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Abstract
In this paper we show how to find the exact error (not just an estimate of the
error) of a conforming mixed approximation by using the functional type a pos-
teriori error estimates in the spirit of Repin [14]. The error is measured in a
mixed norm which takes into account both the primal and dual variables. We
derive this result for all elliptic partial differential equations of the class

A∗A x+ x = f,

where A is a linear, densely defined and closed (usually a differential) operator
and A∗ its adjoint. We first derive a special version of our main result by using
a simplified reaction-diffusion problem to demonstrate the strong connection to
the classical functional a posteriori error estimates of Repin [14]. After this we
derive the main result in an abstract setting. Our main result states that in order
to obtain the exact global error value of a conforming mixed approximation with
primal variable x and dual variable y, i.e.,

A∗ y + x = f, Ax = y,

one only needs the problem data and the approximation (x̃, ỹ) ∈ D(A)×D(A∗)
of the exact solution (x, y) ∈ D(A)×

(
D(A∗) ∩R(A)

)
, i.e., the equality

|x− x̃|2 + |A(x− x̃)|2 + |y − ỹ|2 + |A∗(y − ỹ)|2 = |f − x̃−A∗ ỹ|2 + |ỹ −A x̃|2

holds. There is no need for calculating any auxiliary data. The calculation of the
exact error consists of simply calculating two (usually integral) quantities where
all the quantities are known after the approximate solution has been obtained
by any conforming method guaranteeing (x̃, ỹ) ∈ D(A)×D(A∗). We also show
some numerical computations to confirm the results.

Key words functional a posteriori error estimate, error equality, elliptic boundary value
problem, mixed formulation, combined norm
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1 Introduction

The results presented in this paper are based on the conception of functional type
a posteriori error estimates. These type estimates are valid for any conforming ap-
proximation and contain only global constants. We note that estimates for noncon-
forming approximations are known as well but will not be discussed in this paper.
In the case of the class of PDEs studied in this paper, the estimates do not contain
even global constants. For a detailed exposition of the theory see the books [14] by
Repin and [9] by Repin and Neittaanmäki or for a more computational point of view
[8] by Mali, Repin, and Neittaanmäki.

We will measure the error of our approximations in a combined norm, which
includes the error of both, the primal and the dual variable. This is especially useful
for mixed methods where one calculates an approximation for both the primal and
dual variables, see e.g. the book of Brezzi and Fortin [2].

In this paper, we study the linear equation

(A∗ α2 A +α1)x = f

presented in the mixed form

A∗ y + α1x = f, α2 A = y,

where α1, α2 are linear and self adjoint topological isomorphisms on two Hilbert
spaces H1 and H2 and A : D(A) ⊂ H1 → H2 is a linear, densely defined and closed
operator with adjoint operator A∗ : D(A∗) ⊂ H2 → H1. Our main result is Theorem
3.4 and it shortly reads as the functional a posterior error equality

|x− x̃|2H1,α1
+ |A(x− x̃)|2H2,α2

+ |y − ỹ|2
H2,α

−1
2

+ |A∗(y − ỹ)|2
H1,α

−1
1

= |f − α1x̃− A∗ ỹ|2
H1,α

−1
1

+ |ỹ − α2 A x̃|2
H2,α

−1
2

(1.1)

being valid for any conforming mixed approximation (x̃, ỹ) ∈ D(A) ×D(A∗) of the
exact solution (x, y) ∈ D(A)×D(A∗).

Functional a posteriori error estimates for combined norms were first exposed in
the paper [16], where the authors present two-sided estimates bounding the error by
the same quantity from below and from above aside from multiplicative constants.
Unlike in other estimates, these constants are 1 and

√
3. In [16] the authors studied

problems of the type

A∗ αAx = f, (1.2)

i.e., the case α = α2, α1 = 0.
The paper is organized as follows. In Section 2 we prove our main results for

a simple model problem and show the strong connection to the classical functional
a posteriori error estimates. In Section 3 we derive our main results in an abstract
Hilbert space setting and in Section 4 we show applications of the general results to
several classical problems. Section 5 is devoted to inhomogeneous boundary con-
ditions and finally in Section 6 we present some numerical experiments to confirm
our theoretical results.
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2 Results for a Model Problem

Let Ω ⊂ Rd, d ≥ 1, be open and without loss of generality connected, so let Ω
be a domain with boundary Γ := ∂Ω. We emphasize that Ω may be bounded or
unbounded, like an exterior domain, or non of both. Moreover, Γ does not need to
have any smoothness. We denote by 〈 · , · 〉L2 and | · |L2 the inner product and the
norm in L2 for scalar-, vector- and matrix-valued functions. Throughout the paper
we will not indicate the dependence on Ω in our notations of the functional spaces.
Moreover, we define the usual Sobolev spaces

H1 := {ϕ ∈ L2 | ∇ϕ ∈ L2}, D := {ψ ∈ L2 | divψ ∈ L2}

and as the closure of smooth and compactly supported test functions1

H1
Γ := C∞Γ

H1

.

These are Hilbert spaces equipped with the respective graph norms denoted by
| · |H1 , | · |D .

Our simple model reaction-diffusion problem reads as follows: Find the potential
u ∈ H1

Γ, i.e., the primal variable, such that

−∆u+ u = − div∇u+ u = f, (2.1)

where f ∈ L2 is the source term. The variational formulation of this problem consists
of finding u ∈ H1

Γ such that

∀ϕ ∈ H1
Γ 〈∇u,∇ϕ〉L2 + 〈u, ϕ〉L2 = 〈f, ϕ〉L2 . (2.2)

The natural energy norm for this problem is | · |H1 . Of course, by the Lax-Milgram
lemma or Riesz’ representation theorem (2.2) has a unique solution u ∈ H1

Γ satisfying

|u|H1 ≤ |f |L2 .

Often, a variable of interest is also the flux, i.e., the dual variable,

p := ∇u ∈ D,

leading to the mixed formulation

− div p+ u = f, ∇u = p.

We note that indeed by (2.2) the flux p belongs to D and div p = u − f holds. Let us
further emphasize that even

p ∈ D ∩∇H1
Γ

holds, this is, p is also irrotational, has got vanishing tangential trace and is L2-
perpendicular to the so-called Dirichlet fields.

We will understand a pair (ũ, p̃) ∈ H1
Γ×D without further requirements as an

approximation of the exact solution pair (u, p) ∈ H1
Γ×D. For the convenience of

the reader, we first present the classical functional error upper bounds, frequently
called error majorants, for the approximations of u and p.

1The spaces C∞Γ and H1
Γ are often denoted by C∞◦ and H1

◦.
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Theorem 2.1. For any approximation ũ ∈ H1
Γ of the exact potential u

|u− ũ|2H1 = min
ψ∈D
M∇(ũ, ψ) =M∇(ũ, p), (2.3)

holds, where

M∇(ũ, ψ) := |f − ũ+ divψ|2L2 + |ψ −∇ũ|2L2 . (2.4)

Proof. To derive the upper bound, we subtract 〈∇ũ,∇ϕ〉L2 + 〈ũ, ϕ〉L2 from both sides
of the generalized form (2.2), and obtain for all ϕ ∈ H1

Γ

〈∇(u− ũ),∇ϕ〉L2 + 〈u− ũ, ϕ〉L2 = 〈f − ũ, ϕ〉L2 − 〈∇ũ,∇ϕ〉L2 . (2.5)

For an arbitrary function ψ ∈ D and any ϕ ∈ H1
Γ we have 〈divψ, ϕ〉L2 +〈ψ,∇ϕ〉L2 = 0.

By adding this to the right hand side of (2.5) it becomes

〈∇(u− ũ),∇ϕ〉L2 + 〈u− ũ, ϕ〉L2 = 〈f − ũ+ divψ, ϕ〉L2 + 〈ψ −∇ũ,∇ϕ〉L2

≤ |f − ũ+ divψ|L2|ϕ|L2 + |ψ −∇ũ|L2|∇ϕ|L2 (2.6)

≤M∇(ũ, ψ)
1/2|ϕ|H1 .

By choosing ϕ := u − ũ ∈ H1
Γ we obtain |u − ũ|2

H1 ≤ M∇(ũ, ψ). Since p ∈ D, we see
thatM∇(ũ, p) = |u− ũ|2

H1 .

As the majorantM∇ is sharp, it immediately provides a technique to obtain ap-
proximations for the exact flux p. Minimizing M∇(ψ) :=M∇(ũ, ψ) with respect to ψ
yields by differentiation for all ψ ∈ D

0
!

= M ′
∇(p)ψ = 2〈f − ũ+ div p, divψ〉L2 + 2〈p−∇ũ, ψ〉L2

= 2〈f + div p, divψ〉L2 + 2〈p, ψ〉L2

since 〈ũ, divψ〉L2 = −〈∇ũ, ψ〉L2 because ũ ∈ H1
Γ. Hence the following problem occurs:

Find p ∈ D such that

∀ψ ∈ D 〈div p, divψ〉L2 + 〈p, ψ〉L2 = −〈f, divψ〉L2 . (2.7)

Note that ũ is not present here and the natural energy norm for this problem is | · |D .
Once again, by the Lax-Milgram lemma (2.7) has a unique solution p ∈ D satisfying

|p|D ≤ |f |L2 .

Since∇u ∈ D solves (2.7), i.e., with (2.1)

〈div∇u, divψ〉L2 = 〈u, divψ〉L2 − 〈f, divψ〉L2 = −〈∇u, ψ〉L2 − 〈f, divψ〉L2 ,

we get indeed p = ∇u.
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Remark 2.2.

(i) The variational formulation (2.7) for p can also be achieved by testing (2.1)
with divψ for all ψ ∈ D since

−〈f, divψ〉L2 = 〈div∇u, divψ〉L2 − 〈u, divψ〉L2

= 〈div∇u, divψ〉L2 + 〈∇u, ψ〉L2 = 〈div p, divψ〉L2 + 〈p, ψ〉L2 .

(ii) By (2.7)
p⊥ D0 := {v ∈ D | div v = 0}

holds. Thus, by the Helmholtz decomposition, i.e., L2 = ∇H1
Γ ⊕ D0, we get

p ∈ ∇H1
Γ. Here, ⊥ and ⊕ denote orthogonality and the orthogonal sum in L2.

(iii) (2.7) is the dual problem to (2.2) and its strong formulation in duality to (2.1)
is

−∇ div p+ p = ∇f (2.8)

with mixed formulation

∇v + p = ∇f, − div p = v.

