
Reports of the Department of Mathematical Information Technology
Series B. Scientific Computing

No. B. 3/2007

Limited Memory Bundle Algorithm for

Inequality Constrained Nondifferentiable

Optimization

Napsu Karmitsa Marko M. Mäkelä

Montaz M. Ali

University of Jyväskylä
Department of Mathematical Information Technology

P.O. Box 35 (Agora)
FI–40014 University of Jyväskylä

FINLAND
fax +358 14 260 2731
http://www.mit.jyu.fi/

Copyright c© 2007
Napsu Karmitsa and Marko M. Mäkelä and Montaz M. Ali

and University of Jyväskylä

ISBN 978­951­39­2785­1
ISSN 1456­436X

Limited Memory Bundle Algorithm for
Inequality Constrained Nondifferentiable

Optimization∗

Napsu Karmitsa† Marko M. Mäkelä‡ Montaz M. Ali§

Abstract

Many practical optimization problems involve nonsmooth (that is, not
necessarily differentiable) functions of hundreds or thousands of variables
with various constraints. In this paper, we describe a new efficient adaptive
limited memory interior point bundle method for large, possible noncon-
vex, nonsmooth inequality constrained optimization. The method is a hy-
brid of the nonsmooth variable metric bundle method and the smooth lim-
ited memory variable metric method, and the constraint handling is based
on the primal-dual feasible direction interior point approach. The prelimi-
nary numerical experiments to be presented confirm the effectiveness of the
method.
Keywords: Nonsmooth optimization, large-scale problems, constrained

optimization, bundle methods, limited memory methods, feasible direction
interior point methods.

1 Introduction

In this paper, we propose a new adaptive limited memory interior point bundle al-
gorithm for solving large inequality constrained nonsmooth optimization problems.
We write this problem as

{

minimize f(x)

subject to gi(x) ≤ 0, for i = 1, . . . , p,
(1)

where the objective function f : R
n → R and the constraint functions gi : R

n → R

for each i ∈ P = {1, . . . , p} are supposed to be locally Lipschitz continuous and

∗The work was financially supported by University of the Witwatersrand, South Africa; Univer-
sity of Jyväskylä, Finland; and University of Turku, Finland.

†Department of Mathematical Information Technology, PO Box 35 (Agora), FI-40014 University
of Jyväskylä, Finland, hamasi@mit.jyu.fi

‡Department of Mathematics, University of Turku, FI-20014 Turku, Finland, makela@utu.fi
§School of Computational and Applied Mathematics, University of the Witwatersrand, Private

Bag 3, Wits 2050, Johannesburg, South Africa, mali@cam.wits.ac.za

1

the number of variables n is supposed to be large. Note that no differentiability or
convexity assumptions are made.
Many practical optimization problems involve nonsmooth functions with large

amounts of variables (see, e.g., [2, 3, 30]). These kind of problems are in general dif-
ficult to solve even when they are unconstrained. The direct application of smooth
gradient-based methods to nonsmooth problems usually leads to a failure in con-
vergence, in optimality conditions, or in gradient approximation (see, e.g., [6, 24]).
On the other hand, derivative free methods like genetic algorithms (see, e.g., [10]) or
Powell’s method (see, e.g., [7]) may be unreliable and become inefficient whenever
the dimension of the problem increases. Thus, special tools for solving large-scale
nonsmooth optimization problems are needed.
At the moment, different variants of bundle methods (see, e.g., [20, 31, 36]) are

regarded as the most effective and reliable globally convergent methods for non-
smooth optimization. The basic idea of these methods is to approximate the sub-
differential [6] of the nonsmooth objective by gathering subgradients (generalized
gradients) from previous iterations into a bundle. A descent search direction can
then be found as a solution of a quadratic subproblem and the global convergence
of the methods, with limited number of stored subgradients, can be guaranteed by
using a subgradient aggregation strategy [20], which accumulates information from
previous iterations.
Naturally, the presence of constraints makes nonsmooth optimization problems

even more complex. The problems with simple constraints (such as bound or linear
constraints) may be solved by including the constraints directly to the quadratic
subproblem (see, e.g., [21, 22]) and the more generally constrained problems may be
solved by applying bundle methods to an equivalent unconstrained problem with
an exact penalty objective (see, e.g., [19, 23]) or by using bundle methods with so-
called improvement function (see, e.g., [20, 25, 31, 35]) or with filter [8, 18]. However,
all these methods are suitable only for relatively small problems and most of them
(excluding [21, 31]) are capable of handling only convex problems.
In [11, 13, 14] we have proposed a limited memory bundle method for gen-

eral, possibly nonconvex, nonsmooth large-scale unconstrained optimization. The
method is a hybrid of the variable metric bundle methods [27, 38] and the limited
memory variable metric methods (see, e.g., [5, 9, 33]), where the first ones have
been developed for small- and medium-scale nonsmooth optimization and the lat-
ter ones, on the contrary, for smooth large-scale optimization. In [12] the variant of
the method suitable for bound constrained problems was introduced.
In this paper, we combine the adaptive limited memory bundle method [11] with

a modification of the feasible direction interior point method by Herskovits and
Santos [15, 16] in order to make the method suitable for solving more generally
constrained problems. We have used the approach of the feasible direction interior
point method because it does not involve penalty or barrier functions, active set
strategies, or quadratic subproblems but merely a solution of two internal linear
systems with the same matrix at each iteration. By this way, the computational
demand of the method is kept relatively low and we obtain a method suitable for

2

solving large-scale problems.
Our method is feasible, in that, given an initial point that satisfy the constraints,

it construct a sequence of points which all satisfy them as well. This kind of interior-
point approach is essential in case the objective function and/or the constraint func-
tions are not defined in infeasible points. Furthermore, it can be an advantage in
many industrial applications, where function evaluation may be very expensive.
Since any intermediate solution can be employed, the iterations can be stopped
whenever the result is satisfactory.
The rest of this paper is organized as follows. In the following section, we first

recall some basic results and definitions of nonsmooth analysis. In Section 3, we
describe the adaptive limited memory interior point bundle method for inequality
constrained optimization and, in Section 4, we analyze its convergence properties.
In Section 5, some preliminary results of numerical experiments are presented and
finally, in Section 6, we conclude. A detailed description of limited memory matrix
updating is given in Appendix.

2 Background and Optimality Conditions

In this section we give the optimality conditions for nonsmooth inequality con-
strained optimization problem (1). Thereby, we first recall some basic definitions
and results from nonsmooth analysis based on Clarke [6]. For details and proofs we
refer to [6, 31].
In what follows, we assume that all the functions considered are locally Lipschitz

continuous and by Rademacher’s Theorem a locally Lipschitz continuous function is
differentiable almost everywhere. Thus, we can use the following theorem to define
the subdifferential.

THEOREM 2.1. Let f : R
n → R be locally Lipschitz continuous at x ∈ R

n. Then the
subdifferential of f at x is a set ∂f(x) of vectors ξf ∈ R

n such that

∂f(x) = conv { ξf ∈ R
n | there exists (xi) ⊂ R

n \ Ωf such that

xi → x and ∇f(xi) → ξf }.

Here “ conv” denotes the convex hull of the set and Ωf is a set where f fails to be differen-
tiable. Each vector ξf ∈ ∂f(x) is called a subgradient of f at x.

The subdifferential ∂f(x) is a nonempty, convex, and compact set such that ∂f(x) ⊂
B(0;L), where L > 0 is the Lipschitz constant of f at x.
In iterative optimization methods it is necessary to find a direction such that the

objective function values decrease when moving in that direction. Next we define a
descent direction.

DEFINITION 2.2. The direction d ∈ R
n is said to be a descent direction for f : R

n → R

at x ∈ R
n, if there exists ε > 0 such that for all t ∈ (0, ε]

f(x + td) < f(x).

3

LEMMA 2.3. Let f : R
n → R be a locally Lipschitz continuous function at x ∈ R

n. The
direction d ∈ R

n is a descent direction for f at x if ξT
f d < 0 for all ξf ∈ ∂f(x).

In constrained optimization it is not enough to find any descent direction, since
we are not allowed to violate the constraints. Thus, we need to define the feasible
direction.

DEFINITION 2.4. The direction d ∈ R
n is said to be a feasible direction for problem (1),

if there exists ε > 0 such that for all t ∈ (0, ε]

x + td ∈ S,

where S = {x ∈ R
n | gi(x) ≤ 0 for all i ∈ P} is the feasible region for problem (1).

LEMMA 2.5. Let gi : R
n → R for each i ∈ P be locally Lipschitz continuous functions

at x ∈ S. The direction d ∈ R
n is a feasible direction for problem (1) if ξT

gi
d < 0 for all

ξgi
∈ ∂gi(x) such that gi(x) = 0.

