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Quasiconformal mappings appeared perhaps for the first time in 1928 in
a work by Grotzsch under the name “most nearly conformal mappings”. He
essentially considered the problem of mapping a planar square to a planar
(non-square) rectangle by a diffeomorphism that sends the vertices of the
square to the corner points of the rectangle. Even though these two do-
mains are conformally equivalent, the given boundary condition cannot be
realized by any conformal mapping. For a conformal mapping f, the ra-
tio | f'(2)*/J;(z), is identically one by the Cauchy-Riemann equations, and
one was then lead to try to minimize the maximum of this quantity under
diffeomorphisms with the given boundary condition. Similar questions were
subsequently considered by Teichmiiller in the 1930’s. The term “quasifon-
formal mapping” was coined by Ahlfors in 1935. He relaxed the regularity
assumption and considered homeomorphisms in the local Sobolev class W2
for which

IDF()P < KJy()

almost everywhere for some constant K > 1. The restriction K > 1 comes
from simple linear algebra: for each n x n-matrix A,

det A < |A|",
where det A refers to the determinant of A and

|A| = sup |Ah| = sup |Ah|
|h|<1 |h|=1
is the operator norm of the linear transformation associated with A.

In 1938, Morrey proved a powerful existence theorem, called the measur-
able Riemann mapping theorem. This essentially states that, in the plane,
quasiconformal mappings with any prescribed ratio | D f(2)[*/J¢(z) € L* and
any given direction for the the maximal directional derivative can be found.
Other important developers of the theory include Lavrantiev and Bojarski.
Planar quasiconformal mappings have since then been applied to many en-
tirely different problems. Let us simply here list the following: Kleinian



groups, Nevanlinna theory, surface topology, complex dynamics, partial dif-
ferential equations, inverse problems and conductivity.

Higher dimensional quasiconformal mappings were already introduced by
Lavrantiev in 1938. The theory began to flourish around 1960 when impor-
tant works by Loewner, Gehring, and Vaiisild appeared. Other significant
contributors include Callender, Shabat, and Reshetnyak. Subsequently, these
mappings were introduced also in non-Euclidean settings by Mostow, who
proved his celebrated rigidity theorem in 1968. Another celebrated result is
the reverse Holder inequality of Gehring’s from 1972. In higher dimensions,
the theory of and techniques introduced to study quasiconformal mappings
have been successfully applied in differential geometry, topology, harmonic
analysis, partial differential equations, and non-linear elasticity, among other
fields.

The purpose of these notes is to give an introduction to the theory. The
selected approach has been influenced by recent advances in the metric set-
ting, but the framework is mostly that of a Euclidean space. The concept
of quasisymmetry will be crucial in our approach. We have tried to make
the notes as self-contained as possible. The reader is nevertheless assumed to
know the basics of the Lebesgue integration theory and LP-spaces. The topics
covered reflect the personal taste of the author. Naturally many important
aspects must have been left untouched. For further reading, we recommend
the classic monograph “Lectures on n-dimensional quasiconformal mappings”
by Viisélé [30] and the monograph [4].

These notes are based on courses given at the University of Jyviskylad
in 1997, 2004 and 2008 and at the University of Michigan in 2002. The
current notes are the outcome of several iterations. We wish to thank all the
people who have provided us with lists of typos. In our experience, most of
the material can be covered in a one semester, graduate level topics course.
Regarding the sources for the presented material, we wish to highlight [8],
[14] and [30]. There are rather few historical comments in what follows, and
the inclusions or omissions of references are essentially random.

1 The metric definition
We begin by introducing the so-called metric definition of quasiconformality.

To this end, let (X,|-]),(Y,|-|) be metric spaces and f : X — Y
homeomorphism. Let x € X and r > 0. Define

Ly(w,r) = sup{[f(z) = f(W)] : [z —y| <7},
L(w,r) o= d{|f(z) = f(Y)| - |2 =y = 7},
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and

Figure 1: The definition of L;(x,r) and [¢(z,r)
A homeomorphism f is quasiconformal if there exists H < oo such that

Hy¢(z) = limsup Hy(x,r) < H

r—0

for all z € X. We then say that f is (metrically) H-quasiconformal.
Here is a list of examples of quasiconformal mappings in the Euclidean
setting.

1.1 Examples.
1) Each conformal f is quasiconformal.
2) The planar mapping f(x,y) = (x,2y) is quasiconformal.

3) The “radial streching” f(z) = z|z|*"', € > 0, is quasiconformal in all
dimensions.

4) There is quasiconformal mapping f : R* — R? such that f(5'(0,1)) is
the von Koch snowflake curve.

5) Each diffeomorphism f : Q — €' is quasiconformal in every subdomain
G CccC Q.

Let us begin by considering 1) in the plane. Write z = x + iy and
f(2) = u(z,y) + iv(z,y) for a conformal mapping f, where u,v are real
functions. Then f is analytic and the Jacobian determinant J; of f is strictly
positive.

By the Cauchy-Riemann equations we have that

Uy = Uy, Uy = —Vy.



Thus
i =[] = [ W]

Uy Uy —Uy Uy
We conclude that J;(z,y) = (ug)?+(u,)? = |Vul|* = |Vo|? and that Vu-Vo =
0. Moreover, also the two columns of D f(z,y) are perpendicular and both of
length |Vu|. Thus, given a vector h, we have that

[Df(x,y)h| = [Vullh|.
By the (complex) differentiability of f we conclude that
limsup Hy(z,7r) =1

r—0

everywhere. Notice also that

Df(@,y)|* = Jy(x,y)

everywhere, where |A| = sup, <;|Ah| is the usual operator norm. Since
f(z +1iy) = uy(z + iy) — tuy(x + iy) for the complex derivative f’, we also
have that |Df(z,y)| = |f'(z + iy)|, where the latter term is the modulus of
the complex derivative and the former again the operator norm.

For 2) one easily checks that f is indeed quasiconformal, with

limsup Hy(z,7) =2
r—0
everywhere.

The radial mapping described in 3) requires already some effort, see Chap-
ter 10 below. We will also discuss the mapping referred to in 4) in more detail
in Chapter 10.

Regarding 5), notice that the Jacobian J¢(z) of f is locally bounded away
from zero and that |Df(x)| = supy,<; |Df(x)h| is locally bounded. Thus,
given G CC (), we have that

[Df(x)]" < KJg(x)
for some constant K and all x € G. This implies that

IDf(@)| < K'gin | D)

with some constant K’ in G (in fact, we may take K’ = |K|""!). The
quasiconformality then follows with H = K’ using the differentiability of f.

The metric definition is easy to state but it is hard to deduce properties
of quasiconformal mappings directly from it. For example, it is not clear
from the definition if quasiconformal mappings form a group. The problem
is that the definition is an infinitesimal one. In the next chapter we show
that it implies a global estimate which is easier to work with.
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2 From local to global

In this chapter we prove the following global estimate and introduce the
machinery needed for its proof.

2.1 Theorem. Let [ : Q — Q' be H-quasiconformal, where €, Q) C R™ are
domains, n > 2. Then H(x,r) < H'(H,n) whenever B(z,7r) C €.

To help to understand the fundamental ideas of the proof, let us begin
with a simpler setting.

2.1 Special case
Suppose that Q = ' = R? and assume that f be a diffeomorphism.

Assume that f is orientation preserving. Let x € 2. Then f is differentiable
at « with J¢(x) > 0. It follows that

max | Df ()e| < Hmin|Df (x)el

lel=1

and
IDf(2)|* < HJy(x),

see Subsection 11.2 in the appendix. Let us show that Hy(x,r) < H'. We
may assume that 2o = 0 = f(zo). Denote L := L;(0,r) and [ := [£(0,7).
Define

1 if |y| <1
vy =0, iz L
el L[y <L
Then
if |yl <
[Vu(y)| =40 if ly| > L
|y“(1)g% ifl < |yl <L



Now

2
1 dy
volPay =) [
/R? log% i<tyi<t [y[?