We note that in general div p does not belong to H1
Γ, not even to H1. On the

other hand, by (2.7) we see div p+f ∈ H1
Γ with∇(div p+f) = p and the natural

Neumann boundary condition div p + f = 0 at Γ appears. Hence f belongs to
H1

Γ, if and only if v := − div p ∈ H1
Γ, and f ∈ H1, if and only if v ∈ H1. In both

cases (2.8) holds and moreover for all ϕ ∈ H1
Γ

〈∇v,∇ϕ〉L2 + 〈v, ϕ〉L2 = −〈p,∇ϕ〉L2 + 〈v, ϕ〉L2 + 〈∇f,∇ϕ〉L2 = 〈∇f,∇ϕ〉L2 ,

thus v ∈ H1 solves in the strong sense −∆v + v = −∆f and v = f at Γ if
∆f ∈ L2.

Theorem 2.3. For any approximation p̃ ∈ D of the exact flux p

|p− p̃|2D = min
ϕ∈H1

Γ

Mdiv(p̃, ϕ) =Mdiv(p̃, u), (2.9)

holds, where

Mdiv(p̃, ϕ) := |f − ϕ+ div p̃|2L2 + |p̃−∇ϕ|2L2 . (2.10)

Proof. We add −〈div p̃, divψ〉L2 − 〈p̃, ψ〉L2 to the both sides of the variational formu-
lation (2.7) and obtain for all ψ ∈ D

〈div(p− p̃), divψ〉L2 + 〈p− p̃, ψ〉L2 = −〈f + div p̃, divψ〉L2 − 〈p̃, ψ〉L2 . (2.11)
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For any ϕ ∈ H1
Γ we have again 〈∇ϕ, ψ〉L2 + 〈ϕ, divψ〉L2 = 0. By adding this to the

right hand side of (2.11) it becomes

〈div(p− p̃), divψ〉L2+〈p− p̃, ψ〉L2 = −〈f − ϕ+ div p̃, divψ〉L2 − 〈p̃−∇ϕ, ψ〉L2

≤ |f − ϕ+ div p̃|L2| divψ|L2 + |p̃−∇ϕ|L2|ψ|L2 (2.12)

≤Mdiv(p̃, ϕ)
1/2|ψ|D .

Choosing ψ = p − p̃ ∈ D yields |p − p̃|2D ≤ Mdiv(p̃, ϕ). FinallyMdiv(p̃, u) = |p − p̃|2D
follows by u ∈ H1

Γ.

As before, the sharpness of the majorantMdiv gives us a technique to obtain ap-
proximations of the potential u. In fact, global minimization ofMdiv(ϕ) :=Mdiv(p̃, ϕ)
with respect to ϕ would lead to the variational formulation (2.2) for finding u, since
for all ϕ ∈ H1

Γ

0
!

= M ′
div(u)ϕ = −2〈f − u+ div p̃, ϕ〉L2 − 2〈p̃−∇u,∇ϕ〉L2

= 2〈u− f, ϕ〉L2 + 2〈∇u,∇ϕ〉L2

since 〈div p̃, ϕ〉L2 = −〈p̃,∇ϕ〉L2 by p̃ ∈ D.
Finally, we note that the functional a posteriori error majorants M∇ and Mdiv

contain only the problem data, conforming numerical approximations and the free
functions ψ and ϕ.

We define the combined norm for the reaction-diffusion problem in a canonical
way as the sum of the energy norms for the potential and the flux:

‖(ϕ, ψ)‖2 := |ϕ|2H1 + |ψ|2D = |ϕ|2L2 + |∇ϕ|2L2 + |ψ|2L2 + | divψ|2L2

Remark 2.4. We know |u|H1 ≤ |f |L2 and |p|D ≤ |f |L2 . It is indeed notable that

‖(u, p)‖ = |f |L2

holds, which follows immediately by f = − div p+ u and p = ∇u since

|f |2L2 = | div p|2L2 + |u|2L2 − 2〈div p, u〉L2 = | div p|2L2 + |u|2L2 + 2|p|2L2 = ‖(u, p)‖2.

Hence the solution operator

L : L2 → H1
Γ×D; f 7→ (u, p)

has norm |L| = 1, i.e., L is an isometry.

Our main result for this simple reaction-diffusion problem basically combines
Theorems 2.1 and 2.3. However, we outline that the resulting right hand side does
not contain u or p anymore and is even an equality.
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Theorem 2.5. For any approximation (ũ, p̃) ∈ H1
Γ×D of the exact solution (u, p)

‖(u, p)− (ũ, p̃)‖2 =Mmix(ũ, p̃) (2.13)

and the normalized counterpart

‖(u, p)− (ũ, p̃)‖2

‖(u, p)‖2
=
Mmix(ũ, p̃)

|f |2
L2

(2.14)

hold, where

Mmix(ũ, p̃) :=M∇(ũ, p̃) =Mdiv(p̃, ũ) = |f − ũ+ div p̃|2L2 + |p̃−∇ũ|2L2 . (2.15)

The error in the combined norm can thus be exactly computed by quantities we
already know: the given problem data f and the conforming approximation (ũ, p̃).

Proof. Set ψ = p̃ in (2.6) and ϕ = ũ in (2.12). Then, for any ϕ ∈ H1
Γ and any ψ ∈ D we

have

〈∇(u− ũ),∇ϕ〉L2 + 〈u− ũ, ϕ〉L2 =〈f − ũ+ div p̃, ϕ〉L2 + 〈p̃−∇ũ,∇ϕ〉L2 , (2.16)

〈div(p− p̃), divψ〉L2 + 〈p− p̃, ψ〉L2 =−〈f − ũ+ div p̃, divψ〉L2− 〈p̃−∇ũ, ψ〉L2 . (2.17)

Adding (2.16) and (2.17) we obtain

〈∇(u− ũ),∇ϕ〉L2 + 〈u− ũ, ϕ〉L2 + 〈div(p− p̃), divψ〉L2 + 〈p− p̃, ψ〉L2

= 〈f − ũ+ div p̃, ϕ− divψ〉L2 + 〈p̃−∇ũ,∇ϕ− ψ〉L2 .
(2.18)

By choosing ϕ := u− ũ ∈ H1
Γ and ψ := p− p̃ ∈ D, the left hand side of (2.18) turns to

the combined norm of the error of the approximation. Since we have

ϕ− divψ = u− ũ− div p+ div p̃ = f − ũ+ div p̃,

∇ϕ− ψ = ∇u−∇ũ− p+ p̃ = p̃−∇ũ,

(2.18) becomes (2.13). Putting ũ = 0, p̃ = 0 in (2.13) shows ‖(u, p)‖ = |f |L2 and thus
(2.14).

Remark 2.6.

(i) We note the similarity of the error majorants in Theorems 2.1, 2.3 and 2.5.

(ii) It is clear that Theorem 2.5 generalizes Theorems 2.1 and 2.3 since these two
can be recovered from Theorem 2.5. We just estimate

M∇(ũ, p) = |u− ũ|2H1 ≤ ‖(u, p)− (ũ, p̃)‖2 =Mmix(ũ, p̃) =M∇(ũ, p̃)

and note that the left hand side does not depend on ψ := p̃ ∈ D. Analogously
we estimate

Mdiv(p̃, u) = |p− p̃|2D ≤ ‖(u, p)− (ũ, p̃)‖2 =Mmix(ũ, p̃) =Mdiv(p̃, ũ)

and note that the left hand side does not depend on ϕ := ũ ∈ H1
Γ.
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Remark 2.7. There is a simple proof of Theorem 2.5 using just (2.1) and p = ∇u:

Mmix(ũ, p̃) = |f − ũ+ div p̃|2L2 + |p̃−∇ũ|2L2

= |u− ũ+ div p̃− div p|2L2 + |p̃− p+∇u−∇ũ|2L2

= |u− ũ|2L2 + | div(p̃− p)|2L2 + 2〈u− ũ, div(p̃− p)〉L2

+ |p̃− p|2L2 + |∇(u− ũ)|2L2 + 2〈p̃− p,∇(u− ũ)〉L2

= ‖(u, p)− (ũ, p̃)‖2

In the last line we have used as before 〈u − ũ, div(p̃ − p)〉L2 = −〈∇(u − ũ), p̃ − p〉L2

since u− ũ ∈ H1
Γ. This shows immediately, that Theorem 2.5 extends to more general

situations as well. E.g. inhomogeneous boundary conditions can be treated since
only u− ũ ∈ H1

Γ is needed.

3 Results for the General Case

In this section we derive our main result in an abstract setting which allows for
mixed boundary conditions as well as coefficients for the PDEs. We will prove the
main result by using the simple approach presented in Remark 2.7.

Let H1 and H2 be two Hilbert spaces with inner products 〈 · , · 〉H1 and 〈 · , · 〉H2 ,
respectively. Moreover, let A : D(A) ⊂ H1 → H2 be a densely defined and closed
linear operator and A∗ : D(A∗) ⊂ H2 → H1 its adjoint. We note A∗∗ = Ā = A and

∀ϕ ∈ D(A) ∀ψ ∈ D(A∗) 〈Aϕ, ψ〉H2 = 〈ϕ,A∗ ψ〉H1 . (3.1)

Equipped with the natural graph norms D(A) and D(A∗) are Hilbert spaces. Fur-
thermore, we introduce two linear, self adjoint and positive topological isomor-
phisms α1 : H1 → H1 and α2 : H2 → H2. Especially we have

∃ c > 0 ∀ϕ ∈ H1 c−1|ϕ|2H1
≤ 〈α1ϕ, ϕ〉H1 ≤ c|ϕ|2H1

and the corresponding holds for α2. For any inner product and corresponding norm
we introduce weighted counterparts with sub-index notation. For example, for ele-
ments from H1 we define a new inner product 〈 · , · 〉H1,α1 := 〈α1 · , · 〉H1 and a new in-
duced norm | · |H1,α1 . Using this notation we can define for ϕ ∈ D(A) and ψ ∈ D(A∗)
new weighted norms on D(A), D(A∗) as well as on the product space D(A)×D(A∗)
by

|ϕ|2D(A),α1,α2
:= |ϕ|2H1,α1

+ |Aϕ|2H2,α2
,

|ψ|2
D(A∗),α−1

1 ,α−1
2

:= |ψ|2
H2,α

−1
2

+ |A∗ ψ|2
H1,α

−1
1
,

‖(ϕ, ψ)‖2 := |ϕ|2D(A),α1,α2
+ |ψ|2

D(A∗),α−1
1 ,α−1

2
.