PROOF. Follows directly from the fact that by Lemma 2.3 direction d is a descent
direction for all gi such that gi(x) = 0. �

In order to formulate necessary Karush-Kuhn-Tucker (KKT) type optimality con-
ditions, we first need to define the following regularity assumption.

DEFINITION 2.6. Problem (1) satisfies the Cottle constraint qualification at x, if either
gi(x) < 0 for all i ∈ P or 000 6∈ conv{∂gi(x) | gi(x) = 0}.

THEOREM 2.7. (KKT optimality condition.) Let f : R
n → R and gi : R

n → R for each
i ∈ P be locally Lipschitz continuous functions at x ∈ R

n and suppose that problem (1)
satisfies the Cottle constraint qualification. If x is a local minimum of (1), then there exist
Lagrange multipliers µi ≥ 0 such that µigi(x) = 0 for all i ∈ P and

000 ∈ ∂f(x) +
∑

i∈P

µi∂gi(x).

A point x is said to be a KKT point associated to problem (1) if it is feasible and
it satisfies the KKT optimality condition (Theorem 2.7). If all the functions f and gi

(i ∈ P) are convex, the KKT optimality condition is sufficient and the KKT point is
a global minimum for problem (1).
In what follows we denote by L(x,µ) = f(x) +

∑

i∈P µigi(x) the Lagrangian of

problem (1) and by ∂L(x,µ) its subdifferential. Moreover, we denote by ∂L̂(x,µ) =

∂f(x)+
∑

i∈P µi∂gi(x). Note that we have the following inclusion ∂L(x,µ) ⊂ ∂L̂(x,µ)
(see, e.g., [31]).

3 Method

In this section, we describe the adaptive limitedmemory interior point bundlemethod
for inequality constrained large-scale nonsmooth optimization. We start by giving a
simple flowchart (in Figure 1) to point out the basic ideas of the algorithm.

4

Initialization.

Serious step initialization.

Almost
desired accuracy?

Yes
STOP.Desired accuracy?

Line search and
solution updating.

Descent,

feasible, and

feasible descent

Direction finding using the
limited memory BFGS update:

directions.

Descent,

feasible, and

feasible descent

Direction finding using the
limited memory SR1 update:

directions.

Increase the number of
stored correction pairs
by one if applicable.

Increase the number of
stored correction pairs
by one if applicable.

Almost
desired accuracy?

Yes
STOP.Desired accuracy?Aggregation.

Yes

No No

Serious step

No No

Yes

Null step

Figure 1: Adaptive limited memory interior point bundle method.

The limited memory interior point bundle method is characterized by the usage of
null steps together with the aggregation of subgradients. At each iteration we first
solve a linear system of KKT type optimality conditions in order to find a descent
direction for the objective. After that, we (by means of computing a feasible direc-
tion) perturb the linear system to deflect the descent direction to a feasible descent
direction. Finally, the line search is performed along this direction either to obtain
a new interior point with lower objective or to take a null step. Using null steps
gives sufficient information about the nonsmooth objective in the case the search
direction is not “good enough”. On the other hand, a simple aggregation of subgra-
dients guarantees the convergence of the aggregate subgradients to zero and makes
it possible to evaluate a termination criterion.
The limited memory approach (see, e.g., [5, 9, 33]) is utilized both in the calcu-

lation of the search direction and the aggregate values. The idea of limited mem-
ory matrix updating is that instead of storing the large matrices we store a certain
(usually small constant) number of vectors, so-called correction pairs, obtained at
the previous iterations of the algorithm and we use these vectors to implicitly de-

5

fine the variable metric matrices. When the storage space available is used up,
the oldest correction pairs are deleted to make room for new ones. In the adap-
tive limited memory bundle method [11] the number of stored correction pairs may
change during the computation. This means that we can start the optimization with
a small number of stored correction pairs and then, when we are closer to the opti-
mal point, the number of stored correction pairs may be increased until some upper
limit is achieved. The aim of this adaptability is to improve the accuracy of the basic
method without loosing much from efficiency, that is, without increasing computa-
tional costs too much.

3.1 Limited memory interior point bundle method.

We now describe with more details the limited memory interior point bundle al-
gorithm for solving nonsmooth optimization problems of type (1). The algorithm
to be presented generates a sequence of basic points (xk) ⊂ intS together with a
sequence of auxiliary points (yk) ⊂ intS. A new iteration point xk+1 and a new
auxiliary point yk+1 are produced using a special constrained line search procedure
such that

xk+1 = xk + tkLdk and (2)

yk+1 = xk + tkRdk, for k ≥ 1

with y1 = x1 ∈ int S, where tkR ∈ (0, tmax] and t
k
L ∈ [0, tkR] are step sizes, tmax ≥ 1 is

the upper bound for the step size, and dk is a search direction.
A necessary condition for a serious step is to have tkR = tkL > 0,

f(yk+1) ≤ f(xk) − εLt
k
Rw

1

k, and (3)

gi(yk+1) < 0 for all i ∈ P,

where εL ∈ (0, 1/2) is a line search parameter and w1
k > 0 represents the desirable

amount of descent of f at xk. If condition (3) is satisfied, we have xk+1 = yk+1 and a
serious step is taken.
Otherwise, we take a null step. In this case, the usage of special line search pro-

cedure guarantees that we have tkR > tkL = 0,

−βL,k+1 − ξ̃
T

L,kDkξL,k+1 ≥ −εRw
1

k, and (4)

gi(yk+1) < 0 for all i ∈ P.

Here εR ∈ (εL, 1/2) is a line search parameter,µk is a dual variable, ξ̃L,k ∈ ∂L(xk,µk)
is the aggregate subgradient of the Lagrangian, ξL,k+1 ∈ ∂L(yk+1,µk) is the new
auxiliary subgradient of the Lagrangian, Dk is a positive definite limited memory
variable metric update that, in smooth case, approximates the inverse of the Hessian
of the Lagrangian associated to problem (1), and βL,k+1 is the subgradient locality
measure [26, 32] defined by

βL,k+1 = max{|L(xk,µk) − L(yk+1,µk) + (yk+1 − xk)
T ξL,k+1)|, γ‖yk+1 − xk‖

2 }. (5)

6

In the case of a null step, we have xk+1 = xk but information about the objective
function is increased because we store the auxiliary point yk+1 and the correspond-
ing auxiliary subgradient ξL,k+1.

Search direction. The search direction dk is calculated using a modification of the
feasible direction interior point method [15, 16]. First, we formulate the necessary
KKT type optimality conditions for problem (1) by

ξ̃f + ξ̃
g
µ = 000, (6)

G(x)µ = 000, (7)

g(x) ≤ 000, (8)

µ ≥ 000, (9)

where ξ̃f is the aggregate subgradient of the objective function, ξ̃g
is the p×nmatrix

of the aggregate subgradients of the constraint functions, g(x) denotes the p -vector
of constraints values, and G(x) denotes a diagonal p × p -matrix such that G(x) =
diag[g1(x), . . . , gp(x)]. Moreover, µ denotes the p -vector of dual variables.
A quasi-Newton’s -type iteration to solve the system of equations (6), (7) can be

defined by
[

Bk ξ̃
g,k

Λkξ̃
T

g,k G(xk)

]

[

xα
k+1

− xk

µα
k+1 − µk

]

= −

[

ξ̃f,k + ξ̃
g,kµk

G(xk)µk

]

, (10)

where (xk,µk) is the starting point of the iteration, (x
α
k+1,µ

α
k+1) is the new estimate

(index α refers to descent direction calculations), Λk denotes the diagonal p × p -
matrix such that Λk = diag[µ1,k, . . . , µp,k], and Bk is a positive definite limited mem-
ory variable metric update (Bk = D−1

k). We solve the system of equations (6), (7)
such that (8), (9) are verified at each iteration.
The iterations in (10) are modified such that, for the given interior pair (xk,µk),

we obtain a new interior estimate with a better objective. For this purpose, a primal
direction dα

k = xα
k+1

− xk is defined. Now, we can write (10) as a linear system in dα
k

and µα
k+1 by

Bkd
α
k + ξ̃

g,kµ
α
k+1 = −ξ̃f,k (11)

Λkξ̃
T

g,kd
α
k +G(xk)µ

α
k+1 = 000 (12)

and we have the following result for dα
k :

LEMMA 3.1. Suppose that µk > 000 for all k ≥ 1. The direction dα
k defined by (11) and (12)

satisfies

(dα
k)T

ξ̃f,k ≤ −(dα
k)TBkd

α
k for all k ≥ 1.