1
= —dd
log% // il

=\ oz (logL—logl)Qﬂ
OgT

27
=—.
log 7
Let u(z) = v(f(x)). Then (see Subsection 11.2 in the appendix)

[ IVu@)de < / Vo(f(2))PIDf () de

sH | [Vo(f (@) J4(x)] dz

11 [ Vo) dy
R2

_ 2mH

B log%

Now, v =1 on f~ (E( [)) and v = 0 on f~Y(R?\ B(0,L)). Let wy, 29 be
such that |wo| = |20 =7, wo € f~1(R?\ B(0,L)) and 2z, € f~1(B(0,1)). Set

{% if "LUO—Z()’ Z \/57"
w =

WwotZ0 g f |y — 29| < V21

|wo+zo|

Then, for = < ¢t < r, S*(w, t) intersects both f~'(R*\ B(0, L)) and f~'(B(0,1)).
Now, s1nce u oscillates from 0 to 1 on S'(w,t), we have

Holder 1/2
v [ v " ey ( / \w?)
S1(w,t) ST (w,t)

for each " <t <r. Thus

T r 1
/ [Vul® > / (/ |Vu\2) dt > / —_—C (1)
B(0,2r) os S1(w,t) i 27t

where C' is independent of r. Hence
L
7 <exp(CH).

This gives us the desired global control.
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2.2 Relaxing the regularity assumption

We continue with the planar setting. We begin by disposing of the use of the
chain rule.
Let us define

{mm) L on fU(BO.L)\B(0,1) = A

0 elsewhere

Then

o _ 2mH
P S oe L
R2 0g 7

If 7 is a subarc of S*(w,t) which connects f~1(R?\ B(0, L)) to f~*(B(0,1)),
then f o~ connects R?\ B(0, L) to B(0,1), and so

d
/ pdS Z/ - i T 2 17
S1(w,t) fory ‘y‘ logT

where w and 77 < t < r are as above. Reasoning as in (1), using polar
coordinates, we conclude that

/ p2 >C > 0.
B(0,2r)

We no longer require the chain rule, but it still looks like we need f to be
differentiable. To relax this assumption, let us try to discretize the definition
of our function p. Recall that we wish to bound L/l from above. We may
thus assume that L > 2I.

Suppose A = f~1(B(0,L) \ B(0,1)) C U B;, where B;’s are balls. Set

_ L\ diam(f(B;)) 1
p(x)—(logj) Z diam(Bj) dist(O,f(Bj))XQBj($)'

Then

(1 L\ 7' diam(f(B))) 1
/Sl(w’t)PdS = (10g 7) Z diam(B;) dist(0, f(B;))) /Sl(w,t) X2B; dS.

If the B;’s are small, then

/ \op, ds > diam(B;)
S1(w,t) 2



whenever B; N S*(w,t) # 0. Hence
LN "1 diam(f(B;))
pds > (log _) ! diam(f(5,))
/Sl(w,t) l 2 BjﬁS%,t);é@ dlSt(Ou f(BJ))

Assume that the sets f(B;) are so small that each f(B;) intersects at most
two annuli A; = B(0,2)\ B(0,2°"1). Write || for the integer part of a real
number ¢. Then

log, L
S diam(f(B;)) >1L & 1 diam(f(B,))
prirmnso TSUOF(B)) 4 S S U880 f(B))
Uog2 %J .
S 1 3 diam(f(B;))
4 2]
=1 BjﬂSl(w,t)yéw,f(BJ)ﬁAﬁéﬂ
> 1 UOg2 %J 22_1l
T4 = 21
- 11 L

and so

/ pds > C >0
S1(w,t)

whenever T < t < r. As before, this gives

4
/ p? > C > 0. (2)
B(0,2r)

When we try to estimate ||p|| 25,2 from above, we are faced with the
integral

AN Cdiam(f(B) 1 :
CHN. <Z diam(5;) dist(f(Bj),O)XZBj(x)> doe 0

1
Problems:

1) How to select balls B; so that we can find an effective estimate on our
integral? This requires control on the overlap of the balls B;.

2) How to get rid of the annoying 2 in xop,?



3) Even if we can handle 1) and 2), how can we handle dimensions n > 37
Notice here that the proof of (2) strongly used the fact that we are in
the plane.

We next introduce the technology that will allow us to handle the above
problems.

2.3 Covering theorems

We will later use covering theorems to select the above balls B;. We begin
with a covering lemma that holds in all metric spaces whose closed balls are
compact.

2.2 Theorem. (Vitali) Let B be a collection of closed balls in R™ such that
sup{diam B : B € B} < cc.

Then there are By, Bo,... (possibly a finite sequence) from this collection
such that B; N B; = () for i # j and

U Bcls5B;

BeB

For a proof we refer the reader to [20]. Let us anyhow briefly explain the
idea in a simple case. Suppose that the family B consists of balls B(z,r,),
where z € A and A is bounded. Let M = sup,.4 7. Choose a ball By =
B(z,r,) so that r, > 3M/4. Continue by considering points in A \ 3B,
and repeating the first step (now letting M; = sup,c 4,35, 1) and after that
continue by induction.

In the Euclidean setting, a subcollection often can be chosen so that we
only have uniformly bounded overlap for the cover.

2.3 Theorem. (Besicovitch) Let B be a collection of closed balls in R™
such that the set A consisting of the centers is bounded. Then there is a
countable (possibly finite) subcollection By, By, ... such that

Xal@) <> xp,(x) < C(n)
for all z.

The selection of the balls B; eventually will be made using the Besicovitch
covering theorem. In more general settings, say, in the Heisenberg group,
Besicovitch fails. The reason it holds in the Euclidean setting, is basically
the following fact:
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Suppose that we are given B(z1,71) and B(xzg,72) so that 0 € B(xy,r)N
B(xg,19), 1 ¢ B(xa,72) and x5 ¢ B(x1,71). Then the angle between the
vectors x1 and x5 is at least 60 degrees.

For a proof of the Besicovitch covering theorem, we again refer to [20].

2.4 The maximal function

We will need maximal functions to dispose of the constant 2 in the term x2p,
in (3). Maximal functions turn out to be important for other things as well.
Let u € L] _(R™). The non-centered maximal function of u is

loc
Mu(z) = sup ][ .
z€B(y,r)J B(y,r)

Here and in what follows,
i)
v=— [ v
]{1 Al Ja

when A is measurable with 0 < |A| < oo, and |A| refers to the Lebesgue
measure of A.

2.4 Remarks.
1) According to the Lebesgue differentiation theorem (cf. Remarks 4.3),
Mu(z) = [u(z)]
almost everywhere. This fact is not be needed in this section.

2) There are many other maximal functions. For example the restricted,
centered maximal function

MSu(z) = sup][ .
B(z,r)

0<r<o

3) We always have M u(z) < Mu(z) < 2*°MS u(z).

4) Notice that {Mu > t} is open for each ¢t > 0 and, consequently, Mu is
measurable. Indeed, if z € {Mu > t}, then it immediately follows from
the definition that B(y,r) C {Mu > t}, for some B(y,r) containing x.

2.5 Theorem.

1) Ifue L' and t > 0, then [{Mu > t}| < 5 f{Mu>t} ul < 2= Jull;.
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2) If ue LP, p > 1, then [(Mu)? < C(p,n) [ |ul?.

Proof. 1) We may assume that M := f{Mu>t} |u| < oo. For each z € {Mu >
t} there is a ball B such that x € B and

][\u\ > t.

B

Bl<et [ u
B

diam(B) < C(n)t*||ull:.
If y € B, then Mu(y) >t and thus B C {Mu > ¢}. So

1 1
Bl [l [l
tJB t J{MustynB

By the Vitali covering theorem we find pairwise disjoint balls By, Bs, ... as
above so that {Mu >t} C |J5B;. Then

5" 5"
IR SR SRS 3) MTEL T

Mu>t}

Then

and thus

2) Recall the Cavalieri principle:

[v(@)]
/]v\p:p// tr~dt dx
0
Zp//o P (ol dt d

=p/tpWM>ﬂMt
0

Fix ¢ > 0. Define g(2) = |u(2)| X(ju@)>2}(2). Then |u(z)| < g(x) + £ and so
Mu(z) < Mg(z) + . Thus {z : Mu(z) > t} C {x : Mg(z) > £}. Now, the

Cavalieri principle, part 1) of our theorem and the Fubini theorem yield the

12



estimate
/(Mu(x))p = p/ooo P {Mu(z) > t}| dt
<p [ elg) > G

< p/oo p1 20
=7 | r
[o¢] 2.577,
<p/ tp_l—/ |u| dz dt
E S fut@)> 5y
2|ux
:2-5"]9/ \u(x)]/ P72 dt da
Rn 0
2P5"p
T -1 /|u|p'

2.6 Remark.

1) Let us single out, for future reference, the estimate

2. 5"
{Mu(z) > t}| < / |u| dx
t Ju@)>Ly

from the above proof.

