ne 'DI_1(Q)) x (u ‘1Po{q+1(Q) N D‘Sﬁi(ﬂ)) and e;,h; € C.
Then forall I = (—,0,0,m) € 3%°, and J = (—,0,7,n) € §°*

@) <(F, G) E+0>L2qq+1 ©@ — <(F7G H+ 0>L2qq+1(9) =0 )
(i) <(Fv G) am>£2qq+1(Q) =e€r )
(lil) <(Fa G) H+ 1>L2qq+1( Q) =h,

Remark 2.14 It is sufficient to choose j > 2(s + 1) in (2.6).
Proof: We set
0,H},) =A"ESL=LyESS ,  (BE5,,0)=A"H" =LoH

v,

Let us look at £}, and ﬁjm For (—,0,0,m) € jg’_l we have s > 0 + 1+ N/2 and
thus only weights s larger than 1+ N /2 have to be considered. According to Lemma
2.6

B, € .M ,(Q) CoRY,.,(Q) , M, eD™i(Q) . (2.7)

Therefore all scalar products under consideration are well defined. By [25, Lemma
2.13, Remark 2.14] and Lemma 2.4 we get

<M(E, H), E;; 0>L2 aatl(Q) (div H, E:,m>L2’q(Q) =0
and thus with (0, R%"") = M(D?;,0)
(F.C) B anan oy = (M Lo(FLG). (B 0)) i

= > er (Mn(D,0), (B 0)) s 0

1€3%°
s :mmmwnmﬁwmmﬂwﬂ
+ Z hJ<M2 E:m’o)>L2,q-,q+1(Q)
Jegit®
Z h*] <MOM’77<D?J7O) (E;_nw >L27q*q+1(Q)
Jegq+l,0 \ _
s—1

=(div Cm,,,D;fJ,E;MLQ,q(Q):o

For J = (—,0,7,n) € §°° " we have div nD?; = divy~DZ,;, = 0by [26, Remark 2.4]
and therefore div rot T]Df ;= AnD?!; = CDY;. This shows

<(F,G) E+O>L2qq+l = Z h‘]<CD(11J,E;’:m>L2,‘Z(Q)

79+1,0
Jeds
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recalling M?(e, h) = (divrot e, rot div h).
According to [26, Theorem 5.10, Remark 5.11, Corollary 5.12] under the present
assumptions Ly L(F, G) is also well defined and has the representation

LoL(F,G)=(E,H)+ Y &m(D$0)+ > hm0,R)

7q,<1 Aq+1,<1
1€35 JeJ o

with (B, H) € (R%,(Q) N e'DL,(Q)) x (u —1f{q+l(9> N D)) and &b € C.
Moreover, h,; = e; and &,; = h; hold for I € f]q “,and J € HQH Y From
A'M(E,H) € (10%;’_1(9) Ne'oDI_1(Q)) x (u “LRIHQ) N D))
as well as by (2.7) and [25, Lemma 2.13, Remark 2.14] we get
<MA_1M(E H) 'CO A( o,m> O)>L2,q,q+1(g)
= _<M(E7H) ( : 0 >L2,q,q+1(Q) =0

Using this and (F,G) = MA™'M Ly L(F, G) we derive

1
<<F> G) E+ >L2qq+1(Q)
= Z er <M277 (D7,0), (0, H;:m)>L2,q,q+1(Q)
1e305) ~ .
+ Z hJ M2 RqH) (0, ﬁoJ'r,m>>L2,q,¢1+1(Q)
Jedityst
- Z hJ<M2n(07 R?]—H)? (07 f{;:m)>L2,q,q+1(Q)
Jegitye
+ Z R?}H) (07 gc—r":m)>L2,qu+1(Q)
1€3%°,

because Hqu =t HqH oy 3q+1 1= HZJF; oy 1(331)1) . Applying once more [26, Remark

2.4] we obtain M?,(0, R/}") = An(0, R'}") = C(0, R%{') as well as
M?n(0, R%) = M%M(Df 5,0) = MMQn(Df 5,0) — M2OM,,7(D3 5,0)

and thus
M?n(0, RS™) = MC(D?;,0) — M*Chy,y(D?5,0)

Partial integration yields

(MC(D1,,0), (0, ) ~(C(D1,.0), (B}

L2aa+l(Q) om) O)>L2,q,q+1(Q)

and clearly all terms of the sum like

<M2CMJI<D11J= O), (O, ﬁ;:m)>L2,q,q+l(Q)
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vanish by (two times) partial integration. Finally we get for (—,0,0,m) € 3% 01

<(F,G) E+0>L2qq+1 Q) — Z hJ(CD?J’E;,th’q(Q) ’

Jegit
<(F7 G)a EI#L>I:2,q,q+1(Q) = - Z ﬁJ<CD(1]J> E;r,m>L27‘1(Q)
Jedity’®
+ Z e[ CRq;_ s | >L2 a+1(Q)
1€7%°,

Analogously for (—,0,7,n) € 3771 one sees

1
<(F, G) H+ 0>L2qq+1(ﬂ) fry Z eI<CR(11;’_ ,H,;i:n>L2,q+1(Q) 5
1€3%°,
<(F, G) H+ 1>L2q‘1+1(ﬂ) = — Z é[<CR?}H’ H,—Ytn>L2,q+1(Q)
1€3%°,
Z hJ(CD(IIJ, E;tn)LQv‘l(Q)

—q+1,0
Jeggt1

Now all integrals on the right hand sides only extend over supp V7. Thus, we may
insert the expansions from Corollary 2.8 for

EX HY Hf EF
¥,

om? om) ¥,n

Using the orthogonality properties from Lemma 2.9 and Remark 2.10 we finally
obtain
<CD(11J,E >L2 q(Q <CR(1];_1, >L2 q+1(Q) - 0

and
(CRIFYH Vi2ari) = 61— 00my » (CD, E%}L%q(g) = 0J,(—0ym)

We note that by [26, Remark 2.5] we only have to consider tower-forms with maxi-
mal heights K = 1 and maximal eigenvalue index Z < s — 1 — N/2. Thus,

~

J>2(s+1)>N+2(1+K+2)

is sufficient according to (2.6). |
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Now we are ready to characterize the spaces of regular convergence by orthogo-
nality constraints.

Lemma215 LetJ € Nands € (J+1 — N/2,00) \ I as well as (F,G) € Reg?(9Q).
Then (F,G) € Reg? (), if and only if

<(F7 G)? E;r,;vl"cz+1> = <(F7 G)7 Hf;r,;f+1>]:2,q,q+1(g =0

L2+ () )
holds for all (k,o,m) € ©% and (¢,~,n) € 41 where
~ = o,m) € h<J-1ANo<s-— —k—=1AN1<m<
019 = {(k,oym) €N k< J — 1 N2—k—1A1<m < pul)
Moreover, Reg?? () is a closed subspace of Reg?°(Q) and 1L.299+1(Q) ,
Remark 2.16 We have the characterizations
07 = {(k,o,m) € {0,...,J — 1} x Ng x N: Bk e 127971 ()}
O = L(£,y,n) €{0,...,T — 1} x Ny x N: H../H € L249())

Proof: The assertions of the remark follow by Lemma 2.6. The proof of the lemma
is a straightforward induction over J. The start is given by Lemma 2.13 since
0! = {(0,0,m): (—,0,0,m) €T}
Ot = {(0.7,m) £ (=, 0,7,n) € 371"}

For the step we note by definition

Regl?*1(Q) = {(F,G) € Reg?”(Q) : LT(F,G) € Regl"; ()}
= {(F,G) € Reg??(Q) : LY(F,G) € Reg?'(Q)}

and according to the start we obtain (F, G) € Reg?’™(Q), if and only if
(F.G) € Regl?(Q)

and

<£J(F G) E;r <£J(F G) H+1>L2qq+1(Q =0

)
holds for all (0,,m) € %' and (0,v,n) € ©%}". Since L*(F,G) € Reg?';(Q) we
get

m>L2 0.9+1(Q)

Lo L3V (F.G) € RY_,(Q) x DT (©)

and with Lemma 2.6
AT LPAERD € Rqs L) x {0} |

because (0,0, m) € ©%' implieso <s—1—-J - N/2,ie.s+1—-J >0 +2+ N/2.
Using partial integration, i.e. [25, Lemma 2.13, Remark 2.14], we compute
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( LY FG), EI#L>ﬂ2,q,q+1(Q)

= (Lo L77NF,G), MA" L* ES;)

7m>L27q74+1(Q) = _< EJ_l(F, G), E;’Q

,m>£27q,f1+1(ﬂ)
and therefore repeating this argument

<£J<F’ GLEI#J = (—1)J<(F, G), EHI+

1.2:a,q+1 Q) om 1.2:a,q+1 Q)

Analogously we conclude

<£J(F7 G>7HI;11> = (_1)J<(F7 G>7HI;1J+1

1.2:a,9+1 Q) >£2,q,q+1(g)

Finally we obtain (F,G) € Reg?’™(Q), if and only if (F, G) € Reg?’(2) and

S

((F.G),E = ((F.G), H;*

om £2,q,q+1(Q) ¥,m >f,27111Q+1(Q) =

0

holds for all (0,0, m) € ©%'; and (0,7,n) € ©7'}" and the induction hypothesis for
Reg?” (Q2) completes the proof. [

We are looking for projectors onto Reg?”? (Q2) and thus for a dual basis of
E-i-,k: , H+’k

For¢,0c € Nyand (m,n) € {1,...,u2} x {1,...,ud™} let us define

+ _ Etpnael + . Epetll

ea,n = Do,n ) h’a,m = Ra,m ’
+.0 . (A== +4 . 14 +
Com =M (e(m, 0) , b =M (0, ho.,m)

Lemma 2.17 Let (,k € Ny. Then eX and hZ;, are C-forms on RY and belong to
q,0 +,042 +,0+2
Regq (T o)1+ (). Furthermore, e and hi ;"> are compactly supported and thus

elements of Reg®? (2) as well as Reg? (Q) for s € ({ — N/2,00) \ 1. Moreover, for { > 2

VOX

E 4kl 44 Ep4ktl 140
Lfe " =e , L ho—,m —ha,m

o,n

hold and these equations even remain valid for the negative forms e : and h ' if ¢ = 0,1.

, M

Proof: According to [26, Remark 2.4] we have dive;, = 0 and rothZ, = 0 and
hence by [26, Remark 2.5] e}, hy7 € Reg‘ii (4 )1 (©) . Furthermore,
2

omn m

egn = 1(0, T RI) + Cop,y(FDEL,0) (2.8)
egr = C(*DE,,0) = Chy (0, REN) + MChyy(FD%,,0) (2.9)
ham = n(*DE).,0) + Cary (0, 7RI (2.10)
hi? = C(0,*RITY) = Oppy(FDZY,0) + MClyy (0,5 RZINY) (2.11)
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Thus, eZ;} , hZ) € Reg O +U)(Q) and for all £ € N,

on’

supp eff“ U supp hg “+2 « supp Vi :

Le. efiT2 hEH? € Reg?) (Q). By [26, Theorem 5.10] resp. [26, Corollary 5.12] any
power of £ is well defined on ez t?, hELH . Because of the compact supports we
obtain for ¢ > 2

Ee:l:,K—H — e:l:,@ , Eh:l:,€+1 — h:l:,@ (212)

o,n
and a short induction shows

ﬁk ei,:-i—( — :I:E , ﬁk h:l: k+¢ __ h:I:E (213)

O"Vl

for all k € Ny. The forms ¢, b, and by (2.8), (2.10) also ¢ , h,;, possess the
‘right shape’, such that for the negatlve forms according to [26, Corollary 5.12] the
equations (2.12) and (2.13) hold true for / = 0,1 as well. Once more taking into
account the compact supports of eZ;? and h;, we get

ei 42 hi {42 c Regq,K(Q)

a,n

forall/ € Ngand s € ({ — N/2,00) \ L. |

Lemma2.18 Let K,Z € Ny. Then forall o € {0,...,Z}and k € {—1,..., K} as well
as all (¢,~) € N3 and appropriate m,n

—0+2 +, k+1 _ —+2 +, k+1 —
< 7 n E >L2 a,9+1(Q) <h H >L27q,q+1(Q) =0 ’
<€;7,£+2’ H+ k—i—l>L2 a1 (@) _ <h_ L42 E+ k+1>L2,q,q+1(Q) — (_1)e5k,£50775m,n

Remark 2.19 It suffices to choose j > N 4+ 2(2+ K + Z) in (2.6).