Let f ∈ H1. By the Lax-Milgram lemma (or by Riesz’ representation theorem) we
get immediately:
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Lemma 3.1. The (primal) variational problem

∀ϕ ∈ D(A) 〈Ax,Aϕ〉H2,α2 + 〈x, ϕ〉H1,α1 = 〈f, ϕ〉H1 (3.2)

admits a unique solution x ∈ D(A) satisfying |x|D(A),α1,α2 ≤ |f |H1,α
−1
1

. Also, yx := α2 Ax

belongs to D(A∗) and A∗ yx = f − α1x. Hence, the strong and mixed formulations

A∗ α2 Ax+ α1x = f, (3.3)
A∗ yx + α1x = f, α2 Ax = yx (3.4)

hold with (x, yx) ∈ D(A)×
(
D(A∗)× α2R(A)

)
.

To get the dual problem, we multiply the first equation of (3.4) by A∗ ψ with
ψ ∈ D(A∗) taking the right weighted scalar product and use yx = α2 Ax ∈ D(A∗).
We obtain

〈A∗ yx,A∗ ψ〉H1,α
−1
1

+ 〈α1x,A
∗ ψ〉H1,α

−1
1

= 〈f,A∗ ψ〉H1,α
−1
1
.

Since x ∈ D(A)

〈α1x,A
∗ ψ〉H1,α

−1
1

= 〈x,A∗ ψ〉H1 = 〈Ax, ψ〉H2 = 〈yx, ψ〉H2,α
−1
2

holds, we get again by the Lax-Milgram’s lemma

Lemma 3.2. The (dual) variational problem

∀ψ ∈ D(A∗) 〈A∗ y,A∗ ψ〉H1,α
−1
1

+ 〈y, ψ〉H2,α
−1
2

= 〈f,A∗ ψ〉H1,α
−1
1

(3.5)

admits a unique solution y ∈ D(A∗) satisfying |y|D(A∗),α−1
1 ,α−1

2
≤ |f |H1,α

−1
1

. Moreover,
y = yx holds and thus y even belongs to D(A∗) ∩ α2R(A) with x and yx from Lemma 3.1.
Furthermore, α−1

1 (A∗ y − f) ∈ D(A) with Aα−1
1 (A∗ y − f) = −α−1

2 y.

Proof. We just have to show that yx ∈ D(A∗) solves (3.5). But this follows directly
since for all ψ ∈ D(A∗)

〈A∗ yx,A∗ ψ〉H1,α
−1
1

= −〈x,A∗ ψ〉H1 + 〈f,A∗ ψ〉H1,α
−1
1

= −〈Ax, ψ〉H2 + 〈f,A∗ ψ〉H1,α
−1
1

= −〈yx, ψ〉H2,α
−1
2

+ 〈f,A∗ ψ〉H1,α
−1
1
.

Hence yx = y and A∗∗ = A completes the proof.

Remark 3.3. We know |x|D(A),α1,α2 ≤ |f |H1,α
−1
1

and |y|D(A∗),α−1
1 ,α−1

2
≤ |f |H1,α

−1
1

. It is
indeed notable that

‖(x, y)‖ = |f |H1,α
−1
1

holds, which follows immediately by y = α2 Ax and

|f |2
H1,α

−1
1

= |A∗ α2 Ax+ α1x|2H1,α
−1
1

= |A∗ y|2
H1,α

−1
1

+ |α1x|2H1,α
−1
1

+ 2 〈A∗ α2 Ax, α1x〉H1,α
−1
1︸ ︷︷ ︸

= 〈A∗ α2 Ax, x〉H1

= |A∗ y|2
H1,α

−1
1

+ |x|2H1,α1
+ 2 〈α2 Ax,Ax〉H2︸ ︷︷ ︸

= |Ax|2H2,α2

= ‖(x, y)‖2.
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Thus the solution operator

L : H1 → D(A)×D(A∗); f 7→ (x, y)

(equipped with the proper weighted norms) has norm |L| = 1, i.e., L is an isometry.

By the latter remark the mixed norm on D(A) × D(A∗) yields an isomtery. This
motivates to use the mixed norm also for error estimates. As it turns out, we even
obtain an error equality. We present our main result of the paper.

Theorem 3.4. Let (x, y), (x̃, ỹ) ∈ D(A) × D(A∗) be the exact solution of (3.4) and any
conforming approximation, respectively. Then

‖(x, y)− (x̃, ỹ)‖2 =M(x̃, ỹ) (3.6)

and the normalized counterpart

‖(x, y)− (x̃, ỹ)‖2

‖(x, y)‖2
=
M(x̃, ỹ)

|f |2
H1,α

−1
1

(3.7)

hold, where

M(x̃, ỹ) := |f − α1x̃− A∗ ỹ|2
H1,α

−1
1

+ |ỹ − α2 A x̃|2
H2,α

−1
2
. (3.8)

Proof. Using (3.3) and inserting 0 = α2 Ax− y we get by (3.1)

M(x̃, ỹ) = |α1x− α1x̃+ A∗ y − A∗ ỹ|2
H1,α

−1
1

+ |ỹ − y + α2 Ax− α2 A x̃|2
H2,α

−1
2

= |x− x̃|2H1,α1
+ |A∗(y − ỹ)|2

H1,α
−1
1

+ 2〈α1(x− x̃),A∗(y − ỹ)〉H1,α
−1
1

+ |ỹ − y|2
H2,α

−1
2

+ |A(x− x̃)|2H2,α2
+ 2〈ỹ − y, α2 A(x− x̃)〉H2,α

−1
2

= |x− x̃|2D(A),α1,α2
+ |y − ỹ|2

D(A∗),α−1
1 ,α−1

2

+ 2〈x− x̃,A∗(y − ỹ)〉H1 − 2〈A(x− x̃), y − ỹ〉H2

= ‖(x, y)− (x̃, ỹ)‖2.

(3.7) follows by the isometry property in Remark 3.3, completing the proof.

We note that the isometry property, i.e., ‖(x, y)‖ = |f |H1,α
−1
1

, can be seen by insert-
ing (x̃, ỹ) = (0, 0) into (3.6) as well.

Remark 3.5. Theorem 3.4 can also be deduced as a special case of the equation [9,
(7.2.14)] in the book of Neittaamäki and Repin.

Remark 3.6. Of course, the majorantM is continuous. Especially we have

M(x̃, ỹ)
x̃→x in D(A)−−−−−−−→|y − ỹ|2

D(A∗),α−1
1 ,α−1

2
=M(x, ỹ),

M(x̃, ỹ)
ỹ→y in D(A∗)−−−−−−−−→|x− x̃|2D(A),α1,α2

=M(x̃, y)

andM(x̃, ỹ) → M(x, y) = 0 if (x̃, ỹ) → (x, y) in D(A) × D(A∗). This suggests that
the majorant M can also be used as an error indicator for adaptive computations,
even though the equality (3.6) is global.
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Corollary 3.7. Theorem 3.4 provides the well known a posteriori error estimates for the
primal and dual problems.

(i) For any x̃ ∈ D(A) it holds |x− x̃|2D(A),α1,α2
= min

ψ∈D(A∗)
M(x̃, ψ) =M(x̃, y).

(ii) For any ỹ ∈ D(A∗) it holds |y − ỹ|2
D(A∗),α−1

1 ,α−1
2

= min
ϕ∈D(A)

M(ϕ, ỹ) =M(x, ỹ).

Proof. We just have to estimate

|x− x̃|2D(A),α1,α2
≤ ‖(x, y)− (x̃, ỹ)‖2 =M(x̃, ỹ)

and note that the left hand side does not depend on ỹ ∈ D(A∗). By setting
ψ := ỹ ∈ D(A∗) we get

|x− x̃|2D(A),α1,α2
≤ inf

ψ∈D(A∗)
M(x̃, ψ).

But for ψ = y ∈ D(A∗) we seeM(x̃, y) = |x − x̃|2D(A),α1,α2
, which proves (i). Analo-

gously, we estimate

|y − ỹ|2
D(A∗),α−1

1 ,α−1
2
≤ ‖(x, y)− (x̃, ỹ)‖2 =M(x̃, ỹ)

and note that the left hand side does not depend on x̃ ∈ D(A). Setting ϕ := x̃ ∈ D(A)
we get

|y − ỹ|2
D(A∗),α−1

1 ,α−1
2
≤ inf

ϕ∈D(A)
M(ϕ, ỹ).

But for ϕ = x ∈ D(A) we seeM(x, ỹ) = |y − ỹ|2
D(A∗),α−1

1 ,α−1
2

, which shows (ii).

Remark 3.8.

(i) Since y⊥α−1
2
N(A∗) by (3.5) we get immediately y ∈ α2R(A) by the Helmholtz

decomposition H2 = N(A∗)⊕α−1
2
α2R(A).

(ii) If α−1
1 f ∈ D(A) we have z := α−1

1 A∗ y ∈ D(A) and the strong and mixed
formulations of (3.5) read

Aα−1
1 A∗ y + α−1

2 y = Aα−1
1 f,

A z + α−1
2 y = Aα−1

1 f, α−1
1 A∗ y = z.

Then for all ϕ ∈ D(A) we have

〈A z,Aϕ〉H2,α2 + 〈z, ϕ〉H1,α1 = −〈y,Aϕ〉H2 + 〈z, ϕ〉H1,α1 + 〈Aα−1
1 f, Aϕ〉H2,α2

= 〈Aα−1
1 f, Aϕ〉H2,α2

and hence z ∈
(
D(A) ∩ α−1

1 R(A∗)
)
⊂ D(A) is the unique solution of this

variational problem. Moreover, we have α2(A z − Aα−1
1 f) ∈ D(A∗) and also

A∗ α2(A z − Aα−1
1 f) = −α1z. If α2 Aα−1

1 f belongs to D(A∗) then this yields
α2 A z ∈ D(A∗) and the strong equation

A∗ α2 A z + α1z = A∗ α2 Aα−1
1 f.
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Our error equalities may also be used to compute the radius of the indeterminacy
set of solutions in terms of the radius of the indeterminacy set of right hand sides.
Often the right hand f of a problem is not known exactly but known to belong to an
indeterminacy ball around some known mean data f̂ . Let us write f = f̂+fosc. Since
the solution operator L from Remark 3.3 is an isometry, we have for the solutions
(x, y) = (x̂, ŷ) + (xosc, yosc)

‖(xosc, yosc)‖ = ‖Lfosc‖ = |fosc|H1,α
−1
1
.

Hence, the solutions belong to a ball of the same radius as the data. In other words,
any modeling error is mapped to an error of same size. If the magnitude of the oscil-
lating part fosc is known, we also know the magnitude of variations of the solution
set.