PROOF. By multiplying both sides of (11) by dα
k , we obtain

(dα
k)T ξ̃f,k = −(dα

k)TBkd
α
k − (dα

k)T ξ̃
g,kµ

α
k+1.

7

Now, by using (12), this can be written

(dα
k)T ξ̃f,k = −(dα

k)TBkd
α
k + (µα

k+1)
T Λ−1

k G(xk)µ
α
k+1

and the result follows from the fact that Λ−1

k G(xk) is negative definite for all k due
to strict feasibility of xk. �

Due to the preceding lemma, the positiveness of µk, and the positive definiteness
of Bk used in our proposal, we have

ξ̃
T

f,kd
α
k ≤ 0 for all k ≥ 1.

Thus, by Lemma 2.3 and the fact that ξ̃f,k is a convex combination of the previous
subgradients (the proof is similar to that of Lemma 3.2 in [38]) direction dα

k seems
to be a suitable choice for a descent direction. Nevertheless, from (12) it comes out
that when any constraint goes to zero dα

k tends to be orthogonal to the aggregate
subgradient of that constraint and we may obtain an infeasible direction. Thus,

we deflect dα
k towards the interior of the feasible region by means of the vector d

β
k

defined by the linear system

Bkd
β
k + ξ̃

g,kµ
β
k+1

= 000 (13)

Λkξ̃
T

g,kd
β
k +G(xk)µ

β
k+1

= −µk. (14)

Now, the search direction can be calculated by

dk = dα
k + ρkd

β
k . (15)

Here the deflection bound ρk > 0 (see (17) and (18)) is selected such that the condi-
tion

ξ̃
T

f,kdk ≤ νξ̃
T

f,kd
α
k

with predefined ν ∈ (0, 1) is satisfied (see Lemma 4.3 in [15]). Thus, we have

ξ̃
T

f,kdk ≤ 0 and, from (12), (14), and (15), we obtain ξ̃
T

gi,k
dk = −ρk < 0 for all ac-

tive constraints (i.e., for constraints with gi(xk) = 0, i ∈ P). Therefore, due to Lem-
mas 2.3 and 2.5 the direction dk seems to be suitable choice for a feasible descent
direction.
There are different possibilities of updating µk (see, e.g., [15] or [1] in a slightly

different contents). In this work we have adopted and modified the combination of
two used in [15], since these updating rules guarantee the boundedness of µk (see
[15]). More specifically, we initialize µi,1 for all i ∈ P by µi,1 = min{−1/gi(x1), µmax},
where µmax > 0 is a predefined upper limit. Note that we assume the starting point
x1 to be strictly feasible and, thus, gi(x1) < 0 for all i ∈ P . In the subsequent
iterations we set µi,k+1 = max{µα

i,k+1
, ǫ‖dα

k‖
2} with some ǫ > 0, if the next step is

a serious step, and µi,k+1 = µi,k, if the next step is a null step. If gi(x) ≥ gmax and
µi,k+1 < µmin for some predefined µmin > 0 and gmax < 0, we set µi,k+1 = µmin.

8

The limited memory interior point bundle algorithm uses, for the direction deter-
mination, the original subgradients after the serious step and the aggregate subgra-
dients after the null step. The aggregation procedure (see Step 5 in Algorithm 3.1)
is similar to that of the original variable metric bundle methods [27, 38] except two
matters. First, we use the subgradients and the variable metric approximations of
the Lagrangian instead of those of the objective function and, secondly, the variable
metric updates are calculated using limited memory approach, namely the limited
memory BFGS and SR1 updates: If the previous step was a null step, the matrix
Dk (i.e., B

−1

k) is formed using the limited memory SR1 update (see Appendix, (30)),
since this update formula gives us a possibility to preserve the boundedness and
some other properties of generated matrices that are needed to guarantee the con-
vergence of aggregate subgradients to zero. Otherwise, since these properties are
not required after a serious step, the more efficient limited memory BFGS update
(see Appendix, (29)) is employed. The individual updates that would violate posi-
tive definiteness are skipped (for more details, see [11, 13, 14] and Appendix).

Algorithm. We now present a model algorithm for the adaptive limited memory
interior point bundle method for solving the inequality constrained minimization
problems of type (1). In what follows, we assume that at every point x ∈ R

n we
can evaluate the values f(x) and gi(x) for all i ∈ P and the corresponding arbitrary
subgradients ξf ∈ ∂f(x), ξgi

∈ ∂gi(x), and ξL ∈ ∂L(x,µ) (for some µ ∈ R
p). In addi-

tion, we assume that the problem considered satisfies Cottle constraint qualification
(Def. 2.6) and that the feasible region S ⊂ R

n is nonempty and has an interior.

ALGORITHM 3.1. (Limited memory interior point bundle method.)

Data: Choose the final accuracy tolerances ε1 > 0 and ε2 > 0, the positive line
search parameters εL ∈ (0, 1/2) and εR ∈ (εL, 1/2), and the distance measure
parameter γ ≥ 0 (with γ = 0 if all the functions involved are convex). Select
the lower and the upper bounds tmin ∈ (0, 1) and tmax > 1 for serious steps.
Select the control parameters C > 0 for the length of the direction vector and
̺ > 0 and ν ∈ (0, 1) for the deflection bound. Select the parameter ǫ > 0,
the limit gmax < 0, and the auxiliary lower and upper bounds µmin > 0 and
µmax > 0 for dual variables. Select an upper limit m̂u ≥ 3 for the number of
stored correction pairs.

Step 0: (Initialization.) Choose a strictly feasible starting point x1 ∈ intS and a pos-
itive initial vector µ1 ∈ R

p (e.g., µi,1 = min{−1/gi(x1), µmax}). Choose an
initial maximum number of stored correction pairs m̂c (3 ≤ m̂c ≤ m̂u) and
initialize the limited memory matrices S1 = U1 = [] (empty matrices) and
the scaling parameter ϑ1 = 1 (see Appendix). Set y1 = x1, µ

α
1 = µ1, and

βL,1 = 0. Compute f1 = f(x1), ξf,1 ∈ ∂f(x1), g1 = g(x1), ξg,1 ∈ ∂g(x1) (i.e.,
a generalized Jacobian [6]), and ξL,1 ∈ ∂L(x1,µ1). Set the iteration counter
k = 1.

9

Step 1: (Serious step initialization.) Set the aggregate subgradients ξ̃f,k = ξf,k, ξ̃g,k =

ξ
g,k, and ξ̃L,k = ξL,k, and the aggregate subgradient locality measure β̃L,k = 0.
Set an index for the serious stepm = k.

Step 2: (Stopping criterion.) Calculate w1
k and w

2
k by

w1

k = ξ̃
T

L,kDkξ̃L,k + 2β̃L,k and (16)

w2

k = −
∑

i∈P

µi,kgi,k,

respectively. Use the limited memory BFGS update for calculation of Dk if
m = k and the limited memory SR1 update, otherwise (see Appendix). If
w1

k ≤ ε1 and w
2
k ≤ ε2, then stop with xk as the final solution. Otherwise, if

w1
k ≤ 103ε1 and m̂c < m̂u, set m̂c = m̂c + 1.

Step 3: (Direction finding.)

(i) (Descent direction.) Solve the values dα
k ∈ R

n and µα
k+1 ∈ R

p satisfying
the linear equations (11) and (12) using the same updating formula for
Dk (i.e., for B

−1

k) as in step 2.

If

‖dα
k‖ ≤ ε1,

then stop with xk as the final solution.

(ii) (Feasible direction.) Solve the values d
β
k ∈ R

n and µ
β
k+1

∈ R
p satisfying

the linear equations (13) and (14) (use the same updating formula as

before). If ξ̃
T

f,kd
β
k > 0, set

ρk = min

{

̺‖dα
k‖

2,
(ν − 1)ξ̃

T

f,kd
α
k

ξ̃
T

f,kd
β
k

}

. (17)

Otherwise, set

ρk = ̺‖dα
k‖

2. (18)

(iii) (Feasible descent direction.) Compute the search direction

dk = dα
k + ρkd

β
k .

Step 4: (Line search and solution updating.) Set the scaling parameter for the length of
the direction vector and for line search θk = min { 1, C/‖dk‖ }. Choose the
initial step size tkI ∈ [tmin, tmax). Determine the step sizes t

k
R ∈ (0, tkI] and t

k
L ∈

10

[0, tkR] by the constrained line search Algorithm 3.2. Set the corresponding
values

xk+1 = xk + tkLθkdk, fk+1 = f(xk+1), gk+1 = g(xk+1),

yk+1 = xk + tkRθkdk, ξf,k+1 ∈ ∂f(yk+1), ξ
g,k+1 ∈ ∂g(yk+1),

and

ξ̂L,k+1 ∈ ∂L(yk+1,µk).

