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1 Introduction

Let Ω ⊂ R3 be a domain with smooth boundary ∂Ω . Then the classical time-
dependent Maxwell equations are

curl E + ∂tB = 0 , − curl H + ∂tD = I ,

div D = ρ , div B = 0

in Ω , where E resp. H is the electric resp. magnetic field, D resp. B the displacement
current resp. magnetic induction and I resp. ρ the current resp. charge density.
Here the gradient grad = ∇ and curl = ∇× , div = ∇· denote the usual differential
operators from vector analysis and× resp. · the vector resp. scalar product in R3 . A
time-harmonic ansatz leads to the time-harmonic Maxwell equations

curlE + iωµH = 0 , − curlH + iωεE = I , (1.1)

div εE = ρ = − i

ω
div I , div µH = 0 (1.2)

in Ω with complex frequency ω 6= 0 . Here we assumed that the relationsD = εE and
B = µH hold , where the matrix valued functions ε and µ , which are supposed to be
uniformly positive definite, bounded and symmetric, describe material properties,
i.e. the dielectricity and permeability. If we let ∂ Ω be a perfect conductor, then the
tangential component of the electric field vanishes at the boundary ∂ Ω and thus
so does the normal component of µH by the first equation in (1.1) and the relation
ν · curl|∂ Ω = − div∂ Ω ν×|∂ Ω , where div∂ Ω denotes the surface divergence and ν the
outward unit normal at ∂ Ω . This motivates to impose boundary conditions like

ν × E = λ , ν · µH = κ on ∂ Ω (1.3)
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for some given vector resp. scalar valued function λ resp. κ . In the case ω = 0 the
time-harmonic Maxwell system (1.1), (1.2) turns to the decoupled static Maxwell
system

curlE = 0 , − curlH = I , (1.4)
div εE = ρ , div µH = 0 (1.5)

in Ω .
In 1952 Hermann Weyl [24] suggested a generalization of (1.4), (1.5) and (1.3) on

Riemannian manifolds Ω of arbitrary dimension N ∈ N within the framework of
alternating differential forms. If we let E and F (= I) be differential forms of rank q
for some q ∈ Z , shortly q-forms, H and G(= 0) respectively (q + 1)-forms, f(= ρ) a
(q − 1)-form and last but not least g(= 0) a (q + 2)-form, then we call

dE = G , δH = F ,

δεE = f , dµH = g ,

ι∗E = λ , ι∗µH = κ

on Ω the generalized static Maxwell system, where d denotes the exterior differen-
tial, δ = ± ∗ d∗ the co-differential, ∗ the Hodge star operator and ι∗ the pullback
of the natural embedding ι : ∂ Ω ↪→ Ω . Moreover, now ε resp. µ is a linear trans-
formation on q- resp. (q + 1)-forms and λ resp. κ is a q- resp. (q + 1)-form on the
(N − 1)-dimensional Riemannian submanifold ∂ Ω of Ω . For N = 3 , q = 1 and some
domain Ω ⊂ R3 interpreted as a Riemannian submanifold of R3 we get back our
classical system (1.4), (1.5), (1.3), if we identify 0- and 3-forms with scalar functions,
1-forms with vector fields via the Riesz representation theorem and 2-forms with
1-forms by the star operator and thus with vector fields as well. Then the exterior
differential d acts on 0-, 1-, 2- resp. 3-forms as grad , curl , div resp. the zero mapping
and the co-differential δ as the zero mapping, div , − curl resp. grad .

It is sufficient to study the electro static system for E , since we obtain the mag-
neto static system for H replacing q by q + 1, εE by H and ε−1 by µ .

In this paper we want to establish a solution theory for the electro static Maxwell
system

dE = G , δεE = F , ι∗E = λ

on N -dimensional Riemannian manifolds Ω with compact closure in section 2 as
well as on exterior domains Ω ⊂ RN in section 3. In order to use Hilbert space
methods we will formulate this system in the usual weak sense. To remind of the
electro-magnetic background we denote the operator d resp. δ (acting on smooth
forms) by rot resp. div . We use the well known Hodge-Helmholtz decompositions
from Picard [12, 16] as well as the compactness results from Weck [21] and Picard
[15] to obtain static solutions, which satisfy the homogeneous boundary condition.

To handle the inhomogeneous boundary condition we assume that Ω possesses
a C3-boundary, and characterize the traces of differential forms E ∈ Rq(Ω)1, i.e.

1Exact definitions will be supplied in sections 2.1 and 3.1.
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E ∈ L2,q(Ω) and E has a weak rotation rotE ∈ L2,q+1(Ω) . We show the existence of
a continuous and surjective tangential trace operator

Γt : Rq(Ω) −→ Rq(∂Ω) resp. Γt : Rq
loc(Ω) −→ Rq(∂Ω) ,

which coincides with ι∗ on smooth forms and where the latter one acts in exterior
domains. By the star operator we easily get the corresponding normal trace operator
Γn = ± ~ Γt∗ as well. Here ~ denotes the star operator on ∂ Ω . The space Rq(∂Ω)
is defined as the space of boundary differential forms λ ∈ H−1/2,q(∂Ω) having a
weak boundary rotation Rotλ ∈ H−1/2,q+1(∂Ω) . Here H−1/2,q(∂Ω) is the dual space
of H1/2,q(∂Ω) . For instance, for smooth boundaries such trace results have been
proved by Paquet [9]. In [2, 4] one can find corresponding results for the classical
Maxwell equation in Lipschitz domains of R3 . Recently Weck [22] generalized the
results from [4] to our general setting.

The usage of the Sobolev spaces Hm,q(Ω) within our trace theory requires regu-
larity results up to the boundary suited for Maxwell equations. To prove these we
follow the ideas of Weber, who showed such results in [19] for vector fields in the
classical case of Ω ⊂ R3

(
see also [8]

)
. The discussion of exterior domains needs

similar results for weighted Sobolev spaces.
Finally we present a solution theory for the problem

rotE = G , div εE = F , ΓtE = λ (1.6)

with

E ∈ Rq(Ω) ∩ ε−1Dq(Ω) resp. E ∈ Rq
−1(Ω) ∩ ε−1Dq

−1(Ω) ,

if Ω resp. RN \ Ω is bounded. To achieve uniqueness we additionally have to im-
pose some suitable orthogonality constraints on E , since the problem (1.6) has a
nontrivial finite dimensional kernel εHq(Ω) , the harmonic Dirichlet forms.

The static Maxwell boundary value problem (1.6) has been investigated by Kress
[6] and Picard [12] for the homogeneous, isotropic case, i.e. ε = id , by Picard [16]
for the inhomogeneous, anisotropic case as well as by Picard [13] for the inhomo-
geneous, anisotropic classical case. All these results only cover the homogeneous
boundary condition.

Essentially section 2 is the main part of the first authors ph.d. thesis and section
3 contains some results from the second authors ph.d. thesis. Thus we refer the
interested reader to [7] and [10] for more details on the proofs or some additional
results.

2 Manifolds with compact closure

We will distinguish between two fundamentally different cases, i.e. Ω or its comple-
ment is bounded. In this section we consider the first case, i.e. Ω is an open subset
with compact closure of some C∞-Riemannian manifold M of arbitrary dimension
N .
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2.1 Notations and preliminaries

We denote the sets of positive integers, nonnegative integers, integers, reals, positive
reals and complex numbers by N , N0 , Z , R , R+ and C respectively. If z is a complex
number we write z̄ for the conjugation. The Euclidean norm in RN resp. CN is
denoted by r := | · | . If U, V are subsets of some metric space (X, d) , we write U or
U
d

for the closure and ∂U for the boundary of U . We say U b V , if U is compact and
U ⊂ V . Ur(x) , Kr(x) resp. Sr(x) is the open, closed ball resp. sphere with radius
r around x . If x = 0 we often omit this argument. Furthermore, for Ur ⊂ RN we
define

U±r := {x ∈ Ur : ± xN > 0} , U0
r := {x ∈ Ur : xN = 0} .

Let X be some normed vector space. Then || · ||X denotes its norm and 〈 · , · 〉X its
scalar product with naturally induced norm || · ||X =

(
〈 · , · 〉X

)1/2 , if X even has a
scalar product. For two subspaces U and V ofX with U∩V = ∅we denote the direct
sum by U u V and, if X possesses a scalar product and U , V are orthogonal to each
other, we write U ⊕V for the orthogonal sum. The adjoint resp. closure of a densely
defined linear operator A is denoted by A∗ resp. A and the space of bounded linear
operators from X into Y by B(X, Y ) . For the commutator of two operators A , B
use the symbol CA,B := AB −BA .

Let f be a mapping. We use the notation D(f) for its domain of definition, W (f)
for its range and N(f) for its kernel. f |U is the restriction of f to U ⊂ D(f) . The
support of f is denoted by supp f . Let U be an open subset of RN . Form ∈ N0∪{∞}
and p ∈ [1,∞] we define

Cm(U) := {f : U → C : f is m-times continuously differentiable.} ,
◦
Cm(U) :=

{
f ∈ Cm(U) : supp f b U

}
,

◦
Cm(U) :=

{
f |U : f ∈

◦
Cm(RN)

}
,

Lp(U) :=
{
f : U → C : f Lebesgue-measurable with ||f ||Lp(U) <∞

}
,

Hm(U) :=
{
f ∈ L2(U) : ∂α f ∈ L2(U) for all |α| ≤ m

}
.

Here we have ||f ||Lp(U) :=
( ∫

U

|f |p dλ
)1/p for p ∈ [1,∞) and ||f ||L∞(U) := ess supU |f | ,

where λ is the Lebesgue measure, as well as

〈f, g〉L2(U) :=

∫
U

fḡ dλ , 〈f, g〉Hm(U) :=
∑
|α|≤m

〈∂α f, ∂α g〉L2(U) .

See Agmon
[
[1], chapters 2 and 3

]
for an exact definition of the Sobolev spaces

Hm(U)
(

= Wm(U) in his notation
)
. We note that the Sobolev spaces Hm(U) also

may be defined for m ∈ [0,∞] .
We denote the Kronecker symbol by δi,j . Empty sums or undefined terms will

always be set to zero. We often use c as a constant, which may change during a
proof. Moreover, we assume the summation convention.

5



Now let M be a complete N -dimensional, real, C∞-differentiable manifold with
orientation and Riemannian metric, short manifold. First we collect some results
from [3] or [5] and [21]: For each x ∈ M there exist a chart (V, h) around x , i.e.
an open neighbourhood V ⊂ M of x and a homeomorphism h : V → U onto an
open subset U = h(V ) of RN . The changing of charts is C∞ . In our notation each
diffeomorphism and its inverse is bounded and has bounded derivatives. Let Aq(x)
be the complex linear space of alternating covariant tensors of rank q acting on the
tangent space Tx(M) in x and Aq(M) its bundle. Elements of the latter space are
called q-forms or forms. In the case q < 0 or q > N we identify a q-form with the
zero mapping and A0(M) is the space of the complex valued functions on M . The
exterior product

∧ : Aq(M)× Ap(M)→ Aq+p(M)

acts pointwise and satisfies∧
Φ∈Aq(M)

∧
Ψ∈Ap(M)

Φ ∧Ψ = (−1)qp ·Ψ ∧ Φ .

Any chart (V, h) induces special tangential vectors ∂hj ∈ Tx(M) for all x ∈ V by
∂hj f :=

(
∂j(f ◦ h−1)

)
◦ h . We have ∂hj hi = δj,i and thus {∂h1 , . . . , ∂hN} is a basis of

Tx(M) for all x ∈ V . Moreover, the differential

dτ : T(M)→ T(M̃)

of a differentiable mapping τ : M→ M̃ acts pointwise as

dτ(∂)(f) := ∂(f ◦ τ)

for all ∂ ∈ Tx(M) and satisfies the chain rule d(τ2 ◦ τ1) = dτ2 ◦ dτ1 . Locally using
charts h for M and h̃ for M̃ we have

{dτ}∂h̃
∂h

= Jτ̃ , τ̃ := h̃ ◦ τ ◦ h−1 ,

where Jτ̃ denotes the Jacobian matrix of τ̃ , if we represent the linear mapping dτ

in the chart bases {∂h1 , . . . , ∂hN} and {∂h̃1 , . . . , ∂h̃Ñ} . In the special case M̃ = R` we
note dτ(∂hj ) = ∂hj τ . Hence the chart differentials dhi satisfy dhi(∂

h
j ) = ∂hj hi = δj,i

and form a basis of A1(x) and A1(V ) . Thus for each Φ ∈ Aq(V ) we have an unique
representation

Φ =
∑

I∈S(q,N)

ΦI dhI , (2.1)

where ΦI := Φ(∂hi1 , . . . , ∂
h
iq) : V → C , dhI := dhi1 ∧ · · · ∧ dhiq and S(q,N) denotes the

set of ordered multi-indices I := (i1, · · · , iq) of length q . Especially for differentiable
f : V → R the differential df is a 1-form and we get the local representation

df =
N∑
j=1

∂hj f dhj .
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The assumptions on M yield an orientation and a scalar product on Tx(M) , which
induces in a natural way a scalar product on A1(x) and hence on Aq(x) . We intro-
duce the Hodge star operator ∗ on Aq(x) , which acts on every positively oriented
orthonormal basis {φ1, . . . , φN} of A1(x) as

∗φI = σ(I, I ′) · φI′ ,

where I ∪ I ′ = {1, . . . , N} and σ(I, I ′) is the sign of that permutation, which car-
ries over the indices I ∪ I ′ to (1, . . . , N) . The Hodge star operator is independent of
the orthonormal basis chosen, can be extended to Aq(M) and thus yields an isomor-
phism ∗ : Aq(M)→ AN−q(M) satisfying

∗ ∗ Φ = (−1)q(N−q)Φ , Φ ∧Ψ = ∗Φ ∧ ∗Ψ , ∗ (ϕΦ) = ϕ ∗ Φ (2.2)

for all Φ ∈ Aq(M) , Ψ ∈ AN−q(M) and ϕ ∈ A0(M) .
Let Ω be some open subset of M and m ∈ N0 ∪ {∞} . We write f ∈ Cm(Ω) for

some function f : Ω → C , if ϕ ◦ h−1 ∈ Cm
(
h(Ω ∩ V )

)
for all charts (V, h) . We say

Φ ∈ Cm,q(Ω) , if ΦI ∈ Cm(Ω) holds for all component functions ΦI from (2.1) of a
form Φ and all charts h . Moreover, we put

◦
Cm,q(Ω) :=

{
Φ ∈ Cm,q(Ω) : supp Φ b Ω

}
,

Cm,q(Ω) :=
{

Φ|Ω : Φ ∈
◦
Cm,q(M)

}
.

For those and the following spaces of forms we often omit the upper index q in the
case q = 0 .

We introduce the exterior derivative

d : C∞,q(Ω)→ C∞,q+1(Ω)

having the properties

d(Φ ∧Ψ) = dΦ ∧Ψ + (−1)qΦ ∧ dΨ , (2.3)
ddΦ = 0 (2.4)

for all Φ ∈ C∞,q(Ω) , Ψ ∈ C∞,p(Ω) . d is a linear operator and on 0-forms it acts like
the differential. Locally it is defined by

dΦ =
∑

I∈S(q,N)

N∑
j=1

∂hj ΦI dhj ∧ dhI

=
∑

I∈S(q+1,N)

N∑
I3j=1

σ(j, I − j) · ∂hj ΦI−j dhI ,

(2.5)

if Φ is represented by (2.1). Here the ordered index I ± j is a permutation of I ∪ {j}
resp. I \ {j} . Furthermore, we get the co-derivative

δ : C∞,q(Ω) −→ C∞,q−1(Ω)
Φ 7−→ (−1)(q−1)N ∗ d ∗ Φ

,
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which analogously locally acts as

δΦ =
∑

I∈S(q−1,N)

N∑
I 63j=1

σ(j, I) · ∂hj ΦI+j dhI , (2.6)

if {dh1, . . . , dhN} is a positively oriented orthonormal basis.
Let Ω̃ be an open subset of another Ñ -dimensional manifold M̃ . Then the pull

back map
τ ∗ : Aq(Ω̃)→ Aq(Ω)

of a C1-mapping τ : Ω ⊂ M→ Ω̃ ⊂ M̃ is defined pointwise by

τ ∗Φ(∂1, . . . , ∂q) := Φ
(

dτ(∂1), . . . , dτ(∂q)
)

for all Φ ∈ Aq(Ω̃) , ∂j ∈ T(Ω) . We note

τ ∗ϕ = ϕ ◦ τ , τ ∗(Φ ∧Ψ) = τ ∗Φ ∧ τ ∗Ψ , dτ ∗φ = τ ∗dφ

for all ϕ ∈ A0(Ω̃) , Φ ∈ Aq(Ω̃) , Ψ ∈ Ap(Ω̃) and φ ∈ C∞,q(Ω̃) as well as the chain rule
(τ2 ◦ τ1)∗ = τ ∗1 ◦ τ ∗2 . Locally τ ∗ acts in the following way: Let (V, h) , (Ṽ , h̃) be some
charts in Ω , Ω̃ and τ : V → Ṽ as well as

f := h̃ ◦ τ ◦ h−1 : h(V ) ⊂ RN → h̃(Ṽ ) ⊂ RÑ .

Then
τ ∗Φ =

∑
I∈S(q,N)

∑
|J |=q

σ(J) ·
(
(∂I fJ) ◦ h

)
· (Φπ(J) ◦ τ) · dhI (2.7)

holds for Φ =
∑

I∈S(q,Ñ)

ΦIdh̃
I , where

∂I fJ(x) := ∂i1 fj1(x) . . . ∂iq fjq(x)

and π is the permutation ordering the indices.
For subsets Ξ of RN and q-forms

Φ = φ dx1 ∧ · · · ∧ dxN ∈
◦
C∞,N(Ξ) ,

where {x1, . . . , xN} denote Euclidean coordinates, we define the integral∫
Ξ

Φ :=

∫
Ξ

φ dλ .