Proof: We note again that ¢;7 and % ;2 have compact supports. For all £ € N; partial
integration and (2.9) yield

k.t . _ —E-‘r? +k;+1 £ —2 +,k+1
SM = Cn E >L2 a,:a+1(Q) <M €y EU >L27qvq+1(Q)
a1 £ 4 k+1
<C D'y n’ O)’ M Ea,m >L21<17L1+1(Q)

Since M L = M L, = Id on suppn and M(E],,,0) = (0,0) the scalar products S%
vanish for ¢ > k + 2. However, for ¢ < k + 1 we get

S = (O DY 0) B i

and these scalar products can only differ from zero if £ + 1 — / is even. The integrals
range only over supp V7. Thus, we may insert the representations from Corollary
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2.8 for E}»*!1~* and see that S% = 0 holds by Lemma 2.9 even in these cases. The
same arguments force

~k,l

T e tt2 +k+1
Scm T <€7n H, >L2qq+1(Q)

tovanish for ¢ > k+2.If { <k + 1 we get

Sv = (—1){C(~ DL 0), H fH1-ty

o,y y,n? L27¢Z7¢1+1(Q)

These scalar products can only differ from zero, if £ + 1 — ¢ is odd. Again we insert
the representations from Corollary 2.8 for H,/;**'~*. But now in the case k = ( we get
aterm D%l whose scalar product with C- Dq 1 does not vanish if (o, m) = (v,n)

om/’/

according to Lemma 2.9. Therefore, we obtain

~k.f _
S’ = (~)(C(DEL0), (DI 0)) sy = (1) Bt

oy = i
Similarly the assertions about the remaining two scalar products may be shown. B
We have found our projections.
Theorem 2.20 LetJ € Nand s € (J+1— N/2,00) \ L. Then
Reg?®(Q) = Regl”(Q) + 127

where T4 := Lin {e_ 2*2  h_t*2: (k,0,m) € O ((,y,n) € ©47}.
More precisely: Each (F G) € Reg?%(Q) can be decomposed uniquely as

(F7 G) = (Frega Greg) + (F’r, GT) s
where (Freg, Greg) € Reg? (Q) and (Fy, Gy) € Y% are defined by

(FTvGT) = (_1)k<(F7 G)>E¢7+,;]Z+1>L2qq+l(g)harﬁ+2
(k,a,m)é@?"]

+ Z (_1>k<(F7 G)? HL;"’:;£€L+1>E2#LQ+1(Q)60_',’7I;:L+2

(k,om)e@it7

Remark 2.21 Y97 are finite dimensional subspaces of ((03007‘1 () x (oot (©)) NRegZy ()
and the projections (F,G) — (Fx,Gx) resp. (F,G) — (Freg, Greg) are continuous. More-
over, the choice j > 2(s + J + 1) in (2.6) is sufficient.

Proof: Accordmg to Lemma 2.17 we have the inclusion Y4’ C Reg%’ (Q2). Thus,
(F,G) € Reg?(92) implies (Freg, Greg) s (Fr,Gy) € Reg?’(Q). Applying Lemma 2.18
we obtain for all (k,0,m) € ©97 and (¢,v,n) € ©I+J

<(Frcg7 Grcg) E+ k+1>L2,q,q+1(Q) = <(Frcg7 Gng); Hfj:;f+1>£2,q,q+l(g) = O
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and therefore (Fleg, Greg) € Regg’J (©2) by Lemma 2.15, which yields
Reg?®(2) C Regt (2) + T C Regl(Q)

So it remains to show the directness of the sum. Let us pick an element

(F, G) = Z fkgme ok+2 -+ Z gkamhaﬂlijﬂ

(k,o;m)e01t (k,o,m)e0?

of the intersection Reg?”? (Q) N T%7 . Applying L yields that

E(F, G) = Z fkame_ okt + Z gkamhaT]fL+1

(k,om)e@i™ (k,o,m)c0%?

belongs to Reg?’; ' (Q) ¢ L>%"(Q) by Lemma 2.17. If k > 0 the forms e o+ resp.
h; &+ have compact supports. But for k = 0 with (2.8), (2.10) the forms e, h 1 are

crm’ o,m

no longer compactly supported However, they belong to L2 2+1(Q) but even not

+
to L% qul(ﬂ) Thus, €%, h;;L are not elements of L2%"*'(Q) since (0, 0,m) € ©7+1

resp. (0,0,m) € %7 1mp11es N/2 +0 < s—1. The forms e} and h, ;! are linear
independent. Consequently the coefficients £ ., , 80.0.m have to Vamsh Repeating
this argument with LI(F,G)forj=2,...,J tinally shows fj 5 = gk.om = 0 for all
(k,o,m) € ©41 and (k,o,m) € ©%7. |

Jm’

We are ready to approach our desired low frequency asymptotics.

3 Low frequency asymptotics

We will prove the desired asymptotic expansion in four steps, which are:

step one: proof in the reduced case, i.e.:
compactly supported perturbations A ;
right hand sides from Reg?"(Q2);
estimates in local norms

step two: replacing Reg?”(Q2) by L244+1((Q))
step three: replacing local norms by weighted norms

step four: replacing compactly supported perturbations €, i by asymptotically van-
ishing perturbations

Following this program we only drop the assumption of compactly supported per-
turbations of the medium in the last step. Thus, (2.4) may be assumed during the
tirst three steps.

29



3.1 First step
Lemma3.1 LetJeNy,se€ (J+1/2,J+ N/2)\Tandt:=s—J — (N +1)/2. Then

H 'Cw,J—l(F7 G) - Z (1 w)k<(F7 G)v E;;7]§+1>£2,q,q+1(g) ’va-]_l_k h;ﬁi

(k,o,m)e0d?

- Z (iw)k<(Fv G), H;£+1>f,2,q,q+l(g) [’W,J—l—k‘ ec:,ﬁL

(k,o;m)e01td

Ly (@)
= O(|W|J) H(R G)HLg’q"‘”l(Q)
holds uniformly in w € C, ; \ {0} and (F,G) € Reg?°(12).
Proof: According to Theorem 2.20 we decompose (F, G) € Reg?’(Q)
(F,G) = (Frog, Greg) + (Fr, Gy) € Reg () + 173

and obtain by Theorem 2.3 uniformly in w and (Fjeg, Greg)

| Loa-1(Freg: Greg) | 20001 ) = O (1) | (Freg: Greg) 20001
By Remark 2.21 the projections are continuous and thus

H Lo (F,G) = Loga(Fr, GT)HL?M“(Q) - O(MJ) H(F, G)HLE“MH(Q)

This shows that we only have to determine the asymptotics of the special forms
e, i+ ho k42 for k < J — 1, which belong to Reg?”* () using Lemma 2.17. Theorem

o,m

2.3 and Lemma 2.17 yield

Lo k-1 e;flﬁ = (—iw)k L, CcF e;;’ffz = (—iw)* L, e;;i :

Lot hy k™ = (—iw)" L, LA 52 = (—iw)* L, k7

w Yom

Then for 1 < k < J — 1 we obtain

J—1
— k42 — k42 Z NG k2
Ew,-]—l €om T £W,k—1 €om (_ 1w)j [‘0 L €om
Jj=k

Y -2
= (_ 10&)) ‘CW,J—l—k’ ea,m
: Joo—kt2 _ ik 2
since L7 e ;175 = L7 e+ . Analogously we compute

—k+2 s Nk =2
£W7J—1 hU,m - (_ lw) £W,J—1—k hmm
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According to the latter lemma we only have to calculate the asymptotics of the
special forms

Los-1-k 6;;% p Log-i-k h;i
forweC,;\{0},0<k<J—lando<s— N/2—-1.
For this we will use a technique introduced by Weck and Witsch in [42, 43, 44],
which was completed in [45] resp. [48]. The idea is to compare the forms

—,2 —,2
'Cw eo’7m 7 ‘Cw ha,m

with special radiating solutions of the homogeneous problem in R" \ {0} and then
to identify the proper static terms in their asymptotic expansions. For this procedure
it is essential that the perturbation A has got a compact support.

Let us define for g € {0,...,N —1},0 € Ny,m=1,... aswellasw € C, \ {0}
and v, .= N/2+ 0o

oo o)
lw . . 2k — 2k+1 +1 2v, . 2%k + 2k+1
£, = E (—iw)™ "DET + I w E (—iw)™ " DL : (3.1)
k=0 k=0
i
Hi‘;@ = —rot Etl,‘;’n
, w :
> * (3.2)
. N2k—1 — 1,2k 1 2u, . \2k—1 1,2k
= E (—iw) Rgfm’ + kI W E (—iw) +jon
k=0 k=0
and
oo o)
2w . s \2k — pg+1,2k+1 e - N2k + pg+1,2k+1
HZ5 = E (—iw) RE + kL w E (—iw) RE , (3.3)
k=0 k=0
1.
]Eg‘;j1 = —div Hgfn
9 w 9
> i (3.4)
_ : 2k—1 — 2k q, 2vs : 2k—1 + g2k
- (_lw) Dg,m+"€aw E <_lw) Da,m )
k=0 k=0
IN'l-ves)

where 1§ 1= 2iv,47" 5705 (—1)re+1/2+00%%.N and T’ denotes the gamma-function.
These series of g- resp. (¢ + 1)-forms converge uniformly on compact subsets of

RN\ {0} and there they define C*>°-forms. Moreover, they solve
(M +iw)(E,H)=(0,0) and hence (A+w?)(E,H) = (0,0)

in RV \ {0} since clearly (div F,rot H) = (0,0). For real frequencies w # 0 they
fulfill Sommerfeld’s (componentwise for the Helmholtz” equation) and Maxwell’s
radiation condition and for nonreal frequencies w € C, \ R they decay exponen-
tially at infinity. Moreover, (Ej Hyw), n = 1,2, belong to the Sobolev spaces

o,m)

HY 71 (A(1)) for any k € Ny as well as
2

31



B = S R HL (o) 7T,
B i ’
o W N 1 - g+l
Haim = 5 roz - wg'Hl/U (WT) T Sg,m (35)
+1i <(N/2 —(q+ 1)) H,, (wr) + wr(Hia)’(wr)) ,aT;{m)
and
vo—1
By = =5 (T (or) T
i ((N/2 = @)}, (wr) + wr(H) Y (@) 752,) (3.6)
HZs, = StV () 5 S8,
b /60 b
hold, where H; denotes Hankel's first function and 3, := i 7= (—1)»=*1/2 For

details and proofs we refer to [24, Sektion 5.5]. Compare also with [45, (84)] and [48,
section 4].
Now let us turn to the calculation of the asymptotics of £, e 77 .

n(ELs, HL2 ) € HE1(Q)

o,m) ,m :
(using an obvious notation) fulfills the radiation condition and solves

(M +iwA)n(EgS, Hes) = (M +iw)n(Eys, Hy) = Cary (B, Hen)

o,m?’ o,m’

Hence,
Ly Crig(Bg, Hy) = n(Egi, H) (3.7)

o,m’ o,m’

Since Cy,, has compactly supported coefficients

£w<M —+ iu)A)CMm(iDq’l 0) = CMm(iDq’l O)

o,m) o,m)

holds and therefore

L, MCyr,("DZ) . 0) = (Id —iw L,)Cpr, ("D 0) . (3.8)

om’ om>
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With (2.9) we compute

L. e;;i = L, MCMW(*Dgﬁn, 0) + L., Cary (0, *Rg;};o)
2 Cary(TDZL,0) + Lo, Cary (0,7 RLEEY) —iw(TDEL,0))
PED el — (0, RLWO) — iwn(ELe, HE)

Fiw Lo Carg (B, H) = —(0,7RELE) = (D1, 0))
I’ w 3

= ey —iwn("DEL,0)
+iw(Ly, Crry — M) ((Ecli':;unv Hzlr:fn)
—L(0, R0 — (~D2L  0))
- , ,

According to Lemma 2.17 we may write

-1 _ -2 - Nl — =0 -2
€ = Lo Com 7 77( Dy 0) = Com = Lo L €om

o,m o,m)
and obtain

‘cw,l 6;’731
= (Lo Cary = ) (B, Hyfs) — =(0,7REL) = (TDE,.0)

Now inserting the expansions (3.1) and (3.2) in each case the first term of the (—)-
series of E;% resp. H(% is killed and we achieve

,m

Lo et = (0= Lo Cri) (3 (—10)* (M —1)(" DI, 0)
k=1

+ ke w7 (= iw) (M — iw)(FDL2T0))
k=0

(3.9)

with i, 1= KET = 2y AT p (< 1)t 2,

Since the series converge locally uniformly for w € Cy ; \ {0} in RV \ {0}, they
converge in particular in L;;*"*' (Q) . Consequently the series Cy;,, 3 ... converge
in L2%4+1(Q) for all s € R because of the compact support of Cyr,, . The continuity of

L, yields the convergence of the series £, C, > -+ => L, Curyy ... In Li%q;l(Q) .
Let 0}, denote a bounded subdomain of €2 with supp Vn C €2}, . We look at

(f,9) == Crp(M — iw)<iDg’,a21’f+l7 0) = (Cdiv,niRg,tr{’%v - iwC’mtmiDg’fffH)
By [26, Remark 2.4] we get

div f = —divy*D#?*1 =0 , rotg=iwrotn*RITL* —iuCy T RITHH

)1

and moreover (f, g) is perpendicular to B?(Q) x B?**(Q) because supp( f, g) C supp V1.
Furthermore, every | - [ 2441 o-norm is equivalent to the | - [r24.4+1(q,)-norm for
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(f,g). [26, Remark 2.2 (v)] and [25, Lemma 4.2 (iii)] yield (with generic constants
c>0)