Set uk = ξ̂L,k+1 − ξL,m and sk = yk+1 − xk = tkRθkdk and update the limited
memory matrices Uk+1 and Sk+1 (see Appendix).

If condition (3) is valid (i.e., we take a serious step), then set

µi,k+1 = max{µα
i,k+1, ǫ‖d

α
k‖

2} for all i ∈ P and

ξL,k+1 ∈ ∂L(yk+1,µk+1)

and, if gi(yk+1) ≥ gmax and µi,k+1 < µmin for some i ∈ P , then set µi,k+1 =
µmin. Set βL,k+1 = 0, k = k+ 1, and go to Step 1. Otherwise (i.e., condition (4)

is valid), set ξL,k+1 = ξ̂L,k+1, calculate the locality measure βL,k+1 by (5). and
set µk+1 = µk.

Step 5: (Aggregation.) Determine multipliers λk
i satisfying λ

k
i ≥ 0 for all i ∈ {1, 2, 3},

and
∑

3

i=1
λk

i = 1 that minimize the function

ϕ(λ1, λ2, λ3) = (λ1ξL,m + λ2ξL,k+1 + λ3ξ̃L,k)
TDk(λ1ξL,m + λ2ξL,k+1 + λ3ξ̃L,k)

+ 2(λ2βL,k+1 + λ3β̃L,k), (19)

where, as before,Dk is calculated by the same updating formula as in Step 2.
Set

ξ̃f,k+1 = λk
1ξf,m + λk

2ξf,k+1 + λk
3 ξ̃f,k,

ξ̃gi,k+1 = λk
1ξgi,m

+ λk
2ξgi,k+1 + λk

3 ξ̃gi,k
for all i ∈ P , (20)

ξ̃L,k+1 = λk
1ξL,m + λk

2ξL,k+1 + λk
3 ξ̃L,k,

and

β̃L,k+1 = λk
2βL,k+1 + λk

3β̃L,k. (21)

Set k = k + 1 and go to Step 2.

11

Assumptions to matrices. To ensure the convergence of aggregate subgradients
to zero, we assume that matrices Dk are uniformly positive definite and uniformly
bounded (we say that a matrix is bounded if its eigenvalues lie in the compact in-
terval that does not contain zero). This requires some modifications to the model
algorithm, for instance, corrections of matrices Dk when necessary. In this way we
obtain more complicated algorithm which, in unconstrained case, is described in
detail in [11, 14]. The basic assumption for bundle method to converge, that is, after
a null step we have zTDk+1z ≤ zTDkz for all z ∈ R

n, is guaranteed by the special
limited memory SR1 update [11, 14]. In addition to these, we assume that there exist
positive numbers ω1 and ω2 such that ω1‖d‖

2 ≤ dTBkd ≤ ω2‖d‖
2 for all d ∈ R

n (see
[37] for less restrictive conditions for Bk).

Line search procedure. The initial step size tkI ∈ [tmin, tmax) (see Step 4 in Algo-
rithm 3.1) is selected by using a bundle containing auxiliary points and correspond-
ing function values and subgradients. The procedure used is similar to that in the
original variable metric bundle method for nonconvex objective functions [38].
We now present the line search algorithm, which is used to determine the step

sizes tkL and t
k
R in the limited memory interior point bundle method. The line search

procedure used is rather similar to that given in [11, 14] which, on the other hand,
was derived from [38]. However, in interior point algorithms we are not allowed to
violate constraints. Thus, we need to extend the line search procedure used in the
previous variants of the limited memory bundle method to the constrained case.

ALGORITHM 3.2. (Modified line search for inequality constrained problems).

Data: Suppose that we have the current iteration point xk, the current dual vari-
ables µk, the current search direction dk, the current scaling parameter θk ∈

(0, 1], the current vector ξ̃
T

L,kDk, and the positive line search parameters εL ∈
(0, 1/2), εR ∈ (εL, 1/2), εA ∈ (0, εR − εL), and εT ∈ (εL, εR − εA) available.
In addition, suppose that we have given the initial step size tkI , an auxiliary
lower bound for serious steps tmin ∈ (0, 1), the distance measure parameter
γ ≥ 0, the desirable amount of descent w1

k, the maximum number of addi-
tional interpolations imax, and the number of consecutive null steps inull ≥ 0.

Step 0: (Initialization.) Set tA = 0, t = tU = tkI , and iI = 0, and calculate the interpola-
tion parameter

κ = 1 −
1

2(1 − εT)
.

Step 1: (New values.) Compute f(xk + tθkdk), gi(xk + tθkdk) for all i ∈ P , ξ̂L ∈
∂L(xk + tθkdk,µk), and

βL = max { |L(xk,µk) − L(xk + tθkdk,µk) + tθkd
T
k ξ̂L|, γ (tθk‖dk‖)

2 }. (22)

12

If

gi(xk + tθkdk) ≥ 0 for some i ∈ P,

then set tU = t and go to Step 5. Else, if f(xk + tθkdk) ≤ f(xk) − εT tw
1
k, then

set tA = t. Otherwise, set tU = t.

Step 2: (Serious step.) If

f(xk + tθkdk) ≤ f(xk) − εLtw
1

k,

and either
t ≥ tmin or βL > εAw

1

k,

then set tkR = tkL = t and stop.

Step 3: (Test for additional interpolation.) If f(xk + tθkdk) > f(xk), inull > 0, and iI <
imax, then set iI = iI + 1 and go to Step 5.

Step 4: (Null step.) If

−βL − ξ̃
T

L,kDkξ̂L ≥ −εRw
1

k,

then set tkR = t, tkL = 0 and stop.

Step 5: (Interpolation.) If tA = 0, then set

t = max

{

κtU ,
−1

2
t2Uw

1
k

f(xk) − f(xk + tθkdk) − tUw1
k

}

.

Otherwise, set t = 1

2
(tA + tU). Go to Step 1.

It can be proved that Algorithm 3.2 terminates in a finite number of iterations (the
proof is rather similar to that given in [38]) if the problem satisfies the following
modified semi-smoothness assumption: For all ξL ∈ ∂L(x,µk) and for any x ∈ R

n

and d ∈ R
n, and sequences (ξ̂L,i) ⊂ R

n and (ti) ⊂ R+ satisfying ξ̂L,i ∈ ∂L(x+tid,µk)
and ti ↓ 0, we have

− lim sup
i→∞

ξT
LDξ̂L,i ≥ lim inf

i→∞

f(x + tid) − f(x)

ti
,

where D is the inverse variable metric approximation calculated at point x. Note
that if we have no constraints present (i.e., p = 0 in problem (1)), then this modi-
fied semi-smoothness assumption reverts very similar to classical semi-smoothness
assumption [4].
On the output of Algorithm 3.2 (see Steps 2 and 4), the step sizes tkL and t

k
R satisfy

the serious descent criterion

f(xk+1) − f(xk) ≤ −εLt
k
Lw

1

k (23)

and, in the case of tkL = 0 (a null step), also condition (4). Moreover, in both cases,
for all i ∈ P , we have gi(yk+1) < 0.

13

4 Convergence Analysis

In this section, we study the convergence properties of Algorithm 3.1. In addition to
assuming that all the functions involved are locally Lipschitz continuous, the set S∩
{x ∈ R

n | f(x) ≤ f(x1) } is supposed to be compact and the problem is assumed to
satisfy Cottle constraint qualification (Def. 2.6). Furthermore, we assume that each
execution of the line search procedure is finite (i.e., the modified semismoothness
assumption is valid) and that the matrices Dk and Bk satisfy the assumptions given
before.
We start the theoretical analysis of limited memory interior point bundle method

by noting that the solutions of linear systems (11), (12), and (13), (14) are unique.
After that, we study the case when the algorithm terminates after a finite number of
iterations: we prove that if Algorithm 3.1 stops at iteration k, then the point xk is a
KKT point for problem (1) (note that if all the functions involved are convex, this is
also a global minimum for the problem). Finally, we prove that every accumulation
point x̄ of the sequence (xk) ⊂ S is a KKT point for problem (1) provided the com-
plementary condition (see Theorem 2.7) is satisfied. For these purposes, we assume
that the final accuracy tolerances ε1 and ε2 are equal to zero.

REMARK 4.1. The sequence (xk) is bounded by assumption and the monotonicity of
the sequence (fk) obtained due to serious descent criterion (23). Since xk+1 = yk+1

for serious steps and ‖yk+1 − xk+1‖ ≤ tmaxC for null steps by (2) and due to the
fact that we use the scaled direction vector θkdk with θk = min { 1, C/‖dk‖ } and
predefined C > 0 in the line search, the sequence (yk) is also bounded. By the
local boundedness and the upper semicontinuity of subdifferential we obtain the
boundedness of subgradients ξL,k, ξf,k, and ξgi,k

for all i ∈ P , as well as all their
convex combinations (see [6]).