Using this definition the integral over some chart domain (V, h) of a q-form

Φ = φ dh1 ∧ · · · ∧ dhN ∈
◦
C∞,N(M)
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is given by ∫
V

Φ :=

∫
h(V )

(h−1)∗Φ =

∫
h(V )

φ ◦ h−1 dλ

and finally we define
∫

M

Φ with a partition of unity. If Ñ = N and τ : Ω → Ω̃ is a

C1-mapping respecting orientation we have the transformation formula∫
Ω

τ ∗Φ =

∫
Ω̃

Φ

for all Φ ∈ C∞,N
(
Ω̃
)

. If ∂ Ω is a (N − 1)-dimensional submanifold of Ω , then Stokes
theorem ∫

Ω

dΦ =

∫
∂ Ω

ι∗Φ (2.8)

holds for all Φ ∈ C∞,N−1(Ω) , where ι : ∂ Ω ↪→ Ω denotes the natural embedding.
On Aq(M) we have a pointwise scalar product and induced norm

〈Φ,Ψ〉q := ∗(Φ ∧ ∗Ψ̄) = 〈∗Φ, ∗Ψ〉N−q , |Φ|q :=
(
〈Φ,Φ〉q

)1/2
.

This yields an inner product and a norm on
◦
C∞,q(Ω)

〈Φ,Ψ〉Ω :=

∫
Ω

∗〈Φ,Ψ〉q =

∫
Ω

Φ ∧ ∗Ψ̄ , ||Φ||Ω :=
(
〈Φ,Φ〉Ω

)1/2

and we denote the closure of
◦
C∞,q(Ω) in this norm by L2,q(Ω) . Equipped with the

scalar product
〈 · , · 〉L2,q(Ω) := 〈 · , · 〉Ω

L2,q(Ω) becomes a Hilbert space. By (2.2), (2.3) and Stokes theorem (2.8)

〈Φ, δΨ〉L2,q(Ω) + 〈dΦ,Ψ〉L2,q+1(Ω) =

∫
Ω

d(Φ ∧ ∗Ψ̄) =

∫
∂ Ω

ι∗(Φ ∧ ∗Ψ̄) (2.9)

holds for all Φ ∈ C∞,q(Ω) and Ψ ∈ C∞,q+1(Ω) and thus

〈Φ, δΨ〉L2,q(Ω) + 〈dΦ,Ψ〉L2,q+1(Ω) = 0 , (2.10)

if one partner of Φ , Ψ has compact support in Ω , i.e. formally d and δ are skew
adjoint to each other. To remind of the electro-magnetic background from now on
we denote the exterior derivative dby the rotation rot and the co-derivative δ by the
divergence div .

Using (2.10) we say that E ∈ L2,q(Ω) possesses a weak rotation in L2,q+1(Ω) , if
there exists some G ∈ L2,q+1(Ω) , such that

〈E, div Φ〉L2,q(Ω) = −〈G,Φ〉L2,q+1(Ω)
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holds for all Φ ∈
◦
C∞,q+1(Ω) , and write rotE = G ∈ L2,q+1(Ω) . Analogously we

define the weak divergence. Then

Rq(Ω) :=
{
E ∈ L2,q(Ω) : rotE ∈ L2,q+1(Ω)

}
,

Dq+1(Ω) :=
{
H ∈ L2,q+1(Ω) : divH ∈ L2,q(Ω)

}
are Hilbert spaces, if we equip them with their natural scalar products

〈E,H〉Rq(Ω) := 〈E,H〉L2,q(Ω) + 〈rotE, rotH〉L2,q+1(Ω) ,

〈E,H〉Dq+1(Ω) := 〈E,H〉L2,q+1(Ω) + 〈divE, divH〉L2,q(Ω) .

We introduce the following densely defined linear operators:

ROT :
◦
C∞,q(Ω) ⊂ L2,q(Ω) −→

◦
C∞,q+1(Ω) ⊂ L2,q+1(Ω)

Φ 7−→ dΦ = rot Φ

DIV :
◦
C∞,q+1(Ω) ⊂ L2,q+1(Ω) −→

◦
C∞,q(Ω) ⊂ L2,q(Ω)

Φ 7−→ δΦ = div Φ

The operators

ROT = (ROT∗)∗ ⊂ −DIV∗ ,

DIV = (DIV∗)∗ ⊂ −ROT∗

are extensions of ROT resp. DIV with domains of definition D(DIV∗) = Rq(Ω) resp.
D(ROT∗) = Dq+1(Ω) and

D(ROT) =
◦
C∞,q(Ω)

Rq(Ω)

=:
◦
Rq(Ω) ,

D(DIV) =
◦
C∞,q+1(Ω)

Dq+1(Ω)

=:
◦
Dq+1(Ω)

(with closures in the graph norms). Therefore −DIV∗ resp. −ROT∗ is the weak ro-
tation rot resp. divergence div and thus on their domains of definition ROT , ROT ,
−DIV∗ resp. DIV , DIV , −ROT∗ act like the weak rotation resp. divergence. More-

over,
◦
Rq(Ω) resp.

◦
Dq+1(Ω) is a closed subspace of Rq(Ω) resp. Dq+1(Ω) and hence

a Hilbert space. Clearly DIV∗ , ROT , ROT∗ , DIV are closed operators and thus the
nullspaces or kernels

0R
q(Ω) := N(DIV∗) =

{
E ∈ Rq(Ω) : rotE = 0

}
,

0

◦
Rq(Ω) := N(ROT) =

{
E ∈

◦
Rq(Ω) : rotE = 0

}
,

0D
q+1(Ω) := N(ROT∗) =

{
H ∈ Dq+1(Ω) : divH = 0

}
,

0

◦
Dq+1(Ω) := N(DIV) =

{
H ∈

◦
Dq+1(Ω) : divH = 0

}
10



are closed subspaces of L2,q(Ω) resp. L2,q+1(Ω) , i .e. Hilbert spaces. The star operator
yields

∗(0)

(◦)
DN−q(Ω) = (0)

(◦)
Rq(Ω) , ∗ (0)

(◦)
RN−q(Ω) = (0)

(◦)
Dq(Ω) .

Because of δδ = 0 and dd= 0 we see that

rot rot = 0 , div div = 0

still hold in the weak sense. We even obtain

rot
(◦)
Rq(Ω) ⊂ 0

(◦)
Rq+1(Ω) , div

(◦)
Dq+1(Ω) ⊂ 0

(◦)
Dq(Ω) .

For ϕ ∈ C∞(Ω) and Φ ∈ C∞,q(Ω) we calculate

rot(ϕΦ) = (rotϕ) ∧ Φ + ϕrotΦ , (2.11)

div(ϕΦ) = (−1)(q−1)N ∗
(
(rotϕ) ∧ ∗Φ

)
+ ϕdivΦ . (2.12)

These formulas imply ϕE ∈
(◦)
Dq(Ω) resp. ϕE ∈

(◦)
Rq(Ω) for ϕ ∈ C∞(Ω) andE ∈

(◦)
Dq(Ω)

resp. E ∈
(◦)
Rq(Ω) . Furthermore, we obtain ϕE ∈

◦
Rq(Ω) resp. ϕE ∈

◦
Dq(Ω) for all

E ∈ Rq(Ω) resp. E ∈ Dq(Ω) , ifϕ ∈
◦
C∞(Ω) . This may be proved using mollifiers

(
see[

[1], Theorem 1.5
])

, i.e. one can show that for any E ∈ Rq(Ω) satisfying suppE b Ω

there exists a sequence (Φn) ⊂
◦
C∞,q(Ω) with Φn → E in Rq(Ω) .

We note that we generalize the boundary condition ι∗E = 0 resp. ι∗ ∗ E = 0 in

the space
◦
Rq(Ω) resp.

◦
Dq(Ω) . Namely by ROT = (ROT∗)∗ we observe E ∈

◦
Rq(Ω) ,

if and only if E ∈ Rq(Ω) and even

〈E, divH〉L2,q(Ω) + 〈rotE,H〉L2,q+1(Ω) = 0

holds for all H ∈ D(ROT∗) = Dq+1(Ω) . Hence assuming sufficient smoothness of E
and the boundary ∂ Ω we obtain by (2.9)∫

∂ Ω

(ι∗E) ∧ (ι∗ ∗ H̄) = 0

for all H ∈ C∞,q+1(Ω) , i.e. ι∗E = 0 .
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From now on let Ω denote some connected open subset of M with compact clo-
sure in M .

Our next aim is to define Sobolev spaces on our manifold.

Definition 2.1

(i) Letm ∈ N0 . We call Ω a ‘Cm-region’, if ∂ Ω is a (N−1)-dimensional Cm-submanifold
of M , i.e. for each x ∈ ∂ Ω there exists a Cm-boundary chart (V, h) with h(x) = 0 and
h(V ) = U1 , such that

h(∂ Ω ∩ V ) = U0
1 , h(Ω ∩ V ) = U−1 , h

(
(M \ Ω) ∩ V

)
= U+

1

and k ◦ h−1 ∈ Cm
(
U0

1 ,RN) hold for all charts (V, k) of x ∈ Ω . In this case we call
∂ Ω a ‘Cm-boundary’.

(ii) We say Ω has the ‘segment property’, if for each x ∈ ∂ Ω there exist a chart (V, h) ,
some % ∈ (0, 1) and some vector v ∈ RN with h(x) = 0 , h(V ) = U1 and

U% ∩ h(Ω ∩ V ) + τv ⊂ h(Ω ∩ V )

for all τ ∈ (0, 1) .
(
See

[
[1], Definition 2.1

]
for the classical segment property.

)
We note that C1-regions possess the segment property. Due to the compactness

of Ω a finite collection of charts
{

(Vk, hk) : k = 1, . . . , K
}

is sufficient to cover Ω . Let
{ξk : k = 1, . . . , K} be a corresponding partition of unity. W. l. o. g. we may assume
hk(Vk) = U1 and supp ξk ◦ h−1

k ⊂ U1/3 for all k .
Then for m ∈ [0,∞) we define the Sobolev spaces

Hm,q(Ω)

as the set of forms E ∈ Aq(Ω) , whose Cartesian components Ek
I of (h−1

k )∗E = Ek
I dxI

are elements of Hm
(
hk(Ω ∩ Vk)

)
, and put

||E||Hm,q(Ω) :=
( K∑
k=1

∑
I∈S(q,N)

||Ek
I ||2Hm(hk(Ω∩Vk))

)1/2

.

Here and in future we identify a form with its restriction on subsets of its do-
main of definition. Using transformation theorems, (2.7) and

[
[26], Satz 4.1

]
for

scalar functions one sees that this definition is independent of the chosen charts and
partition of unity. A second covering yields the same Sobolev space but with an
equivalent norm. Another consequence of (2.7) is that for m ∈ N0 and any Cm+1-
diffeomorphism τ : Ω̃→ Ω there exists a constant c > 0 , such that

c−1 · ||E||Hm,q(Ω) ≤ ||τ
∗E||Hm,q(Ω̃) ≤ c · ||E||Hm,q(Ω) (2.13)

holds for all E ∈ Hm,q(Ω) .
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Using charts and the completeness of Hm,q(Ω) the following results may be ob-
tained from the scalar Sobolev spaces:

• C∞,q(Ω) ∩Hm,q(Ω) is dense in Hm,q(Ω) .

•
◦
C∞,q(Ω) is dense in H0,q(Ω) .

•
∧

Φ∈C∞,p(Ω)

∨
c>0

∧
E∈Hm,q(Ω)

||Φ ∧ E||Hm,q+p(Ω) ≤ c · ||E||Hm,q(Ω)

•
∨
c>0

∧
E∈Hm,q(Ω)

|| ∗ E||Hm,N−q(Ω) ≤ c · ||E||Hm,q(Ω)

We note L2,q(Ω) = H0,q(Ω) with equivalent norms. Furthermore, we define
◦
Hm,q(Ω)

as the closure of
◦
C∞,q(Ω) in the Hm,q(Ω)-norm. If Ω has the segment property we can

take over more properties from the scalar case, i.e.

C∞,q(Ω) is dense in Hm,q(Ω) (2.14)

as well as Φ ∈
◦
Hm,q(Ω) for some Φ ∈ Hm,q(Ω) , if and only if its extension by zero into

Ω̃ is an element of Hm,q(Ω̃) for an open set Ω̃ with Ω b Ω̃ b M . The first assertion
may be proved analogously to

[
[26], Theorem 3.6

]
or
[
[1], Theorem 2.1

]
and the

second analogously to
[
[26], Theorem 3.7

]
. The same techniques yield

Rq(Ω) = C∞,q(Ω)
Rq(Ω)

, Dq(Ω) = C∞,q(Ω)
Dq(Ω)

. (2.15)

Definition 2.2 We call a transformation ε ‘admissible’ and write ε ∈ A0,q(Ω) , if and only
if

• ε(x) is a linear transformation on Aq(Ω) for all x ∈ Ω ,

• ε possesses L∞(Ω)-coefficients, i.e. the matrix representation of ε corresponding to an
arbitrary chart basis {dhI} has L∞(Ω)-entries,

• ε is symmetric, i.e. for all E,H ∈ L2,q(Ω)

〈εE,H〉L2,q(Ω) = 〈E, εH〉L2,q(Ω)

holds, and uniformly positive definite, i.e.∨
c>0

∧
E∈L2,q(Ω)

〈εE,E〉L2,q(Ω) ≥ c · ||E||2L2,q(Ω) .

Let ` ∈ N0 . We say ε ∈ C`,q(Ω) resp. ε ∈ C`,q(Ω) , if and only if ε has C`(Ω)- resp. C`(Ω)-
entries, and write ∂α ε for |α| ≤ ` meaning componentwise differentiation. Moreover, for
` ∈ N we define

A`,q(Ω) := A0,q(Ω) ∩ C`,q(Ω) resp. A`,q(Ω) := A0,q(Ω) ∩ C`,q(Ω) .
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On L2,q(Ω) an admissible transformation ε yields an equivalent scalar product
〈ε · , · 〉L2,q(Ω) and we set εL2,q(Ω) := L2,q(Ω) equipped with 〈ε · , · 〉L2,q(Ω) .

If τ : Ω → Ω̃ is a C1-diffeomorphism respecting orientation we define a linear
transformation ετ : Aq(Ω)→ Aq(Ω) by

ετ := εqτ := (−1)q(N−q) ∗ τ ∗ ∗ (τ ∗)−1 (2.16)

satisfying ∗εττ ∗ = τ ∗∗ . This transformation ετ is admissible. We obtain

Lemma 2.3 Let τ : Ω → Ω̃ be a C2-diffeomorphism respecting orientation, ετ from (2.16)
and ε̃ ∈ A0,q(Ω̃) an admissible transformation. Then the transformation

ε := εττ
∗ε̃(τ ∗)−1 ∈ A0,q(Ω)

is admissible. Furthermore,

(i) if E ∈
(◦)
Rq(Ω̃) , then τ ∗E ∈

(◦)
Rq(Ω) and rotτ ∗E = τ ∗rotE . Moreover, there exists

some c > 0 independent of E , such that

||τ ∗E||Rq(Ω) ≤ c · ||E||Rq(Ω̃) .

(ii) if E ∈ ε̃−1
(◦)
Dq(Ω̃) , then τ ∗E ∈ ε−1

(◦)
Dq(Ω) and divετ ∗E = εττ

∗divε̃E . Moreover,
there exists a constant c > 0 independent of E or ε̃ , such that

||τ ∗E||ε−1Dq(Ω) ≤ c · ||E||ε̃−1Dq(Ω̃) .

Proof: Using the transformation theorem and some properties of the exterior prod-
uct and star operator one easily checks that ε is admissible as well as that for smooth
forms Ψ ∈ C∞,q(Ω̃)

rotτ ∗Ψ = τ ∗rotΨ , divεττ
∗Ψ = εττ

∗divΨ

holds. Let E ∈ Rq(Ω̃) and Φ ∈
◦
C∞,q+1(Ω) . We calculate

〈τ ∗E, divΦ〉L2,q(Ω) = (−1)q
2

∫
Ω

(τ ∗E) ∧ (rot ∗Φ̄)

= (−1)q
2

∫
Ω

(τ ∗E) ∧
(

rot τ ∗︸ ︷︷ ︸
=τ∗ rot

(τ ∗)−1 ∗ Φ̄
)

= (−1)qN+(q+1)(N−q−1)

∫
Ω̃

E ∧
(
∗ ∗ rot ∗ ∗ (τ ∗)−1 ∗ Φ̄

)
= (−1)(q+1)(N−q−1)

〈
E, div ∗(τ ∗)−1 ∗ Φ

〉
L2,q(Ω̃)

.
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Since by (2.7) ∗(τ ∗)−1 ∗ Φ ∈
◦
C1,q+1(Ω̃) ⊂

◦
Dq+1(Ω̃) we obtain

〈τ ∗E, divΦ〉L2,q(Ω) = −(−1)(q+1)(N−q−1)
〈

rotE, ∗(τ ∗)−1 ∗ Φ
〉

L2,q+1(Ω̃)

= −
∫

Ω̃

(rotE) ∧
(
(τ ∗)−1 ∗ Φ̄

)
= −

∫
Ω

(τ ∗ rotE) ∧ (∗Φ̄) = −〈τ ∗ rotE,Φ〉L2,q+1(Ω) .