” Lw(fu g)HLQ"Lq*l(Qb) <c (H f g ”L2 Gt () + ”Crot nqu—H’zk |‘L§’q’q+1(ﬂ)>

< e (IFDE2  i2wari(ay) + IR L2t (ay)) < e
and thus also
H(?? - L, CM,n)(M —iw) (ichf,i]:Ha O)HLz,q,qH(Qb) <c

all uniformly in k and o, m as well as w (See [26, Remark 2.2 (v)]). For K > J we
obtain by (3.9)

=

-1
Hﬁm (1= L0 Caa) ( 30 (=19) (M —iw)("DLE,0)

1

=
Il

K-1
w2 Z(— iw)%(M — iw)(+Dg:%€+1, 0))
k=0 L2:2.0+1(Qy)
o0
<ec Z |w|2k < C’W’QK
k=K

Once again let us introduce a new short notation:
wlv e Ju-— Vli2aarigy) < clw|’ uniformlyw.r.t. we Cip\ {0}

Using this new notation we have shown so far

K-1
Logegm ™ D (=iw)™(n = L, Criy) (M —iw)("DEE,0)
= o (3.10)
+ ke w27 (= 1w) () — Lo Cary) (M — iw) (T DL 0)
k=0

and the only unknown w-behavior is hidden in the terms
Ly, Crp(M —iw)(*DE2,0)
Using Cyp2,y = MCliyy + CaryM and [26, Remark 2.4] we compute

L., Chry(M — iw)(*DE2+1 o)
=L, CMQvn(iDgﬁfH, 0) — Lo (M + iw)CM,n(ingf,’fH, 0)
=L, C(ipg:griﬁl, 0) — L,(M + iwA)(]Mm(iDgﬁ:H? 0)
= L, C(*DE*,0) = Oy, (*DET,0)
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and then for k € N

(= Lo Corg)(M = iw) (D, 0)

= — L, C(*DLM10) + (M —iw)n(*DL2*0) 3.11)
If £ > 1 we have
MPn(* D™, 0) = Cagz g (DT 0) + n(*DET,0)
= C(*D&™",0) + n(* Dy ~",0) € Regfi(Q)
We note once more
n(*DEin*,0) € Regi () (3.12)

by [26, Remark 2.4]. Thus, according to [26, Theorem 5.10] £* may be applied to
M?n(=D22+1 0) and we obtain

N(FDEL,0) = L2 (C(EDE*,0) + n(*DE ", 0))
By (3.12) £ and £? are even well defined on n(* D%~ 0), such that
n(il)q,2k+l7 O) — £2 C(iDq,2k+1’ 0) 4 LQ 77(i‘Dq,Qkfl7 0)

holds. A short induction shows

o,m)

k
n(=DE*,0) = 3 L* C(=DEAT,0) + L% n(*D2;,.0)
=1
and hence using A~! = Id on supp 7

o,m?

k
n(:l:Dng/lf-i-l’ O) _ Z /CO £2€—1 C(:I:Dgfrl::—i-?)—QZ’ 0) + £0 £2k:—1 n(:I:Dq,l 0) :
/=1

o,m)

k
‘]\477(:&‘Dg:zrlf-‘rl7 O) — Z £0 £2£72 O(:I:Dg:%if—l-?)—Q[’ 0) + £0 £2k72 77(:I:_Dq,l 0)
(=1

We remind of n(*D%! 0) = e and C(*D%! 0) = eX2 . Putting all together yields
n om o,m o,m o,m g g Yy
fork >1
(M —iw)n(* DL+, 0)
= (Lo L%72 —iw Lo L2 e (3.13)

o,m

k
+ Z(ﬁo L¥*2 —iw L, ﬁ%_l)C’(iDgﬁr’fH—%’ 0)

(=1
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Inserting this formula into (3.11) and all this together into (3.10) we obtain

-2
‘c%l ea,m

(3.14)
S NSt o (- Loeih (M —iw)edh)
where S* := —S§" + Sf; + Sij; and
K-1
St = 3 (—iw) L, 0D 0)
k=1
K-1
St = S (—iw) (Lo L2 —iw Lo L2l
k=1
K-1 k
Siii= 3 (—iw) ™ 3 (Lo L7272 —iw Lo L2 O (F DL )
k=1 =1
Obviously
2K-1
Sh= 3 (miwF Lo et (3.15)
k=2

In the double sums S7;; we substitute ¢ by j(¢) := k — £ + 1, interchange the sums
and again substitute £ by i(k) := k£ — j. Then we denote the pair (j, i) again by (k, ) .
We get

K-1 2K—2k—1
S = (i) Y (—iw) Lo L O DI 0)
k=1 =0
and thus
K-1
S — S = Z(‘ 1) Lo ok—ak1 C(iDg:fo“7 0)
k=1

We have C(*D22+1 0) € Regh) () and also for all k > 1 and j < 2K as well as

VOX

§€ (2K — N/2,00) \ I according to Lemma 2.15
C(*Dgn*',0) € Regl? (),
because for all (¢, v, n) with ¢ < 2K we may compute
(CEDEN0) B taario) = (CEDERT0) H D o) = 0

using Lemma 2.9, the expansions from Corollary 2.8 and observing 2k + 1 > 3. In
particular for 1 <k < K —1
C(*DE2H,0) € Reg?® 2(Q2)

5
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holds. Therefore, Theorem 2.3 (i) yields uniformly in w (and k, o, m by [26, Remark
2.2 (V)])

+ mg,2k+1
H £w,2K72k71 C( Do‘,m ) O) HLZQJI-H

()
<c |w|2K72k HC<iDgﬁf+l, O)‘ L?quH(Q) <c |w|2K72k
and we obtain .
Sfc - Sﬁl ~ (0’ O)
Since e, 2 = L% e, 2 by Lemma 2.17 we see from (3.15)
2K—-1
Sy = Z (—iw)k Lo LF e;;i
k=2
and inserting all in (3.14) (using (3.15) again) we arrive at
Look-1€,=Loren — Sy
2K—-1
0 (30 () £ £ (M — i))edf — Loci?)
k=2

For each N 3 j < J + 1 choosing some K € Nj with 2K > j we finally obtain

»Cw,j—l 6;’”21
| N2 3.16
L /’ing+2U<( Z (—iw)* Lo L2 +(M —iw))el? — L., e;i) : (3.16)

k=2

It remains to identify the terms. The equation

e;:ng = Mn(*D%} 0) = Oy, (T D2} 0)+77(0,+Rg;};0) ,

a,m’ o,m)

(3.12) and [26, Theorem 5.10] show

Loeoim=com - (3.17)
Using (3.17) in (3.16) we get
Loj-1€0m
L o N2 (j_NiU_l(_iw)k A Lh el _ L ert) (3.18)
k=0
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Since ¢/2 € Reg®) (1) we may look at

(0,h) ==l — Loel
utilizing [26, Corollary 5.12]. With A (0, h) = (0,0) and rot uh = 0 we have

,uh € Hq?(‘?_l%_g(g) N Bq+1(Q)L , h— +R(q:;i,0 e Li(]_Jr%l(Q)

Hence, i}, = h by Lemma 2.4. Finally (3.18) turns to

772

'Cw,jfl ea,m
) j—N—-20-1
J N+2 E : kA—=1rr+.k ,2
~ RgW + U( (— 1w) A Hff,m — £w,j—N—20—1 €;m) (319)
k=0
=: K, WN+20-A‘ZUTUJ,VW72071

Similar calculations using the forms (EZ%  HZ%) from (3.4), (3.3) and looking at
(0,£Rz!12k+1) yield a corresponding estimate for £, k> , i.e.

-2
'Cw,j—l ha,m
j—N—20—1
J N+20 Z « Nk A =11tk +,2
~ RsW ( (— IW) A Eo',m — ;Cw’j,Nfggfl h0'7m) (320)
k=0
. N+20 1Rj—N—-20—1
=! Ko W Bl

Lemma3.2 LetJ € Nyand s € (J+1/2,J+ N/2)\ 1. Then for all bounded subdomains
Qb OfQ

| £oa1(F.G)
_ Z (_ iw)N+k/€k,g<(F, G), E;,TS—ZT—H>E2,q7q+1(9)6i;,1n—1N—k

(k’,a,m)eégiliN
J-1-N—k

Z (— iw)N+kﬁk,a<(F7 G), H;;]n6720+1>t2,q,q+1(Q)va‘77m

L2,q,q+l(9b)

(kom)€05T]

= 0(Jwl”) H (F,G) HLEM“(Q)

holds uniformly with respect to w € C, ; \ {0} and (F,G) € Reg?’(Q).

Here ko := 172k, and

é?::{(k,a,m)eNg:Qagkgj/\1§m§,ug}

In particular for j < min{J, N'}
H Loja(F, G)qu,qﬂ(gb) - O(|w|j) ’ H(F7 G)HLE"Z’QH(Q)
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Proof: We insert the asymptotics of (3.19), (3.20) in the estimates of Lemma 3.1 with
j :=J — k. The sums range over ©¢7 and ©¢"'7 . In particular for (k,o,m) € 097
we get

0<k<J—1 , 0<o<s—N2-k—-1 , 1<m<ud

Additionally we have the condition £ + 20 + N < J — 1 since higher order terms
may be swallowed by the O-term. Because J +1/2 < s < J + N/2 we only sum over

0<k<J—1-N |

N _1-N-— _1-N-
Ogagmm{&ﬂg—k—LJ > k}zJ > koo

1<m<pd

We interchange the sums over k and o, set {(k) := k + 20, interchange ¢ and ¢ and
finally denote ¢ again by k. This proves the first assertion. Once more recalling

hi2 € Regl) () (3.21)

am’

we apply [25, Lemma 4.2 (iv)] and get

Loel2, Loht2 2 (0,0)

om)

Thus, A’ Bt

w,o,m w,o,m

(0, 0) , which yields the second assertion. |

In the following we often use without further reference an uniqueness result for
asymptotic expansions.

Lemma3.3 Let L,L € Nyand x_;, ...,z be elements of some normed space X . More-
over, let

L
| whalx = o(jwl")
t=—1L

hold uniformly with respect to C. \ {0} > w — 0. Then all x, vanish.
According to (3.19), (3.20) we have
Ak

w,o,m w,o,m a,m

= X];,m(w) - ‘Cw k 6:% ’ Bk = Y];m((ﬂ) — ﬁw k h+ 2

with polynomials

WE

k
= (Clw)ATHS  YE (W)=

£=0 12

(—iw) AT ESY (3.22)

Il
=)

of degree k in w. By (3.21) we may apply Lemma 3.2 with J := j to
(F,G) = hi ,

vn’
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which yields the asymptotics

. +72
‘CW»]—l ev,n
J

L (—iw)V > (Ciw) B (Y TN R W) = Ly jan—k hi) (3.23)

(k,cr,m)G@‘]l 1-N

(i)Y Y (i) el (T W) = Logovkedin)

(k,om)e®It]

and
Loj1hiy
L=iw)V YT (i) BT (VN T (W) = Lujoion-khE) (3.24)
(k,c,m)e(:)g_l_N
. . k7 s S _ ,
+ (=i Y (W) et (KN W) = Lojavkedn)
(k7o‘7m)€é;1'iri_]\]
where
RO = o (€h 2 ERE Y iy (3.25)
e = Kroler i Hom  Niaang) (3:26)
k.o, , e
h;ﬁl = /€k7g<h,¢73, Etjm’fb 2cr+1>]:2,q,q+1(Q) 3 (327)
zzz,’ryn = l€k7g<h;’lj27 H+£720+1>ﬂ2’q7q+1(9) . (328)

Thus, there exist polynomials Xﬁm (w) and ng(w) of degree ¢ in w, such that

12 -1 , +2 I, i1
£W7J—1 ev,n ~ X'y ((.U) 4 £W7J—1 hw,u ~ v,V (w)
hold. Since

+2 J +,2 +2 J +,2
Lojern~Lojae, Lojhyy~Lojahyy

’;he coefficients of Xf;n(w) and Yﬁyy(w) do not depend on /. Consequently there exist
orms

XZ }/:f’u c L2,q,q+1 (Q)

y,n loc ’
such that
) ) o Jj—1
AL A X w) =X w) = ) (—iw)XS, (3.29)
=0
) ) o j—1
B, AW ) -V (w) = ) (—iw)Y, (3.30)
=0
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We obtain immediately

j—N—20—1
2 J N+20 : YAV
L, i 1€5m ™~ Ko W E (—iw) Xom ,
=0
j—N—-20—-1
-2 7 N+20 Z AV AV
‘CW,J'*1 ho,m ~ Ko W (_ 1w) Ya,m
/=0

and

Lojaer2d X W), Loy hi2A VN w)

Yo
(3.23) and (3.24) yield for1 < j < N
Loj1e?, Lo ht2 L (0,0) (3.31)
and therefore we get for ¢ =0,..., N —1
X, =A"'HY Y, =AT'EfS (3.32)

The higher order coefficients X ,‘; s Yf,j may be computed recursively utilizing (3.23),