2) Suppose that u € LP(Q2), p > 1. Applying Theorem 2.5 to the zero
extension of u we conclude that [,(Mu)? < C(p,n) [, |ulP. Similarly,
the inequality in part 1) of this remark can be restricted to € when
u e L'(Q).

The case p = 1 was not left out by accident from the previous theorem.

2.7 Example. If u(z) = xpo1(z), then Mu ¢ L'(R™). In fact, Mu ¢
L*(R™) unless u is the zero function.

The following lemma from [7] will allow us to handle problem 2) stated
after formula 3.

13



2.8 Lemma. (Bojarski) Fix 1 < p < oco. Let By, By, ... be balls in R",
a;j > 0 and A > 1. Then

1" a0l < COP D aixs, I

Proof. The case p = 1is clear. Let p > 1. Then, by the LP — LP/?~1_duality
(see Subsection 11.3 in the appendix),

I Z a;Xxg;llp = sup

<1
lell_z, <

/Z anAB]-@‘ :
Now, using monotone convergence and Theorem 2.5 we estimate
'/Z%’XABJ-SO < Z@j/ o
AB;
<Y ahBl{ I
2 ailBil f
< Zaj)\”/ M
B;

<X apxs, lnlMell 2,
<N Clp.n)l Y agxs,llpllel 2,

p—

The claim follows. O

2.5 Upper gradients and Poincaré inequalities

In this section we give a substitute for (1). We will later show that it allows
us to prove an analog of (2) in all dimensions.
A Borel function g > 0 is an upper gradient of u in U, if

[u(z) — u(y)] < / gds (4)

Y,y

whenever z # y € U and ,, is a rectifiable curve that joins = to y in U.
Here we agree that inequality (4) holds, whatever an expression we have on
the left hand side, if the given line integral is infinite, and that both u(x)
and u(y) are finite if the integral in question converges.

14



The rectifiability of v : [a,b] — R™ above means that, for some M < oo,

e

-1

V(i) = () < M

.
Il

whenever a = t; < ty < --- < t;, = b and k > 2. The supremum of such
sums over all £ > 2 and all partitions is then the length of 7. Recall that
each rectifiable curve v : [a,b] — R™ of length [ can be parametrized by
v : [0,1] — R™ so that |y,(t)] = 1 for a.e. t and 7, is 1-Lipschitz, i.e.
I70(t) — Y0(s)| < |t — s| for all t, s € [0,]. Then

/gds _/ 70
[0,]]

For all this see [30].

2.9 Examples.

1) u € C', g = |Vu|. This is simply the fundamental theorem of calculus
for the absolutely (even Lipschitz) continuous function uo~q of a single
variable:

u(1(1)) — u((0)) = [ VOO > A O

2) wu Lipschitz, g the pointwise Lipschitz “constant”

Lipu(z) = limsup sup M
=0 |z—y|<r r

Notice that (uoy) () < Lipu(t) for almost every ¢.

3) w anything, g = oco. In this case, the right hand side of (4) is always
infinite.

Integration of (4), the Fubini theorem and spherical coordinates give us
the important Poincaré inequality.

2.10 Theorem. (Poincaré inequality) Let u € L'(B(xy,7)) C R", n >
2, and let g € LP(B(xo,7)), 1 < p < 00, be an upper gradient of u in B(z, 7).

Then
1/p
][ lu—ug| < C(n)r <][ gp) :
B(zo,r) B(zo,r)

Here up := fB(mr) u

15



Proof. Let z € B = B(xg,r). Then

/|u —u(y |dy<// (x+t(y —x))|ly — x| dtdy
:/ [ sttty —a)ly - o dya
0o JB
1 —_
S// g(z)(’z x’)t_"dzdt
0 JBNB(z,2tr) t
1
_27“// g(2)t " dzdt
0 JBnNB(z,2tr)
1
§2r/g(z)/ ‘t "dtdz
<
C,r" / \z—a:|” -d

Integrating with respect to x we obtain the estimate

u(x) —u(y)| dyde < C,r" Ly)dydx
u(z) — u(y)] 1
BJB ’y—x’n_
:Cnr/ / — dx dy
ly —zf»=
B

Now
]{3 lu(z) — up|dr = g u(z) — u(y) dy' dx < ]i]i lu(z) — u(y)| dy dz.

Combining the above estimates, we obtain the desired inequality for p = 1.
The general case follows by Holder’s inequality. a

2.11 Remarks.

1) The Poincaré inequality also holds when n = 1 and the proof is easier:
when z < y and z,y € I, where [ is a bounded interval, we have that

fu(y) — u(z)] < / Tgydi < / o(t) dt

by the upper gradient inequality. Integrating this estimate over I with
respect both of the variables, we obtain the Poincaré inequality by
repeating the last steps of the proof of Theorem 2.10.

16



2) It is easy to modify the proof of Theorem 2.10 so as to verify

1/p 1/p
<][ lu — uBV’) < C(n,p)r (][ gp) :
B(z,r) B(z,r)

This is the usual form of the Poincaré inequality.

3) It is harder to prove that

n—p

o\ PR 1/p
(f u— uB\n——p) < Clnp)r (f gp)
B(z,r) B(z,r)

when 1 < p < n. This inequality is called the Sobolev-Poincaré inequal-
ity.

4) Ifu € L'(B(zo,r)) has an upper gradient g € L>(B(x, 7)), then it eas-
ily follows that u has a representative @ (i.e. 4 = u almost everywhere)

that is ||g||~-Lipschitz. By the last step of the proof of Theorem 2.10
we then conclude that the Poincaré inequality also holds for p = oco.

We are now ready to prove a substitute for (1).

2.12 Theorem. Let u be continuous in B(z, 3r), g > 0 an upper gradient of
win B(xg, 3r) and assume that u < 0on E, u > 1 on F where E, F' C B(zo,r)
are continua with min{diam(E), diam(F")} > dor > 0. Then

/ g" > 6(dp,m) > 0.
B(z0,3r)

Proof. Let a = fB(IO U Assume that @ < 1/2. Let x € F and write
r; =27"r,i > —1, B; = B(x,r;). Then

u(zr) = lim up, = lim 4 w.

1—00 1—00 B
1

Now

< Ju(@) = upon| < s, — s, |+ [Us, — wp@n)-
i>0

N —

17



Also, B(zg,7) C B(z,2r) and thus a simple estimate and the Poincaré in-
equality yield

’uBo - uB(xo,r)’ S |uB(x,r) - uB(m,Zr)‘ + ‘UB(xo,r) - uB(x,Zr)‘

<2 271][ |U - uB($,2r)|
B(z,2r)
1/n
< C(n)2r <][ g”)
B(z,2r)

< C(n)(2r)"/" <<2r>1 / . gn) "

1/n
up; — uBi+1‘ < C(n)rzl/n (ri_l/ gn) .
B;

Similarly

Thus

1 0o 1/n
5 < > Clyry” (ml / g”)
i=—1 Bi

1/n
< C(n)r'/™ sup (t_l/ g") :
0<t<2r B(a,t)

Thus, for each = € F, there is a ball B(z,t,) so that ¢, < 2r and
ty < C’(n)r/ q".
B(z,tz)

By Vitali we find pairwise disjoint balls By, Bs, ... as above such that F' C
|J5Byg. Then

diam(F) < Zdiam(E)Bk.) < C’(n)TZ/B g" < C(n)r /B( q".

z0,37)

If a > 1/2, then we use E instead of F' above. O

2.13 Remark. By choosing the balls B; more cleverly, one can show that
B(zg,3r) may be replaced with B(xg,r).
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2.6 Proof of Theorem 2.1.