Thus τ ∗E ∈ Rq(Ω) and rot τ ∗E = τ ∗ rotE . From (2.13) we get the asserted estimate.

If E ∈
◦
Rq(Ω̃) and Φ ∈ Dq+1(Ω) , then using the results obtained so far we note

(τ ∗)−1∗Φ ∈ RN−q−1(Ω̃) and τ ∗ rot(τ ∗)−1∗Φ = rot ∗Φ as well as ∗(τ ∗)−1∗Φ ∈ Dq+1(Ω̃) .
This shows that the calculation from above still holds true for those E and Φ , i.e.
τ ∗E ∈

◦
Rq(Ω) . Hence (i) is proved and may be used to show (ii) as follows:

E ∈ ε̃−1
(◦)
Dq(Ω̃) ⇐⇒ ∗ε̃E ∈

(◦)
RN−q(Ω̃)

⇐⇒ τ ∗ ∗ ε̃E ∈
(◦)
RN−q(Ω) and rot τ ∗ ∗ ε̃E = τ ∗ rot ∗ε̃E

⇐⇒ ετ ∗E ∈
(◦)
Dq(Ω) and div ετ ∗E = εττ

∗ div ε̃E

Again (2.13) yields the stated estimate. �

Let ε be an admissible transformation. We define the ‘(harmonic) Dirichlet forms’
by

εH
q(Ω) := 0

◦
Rq(Ω) ∩ ε−1

0D
q(Ω)

and denote them by Hq(Ω) , if ε = id . Moreover, we define the dimension of the
Dirichlet forms by

dq := dim εH
q(Ω) .

By the projection theorem and the L2,q(Ω)-orthogonality of rot
◦
Rq−1(Ω)

L2,q(Ω)

and

0D
q(Ω) resp. div Dq+1(Ω)

L2,q(Ω)

and 0

◦
Rq(Ω) we get the following Helmholtz decom-

positions
(
see

[
[12], Lemma 1

]
,
[
[16], Lemma 1

]
or in the classical case

[
[13], p. 168

]
,[

[17], Lemma 3.13
])

:
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Lemma 2.4 The following 〈ε · , · 〉L2,q(Ω)-orthogonal (denoted by ⊕ε) decompositions hold
for admissible transformations ε :

(i) εL
2,q(Ω) = rot

◦
Rq−1(Ω)⊕ε ε−1

0D
q(Ω) = 0

◦
Rq(Ω)⊕ε ε−1div Dq+1(Ω)

= ε−1rot
◦
Rq−1(Ω)⊕ε 0D

q(Ω) = ε−1
0

◦
Rq(Ω)⊕ε div Dq+1(Ω)

(ii) εL
2,q(Ω) = rot

◦
Rq−1(Ω)⊕ε εHq(Ω)⊕ε ε−1div Dq+1(Ω)

= ε−1rot
◦
Rq−1(Ω)⊕ε ε−1

ε−1Hq(Ω)⊕ε div Dq+1(Ω)

All closures are taken in L2,q(Ω) .

If ν is another admissible transformation, then an easy application of this lemma
shows, that the orthogonal projection

π : νH
q(Ω) −→ εH

q(Ω)

on ε−1
0D

q(Ω) along rot
◦
Rq−1(Ω)

L2,q(Ω)

is well defined, linear, continuous and injec-
tive. Therefore by symmetry we obtain dim νH

q(Ω) = dim εH
q(Ω) and hence dq is

independent of transformations, i.e.

dq = dim εH
q(Ω) = dim Hq(Ω) .

Another essential ingredient of our solution theory is the so called Maxwell’s
compactness property.

Definition 2.5 Ω possesses the ‘Maxwell’s compactness property’ (MCP), if and only if
the embeddings

◦
Rq(Ω) ∩ Dq(Ω) ↪→ L2,q(Ω)

are compact for all q .

The MCP is a property of the boundary and there is a large amount of literature
about the MCP. The first idea was to use Gaffney’s inequality, i.e. to estimate the
H1,q(Ω)-norm by the

(
Rq(Ω) ∩ Dq(Ω)

)
-norm, and then Rellich’s selection theorem.

To do this one needs smooth boundaries, which for instance may be seen in
[
[8], p.

157, Theorem 8.6
]
. If q = 0 we even have

◦
R0(Ω) ∩ D0(Ω) =

◦
R0(Ω) =

◦
H1,0(Ω) .

In 1972 [20] resp. [21] Weck presented for the first time a proof of the MCP for
bounded manifolds with nonsmooth boundaries (‘cone-property’). More proofs of
the MCP were given by Picard [15] (‘Lipschitz-domains’) and in the classical case by
Weber [18] (another ‘cone-property’) and Witsch [25] (‘p-cusp-property’). A proof
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of the MCP in the classical case for bounded domains handling the largest known
class of boundaries was given by Picard, Weck and Witsch in [17]. They combine
the techniques from [21], [15] and [25].

We note that the MCP is independent of transformations, i.e. let εq admissible
transformations for all q , then Ω possesses the MCP, if and only if the embeddings

◦
Rq(Ω) ∩ ε−1

q Dq(Ω) ↪→ L2,q(Ω)

are compact for all q .
For ε ∈ A0,q(Ω) the MCP implies (by an indirect argument) the existence of a

positive constant c , such that the estimate

||E||L2,q(Ω) ≤ c ·
(
|| rotE||L2,q+1(Ω) + || div εE||L2,q−1(Ω)

)
(2.17)

holds uniformly in E ∈
◦
Rq(Ω) ∩ ε−1Dq(Ω) ∩ εH

q(Ω)⊥ .
An application of this estimate yields the finite dimension of the space of Dirich-

let forms εH
q(Ω) . In fact the dimension is determined by topological properties

of Ω , i.e. dq = dim Hq(Ω) = βN−q is the (N − q)-th Betti number of Ω
(
see [14]

)
.

Moreover, from (2.17) the closedness of rot
◦
Rq(Ω) resp. div Dq(Ω) in L2,q+1(Ω) resp.

L2,q−1(Ω) follows. We even have
(
with any ν ∈ A0,q(Ω)

)
rot

◦
Rq(Ω) = rot

◦
Rq(Ω) = rot

( ◦
Rq(Ω) ∩ ε−1

0D
q(Ω) ∩ εH

q(Ω)⊥ν
)

, (2.18)

div Dq(Ω) = div Dq(Ω) = div
(
Dq(Ω) ∩ ε−1

0

◦
Rq(Ω) ∩ ε−1Hq(Ω)⊥ν

)
, (2.19)

which was shown in [12] in the case ε = ν = id . Here we denote the orthogonality
w. r. t. the 〈ν · , · 〉L2,q(Ω)-scalar product by ⊥ν and put ⊥ := ⊥id .

Let us define the range

W q(Ω) := div Dq(Ω)× rot
◦
Rq(Ω)× Cdq .

As in [12] a combination of the L2,q(Ω)-decompositions from Lemma 2.4 and (2.18),
(2.19) yields easily

Theorem 2.6 Let ε ∈ A0,q(Ω) , Ω have the MCP and dq continuous linear functionals Φ`
ε

on Rq(Ω) ∩ ε−1Dq(Ω) with

εH
q(Ω) ∩

dq⋂
`=1

N(Φ`
ε) = {0}

be given. Then with Φε := (Φ1
ε · , . . . ,Φdq

ε · )

Maxε :
◦
Rq(Ω) ∩ ε−1Dq(Ω) −→ W q(Ω)

E 7−→
(

div εE, rotE,Φε(E)
)

is a topological isomorphism.
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Remark 2.7

(i) For any ν ∈ A0,q(Ω) we can choose Φ`
ε := 〈ν · , h`〉L2,q(Ω) with an arbitrary basis

{h`}d
q

`=1 of εHq(Ω) .

(ii) Let (ν̃, ν̂) ∈ A0,q−1(Ω)× A0,q+1(Ω) . By Lemma 2.4 we obtain

W q(Ω) =
(

0D
q−1(Ω) ∩ ν̃H

q−1(Ω)⊥
)
×
(

0

◦
Rq+1(Ω) ∩ ν̂H

q+1(Ω)⊥ν̂
)
× Cdq .

(iii) If we replace ε by ε−1 and consider ε Max = Maxε−1 ε , then

ε Max : ε−1
◦
Rq(Ω) ∩ Dq(Ω) −→ W q(Ω)

E 7−→
(

divE, rot εE,Φε−1(εE)
)

is a topological isomorphism as well.

(iv) Clearly using the star operator we have the corresponding dual results.

Finally in the special case M = RN we need some operators from the calculus
developed in [23]. Let {x1, . . . , xN} denote Euclidean coordinates. We introduce

R : Aq(RN) −→ Aq+1(RN)
E 7−→ xn dxn ∧ E = r dr ∧ E , (2.20)

T : Aq+1(RN) −→ Aq(RN)
E 7−→ (−1)qN ∗R ∗ E (2.21)

and recall the formulas

RR = 0 , TT = 0 , RT + TR = r2 (2.22)

as well as for E ∈ Aq(RN) , H ∈ Aq+1(RN)

RE ∧ ∗H = E ∧ ∗TH , TH ∧ ∗E = H ∧ ∗RE , (2.23)

i.e. 〈RE,H〉q+1 = 〈E, TH〉q . The operators rot and div correspond to R and T in the
sense that

Crot,ϕ(r)E = ϕ′(r)r−1RE resp. Cdiv,ϕ(r)E = ϕ′(r)r−1TE (2.24)

hold for ϕ ∈ C1(R) and E ∈ Rq(RN) resp. E ∈ Dq(RN) .
To conclude with this introductory section we present the componentwise (w. r.

t. Euclidean coordinates) Fourier transformation on q-forms F , which is a unitary
mapping on L2,q(RN) . With X (x) := x and the well known formula

F(∂α u) = i|α|X αF(u)

for scalar distributions u we get some formulas for F operating on q-forms E :
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F ∗ E = ∗FE (2.25)

F(∂αE) = i|α|X αF(E) , ∂α F(E) = (− i)|α|F(X αE) (2.26)
F(rotE) = iRF(E) , rot F(E) = − i F(RE) (2.27)
F(divE) = iTF(E) , div F(E) = − i F(TE) (2.28)

F(∆E) = −r2 · F(E) , ∆F(E) = −F(r2 · E) (2.29)

These formulas may be checked for smooth forms from Schwartz’ space and hence
remain valid for distributional q-forms, i.e. extend to our weak calculus. We note
rot div + div rot = ∆ , where the Laplacian ∆ acts on each Euclidean component of
E .

2.2 Regularity

Theorem 2.8 Let m ∈ N0 , Ω be a bounded Cm+2-region and ε ∈ Am+1,q(Ω) . Further-

more, let E ∈
( ◦
Rq(Ω) ∩ ε−1Dq(Ω)

)
∪
(
Rq(Ω) ∩ ε−1

◦
Dq(Ω)

)
with

rotE ∈ Hm,q+1(Ω) , divεE ∈ Hm,q−1(Ω) .

Then E ∈ Hm+1,q(Ω) and there exists a positive constant c independent of E , such that

||E||Hm+1,q(Ω) ≤ c ·
(
||E||L2,q(Ω) + ||rotE||Hm,q+1(Ω) + ||divεE||Hm,q−1(Ω)

)
.

Remark 2.9 By the star operator and some transformationE  εE we get the correspond-
ing theorem for spaces of the form ε−1Rq(Ω) ∩ Dq(Ω) as well.

We only prove this theorem in the case E ∈
◦
Rq(Ω) ∩ ε−1Dq(Ω) , since the other

case follows by ∗-duality. The classical case N = 3 , q = 1 and Ω is an open subset
of R3 has been proved by Weber in [19] using the natural regularity of (q − 1 = 0)-
resp. (q + 2 = 3)-forms, i.e. scalar functions. In the generalized case there occur
some additional difficulties.

We need a few preparations:

Lemma 2.10 Let r > 0 , x′ := (x1, · · · , xN−1) and

τ : U+
r −→ U−r
x 7−→ (x′,−xN)

.

Then the mirror operator
Srot : Rq(U−r )→ Rq(Ur)

defined by SrotE|U−r := E and SrotE|U+
r

:= τ ∗E is well defined, linear and continuous. Srot

commutates with rot and ||SrotE||L2,q+1(Ur) =
√

2 · ||E||L2,q+1(U−r ) holds.
(√

2/2 · Srot even is
an isometry.

)
Moreover, if suppE ⊂ U−% for some % < r , then suppSrotE ⊂ U% .
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Proof: By (2.15) it is enough to show SrotE ∈ Rq(Ur) and rotSrotE = Srot rotE for
E ∈ C∞,q(U−r ) . The assertions about the continuity and the support follow directly.
Let ι : U0

r ↪→ U−r denote the natural embedding . Observing that τ changes the

orientation, we get from Stokes theorem for Φ ∈
◦
C∞,q+1(Ur) (Clearly we identify Φ

with its restriction on U±r .)

〈SrotE, divΦ〉L2,q(Ur) = (−1)q
2

∫
U−r

E ∧ (d ∗ Φ̄) + (−1)q
2

∫
U+
r

(τ ∗E) ∧ (d ∗ Φ̄)

= (−1)q
∫
U−r

E ∧ d
(
∗ Φ̄− (τ−1)∗ ∗ Φ̄

)
= −

∫
U−r

(dE) ∧
(
∗ Φ̄− (τ−1)∗ ∗ Φ̄

)
+

∫
U0
r

(ι∗E) ∧
((
ι∗ − ι∗(τ−1)∗

)
∗ Φ̄
)

.

By ι− τ−1 ◦ ι = 0 the boundary integral vanishes and we obtain

〈SrotE, divΦ〉L2,q(Ur) = −
∫
U−r

(dE) ∧ ∗Φ̄−
∫
U+
r

(τ ∗dE) ∧ ∗Φ̄

= −〈G,Φ〉L2,q+1(Ur) ,

where G = Srot rotE . �

The mirror operator

Sdiv := (−1)q(N−q) ∗ Srot∗ : Dq(U−r )→ Dq(Ur) (2.30)

has the corresponding properties.

Lemma 2.11 Let N ≥ 3 and % > 0 . There exists a constant c > 0 , such that for all
E ∈ 0D

q(RN) with suppE ⊂ U% there exists some H ∈ H1,q+1(RN) satisfying

divH = E , ||H||H1,q+1(RN ) ≤ c · ||E||L2,q(RN ) .

Proof: Let E ∈ 0D
q(RN) with suppE ⊂ U% . By the Fourier transformation we get∣∣FEI(x)

∣∣ ≤ c · ||E||L2,q(RN ) , i.e. c = λ(U%)
1/2 , and hence all components of FE are

bounded. Let Ĥ := r−2RFE
(
Ĥ(0) := 0

)
. The estimate∣∣ĤJ(x)

∣∣ ≤ c
∑

I∈S(q,N)

|x|−1 ·
∣∣FEI(x)

∣∣ , J ∈ S(q + 1, N) ,

implies XnĤ ∈ L2,q+1(RN) as well as Ĥ,F−1Ĥ ∈ L2,q+1(RN) , since N ≥ 3 . Moreover,
we get

||Ĥ||L2,q+1(RN ) + ||rĤ||L2,q+1(RN ) ≤ c · ||E||L2,q(RN ) .
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ThusH := − i F−1Ĥ ∈ H1,q+1(RN) with ||H||H1,q+1(RN ) ≤ c · ||E||L2,q(RN ) and using (2.28)
as well as (2.22) we obtain

divH = F−1TĤ = F−1r−2TRFE = E ,

because divE = 0 yields TFE = 0 again by (2.28). �

To prepare the next lemma let U ⊂ RN and

Φ =
∑

I∈S(q,N)

ΦIdxI ∈ L2,q(U) .

Then Φ = Φτ + Φρ is an orthogonal decomposition in L2,q(U) where

Φτ :=
∑

I∈S(q,N−1)

ΦIdxI , Φρ :=
∑

N3I∈S(q,N)

ΦIdxI .

Lemma 2.12 Let U ⊂ RN , m ∈ N , ε ∈ Am,q(U) and E ∈ L2,q(Ω) . Furthermore, let
Eτ , (εE)ρ ∈ Hm,q(U) . Then E ∈ Hm,q(U) .

Proof: From (εEρ)ρ = (εE)ρ − (εEτ )ρ ∈ Hm,q(U) we get (εEρ)ρ ∈ Hm,q(U). Since
the restriction ερ,ρ of ε acting on the normal parts, i.e. ερ,ρEρ = (εEρ)ρ , is pointwise
invertible with Cm(U) entries we obtain Eρ ∈ Hm,q(U) . �

Now let us turn to the proof of Theorem 2.8. Using a partition of unity we localize
our problem and only consider the more difficult case of boundary charts. By (2.13)
and Lemma 2.3 we transform our problem to the special domain U−1 using a Cm+2-
boundary chart. Hence we have to show the following assertion: Let ε ∈ Am+1,q

(
U−1
)

and E ∈
◦
Rq(U−1 ) ∩ ε−1Dq(U−1 ) with suppE ⊂ U−% for some % ∈ (0, 1) as well as

rotE ∈ Hm,q+1(U−1 ) , divεE ∈ Hm,q−1(U−1 ) .

Then E ∈ Hm+1,q(U−1 ) and

||E||Hm+1,q(U−1 )

≤ c ·
(
||E||L2,q(U−1 ) + ||rotE||Hm,q+1(U−1 ) + ||divεE||Hm,q−1(U−1 )

) (2.31)

holds uniformly in E .
First let us discuss the case N ≥ 3 . We prove (2.31) by induction on q and m .