3.1 Application to Time Discretization

One main application of our error equalities might be that equations of the type

A∗ α2 Ax+ α1x = f (3.9)

naturally occur in many types of time discretizations for plenty of linear wave prop-
agation models. A large class of wave propagation models, like electro-magnetics,
acoustics or elasticity, have the structure

(∂tΛ
−1 + M)

[
x
y

]
=

[
g
h

]
, M =

[
0 −A∗

A 0

]
, Λ =

[
λ1 0
0 λ2

]
or

∂tλ
−1
1 x− A∗ y = g, ∂tλ

−1
2 y + Ax = h (3.10)

with initial condition (x, y)(0) = (x0, y0). Often the material is assumed to be time-
independent, i.e., Λ does not depend on time. In this case iΛ M is selfadjoint in the
proper Hilbert spaces and the solution theory follows immediately by the spectral
theorem. We note that formally the second order wave equation(

∂2
t − (Λ M)2

) [x
y

]
= (∂t − Λ M)Λ

[
g
h

]
, (Λ M)2 =

[
−λ1 A∗ λ2 A 0

0 −λ2 Aλ1 A∗

]
holds. A standard implizit time discretization for (3.10) is e.g. the backward Euler
scheme, i.e.,

δ−1
n λ−1

1 (xn − xn−1)−A∗ yn = gn, δ−1
n (yn − yn−1) + λ2 Axn = λ2hn, δn := tn − tn−1.

Hence, we obtain e.g. for xn

A∗ λ2 Axn + δ−2
n λ−1

1 xn = fn := A∗(λ2hn + δ−1
n yn−1) + δ−2

n λ−1
1 xn−1 + δ−1

n gn

provided that λ2hn ∈ D(A∗). Therefore (3.9) holds for xn with e.g. α1 = δ−2
n λ−1

1

and α2 = λ2. Of course, a similar equation holds for yn as well. We note that our
arguments extend to ‘all’ practically used time discretizations.

Functional a posteriori error estimates for wave equations can be found in [15,
12].
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4 Applications

We will discuss some standard applications. Let Ω ⊂ Rd, d ≥ 1. Since we want to
handle mixed boundary conditions, let us assume for simplicity, that Ω is a bounded
or an exterior domain with (compact) Lipschitz continuous boundary Γ. Moreover,
let ΓD be an open subset of Γ and ΓN := Γ \ ΓD its complement. We will denote by n
the outward unit normal of the boundary. The results presented in this section are
direct consequences of Theorem 3.4 and, of course, Lemmas 3.1, 3.2 and Remarks
3.6, 3.3 as well as Corollary 3.7 hold for all special applications.

4.1 Reaction-Diffusion

Find the scalar potential u ∈ H1, such that

− divα∇u+ ρ u = f in Ω,

u = 0 on ΓD, (4.1)
n · α∇u = 0 on ΓN.

The quadratic diffusion matrix α ∈ L∞ is symmetric, real valued and uniformly
positive definite. The reaction coefficient ρ ≥ ρ0 > 0 belongs to L∞ and the source
f to L2. The dual variable for this problem is the flux p = α∇u ∈ D. We need more
Sobolev spaces

H1
ΓD

:= C∞ΓD

H1

, DΓN
:= C∞ΓN

D
, DΓN,0 := {ψ ∈ DΓN

| divψ = 0},

where C∞ΓD
resp. C∞ΓN

are smooth test functions resp. vector fields having supports
bounded away from ΓD resp. ΓN. In the following we show the relation to the nota-
tion of Section 3:

α1 α2 A A∗ H1 H2 D(A) D(A∗)

ρ α ∇ − div L2 L2 H1
ΓD

DΓN

We note that indeed D(A∗) = DΓN
holds for Lipschitz domains, see e.g. [5], which is

not trivial at all. The relation (3.1) reads now

∀ϕ ∈ H1
ΓD
∀ψ ∈ DΓN

〈∇ϕ, ψ〉L2 = −〈ϕ, divψ〉L2 .

Considering the norms we have

|u|2H1,ρ,α = |u|2L2,ρ + |∇u|2L2,α,

|p|2D,ρ−1,α−1 = |p|2L2,α−1 + | div p|2L2,ρ−1 ,

‖(u, p)‖2 = |u|2H1,ρ,α + |p|2D,ρ−1,α−1 .

Now (4.1) reads: Find u ∈ H1
ΓD

with α∇u ∈ DΓN
such that

− divα∇u+ ρ u = f. (4.2)
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Equivalently, in mixed formulation we have: Find (u, p) ∈ H1
ΓD
×DΓN

such that

− div p+ ρ u = f, α∇u = p. (4.3)

The primal and dual variational problems are: Find (u, p) ∈ H1
ΓD
×DΓN

such that

∀ϕ ∈ H1
ΓD

〈∇u,∇ϕ〉L2,α + 〈u, ϕ〉L2,ρ = 〈f, ϕ〉L2 ,

∀ψ ∈ DΓN
〈div p, divψ〉L2,ρ−1 + 〈p, ψ〉L2,α−1 = −〈f, divψ〉L2,ρ−1 .

Theorem 4.1. Let (u, p), (ũ, p̃) ∈ H1
ΓD
×DΓN

be the exact solution of (4.3) and any approxi-
mation, respectively. Then

‖(u, p)− (ũ, p̃)‖2 =Mrd(ũ, p̃),
‖(u, p)− (ũ, p̃)‖2

‖(u, p)‖2
=
Mrd(ũ, p̃)

|f |2
L2,ρ−1

hold, whereMrd(ũ, p̃) = |f − ρũ+ div p̃|2
L2,ρ−1 + |p̃− α∇ũ|2

L2,α−1 .

Remark 4.2. We note |u|H1,ρ,α ≤ |f |L2,ρ−1 and |p|D,ρ−1,α−1 ≤ |f |L2,ρ−1 and indeed

‖(u, p)‖ = |f |L2,ρ−1 .

The solution operator L : L2 → H1
ΓD
×DΓN

; f 7→ (u, p) is an isometry, i.e. |L| = 1.

Corollary 4.3. Theorem 4.1 provides the well known a posteriori error estimates for the
primal and dual problems.

(i) For any ũ ∈ H1
ΓD

it holds |u− ũ|2H1,ρ,α = min
ψ∈DΓN

Mrd(ũ, ψ) =Mrd(ũ, p).

(ii) For any p̃ ∈ DΓN
it holds |p− p̃|2D,ρ−1,α−1 = min

ϕ∈H1
ΓD

Mrd(ϕ, p̃) =Mrd(u, p̃).

Remark 4.4. We have p = α∇u ∈ DΓN
∩α∇H1

ΓD
and u and (u, p) solve (4.2) and (4.3),

respectively. Moreover, div p+ f ∈ ρH1
ΓD

with

∇ρ−1(div p+ f) = α−1p ∈ ∇H1
ΓD

= RΓD,0 ∩H
⊥
ΓD,ΓN

.

Hence, for f ∈ ρH1 we have div p ∈ ρH1 and therefore the strong and mixed formu-
lations of the dual problem

−∇ρ−1 div p+ α−1p = ∇ρ−1f in Ω,

∇v + α−1p = ∇ρ−1f, −ρ−1 div p = v in Ω

hold, which are completed by the equations

div p+ f = 0 on ΓD,

n · p = 0 on ΓN,

rotα−1p = 0 in Ω,

n× α−1p = 0 on ΓD,

α−1p ⊥ HΓD,ΓN
.

Here the Dirichlet-Neumann fieldsHΓD,ΓN
and the space RΓD,0 will be defined in Sec-

tion 4.2. Of course, ρv = f on ΓD and by ρv ∈ divDΓN
we also have ρv⊥R if Γ = ΓN.

For related results and numerical tests for exterior domains see e.g. [10, 7].
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4.2 Eddy-Current (3D)

Let d = 3. The problem reads: Find the electric field E ∈ R such that

rotµ−1 rotE + εE = J in Ω,

n× E = 0 on ΓD, (4.4)
n× µ−1 rotE = 0 on ΓN,

where
R := {Φ ∈ L2 | rot Φ ∈ L2}, R0 := {Φ ∈ R | rot Φ = 0}.

We assume that the magnetic permeability µ and the electric permittivity ε are sym-
metric, real valued and uniformly positive definite matrices from L∞. Of course,
the extension to complex valued matrices is straight forward. The electric current J
belongs to L2. The dual variable for this problem is the magnetic field H = µ−1 rotE
which belongs to R. We define the Sobolev spaces

RΓD
:= C∞ΓD

R
, RΓD,0 := {Φ ∈ RΓD

| rot Φ = 0}

and analogously RΓN
and RΓN,0. Moreover, we introduce the co-called Dirichlet-

Neumann and Neumann-Dirichlet fields by

HΓD,ΓN
:= RΓD,0 ∩DΓN,0 = {Ψ ∈ RΓD

∩DΓN
| rot Ψ = 0 ∧ div Ψ = 0},

HΓN,ΓD
:= RΓN,0 ∩DΓD,0 = {Ψ ∈ RΓN

∩DΓD
| rot Ψ = 0 ∧ div Ψ = 0},

respectively. In the following we show the relation to the notation of Section 3:

α1 α2 A A∗ H1 H2 D(A) D(A∗)

ε µ−1 rot rot L2 L2 RΓD
RΓN

We note that indeed D(A∗) = RΓN
holds for Lipschitz domains, see e.g. [5], which is

not trivial at all. The relation (3.1) reads now

∀Φ ∈ RΓD
∀Ψ ∈ RΓN

〈rot Φ,Ψ〉L2 = 〈Φ, rot Ψ〉L2 .

Considering the norms we have

|E|2R,ε,µ−1 = |E|2L2,ε + | rotE|2L2,µ−1 ,

|H|2R,ε−1,µ = |H|2L2,µ + | rotH|2L2,ε−1 ,

‖(E,H)‖2 = |E|2R,ε,µ−1 + |H|2R,ε−1,µ.

Now (4.4) reads: Find E ∈ RΓD
with µ−1 rotE ∈ RΓN

such that

rotµ−1 rotE + εE = J.

In mixed formulation we have: Find (E,H) ∈ RΓD
×RΓN

such that

rotH + εE = J, µ−1 rotE = H.