(3.24). In particular we have for j > N

j—N—k
X = (i)"Y (—iw)eir (—iw)Yom
(k,a,m)eé;_N =0
v (3.33)
oY (Ciwkaben S (Ciw)X,
(ko m)G@‘Hl £=0
j—N—k
7 . k,o,m
ng,y(w) = <_1w)N Z (_lw kﬁh'yy Z Yf
(kam)E@] N
v (3.34)
oY (Ciwfaben S (—iw)Xe,
(k,o,m)e®It £=0
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Using (3.22) and (3.29), (3.30) we get the following recursion for the forms X fn ,
YV{ ,and { > N

L _ A1t/ § k,o,my 4—N—k
X’Y!’n’ o A H’Yan o 56777” Ya7m
(k,a,m)e(:)giN
3.35
_ k,a,mXﬂ—N—k ( )
ae,v,n o,m )
(k,o:m)eOf
0 _ A=1p+4l k,omy 0—N—k
Y%V =A E’%V o Z 5h,~/,zx Ya,m
(k,a,m)eé(g_N
(3.36)

k,om x4—N—k
- Z Oéha'YaV Xg’m

(k,o,m)e0ity,

Additionally we obtain
¢ ¢ S S A
X0, Y, € Lin{AT H /AT ES )

+Lin {XENF YEN R (k,0,m) € O\ A (K, 5,m) € Oy}
C Lin{AT'"H L, AT ES} + Lin{X) Y ik +20 < (- N}

and a short induction shows

¢ ¢ AL AL L
Xon, Y, € Lin{A HI AT BT,

. + Lin{A%nl’E;f;fj, ATTHIE ik +20 < — N} (3:37)
Moreover, our coefficient forms satisfy
MXY, =MY?,=(0,0) (3.38)
and for/ < N —1
A'MXE, =X, ATTMYS, =Y (3.39)

Once again by induction these equations hold true forall { > N .
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We may formulate the main result of step one. For this let the coefficients X! |
and Yf,u be defined recursively by (3.32), (3.35), (3.36) and

Definition3.4 LetJ € Ny, s € (J+1/2,00) \ Land (F,G) € L2477(Q). Then for

j=0,...,J —1— N we define the ‘correction operators’
DiFG) = Y rkol(F,G) B ) s i) Vi
(k,a,m)eé?

+ Z /{k,o<(F7 G): HI£_2J+1>L2 s q+1(Q)X] .

(k,a,m)eé)?+l
Theorem 3.5 LetJ € Nyand s € (J+1/2,00) \ I. Then for all bounded subdomains
O, C € the asymptotic

J-1-N
HﬁwJ (F,G) — —1wN Z —1w3F

j=0

.G 20001(0)

= O )[(F, D) 20001

holds uniformly with respect to (F,G) € Reg?(Q) and w € C, ; \ {0}.

Remark 3.6
() The coefficients X', , Y!, have to be computed only for £,2y < J —1 — N and
nzl,...,,ufrl v=1,. ..,,u7

(ii) Because of (3.38), (3.39) the correction operators satisfy

ATTMT; =T,
whereT_, = 0.
(iii) By (3.37) we have
[;(F,G) € Cor®™(Q) == Lin{A'E/E AT HF t b+ 20 < j}
Hence, the correction operators
[ : L29979(Q) — Cor®(Q)

are degenerated (and clearly continuous).

(iv) T;(F,G) = (0,0) for (F,G) € Reg??(Q).
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Remark 3.7 Utilizing the representations of E};" , H}:* from Corollary 2.8 and the or-

thogonality properties from Lemma 2.9 we may obtain a more detailed recursive definition of
the coefficient forms XY | Y’ . Namely looking at (3.25) and keeping in mind k — 20 > 0
we see that f;’;ﬁ vanishes for odd k — 20 + 1, i.e. even k. However, for even k — 20 + 1,

i.e. odd k, we get by Corollary 2.8 and Lemma 2.9

kom __ k—20+1,0,m
€,7,1n o K;k’o- 5(1?7’717_)
Accordingly we achieve for odd k
k,om k—20+41,0,m kom _ pkom __
h’ﬂf’y - _K‘,k’g C(1777V77) 4 €,77,mn - th’l/ - O
and for even k
k,om k,om __ k—20+1,0,m k,om k—20+1,0,m
ah,w,y =0, Qeymn = “FKko é-(1,'y,n,7) ’ hy,v —Kk,o C(l,'y,l/,f)

Now our recursion (3.35), (3.36) appears in a more explicit shape

0 . A=lrr+,0 k—20+1,0,m y#—N—k
X, =ANTHI + § Ko § Y,

(17’7771,—) o,m
(k,o,m) GéZ,N
k odd

k—20+1,00m ~x4—N—k
+ § Rk,o f( Xa,m )

1,"/,”,—)
(kom)€ft

k even
2 G Ry k—20+1,00m x#—N—k
Y, =ATE D e (Y

(k,o,m)eé‘LN
k even

z : k—20+1,00m ~x4¢—N—k
+ ’K‘:k,o' C( Xa7m

1,"\/711,—)
(kom)€OF
k odd

Proof: W.1. 0. g. lets € (J+1/2,J + N/2) \ I. We insert the asymptotics (3.29),
(3.30) into the estimates of Lemma 3.2. Introducing the new variable j({) := ¢ + k
and ordering the sums according to j, k, o, m we have proved the theorem. The as-
sertions of the two remarks are easy consequences of the definition of the correction
operators and (3.37), (3.38), (3.39). |

The first step is completed.
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3.2 Second step

By the results obtained in [27, section 3] we get the following essential decomposi-
tion of L2%7T1(Q):

Lemma3.8 Lets>1—N/2ands+1¢ laswellast < sandt < N/2. Then every

(F,G) € L™ (Q)
may be uniquely decomposed into
(F,G) = A(Fy, Ga) + (Fu, Gy) ;

where (F,.,Gq) and (Fy, G,.) are uniquely decomposed into

(Fr,Ga) = (b,b) + (F, Ga) + (Y erWH™nRE, > v nDF)

=q,0 Zq+1,0
Ie7? I€7]

(Fi, Gr) = (Fu, Gr) + ( Z P1 diVﬁRf?la Z PrrotnDY)

1€3%° 130t 0
with constants o,y € C, where ¥ :=1i(q' + e([))l/2 (¢+ e([))71/2 . Moreover

(b,b) € Lin BY x Lin B! C (R¢

7x(Q) x o)DIEL(Q) :
(Fy,Ga) € RYQ) x DIT(Q)

(F,,Gq) € Tri?(Q) == (LinBY x Lin B 4+ (oR?(7%°, Q) x (DI (37, Q)
C oRY(9) x DI ()
(Fd7 é’r‘) € Reg(sko(Q) )

)

(F4,G,) € Reg?™ () := O]D)Z(I_JZ’O, Q) x 01&3—&-1(5(8]—&-1,079)
S(Q) + (diV "qu(JZ’O) X Tot an(lsz’o))
)

and all projections are continuous. We denote the projection (F,G) — (F,,G,) by 11 and
the projection (F,G) — (Fy, G,) by l,e; = Id —AIL.
Shortly written we get
L299H(Q) = (A Tri%(Q) + Reg? 1 (Q)) N L2%9H(Q)
where Tri?(Q) = M L2941(Q) and Reg? ™' (Q) = M, L29911(Q).

Remark 3.9 This lemma still holds true for T-C'-admissible transformations A, if T > 0,
T>s+1—=N/2and 1> —s—1.
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Let us consider for J € Nyand s € (J +1/2,00) \ Isome (F,G) € L2#91(Q). We
decompose (F, G) according to the latter lemma. (£}, G,) solves

(M +iwA)(F,, Gy) = iwA(F,,Gy)

and satisfies the boundary, integrability and radiation condition since ¢ > —1/2.
Thus, for the ‘trivial projection” we have

iwL,A(F,,Gy) = (F,,Gy)  ,ie. 1wl AIl=T | (3.40)

Looking at the ‘regular projection” we see that Theorem 3.5 determines the asymp-
totic of (Fy, G,) completely. Therefore, it remains to compute the asymptotics of

(farg) = (Y @rdivyRT", >~ 4rotnD?))

1€37° Jegitho
We note for [ = (—,0,0,m) and J = (—,0,0,n)
anJrl P , nD!, = e,
Thus, we have to calculate the asymptotics of

(div nR‘f}rl, 0) = Mh, o =h_ , (0,rotnD?)) = Me, ) = e,

o,n on

But this is quite easy since e, ;! and h_;, inherit the asymptotics of 7, h,> derived

in the first step. We discuss for example e n - €, satisfies the boundary, 1ntegrab11—
ity and radiation condition as well as solves

(M +iwh)e, =e? +iwe,
This yields
et =L, e;ﬁ +iwLl, e;;}
By Lemma 2.17 we get

1
-2
‘C‘eran

Loet=—(et— L, e ?) = —
w 1w( on w Un) —Hw

- L, Jn—i-Z—lw Eoﬁee;ﬁ)

_ 1 Lo, gn+z e+1£ rt —1)

and hence

1
1 -2
‘CUJJ 16071 - _iw‘cwjean
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By (3.19) and (3.29) we obtain
) j—N—-20
L1 e;;} L i gyl Z (— iw)gXﬁ’n
=0 (3.41)

j—N—20

_ /iop(—iw)N_l Z (_ )Z-I-QUXﬁn
and similarly

Lojor hym = kog(—iw)Y Z w) Yt (3.42)
=0

In order to compute the coefficients ¢;, 1; in terms of (F, G) we have the following
lemma. Please compare to Lemma 2.13.

Lemma 3.10 Let s € (1 — N/2,00) \ Land (F,G) € L2297 (Q) . Then for all appropriate
o,mand > 1

@) (F.G),E[0):s sariiy = S Egpliza) = =1,
(F.G) H ) ionanqy = (G Hphzario) = =5

(ii) <(F, G),E;t;ﬁ}izqqﬂ(m = <( o, Gy, E+75>L2qq+1(9) ’
(.G B2 s = (P G o

hold, where I = (—,0,0,m) resp. J = (—,0,0,m).

Remark 3.11 Here of course ‘appropriate’ means that all E}°, H0, EXL, HE are

elements of L>7"(Q). More precisely we may pick indices I = (— ,O, o, m) € JZ’O resp.
J —= (_, O, O‘, m) E jg“l‘l,o and (E, O-’ m) E @gvg resp‘ (€7 0_7 m) E @ngl,é.

Proof: Let us first discuss (i) and ¢; . During the proof we denote I = (—,0,0,m).
The representation of F' in Lemma 3.8 may be written as (see [27, Theorem 3.2 (iv)])

F=ceb+eF+Fy—i) oild+0) " PeAP] (3.43)

1770
where P{ := (¢ + 0)"?R!; +i(¢' + 0)"/2D?, is a potential form and by [27, section 3]
e gRIQ) =10t RIHQ)  ,  Fy€,DYQ) = divD(Q)
Since €A, = erot div 4 divrot = A on suppn and AP} = 0 we obtain
eAnP} = CP}
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Clearly we have
(F.Ef 2oy =—1 Y @il + o) /*(CP}E] 12000
1740

and utilizing the expansion of £}, from Corollary 2.8 as well as Lemma 2.9 and
Remark 2.10 we get

(F,Ef i2a@) = > @r((99) CRY, ES r2ai) + (CDY B ) i2age)
1770

= —@(=,0,7,n) )

since the sums vanish except for R!; = ~R%? resp. D!, = ~DZ? . The other assertion
of (i) for ¢; may be shown in a similar way
To prove (ii) we write

F=ebteF+Fy+ Y or((09) rotnD? " + divpRY )

S

with some F, € 0]10%3(9) . For any ¢ we have

<(6b, O), E;:’Tﬁ>£2’q,q+1(9) - <(5Fr7 0)7 E;_,f@>ﬂ2,q,q+1(g) =0

Thus, it remains to show for all
<( ?,O), E;;fz>£2,q,q+1(g) =0 )
where Q7 := (92) ! rot anjl + div nR‘ff . In order to prove this we compute
i(¢ + 0)'?Q% = CP{ — div Cioy, Pf — 10t Ciy ) P}

and obtain directly ((rot CaivnP7,0), B3 )is a1 @ = 0. With the second term on

the right hand side we proceed as follows. We write E};f = MA~'E},*" and since
Clot,y is compactly supported partial integration yields
((div Croty P12 0), B )00 )
= —((0,r0t div Croey, ), ES 3 ) o
= — (0,10t CP}), EZ " )11 o
+i(q + o) 2((0, rot divn R ), B, .y
— ((CP1,0), E5 Lo

+i(g +0)2{(0,CRY 1), EFAT)-

Q)

L2,q,q+1(Q) ’
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where the last equation follows once more by [26, Remark 2.4]. Consequently

<( (}7 0)7 E;;£>f12,q,q+1(g) = _<(07 CR?}H% E;;£L+1>]:2,117‘1+1(Q)

Once again by Corollary 2.8, Lemma 2.9 and Remark 2.10 the scalar products

1
(0, CRIT), Ejn™ ) irnana)

vanish because ¢ > 1. Besides also the scalar products ((CP/,0), ESL )z, 01 (o) Van-

ish since ¢ > 1, though this is not necessary for the proof. The other assertions of
(ii) are shown analogously. u

Putting all together we obtain the main result of step two.