Since
◦
R0(U−1 ) =

◦
H1(U−1 ) (and rot acts as ∇) the case q = 0 is trivial. Because of

DN(U−1 ) = H1(U−1 ) (and div acts as ∇) the case q = N is trivial as well. Thus we
assume that the assertion is valid for q − 1 . Let m = 0 . First we take care about the
tangential derivatives and show

∂iE ∈ L2,q(U−1 ) ,

|| ∂iE||L2,q(U−1 ) ≤ c · ||E||Rq(U−1 )∩ε−1Dq(U−1 )

(2.32)
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for i = 1, . . . , N − 1 . By symmetry it is sufficient to consider i = 1 . We choose some
θ ∈ (0, 1) satisfying %+ 4θ < 1 and put %j := %+ jθ , j = 1, . . . , 4 . For 0 < |h| < θ we
introduce the mappings

τh : RN
− −→ RN

−
x 7−→ (x1 + h, x2, · · · , xN)

, δh :=
1

h
(τh − id) ,

where RN
− := {x ∈ RN : xN < 0} . The pullback δ∗h of latter operator acts compo-

nentwise as the differential quotient and commutates with rot , ∗ and div . For all
F,G ∈ L2,q(U−1 ) with support in U−%3 we have

〈δ∗hF,G〉L2,q(U−1 ) = −〈F, δ∗−hG〉L2,q(U−1 ) ,

δ∗h(εF ) = εδ∗hF + (δhε)τ
∗
hF ,

||τ ∗hF ||L2,q(U−1 ) ≤ c ·
∣∣∣∣F ∣∣∣∣

L2,q(U−1 )
,∣∣∣∣(δhε)F ∣∣∣∣L2,q(U−1 )

≤ c ·
∣∣∣∣F ∣∣∣∣

L2,q(U−1 )
,

(2.33)

where (δhε)Φ(x) :=
∑

I,J∈S(q,N)

(
δhεJ,I(x)

)
ΦI(x)dxJ for the matrix entries εI,J of ε and

Φ(x) =
∑

I∈S(q,N)

ΦI(x)dxI and c is independent of h or F . From
[
[1], Theorem 3.13

]
one obtains for m ∈ N and all F ∈ Hm,q(U−1 ) supported in U−%3

||δ∗hF ||Hm−1,q(U−1 ) ≤ ||F ||Hm,q(U−1 ) .

By
[
[1], Theorem 3.15

]
to show (2.32) it suffices to prove

||δ∗hE||L2,q(U−%1 ) ≤ c · ||E||Rq(U−1 )∩ε−1Dq(U−1 ) ,

where c is independent of h , % or E . Since we have δ∗hE ∈
◦
Rq(U−%1) and moreover

supp δ∗hE b U−%1 this estimate follows by a density argument from∣∣〈εδ∗hE,Φ〉L2,q(U−%1 )

∣∣ ≤ c · ||E||Rq(U−1 )∩ε−1Dq(U−1 ) · ||Φ||L2,q(U−%1 ) (2.34)

for all Φ ∈
◦
C∞,q(U−%1) , where c is independent of h , % , E or Φ . Let Φ ∈

◦
C∞,q(U−%1) .

According to Lemma 2.4 we decompose Φ = Φ1 + ε−1Φ2 orthogonally in εL
2,q(Ω) ,

where Φ1 ∈ rot
◦
Rq−1(U−1 ) and Φ2 ∈ div Dq+1(U−1 )

(
closures in L2,q(Ω)

)
, since Hq(U−1 )

vanishes by
[
[11], Satz 1, Satz 2

]
and thus εH

q(U−1 ) = {0} as well. Moreover, by
(2.18), (2.19) we may assume Φ1 = rot Ψ1 and Φ2 = div Ψ2 with some differential

forms Ψ1 ∈
◦
Rq−1(U−1 ) ∩ 0D

q−1(U−1 ) and Ψ2 ∈ Dq+1(U−1 ) ∩ 0

◦
Rq+1(U−1 ) . Furthermore,

the estimate (2.17) yields a constant c > 0 independent of Φ , Φ` , Ψ , Ψ` , such that

||Ψ1||Rq−1(U−1 ) + ||Ψ2||Dq+1(U−1 ) ≤ c · ||Φ||L2,q(U−%1 )
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holds. Let χ ∈
◦
C∞(U%2) with χ|U−%1 = 1 . Then the induction assumption yields

χΨ1 ∈ H1,q−1(U−1 ) as well as

||χΨ1||H1,q−1(U−1 ) ≤ c · ||Ψ1||Rq−1(U−1 ) ≤ c · ||Φ||L2,q(U−%1 ) .

Clearly the form χΨ2 possesses compact support in U−%2 ∪ U
0
%2

and by Lemma 2.10
and (2.30) the extension by zero of SdivχΨ2 to RN is an element of Dq+1(RN) . Hence
we have Φ̃2 := divSdivχΨ2 ∈ 0D

q(RN) with supp Φ̃2 b U%2 and Φ̃2

∣∣
U−%1

= Φ2 . Lemma

2.11 yields someH ∈ H1,q+1(RN) satisfying divH = Φ̃2 and furthermore the estimate
||H||H1,q+1(RN ) ≤ c||Φ||L2,q(U−%1 ) . Using Φ = rotχΨ1 +ε−1 divχH in U−%1 and (2.33) as well

as δ∗−h(χΨ1) ∈
◦
Rq−1(U−1 ) , E ∈

◦
Rq(U−1 ) we get

〈εδ∗hE,Φ〉L2,q(U−%1 )

=
〈
δ∗h(εE),Φ

〉
L2,q(U−%1 )

−
〈
(δhε)τ

∗
hE,Φ

〉
L2,q(U−%1 )

= −
〈
εE, rotδ∗−h(χΨ1)

〉
L2,q(U−1 )

−
〈
E, divδ∗−h(χH)

〉
L2,q(U−1 )

−
〈
εE, (δ−hε

−1)τ ∗−hdivχH
〉

L2,q(U−1 )
−
〈
(δhε)τ

∗
hE,Φ

〉
L2,q(U−%1 )

=
〈

div εE, δ∗−h(χΨ1)
〉

L2,q(U−1 )
+
〈

rotE, δ∗−h(χH)
〉

L2,q(U−1 )

−
〈
εE, (δ−hε

−1)τ ∗−hdivχH
〉

L2,q(U−1 )
−
〈
(δhε)τ

∗
hE,Φ

〉
L2,q(U−%1 )

,

which immediately implies (2.34). Hence (2.32) is proved.
By (2.5) we have

± ∂N EJ = (rotE)J+N −
N−1∑
J3j=1

σ(j, J +N − j) · ∂j EJ+N−j ∈ L2,q(U−1 ) (2.35)

for N /∈ J and thus Eτ ∈ H1,q(U−1 ) . Using ∂i(εE) = (∂i ε)E + ε ∂iE we obtain
∂i(εE) ∈ L2,q(U−1 ) for i = 1, . . . , N − 1 and by (2.6)

± ∂N(εE)J = (div εE)J−N −
N−1∑
J 63j=1

σ(j, J) · ∂j(εE)J−N+j ∈ L2,q(U−1 ) (2.36)

for N ∈ J and hence (εE)ρ ∈ H1,q(U−1 ) . Lemma 2.12 yields E ∈ H1,q(U−1 ) and the
case m = 0 is proved.

Let m ≥ 1 and our assertions be valid for m − 1 as well as the assumptions

be given for m . We consider E, εE ∈ Hm,q(U−1 ) with E ∈
◦
Rq(U−1 ) ∩ ε−1Dq(U−1 ) ,

suppE ⊂ U−% ,

rotE ∈ Hm,q+1(U−1 ) , divεE ∈ Hm,q−1(U−1 )

and the estimate

||E||Hm,q(U−1 ) ≤ c ·
(
||E||L2,q(U−1 ) + ||rotE||Hm−1,q+1(U−1 ) + ||divεE||Hm−1,q−1(U−1 )

)
.
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For sufficient small h we have δ∗hE ∈
◦
Rq(U−1 ) and δ∗hE resp. δ∗h rotE converges

weakly to ∂1E resp. ∂1 rotE in L2,q(U−1 ) resp. L2,q+1(U−1 ) as h → 0 . Thus we obtain

∂1E ∈
◦
Rq(U−1 ) and analogously ∂iE ∈

◦
Rq(U−1 ) for i = 1, . . . , N − 1 . Hence all

tangential derivatives ∂iE ∈
◦
Rq(U−1 ) , i = 1, . . . , N − 1 , satisfy

rot ∂iE = ∂i rotE ∈ Hm−1,q+1(U−1 ) ,

divε ∂iE = ∂i divεE − div(∂i ε)E ∈ Hm−1,q−1(U−1 ) ,

which implies ∂iE ∈ Hm,q(U−1 ) and also ∂i(εE) ∈ Hm,q(U−1 ) by assumption. By
(2.35) and (2.36) we obtain ∂N E

τ , ∂N(εE)ρ ∈ Hm,q(U−1 ) . Therefore we get also
Eτ , (εE)ρ ∈ Hm+1,q(U−1 ) and finally by Lemma 2.12 E ∈ Hm+1,q(U−1 ) , which com-
pletes the proof for N ≥ 3 .

The only non trivial remaining case is N = 2 , q = 1 . But this case can be proved
similarly to the case N ≥ 3 without using Lemma 2.11, since even Ψ2 ∈ H1,2(U−1 )
holds. �

2.3 Trace and extension theorems

Let Ω be a C3-region. We provide a ‘tangential trace’ operator

Γt : Rq(Ω)→ Rq(∂Ω)

and a ‘tangential extension’ operator

Γ̌t : Rq(∂Ω)→ Rq(Ω) ,

where the space of tangential tracesRq(∂Ω) will be defined below. The correspond-
ing results for ‘normal traces’ on Dq(Ω) will be achieved using the Hodge star oper-
ator.

From now on we will distinguish between rot , div and ∗ on Ω and ∂ Ω . Keeping
the old notation for the operators on Ω we denote the corresponding operators on
the boundary ∂ Ω by Rot , Div and ~ .

First we need some preparations: For m ∈ (0,∞) let H−m,q(∂Ω) denote the

dual space of
◦
Hm,q(∂Ω) = Hm,q(∂Ω) and 〈λ,Φ〉H−m,q(∂Ω) for λ ∈ H−m,q(∂Ω) and

Φ ∈ Hm,q(∂Ω) the duality. We always demand antilinearity in the second component
of the duality. We define rotation, divergence and star operator by

〈Rotλ,Φ〉H−(m+1),q+1(∂Ω) := −〈λ,Div Φ〉H−m,q(∂Ω) ,

〈Div λ,Ψ〉H−(m+1),q−1(∂Ω) := −〈λ,Rot Ψ〉H−m,q(∂Ω) ,

〈~λ, φ〉H−m,N−1−q(∂Ω) := (−1)q(N−1−q)〈λ,~φ〉H−m,q(∂Ω)

(2.37)
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for Φ ∈ Hm+1,q+1(∂Ω) , Ψ ∈ Hm+1,q−1(∂Ω) and φ ∈ Hm,N−1−q(∂Ω) . We have

〈~λ,~Φ〉H−m,N−1−q(∂Ω) = (−1)q(N−1−q)〈λ,~~ Φ〉H−m,q(∂Ω)

= 〈λ,Φ〉H−m,q(∂Ω) ,

〈~~ λ,Φ〉H−m,q(∂Ω) = (−1)q(N−1−q)〈~λ,~Φ〉H−m,N−1−q(∂Ω)

= (−1)q(N−1−q)〈λ,Φ〉H−m,q(∂Ω)

and Div = (−1)(q−1)(N−1) ~ Rot~ . Moreover, we introduce the spaces

Rq(∂Ω) :=
{
λ ∈ H−1/2,q(∂Ω) : Rotλ ∈ H−1/2,q+1(∂Ω)

}
,

Dq(∂Ω) :=
{
λ ∈ H−1/2,q(∂Ω) : Div λ ∈ H−1/2,q−1(∂Ω)

}
,

which will be equipped with their canonical norms

||λ||Rq(∂Ω) :=
(
||λ||H−1/2,q(∂Ω) + ||Rotλ||H−1/2,q+1(∂Ω)

)1/2
,

||λ||Dq(∂Ω) :=
(
||λ||H−1/2,q(∂Ω) + ||Div λ||H−1/2,q−1(∂Ω)

)1/2
,

where we identify Rotλ ∈ H−3/2,q+1(∂Ω) resp. Div λ ∈ H−3/2,q−1(∂Ω) with its con-
tinuous extension on H−1/2,q+1(∂Ω) resp. H−1/2,q−1(∂Ω) . The property

Rq(∂Ω) = ~DN−1−q(∂Ω)

keeps true and the induced mapping is isometric.
To define traces on Rq(Ω) we first have to discuss tangential and normal traces

on Hm,q(Ω) . Using boundary charts, (2.13) and the corresponding results for scalar
Sobolev spaces

(
see e.g.

[
[26], Satz 8.7, Satz 8.8

])
, which componentwise will be

applied to q-forms in RN , we obtain the following two lemmas:

Lemma 2.13 Let m ∈ N , Ω be a Cm+1-region and ι : ∂ Ω ↪→ Ω ⊂ M the natural embed-
ding. Then there exists a linear and continuous tangential trace operator

γt : Hm,q(Ω)→ Hm−1/2,q(∂Ω)

with
γtΦ = ι∗Φ , Rot γtΦ = γt rot Φ

for all Φ ∈ C∞,q(Ω) . Moreover, γt is surjective, i.e. there exists a linear and continuous
tangential extension operator

γ̌t : Hm−1/2,q(∂Ω)→ Hm,q(Ω)

with the property γtγ̌t = id .
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Furthermore, using the star operator we define linear and continuous normal
trace and extension operators by

γn : Hm,q(Ω) −→ Hm−1/2,q−1(∂Ω)
Ψ 7−→ (−1)(q−1)N ~ γt ∗Ψ

,

γ̌n : Hm−1/2,q−1(∂Ω) −→ Hm,q(Ω)
λ 7−→ (−1)q(N−q) ∗ γ̌t ~ λ

,

which possess the corresponding properties, i.e. Div γnΨ = −γn div Ψ for all smooth
forms Ψ ∈ C∞,q(Ω) and γnγ̌n = id . In local coordinates we check γt ∗ γ̌t = 0 and thus

γnγ̌t = 0 , γtγ̌n = 0 . (2.38)

By (2.9) and (2.14) we obtain

〈rotΦ,Ψ〉L2,q+1(Ω) + 〈Φ, divΨ〉L2,q(Ω) = 〈γtΦ, γnΨ〉L2,q(∂Ω) (2.39)

for Φ ∈ H1,q(Ω) , Ψ ∈ H1,q+1(Ω) .
This suggests to define the tangential trace

ΓtE ∈ H−1/2,q(∂Ω)

of a q-form E ∈ Rq(Ω) by

ΓtE(ϕ) = 〈ΓtE,ϕ〉H−1/2,q(∂Ω) := 〈rotE, γ̌nϕ〉L2,q+1(Ω) + 〈E, divγ̌nϕ〉L2,q(Ω) (2.40)

for all ϕ ∈ H1/2,q(∂Ω) . Clearly acting on E ∈ H1,q(Ω) it satisfies

〈ΓtE,ϕ〉H−1/2,q(∂Ω) = 〈γtE,ϕ〉L2,q(∂Ω) (2.41)

for all ϕ ∈ H1/2,q(∂Ω) . Hence in this case we have ΓtE = 〈γtE, · 〉L2,q(∂Ω) and we
identify ΓtE with γtE as an element in H1/2,q(∂Ω) .

Theorem 2.14 For each E ∈ Rq(Ω) the tangential trace ΓtE is an element of Rq(∂Ω) .
Moreover, the tangential trace Γt has the following properties:

(i)
∧

E∈Rq(Ω) ,

Ψ∈H1,q+1(Ω)

〈ΓtE, γnΨ〉H−1/2,q(∂Ω) = 〈rotE,Ψ〉L2,q+1(Ω) + 〈E, divΨ〉L2,q(Ω)

(ii)
∧

E∈Rq(Ω)

Rot ΓtE = Γt rotE

(iii) The mapping Γt : Rq(Ω)→ Rq(∂Ω) is continuous.
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Proof: By (2.39) we get for Φ ∈ C∞,q(Ω) and Ψ ∈ H1,q+1(Ω)

〈rotΦ, γ̌nγnΨ〉L2,q+1(Ω) + 〈Φ, divγ̌nγnΨ〉L2,q(Ω)

= 〈γtΦ, γnΨ〉L2,q(∂Ω) = 〈rotΦ,Ψ〉L2,q+1(Ω) + 〈Φ, divΨ〉L2,q(Ω) .

The density argument (2.15) and the definition of Γt yield (i). For E ∈ Rq(Ω) we
obtain

||ΓtE||H−1/2,q(∂Ω) ≤ c · ||E||Rq(Ω) ,

i.e. Γt : Rq(Ω) → H−1/2,q(∂Ω) is continuous. Furthermore, for Φ ∈ C∞,q(Ω) and
ϕ ∈ H3/2,q+1(∂Ω) we calculate

〈ΓtΦ,Divϕ〉H−1/2,q(∂Ω) = 〈γtΦ,Divϕ〉L2,q(∂Ω) = −〈Rot γtΦ, ϕ〉L2,q+1(∂Ω)

= −〈γtrotΦ, ϕ〉L2,q+1(∂Ω) = −〈ΓtrotΦ, ϕ〉H−1/2,q+1(∂Ω) .