The fact that the solutions of linear systems (11), (12), and (13), (14) are unique
is a consequence of Lemma 3.1 in [34] stated as follows (using the notation of this
paper)

LEMMA 4.1. For any vector x ∈ S, any positive definite matrix B ∈ R
n×n and any non-

negative vector µ ∈ R
p such that µi > 0 if gi(x) = 0, the matrix

M(x, B,µ) =

[

B ξ̃
g

Λξ̃
T

g
G(x)

]

is nonsingular.

REMARK 4.2. Since the matrix Bk is bounded by assumption, xk lies in a compact
set, and µk is bounded (see [15]), the matrix M(xk, Bk,µk) is bounded away from

zero and, thus, dα
k , µ

α
k , d

β
k , and µ

β
k are bounded from above.

LEMMA 4.2. Suppose that Algorithm 3.1 is not terminated before the kth iteration. Then,

14

there exist numbers λk,j ≥ 0 for j = 1, . . . , k and α̃k ≥ 0 such that

(ξ̃L,k, α̃k) =

k
∑

j=1

λk,j(ξL,j, ‖yj − xk‖),

k
∑

j=1

λk,j = 1, and β̃L,k ≥ γα̃2

k.

PROOF. See the proof of Lemma 3.2 in [38]. �

LEMMA 4.3. Let x̄ ∈ R
n be given and suppose that there exist a function ψ : R

n → R,
vectors ζ̄, ξ̄j, ȳj, and numbers λ̄j ≥ 0 for j = 1, . . . , l, l ≥ 1, such that

(ζ̄, 0) =

l
∑

j=1

λ̄j(ξ̄j , ‖ȳj − x̄‖),

ξ̄j ∈ ∂ψ(ȳj), j = 1, . . . , l, and
l
∑

j=1

λ̄j = 1.

Then ζ̄ ∈ ∂ψ(x̄).

PROOF. See the proof of Lemma 3.3 in [38]. �

THEOREM 4.4. If Algorithm 3.1 terminates at the kth iteration, then the point xk is a KKT
point for problem (1).

PROOF. If Algorithm 3.1 terminates at Step 3(i), then the fact ε1 = 0 implies that dα
k

is zero. Due to (11), (12), and strict feasibility of xk, we have ξ̃f,k + ξ̃
g,kµ

α
k+1

= 000with
µα

k+1
= 000 and, thus, the point xk is a KKT point for problem (1).
Let us now assume that Algorithm 3.1 terminates at Step 2. We point out first that

β̃L,k ≥ 0 for all k by (5), (21), and Step 1 in Algorithm 3.1. Due to (16), the positive
definiteness of Dk, and the correction term σI with σ ∈ (0, 1/2) that is added to
matrix Dk, if necessary (see [11, 14]), we have

w1

k ≥ 2β̃L,k and w1

k ≥ σ‖ξ̃L,k‖
2. (24)

Since Algorithm 3.1 terminates at Step 2, we have w1
k = 0. Thus, ξ̃L,k = 000 and

β̃L,k = α̃k = 0 by (24) and Lemma 4.2. Now, by Lemma 4.2 and by using Lemma 4.3
with

x̄ = xk, l = k, ζ̄ = ξ̃L,k,

ξ̄j = ξL,j, ȳj = yj , λ̄j = λk,j for j ≤ k,

and

∂ψ(yj) = ∂L(yj,µj)

we obtain 000 = ξ̃L,k ∈ ∂L(xk,µk) ⊂ ∂L̂(xk,µk).
Moreover, since Algorithm 3.1 stops at Step 2, we have w2

k = 0. By feasibility of
xk and positiveness of µk it follows that G(xk)µk = 000 and, thus, xk is a KKT point
for problem (1). �

15

From now on, we suppose that Algorithm 3.1 does not terminate, that is, dα
k 6= 000

and w1
k > 0 for all k.

LEMMA 4.5. Suppose that there exist a point x̄ ∈ S, a vector µ̄ ∈ R
p and an infinite

set K ⊂ {1, 2, . . .} such that (xk)k∈K → x̄, (µk)k∈K → µ̄, and (w1
k)k∈K → 0, then

000 ∈ ∂L(x̄, µ̄). Moreover, if w2
k → 0, then x̄ is a KKT point for problem (1).

PROOF. By using the subdifferential of Lagrangian instead of objective function the
first part of the proof is similar to the proof of Lemma 3.4 in [38]. Due to feasibility
of x̄ and positiveness of µ̄ the second part follows directly from the definition of
KKT points (see Theorem 2.7). �

LEMMA 4.6. Suppose that the number of serious steps in Algorithm 3.1 is finite and the last
serious step occurred at the iterationm− 1. Then there exists a number k∗ ≥ m, such that

ξ̃
T

L,k+1Dk+1ξ̃L,k+1 ≤ ξ̃
T

L,k+1Dkξ̃L,k+1 and (25)

tr(Dk) <
3

2
n (26)

for all k ≥ k∗, where tr(Dk) denotes the trace of matrixDk.

PROOF. The result is due to safeguarded SR1 update used (see [11, 14]). See the
proof of Lemma 7 in [14]. �

LEMMA 4.7. Suppose that the number of serious steps is finite and the last serious step
occurred at the iterationm− 1. Then, 000 ∈ ∂L(xm,µm). Moreover, if w2

k → 0, then xm is a
KKT point for problem (1).

PROOF. From (16), (19), (20), (21), and Lemma 4.6 we obtain

w1

k+1 = ξ̃
T

L,k+1Dk+1ξ̃L,k+1 + 2β̃L,k+1

≤ ξ̃
T

L,k+1Dkξ̃L,k+1 + 2β̃L,k+1 (27)

≤ ξ̃
T

L,kDkξ̃L,k + 2β̃L,k = w1

k

for k ≥ k∗ with k∗ defined in Lemma 4.6. The last inequality in (27) follows from

the fact that the pair (ξ̃L,k+1, β̃L,k+1) minimizes function (19) over all convex com-

binations of pairs (ξL,m, βL,m), (ξL,k+1, βL,k+1), and (ξ̃L,k, β̃L,k). In addition, the line
search procedure guarantees that we have

−βL,k+1 − ξ̃
T

L,kDkξL,k+1 ≥ −εRw
1

k

for all k ≥ m. Now, due to boundedness of ξL,k+1, ξ̃L,k, and Dk (see Remark 4.1 and
Lemma 4.6) it can be proved that w1

k → 0 (the proof is rather similar to the proof,
part(ii), of Lemma 3.6 in [38]). Now, since xk = xm and µk = µm for all k ≥ m, we
have xk → xm and µk → µm. Therefore, by Lemma 4.5 we have 000 ∈ ∂L(xm,µm)
and xm is a KKT point for problem (1), if w

2
k → 0. �

16

THEOREM 4.8. For any accumulation point x̄ of the sequence (xk) we have 000 ∈ ∂L(x̄, µ̄),
where µ̄ is an accumulation point of the sequence (µk). Moreover, if w

2
k → 0, then x̄ is a

KKT point for problem (1).

PROOF. Let x̄ and µ̄ be accumulation points of (xk) and (µk), respectively. Further,
let K ⊂ {1, 2, . . .} be an infinite set such that (xk)k∈K → x̄ and (µk)k∈K → µ̄. Note
that due to boundedness of (µk) (see [15]) such a set exists. In view of Lemma 4.7,
we can restrict our consideration to the case where the number of serious steps (with
tkL > 0) is infinite. Let us denote

K′ = {k | tkL > 0, there exists i ∈ K, i ≤ k such that xi = xk and µi = µk}.

Obviously, K′ is infinite, (xk)k∈K′ → x̄, and (µk)k∈K′ → µ̄. The continuity of f im-
plies that (fk)k∈K′ → f(x̄) and, thus, fk ↓ f(x̄) by the monotonicity of the sequence
(fk) obtained due to serious descent criterion (23). Using the fact that t

k
L ≥ 0 for all

k ≥ 1 and condition (23), we obtain

0 ≤ εLt
k
Lw

1

k ≤ fk − fk+1 → 0 for k ≥ 1. (28)

If the set K1 = {k ∈ K′ | tkL ≥ tmin} is infinite, then (w1
k)k∈K1

→ 0 by (28) and
(xk)k∈K1

→ x̄ and (µk)k∈K1
→ µ̄. Thus, by Lemma 4.5 we have 000 ∈ ∂L(x̄, µ̄) and x̄

is a KKT point for problem (1) if w2
k → 0.