The primal and dual variational problems are: Find (E,H) ∈ RΓD
×RΓN

such that

∀Φ ∈ RΓD
〈rotE, rot Φ〉L2,µ−1 + 〈E,Φ〉L2,ε = 〈J,Φ〉L2 ,

∀Ψ ∈ RΓN
〈rotH, rot Ψ〉L2,ε−1 + 〈H,Ψ〉L2,µ = 〈J, rot Ψ〉L2,ε−1 .
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Theorem 4.5. For any approximation (Ẽ, H̃) ∈ RΓD
×RΓN

‖(E,H)− (Ẽ, H̃)‖2 =Mec(Ẽ, H̃),
‖(E,H)− (Ẽ, H̃)‖2

‖(E,H)‖2
=
Mec(Ẽ, H̃)

|J |2
L2,ε−1

hold, whereMec(Ẽ, H̃) = |J − εẼ − rot H̃|2
L2,ε−1 + |H̃ − µ−1 rot Ẽ|2

L2,µ
.

Remark 4.6. We note |E|R,ε,µ−1 ≤ |J |L2,ε−1 and |H|R,ε−1,µ ≤ |J |L2,ε−1 and indeed

‖(E,H)‖ = |J |L2,ε−1 .

The solution operator L : L2 → RΓD
×RΓN

; f 7→ (E,H) is an isometry, i.e. |L| = 1.

Corollary 4.7. Theorem 4.5 provides the well known a posteriori error estimates for the
primal and dual problems.

(i) For any Ẽ ∈ RΓD
it holds |E − Ẽ|2R,ε,µ−1 = min

Ψ∈RΓN

Mec(Ẽ,Ψ) =Mec(Ẽ,H).

(ii) For any H̃ ∈ RΓN
it holds |H − H̃|2R,ε−1,µ = min

Φ∈RΓD

Mec(Φ, H̃) =Mec(E, H̃).

Remark 4.8. We have H = µ−1 rotE ∈ RΓN
∩µ−1 rotRΓD

and E and (E,H) solve the
strong and mixed formulation, respectively. Moreover, we have rotH − J ∈ εRΓD

with rot ε−1(rotH − J) = −µH belonging to rotRΓD
= DΓD,0 ∩H

⊥
ΓN,ΓD

. Hence, for
J ∈ εR we have rotH ∈ εR and therefore the strong and mixed formulations of the
dual problem

rot ε−1 rotH + µH = rot ε−1J in Ω,

rotD + µH = rot ε−1J, ε−1 rotH = D in Ω

hold, which are completed by the equations

n× ε−1(rotH − J) = 0 on ΓD,

n×H = 0 on ΓN,

div µH = 0 in Ω,

n · µH = 0 on ΓD,

µH ⊥ HΓN,ΓD
.

Of course, n×D = n× ε−1J on ΓD and by εD ∈ rotRΓN
we also have div εD = 0 in Ω

and n · εD = 0 on ΓN as well as εD⊥HΓD,ΓN
.

Earlier results for eddy current and static Maxwell problems can be found in
[1, 11].

16



4.3 Eddy-Current (2D)

Let d = 2. We just indicate the changes compared to the latter section. First, we have
to understand the double rot as∇⊥ rot, where

rotE := div QE = ∂1E2 − ∂2E1, ∇⊥H := Q∇H =

[
∂2H
−∂1H

]
, Q :=

[
0 1
−1 0

]
and E ∈ R is a vector field and H ∈ H1 a scalar function. In the literature, the
operator∇⊥ is often called co-gradient or vector rotation ~rot as well. Also µ is scalar.
(4.4) reads: Find the electric field E ∈ R such that

∇⊥µ−1 rotE + εE = J in Ω,

n× E = 0 on ΓD,

µ−1 rotE = 0 on ΓN.

We have:

α1 α2 A A∗ H1 H2 D(A) D(A∗)

ε µ−1 rot ∇⊥ L2 L2 RΓD
H1

ΓN

and (3.1) turns to

∀Φ ∈ RΓD
∀ψ ∈ H1

ΓN
〈rot Φ, ψ〉L2 = 〈Φ,∇⊥ψ〉L2 .

The norm for H is
|H|2H1,ε−1,µ = |H|2L2,µ + |∇⊥H|2L2,ε−1 .

The strong formulation of the problem is: Find E ∈ RΓD
with µ−1 rotE ∈ H1

ΓN
such

that
∇⊥µ−1 rotE + εE = J.

The mixed formulation is: Find (E,H) ∈ RΓD
×H1

ΓN
such that

∇⊥H + εE = J, µ−1 rotE = H.

The primal and dual variational problems are: Find (E,H) ∈ RΓD
×H1

ΓN
such that

∀Φ ∈ RΓD
〈rotE, rot Φ〉L2,µ−1 + 〈E,Φ〉L2,ε = 〈J,Φ〉L2 ,

∀ψ ∈ H1
ΓN

〈∇⊥H,∇⊥ψ〉L2,ε−1 + 〈H,ψ〉L2,µ = 〈J,∇⊥ψ〉L2,ε−1 .

Theorem 4.5 reads:

Theorem 4.9. For any approximation (Ẽ, H̃) ∈ RΓD
×H1

ΓN

‖(E,H)− (Ẽ, H̃)‖2 =Mec(Ẽ, H̃),
‖(E,H)− (Ẽ, H̃)‖2

‖(E,H)‖2
=
Mec(Ẽ, H̃)

|J |2
L2,ε−1

hold, whereMec(Ẽ, H̃) = |J − εẼ −∇⊥H̃|2
L2,ε−1 + |H̃ − µ−1 rot Ẽ|2

L2,µ
.
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Remark 4.10. We note |E|R,ε,µ−1 ≤ |J |L2,ε−1 and |H|H1,ε−1,µ ≤ |J |L2,ε−1 and indeed

‖(E,H)‖ = |J |L2,ε−1 .

The solution operator L : L2 → RΓD
×H1

ΓN
; f 7→ (E,H) is an isometry, i.e. |L| = 1.

Corollary 4.11. Theorem 4.5 provides the well known a posteriori error estimates for the
primal and dual problems.

(i) For any Ẽ ∈ RΓD
it holds |E − Ẽ|2R,ε,µ−1 = min

ψ∈H1
ΓN

Mec(Ẽ, ψ) =Mec(Ẽ,H).

(ii) For any H̃ ∈ H1
ΓN

it holds |H − H̃|2H1,ε−1,µ = min
Φ∈RΓD

Mec(Φ, H̃) =Mec(E, H̃).

Remark 4.12. We have again H = µ−1 rotE ∈ H1
ΓN
∩µ−1 rotRΓD

and as in the 3D
case E and (E,H) solve the strong and mixed formulation, respectively. Moreover,
∇⊥H − J ∈ εRΓD

with rot ε−1(∇⊥H − J) = −µH . Hence, for J ∈ εR we have
∇⊥H ∈ εR and therefore the strong and mixed formulations of the dual problem

rot ε−1∇⊥H + µH = rot ε−1J in Ω,

rotD + µH = rot ε−1J, ε−1∇⊥H = D in Ω

hold, which are completed by the equations

n× ε−1(∇⊥H − J) = 0 on ΓD,

H = 0 on ΓN,

µH ⊥ R (if ΓD = Γ).

Of course, n ×D = n × ε−1J on ΓD and by εD ∈ ∇⊥ H1
ΓN

we also have div εD = 0 in
Ω and n · εD = 0 on ΓN as well as εD⊥HΓD,ΓN

.

4.4 Linear Elasticity

Find the displacement vector field u ∈ H1 such that

−Div Λ∇s u+ ρ u = f in Ω,

u = 0 on ΓD, (4.5)
n · Λ∇s u = 0 on ΓN.

Here∇s is the symmetric part of the gradient2

∇s u := sym∇u =
1

2

(
∇u+ (∇u)>

)
,

2Here, as usual in elasticity the gradient∇u is to be understood as the Jacobian of the vector field
u.
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where > denotes the transpose. ∇s u, often denoted by ε(u), is also called the in-
finitesimal strain tensor. The fourth order stiffness tensor of elastic moduli Λ ∈ L∞,
mapping symmetric matrices to symmetric matrices point-wise, and the second or-
der tensor (quadratic matrix) of reaction ρ are assumed to be symmetric, real valued
and uniformly positive definite. The vector field f (body force) belongs to L2 and
the dual variable for this problem is the Cauchy stress tensor σ = Λ∇s u ∈ D, where
the application of Div to σ and the notation σ ∈ D is to be understood row-wise as
the usual divergence div. We note that the first equation can also be written as

−Divs Λ∇s u+ ρ u = f, Divs := Div sym .

We have:
α1 α2 A A∗ H1 H2 D(A) D(A∗)

ρ Λ ∇s −Divs L2 L2 H1
ΓD

sym−1 DΓN

The notation σ ∈ sym−1 DΓN
means symσ ∈ DΓN

. More precisely, ψ ∈ D(A∗) if and
only if

∀ϕ ∈ D(A) = H1
ΓD

〈∇s ϕ, ψ〉L2 = 〈ϕ,A∗ ψ〉L2 .

Since 〈∇s ϕ, ψ〉L2 = 〈∇ϕ, symψ〉L2 we see that this holds if and only if symψ ∈ DΓN

and A∗ ψ = −Div symψ. Equation (3.1) turns into

∀ϕ ∈ H1
ΓD
∀ψ ∈ sym−1 DΓN

〈∇s ϕ, ψ〉L2 = −〈ϕ,Divs ψ〉L2 .

For the norms we have

|u|2H1,ρ,Λ = |u|2L2,ρ + |∇s u|2L2,Λ,

|σ|2sym−1 D,ρ−1,Λ−1 = |σ|2L2,Λ−1 + |Divs σ|2L2,ρ−1 ,

‖(u, σ)‖2 = |u|2H1,ρ,Λ + |σ|2sym−1 D,ρ−1,Λ−1 .

Now (4.5) reads: Find u ∈ H1
ΓD

with sym Λ∇s u = Λ∇s u ∈ DΓN
such that

−Div Λ∇s u+ ρ u = f.

In mixed formulation we have: Find (u, σ) ∈ H1
ΓD
×DΓN

such that

−Div σ + ρ u = f, Λ∇s u = σ.

Note that then σ is automatically symmetric. The primal and dual variational prob-
lems are: Find (u, σ) ∈ H1

ΓD
× sym−1 DΓN

such that

∀ϕ ∈ H1
ΓD

〈∇s u,∇s ϕ〉L2,Λ + 〈u, ϕ〉L2,ρ = 〈f, ϕ〉L2 ,

∀ψ ∈ sym−1 DΓN
〈Divs σ,Divs ψ〉L2,ρ−1 + 〈σ, ψ〉L2,Λ−1 = −〈f,Divs ψ〉L2,ρ−1 .