Definition 3.12 Let J € Ny, s € (J + 1/2,00) \ T and (F,G) € L?>9771(Q). For

j=0,...,J — N we define the ‘correction operators’
f‘j(F; G) = Z ’10,0<<F7 G)7 E;:;g>£2,q,q+l(9)ya{’:n2a
20<j,m

- Z HO,0<(F) G)7 H;:;9L>ﬂ2,q7q+1(Q)Xg,_”?20

20<j,m
aswellas Ty :==Tgand T; =T, +T;forj=1,....J - N.

Theorem 3.13 Let J € Nyand s € (J +1/2,00) \ 1. Then for all bounded subdomains
Oy, C Q2 the asymptotic

J-1
L,(F,G)+ (—iw) '"I(F,G) = Y (—iw)! Lo L e(F,G)
g
j=0
J—-N
_(_iw>N71 (_iw>jrj(F7 G)HL2,q,q+1(Qb) = O(|w|J) H(F7 G)HL%‘Z#I+1(Q)
j=0

holds uniformly with respect to (F,G) € L2271 (Q) and w € C4 ; \ {0}.
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Remark 3.14
(i) By Lemma 2.13 on Reg?°(Q2) we have T'; = 0 and thus T; = T;_, for j > 1 as well
asT'y=0.
(i) II(F,G) = 0and I, (F, G) = (Fy, G,) = (F,G) hold for (F, G) € Reg?°().

(iii) Because of (3.38), (3.39) the correction operators satisfy A1 M fj = fj_l , where
[y :=0. Thus, we have \"'MT; =T;_;.

(iv) From Definition 3.12 we get
[;(F,G) € Lin{X7 2, Y % : 20 < j}
and thus the correction operators
[;, T, L277HQ) — Cor®(Q)
are degenerated (and clearly continuous).

Proof: From the arguments above and the continuity of the projections from Lemma
3.8
L(F.G)+ (=iw) (F, Ga)

J-1 J-1
— (—IUJ)j Eoﬁj Fd, Z _1W JEO‘C] fdagr)
j=0 Jj=0
J-1-N
—(—iw)¥ (—iw)Ty(Fy, Gy)
=0
J-N-20
+H—iw)M Y kel ((F.G), ES; ) L2t (@) > (—iw)YY,
0<s—N/2,m =0
J-N-20
+(_iw)N_l Z K’O,U<(F7 G) H+O>L2qq+l(g) Z (_iw)z—’—QJXg,n
0<s—N/2,m £=0

may be estimated by clw|!||(F, G)|| 24.4+1,g, in the L2247 (Qy)-norm uniformly in w

(@)
and (F,G). Wenote I = (—,0,0,m) € 53’0, if and only if J = (—,0,0,m) € E_JTLO, if
and only if 0 <s— N/2and m = 1,... . By Lemma 3.10 and Definition 3.4 we have
I;(Fy;,G,) = I';(F,G). Rearranging the latter two terms we obtain

J-1
| £.(F.G) + (= 1w) 7 (B Ga) = (= iw) Lo £(Fy, G)
7=0
J-N J-N
Z —iw JF] 1(F,G) —i—Z —iw) jI’ )) L2t ()
j=1 Jj=0
= O(lw") [ (F, &) HL%‘I"I“(Q) ’
which completes the proof. |
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3.3 Third step

Now we approach estimates in weighted norms. For this we compare our solutions
with the solutions of the homogeneous whole space case. Let us denote

L, =L,

in the special case Q) = R" and A = 1d. L, is well defined on Lii’qﬂ forall C, \ {0}
2
by [25, Theorem 2.17] since there are no eigensolutions in this case. We obtain

Lemma3.15 LetJ € Nand s > J —1/2as well as t < min{s, N/2} —J — 1. Then for
Jj=0,...,J — 1 there exist bounded linear operators

OIS B(L?’q’qﬂ,L?’q’QH) , U, € B(Lqu—l,q+2’Lt27q7q+l)

and a constant ¢ > 0, such that

[
—_

L,(F,G) = (—iw)(9;(F,G) + (—iw) '¥;(div F,rot G))

2,q,q+1
L

.
Il
o

S C|w|J (H (F, G) ”Lg,q,qjq + |71| H (le F, rot G) ”Lqufl,q+2>

holds uniformly with respect tow € C, \ {0} and (F,G) € D% x R%*'. The assertion holds
also true for J =0and s,—t > 1/2,t <s— (N +1)/2.

Proof: Using the fundamental solution for the scalar Helmholtz equation in RY
Dy, (2) = o (|z]) with ¢, (t) = cyw’t " H) (wt) ,

where the constant ¢y only depends on the dimension N and H}(z) denotes Han-
kel’s first function of index v := (N — 2)/2, see [25, section 4], we may represent
(E,H) := L,(F,G) by [25, Theorem 4.1], i.e.

Er=Gxrot® , + (—iw)F @), — (—iw) 'divF xdivd), | (3.44)
Hy=Fxdiv®] ,+ (—iw)Gx®], — (—iw) 'rot Gxrot ®], | (3.45)
if © = E;de’ and H = H,;dz”/ as well as ®, := ®,,, dz’. Here x is the con-
volution in R for forms, which simply is the sum of the scalar convolutions of

their Euclidean components. Utilizing Taylor’s expansion theorem we get constants
¢j, ¢; € Cand functions remy, rem;y, such that for ¢t € R, and w € C; the expansions

J-2
o (t) =t Z cj(wt)? + remy(wt)t' NI I 1 :
=0

31
ol () =t Z ci(wt)’ + remy(wt)t' N7
=0
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hold. The remainder functions remj(z) and rem;(z) are uniformly bounded with
respect to z € C; and the bounds only depend on N and J. Inserting these Taylor
representations into (3.44), (3.45) we obtain

[
—

(E,H) = ; (—iw) (®;(F, G) + (—iw)""¥;(div F, rot G))
(3.46)

<.
I
o

1 —_
+ w? (Reme(F, G) + —Rem,, y(div F, rot G)) ,
w

where ®; and V¥, resp. Rem,, y and ﬁe;/n% g are convolution operators with integral
kernels of shape b;(x,y)|z—y[" T~ for j = 0,...,J —1 resp. brem(x,y,w)|x—y|[T TV
The kernel parts b;(z, y) are uniformly bounded with respect to =,y € R" and inde-
pendent of w. Moreover, the kernel parts brem (7, y, w) are uniformly bounded with
respect to z,y € RY and w € C.. . Thus, it remains to show that the kernels

|x_y|j+1_N s .]:O):J )

generate bounded linear operators from L2 to L?. All kernels belong to L. and
grow with j if |[x — y| > 1. Therefore, we only have to discuss the worst kernel
|z — y? 1=V, The assertion follows now by [18, Lemma 1] and [48, Lemma 13] as
well as some case studies. For a more detailed proof we refer to [24, Sektionen 5.1-
5.3]. |

According to [46, Theorem 4] there exist continuous projections

7 L200H — RY x (D! : (F,G) — (Fr,Gp) ,
Treg - L?’(Lq—H - ODg X OR;H_I ) (F7 G) = (FD? GR) ’
g : L20aHL g7 5 gt ;. (F.G) — (Fs,Gs) )

such that each (F, G) € L2%9"! may be uniquely decomposed as
(F,G) = (Fr,Gp) + (Fp, Gr) + (Fs, Gs)

Corollary 3.16 LetJ € Nands > J—1/2aswellast < min{s, N/2—1} —J —1. Then

|Lo(F,G) = (—iw)/®;(Fp + Fs,Gr + Gs) + (—iw) " (Fg, Gp)

[
—_

<
Il
o

— Z —1w j+1 le Fg,l“Ot Gs ||L2qq+1 = O(|W|J)”(F, G)HLE“MH

j=—1

holds uniformly with respect tow € C,\{0} and (F,G) € L2949 if w ranges in a bounded
set. The estimate remains valid even for J = 0and s, —t > 1/2,t <s— (N +1)/2.
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Proof: We easily see L,,(Fr,Gp) = —(—iw) *(Fg,Gp). (Compare to (3.40).) More-
over, Lemma 3.15 may be applied to (fp, Gr) and we get

J-1
[P, Gr) = 3 (= 1), (Fo, G [yzaaes = Ol |(F, G) e

7=0
Furthermore, Lemma 3.15 may also be applied to (Fs, G's) but with J + 1 instead of
Jaswellas §:=s+ 1and?:=t. We achieve

J-1
(—iw)®,(Fs,Gs) — Z (—iw)j\I/j+1(div Fg,rot GS)HLM»QH

Jj=0 J=-1

Mu

HLw<F87 GS

< clw™! (H(Fg, Gs)| zaas + ﬁ”(div Fg, rot GS)HLg,q,l,M)

< el (F, G)| oy e

Now the L}*"'-norm of the term (—iw)?®;(Fs, G's) may be swallowed by the right
hand side, which itself can be further estimated by O(|w|”)|(F, G)HLz,q,q+1 since 8¢

are finite dimensional subspaces of C* for all ¢ and s. Putting all together yields
the desired assertion. |

We are able to formulate the main result of this section:

Theorem 3.17 LetJ € Nand s € (J+1/2,00)\laswell ast < min{s, N/2—1}—-J—1.
Then the asymptotic

o
|
-

| £o(F,G) 4+ (—iw) 'I(F,G) = ) (—iw)! Lo L e(F,G)

=0
J-N
(—iw)¥ ! Z —iw) ]P )HLf,q,q+l(Q) = O(|w|J)H(F, G)”Lg,q,tﬁ-l(ﬂ)
7=0

holds uniformly with respect to (F,G) € L2471 (Q) and w € C \ {0}.
This asymptotic holds for J = 0 as well, if we replace the assumptions on t by t < —1/2
andt <s—(N+1)/2.

Proof: Let us define operators X; via

:K_l = —II y
K= Lo L Mg , j=0,...,N =2 ,
:Kjizﬁoﬁjﬂreg‘FFj,N+1 ; :N—l,,J—l
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andforJ <J -1

J
LY=L= ) (iw)XK; . (3.47)

j=—1
Then we have to show uniformly with respect to w and (F, G)

” EwJ 1(F G>HL§*‘“I“(Q) - O(‘W‘J) H(F7 G)”Lqu,qH(Q)

From now on all estimates are to be understood uniformly with respect to w and
(F,G). We want to combine the asymptotics in local norms proved in the second
step with the whole space asymptotics in weighted norms from the latter corollary.
Since we have by Theorem 3.13 for every bounded subdomain 2, of 2

H Ew.] 1 ”L2qq+1 Qb) - O(’w’ )H F G HLqu+1 ) 5 (348)

we get immediately

[(1=mn) L3341(F.G) HLf’q’q"'l(Q) = O(|w|")[ (£, G)HL?‘“’H(Q)

and it remains to estimate |7 £x 3.1 (F,G) HL2,q,q+1 :
t

Todosoletw € Cyp \ {0} and (F,G) € L2991(Q). According to [27, Theorem
3.2 (iv)] (compare with Lemma 3.8 and (3.43)) we decompose

(F,G):A(\(lc;,b)Jr(FT,Gd))Jr (Fa.Gr)  +( ) ¢iCPE Y ,CP

A ’ A 1790 JeFItho
=:1I(F, G) =: [T (F, Q) ey y
=1 (F,G)

with continuous projections, where C P} € C>*? and (b, b) € Lin B? x Lin B¢** as well
as

(F,Ga) € oRI(Q) x (DIFYQ) ,  (F, () € Reg?®(9)
By Lemma 3.10 we have

’@I‘ + ‘1;-]‘ S CH <F7 G) HLqu,Q+1(Q)

The trick is to apply this decomposition using another cut-off function 7, which
satisfies supp V7 C Z,, ,, , whereas supp Vi) C Z,, ,, . More precisely we set

f:=1nor , n(t) ==n(l+

t—’l"g
7"4—7’3)

and note C' = Uy j in this case. Since
L,ANI(F,G) = —(—iw) ' II(F,G)
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it suffices to discuss 1 L, (F, G) with (F, Q) := (Il,eg + Ic)(F, G) .
nLy(F,G) e R! | x D‘ill satisfies the radiation condition and solves
2 2

(M +iw)n Ly(F,G) = (M +iwAn L,(F,G) = (f,9) (3.49)

with (f,g) == (7 + Oy L) (F,G) € L2901 (Without further comments here and
in the following we often identify forms with their extensions by zero to RV .) Thus,
nL,(F,G) = L,(f,g) or in another notation

nL, = L,(nId+Chy, Ly) (3.50)
holds even on L2771 (Q). By Corollary 3.16 there exist bounded linear operators
=_1,...,25-1 mapping L? to L? , which satisfy

”Lw,J—l(f> g)‘|L$¢q,q+l = O(lle)|’(f7 g)HLg,quﬁ-l ) (351)
where
J-1
Log—1i=Lo,— ) (—iw)E; . (3.52)
j=—1
Moreover, |(f,g) HLz,q,qH can be further estimated by