If the set K1 is finite, then the set K2 = {k ∈ K′ | βL,k+1 > εAw
1
k} has to be infinite

(see Algorithm 3.2, Step 2). To the contrary, let us assume that

w1

k ≥ δ > 0, for all k ∈ K2.

From (28), we have (tkL)k∈K2
→ 0 and Step 4 in Algorithm 3.1 implies

‖xk+1 − xk‖ = tkLθk‖dk‖ ≤ tkLC

for all k ≥ 1. Thus, we have (‖xk+1 − xk‖)k∈K2
→ 0. By (22), (28), the boundedness

of ξL,k andµα
k (see Remarks 4.1 and 4.2), and the fact that all the constraint functions

are locally Lipschitz continuous (i.e., we have gi(xk) − gi(xk+1) ≤ L‖xk − xk+1‖ for
all i ∈ P with some Lipschitz constant L > 0), we obtain (βL,k+1)k∈K2

→ 0, which is
in contradiction with

εAδ ≤ εAw
1

k < βL,k+1, k ∈ K2.

Therefore, there exists an infinite set K3 ⊂ K2 such that (w
1
k)k∈K3

→ 0, (xk)k∈K3
→ x̄,

and (µk)k∈K3
→ µ̄. By Lemma 4.5, we have 000 ∈ ∂L(x̄, µ̄) and x̄ is a KKT point for

problem (1), if w2
k → 0. �

5 Numerical Experiments

In this section we compare the limitedmemory interior point bundle method LMBM-
IP to the proximal bundle method PBNCGC with improvement function [31]. We

17

used the solver PBNCGC as a benchmark since the proximal bundle method is the
most frequently used bundle method in nonsmooth optimization. In addition, we
compare LMBM-IP to the bound constrained version of the method LMBM-B [12].
The experiments were performed in a Intel R© Pentium R© 4 CPU 3.20GHz and all the
algorithms were implemented in Fortran77 with double-precision arithmetic.
The number of variables used in all the experiments was 1000, and the solvers

were tested with relatively small sizes of the bundles (mξ), that is, mξ = 2 for
LMBM-IP and LMBM-B and mξ = 100 for PBNCGC (since the previous experiments
[11, 14] have shown that a larger bundle usually works better with PBNCGC). For
the limited memory bundle solvers LMBM-IP and LMBM-B the upper limit for the
stored correction pairs (m̂u) was set to 15 and the initial maximum number of stored
corrections pairs (m̂c) was set to 7. The (first) final accuracy tolerance ε1 = 10−5 was
used in all the cases. In addition to the usual stopping criteria of the solvers, we
terminated the experiments if the CPU time elapsed exceeded half an hour.
Through the numerical experiments the following parameters were used with

the solver LMBM-IP:

̺ = 10−9, ν = 0.99, ǫ = 10−12, gmax = 0.001, and ε2 = 10−4.

In addition, the parameters µmin and µmax were selected from the values µmax = 2.0,
10.0, and 1000.0 and µmin = 0.001, and 0.1. With all the solvers the distance measure
parameter value γ = 0 was used with convex problems and the value γ = 0.5 with
nonconvex problems. Otherwise, the default values of the parameters were used.

Bound constrained problems. The solvers were first tested with 10 nonsmooth
academic minimization problems described in [13]. Half of these problems (prob-
lems 1–5) were convex and the other half (problems 6–10) were nonconvex. The
problems in [13] are unconstrained but we inclosed the additional bounds

x∗i + 0.1 ≤ xi ≤ x∗i + 1.1 for all odd i such that i ≤ 100,

where x∗ denotes the solution for the unconstrained problem. If the original starting
point given in [13] was not feasible, we simply projected it to the feasible region and,
since the starting point for LMBM-IP have to be strictly feasible, added an additional
safeguard of 0.0001.
The results of the bound constrained experiments are given in Table 1, where Ni

andNf denote the numbers of iterations and function evaluations used, respectively,
f denotes the value of the objective function at termination, and the time is an av-
erage CPU time elapsed per problem and it is given in seconds (only the accurately
and successfully terminated problems were included).
To sum up, the new solver LMBM-IP do not beat up LMBM-B that has specially

been designed for solving large-scale nonsmooth bound constrained problems. How-
ever, even if there exists a special way of dealing with bound constraints in PBNCGC,
the solver LMBM-IPwas on the average 36 times faster than it.

18

Table 1: Results for bound constrained problems.

Solver LMBM-IP LMBM-B PBNCGC

Problem Ni/Nf f Ni/Nf f Ni/Nf f

1 -/- fail 17364/17652 0.01000 8647/8671 0.01000

2 70/791 0.05148 259/408 0.05187 19/26 0.00006

3 153/1956 −1411.05 37/70 −1409.80 5387/5580 −1411.09

4 114/1391 2031.75 143/690 2031.86 6371/6372 2031.72

5 66/929 2000.15 49/121 2000.18 29/31 2000.15

6 54/552 0.09531 513/514 0.09531 74/2496 0.11502

7 108/1563 10.0809 499/3369 10.0550 302/303 10.0000

8 259/2505 −705.456 114/270 −704.206 5026/5027 −705.671

9 82/856 0.52112 101/290 0.52122 71/140 0.52113

10 130/1227 14.6443 155/570 14.5630 227/232 14.5594

Time 17.07 4.41 619.44

Inequality constrained problems. In addition to bound constraint problems we
tested the solvers LMBM-IP and PBNCGC with 50 inequality constrained problems.
The problems were constructed by combining the problems in [13] to the constraints
given in Appendix. The constraints were selected such that the original uncon-
strained minima of problems are not feasible. Note that, due to nonconvexity of the
constraints, all the inequality constrained problems used in our experiments were
nonconvex. This means that there may exist more than one local minimum for these
problems.
The results of the inequality constrained experiments are given in Table 2. The

number of the problem in Table 2 is constructed by first taking the number of the
problem in [13] and then the number of the constraint in Appendix. Note that due
to large dimension, nonconvexity, nonsmoothness, and nonlinear/nonsmooth in-
equality constraints these problems are very difficult to solve.
In Table 2 we used the term “fail” in three different failure terminations: first, if

there was some numerical difficulties that prevent solvers from working (“fail-1”,
in problem 7-2); second, if, by practically speaking, no optimization occurred (“fail-
2”, in almost all problems with constraints 3 and 4 with PBNCGC and in problems
1-3 and 1-5 with LMBM-IP): and, third, if the solution found was not even near the
optimal solution (“fail-3”, in the rest of the failed problems in Table 2). In this last
case, the most common reason for termination with PBNCGC was that the time was
up and with LMBM-IP it was that the value of the objective function is not changed
enough in last ten iterations.
At the end of Table 2 we have calculated the average numbers of iterations and

function calls as well as the average CPU time elapsed per problem. In each cases,
we omitted the problem that used most function evaluations since, for example,
with LMBM-IP problem 9-3 used 91% of all function evaluations required.
In Table 2 we can see the superiority of LMBM-IPwhen comparing the computa-

tional times; the computational time elapsed with LMBM-IP was an average about
40 times shorter than that of PBNCGC. It also succeed to solve many more problems
(80%) than PBNCGC (50%). However, there were some inaccuracy results obtained

19

Table 2: Results for inequality constrained problems.