We prove the estimate for B(xg,r). We may assume that zo = 0 = f(zo).
Recalling that we wish to bound H¢(x,r) = ];ff((f;)’:)) from above, we may

further assume that L > 2I, where L := L¢(xo,7) and [ := lf(zo, 7). Let
A= fY((B(0,L)\ B(0,1))n )N B(0,6r).

For each = € A, pick 0 < r, < r/30 such that
H(x,r,) <2H and diam(f(B(z,r.))) <l/4.

By the Besicovitch covering theorem we find a subcollection { B; }; = { B(z;,7;)};
of {B(z, 1)}, so that

xa(r) <> xs,(x) < C(n)
for all z. Because f is a homeomorphism, also
fo(Bj)(x) < C(n).
Pick r; <rg; < 2r; so that
diam(f(B(z;,72,))) < 2diam(f(By)).

Because A is compact, already a finite number of the balls éj = B(xj,74,)
cover A, say Bl, e By.. Define

(e L) S diam(f(By)) 1 "
plr) = (l & z) 21: diam(B;) dist(o,f(éj))ij( )
Then
L\ ' < diam(f(B;)) 1
P(x)g(log?) 2~ Gam(B,) @i, 7B 5
By Lemma 2.8

k

/pn dz < C(n) (log %) _n/ (zlz dl(?:;lr(nf(gj))) dist(O,lf(Bj))XBj CB)) n "
< C(n) <10g %) _”zj: (%J;&BBJJ)))))”
< C(n,H) (10g %) 2 distigffzgj))”'
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Denote A; = {x : 2711 < |z < 21} and ip = |log %/log2] + 1. Then

k

|/ (B; |/ (B; 2”15))\
Z dist(0, f ) zljf(s% 0 dist(0, f T ZC 2(Z AL
and so

(/p”drg(ﬂﬁ,H)(bg%)ln. (6)

Notice that f~1(R™\ B(0, L)) contains a continuum F that joins S" (0, r)
to S"~1(0,2r) in B(0,2r). Because f(B (0 ,7)) is open, it is easy to check
that B(0,1) C f(B(0,r)). Define E = f~%(B(0,1)). Then E is a continuum,
diam(E) > r, diam(F) >, and E, F C B(0,2r). If v is a rectifiable curve
that joins £ to F, then f o+ joins B(0,1) to R"\ B(0, L). Reasoning as in

2.2 we see that
/pds >e0>0
¥

where ¢; does not depend on f,r or 7. Define

1
u(zr) = —inf/ pds,

€o

where infimum is taken over all rectifiable curves that join x to F. Then u = 0
in Fand v > 1 in E. Remember from the definition of p that p is bounded.
Let u(y) > u(x). Then

m@—mws/ 2 g

Y 60

for all rectifiable curves -, , connecting x to y. Thus % is an upper gradient
of u. Note that w is Lipschitz because

p(z
@) —u) < s 2y
2€B(z,2lz—y|) €0

By Theorem 2.12 we conclude that
(/ Pz > N5 > 0, (7)
B(0,6r)

A bound on L/ follows combining (6) and (7), as desired.

2.14 Remarks.
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1)

The assumption that n > 2 was needed to ensure that the exponent
1 —n in (6) is negative. Thus the proof does not extend to the case
n = 1. This is no accident. The simple quasiconformal mapping f(z) =
z+exp(x) of a single variable shows that the claim of Theorem 2.1 fails
forn = 1.

We only needed that
lim iglf He(x,r) < H

for all z € €2 for our homeomorphism in the proof of Theorem 2.1. Thus
the quasiconformality assumption can be relaxed to this condition.

It is now natural to inquire if the uniform boundedness of the lim sup
or liminf of Hy(x,r) is really necessary. To this end, let E' C [0,1] be
the 3-Cantor set. Then the Cantor function & : [0,1] — [0,1] maps
E to a set of positive length. Let Q =]0,1[xR and define f(z,y) =
(2 +£(x), y). Then
limsup Hy(z,7r) =1
r—0

outside F x R and f: Q — f(Q) is a homeomorphism that takes a set
of zero area to a set of positive area. We will soon prove that a qua-
siconformal mapping cannot do this (one can also show directly using
the properties of the Cantor function that f cannot be quasiconformal).
We can replace the %—Cantor set in this example with any Cantor set,
even of Hausdorff dimension zero. Consequenty, uniform boundedness
of Hy(x) outside a set of dimension one when n = 2 does not suffice
for the uniform boundedness of H¢(x, 7). In higher dimensions, one re-
places R above by R"™! to see that the analog of dimension one is then
n—1.

On the other hand, if

liminf Hy(z,r) < H

r—0

outside a set of o-finite (n — 1)-measure, one can prove that f is qua-
siconformal. This is rather easily seen from our previous arguments
when n = 2: Let E be the exceptional set of o-finite length. Instead of
picking small balls centered at each x € A, do this for A\ E. Define p

as before. Then still
I\ L
/PQSC(H) <log7) :
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What about the lower bound? Let us refer to our previous argument
in 2.2. It could well happen that our balls do not cover the subarc of
St(w,t). However, one can prove that, for almost every ¢ > 0, the set
E N S'(w,t) is countable. Then the balls we selected cover the subarc
of S*(w,t) up to a countable set for almost every ¢ > 0. Hence the
images of the balls cover f(S(w,t)) up to a countable set. Thus

/ pds >e9>0
S1(w,t)

for almost every ¢ > 0. The general setting is similar in spirit to that
in the plane.

4) In the above proof, H' depends on H,n. It is not known if the claim
could hold with some H’ that does not depend on the dimension n. This
is an interesting open problem. One cannot in general take H' = H
even when f is a conformal mapping of the unit disk onto a simply
connected planar domain.

5) Theorem 2.1 extends to a rather abstract setting. Let X, Y be Ahlfors
Q-regular ', Q > 1, suppose that closed balls are compact, and the
Poincaré inequality with exponent p = () holds for both X and Y. If
f X — Y is quasiconformal, then

Hf(.%",?“) S Hl
for all z € X, r > 0. In fact, even

lim iglf H¢(x,r) < H

for all x suffices. These results can be proved by suitably modifying
the argument that we used above, see [5|. The real difficulty is in cir-
cumventing the Besicovitch covering theorem. The size of exceptional
sets is not yet entirely understood in this general setting, see [18].

6) A metric space X is called linearly locally connected (LLC), if there is
a constant C' so that

i) each pair of points in any ball B can be joined by a continuum in
CB, and

! A metric measure space X is Ahlfors Q-regular, if there is a constant C so that
C~ 49 < pu(B(x,7)) < Cr

for all z,r for some Borel measure p.
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ii) each pair of points outside any ball B can be joined by a continuum
in X\ C™'B.

The spaces in 5) are LLC. This connectivity condition is used to find
substitutes for the sets F and F' in the proof of Theorem 2.1.

3 Quasisymmetric mappings

By Theorem 2.1 we know that quasiconformality implies the uniform local
boundedness of H(z,r). We introduce the equivalent concept of quasisym-
metry that turns out to be very useful.

Let X and Y be metric spaces and let 7 : [0,00) — [0,00) be a homeo-
morphism. A homeomorphism f : X — Y is n-quasisymmetric (n-qs), if

@) - @) (la—q]
\ﬂ@—f@ﬂgn( )

for all a # x # 0.

3.1 Remark. If f is n-quasisymmetric, then

fuumw:%%%QSna»

So, quasisymmetric mappings are quasiconformal.

We next prove that quasiconformal mappings are locally quasisymmetric.

3.2 Theorem. Let [ : B(xg,3r9) — ' C R" be a homeomorphism such
that Hy(z,r) < H for all z € B(xo,70) and 0 < r < 2ro. Then f, . is
n-quasisymmetric, where 1 depends only on n and H.