”(fa g)HLga%q-‘rl S C(H(Fv G)HLg,qu-‘rl(Q) + HCM,n *Cw(pa G)

L2494+ (supp Vn))

Using [25, Lemma 4.2 (iv)] we can estimate
H Ew Hreg(F’ G) HL2’qvq+1(supp vn) S CHHreg(F, G) ”L?’q’qul(Q) S C” <F7 G) HLE"Z’Q+1(Q)
Looking at some term of II¢(F, G) we see
Chry Lo(CPY CPITY) = Cyyy Lo(divrot 7PY, rot div HPIT)
because

1
L, (vot div i Pf, divrot 7P§ ™) = — (rot div jPf, divrot fP§ ™) € L2%*!
1w 2
and thus Cyy,, L., (rot div 7 PY, divrot 7P™") = 0 since supp Vi N supp7 = §. With
some 5 € (1/2,N/2) we have (divrot 7P, rot diviP¢™") € Reg?’(Q) and therefore
we may utilize [25, Lemma 4.2 (iv)] once more to estimate
|Cosy Lo(CPY,CPFH

)”LQ"]"HI(SUPP V)

< ¢||(divrot 7P}, rot div 7. P§ " <c

1) ”L?Q’QH(Q) =

Hence, we obtain

HCM:W Lo ﬂC(F’ G) “L27q,q+1 ) < CH (F,G) HLE*‘M“(Q)

(supp V7
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Putting all together yields
19 znes < N E Oz o
and after inserting in (3.51)

[Eesar(F ) lzanes = Ol [E G ey

Now using (3.52) and (3.49), (3.50) we obtain

77£w<F é): w,J—1 fg + Z —lw (774‘0]\/[,775“,)(}%,@)

j=—1
Collecting terms and utilizing (3.47) gives

DEEC) 4 (—i0) T(EG) — 3 (— 1w E (e + 116)(F,C)

j=-1

J-1J-1—j

- Z Z H_k_‘JCM ﬁxk( reg T f[C’)(F, G) (3.53)

j=—1 k=-1
J-1

= Lw,J—l(f: g) + Z (_ iw)jEjOM,n 553_1_]'(}%7 é)

j=-1

Moreover, the continuity of the operators Z; from L? to L7 as well as Theorem 3.13
yield

"chMyﬂ 553_1_]- (F, é)

" SN
200t < CH ‘Cw,J—l—j(F7 G)HLZMH

S L (LX)

(supp V)

()

Therefore, the right hand side of (3.53) behaves in the L;**"'-norm like
O(lw)[(F.6) HLﬁ‘q’qH(Q)

and thus so does the left hand side. By (3.48)

[ £55-1(F D210,y = OUP) I G| 20 o

holds also for every bounded domain €, C R" . Applying Lemma 3.3 we find that
the left hand side of (3.53) equals 7 Efﬁ j_1(F,G) and this yields finally

1L 1 (F, @) 2asn = O(wP) [(F, G| 2acerqy

which completes our proof. |
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3.4 Fourth step

We are ready to face the proof of the Main Theorem. This last step may be done by
an abstract argument similar to [45, Lemma 12]. Thus, our aim is to identify two
Banach spaces X and Y, such that all operators involved in our asymptotic belong
to B(X,Y), which denotes the space of all bounded linear operators from X to Y .
Good candidates are X = L2%¢t1(Q)) and Y = L>%""!(Q) as well as for some s > ¢

B(X)Y) = By = B(L?q,qH(Q)’ Lt2,q,q+1(Q)>

By Theorem 3.17 and (3.47) the ingredients of our asymptotic are the linear op-
erators £, and K, j = —1,...,J — 1, i.e. the operators

A, I, L, and £, j=0,...,J
as well as the correction operators

r j=0,....J-N

j o
Moreover, the correction operators I'; map to Cor?/(2) and their coefficients are
given by the scalar products

st (F.G) = ((F,G), E;

;Tﬁ>f427q,q+l(g) ’ Sg;fz(Fv G) = <(F7 G), H

¢
;m>i2,q,q+l(ﬂ)
and the numbers 5%’7’;_ , ijgﬁ_
3.5 and Theorem 3.13.) )

Let us assume w to be small enough and still for the moment the perturbation A
to be compactly supported. Then clearly A € B, , for all s > ¢. By Lemma 3.8

. (See the definitions and remarks around Theorem

IT e B(L24+(Q), \RY(Q) x (DI (Q)) € Boy

(3.54)
ILe, € B(LZ%M (), Reg?(Q)) C By,

foralls € (1 - N/2,00)\Iand t < s,t < N/2, since the embedding
Reg?™!(2) C Regf"(2)
is continuous. By [25, Theorem 2.17](see also [25, Theorem 2.24]) for s, —t > 1/2
L, € B(L29(Q), RYQ) x DIYY(Q)) € By, (3.55)
By [26, Theorem 5.10]
L7 € B(Reg? (), Reg! () (3.56)
and therefore

LI T,y € By (3.57)
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fors e (j — N/2,00)\landt <s—j,t < N/2—j. By Lemma 2.6

Bk HER e LP(Q) (3.58)

om

fort < —k — o — N/2 and thus

Cor®(Q) = Lin{A™ B8 A HSE b+ 20 < j} CLE7 Q) (359)

o,m

forall t < —j — N/2. Moreover, sy k=27t1  slhh=20+1 and s, sI9 are continuous
linear functionals on L2%9"1(Q) for s € (j + 1 + N/2,00) \ I since again by Lemma
2.6

+,k—20+1 +,k—20+1 +,0 +,0 2,q,q+1 2,q,q+1
Eym , Hoon , Egm s Hym € L (€2) C L2877 (Q)

g,m > <o—k—1—%

for 0 <20 <k <j.Thisyieldsfors € (j+1+ N/2,00)\Iand t < —j — N/2
I € BL2991(Q), Cor™(Q)) C By, . (3.60)

Now we weaken our assumptions on the perturbations A, such that they do
not have to be compactly supported anymore. Thus, let us assume A to be 7-C'-
admissible. By [25, Lemma 4.2] P, the generalized point spectrum of M, does not
accumulate at zero for

>(N+1)/2

i.e. L, is well defined for small w. Furthermore, the following assertions still hold
true:

B354)fort>0,7>s+1—N/2and 7> —-s—1

(38.55) for 7 > 1

3.56)fort>0,7>s—N/2and7>j—s—1

(3.57) if (3.54) and (3.56)

358)fortr >k+ocandT> N/2 -1

(359)forT>jand T > N/2 -1

(3.60)forT>j+1land 7> N/2 -1
Collecting the values for s, ¢ and 7 we obtain

Lemma3.18 LetJ € Nyand I # s > max{1/2,J+1— N/2}aswellast < s — J and
t < min{—1/2,N/2 — J}. Moreover, let T > max {(N + 1)/2,s + 1 — N/2}. Then for
j=0,....J—1andi=0,...,J— N

va H» EO ﬁj Hreg7 Fz € Bs,t
and thus also for j = —1,...,J — 1
g(:j7 Eiﬁ] E BS,t

Now we approximate A by compactly supported perturbations. For this purpose
we define ¢, := (1 —n)(r/n), n € Nand

~

A, = 1d 4+, A
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(We note ¢,|;, =1and ¢,[,, =0.) Then A, converges to A for n — oo pointwise
a.e. and also in the operator norm of B;, for all ¢ € R since 7 > 0. Moreover, if
T > s — ¢ this convergence also holds true in B, ; .

From now on all operators, forms and numbers carrying an index n correspond
to the truncated transformation A,, .

By a short calculation and a regularity result, e.g. [14, Corollary 3.8 (ii)], we
obtain

Lemma3.19 Let7 > 0. Foralls € Randry, <n € N

RY(Q) N7 D) C RIQ) N DYQ)
pT'RENQ) NDEQ) € i RE(Q) 1 DE(Q)
hold with continuous embeddings, whose norms do not depend on n .

Let s,t and 7 satisfy the assumptions of Lemma 3.18 and 7 > s — t. Apply-
ing the latter lemma our static operators . Mar? , and ., Mar?_, from [26, Theorem
4.6] are well defined on their common domain of definition D(. Max!_,). A long
but straight forward computation shows that ., Mar?!_, converges to . Mar?!_, in
the operator norm of B(D(. Max?_,), W((2)) . Therefore, also the inverse operators
converge in the operator norm and clearly the same holds true for #9tar’"; and
Hn Mardt

Since L, consists of the inverses of . Max? | and # E)ﬁazczﬂ also ,, £, converges
to Ly in the operator norm. Thus, ,, £ converges to £ in the operator norm and
the same holds true for their powers. By Lemma 2.4 and Lemma 2.6 ,,E ;% resp.
WH % converge to E* resp. H};* in the corresponding Ly ***!(Q2) . Looking at the
representations in Lemma 2.6 the coefficients ,£"* and (" of ,ES;* and ,H,;k
converge to £" and (¥ in C. Hence, also the correction operators ,I'; converge to
I'; in the operator norm. Furthermore, it follows that the projections II,, and Il »,
converge to II and II,., in the respective operator norms.

It remains to discuss the time-harmonic solution operator. For w small enough

2,0,q+1
and (F,G) € L>q%q (Q)

(B, H) = Lo(F,G), (En, Hy) = o L(F,G) € RL_,(Q) x D™, ()

1 1
3 <73

Consequently the difference form (e, h) := (E, H) — (E,, H,,) satisfies the radiation
condition and solves

(M +iwA)(e,h) =iw(A, — A)(E,, H,)

For 7 > 1 we have (A, — A)(E,, H,) € Li’i’qH(Q) and thus

2

(e,h) =iwLy,(A, — N)(E,, Hy) )
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i.e.
L,—nLy=1wLl, (A, —A), L,

Interchanging A and A,, yields also
LNy —AN)pLy= LAy —A)L,

Since A,, — A in B, ; we obtain ,, £, — L, in By .
Summing up and using Theorem 3.17 we finally achieve

Lemma 3.20 LetJ € Nand s € (J+1/2,00)\laswell ast < min{—1/2, N/2—-J—2}.
Moreover, let T > max {(N +1)/2,s—t}. Then forw € C 5 \{0}and j = —1,..., T -1

n—oo . n—oo .

n Ew - Ew m Bs,t ) An — A m Bt,s )
n—00 .

anj — jCj m Bs,t

as well as for all n
Lo—nLy=1iwly,(Ay,—A), Ly,

and
In £33 1 |8, = O(Jw]”)

Now we have to modify the result [45, Lemma 12] slightly.

Lemma3.21 LetJ € Ny, w > 0,w € Cyy )\ {0} and X, Y be Banach spaces. Moreover,
let for n € N

and

resp.

N @)
be families of bounded linear operators from X toY resp. Y to X . Furthermore, let
NO o, KWk, =101
with convergence in the respective operator norms and
L, — LM =wL NOLMW (3.61)

as well as for all n

J-1
L =30 K5 = 0(lel)

j=—1
as w — 0 with respect to the operator norm in B(X,Y'). Then also

J-1

holds as w — 0 with respect to the operator norm in B(X,Y).
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Proof: The proof is quite similar to the one of [45, Lemma 12] and hence may be
omitted here. We just note that in the Maxwell case it is indispensable that (3.61)
contains a term wA ™ contrary to just V'™ in the case of the (generalized) perturbed
Helmholtz equation or the (generalized) perturbed equations of linear elasticity. W

We are ready for the
Proof of the Main Theorem: If we set
Xe=L200(Q) Y =LRetle)
then a combination of Lemma 3.20 and Lemma 3.21 yields our desired asymptotic
1255115, = O(ll")
which proves the main theorem for J > 1. If J = 0 we have by Lemma 3.8 and (3.40)
L5 = Lo+(—iw) ' = L, e

Hence, [25, Lemma 4.2 (iv)] yields the stated assertion.
To prove the first remark we compute

x o x
for0<j<J-—1and

Mﬁgf,,l = M‘Cw = M['w Hreg = Hreg - iWALw Hreg
Moreover, we set § := 5,1 :=tort :=t+ 1. Then for J > 2 we may utilize the main

theorem with J — 1, 3, ¢ and for J € {0, 1} once more [25, Lemma 4.2 (iv)], which
completes the proof of Remark A. |

Using the Main Theorem as well as Definitions 3.4 and 3.12 and the correspond-
ing remarks we note two final observations concerning the correction operators.

Remark 3.22 Let J € Ny and s,t as well as T be as in the Main Theorem. Moreover, let
(F,G) € Reg?®(2).
(i) For J < N we have the noncorrected asymptotic

J-1

L, — —iw) Lo L) (F,G
I Z( 1) Lo L) (F.G) | sy 662

(1 [Laxe| e

(@)

(ii) For J > N + 1 we know by Theorem 2.3 and Lemma 2.15 that the noncorrected
asymptotic (3.62) holds true for all (F,G) € Reg?(Q), i.e. for (F,G) perpendicular
(in L2¢9+1(Q)) to all special growing forms A"\ Efk AT HEF € L2297H(Q) with
1 < k < J. Albeit this condition is sufficient for (3.62) to hold it is not sharp. Of
course, the noncorrected asymptotic (3.62) holds, if and only if the correction opera-
tors I;(F,G) = T;_1(F,G) vanish forall j = 1,...,J — N, ie. (F,G) must be
perpendicular only to all AT EXE ATVHSF € L2 Q) with1 <k < J— N.

o,m)
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Remark 3.23 Let J € Ny and s,t as well as T be as in the Main Theorem. Moreover, let
(F,GQ) € L291(Q).