Since σ ∈ DΓN
must be symmetric, we can formulate the dual problem also as

∀ψ ∈ DΓN
, ψ symmetric 〈Div σ,Divψ〉L2,ρ−1 + 〈σ, ψ〉L2,Λ−1 = −〈f,Divψ〉L2,ρ−1 .

Then, the norms reduce to

‖(u, σ)‖2 = |u|2H1,ρ,Λ + |σ|2D,ρ−1,Λ−1 , |σ|2D,ρ−1,Λ−1 = |σ|2L2,Λ−1 + |Div σ|2L2,ρ−1 .
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Theorem 4.13. For any approximation (ũ, σ̃) ∈ H1
ΓD
× sym−1 DΓN

‖(u, σ)− (ũ, σ̃)‖2 =Mle(ũ, σ̃),
‖(u, σ)− (ũ, σ̃)‖2

‖(u, σ)‖2
=
Mle(ũ, σ̃)

|f |2
L2,ρ−1

(4.6)

hold, whereMle(ũ, σ̃) = |f − ρũ+ Divs σ̃|2L2,ρ−1 + |σ̃ − Λ∇s ũ|2L2,Λ−1 . Moreover, since σ is
automatically symmetric we have (4.6) for all (ũ, σ̃) ∈ H1

ΓD
×DΓN

with σ̃ symmetric and the
right hand side simplifies toMle(ũ, σ̃) = |f − ρũ+ Div σ̃|2

L2,ρ−1 + |σ̃ − Λ∇s ũ|2L2,Λ−1 .

Remark 4.14. We note |u|H1,ρ,Λ ≤ |f |L2,ρ−1 and |σ|D,ρ−1,Λ−1 ≤ |f |L2,ρ−1 and indeed

‖(u, σ)‖ = |f |L2,ρ−1 .

The solution operator L : L2 → H1
ΓD
×DΓN

; f 7→ (u, σ) is an isometry, i.e. |L| = 1.

Corollary 4.15. Theorem 4.13 provides the well known a posteriori error estimates for the
primal and dual problems.

(i) For any ũ ∈ H1
ΓD

it holds |u− ũ|2H1,ρ,α = min
ψ∈sym−1 DΓN

Mle(ũ, ψ) =Mle(ũ, σ).

(ii) For any σ̃ ∈ sym−1 DΓN
it holds |σ−σ̃|2sym−1 D,ρ−1,α−1 = min

ϕ∈H1
ΓD

Mle(ϕ, σ̃) =Mle(u, σ̃).

If σ̃ and ψ are already symmetric we can skip the sym−1 and replace Divs by Div.

Remark 4.16. We have σ = Λ∇s u ∈ DΓN
∩Λ∇s H

1
ΓD

is symmetric with Divs σ = Div σ
and u and (u, σ) solve the strong and mixed formulation, respectively. Moreover,
Div σ + f ∈ ρH1

ΓD
with ∇s ρ

−1(Div σ + f) = Λ−1σ ∈ ∇s H
1
ΓD

. Hence, for f ∈ ρH1 we
have Div σ ∈ ρH1 and therefore strong and mixed formulations of the dual problem
hold, i.e.,

−∇s ρ
−1 Div σ + Λ−1σ = ∇s ρ

−1f in Ω,

∇s v + Λ−1σ = ∇s ρ
−1f, −ρ−1 Div σ = v in Ω.

4.5 Generalized Reaction-Diffusion, Linear Accoustics and Eddy-
Current

Let Ω be a d-dimensional smooth Riemannian manifold with compact Lipschitz
boundary Γ. If Ω is unbounded, we assume that outside of some compact set, Ω
is isomorphic to the exterior unit domain {x ∈ Rd | |x| > 1}. Moreover, let ΓD be an
open subset of Γ and ΓN := Γ \ ΓD its complement. The problem reads: For f ∈ L2,q

find the differential form potential (q-form) u ∈ Dq, such that

− δ α du+ ρ u = f in Ω,

τΓD
u = 0 on ΓD, (4.7)

νΓN
α du = 0 on ΓN.
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Here, d denotes exterior derivative, δ = ±∗d ∗ the co-derivative and τΓD
resp. νΓN

the
restrictions of the tangential resp. normal traces τΓ resp. νΓ to the proper subspaces.
We also introduce the Sobolev spaces

Dq := {ϕ ∈ L2,q | dϕ ∈ L2,q+1}, ∆q := {ψ ∈ L2,q | δ ψ ∈ L2,q−1}

and Dq
ΓD

:= C∞,qΓD

Dq

, ∆q
ΓN

:= C∞,qΓN

∆q

, where C∞,qΓD
resp. C∞,qΓN

are smooth test q-forms hav-
ing supports bounded away from ΓD resp. ΓN. Moreover, L2,q denotes the Lebesgue
space of all square integrable q-forms on Ω equipped with the inner or scalar product

〈u, ϕ〉L2,q :=

∫
Ω

u ∧ ∗ϕ

and corresponding norm | · |L2,q . Of course, Dq and ∆q are equipped with the re-
spective graph norms, making them Hilbert spaces. Finally, ρ and α denote linear,
symmetric, real valued, bounded and uniformly positive definite transformations
on q- resp. (q + 1)-forms. It is again straight forward to discuss complex valued
transformations. We also need the spaces

Dq
0 := {ϕ ∈ Dq | dϕ = 0}, Dq

ΓD,0
:= {ϕ ∈ Dq

ΓD
| dϕ = 0}

and the corresponding spaces for the co-derivative as well as the space of harmonic
Dirichlet-Neumann forms

Hq
ΓD,ΓN

:= Dq
ΓD,0
∩∆q

ΓN,0
.

The dual variable for this problem is the ‘flux’ p = α du ∈ ∆q+1. In the following we
show the relation to the notations of Section 3:

α1 α2 A A∗ H1 H2 D(A) D(A∗)

ρ α d − δ L2,q L2,q+1 Dq
ΓD

∆q+1
ΓN

Also here indeed D(A∗) = ∆q+1
ΓN

holds, see e.g. [3, 4, 6]. The relation (3.1) turns into

∀ϕ ∈ Dq
ΓD
∀ψ ∈ ∆q+1

ΓN
〈dϕ, ψ〉L2,q+1 = −〈ϕ, δ ψ〉L2,q .

Considering the norms we have

|u|2Dq ,ρ,α = |u|2L2,q ,ρ + | du|2L2,q+1,α,

|p|2∆q+1,ρ−1,α−1 = |p|2L2,q+1,α−1 + | δ p|2L2,q ,ρ−1 ,

‖(u, p)‖2 = |u|2Dq ,ρ,α + |p|2∆q+1,ρ−1,α−1 .

Now (4.7) reads: Find u ∈ Dq
ΓD

with α du ∈ ∆q+1
ΓN

such that

− δ α du+ ρ u = f.

In mixed formulation we have: Find (u, p) ∈ Dq
ΓD
×∆q+1

ΓN
such that

− δ p+ ρ u = f, α du = p.
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The primal and dual variational problems are: Find (u, p) ∈ Dq
ΓD
×∆q+1

ΓN
such that

∀ϕ ∈ Dq
ΓD

〈du, dϕ〉L2,q+1,α + 〈u, ϕ〉L2,q ,ρ = 〈f, ϕ〉L2,q ,

∀ψ ∈ ∆q+1
ΓN

〈δ p, δ ψ〉L2,q ,ρ−1 + 〈p, ψ〉L2,q+1,α−1 = −〈f, δ ψ〉L2,q ,ρ−1 .

Theorem 4.17. For any approximation (ũ, p̃) ∈ Dq
ΓD
×∆q+1

ΓN

‖(u, p)− (ũ, p̃)‖2 =Mdiff(ũ, p̃),
‖(u, p)− (ũ, p̃)‖2

‖(u, p)‖2
=
Mdiff(ũ, p̃)

|f |2
L2,q ,ρ−1

hold, whereMdiff(ũ, p̃) = |f − ρũ+ δ p̃|2
L2,q ,ρ−1 + |p̃− α d ũ|2

L2,q+1,α−1 .

Remark 4.18. We note |u|Dq ,ρ,α ≤ |f |L2,q ,ρ−1 and |p|∆q+1,ρ−1,α−1 ≤ |f |L2,q ,ρ−1 and indeed

‖(u, p)‖ = |f |L2,q ,ρ−1 .

The solution operator L : L2,q → Dq
ΓD
×∆q+1

ΓN
; f 7→ (u, p) is an isometry, i.e. |L| = 1.

Corollary 4.19. Theorem 4.17 provides the a posteriori error estimates for the primal and
dual problems.

(i) For any ũ ∈ Dq
ΓD

it holds |u− ũ|2Dq ,ρ,α = min
ψ∈∆q+1

ΓN

Mdiff(ũ, ψ) =Mdiff(ũ, p).

(ii) For any p̃ ∈ ∆q+1
ΓN

it holds |p− p̃|2∆q+1,ρ−1,α−1 = min
ϕ∈Dq

ΓD

Mdiff(ϕ, p̃) =Mdiff(u, p̃).

We note that for q = 0 we get back the reaction-diffusion problem from Section
4.1 and for d = 3 or d = 2 and q = 1 we obtain the eddy-current problems from
Sections 4.2 and 4.3, identifying Ω ⊂ Rd with a proper domain and 0-forms with
functions and 1- and 2-forms with vector fields by Riesz’ representation theorem
and Hodge’s star operator.

Remark 4.20. It holds p = α du ∈ ∆q+1
ΓN
∩α dDq

ΓD
and u and (u, p) solve the strong

and mixed formulations, respectively. Moreover, δ p+ f belongs to ρDq
ΓD

and we see
immediately d ρ−1(δ p + f) = α−1p ∈ dDq

ΓD
= Dq+1

ΓD,0
∩ (Hq+1

ΓD,ΓN
)⊥. Hence, for f ∈ ρDq

we have δ p ∈ ρDq and therefore the strong and mixed formulations of the dual
problem

− d ρ−1 δ p+ α−1p = d ρ−1f in Ω,

d v + α−1p = d ρ−1f, −ρ−1 δ p = v in Ω

hold, which are completed by the equations

τΓD
ρ−1(δ p+ f) = 0 on ΓD,

τΓN
p = 0 on ΓN,

dα−1p = 0 in Ω,

τΓD
α−1p = 0 on ΓD,

α−1p ⊥ Hq+1
ΓD,ΓN

.