Solver LMBM-IP PBNCGC

Problem Ni/Nf f Time Ni/Nf f Time

1-1 4914/10791 0.500065 14.25 -/- fail-3 -
2-1 110/829 0.043072 12.49 2807/9012 0.000163 202.60
3-1 244/2721 −1408.63 1.51 7673/22478 −1408.35 1800.21
4-1 745/9015 2003.24 6.11 -/- fail-3 -
5-1 230/1853 1998.36 1.35 1882/4199 1998.80 137.61
6-1 137/1060 0.534851 0.61 68/123 0.535092 0.73
7-1 331/3728 5.00248 7.78 -/- fail-3 -
8-1 254/2552 −680.628 1.41 -/- fail-3 -
9-1 247/2992 1.56604 1.34 -/- fail-3 -
10-1 490/6095 5.99059 3.15 7200/20151 6.05138 1800.15
1-2 10389/43599 0.880569 22.27 -/- fail-3 -
2-2 152/841 0.221364 12.66 4295/14597 0.008487 319.57
3-2 35/306 −735.874 0.12 167/517 −735.874 7.20
4-2 89/609 2808.45 0.46 462/815 2808.45 30.29
5-2 26/103 2800.19 0.07 334/700 2796.35 20.29
6-2 213/1507 2.79690 0.66 591/4036 2.77674 13.76
7-2 -/- fail-1 - -/- fail-1 -
8-2 23/81 4466.99 0.06 82/124 4507.02 2.41
9-2 450/3062 483.441 1.24 122/480 497.297 3.09
10-2 -/- fail-3 - -/- fail-3 -
1-3 -/- fail-2 - -/- fail-2 -
2-3 42/318 0.303804 4.77 91/517 0.007981 8.85
3-3 85/769 −1412.14 0.29 -/- fail-2 -
4-3 61/653 2001.63 0.33 -/- fail-2 -
5-3 -/- fail-3 - -/- fail-2 -
6-3 30/88 0.405473 0.04 26/41 3.04435 0.06
7-3 -/- fail-3 - -/- fail-2 -
8-3 169/1662 −705.910 0.61 -/- fail-2 -
9-3 82304/2645587 0.250063 655.14 -/- fail-2 -
10-3 91/2157 1.85396 0.56 -/- fail-2 -
1-4 9943/164502 0.388891 57.37 -/- fail-2 -
2-4 51/963 1.02087 14.48 91/517 0.007981 8.74
3-4 74/598 −1412.13 0.29 -/- fail-2 -
4-4 59/689 2001.72 0.41 -/- fail-2 -
5-4 -/- fail-3 - -/- fail-2 -
6-4 28/63 0.405549 0.04 26/41 3.04435 0.06
7-4 -/- fail-3 - -/- fail-2 -
8-4 194/1569 −705.926 0.73 -/- fail-2 -
9-4 203/3168 0.250222 1.12 -/- fail-2 -
10-4 208/2713 1.39342 1.28 -/- fail-2 -
1-5 -/- fail-2 - 12702/12703 0.138009 1800.03
2-5 50/599 0.622148 8.97 200/478 0.600611 9.42
3-5 13/103 −1153.55 0.04 172/466 −1153.55 23.67
4-5 11/74 4043.82 0.04 352/913 4043.82 30.45
5-5 11/74 4043.82 0.04 352/947 4043.82 34.22
6-5 28/302 5.81129 0.17 19/36 5.81129 0.04
7-5 9/46 589.475 0.09 204/521 589.469 29.60
8-5 34/471 −660.304 0.17 33/254 −660.307 0.21
9-5 -/- fail-3 - 2690/8376 490.173 166.60
10-5 -/- fail-3 - -/- fail-3 -

Average 781/7008 4.60 1457/3357 193.74

20

with the new solver. Particularly, it failed to solve problem 2 with the desired ac-
curacy regardless of the constraint used. These kind of difficulties were quite pre-
dictable, since problem 2 is reported to be difficult to solve with limited memory
bundle method even without constraints [13].
In both bound constrained and inequality constrained problems the numbers of

function evaluations used with LMBM-IP were much larger than the numbers of it-
erations. For instance, in inequality constrained problems LMBM-IP used about nine
function evaluations per iteration while with PBNCGC this ratio was only about two
(see Table 2). This also means that LMBM-IP usually needed more function evalua-
tions than PBNCGC even if the number of iterations was smaller. The reason for large
amount of function evaluations needed with LMBM-IP is that near the solution the
feasible search direction dk supports very short feasible segments and many func-
tion evaluations are needed in line search before a feasible step size is obtained (see
Algorithm 3.2). The possibilities of avoiding this kind of effect by using the curvi-
linear search inside the feasible region (see, e.g., [17, 34]) are to be studied.

6 Conclusions

In this paper, we have described a new interior point based limited memory bun-
dle method for inequality constrained nonsmooth optimization. The new solver is
suitable for general nonlinearly constrained large-scale problems, where neither the
objective function nor the constraints are supposed to be continuously differentiable
or convex.
We have studied the convergence properties of the method and given some re-

sults from numerical experiments. The preliminary numerical experiments confirm
that the limited memory interior point bundle solver is efficient for both convex
and nonconvex large-scale nonsmooth inequality constrained optimization prob-
lems. With large numbers of variables it used significantly less CPU time than the
other solver tested.

Acknowledgements

The authors would like to thank Ph. Lic. Elina Madetoja (University of Kuopio, Fin-
land) for valuable comments and ideas.

Appendix

Limited memory matrices. The limited memory variable metric matrices used in
our algorithm are represented in the compact matrix form originally described in [5].
Let us denote by m̂c the user-specified maximum number of stored correction

pairs (3 ≤ m̂c) and by m̂k = min { k− 1, m̂c } the current number of stored correction

21

pairs. Then the n× m̂k dimensional correction matrices Sk and Uk are defined by

Sk =
[

sk−m̂k
. . . sk−1

]

and

Uk =
[

uk−m̂k
. . . uk−1

]

,

where the correction pairs (si,ui), (i < k) are obtained in Step 4 of Algorithm 3.1.
The inverse limited memory BFGS update is defined by the formula

Dk = ϑkI +
[

Sk ϑkUk

]

[

(R−1

k)T (Ck + ϑkU
T
k Uk)R

−1

k −(R−1

k)T

−R−1

k 0

] [

ST
k

ϑkU
T
k

]

, (29)

where Rk is an upper triangular matrix of order m̂k given by the form

(Rk)ij =

{

(sk−m̂k−1+i)
T (uk−m̂k−1+j), if i ≤ j

0, otherwise,

Ck is a diagonal matrix of order m̂k such that

Ck = diag [sT
k−m̂k

uk−m̂k
, . . . , sT

k−1uk−1],

and ϑk is a positive scaling parameter.
In addition, the inverse limited memory SR1 update is defined by

Dk = ϑkI − (ϑkUk − Sk)(ϑkU
T
k Uk −Rk −RT

k + Ck)
−1(ϑkUk − Sk)

T . (30)

The similar representations for the direct limited memory BFGS and SR1 updates
can be given (see, e.g., [5]). However, the implementation of our algorithm only
needs the inverse update formulae to be used.

LEMMA 6.1. The condition

−dT
j uj −

(

ξ̃f,j +
∑

i∈P

µ̄i,j+1ξ̃gi,j

)T

sj < 0 for all j = 1, . . . , k − 1, (31)

where µ̄j+1 = µα
j+1 + ρjµ

β
j+1, assures the positive definiteness of the matrices obtained by

the limited memory SR1 update. Furthermore, it implies uT
j sj > 0 for all j = 1, . . . , k − 1

that assures the positive definiteness of the matrices obtained by the limited memory BFGS
update.

PROOF. Using condition (31), the fact that we have sj = tjRθjdj, t
j
R > 0, θj ∈ (0, 1],

and ξ̃f,j +
∑

i∈P µ̄i,j+1ξ̃gi,j
= −Bjdj for all j = 1, . . . , k − 1, we obtain

dT
j uj > −tjRθjd

T
j

(

ξ̃f,j +
∑

i∈P

µ̄i,j+1ξ̃gi,j

)

= tjRθjd
T
j Bjd

T
j ≥ tjRθjd

T
j B

′

jdj (32)

for all i = 1, . . . , k − 1. Now, by replacing equation (29) in [14] by (32), the first part
of the proof proceeds similar to the proof of Lemma 10 in [14].
The second part of the lemma follows from (32) provided by the positive defi-

niteness of (previous matrices) Bj and the fact that we have sj = tjRθjdj. �

In our proposal, the individual updates that would violate positive definiteness
are skipped (for more details, see [11, 13, 14]).

22

Constraints. The following constraint functions were used in our inequality con-
strained experiments:

1. Modification of Broyden tridiagonal constraint

gi(x) = (3.0 − 2.0xi+1)xi+1 − xi − 2.0xi+2 + 1.0, i = 1, . . . , 5,

for problems 1, 2, 6, 7, 9, and 10 in [13] and

gi(x) = (3.0 − 2.0xi+1)xi+1 − xi − 2.0xi+2 + 2.5, i = 1, . . . , 5,

for problems 3, 4, 5, and 8 in [13] (for original Broyden tridiagonal constraint, see,
e.g., [28]).

2. Modification of Broyden tridiagonal constraint II

g1(x) =

n−2
∑

i=1

((3.0 − 2.0xi+1)xi+1 − xi − 2.0xi+2 + 1.0) ,

for problems 1, 2, 6, 7, 9, and 10 in [13] and

g1(x) =

n−2
∑

i=1

((3.0 − 2.0xi+1)xi+1 − xi − 2.0xi+2 + 2.5) ,

for problems 3, 4, 5, and 8 in [13].

3. Modification of MAD1

g1(x) = max
{

x2

1 + x2

2 + x1x2 − 1.0, sin x1, − cosx2

}

,

g2(x) = −x1 − x2 + 0.5,

(for original problem, see, e.g., [29]).

4. Modification of MAD1 II

g1(x) = x2

1 + x2

2 + x1x2 − 1.0,

g2(x) = sin x1,

g3(x) = − cosx2,

g4(x) = −x1 − x2 + 0.5.