Approximating E ∈ Rq(Ω) with Φ ∈ C∞,q(Ω) by (2.15) we get that Rot ΓtE ex-
ists in H−3/2,q+1(∂Ω) and Rot ΓtE = Γt rotE . Hence Rot ΓtE ∈ H−1/2,q+1(∂Ω) since
rotE ∈ 0R

q+1(Ω) ⊂ Rq+1(Ω) , i.e. ΓtE ∈ Rq(∂Ω) . This proves that the mapping
Γt : Rq(Ω)→ Rq(∂Ω) is well defined, and (ii). Clearly we have

||Rot ΓtE||H−1/2,q+1(∂Ω) = ||Γt rotE||H−1/2,q+1(∂Ω) ≤ c · ||E||Rq(Ω) ,

since rot : Rq(Ω)→ Rq+1(Ω) is continuous. Thus (iii) is proved. �

Defining the normal trace acting on Dq(Ω) by

Γn := (−1)(q−1)N ~ Γt∗

we achieve (using the star operator)

Theorem 2.15 For each H ∈ Dq(Ω) the normal trace ΓnH is an element of Dq−1(∂Ω) .
Moreover, the normal trace Γn has the following properties:

(i)
∧

H∈Dq(Ω) ,

Ψ∈H1,q−1(Ω)

〈ΓnH, γtΨ〉H−1/2,q−1(∂Ω) = 〈divH,Ψ〉L2,q−1(Ω) + 〈H, rotΨ〉L2,q(Ω)

(ii)
∧

H∈Dq(Ω)

Div ΓnH = −ΓndivH

(iii) The mapping Γn : Dq(Ω)→ Dq−1(∂Ω) is continuous.

Our traces possess natural properties. So we have for all E ∈ Rq(Ω)

ΓtE = 0 ⇐⇒ E ∈
◦
Rq(Ω) (2.42)
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and for all E ∈ Dq(Ω)

ΓnE = 0 ⇐⇒ E ∈
◦
Dq(Ω) . (2.43)

Furthermore, (2.41) and (2.38) yield

γ̌nϕ ∈
◦
Rq+1(Ω) , γ̌tϕ ∈

◦
Dq(Ω) (2.44)

for all ϕ ∈ H1/2,q(∂Ω) .
Now we will construct two extension operators.

Theorem 2.16 Let ε, ν ∈ A0,q(Ω) . Then there exist two linear and continuous extension
operators

Γ̌t : Rq(∂Ω) −→ Rq(Ω) ∩ ε−1
0D

q(Ω) ∩ νH
q(Ω)⊥ε ,

Γ̌n : Dq−1(∂Ω) −→ Dq(Ω) ∩ ε−1
0R

q(Ω) ∩ νH̃
q(Ω)⊥ε

satisfying ΓtΓ̌t = id and ΓnΓ̌n = id .

Remark 2.17

(i) Γ̌t even maps to Rq(Ω) ∩ ε−1 div rot
( ◦
Rq(Ω) ∩H2,q(Ω)

)
.

(ii) Γ̌n even maps to Dq(Ω) ∩ ε−1 rot div
( ◦
Dq(Ω) ∩H2,q(Ω)

)
.

(iii) Because of the missing boundary condition neither Γ̌t nor Γ̌n maps to H1,q(Ω) . But
this is obvious, since the existence of the left inverse Γt resp. Γn would imply

Rq(∂Ω) ⊂ H1/2,q(∂Ω) resp. Dq−1(∂Ω) ⊂ H1/2,q−1(∂Ω) .

(iv) E := Γ̌tλ ∈ Rq(Ω)∩ ε−1Dq(Ω) is the unique solution of the boundary value problem

div εE = 0 , div rotE = 0 ,

ΓtE = λ , E ∈ εH
q(Ω)⊥ε .

(v) H := Γ̌nλ ∈ Dq(Ω)∩ε−1Rq(Ω) is the unique solution of the boundary value problem

rot εH = 0 , rot divH = 0 ,

ΓnH = λ , H ∈ εH̃
q(Ω)⊥ε .

Here εH̃q(Ω) := 0

◦
Dq(Ω)∩ ε−1

0R
q(Ω) denotes the space of ‘harmonic Neumann forms’ and

we have εH̃
q(Ω) = ∗∗ε∗Hq′(Ω) as well as dim εH̃

q(Ω) = dq
′ with q′ := N − q . Clearly we

put again H̃q(Ω) := idH̃
q(Ω) .
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Proof: Let λ ∈ Rq(∂Ω) . We have to find some E = Γ̌tλ ∈ Rq(Ω) ∩ ε−1
0D

q(Ω) with
ΓtE = λ . We look at

Yq(Ω) :=
◦
Rq(Ω) ∩ Dq(Ω) ,

Yq
rot(Ω) := Yq ∩ rot

◦
Rq−1(Ω) = rot

◦
Rq−1(Ω) ∩ Dq(Ω) ,

Yq
div(Ω) := Yq ∩ divDq+1(Ω) =

◦
Rq(Ω) ∩ divDq+1(Ω)

supplied with 〈 · , · 〉Rq(Ω)∩Dq(Ω) . By Lemma 2.4 and (2.18), (2.19)

Yq(Ω) = Yq
rot(Ω)⊕ Yq

div(Ω)⊕Hq(Ω)

is an orthogonal decomposition. Due to Theorem 2.8 all spaces are subspaces of
H1,q(Ω) .

We consider the following problem: Find some F ∈ Yq+2
rot (Ω) satisfying

〈divF, divΦ〉L2,q+1(Ω) = 〈Rotλ, γnΦ〉H−1/2,q+1(∂Ω) (2.45)

for all Φ ∈ Yq+2
rot (Ω) .

Because of (2.17) the continuous bilinear form on the left hand side is strongly
coercive in Yq+2

rot (Ω) and using Theorem 2.8 the right hand side is an antilinear con-
tinuous functional on Yq+2

rot (Ω) . Hence the Lax-Milgram theorem yields a unique
solution F with

||F ||Dq+2(Ω) ≤ c · ||Rotλ||H−1/2,q+1(∂Ω) . (2.46)

Analogously we solve a second problem: Find some H ∈ Yq+1
rot (Ω) with

〈ε−1divH, divΦ〉L2,q(Ω)

= 〈divF,Φ〉L2,q+1(Ω) + 〈φλ,Φ〉L2,q+1(Ω) − 〈λ, γnΦ〉H−1/2,q(∂Ω)

(2.47)

for all Φ ∈ Yq+1
rot (Ω) , where

φλ :=
dq+1∑
`=1

〈λ, γnh`〉H−1/2,q(∂Ω) · h`

for some 〈 · , · 〉L2,q+1(Ω)-orthonormal basis {h1, . . . , hdq+1} of Hq+1(Ω) .
Then clearly

||H||Dq+1(Ω) ≤ c ·
(
||divF ||L2,q+1(Ω) + ||λ||H−1/2,q(∂Ω)

)
(2.48)

holds and combining (2.46) and (2.48) we have

||F ||Dq+2(Ω) + ||H||Dq+1(Ω) ≤ c · ||λ||Rq(∂Ω) . (2.49)

For all h` the right hand side of (2.47) vanishes. Thus (2.47) also holds for all forms
Φ ∈ Yq+1

rot (Ω) ⊕ Hq+1(Ω) . Let Φ ∈ Yq+1
div (Ω) . By (2.18), (2.19) and Lemma 2.4 we
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may assume Φ = divΨ with Ψ ∈ Dq+2(Ω) ∩ 0

◦
Rq+2(Ω) ∩ Hq+2(Ω)⊥ = Yq+2

rot (Ω) . Since
Φ ∈ H1,q+1(Ω) we obtain by Theorem 2.8 Ψ ∈ H2,q+2(Ω) . Here we needed the C3-
requirements on the boundary ∂ Ω . Using (2.45)

〈divF,Φ〉L2,q+1(Ω) + 〈φλ,Φ〉L2,q+1(Ω) − 〈λ, γnΦ〉H−1/2,q(∂Ω)

= 〈divF, divΨ〉L2,q+1(Ω) − 〈λ, γndivΨ〉H−1/2,q(∂Ω)

= 〈Rotλ, γnΨ〉H−1/2,q+1(∂Ω) + 〈λ,Div γnΨ〉H−1/2,q(∂Ω) = 0

shows that (2.47) is even valid for Φ ∈ Yq+1
div (Ω) and hence for all Φ ∈ Yq+1(Ω) .

Putting E := −ε−1divH we obtain E ∈ Rq(Ω) ∩ ε−1
0D

q(Ω) by (2.47) since of course
◦
C∞,q+1(Ω) ⊂ Yq+1 and rotE = divF + φλ . Moreover,

γ̌nH
1/2,q(∂Ω) ⊂ H1,q+1(Ω) ∩

◦
Rq+1(Ω) ⊂ Yq+1(Ω)

holds and thus ΓtE = λ follows again by (2.47). Finally, by (2.49) our tangential
extension operator is continuous.

Defining
Γ̌n : Dq−1(∂Ω) −→ Dq(Ω)

λ 7−→ (−1)q(N−q) ∗ Γ̌t ~ λ

(with ± ∗ ε∗ instead of ε) yields ΓnΓ̌nλ = (−1)(q−1)N ~ ΓtΓ̌t ~ λ = λ as well as
Γ̌nλ ∈ Dq(Ω) ∩ ε−1

0R
q(Ω) . Clearly Γ̌n is continuous as well. �

To finish this section we present a generalization of Theorem 2.8, a regularity
theorem handling inhomogeneous boundary data:

Theorem 2.18 Let m ∈ N0 , Ω be a bounded (Cm+2 ∩ C3)-region and ε ∈ Am+1,q(Ω) .
Furthermore, let E ∈ Rq(Ω) ∩ ε−1Dq(Ω) with

rotE ∈ Hm,q+1(Ω) , divεE ∈ Hm,q−1(Ω) , ΓtE ∈ Hm+1/2,q(∂Ω) .

Then E ∈ Hm+1,q(Ω) and there exists a positive constant c independent of E , such that

||E||Hm+1,q(Ω)

≤ c ·
(
||E||L2,q(Ω) + ||rotE||Hm,q+1(Ω) + ||divεE||Hm,q−1(Ω) + ||ΓtE||Hm+1/2,q(∂Ω)

)
.

Proof: Let Ě := γ̌tΓtE ∈ Hm+1,q(Ω) . Then Ê := E− Ě ∈
◦
Rq(Ω) satisfies the assump-

tions of Theorem 2.8. Thus we get Ê ∈ Hm+1,q(Ω) and using the continuity of γ̌t the
asserted estimate as well. �

Remark 2.19 Clearly using the star operator and some transformation E  εE the as-
sumption ΓnεE ∈ Hm+1/2,q−1(∂Ω) instead of ΓtE ∈ Hm+1/2,q(∂Ω) yields a corresponding
theorem. Moreover, these regularity results hold for spaces of the form ε−1Rq(Ω) ∩ Dq(Ω)
as well.
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2.4 Static solution theory

Let Ω be a C3-region, ε ∈ A0,q(Ω) an admissible transformation and dq continuous
linear functionals Φ`

ε as in Theorem 2.6 be given. We consider the following problem:
Find some q-form E ∈ Rq(Ω) ∩ ε−1Dq(Ω) satisfying

rotE = G ,

divεE = F ,

ΓtE = λ ,

Φ`
ε(E) = α` , ` = 1, . . . , dq .

(2.50)

Noting Hq+1(Ω) ⊂ H1,q+1(Ω) we get

Theorem 2.20 The conditionsG ∈ 0R
q+1(Ω) , F ∈ 0D

q−1(Ω)∩Hq−1(Ω)⊥ , λ ∈ Rq(∂Ω) ,
α ∈ Cdq and

Rotλ = ΓtG ∧
∧

h∈Hq+1(Ω)

〈G, h〉L2,q+1(Ω) = 〈λ, γnh〉H−1/2,q(∂Ω)

are necessary and sufficient for the solvability of (2.50). The solution is unique and depends
continuously on the data, i.e. there exists a positive constant c independent of E or the data,
such that

||E||Rq(Ω)∩ε−1Dq(Ω) ≤ c ·
(
||F ||L2,q−1(Ω) + ||G||L2,q+1(Ω) + ||λ||Rq(∂Ω) + |α|

)
holds.

Proof: The necessity of the conditions is easily checked. By Theorem 2.16 we obtain

Ě := Γ̌tλ ∈ Rq(Ω) ∩ ε−1
0D

q(Ω) . The ansatz E := Ě + Ẽ with Ẽ ∈
◦
Rq(Ω) ∩ ε−1Dq(Ω)

leads with (2.42) to the system

rotẼ = G− rot Ě =: G̃ ∈ 0R
q+1(Ω) ,

divεẼ = F ∈ 0D
q−1(Ω) ∩Hq−1(Ω)⊥ ,

Φ`
ε(Ẽ) = α` − Φ`

ε(Ě) =: α̃` , ` = 1, . . . , dq ,

which is uniquely solved by Ẽ := Max−1
ε (F, G̃, α̃`) with Maxε from Theorem 2.6, if

(F, G̃, α̃`) ∈ W q(Ω) . Hence it remains to show

G̃ ∈
◦
Rq+1(Ω) ∩Hq+1(Ω)⊥ .

From ΓtG̃ = ΓtG − Rotλ = 0 we see that G̃ satisfies the homogeneous (electric)
boundary condition. To check the orthogonality on the Dirichlet forms we pick some
h from Hq+1(Ω) ⊂ H1,q+1(Ω) (by Theorem 2.8) and compute

〈G̃, h〉L2,q+1(Ω) = 〈G, h〉L2,q+1(Ω) − 〈ΓtĚ︸︷︷︸
=λ

, γnh〉H−1/2,q(∂Ω) = 0
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using Theorem 2.14 (i). This concludes the proof. �

Finally we shortly turn to the dual problem using the Hodge star operator. Let
dq
′ continuous linear functionals Ψ`

ε on Dq(Ω) ∩ ε−1Rq(Ω) with

εH̃
q(Ω) ∩

dq
′⋂

`=1

N(Ψ`
ε) = {0}

be given. We formulate the dual problem:
Find for given data F,G, λ, α a q-form H ∈ Dq(Ω) ∩ ε−1Rq(Ω) satisfying

divH = F ,

rotεH = G ,

ΓnH = λ ,

Ψ`
ε(H) = α` , ` = 1, . . . , dq

′
.

(2.51)

Corollary 2.21 The conditionsG ∈ 0R
q+1(Ω)∩H̃q+1(Ω)⊥ , F ∈ 0D

q−1(Ω) , λ ∈ Dq−1(∂Ω) ,
α ∈ Cdq

′
and

Div λ = −ΓnF ∧
∧

h∈H̃q−1(Ω)

〈F, h〉L2,q−1(Ω) = 〈λ, γth〉H−1/2,q−1(∂Ω)

are necessary and sufficient for the solvability of (2.51). The solution is unique and depends
continuously on the data, i.e. there exists a positive constant c independent of H or the data,
such that

||H||Dq(Ω)∩ε−1Rq(Ω) ≤ c ·
(
||F ||L2,q−1(Ω) + ||G||L2,q+1(Ω) + ||λ||Dq−1(∂Ω) + |α|

)
holds.

Proof: Applying the last theorem to the data ± ∗ F , ± ∗ G , ± ∗ λ , α , the transfor-
mation ± ∗ ε∗ and the linear functionals Φ`

ε := Ψ`
ε(∗ · ) we obtain our solution by

H := ∗E . �

3 Exterior domains

In this section we will consider an exterior domain Ω ⊂ RN , i.e. RN \ Ω is compact,
as a special Riemannian manifold of dimension 3 ≤ N ∈ N . To this end we need
some preliminaries:
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3.1 Notations and preliminaries

We fix a radius r0 and some radii rn := 2nr0 , n ∈ N , such that RN \ Ω is a compact
subset of Ur0 . For later purpose we choose a cut-off function η , such that

η ∈ C∞(R,R) , supp η ⊂ [1,∞) , η|[2,∞) = 1 , (3.1)

and define two other cut-off functions by

η̂(t) := η
(
1 +

t− r1

r2 − r1

)
(3.2)

and
η := η̂ ◦ r . (3.3)

Setting Ar := RN \Kr and Zr,r̃ := Ar ∩ Ur̃ we note supp∇η ⊂ Zr1,r2 .
The definitions of spaces from section 2 carry over to exterior domains as long as

the boundedness of Ω is not necessary. Using the weight function

ρ := (1 + r2)1/2

we introduce for m ∈ N0 and s ∈ R the weighted Sobolev spaces

Hm
s (Ω) :=

{
u ∈ L2

loc(Ω) : ρs+|α| ∂α u ∈ L2(Ω) for all |α| ≤ m
}

,

⊂ Hm
s (Ω) :=

{
u ∈ L2

loc(Ω) : ρs ∂α u ∈ L2(Ω) for all |α| ≤ m
}

.

To distinguish between these different polynomially weighted Sobolev spaces of
exterior domains we are forced to use roman and bold roman letters simultaneously.
Equipped with their natural norms

|| · ||Hms (Ω) :=
( ∑
|α|≤m

||ρs+|α| ∂α · ||2L2(Ω)

)1/2

=
( ∑
|α|≤m

|| ∂α · ||2
H0
s+|α|(Ω)

)1/2

,

|| · ||Hm
s (Ω) :=

( ∑
|α|≤m

||ρs ∂α · ||2L2(Ω)

)1/2

=
( ∑
|α|≤m

|| ∂α · ||2
H0
s(Ω)

)1/2

these are Hilbert spaces. In the special cases m = 0 or s = 0 we also write
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Hm(Ω) := Hm
0 (Ω) , Hm(Ω) = Hm

0 (Ω) ,

L2
s(Ω) := H0

s(Ω) = H0
s(Ω) , L2(Ω) = H0

0(Ω) = H0
0(Ω) .