Proof. Let a # = # b be points in B(zg, 1) and let t = |a — x|/|b — z|.
Case 1: t > 1. Write

, a—zx
aj =+ jlb— x| -

|
for j =0,1,...,k, where k = [t|. Then

|f(aj) — flaj—1)| < H|f(aj-1) — f(a;-2)],

for 7 > 2, and so
|f(a;) = flaj-0)| < H7Y f(ar) — f(2)] < H[f(b) — f(2)].
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Since |f(a) — f(ax)| < H[f(ax) — f(ar-1)|, we obtain

[F@) = F@)] < 1f(@) = fla)[ + D 1f(a)) = flaj)]

< (k+DHf(0) - f(2)]
< (t+DHTFO) = f(2)].

Figure 2: Case 1

Case 2: t < 1/9. Denote b; = x + 379 (b — ), for j > 0, and

Bj = B((bj + bj-1)/2,37[b — =),
for j > 1. Let j < k = [logs(1/t)]. Then |a — 2| < |b; — | and so
|f(a) = f(2)| < H|f (b)) = f()| < H?[f(b)) — f(bj1)] < H? diam(f(B))).

This implies that

|f(a) = f(2)[* < C(H,n)|f(B;)].

Figure 3: Case 2
Since the balls B; are pairwise disjoint and
f(Bj) C f(B(x, |b— ) € B(f(x), H[f(b) = f(z))),
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we obtain

k
klf(a) = f(@)[* < C(H,n) > |f(B

7=1

< C(H,n)|B(f(x), H|f(b) = f(x)])]
< C'(H,n)|f(0) = f(z)["

Thus

70 = floy = C ) os(1/1) .

Case 3: 1/9 <t < 1. Clearly

f(a) — f(2)
o @) =

Select a homeomorphism 7 : [0, co[— [0, 0o that is greater than or equal to
the above bounds. O

3.3 Remarks.

1) The proof goes through if f : X — Y, X is LLC and both X and Y
are ()-regular.

2) In fact, one can choose C' and s depending on n and H so that the re-
striction of f to B(wg,r) is fj-quasisymmetric with 7j(t) = C max{t*, t'/}.
This requires a bit more work.

3.4 Corollary. Let 2, C R", where n > 2. Suppose that f : Q — Q' is
quasiconformal and let 0 < A < 1. Then there is an n = n(n, H, \) so that
the restriction of f to B(x, Ad(x,0R)) is n-quasisymmetric whenever = € ().

Proof. By Theorem 2.1, the assumptions of Theorem 3.2 are satisfied for
balls B(z,d(x,00)/15). If 1/15 < A < 1, one then iterates the quasisym-
metry estimate for the case A\ = 1/15 so as to obtain quasisymmetry in
B(z, Ad(z,09)) (with a new control function 7 that also depends on ). O

It is easy to check, from the definition, that quasisymmetric mappings
form a group. The following proposition follows directly from the definition.
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3.5 Proposition. Let f: A; — Ay be n-quasisymmetric and let g : Ay —
As be mp-quasisymmetric. Then f~!: Ay — A, is f-quasisymmetric, where
n(0) = 0 and
1

(7))

fort > 0,and go f: Ay — Aj is f-quasisymmetric, where 7(t) = n2(n:1(%)).

A(t)

As a consequence of Corollary 3.4 and Proposition 3.5 we now conclude
that quasiconformal mappings also form a group. This cannot be easily
proven from the definition.

3.6 Theorem. Let f : €y — 5 be Hi-quasiconformal and let g : 25 — 3
be Hy-quasiconformal. Then f~' is H(H;,n)-quasiconformal and g o f is
H(H,, Hy, n)-quasiconformal.

Proof. By Corollary 3.4 there is n = n(n, H) so that the restriction of f to
any ball B = B(z,d(x,09;)/2) is n-quasisymmetric. Then f~': f(B) — B
is f)-quasisymmetric by Proposition 3.5. Given y € (y, choose z = f~1(y), let
B = B(x,d(x,0)/2), notice that B(y,r) C f(B) for r < l¢(z,d(z,0)/2),
and apply Remark 3.1 to f~1.

The quasiconformality of the composition follows by a similar argument.
(I

3.7 Remark. Let Q C R? be bounded and simply connected. Let f :
B?(0,1) — Q be quasiconformal. Then the following are equivalent:

1) f is quasisymmetric.
2) Qis LLC.
3) There is a quasiconformal mapping g : R* — R? so that Ilp201) = f.

The fact that 1) implies 2) is easy to prove. By Corollary 3.4, 3) yields 1).
The remaining implications are harder. To see that 2) implies 1), one reasons
as in the proof of Theorem 2.1 using Remark 2.13 and a suitable case study.
The fact that 1) implies 3) can be shown relying on techniques from Chapter
10 below.
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4 Gehring’s lemma and regularity of quasicon-
formal mappings

We will prove that quasiconformal mappings are differentiable almost ev-
erywhere, preserve the null sets for Lebesgue measure, and belong to the
Sobolev class VVI})CP for some p = p(n, H) > n. This amounts to absolute
continuity of the component functions of f on almost all lines parallel to the
coordinate axes (in the domain in question) and local p-integrability of the

classical partial derivatives.

4.1 The volume derivative

It will be important for us to pull back the Lebesgue measure under our
quasiconformal mapping.

4.1 Proposition. Let f: Q — € be a homeomorphism. Then

exists almost everywhere in Q, belongs to L .(Q) and

Lé@umxsuwn

for each Borel set F C ), with equality whenever |A| = 0 implies |f(A)| = 0.

This is a direct consequence of the following Radon-Nikodym theorem
when one chooses p(A) = |f(A)| and A(A) = |A].

4.2 Theorem. (Radon-Nikodym) Let p and A be Radon measures on
2 C R". Then

D(p, A, z) == lim M

exists A-a.e., is locally integrable with respect to A, and

[ D) dre) < ()

for each Borel set E with equality if an only if u is absolutely continuous
with respect to A.
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Recall that a measure p is Radon, if pu(K) < oo for compact sets, Borel
sets are measurable,

pu(U) = sup{p(K) : K C U compact}

for open U, and
u(A) =inf{u(U) : A C U open}

for arbitrary A.

We refer the reader to [20] for a proof of the Radon-Nikodym theorem.
It is a rather direct application of a covering theorem that we have not
discussed.

Let us however briefly explain how a weaker version of Proposition 4.1
can be justified using the covering theorems from 2.3. Instead of yi, let us

consider F(Ba.)]
: x, T
U= B B ]
and let us assume that we already know the Borel measurability of u. Let
E C Q) be a Borel set. We may assume that £ CC Q. Given k € Z, write
E,={z € E: 2! <wu(x) <2}, and set E° = {x € F : u(z) = 0},
Ew ={z€ E:u(x) = oc0}.
Consider first Fo. Let 0 < r < d(E,0Q) and fix M > 1. For each x € E,
we find 0 < r, < r so that

[B(x,7)| < M|f(B(z,72))|.

By the Vitali covering theorem, we find pairwise disjoint balls By, B, - as
above and so that F., C U;55;. Thus

|Ew| <5 [Byjl <5"M YU, f(B))l.

There exists a compact set F' C €2, independent of M, so that UjEj C F.
Thus |U; f(B;)| < |f(F)| < oo. By letting M tend to infinity, we conclude
that |E.| = 0.

Fix then € > 0 and let k& € Z. Pick an open set Uy so that f(Ey) C Uy

and |Ug| < |f(Ey)| + . For each z € Ej, pick 0 < r, < d(E,09) so that
2Bz, )| < |f(B(z,1s)]

and f(B(z,7,)) C Uy. Using the Vitali covering theorem as above, we con-
clude that
257157 By | < Ukl < |f(Ex)| + e,
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and letting ¢ — 0, we infer that
257157 By | < |F(Ew)|. (8)

Regarding the opposite inequality, we choose an open set Uy containing FEj
so that |Ug| < |Ex| + ¢. Given x € Ej pick then r, so that

2(B(w,ro)| = |f(B(x,72))]

and B(x,r,;) C U By the Besicovitch covering theorem, we find balls
B1, B,y, - -+ as above and so that

X () <Y xp, < Coxuy-
J

Summing over j and letting € — 0, we conclude that
|f(By)| < 25C,| Byl (9)

Summing over k in (8) and (9), and noticing that [, u = 0, we arrive at

COUF(EN By)| < /E u(z) < Colf(B)), (10)

where C,, depends only on n. Recalling that |E| = 0, we may replace E\ Ew
with E, provided f maps sets of measure zero to sets of measure zero.