(i) For J < N — 1 we have the noncorrected asymptotic

(L0 +(=i1w) T = (= iw) £o £ Ty (F, G)

[
_

(%) (3.63)

<.
Il
o

- O(|W|J) ” (F’ G) HL?"]’Q'H(Q)

(ii) For J > N the noncorrected asymptotic (3.63) holds true, if and only if T';(F,G) = 0
forall j =0,...,J =N ,ie. ifand only if (F, G) is perpendicular to all special forms
ATIERE AL R € L2 Q) with0 < k< J — N.

o,m’

4 Inhomogeneous boundary data

Let us finish this report by briefly pointing out how one may easily obtain a low
frequency asymptotic for inhomogeneous boundary data as well. For this purpose
let Q@ be a C*-domain. Then we may utilize the linear and continuous tangential
trace and extension operators I'; and I, from [14, section 3.3].

Let us remind of the continuous solution operator

S, 1 L29H(Q) x RYDQ) — RIY(Q) x DITH(Q) c LI(Q)
(F,G,\) — (E,H)

for s, —t > 1/2 from [25, section 5] of the Maxwell system
(M +iwA)(E,H) = (F,G) e L29*(Q) , T,E=XeRY0Q)
where ) )
RUOQN) ={x e H 290Q): Rot x € H 277 (9Q)}
and Rot := ddenotes the exterior derivative on the boundary manifold 9€2. Again
S, is well defined for small frequencies w and connected to £, via

Su(F,G, ) = (TN, 0) + L,(F,G) —iw L,(eTy\, 0) — L£,(0, ot Ty \)

Thus, S,, inherits its low frequency behavior from L, .
By [14, Theorem 3.14, Remark 3.15] for slightly more regular coefficients, i.e.

e € CY(A,, NU,,), the extension

L) e ﬁgox

() Ne™ Dl ()

may be chosen in a way, such that (for the first component!)

o

() NBYUQ)*) x ((RLH(Q) N HTTH(Q)F)

VOX

(DA, ot T A) € (oD

vOox
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holds, where F4(Q) := (R?(Q2) N Of)q(Q) denotes the finite dimensional vector space
of (generalized) Neumann forms. Hence, in any case we have

(eI, )\, 0) € Reg? (Q)

VOX

Due to I'; rot = Rot I'; the condition Rot A = 0 would imply homogeneous boundary
data for rot I';\, i.e. rot T\ A € (RZEH(Q) . Furthermore, for b € B ()

'VOX
(rot T\, b)Lzat1(Q) = (A, Tnb)r2a(a0)

holds by Stokes’ theorem in the sense of the H-24(9Q)-H29(9 1)-duality. Here we
denote by v, = * and v, := £ ® . the usual tangential and normal traces on
HY(Q), by ¢ : 9Q — Q the natural embedding of the boundary and by ® the Hodge
star operator on the boundary manifold 0 (2. By the regularity assumptions on the
boundary we have b € B7'(Q) ¢ HY(Q) and thus 7,b € H29(9Q). (For this
0 € C? would be enough!) Hence, rot ;A € B4™(Q)*, if A L, BT (). Thus, for
A € R0 ) perpendicular to v, B?™'(Q) and with vanishing rotation we also have

rot I\ € OPO{‘I“(Q) N BT(Q)*4, ie. (0,rotTy\) € Reg?? (Q2). Consequently for this

VOX VOX

extension operator I'; and \ € R%(0Q) we get

T\, 10t T,)) € Regl(Q) & A € gRUON) N (3, B (Q)) e

VOX

which would enhance the asymptotic since then (eT'¢A, ot T':\) would be an element
of the kernels of IT and I' (See Definition 3.12 and Remark 3.14). )
Moreover, it may be of interest to have conditions on the extension operator I';
and )\, which also would imply
(eT' A, ot T:\) € Reg?) ()

VOX

That would enhance the asymptotic of S, once more because then all correction
operators would vanish on the extended boundary forms.

To reach this aim we have to modify our extension operator again. For this we
recall from [14, section 3.3] the constructions of the extension operators Iy and (I .
Their construction is based on the extension operator I'> mapping to forms defined
in the bounded domain

O =0nU,

Using the notations from there we have for some A € R?(9(2)
EY =TPX e RYQy) Netdiv DI (Qy)

where )\ € RUON), 0, = 0QUS,,, is the extension by zero of A as a linear and
continuous functional. Let us introduce the linear and continuous solution operator

Lyo : Reg(Q,) — (f{q(Qb) x DITH(Qy)) N AT Reg”(Q)
(frg) +— (e, h)
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where o
Reg®?((,) == div D (€,) x rot RY((,)

and (e, h) denotes the unique solution of the static Maxwell problem

M(e.h)=(f.g) ,  (eh) € (RO(Qy) x DI () N A~ Reg?*(h)

Then Ly, := A L, o may be iterated on (¢E},0). This defines arbitrary powers of £,
on (¢EY,0). We note M £;, = Id on Reg?’(Q,), yvhere M = MA~'. Then for any
¢ € Ny and appropriate A an extension operator I'; may also be defined by

(TN, 0) == A Ml LL(eER,0) = A M LL(eTPA, 0)

where ¢ := porand ¢ :=1—17. Wenote suppp C QN U,, andsuppVyp C A, NU,,.
Of course then I';\ has support in QN U,, and I';\ € div DZ(Q) holds for ¢ > 1.
For ¢ = 0 and ¢ = 1 we get back our old extensions.

Before we proceed we have to make sure that ff is well defined, i.e. that I';)\ has
got a rotation and that its trace equals \.

Lemma4.l Let ¢ € Nyand A € CY(Zs) be O-admissible with Zs := A,,_s N U,,ys for
some § > 0. Then for all A € R(0)

MAe R (Q)Ne DL (Q)  , TDTIA=2)

VOX VOxX

Moreover, T\ € e~ div DIt1(Q), ife>1.

VOX

We note that for ¢ = 0 the additional assumption A € C°(Zs) is not needed. Further-
more, Zs may be replaced by an arbitrarily thin shell A, s N U,.s using an appropriate
cut-off function .

Proof: First we note that the case ¢ = 0 has already been proved in [14, Theorem
3.13], since in fact I'Y is our old extension operator.
The form (e, h) := A™' Lj (eE®,0) = Ly L; ' (¢E,0), which is even well defined

for 0-admissible ¢, belongs to (f{q(Qb) x DTT1(€),)) N A~ Reg?’(€2,) and solves
M(e,h) = Li H(cEY,0)

Thus, if £; *(cE?,0) € H"1e4t1(Z;) for any § > 0 small enough we get by inner
regularity (for instance [14, Theorem 2.8] or [14, Theorem 3.6, Remark 3.7] in com-
bination with a usual cutting technique)

(e,h), LL(eER,0) € HO"H(Z5) (4.1)
for any 0 > 0 small enough. Hence, a tiny induction argument shows (4.1). Now

Mo Eﬁ(eE‘f, 0) =My Ly Effl (5E§’, 0)

4.2
LB 0) + (P Lo L (B, 0) @2
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Since the second term in the sum of the right hand side belongs to H%%9"(Zy) for
5 > 0 small enough, we obtain M‘*'p L} (¢EY,0) is well defined, if and only if
Mo L (eEY, 0) is well defined. Another tiny induction shows M1y Lf (cE,0)
is well defined, if and only if M (cEY, 0) = Mp(E?,0) = M(I'9),0) = (0,rot ['9)) is
well defined. But this has been proved in [14, Theorem 3.13]. Thus,

Y, rotTA
are well defined. Furthermore, we compute

(TN, 0) = A" MM Lo L1 (eER, 0)
= (DN 0) + @ (r)r AT MTES L0 L1 (ER, 0)

which shows FthA = thf_lA since the second term of the sum on the right hand
side has compact support in ), . Finally again by [14, Theorem 3.13] we get

LUA=TI%=)x |

which completes the proof. |

Remark 4.2 Repeating (4.2) shows for all k < ¢
A IMP L] (eER,0) = A Y LR (ER, 0) + (Ey, Hy)
and therefore forall k < ¢ — 1
A MFQ LE(eER, 0) = @ Lo L F 1 (eER, 0) + (Ey, Hy)

where the (Ey, Hy) are compactly supported. This shows forall 1 < k < —1

A_leSD »Cl];(gE)b\aO) € (f{?/ox

(Q) x D)) N A Reg?2,(2)

VOX VOX

and

A=l LE(=ED, 0) € (R%,(Q) x DIEL(Q)) N A~ (D%, (Q) x RIEL(Q))

VOx VOX

Now let . )
I, =T1¢
forsome?/>J+1,ie.{:=J+1,andJ > 1. Thensincel </—J < /¢ —1 we obtain
by the latter remark

LIA(TN,0) = £F Mo LL(eER, 0)
= Mo L{(eEY,0) € Regl) () N A(f{q () x DITHQ))

VOX VOX VOxX
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Thus,
(5Ft)\ 0) € RegVOX(Q)

by Remark 2.2. Unfortunately (or maybe not) this argument holds not for the other
part (0,rot I':A) = M(I'4\, 0) because
L3 M, 0) = £ MAT N, 0) = £2 ML L8 (eER, 0)

and of course M‘p Li (cE?,0) = A(T';\, 0) does not satisfy the homogeneous bound-
ary condition as long as A # 0 and thus

LM o L (eER,0) # Mbp LI (cEY,0)

Hence, we have to use the other characterization of RegVOX(Q) using orthogonality
constraints. Since M (Ft)\ 0) is already an element of Reg?? (), the correction oper-
ators T'; vanish on M(I',\,0). Thus, by Definition 3.12 and Definition 3.4, Remark
3.6 we have to show that also the correction operators fj ,j=0,....J—N-—-1,
vanish on M (T';\,0) . Hence, we have to prove

ATTM(TN,0) LEST  HY

o,m’

forall j = 1,...,J and appropriate o, m . Of course for even j we have

(A"'M(TA,0), E =0

m>L2 q, q+1(Q)
For odd j since I';\ is compactly supported we compute

(AT'M (TN, 0), B

Um>L2qq+1(Q)
- _<(Pt/\’ 0)’ ME+J >L2qq+1(Q) + </\7/7n772A E+]>L2q(39) )

where 7, denotes the projection onto the second component. Moreover, since the
tirst partners have homogeneous boundary conditions respectively

<(f‘t>"0) ME:m>L2qq+1(Q)
= (AT MO Ly (eER, 0), L7 MBS 11, 0)) 120010
= (DA Ly (eER, 0), M LT A(ES,0)) o011
= (1A 9 Ly (B, 0), MTITIA(ET,, 0)), 001 g
= (1A LL(eER, 0), M M(E,,0) ) 0001y = O
—m

=0

since{ —j >{¢—J >12>0. We note that for this argument ¢/ > J,ie. {:=J,is
sufficient.

66



Analogously we achieve for odd j

(AT"M(I\\,0), H) =0

,m L2,q,q+l(Q)
and for even j

<A71M(f‘t)\, 0)7 H;#;,>L27QJ+I(Q)

= = ((OX0), M) o i ) + A 3T HG ) 12a(90)

(.