Now we have a global chart (Ω, id) and naturally Ω becomes a N -dimensional
smooth Riemannian manifold with Cartesian coordinates {x1, . . . , xN} . As in sec-
tion 2 with componentwise partial derivatives ∂α u = (∂α uI) dxI , if u = uI dxI , we
introduce for m ∈ N0 and s ∈ R the Sobolev spaces Hm,q

s (Ω) resp. Hm,q
s (Ω) of q-forms

and denote the natural (componentwise) norms as in the scalar case by || · ||Hm,qs (Ω)

resp. || · ||Hm,q
s (Ω) . Again in the special cases m = 0 or s = 0 we write

Hm,q(Ω) := Hm,q
0 (Ω) , Hm,q(Ω) = Hm,q

0 (Ω) ,

L2,q
s (Ω) := H0,q

s (Ω) = H0,q
s (Ω) , L2,q(Ω) = H0,q

0 (Ω) = H0,q
0 (Ω) .

Especially for m = s = 0 and f = fI dxI , g = gI dxI ∈ L2,q(Ω) we have the scalar
product

〈f, g〉L2,q(Ω) =

∫
Ω

f ∧ ∗g =

∫
Ω

∗〈f, g〉q =

∫
Ω

〈f, g〉q dλ =

∫
Ω

fIgI dλ .

Furthermore, for s ∈ R we need some special weighted spaces suited for Maxwell’s
equations:

Rq
s(Ω) :=

{
E ∈ L2,q

s (Ω) : rotE ∈ L2,q+1
s+1 (Ω)

}
,

⊂ Rq
s(Ω) :=

{
E ∈ L2,q

s (Ω) : rotE ∈ L2,q+1
s (Ω)

}
,

Dq
s(Ω) :=

{
H ∈ L2,q

s (Ω) : divH ∈ L2,q−1
s+1 (Ω)

}
,

⊂ Dq
s(Ω) :=

{
H ∈ L2,q

s (Ω) : divH ∈ L2,q−1
s (Ω)

}
Equipped with their natural graph norms these are all Hilbert spaces. To generalize

the homogeneous boundary condition we introduce
◦
Rq
s(Ω) resp.

◦
Rq
s(Ω) as the clo-

sure of
◦
C∞,q(Ω) in the corresponding graph norm || · ||Rqs(Ω) resp. || · ||Rq

s(Ω) . The spaces

Rq
s(Ω) , Dq

s(Ω) and even
◦
Rq
s(Ω) are invariant under multiplication with bounded

smooth functions. As in the last section a subscript 0 at the lower left corner indi-
cates vanishing rotation resp. divergence, e.g.

0

◦
Rq
s(Ω) :=

{
E ∈

◦
Rq
s(Ω) : rotE = 0

}
= 0

◦
Rq
s(Ω) ,

0D
q
s(Ω) :=

{
H ∈ Dq

s(Ω) : divH = 0
}

= 0Dq
s(Ω) ,

and in the special case s = 0 we neglect the weight index, e.g.

0Dq(Ω) := 0Dq
0(Ω) ,

◦
Rq(Ω) :=

◦
Rq

0(Ω) .
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By the star operator we have

(0)

(◦)
DN−q

(s) (Ω) = ∗(0)

(◦)
Rq

(s)(Ω) , (0)

(◦)
DN−q

(s) (Ω) = ∗(0)

(◦)
Rq

(s)(Ω) ,

where
◦
Dq
s(Ω) and

◦
Dq
s(Ω) are defined analogously to the corresponding spaces of

rotations. Finally we need the local spaces

L2,q
loc(Ω) :=

{
E ∈ Aq(Ω) : E ∈ L2,q(Ξ) for all Ξ b Ω

}
,

L2,q
loc(Ω) :=

{
E ∈ L2,q

loc(Ω) : E ∈ L2,q(Ω ∩ U%) for all % > r0

}
,

Rq
loc(Ω) :=

{
E ∈ L2,q

loc(Ω) : rotE ∈ L2,q+1
loc (Ω)

}
,

Rq
loc(Ω) :=

{
E ∈ Rq

loc(Ω) : E ∈ Rq(Ω ∩ U%) for all % > r0

}
,

◦
Rq

loc(Ω) :=
{
E ∈ Rq

loc(Ω) : ϕE ∈
◦
Rq(Ω) for all ϕ ∈

◦
C∞(RN)

}
.

In this sense we also may define Hm,q
loc (Ω) , Hm,q

loc (Ω) and Dq
loc(Ω) ,

◦
Dq

loc(Ω) . If we con-
sider the whole space, i.e. Ω = RN , we omit the dependence on the domain and
write for example

0Rq
s := 0Rq

s(RN) , Hm,q
s := Hm,q

s (RN) .

Exchanging the weight subscript by vox , e.g. 0Rq
vox(Ω) , we indicate, that such func-

tions or forms have bounded support.
Finally in this case of an exterior domain we need some additional decay prop-

erties of our transformations. Let τ ≥ 0 . A transformation ν belongs to A0,q
τ (Ω) , if

and only if ν ∈ A0,q(Ω) , i.e. ν is admissible, and

ν = id + ν̂ with ν̂ = O(r−τ ) as r →∞

holds. We call τ the ‘order of decay’ of the perturbation ν̂ (or simply of ν). Further-
more, for ` ∈ N we define ν ∈ A`,q

τ (Ω) resp. ν ∈ A`,q
τ (Ω) , if and only if ν ∈ A`,q(Ω)

resp. ν ∈ A`,q(Ω) and the transformation ν fulfills the asymptotics

∂α ν = ∂α ν̂ = O(r−τ ) as r →∞

for all 1 ≤ |α| ≤ ` . For τ = 0 this only means boundedness and hence we have
A`,q

0 (Ω) = A`,q(Ω) resp. A`,q
0 (Ω) = A`,q(Ω) .

Similarly to the bounded domain case we need a special property of our bound-
ary ∂ Ω :

Definition 3.1 Ω possesses the ‘Maxwell’s local compactness property’ (MLCP), if and
only if the embeddings

◦
Rq(Ω) ∩ Dq(Ω) ↪→ L2,q

loc(Ω)

are compact for all q .

35



Remark 3.2 The following assertions are equivalent:

(i) Ω possesses the MLCP.

(ii) Ω ∩ U% possesses the MCP for all % ≥ r0 .

(iii) The embeddings
◦
Rq
s(Ω) ∩ Dq

s(Ω) ↪→ L2,q
t (Ω)

are compact for all t, s ∈ R with t < s and all q .

(iv) For all t, s ∈ R with t < s , all q and all εq ∈ A0,q(Ω) the embeddings

◦
Rq
s(Ω) ∩ ε−1

q Dq
s(Ω) ↪→ L2,q

t (Ω)

are compact.

Let ε ∈ A0,q(Ω) and t ∈ R . We introduce the ‘(weighted harmonic) Dirichlet forms’

εH
q
t (Ω) := 0

◦
Rq
t (Ω) ∩ ε−1

0Dq
t (Ω) (3.4)

and in the special case ε = id we denote them by H
q
t (Ω) . If t = 0 , we also write

εH
q(Ω) := εH

q
0(Ω) . Moreover, we define the dimension of the Dirichlet forms by

dqt := dim εH
q
t (Ω) , dq := dq0 .

The same arguments as in the bounded domain case show, that the 〈ε · , · 〉L2,q(Ω)-
orthogonal decompositions presented in Lemma 2.4 still hold true in unbounded
domains. We have

L2,q(Ω) = rot
◦
Rq−1(Ω)⊕ε ε−1

0Dq(Ω) = 0

◦
Rq(Ω)⊕ε ε−1div Dq+1(Ω)

= ε−1rot
◦
Rq−1(Ω)⊕ε 0Dq(Ω) = ε−1

0

◦
Rq(Ω)⊕ε div Dq+1(Ω)

= rot
◦
Rq−1(Ω)⊕ε εHq(Ω)⊕ε ε−1div Dq+1(Ω)

= ε−1rot
◦
Rq−1(Ω)⊕ε ε−1

ε−1Hq(Ω)⊕ε div Dq+1(Ω) ,

(3.5)

where all closures are taken in L2,q(Ω) .
As in the bounded domain case one easily sees that the dimension of the space

of Dirichlet forms εH
q(Ω) does not depend on ε . From [12] and [14] we even obtain

dim εH
q(Ω) = dim Hq(Ω) = dim H

q
−1(Ω) = βN−q < ∞ , if Ω possesses the MLCP. For

the sake of completeness we also define the ‘(weighted harmonic) Neumann forms’

εH̃
q
t (Ω) := 0

◦
Dq
t (Ω) ∩ ε−1

0Rq
t (Ω) .
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3.2 Regularity

Before we discuss regularity results in our exterior domain we consider the whole
space case Ω = RN . In this special case we are able to characterize the following
Sobolev- resp. rotation- and divergence-spaces with the aid of the Fourier transform
on q-forms F using the formulas (2.25)-(2.29):

Hm,q =
{
E ∈ L2,q : F(E) ∈ L2,q

m

}
, m ∈ N (3.6)

Rq =
{
E ∈ L2,q : RF(E) ∈ L2,q+1

}
(3.7)

Dq =
{
E ∈ L2,q : TF(E) ∈ L2,q−1

}
(3.8)

In this sense we also may define Hs,q , if s ∈ R . First we prove

Lemma 3.3 Let ε ∈ A1,q . Then Rq ∩ ε−1Dq = H1,q holds with equivalent norms depend-
ing on ε .

Remark 3.4 This lemma and a cutting technique easily yield a first inner regularity result.

Proof: Partial integration and ∆ = rot div + div rot yield

∧
Φ∈
◦
C∞,q

N∑
n=1

|| ∂n Φ||2L2,q = || rot Φ||2L2,q+1 + || div Φ||2L2,q−1 . (3.9)

A combination of this identity and (3.6)-(3.8) as well as (2.22) implies

Rq ∩ Dq = H1,q (3.10)

with equal norms, since
◦
C∞,q is dense in H1,q .

Now let E ∈ Rq∩ε−1Dq . By (3.5) and
[
[12], Lemma 7

]
we decompose the q-form

E = rot Φ + Ψ according to

L2,q = rot Rq−1 ⊕ 0Dq = rot
(
Rq−1
−1 ∩ 0Dq−1

−1

)
⊕ 0Dq

observing rot Ψ = rotE and div Ψ = 0 . By (3.10) we obtain Ψ ∈ H1,q and the
estimate ||Ψ||H1,q ≤ c · ||E||Rq with some constant c > 0 . Hence εΨ ∈ H1,q and Φ

solves the elliptic system

div ε rot Φ = div εE − div εΨ =: F ∈ L2,q−1 , div Φ = 0 ,

where ||F ||L2,q ≤ c·||E||Rq∩ε−1Dq . Using the operators τh,i and δh,i , i = 1, . . . , N , h > 0 ,
defined on RN from the proof of Theorem 2.8 as well as ||τ ∗h,iφ||L2,q = ||φ||L2,q and the

estimates ||δ∗h,iφ||L2,q ≤ || ∂i φ||L2,q , || rotφ||L2,q+1 ≤
N∑
n=1

|| ∂n φ||L2,q we get

〈εδ∗h,i rot Φ, rotφ〉L2,q = 〈div ε rot Φ, δ∗−h,iφ〉L2,q−1 +
〈

rot Φ, (δ−h,iε)τ
∗
−h,i rotφ

〉
L2,q
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and thus by (3.9) uniformly in φ and h

∣∣〈εδ∗h,i rot Φ, rotφ〉L2,q

∣∣ ≤ c · ||E||Rq∩ε−1Dq ·
N∑
n=1

|| ∂n φ||L2,q−1

≤ c · ||E||Rq∩ε−1Dq ·
(
|| rotφ||L2,q + || div φ||L2,q−2

)
for all φ ∈

◦
C∞,q−1 . By this estimate and since

◦
C∞,q−1 is dense in Rq−1

−1 ∩ Dq−1
−1 we

obtain
||δ∗h,i rot Φ||L2,q ≤ c · ||E||Rq∩ε−1Dq ,

where the constant c > 0 is independent of h . Therefore rot Φ ∈ H1,q and the esti-
mates || ∂i rot Φ||L2,q ≤ c · ||E||Rq∩ε−1Dq , i = 1, . . . , N , hold, which completes the proof.

�

Corollary 3.5 Let s ∈ R and ε ∈ A1,q .

(i) Then Rq
s ∩ ε−1Dq

s = H1,q
s holds with equivalent norms depending on ε .

(ii) If additionally ε = id + ε̂ ∈ A1,q
τ with τ > 0 and

∂n ε̂ = O(r−1) as r →∞ , n = 1, . . . , N ,

then also Rq
s ∩ ε−1Dq

s = H1,q
s holds with equivalent norms depending on ε .

Proof: Let E ∈ Rq
s ∩ ε−1Dq

s . We have ρsE ∈ L2,q and by (2.24)

rot(ρsE) = ρs rotE + sρs−2RE ∈ L2,q+1 ,

div(ρsεE) = ρs div εE + sρs−2TεE ∈ L2,q−1 .

Thus using Lemma 3.3 ρsE ∈ Rq ∩ ε−1Dq = H1,q follows and

∂n(ρsE) = ρs ∂nE + sρs−2XnE ∈ L2,q

yields (i).
Looking at E ∈ Rq

s ∩ ε−1Dq
s ⊂ Rq

s ∩ ε−1Dq
s we obtain E ∈ H1,q

s by (i). Therefore
it only remains to show ∂nE ∈ L2,q

s+1 , n = 1, . . . , N . Choosing the cut-off function
ϕt := 1−η(t−1r) we calculate with (3.9) or (3.10) uniformly in t ∈ R+
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∣∣∣∣ ∂n(ϕt · E)
∣∣∣∣

L2,q
s+1

≤ c ·
(∣∣∣∣ ∂n(ρs+1ϕt · E︸ ︷︷ ︸

∈H1,q
vox⊂H1,q

)
∣∣∣∣

L2,q +
∣∣∣∣(s+ 1)ρs−1Xnϕt · E

∣∣∣∣
L2,q

)
≤ c ·

(∣∣∣∣ rot(ρs+1ϕt · E)
∣∣∣∣

L2,q+1 +
∣∣∣∣ div(ρs+1ϕt · E)

∣∣∣∣
L2,q−1 + ||ϕt · E||L2,q

s

)
≤ c ·

(
||ϕt · E||Rqs∩ε−1Dqs

+
∣∣∣∣ div(ϕt · ε̂E)

∣∣∣∣
L2,q−1
s+1

)
≤ c ·

(
||ϕt · E||Rqs∩ε−1Dqs

+
N∑
m=1

∣∣∣∣ ∂m(ϕt · E)
∣∣∣∣

L2,q
s+1−τ

)
.

Since τ > 0 and decomposing RN = Uϑ ∪ Aϑ we get for all ϑ ∈ R+∣∣∣∣ ∂m(ϕt · E)
∣∣∣∣2

L2,q
s+1−τ

≤ cϑ ·
∣∣∣∣ ∂m(ϕt · E)

∣∣∣∣2
L2,q
s

+ (1 + ϑ2)−τ ·
∣∣∣∣ ∂m(ϕt · E)

∣∣∣∣2
L2,q
s+1

with some constant cϑ > 0 depending on ϑ and s , τ . A combination of the latter
two estimates yields for some sufficient large ϑ and with (i)

N∑
n=1

∣∣∣∣ ∂n(ϕt · E)
∣∣∣∣

L2,q
s+1

≤ c ·
(
||ϕt · E||H1,q

s
+
∣∣∣∣ rot(ϕt · E)

∣∣∣∣
L2,q+1
s+1

+
∣∣∣∣ div(ϕt · εE)

∣∣∣∣
L2,q−1
s+1

)
≤ c ·

(
||E||Rqs∩ε−1Dqs

+ ||t−1r−1RE||L2,q+1
s+1 (Zt,2t)

+ ||t−1r−1TεE||L2,q−1
s+1 (Zt,2t)

)
.

Using t−1 ≤ 2r−1 in Zt,2t we finally obtain the estimate

N∑
n=1

|| ∂nE||L2,q
s+1(Ut)

≤
N∑
n=1

∣∣∣∣ ∂n(ϕt · E)
∣∣∣∣

L2,q
s+1
≤ c · ||E||Rqs∩ε−1Dqs

,

which holds uniformly in t . Thus letting t→∞ the monotone convergence theorem
implies E ∈ H1,q

s and the desired estimate, i.e. (ii) is proved. �

Now we can formulate our first main regularity result in this section:
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Theorem 3.6 Let ` ∈ N0 , s ∈ R and ε ∈ A`+1,q as well as E ∈ L2,q
s .

(i) Then rotE ∈ H`,q+1
s , div εE ∈ H`,q−1

s is equivalent to E ∈ H`+1,q
s and there exists a

positive constant c , such that

||E||H`+1,q
s
≤ c ·

(
||E||L2,q

s
+ || rotE||H`,q+1

s
+ || div εE||H`,q−1

s

)
holds uniformly in E .

(ii) If in addition ε = id + ε̂ ∈ A`+1,q
τ with τ > 0 and for all 1 ≤ |α| ≤ `+ 1

∂α ε̂ = O(r−|α|) as r →∞ ,

then rotE ∈ H`,q+1
s+1 , div εE ∈ H`,q−1

s+1 is equivalent to E ∈ H`+1,q
s and with some

positive constant c the estimate

||E||H`+1,q
s
≤ c ·

(
||E||L2,q

s
+ || rotE||H`,q+1

s+1
+ || div εE||H`,q−1

s+1

)
holds uniformly in E .

Remark 3.7 Clearly from this theorem we obtain easily a second inner regularity result by
a cutting technique.