One can establish (10) with C,, = 1 by substituting a suitable more
refined covering theorem [20] for the Besicovitch and Vitali covering theorems
above. The almost everywhere existence of the limit in the definition of /s
also follows from suitable versions of (8) and (9). The measurability of y/; is
rutine.

4.3 Remarks.
1) (Lebesgue’s differentiation theorem) Let u € L . Then

loc*
lim u(y) dy = u(x)
"0 B

for almost every .

Proof. By considering the positive and negative parts of u separately,
we may assume that u > 0. Define u(E) = [, u for Lebesgue measur-
able £ C R"™. Then p is a Radon measure and the Radon-Nikodym
theorem gives

/lim u(y) dydx:/udx.
E"0)B@r) E

Thus the claim follows.
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2) The Lebesgue differentiation theorem can be improved to: If u € Lﬁ)c,
p > 1, then
lim lu(y) — u(z)[Pdy =0
r—0 B(z,r)

for almost every x. This follows by applying the Lebesgue differentation
theorem to the functions u,(y) = Ju(y) — ¢/, ¢ € Q.

3) Let £ C R" be Lebesgue measurable. From 1), with u = xg, we see

that EAB
=0 [B(z,r)|

for almost every x € E.

4) The use of balls centered at z in the Lebesgue differentation theorem is
not essential. Indeed, consider the collection Q consisting of all cubes
Q C R If u € L\, then, for almost every z,

loc»

lim 4 wu(y)dy = u(x)

Jj—o0 Q;
whenever ); € Q satisfy N;Q); = {z}. This can be proved, for example,
by first noticing that the claim is trivial if u is continuous, approximat-
ing a general locally integrable function by continuous ones, and by

controlling the error terms via the weak boundedness (as in part 1) of
Theorem 2.5) of the maximal operator [26].

4.2 The maximal streching

Set
Ly(z,r)

L¢(z) = limsup

r—0

4.4 Lemma. Let f : 2 — Q' be a homeomorphism. The function L; is
Borel measurable and

py(@) < Lyp(x)" < Hyp(x)" 1y ()
for almost every x € Q. In particular, Ly € Lj! .(Q2) when f is quasiconformal.

Proof. The Borel measurability of L; follows from the fact that, given a
compact subset E of €,

{zreE: L) <ty = A,
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where the sets

[f(x+h) - fz)|
1]

are closed by continuity of f. Let x € Q, 0 < r < d(x,09). Then

FBe )| (Lyr)\"
[B(z,7)| S( ; )

1
Ai:{er: gt—;forall()<]h]<d(E,0Q)/z’}

Now

() = () () < () e

Hence the claim follows by letting r tend to zero. a

Notice that, at a point z, where D f(x) exists, |Df(x)| is controlled in
terms of L¢(x). However, integrability of L; does not a priori guarantee
absolute continuity of f on almost all lines parallel to the coordinate axes.
Indeed, Ls(z) = 1 almost everywhere for the homeomorphism f from part
3) of Remarks 2.14, but f is not absolutely continuous on any line parallel
to the z-axis. We are thus lead to modify the definition of L;.

For a homeomorphism f : 2 — @' and € > 0 define

Lj() = sup L) (f’ a3
Then L5 is Borel measurable. Note that ¢ — L%(7) is increasing and that
L5(x) — Lys(x), as € — 0.

It is easy to check that, in dimension one, local integrability of L3 guar-
antees the absolute continuity of f. The following result is a generalization
of this fact.

4.5 Lemma. Let f: Q — Q' be a homeomorphism, and let £ > 0. Then

[f(2) = fy)l < /2L;ds

v

for all rectifiable curves connecting z to y in {2. In particular, 2L is an upper
gradient of the component functions f; of f in 2, and of the function

u(r) = |f(x) — f(xo)l,

whenever zy € € is fixed.
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Proof. Fixz,y € Q and let v = 7 : [0,{] — €, be a rectifiable curve joining
x to y. Assume first that d := diam(y([0,1])) < e. Let z € 4([0,[]). Then
~([0,1]) € B(z,d) and so

|f(z) — f(y)] < diam(f(v([0,1]))) < 2L (2, d).
Hence

2Ls(v(s).d) </ 2L;(1(s),d) /QL; s,
~ Joy d )y

If d > ¢, choose 0 = t; < .-+ <t = [ such that diam(v([t;, t;11])) < e, for
1 <17 < k, and use the triangle inequality.
The rest of the claim follows from the facts that

[fi(x) = fiy)l < [f(x) = f(y)l,

@)~ f)l < [

[0,1]

for 1 <i<n,and

u(z) = uly)l = [|f (@) = f@o)l = [f(y) = flzo)l] < [f(z) = FW)I.

The above proof did not employ the fact that f is a homeomorphism. In
fact, the conclusion holds for each continuous f : Q — R¥ k> 1.

We next show that L5 is locally p-integrable for all p < n, provided f is
quasisymmetric.

4.6 Lemma. Let f be n-quasisymmetric in 2B, where B = B(xq, ) C R",
and let 0 < ¢ < diam(B)/100. Then

{z € B : Lj(x) > t}| < [5n(1)n(2)/t]" | f(B)]
for t > 0.

Proof. If Lj}(x) > t, then there exists 0 < r, < e such that

Le(x,ry)

Tz

> 1.

Write By = {z € B : L(z) > t}. By the Vitali covering theorem we find

pairwise disjoint closed balls By = B(x1,71), Bo = B(x3,72),... as above so
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that E; C |U5B;. Thus
B <57 Bl <5 BO,1)[E" ) Ly(ay,ry)"
< \B(O 1)! Br(1)/0" Y 1 ( xj,rj)”
A" D1 (Blaj,r))

< [577( )/] [F(2B)].

By quasisymmetry,

4.7 Lemma. Let f be n-quasisymmetric in 2B, where B = B(xq,r9) C R",
and let 0 < ¢ < diam(B)/100. Then

]i(Lff)p < C(n,n,p) <%)p/n

Proof. Applying the Cavalieri formula and the previous lemma we see that

/B(L;)P :p/w e € B: Li(x) > 1} dt

s

<p [ e Bl connplB) [ et
0 to

= |Bltg + C(n,n,p)|f(B)|tg "

Solve for ty so that the two terms are equal. O

for 1 <p<n.

4.8 Corollary. Let f : Q — Q' be quasisymmetric (or quasiconformal),
where ©, Q' C R” are domains, n > 2. Then f € W™ (Q,R"): |f| € LI".(Q),
the component functions are absolutely continuous on almost all lines par-
allel to the coordinate axes in €2, and the classical partial derivatives of the

coordinate functions belong to LlOC(Q)
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Recall that absolute continuity of a function u : 2 — R on almost all lines
parallel to the coordinate axes in ) requires that, for (n — 1)— almost every

(9, ,p), u(t,xa, - -+, x,) is absolutely continuous on each compact line
segment in the xi-direction in €2, as a function of ¢, and analogously when
x1 above is replaced by z;, j = 2,--- ,n.

Proof. Fix a cube Q with @ C €2, and pick 0 < ¢ < 1 so that LS € L'(Q),
see Lemma 4.7. Fix a coordinate direction, say x;. Fiber ) by line segments
parallel to the xj-axis. Denote J(za,...,2,) = {y € Q : Yo = Xa,...,Yyp =
}. By the Fubini theorem L3 € L'(J(x3, ..., x,)) for (n — 1)-almost every
(x9,...,x,). Let J = J(xa,...,2,) be such a line segment. By Lemma 4.5
we have, for 1 < j < n,

‘fj(tlax%' < 7xn) - fj(t27$27' s 7xn)‘ S / 2Lf‘ dS,
J(t1,t2)

where J(t1,t3) = {x € J : t; < 27 < ty}. Since Lebesgue integral is ab-
solutely continuous with respect to Lebesgue measure, it follows that f; is
absolutely continuous on .J and that 0, f;(x) exists at almost every = € J.
Furthermore,

01fj(z)| < L (),

for such points. The above clearly shows that f; is absolutely continuous
on almost all lines parallel to the coordinate axes in 2. Next, from Lemma
4.4 we know that L; € L (€2). Because a quasiconformal mapping is locally
quasisymmetric by Corollary 3.4, the claim follows. O

4.9 Remark. The previous results do not allow us to conclude that a qua-
sisymmetric mapping of the real line onto itself is absolutely continuous.
Indeed, in the proof of Lemma 4.7 we only obtain the p-integrability of L%
for p < 1 and thus Lemma 4.5 gives no estimate on the oscillation of f. This
does not mean any weakness in our technique because one can give examples
of quasisymmetric mappings f : R — R that fail to be absolutely continuous.