There are also more equations for v following from ρv ∈ ρDq ∩ δ∆q+1
ΓN

, e.g. δ ρv = 0,
which we will not list here explicitly.
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5 Inhomogeneous and More Boundary Conditions

In this section we will demonstrate that our error equalities also hold for Robin type
boundary conditions, which means that our error equalities are true for many com-
monly used boundary conditions. Moreover, we emphasize that we can also handle
inhomogeneous boundary conditions. Since it is clear that this method works in the
general setting as well we will discuss it here just for the simple reaction-diffusion
model problem from the introduction.

Let Ω be as in the latter section and now the boundary Γ be decomposed into
three disjoint parts ΓD, ΓN and ΓR. The model problem is: Find the scalar potential
u ∈ H1 such that

− div∇u+ u = f in Ω,

u = g1 on ΓD,

n · ∇u = g2 on ΓN,

n · ∇u+ γu = g3 on ΓR

hold. Hence, on ΓD,ΓN and ΓR we impose Dirichlet, Neumann and Robin type
boundary conditions, respectively. In the Robin boundary condition, we assume
that the coefficient γ ≥ γ0 > 0 belongs to L∞. The dual variable for this problem is
the flux p := ∇u ∈ D. Furthermore, as long as ΓR 6= ∅ and to avoid tricky discus-
sions about traces and the corresponding H−

1/2-spaces of Γ, ΓD,ΓN and ΓR, which can
be quite complicated, we assume for simplicity that u ∈ H2. Then, p ∈ H1 and all gi
belong to L2 even to H

1/2 of Γ. For the norms we simply have

‖(u, p)‖2 = |u|2H1 + |p|2D .

Theorem 5.1. For any approximation (ũ, p̃) ∈ H2×H1 with u− ũ ∈ H1
ΓD

and p− p̃ ∈ DΓN

as well as n · (p− p̃) + γ(u− ũ) = 0 on ΓR

‖(u, p)− (ũ, p̃)‖2 + |u− ũ|2L2(ΓR),γ
+ |n · (p− p̃)|2L2(ΓR),γ−1 =Mmix(ũ, p̃)

holds withMmix from Theorem 2.5. Moreover, |u− ũ|L2(ΓR),γ = |n · (p− p̃)|L2(ΓR),γ−1 .

Proof. Following Remark 2.7 we have

Mmix(ũ, p̃) = |u− ũ|2H1 + |p− p̃|2D︸ ︷︷ ︸
= ‖(u, p)− (ũ, p̃)‖2

+2〈∇(u− ũ), p̃− p〉L2 + 2〈u− ũ, div(p̃− p)〉L2 .

Moreover, since n · (p̃− p) and u− ũ belong to L2(Γ) we have

〈∇(u− ũ), p̃− p〉L2 + 〈u− ũ, div(p̃− p)〉L2

= 〈n · (p̃− p), u− ũ〉L2(Γ) = 〈n · (p̃− p), u− ũ〉L2(ΓR) = 〈γ(u− ũ), u− ũ〉L2(ΓR).

As 〈γ(u− ũ), u− ũ〉L2(ΓR) = 〈γ−1n · (p− p̃), n · (p− p̃)〉L2(ΓR) we get the assertion.
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Remark 5.2. If all gi = 0, we can set (ũ, p̃) = (0, 0) and get

‖(u, p)‖2 + |u|2L2(ΓR),γ
+ |n · p|2L2(ΓR),γ−1 = |f |2L2 ,

which follows also directly from Remark 2.6 (ii’), p = ∇u and n · p = −γu on ΓR as
well as

|f |2L2 = | div p|2L2 + |u|2L2 − 2〈div∇u, u〉L2

= | div p|2L2 + |u|2L2 + 2|∇u|L2 − 2〈n · ∇u, u〉L2(Γ)

= | div p|2L2 + |u|2L2 + 2|∇u|L2 − 2 〈n · ∇u, u〉L2(ΓR)︸ ︷︷ ︸
= −|u|2L2(ΓR),γ

.

Thus, in this case the assertion of Theorem 5.1 has a normalized counterpart as well.

If ΓR = ∅we have a pure mixed Dirichlet and Neumann boundary.

Theorem 5.3. Let ΓR = ∅. For any approximation (ũ, p̃) ∈ H1×D with u − ũ ∈ H1
ΓD

and
p− p̃ ∈ DΓN

‖(u, p)− (ũ, p̃)‖2 =Mmix(ũ, p̃)

holds withMmix from Theorem 2.5.

Corollary 5.4. Let ΓR = ∅. Theorem 5.3 provides the well known a posteriori error estimates
for the primal and dual problems.

(i) For any ũ ∈ H1 with u−ũ ∈ H1
ΓD

it holds |u−ũ|2H1 = min
ψ∈D

p−ψ∈DΓN

Mmix(ũ, ψ) =Mmix(ũ, p).

(ii) For any p̃ ∈ D with p−p̃ ∈ DΓN
it holds |p−p̃|2D = min

ϕ∈H1

u−ϕ∈H1
ΓD

Mmix(ϕ, p̃) =Mmix(u, p̃).

6 Numerical Examples

In this section we show by some academic test cases the numerical performance
of our error equalities. All the calculations have been done using MATLAB, and
the reported values in the tables have not been rounded, but are simply cut-offs of
values reported by MATLAB. The main quantity of interest is the difference between
the exact error and the value given by the majorant for a certain approximation
(ũ, p̃), i.e.,

δ :=
∣∣‖(u, p)− (ũ, p̃)‖ −M···(ũ, p̃)

1/2
∣∣,

where the test problems are either from the reaction-diffusion problems from Sec-
tion 4.1 or from the eddy-current problems from Sections 4.2 and 4.3. Where the
finite element method (FEM) has been used, we have employed only linear triangu-
lar elements in 2D and linear tetrahedral elements in 3D. In all the examples below
we calculated the approximations ũ and p̃ (or Ẽ and H̃) in the same mesh only for
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the sake of convenience. Using different meshes for the primal and dual approxi-
mations is allowed. We also used only regular meshes, but irregular meshes can be
used as well. The only requirement is that the approximations must be conforming,
meaning that they belong to the appropriate Sobolev spaces and fulfill the boundary
conditions exactly. All finite element solvers were implemented in the vectorized
manner explained in [13].

Example 6.1. We take the 3D-reaction-diffusion problem from Section 4.1 and choose
the unit cube Ω := (0, 1)3 with exact solution

u(x) :=
3∏
i=1

xi(1− xi),

where u satisfies the zero Dirichlet boundary conditions on the whole boundary, i.e.,
ΓD = Γ and ΓN = ∅, and the following data

α(x) := α :=

1 0 0
0 5 0
0 0 10

 , ρ(x) :=


1 if 0 < x1 < 1/4

10 if 1/4 < x1 < 3/4

25 if 3/4 < x1 < 1

.

This means that the approximation of the dual variable does not have any bound-
ary condition. We calculated the approximation globally by solving the primal and
dual problem with standard linear Courant elements and linear Raviart-Thomas
elements, respectively. We will denote this finite element approximation pair by
(uh, ph). The resulting linear systems were solved directly in MATLAB. The approx-
imations were calculated in uniformly refined regular meshes, where the jumps in
the reaction coefficient ρ coincide with element boundaries. For each mesh we com-
puted the exact combined error and the majorant Mrd(uh, ph). The results are dis-
played in Table 6.1. The first column shows the number of elements Nelem of the
mesh. The second and third column show the exact error and the value given by the
majorant. The fourth column shows the difference δ between the exact error and the
value given by the majorant.

Table 6.1: Example 6.1 (3D-reaction-diffusion)

Nelem ‖(u, p)− (uh, ph)‖ Mrd(uh, ph)
1/2 difference δ

384 0.12803218100 0.12803218100 5.551115123e-17
3072 0.06736516349 0.06736516349 4.163336342e-17

24576 0.03433600867 0.03433600867 9.714451465e-17
196608 0.01728806289 0.01728806289 3.469446952e-18
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Example 6.2. This test is similar to the Example 1 except that the linear systems re-
sulting from the finite element computations were not solved directly, but with an
iterative method, where the stopping tolerance was set to the crude value of 10−4.
The approximation pair obtained by this method is denoted by (uiter, piter). No pre-
conditioning was done. The iterative solver of the linear system of the dual problem
converged only for the smallest mesh, and the error actually grows between the
two last meshes. With this stopping tolerance this is expected and was purpose-
fully done so in order to obtain approximations which are relatively far from having
the Galerkin orthogonality property. We did this test simply to demonstrate that
Galerkin orthogonality is not a requirement for the equality to hold. The results are
displayed in Table 6.2.

Table 6.2: Example 6.2 (3D-reaction-diffusion)

Nelem ‖(u, p)− (uiter, piter)‖ Mrd(uiter, piter)
1/2 difference δ

384 0.12803483290 0.12803483290 2.775557562e-17
3072 0.06868358511 0.06868358511 6.938893904e-17

24576 0.05294561599 0.05294561599 6.245004514e-17
196608 0.09166231565 0.09166231565 9.714451465e-17

Example 6.3. We ran the problem data of Example 6.1 with subsequently refined
regular meshes, where the approximation of the primal variable uh was again ob-
tained by the linear Courant finite elements. The resulting linear system was solved
directly. The approximation of the dual variable was calculated by averaging the
values α∇uh to the nodes of the mesh. This procedure is often called the gradient
averaging method and we will denote the resulting function by pavg. The results can
be seen in Table 6.3.

Table 6.3: Example 6.3 (3D-reaction-diffusion)

Nelem ‖(u, p)− (uh, pavg)‖ Mrd(uh, pavg)
1/2 difference δ

384 0.2698605861 0.2698605861 0
3072 0.2285323585 0.2285323585 0

24576 0.1831121412 0.1831121412 6.106226635e-16
196608 0.1333268308 0.1333268308 1.693090113e-15
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Example 6.4. We take the 2D-eddy-current problem from Section 4.3 and choose the
unit square Ω := (0, 1)2 with ε = id and µ = 1. We split the domain in the two
parts Ω1 := {x ∈ Ω | x1 > x2} and Ω2 = Ω \ Ω1 in order to define the following
discontinuous solution

E|Ω1(x) :=

[
sin(2πx1) + 2π cos(2πx1)(x1 − x2)

sin
(
(x1 − x2)2(x1 − 1)2x2

)
− sin(2πx1)

]
, E|Ω2(x) := 0.

Note that indeed E ∈ R \H1 and rotE ∈ H1 with

rotE|Ω1(x) = 2x2(x1 − x2)(x1 − 1)(2x1 − x2 − 1) cos(2πx1).