~~
=0

Of course these arguments also work for A(T'\A,0) = (¢I',\,0). Again we have to
show )
(TN, 0) LE  H I

o,m o,m

forall j =1,...,J and appropriate o, m . But now

<(FtA7 0)7 E;;)];L>L2,q,q+1(9)
= (A "M L} (eER,0), LT A(EL,,, 0

) )>L2 +1
a,m 4,9 (Q)
= (DA Ly (eER, 0), M M(ES1,0) ) iy =0

=0

since{ —j—1>/¢{—J—12>0,and analogously

<<f‘t)\>0)7H;:’;7]1> =0

L2,qu+1(Q)

This shows once again (¢I';A,0) € RegZ? (Q).
Summing up we receive the following result: For 0-admissible A € CIT(Zs)
with some § > 0 we may choose our extension operator I'; in a way, such that
(eI )\, ot Ty \) € Reg?d (Q) :

VOX

if and only if

L14241(6 Q)

A € gRIDQ) N (7, BIH())
aswell as forall j = 1,...,J and all appropriate o, m

A Lizaa) WmmAT EyD yamAT H

Remark 4.3 It is an interesting and open question if these considerations may hold for
Lipschitz boundaries as well.
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5 Appendix: Special radiating solutions in the whole
space case

In this appendix we give an exact and easy derivation of the special radiating solu-
tions
B Hom) o (Bgm, HG)

a,m) o,m’

presented in (3.5), (3.6). This means we try to find special solutions of the homoge-
neous Maxwell equation in RY \ {0}

(M +iw)(E,H)= (0,00 , weC,.\{0} (5.1)

which satisfy the radiation condition. Using a separation of variables technique, i.e.
our spherical calculus from [46], and our well known eigenforms S? , and T}, pre-
sented in [46] and further discussed in [26, section 2] we will reduce the calculation
to the solution of the well known Bessel differential equation. Since

(div E,rot H) = (0,0)
(E, H) are C™-forms by regularity [14]. Applying M —iw to (5.1) we get
(A +w?)(E,H) = (0,0)
Hence, first let us try to find a solution of the system
divE=0 and (A+w)E=0 (5.2)
which will be translated utilizing [46, (21)] and [46, (25)] into the system
o[ 2B 2]

5 Fr=? B +r? Ry +7r2w? —2Div PEl _
o 7Ir 2 Rot B+r?2Ry +1r2W?| |TE|

i.e. into the system

DivpE =0 , (5.3)

' Dr’pE +DiviE=0 (5.4)
(B+r*(Ri +w?))pE —2DivTE =0 | (5.5)
2Rot pE + (B+r*(Re+w?))TE =0 . (5.6)

The first two equations suggest the following two ‘anséitze”:

1. ansatz: pE =0 : TE =e(r)T},,
2. ansatz: pE = ¢,(r) T} : TE == e, (r)S2,,
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Let us discuss the first ansatz. Then (5.3), (5.4) and (5.5) are automatically fulfilled.
However (5.6) turns to

(B+r*(Re+w?))e(r)Td, =0 <= (=M +7r*Re+w?))e(r)T2, =0

using [46, (33)], i.e. DivT?, = 0and (B+A)7T?, = 0, and Ry := R, from [46, p.
1024]. But this is equivalent to the second order ordinary differential equation

r?e"(r) + (N = Dré'(r) + (rPw’ +q(¢ = 2) = M)e(r) =0
which will be transformed by the substitution

e(r) == rfo(wr)

into the equation
W2 (wr) + (20 + N — Dwrg' (wr)

+(r*w® + q(¢' —2) = AL+ {({+ N — 2))p(wr) =0
Setting t := wr and
W+N—-1:=1 & (=1-NJ2
we obtain Bessel’s differential equation
")+’ (t) + (B —v3)et) =0 . ve:=N/24+0 . (5.7)

Consequently E fulfills Sommerfeld’s radiation condition for Helmholtz” equation,
if ¢ is a multiple of H,, , Hankel’s function of first kind for v, . Hence we get a first
solution

E;fn = rl_%Hl}G (wr) 7 T,

Utilizing the second ansatz (5.3) is trivially fulfilled and (5.4), (5.5), (5.6) are trans-
lated into the system

! d !
rl=a o (r7e,(r)T4,)) + e-(r)DiviSe,, =0 :
I‘ b b

(B+r?(Ry +w?))e,(r)Te,) —2Dive,(r)SL,, =0
2 Rot ep(T)T(j?;f + (B+r2(R2 +w2))eT(r)ngm =0 ,

which turns to the system

rel(r) +d'e,(r) +iwl e (r) =0 : (5.8)
r*(Ry +w?)e,(r) — M le,(r) — 2iwl e, (r) =0 : (5.9)
r*(Re +w?)e (1) — kle (r) + 21wl e, (r) =0 (5.10)

using [46, (32), (33)], i.e.
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Rot 82, =0 : DivTi t=0 :
(B+r3)S5m =0 ; (BT, =0 :

and [46, (34), (35)], i.e.
Rot T2, ' =iwl 'S, , Div 8¢, =iwd 'Ta ! ,
and again R, := R, from [46, p. 1024]. Inserting (5.8) in (5.9) we obtain the equation
rzeg(r) + (N + 1)7“6;(7’) + (r2w2 —o(o+ N))ep(r) =0 ,

which again with the substitution

is carried over to
2" () + 2k + N+ 1)t (t) + (£ + k(k+ N) —o(c 4+ N))p(t) =0

The choice
2+ N +1:=1 = k=—-N/2

yields once more Bessel’s differential equation (5.7) with the same v, . From (5.8) we
get '
1
er(r) = Frk((q’ + k)p(wr) + wry' (wr))
A few lines later we will see by an easy argument that F fulfills Sommerfeld’s radi-
ation condition for Helmholtz’ equation, if ¢ is a multiple of H, . Please compare
also to Weck and Witsch [48, p. 1520]. Thus we obtain a second solution

Eﬁ% = (H,fd (wr) ,bT(f!;f + ql_l ((N/Q — q)HiU (wr) + wr(H,}g)'(wr)) 7 Sg,m)
Wo
Then defining
H!'w = Lot E" : n=12
9 w b
we have

n,w : nw __
rot B +iwHy, =0
by definition and moreover
1 1
: nw __ _ : n,w __ _ n,w __ _ : n,w
divH}» = - divrot Ey, = WAEU,m = —iwk;,

since div E}% = 0 and (A + w?)EZ} = 0. Hence the forms

(Egm Hym) 0 n=12

o,m?
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are indeed solutions of (5.1). Let us calculate H';, more explicit:

lw _ i lw _ i _ .1 1 |—Rot r'"7Dr4 PE;,%
Hyw = —rot B, = w[p 7lr [ 0 Rot TE},%

- l[v ! —Rot rl79Dr? 0
L 0 Rot rl’%HVIU (wr)Td,,

S

i r—quq“*%H;U(w)Tgm
:_[p T] :q _N q+1’
w iwir~= H, (wr)SiT,
q
= —w—r ];(Hl (wr) 7 Sg;l
w

4= (N2 = g = DL, (o) —wr(H2 ) (o) 4TS,

2w l 2w i . .1 -1 |—Rot rl=aDr4 pEﬁ:%
Hom = w ot Boim = w[p I [ 0 Rot TR
_ A gt [FRot rIDeN R H )T
R 0 Rot SE
i( T O
w
d q_* 1 1 \/ o q
+ dr ( -1 ((N/2 B q>H”a (C(JT) + WT(HVU) (wr))) pSo’,m
:l< “")q L —(N/2—q) ) 77%H,L(wr)
w O'
+ = (N/2 =g+ g = N/2+ Dwr” > (HL ) (wr)
gt () () 551,
Wo
1 1% —1)2 2\ 71
= L <_ (we™)2 + (N/2 = ¢)*) HL (wr)

o wr(HY Y (wr) +w? r2(HY )'(wr)) pSE,,

Here we insert Bessel’s differential equation (5.7) and obtain

1N
r 2
2=~y (@ (2= (N2 =0 — (4t 0)(d +0)) ) H} () St
7 0
= LY H (wr) pSE,,
Wo

Now also H2¥ fulfills Sommerfeld’s radiation condition for Helmholtz’ equation as
the latter exphc1t formula shows. Therefore the choice of Hankel’s function is also
legitimated in the second case.
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Another way to compute the forms (E}s, H';» ) is to solve the related dual prob-
lem
rot H =0 and (A+w?)H =0 . (5.11)

Analogously to (5.2) this would lead to the system

—RotpH +rDri™'rH =0 ,

RotTH =0 ,

(B+r*(Ry 4+w?))pH — 2DivTH =0 :
2Rot pH + (B+r*(Ro+w?))7H =0

for the (¢ + 1)-form H , which can be handled similar to (5.3)-(5.6) utilizing the fol-
lowing two ‘ansétze’:

1. ansatz: pH = h(r)S%,, : TH :=0
1. ansatz: pH := h,(r)T¢,, : TH = h.(r)SZ)
Let us summarize: Defining forc € Nyand m = 1,... aswellas v, = N/2 + ¢
the forms

mlw ., 1= g1 - g
By i=wr 2 H) (wr) 7T, ,

H =% ( —wiH, (wr) S (5.12)

g

+i <(N/2 — (¢ +1))H,, (wr) + wr(Hi,)’(wr)) ﬁTé’,m)

and
B2, =¥ (Wi H (wr) TS,
i ((N/2 = q)H) (wr) +wr(HY Y (@) 752,) (5.13)
2%, = wr' ™% H. (wr) 5 SL,,
the forms

cn(Ere o) € CooratH (RN {0}) , n=1,2

o,m?

are solutions of (5.1) for all constants ¢;,¢c; € C. For w € C, \ R these forms decay
exponentially and for w € R\ {0} they satisfy the radiation condition for Helmholtz’
equation. In particular we have

exp(~iwr) By, Hy) € HA117 (A(1))

and thus
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. -1 oN,W  TN,W 2,q,q+1
(M —iwr—S)(E Hmm) € L>q_l (A(l))

o,m?
2

= (—iw—iwr ') (Egy, Hy)
ie. 3 3
(r 'S +1d)(Epe Hiw) € L2497 (A(1))

o,m’ >,%

Hence these forms satisfy Maxwell’s radiation condition as well. Furthermore we
derive by the properties of Hankel’s function (V is odd!) uniformly with respect to
z € C, the estimate

|H,(2)] §c(|z|_%+|z|_l’) , vi=v_1=N/2-1

For this see for example [17, p. 72] or more detailed [24, Sektion 5.1] and compare
with [25, (4.1)]. Because v > 1/2 we obtain for w € C, and uniformly with respect
tor € (1,00)

|H,(wr)| < or s ,ie. IEL |4 JHZ |41 < oz

o,miq? J,m'
Since the first derivative of Hankel’s function shows the same behaviour at infinity
as Hankel’s function itself we obtain

1-N

‘(fE”“’ H <crz , n=1,2

om> a,m) | q,q+1

and hence B R
(B, Hrs) € L2947 (A(1)

o,m)

By regularity, for example [14, Corollary 3.8 (i)], we finally get for all k € N

By Hyn) € HEPEP(A) 14

o,m?
2

Our next aim is to expand both solutions into power series with respect to w.
Using for example [17, p. 66] we have

—1

H,(z) =

(Jou(2) — e '™, (2))

sin(mv)
with Bessel’s function

- (_1>k 2k+v
L@%_;;mr(+1+uﬂdm
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This yields with the coefficients from [26, Remark 2.2 (v)]

2% <
), (2) = i1 s (Do (D gt
77 k=0
. ve—1/2 —uf,r(l — V) 148, 046, N - k4 _qk 2ktve
+ l<—1) 4 m(20 + N)(—l) @ & Z(—]_) a2 >
7 k=0
We obtain the representation
rl_%Hl}d (wr)
= fow™ ™ ( Z(— W) —Q@hyp2htl=N=o 4 pa 2o Z(_ i w)2t +ag,kr2k+1+a>
k=0 k=0
with constants
2" ' —v,)
P S — vo+1/2 , 7._39 U4—1/U o) (_q Vo+1/2484,0464 N
b =i F Y = A ()

Looking at [26, Definition 2.1] we finally get the series representations

o

E(lj,c;?)l — 506‘)171/0— ( E (_ iQJ)Zk 7Oég+1,kr2k+1foo' %T(;],m
k=0
0
4RI 2 Z(_ i W) k21t ngm>
k=0
oo (e.)
1- . N2k— yg2k+1 12 N2k 2k+1
= B! (Y (i)™ DEE T 4 s e Y (—iw) DR
k=0 k=0
oo
H2e, = B! (D (i) “adby N psu
k=0
(o]
+ I{g w2ua § (_ lw)Qk +ag,kr2k+1+a ﬁsg—’m>
k=0
oo oo
- . - . 1,2k+1
— 3,0 ”"(Z(—lw)% RZE,%H + e e Z(_lw)QHjo;n’ + )
k=0 k=0
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Thus defining for ¢ € {0,..., N — 1} the series

[e%S) [e%S)
lw . § : o 2k— 1Mq,2k+1 q+1, 2v, § : o 2k+ 1Mq,2k+1
Ea,m T ( 1(")) Da,m + Rcr w=e ( 1(")) Da,m )
k=0 k=0
i 00 [e's)
H = —rot El¥ = E (—iw)?i-Ratl2k o atl 2 E (—iw)?—1+ Ratl2k
b w b b b
k=0 k=0
and
[eS) [eS)
2w . § o 2k— pg+1,2k+1 q , 2 § s 2k+ pg+1,2k+1
Ho,m T ( 10‘)) Ro,m + l{a w=e ( lw) Ra,m )
k=0 k=0
i ) [e%9)
E2¢ = — div H2% = g (—iw)? 1= Dok 4 g1 (2o E (—iw)?—1+ pe2k
b w b k) b
k=0 k=0

we can summarize the discussion about the solutions of (5.1) in the following way:

Remark 51 Letq € {0,...,.N—1},0 e Ng,m=1,... andw € C, \ {0} as well as
Vo := N/2+ 0. The series (Ey , Hyw), n = 1,2, converge by the convergence properties
of Hankel’s function uniformly on compact subsets of RN \ {0} and there they define C>-
forms. Moreover they are solutions of (5.1), which satisfy for w € R \ {0} both Maxwell’s
radiation condition and Sommerfeld’s radiation condition for Helmholtz” equation and decay
exponentially for w € C \ R. Particularly we have div E}}, = 0 and rot H}, = 0 as well

as with (5.12), (5.13) and (5.14) for all k € N

wugfl

n,w n,w\ __
(Eo:m7 Ha:m) -

—(Ey Hy) € B (A)

holds.
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