Next we will show that Ly € L} () for some p = p(n, H) > n.

loc

4.3 Gehring’s lemma

The following result is the starting point for the higher integrability of L;.

34



4.10 Lemma. (Reverse Holder Inequality) Let f be n-quasisymmetric

on 2B C R™. Then y
<][ L?) < C(n,n)][ Ly.
B B

Proof. There is nothing to be proved when n = 1. Thus assume that n > 2.
Let € > 0 be small. Suppose B = B(xg,ry). Define u(z) = [f(z) — f(xo)|.
Then, by Lemma 4.5, 2L is an upper gradient of u and thus, by the Poincaré

inequality,
][ lu —up| < C(n)ro][ L.
B B

Since L5 is locally integrable, the monotone convergence theorem implies

that
][ = up| < C’(n)ro][ L. (11)
B B

s = ][ ) = S 2 g [ 106 = S0 2 gyt

and there is a 0 = d(n,n) > 0 such that

u(@) = [f(x) = f(wo)] <

whenever z € 0B. Thus
Flumusl =z | s =) > Clnn Ly (oo

This, combined with (11), gives

L (zo,10) < C’(n,n)r()]i Ly. (12)

So, by Lemma 4.4 and Proposition 4.1,

<]i L?) Y < C(n,n) <]{B M'f)l/n o )If( T3|1/n

< C(”? H)M < C(n’ 77)][; Lf‘

To
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4.11 Remarks.

1) Applying Holder’s inequality to the right hand side of (12) we obtain
the estimate
1/p
p
Lf)

L¢(xg,19) < C(n,n)ro (][

B
for p > 1. In particular, with p = n, we have

Ly, 70) < Cln,m) < /B L;) "

2) If X is Q-regular and if we have a p-Poincaré inequality for some p < @,
then the proof of Lemma 4.10 gives

(]i L?)UQ < C(data) (]i Li})l/p

when f is n-quasisymmetric.

3) The reverse Holder inequality also holds with balls replaced by cubes
(assuming that f is quasisymmetric on \/nQ). Indeed, let B = B(xq,ry) C
(), where the edge length of @ is diam(B). Then @ C \/nB. By 1),

Lf(%ﬂ“o) < C?”o][ Ly,
B

and by quasisymmetry

diam(f(Q)) < 2n(v/n)Ly(xo,70).

Following the proof of Lemma 4.10 we see that

( ]{2 L?) " pdian(f(Q)

To

and we conclude that

1/n
()" <of r<cf i,
Q B Q

One can also verify the reverse Holder inequality directly for cubes,
without using the Poincaré inequality. Let us sketch this in dimension
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two. Suppose that f is n-quasisymmetric on ). Assume for notational
simplicity that @ = [—1, 1]*. By quasisymmetry,

diam(f(Q)) < 2n(vV2)|f(1,1) = £(0,0)| < 29()n(V2)| f(1, )~ f(~1,1)]

for each —1 <t < 1. As at the end of the proof of Lemma 4.10, we
have that

(£ 1) " < Clnm) diam(7(Q)).

The claim follows by noticing (see the proof of Corollary 4.8)

1.0~ f-10) < [ 21y ds
Jt
for almost every —1 <t < 1, where J; is the line segment between the
points (1,¢) and (—1,¢), and then integrating with respect to ¢.

As the first consequence of the reverse Holder inequality we show that
quasiconformal mappings preserve the class of sets of measure zero.

4.12 Corollary. Let f : 2 — Q' be quasiconformal, where €2, C R",
n > 2. Then |f(E)| =0, if and only if |E| = 0. In particular,

()] = /E i, de,

for Borel (and all Lebesgue measurable) sets E, and f maps Lebesgue mea-
surable sets to Lebesgue measurable sets. Moreover, u’f(x) > ( almost ev-
erywhere.

Proof. Let |E| = 0. We may assume that E is bounded and E C . Pick
open U D E so that U cC Q. Then Ly € L"(U) by Lemma 4.4. Given
e > 0, we further find an open set V with £ C V C U and |V| < €. For each
x € F, pick a ball B(x,r,) so that B(z,15r,) C V. By the Vitali covering
theorem, we find such balls By, B, ... so that B; N Ej = () when 7 # j and
E C U5B;. Then f(E) C f(U5B;) and

[F(USB))| <> 1f(5B;)| < n(5)C(n) Y Ly(xj,r;)"

and so, by part 1) of Remark 4.11,

1B < oY [ Lp=Cn [ 1y <t [ 13

N \%
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Letting ¢ — 0, we conclude that |f(E)| = 0. The “only if” part follows from
the fact that f~! is also quasiconformal. By the Radon-Nikodym theorem,

mm:éwm (13)

for all Borel sets E. Let ¥ C ) be Lebesgue measurable. Pick a Borel set
F D E so that |[F'\ E| = 0. Then f(F) is a Borel set, f(E) C f(F) and
lf(F)\f(E) =|f(F\E)| =0. It follows that f(E) is Lebesgue measurable
and that (13) holds also for E. Suppose finally that u;(r) = 0 in E with
|E| > 0. Then

wmzéwm:m

which contradicts the fact that |f(E)| = 0 if and only if |E| = 0. O

We continue with a powerful tool from harmonic analysis, the Calderon-
Zygmund decomposition, and some consequences of this decomposition.

The dyadic decomposition of a cube )y consists of open cubes QQ C Qg
with faces parallel to the faces of Qy and of edge length I(Q) = 271(Q,),
where @ = 1,2,... refer to the generation in the construction. The cubes
in each generation cover )y up to a set of measure zero and the closures
of the cubes in a fixed generation cover Qq; there are 2 cubes of edge
length 27°1(Qy) in the ith generation and the cubes corresponding to the same
generation are pairwise disjoint. For almost every x € @, there is a (unique)
decreasing sequence Qg D (1 D ... of cubes in the dyadic decomposition so
that {z} = [ Q. In what follows, Q, Qo, Q. etc. are cubes.

4.13 Theorem. (Calder6n-Zygmund decomposition) Let Qy C R" u €
L'(Qy), and suppose that
t> ][ u > 0.
0

Then there is a subcollection {@);} from the dyadic decomposition of () so
that QZQQJ = @ when ¢ 7éj,

t <][ u < 2™
Qj
for each j, and u(z) <t for almost every x € Qo \ U Q-

Proof. For almost every x € )y there is a decreasing sequence {Q;} of
dyadic cubes so that {z} =) Q;. By the Lebesgue differentiation theorem
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(see part 3) of Remarks 4.3)

lim 4 u=u(z)
J—0o0 Q;

for almost every such z. Let u(z) > ¢ and assume that the above holds for x
with the sequence {@);}. Then there must be maximal @), := Q) so that

][u>t.
t<][ u§2"][ u < 2"¢.
z Q;

J(z)—1

For this cube we have

We can pick such a cube @, for almost every x with u(xz) > t. It is then easy
to choose the desired subcollection from the cubes @),. O

The dyadic maximal function of a measurable function u (with respect
to a cube @) is defined by

MQO = sup ][‘u‘
z€QCQo

where the supremum is taken over all cubes () that belong to the dyadic
decomposition of ()g and whose closures contain x.