We set zero Neumann boundary conditions on the whole boundary, i.e., ΓD = ∅
and ΓN = Γ. The exact solution and its rotation is visualized in Figure 6.1. We cal-
culated the approximation globally by solving the primal and dual problem with
linear Nédélec elements and linear Courant elements, respectively. This finite ele-
ment approximation pair will be denoted by (Eh, Hh). The resulting linear systems
were solved directly. The approximations were calculated in uniformly refined reg-
ular meshes, where the jumps in the exact solution and in the right hand side J
coincide with element boundaries. For each mesh we calculated the exact combined
error and the majorantMec(Eh, Hh). The results are displayed in Table 6.4.
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Figure 6.1: The two components of the exact solution E and its rotation H of Exam-
ple 6.4.

Table 6.4: Example 6.4 (2D-eddy-current)

Nelem ‖(E,H)− (Eh, Hh)‖ Mec(Eh, Hh)
1/2 difference δ

800 0.151485078300 0.151485078300 2.220446049e-16
3200 0.075877018950 0.075877018950 0

12800 0.037956449900 0.037956449900 7.632783294e-17
51200 0.018980590110 0.018980590110 6.938893904e-17

204800 0.009490605462 0.009490605462 2.602085214e-17
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Example 6.5. We take the 3D-eddy-current problem from Section 4.2 and choose
the unit cube Ω := (0, 1)3 with ε = µ = id. Again we split the domain in the two
parts Ω1 := {x ∈ Ω | x1 > x2} and Ω2 = Ω \ Ω1 in order to define the following
discontinuous solution

E(x) := χΩ1(x)

 sin(2πx1) + 2π cos(2πx1)(x1 − x2)
sin
(
(x1 − x2)2(x1 − 1)2x2

)
− sin(2πx1)

0

+ ξ(x)

0
0
1

 ,
where ξ(x) :=

∏3
i=1 x

2
i (1− xi)2. Thus, we extended the discontinuous vector field of

Example 6.4 by zero in the third component and added a smooth bubble in the third
component. Hence, E ∈ R \H1 and rotE ∈ R with

rotE(x) = χΩ1(x)
(
2x2(x1 − x2)(x1 − 1)(2x1 − x2 − 1) cos(2πx1)

)0
0
1

+

 ∂2ξ
−∂1ξ

0

 (x).

Note that even rotE ∈ H1 holds. We set zero Neumann boundary conditions on the
whole boundary, i.e., ΓD = ∅ and ΓN = Γ. We calculated the approximation globally
by solving the primal and dual problem with linear Nédélec elements. This finite
element approximation pair will be denoted by (Eh, Hh). The resulting linear sys-
tems were solved directly. The approximations were calculated in uniformly refined
regular meshes, where the jumps in the exact solution and in the right hand side J
coincide with element boundaries. For each mesh we calculated the exact combined
error and the majorantMec(Eh, Hh). The results are displayed in Table 6.5.

Table 6.5: Example 6.5 (3D-eddy-current)

Nelem ‖(E,H)− (Eh, Hh)‖ Mec(Eh, Hh)
1/2 difference δ

384 0.7228185218 0.7228185218 3.330669074e-16
3072 0.3717887807 0.3717887807 6.106226635e-16

24576 0.1883612515 0.1883612515 2.775557562e-16
196608 0.0945757836 0.0945757836 8.604228441e-16

Example 6.6. We take the problem data of Example 6.4 and solve the primal and
dual problems in adaptively refined meshes with linear Nédélec elements and lin-
ear Courant elements, respectively. This finite element approximation pair will be
denoted by (Eh, Hh) and the linear systems are solved directly. We compare opti-
mal refinement achieved by using the exact error distribution eT to the refinement
provided by the distribution of the majorant ηT , where

e2
T := ‖(E,H)− (Eh, Hh)‖2

T := |E − Eh|2R(T ) + |H −Hh|2H1(T ),

η2
T :=Mec(Eh, Hh)T := |J − Eh −∇⊥Hh|2L2(T ) + |Hh − rotEh|2L2(T )
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and T denotes an element (triangle) of the mesh discretization. We start from a reg-
ular mesh with 200 elements, and perform nine refinement iterations, where on each
iteration 30% of elements with the highest amount of error are refined. The refine-
ment of element meshes is done by regular refinement such that the resulting mesh
does not contain hanging nodes. The results of Figure 6.2 show that even though the
equality is global, the majorant can still be used to perform reliable adaptive compu-
tations. We see from Table 6.6 that the number of elements in the optimal meshes
and the meshes produced using ηT are very close to each other. In Figure 6.3 we
have depicted the meshes after the fourth refinement. Figure 6.4 depicts one of the
finest parts of the final meshes. In fact, the adaptive refinement using ηT is very close
to optimal in each step, and the resulting approximation after the last refinement is
practically the same.
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Figure 6.2: Adaptive computation of Example 6.6, where the error is measured in
the combined norm.
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Figure 6.3: Adaptive mesh after the fourth refinement in Example 6.6. There are
4823 elements in the optimal mesh, and 4878 elements in the mesh calculated with
the help of ηT .
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Figure 6.4: One of the most fine parts in the final adaptive mesh in Example 6.6.

Table 6.6: Adaptive computation of Example 6.6. The number of elements in the
optimal meshes and the meshes generated by the help of ηT .

Ref. optimal with ηT difference difference %
- 200 200 0 0
1 434 434 0 0
2 998 1002 4 0.40
3 2240 2252 12 0.53
4 4823 4878 55 1.14
5 10378 10446 68 0.65
6 22116 22337 221 0.99
7 46388 46768 380 0.81
8 96859 97832 973 1.00
9 198704 200970 2266 1.14

Example 6.7. We take the 2D-eddy-current problem of Section 4.3 in the L-shaped
domain Ω := (0, 1)2 \

(
[1/2, 1] × [0, 1/2]

)
with ε = id, µ = 1000 and J = [1, 0]>. We set

zero Dirichlet boundary conditions on the whole boundary, i.e., ΓD = Γ and ΓN = ∅.
The exact solution of this problem is unknown. However, since the majorant gives
indeed the exact error in the combined norm, we will use this information in this
example. Therefore, all the error values in Figure 6.5 and Table 6.7 are values of the
majorant. We compare uniform refinement and adaptive refinement using ηT with

η2
T =Mec(Eh, Hh)T = |J − Eh −∇⊥Hh|2L2(T ) + |Hh − µ−1 rotEh|2L2(T ),µ,

refining 30% of elements on each refinement iteration as before. We solve the primal
and dual problems with linear Nédélec elements and linear Courant elements, re-
spectively. The resulting linear systems are solved directly. We see from Figure 6.5
that the adaptive procedure is beneficial in this example. We have also depicted the
approximation in Figure 6.6 and the mesh in Figure 6.7 after the fifth refinement.

30



10
2

10
3

10
4

10
5

10
−2

10
−1

Number of elements

E
r
r
o
r

 

 
Uniform refinement
Adaptive refinement with ηT

Figure 6.5: Adaptive computation of Example 6.7.

Table 6.7: Example 6.7 (2D-eddy-current) Adaptively refined meshes.

Nelem Mec(Eh, Hh)
1/2 Mec(Eh, Hh)

1/2/|J |L2

96 0.2534 0.2926
230 0.1534 0.1771
541 0.0842 0.0973

1204 0.0467 0.0539
2623 0.0309 0.0357
6082 0.0203 0.0234

13514 0.0135 0.0155
29530 0.0093 0.0107
63363 0.0062 0.0072

134205 0.0043 0.0050

Eh,1 Eh,2 Hh

Figure 6.6: The two components of the approximate primal variable Eh and the dual
variable Hh of Example 6.7 after the third adaptive refinement.
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Figure 6.7: Adaptive mesh after the fifth adaptive refinement in Example 6.7.

Example 6.8. We take the 2D-eddy-current problem of Section 4.3 in Ω := (0, 1)2. In
order to define discontinuous data, we define with ξ(x) := ln(2 + x2) and

Ω1 :=
(
(0, 1)× (0.4, 0.6)

)
∪
(
(0.3, 0.5)× (0, 1)

)
, ε|Ω1 := id, ε|Ω\Ω1

:= 100 · id,
µ|Ω1 := 1000, µ|Ω\Ω1

:= 1,

Ω2 := (0, 1)× (0.35, 0.65), J |Ω2 := ξ

[
1
0

]
, J |Ω\Ω2

:= −ξ
[
0
1

]
.

We set zero Dirichlet boundary conditions on the right side of the boundary and zero
Neumann boundary condition on the remaining part, i.e., ΓD = {x ∈ Ω | x1 = 1}. As
in Example 6.7, the exact solution of this problem is unknown, so the error values
in Figure 6.8 and Table 6.8 are the values of the majorant. We compare uniform
refinement and adaptive refinement using ηT with

η2
T =Mec(Eh, Hh)T = |J − εEh −∇⊥Hh|2L2(T ),ε−1 + |Hh − µ−1 rotEh|2L2(T ),µ,

refining 30% of elements on each refinement iteration as before. We solve the pri-
mal and dual problems with linear Nédélec elements and linear Courant elements,
respectively. The resulting linear systems are solved directly. Again, we see from
Figure 6.8 that the adaptive procedure is beneficial in this example. We have also
depicted the approximation in Figure 6.9 and the mesh in Figure 6.10 after the third
refinement.

To conclude, in all the tests performed, nonzero values of δ were of magnitude
10−18-10−15. This is within the limit of machine precision, so numerically these num-
bers are considered zero. In addition to verifying the equality, we also performed
three simple examples to show that the majorant can be used to perform refinement
of element meshes without any additional computational expenditures.
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Figure 6.8: Adaptive computation of Example 6.8.

Table 6.8: Example 6.8 (2D-eddy-current) Adaptively refined meshes.

Nelem Mec(Eh, Hh)
1/2 Mec(Eh, Hh)

1/2/|J |L2,ε−1

800 0.1632 0.2941
1827 0.0921 0.1659
4367 0.0513 0.0924

10214 0.0307 0.0554
23657 0.0199 0.0359
51429 0.0128 0.0231

113073 0.0085 0.0153

Eh,1 Eh,2 Hh

Figure 6.9: The two components of the approximate primal variable Eh and the dual
variable Hh of Example 6.8 after the third adaptive refinement.
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Figure 6.10: Adaptive mesh after the third adaptive refinement in Example 6.8.
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Foundation and Väisälä Foundation of the Finnish Academy of Science and Letters.

This contribution has been worked out mainly while the first author was visiting
the Fakultät für Mathematik of the Universität Duisburg-Essen during 2013.

References

[1] I. Anjam, O. Mali, A. Muzalevskiy, P. Neittaanmäki, and S. Repin. A posteri-
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