Proof: Corollary 3.5 proves the assertions for ` = 0 .
To show (i) by induction we assume

ε ∈ A`+1,q , rotE ∈ H`,q+1
s , div εE ∈ H`,q−1

s .

The assertion for ` − 1 yields E ∈ H`,q
s and the corresponding estimate. Then for

n = 1, . . . , N we get ∂nE ∈ L2,q
s , rot ∂nE ∈ H`−1,q+1

s and

div(ε ∂nE) = ∂n div εE − div
(
(∂n ε)E

)
∈ H`−1,q−1

s .

Using the assumption for `− 1 a second time we obtain ∂nE ∈ H`,q
s and

|| ∂nE||H`,q
s
≤ c ·

(
|| ∂nE||L2,q

s
+ || rot ∂nE||H`−1,q+1

s
+
∣∣∣∣ div(ε ∂nE)

∣∣∣∣
H`−1,q−1
s

)
for n = 1, . . . , N . Hence E ∈ H`+1,q

s and

||E||H`+1,q
s
≤ c ·

(
||E||H`,q

s
+

N∑
n=1

|| ∂nE||H`,q
s

)
≤ c ·

(
||E||H`,q

s
+ || rotE||H`,q+1

s
+ || div εE||H`,q−1

s

)
.

Similarly we prove (ii) paying attention to the fact that the weights in the || · ||H`,qs -
norms grow with the number of derivatives and that this effect is compensated by
the decay properties of ε̂ and its derivatives. �

Using the results from the last theorem we are able to show easily weighted inner
regularity in exterior domains with a cutting technique:
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Corollary 3.8 Let ` ∈ N0 , s ∈ R , ε ∈ A`+1,q(Ω) and E ∈ L2,q
s (Ω) as well as Ξ ⊂ RN be

another exterior domain, such that Ξ ⊂ Ω and dist(Ξ, ∂ Ω) > 0 (dist : distance function).

(i) Then rotE ∈ H`,q+1
s (Ω) and div εE ∈ H`,q−1

s (Ω) imply E ∈ H`+1,q
s (Ξ) and there

exists a positive constant c , such that

||E||H`+1,q
s (Ξ) ≤ c ·

(
||E||L2,q

s (Ω) + || rotE||H`,q+1
s (Ω) + || div εE||H`,q−1

s (Ω)

)
holds uniformly in E .

(ii) If even ε = id + ε̂ ∈ A`+1,q
τ (Ω) with τ > 0 and for all 1 ≤ |α| ≤ `+ 1

∂α ε̂ = O(r−|α|) as r →∞ ,

then rotE ∈ H`,q+1
s+1 (Ω) and div εE ∈ H`,q−1

s+1 (Ω) implyE ∈ H`+1,q
s (Ξ) and there exists

some constant c > 0 , such that the estimate

||E||H`+1,q
s (Ξ) ≤ c ·

(
||E||L2,q

s (Ω) + || rotE||H`,q+1
s+1 (Ω) + || div εE||H`,q−1

s+1 (Ω)

)
holds uniformly in E .

Proof: With the aid of a cut-off function ϕwith suppϕ ⊂ Ω and ϕ|Ξ = 1 the form ϕ·E
fulfills the assumptions of Theorem 3.6. This yields ϕ·E ∈ H`+1,q

s resp. ϕ·E ∈ H`+1,q
s ,

i.e.
E ∈ H`+1,q

s (Ξ) resp. E ∈ H`+1,q
s (Ξ) ,

and the corresponding estimates can be shown by induction. �

Finally we combine the boundary regularity from Theorem 2.8 and the exterior
domain regularity:

Theorem 3.9 Let ` ∈ N0 , s ∈ R , Ω ⊂ RN be an exterior domain with a C`+2-boundary,
i.e. Ω ∩ Ur0 is a C`+2-region. Furthermore, let ε ∈ A`+1,q(Ω) and

E ∈
( ◦
Rq
s(Ω) ∩ ε−1Dq

s(Ω)
)
∪
(
Rq
s(Ω) ∩ ε−1

◦
Dq
s(Ω)

)
.

(i) Then rotE ∈ H`,q+1
s (Ω) and div εE ∈ H`,q−1

s (Ω) imply E ∈ H`+1,q
s (Ω) and with

some constant c > 0

||E||H`+1,q
s (Ω) ≤ c ·

(
||E||L2,q

s (Ω) + || rotE||H`,q+1
s (Ω) + || div εE||H`,q−1

s (Ω)

)
holds uniformly in E .

(ii) If additionally ε = id + ε̂ ∈ A`+1,q
τ (Ω) with τ > 0 and for all 1 ≤ |α| ≤ `+ 1

∂α ε̂ = O(r−|α|) as r →∞ ,

then rotE ∈ H`,q+1
s+1 (Ω) and div εE ∈ H`,q−1

s+1 (Ω) imply E ∈ H`+1,q
s (Ω) and there

exists some positive constant c , such that the estimate

||E||H`+1,q
s (Ω) ≤ c ·

(
||E||L2,q

s (Ω) + || rotE||H`,q+1
s+1 (Ω) + || div εE||H`,q−1

s+1 (Ω)

)
holds uniformly in E .
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Proof: Let us discuss the case E ∈
◦
Rq
s(Ω) . Applying the latter corollary we get

ηE ∈ H`+1,q
s resp. ηE ∈ H`+1,q

s . Moreover, with (1− η)E ∈
◦
Rq
s(Ω ∩ Ur3) Theorem 2.8

yields (1− η)E ∈ H`+1,q(Ω ∩ Ur3) by induction. Extending (1− η)E by zero leads to
(1− η)E ∈ H`+1,q

vox (Ω) , which completes the proof. �

Remark 3.10 Using the star operator all these regularity results also hold for all kind of
spaces like

ε−1Rq
s ∩ Dq

s resp. ε−1Rq
s ∩ Dq

s .

3.3 Trace and extension theorems

We will provide trace and extension theorems on rotation- and divergence spaces of
exterior domains using the results corresponding to the adequate spaces of bounded
domains known from section 2.

Let Ω have a C3-boundary and ε ∈ A0,q(Ω) . Our aim is to construct a linear and
in some sense ’continuous’ tangential trace operator

Γt : Rq
loc(Ω) −→ Rq(∂Ω)

with some corresponding linear and continuous tangential extension operator

Γ̌t : Rq(∂Ω) −→ Rq
vox(Ω) ∩ ε−1Dq

vox(Ω)

satisfying ΓtΓ̌t = id onRq(∂Ω) .
We need some preliminaries. Let Ωb := Ω ∩ Ur3 as well as S := Sr3 . Then of

course ∂ Ωb = ∂ Ω∪̇S holds and from section 2.3 for m ∈ N we have the linear and
continuous traces

γb
t : Hm,q(Ωb)→ Hm−1/2,q(∂ Ωb) ,

γb
n : Hm,q(Ωb)→ Hm−1/2,q−1(∂ Ωb) ,

Γb
t : Rq(Ωb)→ Rq(∂ Ωb) ,

Γb
n : Dq(Ωb)→ Dq−1(∂ Ωb)

together with their corresponding linear and continuous extensions

γ̌b
t : Hm−1/2,q(∂ Ωb)→ Hm,q(Ωb) ∩

◦
Dq(Ωb) ,

γ̌b
n : Hm−1/2,q−1(∂ Ωb)→ Hm,q(Ωb) ∩

◦
Rq(Ωb) ,

Γ̌b
t : Rq(∂ Ωb)→ Rq(Ωb) ∩ ε−1

0D
q(Ωb) ,

Γ̌b
n : Dq−1(∂ Ωb)→ Dq(Ωb) ∩ ε−1

0R
q(Ωb) .
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First we introduce the tangential trace

γt : Hm,q
loc (Ω) −→ Hm−1/2,q(∂ Ω)

Φ 7−→ γb
t Φ
∣∣
∂ Ω

, (3.11)

which is well defined, i.e. independent of the special choice of Ωb , since C∞,q(Ωb)

is dense in Hm,q(Ωb) and γb
t Φ = γb

t Ψ for all Φ,Ψ ∈ C∞,q(Ωb) with Φ = Ψ ‘near ∂ Ω’.
Analogously we define the normal trace γn : Hm,q

loc (Ω)→ Hm−1/2,q−1(∂ Ω) .
For λ ∈ Hm−1/2,q(∂ Ω) we define λ̃ ∈ Hm−1/2,q(∂ Ωb) by

λ̃ :=

{
λ on ∂ Ω

0 on S

and present a tangential extension operator

γ̌t : Hm−1/2,q(∂ Ω) −→ Hm,q
vox (Ω) ∩

◦
Dq

vox(Ω)

λ 7−→ (1− η)γ̌b
t λ̃

. (3.12)

Clearly γ̌t depends on the special choice of Ωb and supp(γ̌tλ) ⊂ Ω ∩ Ur2 holds. Ap-
proximating γ̌b

t λ̃ with C∞,q(Ωb)-forms we calculate

γt
(
(1− η)γ̌b

t λ̃
)

= γb
t

(
(1− η)γ̌b

t λ̃
)∣∣∣
∂ Ω

= γb
t γ̌

b
t λ̃
∣∣∣
∂ Ω

= λ̃
∣∣∣
∂ Ω

= λ

and thus γtγ̌t = id on Hm−1/2,q(∂ Ω) holds. In the same way we construct a normal
extension operator

γ̌n : Hm−1/2,q−1(∂ Ω) −→ Hm,q
vox (Ω) ∩

◦
Rq

vox(Ω)

λ 7−→ (1− η)γ̌b
nλ̃

, (3.13)

which satisfies γnγ̌n = id . Clearly by our constructions the operators γt , γn and γ̌t ,
γ̌n are linear and continuous.

Looking once more at (2.39) this equation even holds true in our exterior domain
Ω for pairs Φ ∈ H1,q

loc(Ω) and Ψ ∈ H1,q+1
vox (Ω) . Especially for ϕ ∈ H1/2,q(∂ Ω) we have

γ̌nϕ ∈ H1,q+1
vox (Ω) and thus for all E ∈ H1,q

loc(Ω)

〈rotE, γ̌nϕ〉L2,q+1(Ω) + 〈E, div γ̌nϕ〉L2,q(Ω) = 〈γtE,ϕ〉L2,q(∂ Ω) .

Again this suggests to define a tangential trace

ΓtE ∈ H−1/2,q(∂ Ω)

of a q-form E ∈ Rq
loc(Ω) by

ΓtE(ϕ) = 〈ΓtE,ϕ〉H−1/2,q(∂ Ω) := 〈rotE, γ̌nϕ〉L2,q+1(Ω) + 〈E, div γ̌nϕ〉L2,q(Ω)

for all ϕ ∈ H1/2,q(∂ Ω) . Clearly again for E ∈ H1,q
loc(Ω) we have

ΓtE = 〈γtE, · 〉L2,q(∂ Ω)

and in this case we identify ΓtE with γtE ∈ H1/2,q(∂ Ω) . Furthermore, Γt has the
familiar properties, which can be proved in the same way as in the case of bounded
domains.
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Theorem 3.11 For each E ∈ Rq
loc(Ω) the tangential trace ΓtE is an element of Rq(∂Ω)

and Γt possesses the following properties:

(i)
∧

E∈Rqloc(Ω) ,

Ψ∈H1,q+1
vox (Ω)

〈ΓtE, γnΨ〉H−1/2,q(∂Ω) = 〈rotE,Ψ〉L2,q+1(Ω) + 〈E, divΨ〉L2,q(Ω)

(ii)
∧

E∈Rqloc(Ω)

Rot ΓtE = ΓtrotE

(iii) The mapping Γt : Rq
loc(Ω) → Rq(∂Ω) is continuous, i.e. there exists some positive

constant c , such that
||ΓtE||Rq(∂Ω) ≤ c · ||E||Rq(Ωb)

holds uniformly in E ∈ Rq
loc(Ω) .

(iv) E ∈
◦
Rq

loc(Ω) ⇐⇒ E ∈ Rq
loc(Ω) ∧ ΓtE = 0

Defining the normal trace acting on Dq
loc(Ω) by

Γn := (−1)(q−1)N ~ Γt∗ (3.14)

we get

Theorem 3.12 For each H ∈ Dq
loc(Ω) the normal trace ΓnH is an element of Dq−1(∂Ω)

and Γn has the following properties:

(i)
∧

H∈Dqloc(Ω) ,

Ψ∈H1,q−1
vox (Ω)

〈ΓnH, γtΨ〉H−1/2,q−1(∂Ω) = 〈divH,Ψ〉L2,q−1(Ω) + 〈H, rotΨ〉L2,q(Ω)

(ii)
∧

H∈Dqloc(Ω)

Div ΓnH = −ΓndivH

(iii) The mapping Γn : Dq
loc(Ω) → Dq−1(∂Ω) is continuous, i.e. there exists some

positive constant c , such that

||ΓnH||Dq−1(∂Ω) ≤ c · ||H||Dq(Ωb)

holds uniformly in H ∈ Dq
loc(Ω) .

(iv) H ∈
◦
Dq

loc(Ω) ⇐⇒ H ∈ Dq
loc(Ω) ∧ ΓnH = 0

Now we show that there exist the corresponding extension operators.
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Theorem 3.13 Let ε ∈ A0,q(Ω) . Then there exist two linear and continuous extension
operators

Γ̌t : Rq(∂Ω)→ Rq
vox(Ω) ∩ ε−1Dq

vox(Ω) ,

Γ̌n : Dq−1(∂Ω)→ Dq
vox(Ω) ∩ ε−1Rq

vox(Ω)

satisfying ΓtΓ̌t = id and ΓnΓ̌n = id . Moreover, Γ̌t and Γ̌n map on forms, which have got
their supports in Ω ∩ Ur2 .

Proof: For λ ∈ H−1/2,q(∂ Ω) we define λ̃ ∈ H−1/2,q(∂ Ωb) by

〈λ̃, ϕ〉H−1/2,q(∂ Ωb) := 〈λ, ϕ|∂ Ω〉H−1/2,q(∂ Ω)

for all ϕ ∈ H1/2,q(∂ Ωb) . Let λ ∈ Rq(∂Ω) . Then we define

Γ̌tλ := (1− η)Γ̌b
t λ̃ ∈ Rq

vox(Ω) ∩ ε−1Dq
vox(Ω)

and note supp Γ̌tλ ⊂ Ω ∩ Ur2 . Γ̌t is well defined since λ̃ ∈ Rq(∂ Ωb) holds, which
may be proved picking some ϕ ∈ H3/2,q+1(∂ Ωb) ⊂ H3/2,q+1(∂ Ω) and computing

〈λ̃,Divϕ〉H−1/2,q(∂ Ωb) = 〈λ,Divϕ〉H−1/2,q(∂ Ω)

= −〈Rotλ, ϕ〉H−1/2,q+1(∂ Ω) = −〈R̃otλ, ϕ〉H−1/2,q+1(∂ Ωb) .

To prove the continuity of Γ̌t we estimate

||Γ̌tλ||Rq(Ω)∩ε−1Dq(Ω) ≤ c · ||Γ̌b
t λ̃||Rq(Ωb) ≤ c · ||λ̃||Rq(∂ Ωb) ≤ c · ||λ||Rq(∂ Ω) , (3.15)

where we used the continuity of Γ̌b
t and ||λ̃||H−1/2,q(∂ Ωb) ≤ ||λ||H−1/2,q(∂ Ω) as well as

Rot λ̃ = R̃otλ .
It remains to show ΓtΓ̌t = id . Thus let λ ∈ Rq(∂Ω) and ϕ ∈ H1/2,q(∂ Ω) . Using

supp γ̌nϕ ⊂ Ωb , (2.24), Theorem 2.14 (i) and (2.23) we calculate

〈ΓtΓ̌tλ, ϕ〉H−1/2,q(∂ Ω)

= 〈rot Γ̌tλ, γ̌nϕ〉L2,q+1(Ω) + 〈Γ̌tλ, div γ̌nϕ〉L2,q(Ω)

=
〈

rot Γ̌b
t λ̃, (1− η)γ̌nϕ

〉
L2,q+1(Ωb)

+
〈

Γ̌b
t λ̃, div

(
(1− η)γ̌nϕ

)〉
L2,q(Ωb)

−
〈
η̂′(r)r−1R Γ̌b

t λ̃, γ̌nϕ
〉

L2,q+1(Ωb)
+
〈
Γ̌b
t λ̃, η̂

′(r)r−1T γ̌nϕ
〉

L2,q(Ωb)

=
〈
Γb
t Γ̌

b
t λ̃, γ

b
n(1− η)γ̌nϕ

〉
H−1/2,q(∂ Ωb)

+

∫
Ωb

η̂′(r)r−1
(
−R Γ̌b

t λ̃ ∧ ∗γ̌nϕ+ Γ̌b
t λ̃ ∧ ∗T γ̌nϕ

)
=
〈
λ̃, γb

n(1− η)γ̌nϕ
〉
H−1/2,q(∂ Ωb)

=
〈
λ,
(
γb
n(1− η)γ̌nϕ

)∣∣
∂ Ω

〉
H−1/2,q(∂ Ω)

=
〈
λ, γn(1− η)γ̌nϕ

〉
H−1/2,q(∂ Ω)

= 〈λ, ϕ〉H−1/2,q(∂ Ω) .
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The assertions upon Γ̌n := (−1)q(N−q) ∗ Γ̌t~ follow analogously or by the star opera-
tor. �

Sometimes it might be useful to work with solenoidal or irrotational extensions.
With a slightly stronger assumption on ε we get

Theorem 3.14 Let ε ∈ A0,q(Ω)∩A1,q(Zr1,r2) and ν ∈ A0,q(Ω) . Then there exist two linear
and continuous extension operators

0Γ̌t : Rq(∂Ω)→ Rq
vox(Ω) ∩ ε−1

0Dq
vox(Ω) ∩ νH

q(Ω)⊥ε ,

0Γ̌n : Dq−1(∂Ω)→ Dq
vox(Ω) ∩ ε−1

0Rq
vox(Ω) ∩ νH̃

q(Ω)⊥ε

satisfying Γt0Γ̌t = id and Γn0Γ̌n = id .