5. Simple modification of MAD1

g1(x) =
n−1
∑

i=1

(

x2

i + x2

i+1 + xixi+1 − 2.0xi − 2.0xi+1 + 1.0
)

23

for problems 1, 2, 6, 7, 9, and 10 in [13] and

g1(x) =

n−1
∑

i=1

(

x2

i + x2

i+1 + xixi+1 − 1.0
)

for problems 3, 4, 5, and 8 in [13].

In all cases the starting point were chosen to be feasible.

References

[1] BAKHTIARI, S., AND TITS, A. A simple primal-dual feasible interior-point
method for nonlinear programming with monotone descent. Computational Op-
timization and Applications 25 (2003), 17–38.

[2] BELIAKOV, G., MONSALVE TOBON, J. E., AND BAGIROV, A. M. Parallelization
of the discrete gradient method of non-smooth optimization and its applica-
tions. In Computational Science — ICCS 2003, Sloot et. al., Ed., Lecture Notes in
Computer Science. Springer Berlin, Heidelberg, 2003, pp. 592–601.

[3] BEN-TAL, A., AND NEMIROVSKI, A. Non-Euclidean restricted memory level
method for large-scale convex optimization. Mathematical Programming 102, 3
(2005), 407–456.

[4] BIHAIN, A. Optimization of upper semidifferentiable functions. Journal of Op-
timization Theory and Applications 4 (1984), 545–568.

[5] BYRD, R. H., NOCEDAL, J., AND SCHNABEL, R. B. Representations of quasi-
Newton matrices and their use in limited memory methods. Mathematical Pro-
gramming 63 (1994), 129–156.

[6] CLARKE, F. H. Optimization and Nonsmooth Analysis. Wiley-Interscience, New
York, 1983.

[7] FLETCHER, R. Practical Methods of Optimization, 2nd ed. John Wiley and Sons,
Chichester, 1987.

[8] FLETCHER, R., AND LEYFFER, S. A bundle filter method for nonsmooth nonlin-
ear optimization. University of Dundee, Numerical Analysis Report NA/195,
1999.

[9] GILBERT, J.-C., AND LEMARÉCHAL, C. Some numerical experiments with
variable-storage quasi-Newton algorithms. Mathematical Programming 45
(1989), 407–435.

[10] GOLDBERG, D. E. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley Publishing Company, Inc., Reading, MA, 1998.

24

[11] HAARALA, M. Large-Scale Nonsmooth Optimization: Variable Metric Bundle
Method with Limited Memory. PhD thesis, University of Jyväskylä, Department
of Mathematical Information Technology, 2004.

[12] HAARALA, M., AND MÄKELÄ, M. M. Limited memory bundle algorithm for
large bound constrained nonsmooth minimization problems. Reports of the
Department of Mathematical Information Technology, Series B. Scientific Com-
puting, B 1/2006 University of Jyväskylä, Jyväskylä, 2006.

[13] HAARALA, M., MIETTINEN, K., AND MÄKELÄ, M. M. New limited memory
bundle method for large-scale nonsmooth optimization. Optimization Methods
and Software 19, 6 (2004), 673–692.

[14] HAARALA, N., MIETTINEN, K., AND MÄKELÄ, M. M. Globally convergent
limited memory bundle method for large-scale nonsmooth optimization.Math-
ematical Programming A 109, 1 (2007), 181–205.

[15] HERSKOVITS, J. Feasible direction interior-point technique for nonlinear opti-
mization. Journal of Optimization Theory and Applications 99, 1 (1998), 121–146.

[16] HERSKOVITS, J., AND SANTOS, G. On the computer implementation of fea-
sible direction interior point algorithms for nonlinear optimization. Structural
Optimization 14 (1997), 165–172.

[17] HERSKOVITS, J., AND SANTOS, G. Feasible arc interior point algorithms for
nonlinear optimization. InComputational Mechanics: New Trends and Applications
(1998), S. Idelsohn, E. Oñate, and E. Dvorkin, Eds., CIMNE, Barcelona, Spain.

[18] KARAS, E., RIBEIRO, A., SAGASTIZÁBAL, C., AND SOLODOV, M. A bundle-
filter method for nonsmooth convex constrained optimization. Accepted for
publication inMathematical Programming B, 2006.

[19] KIWIEL, K. C. An exact penalty function algorithm for nonsmooth convex
constrained minimization problems. IMA Journal of Numerical Analysis 5 (1985),
111–119.

[20] KIWIEL, K. C. Methods of Descent for Nondifferentiable Optimization. Lecture
Notes in Mathematics 1133. Springer-Verlag, Berlin, 1985.

[21] KIWIEL, K. C. A method of linearizations for linearly constrained nonconvex
nonsmooth minimization. Mathematical Programming 34 (1986), 175–187.

[22] KIWIEL, K. C. A constraint linearization method for nondifferentiable convex
minimization. Numeriche Mathematik 51 (1987), 395–414.

[23] KIWIEL, K. C. Exact penalty functions in proximal bundle methods for con-
strained convex nondifferentiable minimization. Mathematical Programming 52
(1991), 285–302.

25

[24] LEMARÉCHAL, C. Nondifferentiable optimization. In Optimization, G. L.
Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, Eds. Elsevier North-
Holland, Inc., New York, 1989, pp. 529–572.

[25] LEMARÉCHAL, C., NEMIROVSKII, A., AND NESTEROV, Y. New variants of
bundle methods. Mathematical Programming 69 (1995), 111–147.

[26] LEMARÉCHAL, C., STRODIOT, J.-J., AND BIHAIN, A. On a bundle algorithm for
nonsmooth optimization. In Nonlinear Programming, O. L. Mangasarian, R. R.
Mayer, and S. M. Robinson, Eds. Academic Press, New York, 1981, pp. 285–281.

[27] LUKŠAN, L., AND VLČEK, J. Globally convergent variable metric method for
convex nonsmooth unconstrained minimization. Journal of Optimization Theory
and Applications 102 (1999), 593–613.

[28] LUKŠAN, L., AND VLČEK, J. Sparse and partially separable test problems for
unconstrained and equality constrained optimization. Technical Report 767,
Institute of Computer Science, Academy of Sciences of the Czech Republic,
Prague, 1999.

[29] LUKŠAN, L., AND VLČEK, J. Test problems for nonsmooth unconstrained and
linearly constrained optimization. Technical Report 798, Institute of Computer
Science, Academy of Sciences of the Czech Republic, Prague, 2000.

[30] MAJAVA, K., HAARALA, N., AND KÄRKKÄINEN, T. Solving variational image
denoising problems using limited memory bundle method. In Proceedings of
The 2nd International Conference on Scientific Computing and Partial Differential
Equations and The First East Asia SIAM Symposium, Hongkong, December 12-16,
2005. (to appear, 2006), L. Wenbin, N. Michael, and S. Zhong-Ci, Eds.

[31] MÄKELÄ, M. M., AND NEITTAANMÄKI, P. Nonsmooth Optimization: Analysis
and Algorithms with Applications to Optimal Control. World Scientific Publishing
Co., Singapore, 1992.

[32] MIFFLIN, R. A modification and an extension of Lemaréchal’s algorithm for
nonsmooth minimization. Matematical Programming Study 17 (1982), 77–90.

[33] NOCEDAL, J. Updating quasi-Newton matrices with limited storage. Mathe-
matics of Computation 35, 151 (1980), 773–782.

[34] PANIER, E. R., TITS, A. L., AND HERSKOVITS, J. N. A QP-free, globally con-
vergent, locally superlinearly convergent algorithm for inequality constrained
optimization. SIAM Journal on Control and Optimization 26, 4 (1988), 788–811.

[35] SAGASTIZÁBAL, C., AND SOLODOV, M. An infeasible bundle method for non-
smooth convex constrained optimization without a penalty function or a filter.
SIAM Journal on Optimization 16, 1 (2005), 146–169.

26

[36] SCHRAMM, H., AND ZOWE, J. A version of the bundle idea for minimizing
a nonsmooth function: Conceptual idea, convergence analysis, numerical re-
sults. SIAM Journal on Optimization 2, 1 (1992), 121–152.

[37] TITS, A. L., WÄCHTER, A., BAKHTIARI, S., URBAN, T. J., AND LAWRENCE,
C. T. A primal-dual interior-point method for nonlinear programming with
strong global and local convergence properties. SIAM Journal on Optimization
14, 1 (2003), 173–199.

[38] VLČEK, J., AND LUKŠAN, L. Globally convergent variable metric method for
nonconvex nondifferentiable unconstrained minimization. Journal of Optimiza-
tion Theory and Applications 111, 2 (2001), 407–430.

27