Remark 3.15 0Γ̌t and 0Γ̌n map on forms, which have got their supports in Ω ∩ Ur2 . More-
over, 0Γ̌t even maps to

Rq
vox(Ω) ∩ ε−1 div

( ◦
Rq+1

vox (Ω) ∩ H1,q+1
vox (Ω)

)
and 0Γ̌n to

Dq
vox(Ω) ∩ ε−1 rot

( ◦
Dq−1

vox (Ω) ∩ H1,q−1
vox (Ω)

)
.

Proof: Let λ ∈ Rq(∂Ω) and λ̃ ∈ Rq(∂ Ωb) as in the proof of Theorem 3.13. The idea is
to get the extension as a divergence of some compactly supported form. To do this
we look again at the proof of Theorem 2.16. There we have

Γ̌b
t λ̃ = ε−1 divH ∈ Rq(Ωb)

with some H ∈ rot
( ◦
Rq(Ωb) ∩H2,q(Ωb)

)
⊂ 0

◦
Rq+1(Ωb) ∩H1,q+1(Ωb) ∩ Hq+1(Ωb)⊥ sat-

isfying ||H||H1,q+1(Ωb) ≤ c · || divH||L2,q(Ωb) ≤ c · ||Γ̌b
t λ̃||L2,q(Ωb) by Theorem 2.8 and (2.17).

Putting
E := 0Γ̌tλ := ε−1 div

(
(1− η)H

)
∈ ε−1

0Dq
vox(Ω) ∩ νH

q(Ω)⊥ε

and computing

E = (1− η)Γ̌b
t λ̃− ε−1η̂′(r)r−1TH = Γ̌tλ− ε−1η̂′(r)r−1TH

we get E ∈ Rq
vox(Ω) and ΓtE = ΓtΓ̌tλ = λ since the second term of the sum belongs

to
◦
H1,q

vox(Ω) ⊂
◦
Rq

vox(Ω) . The continuity of 0Γ̌t follows by

||E||Rq(Ω) ≤ c ·
(
||Γ̌b

t λ̃||Rq(Ωb) + ||H||H1,q+1(Ωb)

)
≤ c · ||Γ̌b

t λ̃||Rq(Ωb) ≤ c · ||λ||Rq(∂ Ω)

using (3.15). Clearly the normal extension defined by 0Γ̌n := (−1)q(N−q) ∗ 0Γ̌t~ and
acting on Dq−1(∂Ω) possesses the corresponding properties. �

Finally we can prove the analogue to Theorem 2.18:
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Theorem 3.16 Let ` ∈ N0 , s ∈ R , Ω ⊂ RN be an exterior domain with a (C`+2 ∩ C3)-
boundary, i.e. Ω ∩ Ur0 is a (C`+2 ∩ C3)-region. Furthermore, let ε ∈ A`+1,q(Ω) as well
as

E ∈ Rq
s(Ω) ∩ ε−1Dq

s(Ω) , ΓtE ∈ H`+1/2,q(∂Ω) .

(i) Then rotE ∈ H`,q+1
s (Ω) and div εE ∈ H`,q−1

s (Ω) imply E ∈ H`+1,q
s (Ω) and with

some constant c > 0

||E||H`+1,q
s (Ω)

≤ c ·
(
||E||L2,q

s (Ω) + || rotE||H`,q+1
s (Ω) + || div εE||H`,q−1

s (Ω) + ||ΓtE||H`+1/2,q(∂Ω)

)
holds uniformly in E .

(ii) If additionally ε = id + ε̂ ∈ A`+1,q
τ (Ω) with τ > 0 and for all 1 ≤ |α| ≤ `+ 1

∂α ε̂ = O(r−|α|) as r →∞ ,

then rotE ∈ H`,q+1
s+1 (Ω) and div εE ∈ H`,q−1

s+1 (Ω) imply E ∈ H`+1,q
s (Ω) and there

exists some positive constant c , such that the estimate

||E||H`+1,q
s (Ω)

≤ c ·
(
||E||L2,q

s (Ω) + || rotE||H`,q+1
s+1 (Ω) + || div εE||H`,q−1

s+1 (Ω) + ||ΓtE||H`+1/2,q(∂Ω)

)
holds uniformly in E .

Proof: Let Ě := γ̌tΓtE ∈ H`+1,q
vox (Ω) . Then Ê := E − Ě ∈

◦
Rq
s(Ω) ∩ ε−1Dq

s(Ω) satisfies
the assumptions of Theorem 3.9. Thus we get Ê ∈ H`+1,q

s (Ω) resp. H`+1,q
s (Ω) and

using the continuity of γ̌t the asserted estimate as well. �

Remark 3.17 Clearly using the star operator and some transformation E  εE the as-
sumption ΓnεE ∈ H`+1/2,q−1(∂Ω) instead of ΓtE ∈ H`+1/2,q(∂Ω) yields the corresponding
theorem. Moreover, these regularity results hold for spaces of the form ε−1Rq

s(Ω) ∩ Dq
s(Ω)

as well.

3.4 Static solution theory

In this last section we generally assume that our exterior domain Ω has got the MLCP
and

ε = id + ε̂ ∈ A0,q
τ (Ω) ∩ C1,q(Ar0) with order of decay τ > 0

and the additional property

∂n ε̂ = O(r−1−τ ) as r →∞ , n = 1, . . . , N .

First we generalize the electro-magneto static results from [12] to inhomogeneous,
anisotropic media, i.e. we replace id by ε . Having done this we will present a static
solution theory using our trace and extension theorems, which deals with inhomo-
geneous boundary conditions.

We need a fundamental estimate:
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Lemma 3.18 There exists some constant c > 0 and some compact set K ⊂ RN , such that

||E||L2,q
−1(Ω) ≤ c ·

(
|| rotE||L2,q+1(Ω) + || div εE||L2,q−1(Ω) + ||E||L2,q(Ω∩K)

)
holds true for all E ∈ Rq

−1(Ω) ∩ ε−1Dq
−1(Ω) .

Proof: By a usual cutting technique w. l. o. g. we may restrict our considerations
to the special case Ω = RN and ε ∈ A1,q

τ with the asymptotics ∂n ε̂ = O(r−1−τ ) as
r →∞ for n = 1, . . . , N . Picking some E ∈ Rq

−1 ∩ ε−1Dq
−1 by Theorem 3.6 (ii) we get

E ∈ H1,q
−t for all t ≥ 1 and the estimate (with c depending on t but not on E)

||E||H1,q
−t
≤ c ·

(
||E||L2,q

−t
+ || rotE||L2,q+1

1−t
+ || div εE||L2,q−1

1−t

)
. (3.16)

From
[
[12], Lemma 5

]
we receive a compact set K , such that

||E||L2,q
−1
≤ c ·

(
|| rotE||L2,q+1 + || divE||L2,q−1 + ||E||L2,q(K)

)
.

Then (3.16) (for t = 1) and the latter estimate yield

||E||H1,q
−1
≤ c ·

(
|| rotE||L2,q+1 + || div εE||L2,q−1 + ||E||L2,q(K) + ||E||H1,q

−1−τ

)
.

Using (3.16) (for t = 1 + τ ) again the term ||E||H1,q
−1−τ

may be replaced by ||E||L2,q
−1−τ

.
Since τ > 0 this one can be swallowed by the left hand side, which maybe produces
some other compact set K̃ ⊃ K . �

We note that we did not need the MLCP for the proof of this lemma. But this
lemma and the MLCP yield directly by an indirect argument

Corollary 3.19 Let ν ∈ A0,q(Ω) . εH
q
−1(Ω) is finite dimensional and there exists some

positive constant c , such that

||E||L2,q
−1(Ω) ≤ c ·

(
|| rotE||L2,q+1(Ω) + || div εE||L2,q−1(Ω)

)
holds for all E ∈

◦
Rq
−1(Ω) ∩ ε−1Dq

−1(Ω) ∩ εH
q
−1(Ω)⊥−1,ν . Here we denote by ⊥−1,ν the

orthogonality w. r. t. the 〈νρ−1 · , ρ−1 · 〉Ω-scalar product.

Now we are able to prove

Lemma 3.20 Let ν ∈ A0,q(Ω) . With closures taken in L2(Ω) we have

(i) rot
◦
Rq(Ω) = rot

◦
Rq

vox(Ω) = rot
◦
Rq
−1(Ω)

= rot
( ◦
Rq
−1(Ω) ∩ ε−1

0Dq
−1(Ω) ∩ εH

q
−1(Ω)⊥−1,ν

)
,

(ii) div Dq(Ω) = div Dq
vox(Ω) = div Dq

−1(Ω)

= div
(
Dq
−1(Ω) ∩ ε−1

0

◦
Rq
−1(Ω) ∩ ε−1H

q
−1(Ω)⊥−1,ν

)
.
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Proof: The proof is analogous to the one of
[
[12], Lemma 7

]
. Nevertheless, let us

briefly indicate how to prove (i). The other assertion follows similarly. To this end

let G ∈ rot
◦
Rq(Ω) and (En)n∈N ⊂

◦
Rq(Ω) be some sequence with rotEn

n→∞−−−→ G in

L2,q+1(Ω) . Using (3.5) w. l. o. g. En ∈
◦
Rq(Ω) ∩ ε−1

0D
q(Ω) holds. Moreover, by the

projection theorem applied in L2,q
−1(Ω) we may assume

En ∈
◦
Rq
−1(Ω) ∩ ε−1

0Dq
−1(Ω) ∩ εH

q
−1(Ω)⊥−1,ν .

By Corollary 3.19 (En)n∈N is a L2,q
−1(Ω)-Cauchy sequence and the limit E ∈ L2,q

−1(Ω)

even is an element of
◦
Rq
−1(Ω) ∩ ε−1

0Dq
−1(Ω) ∩ εH

q
−1(Ω)⊥−1,ν , which completes the

proof. �

As in the bounded domain case we introduce the range

W q(Ω) := div Dq(Ω)× rot
◦
Rq(Ω)× Cdq−1 .

An immediate and easy conclusion of Lemma 3.20 is our first main result of this
section:

Theorem 3.21 Let dq−1 continuous linear functionals Φ`
ε on Rq

−1(Ω) ∩ ε−1Dq
−1(Ω) with

εH
q
−1(Ω) ∩

dq−1⋂
`=1

N(Φ`
ε) = {0}

be given. Then with Φε := (Φ1
ε · , . . . ,Φ

dq−1
ε · )

Maxε :
◦
Rq
−1(Ω) ∩ ε−1Dq

−1(Ω) −→ W q(Ω)
E 7−→

(
div εE, rotE,Φε(E)

)
is a topological isomorphism.
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Remark 3.22

(i) For any ν ∈ A0,q(Ω) we can choose Φ`
ε := 〈νρ−1 · , ρ−1h`〉L2,q(Ω) with an arbitrary

basis {h1, . . . , hdq−1
} of εH

q
−1(Ω) .

(ii) Let (ν̃, ν̂) ∈ A0,q−1(Ω)× A0,q+1(Ω) . By (3.5) we obtain

W q(Ω) =
(

0Dq−1(Ω) ∩ ν̃H
q−1(Ω)⊥

)
×
(

0

◦
Rq+1(Ω) ∩ ν̂H

q+1(Ω)⊥ν̂
)
× Cdq−1 .

(iii) If we replace ε by ε−1 and consider ε Max = Maxε−1 ε , then

ε Max : ε−1
◦
Rq
−1(Ω) ∩ Dq

−1(Ω) −→ W q(Ω)
E 7−→

(
divE, rot εE,Φε−1(εE)

)
is a topological isomorphism as well.

(iv) Clearly we have the corresponding dual results using the star operator.

Finally we present an electro-magneto static solution theory, which handles in-
homogeneous boundary data. To this end we additionally assume that Ω has got a
C3-boundary. Using the functionals Φ`

ε from Theorem 3.21 we consider the follow-
ing problem:

Find for some given data G,F, λ, α a q-form E ∈ Rq
−1(Ω) ∩ ε−1Dq

−1(Ω) satisfying

rotE = G ,

divεE = F ,

ΓtE = λ ,

Φ`
ε(E) = α` , ` = 1, . . . , dq−1 .

(3.17)

We obtain the second main result of this section:

Theorem 3.23 The conditions G ∈ 0Rq+1(Ω) , F ∈ 0Dq−1(Ω)∩Hq−1(Ω)⊥ , λ ∈ Rq(∂Ω) ,
α ∈ Cdq−1 and

Rotλ = ΓtG ,
∧

h∈Hq+1(Ω)

〈G, h〉L2,q+1(Ω) = 〈λ, γnh〉H−1/2,q(∂Ω)

are necessary and sufficient for the solvability of (3.17). The solution is unique and depends
continuously on the data, i.e. there exists a positive constant c independent of E or the data,
such that

||E||Rq−1(Ω)∩ε−1Dq−1(Ω) ≤ c ·
(
||F ||L2,q−1(Ω) + ||G||L2,q+1(Ω) + ||λ||Rq(∂Ω) + |α|

)
holds.
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Proof: The proof is similar to the one of Theorem 2.20. By Theorem 3.13 we get for
the extension Ě := Γ̌tλ ∈ Rq

vox(Ω) ∩ ε−1Dq
vox(Ω) . Then the ansatz E := Ě + Ẽ with

Ẽ ∈
◦
Rq
−1(Ω) ∩ ε−1Dq

−1(Ω) leads us with Theorem 3.11 (iv) to the system

rotẼ = G− rot Ě =: G̃ ∈ 0Rq+1(Ω) ,

divεẼ = F − div εĚ =: F̃ ∈ 0Dq−1(Ω) ∩Hq−1(Ω)⊥ ,

Φ`
ε(Ẽ) = α` − Φ`

ε(Ě) =: α̃` , ` = 1, . . . , dq−1 ,

which is uniquely solved by Ẽ := Max−1
ε (F̃ , G̃, α̃`) with Maxε from Theorem 3.21,

if (F̃ , G̃, α̃`) ∈ W q(Ω) . Thus using Remark 3.22 (ii) it only remains to show that

G̃ belongs to
◦
Rq+1(Ω) ∩ Hq+1(Ω)⊥ . As in the bounded domain case G̃ satisfies the

homogeneous (electrical) boundary condition. To check the orthogonality on the
Dirichlet forms we pick some h ∈ Hq+1(Ω) ⊂ H1,q+1(Ω)

(
by Theorem 3.9 (ii)

)
and

some cut-off function ξ ∈
◦
C∞ with ξ|Ωb

= 1 , e.g. ξ := 1− η(1 + t−r3
r4−r3 ) and calculate

〈G̃, h〉L2,q+1(Ω) = 〈G, h〉L2,q+1(Ω) − 〈rot Ě, h〉L2,q+1(Ω) − 〈Ě, div h〉L2,q(Ω)

= 〈G, h〉L2,q+1(Ω) − 〈rot Ě, ξh〉L2,q+1(Ω) − 〈Ě, div ξh〉L2,q(Ω)

= 〈G, h〉L2,q+1(Ω) − 〈λ, γnξh︸︷︷︸
=γnh

〉H−1/2,q(∂Ω) = 0

using Theorem 3.11 (i) since ξh ∈ H1,q+1
vox (Ω) . �

We finish this paper by shortly turning to the dual problem using the Hodge

star operator. To this end we define εH̃
q
t (Ω) := 0

◦
Dq
t (Ω) ∩ ε−1

0Rq
t (Ω) with t ∈ R , the

space of ‘(weighted harmonic) Neumann fields’. Again we denote H̃
q
t (Ω) := idH̃

q
t (Ω)

and µH̃
q(Ω) := µH̃

q
0(Ω) . Then we have εH̃

q
t (Ω) = ∗∗ε∗Hq′

t (Ω) and hence the dimen-
sion of εH̃

q
t (Ω) equals dq

′

t (with q′ = N − q). Furthermore, let dq
′

−1 continuous linear
functionals Ψ`

ε on Dq
−1(Ω) ∩ ε−1Rq

−1(Ω) with

εH̃
q
−1(Ω) ∩

dq
′
−1⋂
`=1

N(Ψ`
ε) = {0}

be given. We formulate the dual problem:
Find for given data F,G, λ, α a q-form H ∈ Dq

−1(Ω) ∩ ε−1Rq
−1(Ω) satisfying

divH = F ,

rotεH = G ,

ΓnH = λ ,

Ψ`
ε(H) = α` , ` = 1, . . . , dq

′

−1 .

(3.18)

Analogously to Corollary 2.21 we obtain
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Corollary 3.24 The conditionsG ∈ 0Rq+1(Ω)∩H̃q+1(Ω)⊥ , F ∈ 0Dq−1(Ω) , λ ∈ Dq−1(∂Ω) ,
α ∈ Cdq

′
−1 and

Div λ = −ΓnF ,
∧

h∈H̃q−1(Ω)

〈F, h〉L2,q−1(Ω) = 〈λ, γth〉H−1/2,q−1(∂Ω)

are necessary and sufficient for the solvability of (3.18). The solution is unique and depends
continuously on the data, i.e. there exists a positive constant c independent of H or the data,
such that

||H||Dq−1(Ω)∩ε−1Rq−1(Ω) ≤ c ·
(
||F ||L2,q−1(Ω) + ||G||L2,q+1(Ω) + ||λ||Dq−1(∂Ω) + |α|

)
holds.
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