4.14 Remark. As for the usual maximal function, we have the weak type
estimate

2-5"
o€ Qui Mou(o) > 1) < 2 | u
{z€Qo:|u(x)[>3}

for the dyadic maximal function. Moreover,

/ (Mg < C(p.) / Jul

for p > 1. The proof of the weak type estimate is actually easier than for the
usual maximal operator because no covering theorem is needed.

The following simple consequence of the Calderén-Zygmund decompo-
sition is essentially the converse of the weak type estimate for the dyadic
maximal function.

39



4.15 Lemma. Let u € L'(Qo) and suppose t > f,, |u|. Then

/ | < 27|z € Qo : Moyu(x) > t}].
{z€Qo:|u(z)|>t}

Proof. By the Calder6n-Zygmund decomposition we find pairwise disjoint
cubes (01, ), ... so that

t < \u\ < 2"t
Qj

for all j, and |u(x)| <t almost everywhere in () \ |J@;. Then

lu| < / |ul
/{xEQozu($)|>t} Z Qj
<) 2t|Q

< 2"|{x € Qo : Mgyu(x) > t}],

because
Moy u(z) 2][ | > ¢
Qj

for each x € Q);. O

We are now ready to prove an important result. For historical reasons,
it is only called a lemma (Gehring’s lemma). I learned the truncation trick
employed in the proof below from Xiao Zhong.

4.16 Lemma. (Gehring’s lemma, 1973) Let u € L9(Qy), 1 < ¢ < o©

and suppose that
1/q
(f 1) <cf (14)
Q Q

for all dyadic subcubes @ C Q. Then there is s = s(q,n,C') > ¢ so that

(][0 \u\S) v < 21/50][0 |ul. (15)

In particular, u € L*(Qy).

Proof. We begin by noticing that

Me,(Jul?)(z) < CTMg,u(x) (16)
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for each x € Q. Let then ¢ > ¢, := f, [u[?. Combining Lemma 4.15, (16)
and the weak type estimate from Remark 4.14, we conclude that

/ ult < 2t|{x € Qo : Moy (|ul?)(z) > 1}]
{zeQo:|u(x)|a>t}

< 2"t|{x € Qo : Mg, u(x) > C~ %1}

< 2mt15ni s / Jul,
{xEQo:|u(x)\>%C—Qt1/q}

provided t > ty. Consequently, for these values of ¢,

/ ult < Gt [ WA
{z€Qo:|u(z)|2>t} {z€Qo:|u(z)|>dt1/ 1}

where C,, depends only on n and 6 = 27'C'~%. Multiplying both sides of (17)
by tP72? and integrating over the interval [to, j], where j > t; is fixed, results
in

J J
/ tﬂ/ |u|? dxdtg/ tp“/Q/ lu| ddt.
to {z€Qo:|u(z)|9>t} to {z€Qo:|u(x)|>dst1/a}
(18)

Write b(7, s, u(z)) = min{j, s|u(x)|} when s > 0. Notice that

b(j, 8, u(x)) < sb(j, 1, u(x))
when s > 1. By the Fubini theorem,

J
/ tp_l_l/q/ |u| dxdt
{z€Qo:|u(z)|>5t/9}

(7,679, u(x))
/ ]u/ =Y dtde
0

< alpg—1)"" / b(j, 5, u(@))P Y] da

0

< qlpg— 1) / b(ji 1, ulz)Pu| da

< qlpg— 1) / b(j, 1, w(w))PJul.

Similarly,

J b(4,1,u(z))
/ tp_2/ |ul? dedt = / |u|q/ P2 dtdx
to {z€Qoz[u(z)|1>t} Qo to

=(p— 1)1/ (b(j, 1u(x))Pt — tgil) lu|? d.

0
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Combining the above estimates for the left and right hand sides of (18) we
conclude that

min{j, [u(@)|"}"~ u(@)|* < C'( Jul?)" < C'CPI(F Jul)™
Qo Qo Qo
where ¢’ = ((p — 1)™! — q(pq — 1)716*%9) " provided C’ > 0. We used (14)
at the last step. Choosing p > 1 so that C' = 2 allows us to conclude the
claim via the monotone convergence theorem. O

Given a domain Q C R" and 1 < p < oo, we let WP(Q) denote the col-
lection of all functions u € LP(2) that are absolutely continuous on almost all
lines parallel to the coordinate axes in {2 and whose classical partial deriva-
tives belong to LP(f2). Then W1P(2, R") refers to mappings f : Q2 — R”
whose each component function f;, j = 1,---,n, belongs to WP(Q2). The
definitions of W,?(€2) and W,-?(€, R") should then be obvious.

ocC

4.17 Corollary. Let f : Q — Q' be quasiconformal, where 2, C R",
n > 2. There is p = p(n, H) > n and a constant C' = C(n, p, H) so that

1) f € Wl(Q,R") and
1/p 1/n
() =e(f)
Q Q

2) If 2Q C Q and F C @ is measurable, then

FBI _ (\E\)l‘"/p'

whenever 2Q) C €.

(@]~

Q|

Proof. 1) By Remark 4.11 we have

1/n
()" <
Q Q

whever 2¢) C 2. The Sobolev regularity and the asserted inequality follow
from Gehring’s lemma because f is absolutely continuous on almost all lines
parallel to the coordinate axes and

105 fi(x)| < Ly(x)
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for almost every x, see Corollary 4.8 and its proof.
2) By Corollary 4.12, Lemma 4.4, Holder’s inequality, Proposition 4.1, and
part 1) we see that

@l = [ <o [
E E
n/p
el
E

n/p
<c(fn) e
Q

<cf p ErQr
Q~~

’
Scﬂf

< CIF@QIE[7|Q"P 1.

4.4 A,-weights

We will briefly point out the connection between A,-weights and reverse

Holder inequalities. The results of this section will not be needed later on.

We refer the reader to [26] for proofs of the facts presented in this section.
Let w € Ll _, w > 0 almost everywhere. If —oco < s <t < oo and |E| > 0,

loc?
then
1/s 1/t
(fe) =)
E E

So, when p > 1, we have that

() "< (f)"

for each ball B. We say that w is an A,-weight (belongs to the Muckenhoupt
A,-class), if for all balls

1/p 1-p
<][ wp) <c., (][ wl/(1p>> |
B ’ B

when 1 < p < 00, and
][ w < O yessinfpw,
B
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when p = 1. Clearly A, C A, C A, when 1 < p < q. We finally set

Ay = Up>1 A,.
One of the connections between A,-classes and reverse Holder inequalities
is given by the following result.

4.18 Fact. Let w € L., w > 0 almost everywhere. Then w € A, if and

loc»

only if there exist ¢ > 1 and C' such that
1/q
<][ wq) < C'][ w
B B

4.19 Corollary. Let n > 2. If f : R" — R" is quasiconformal, then uy €
Ao

for all balls B.

Given w € A,, p > 1, one can use the above reverse Holder inequality to
prove that w € A, for some ¢ < p that depends on n, p, C, .

Ap-weights are of their own interest. One of their important properties is
that they work well with maximal functions.

4.20 Fact. Let 1 < p < co. The inequality

Jatpe<c [ure

holds for each Lebesgue measurable u if and only if w € A,,.

One can further characterize A, by the following condition. There are

constants C' and ¢ so that

5

fE_w <C @ (19)
fQ w Q)

for each cube () and each measurable £ C ). Given a domain G, let us write
Ao (G) for the collection of all w for which (19) holds with uniform constants
for each cube @ C G with diam(Q) < d(Q, dG). Then, in dimensions n > 2,
a homeomorphism f :  — ' is quasiconformal if and only if, for each
subdomain G C Q, wo f~1 € A (f(G)) for each w € A(G) and wo f €
A (G) for each w € A (f(G)) with uniform bounds in both cases. For this
see [25].
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4.5 Differentiability almost everywhere

We begin with an almost everywhere differentiability result that goes back
to Cesari and Calderén. Recall that u € VV&)({’(Q) means that u is locally p-
integrable, absolutely continuous on almost all lines parallel to the coordinate
axes in 2 and that the classical partial derivatives are locally p-integrable.

4.21 Theorem. Let p > n and let u € W,2"(Q) be continuous. Then u is
differentiable almost everywhere.

This result is optimal in the sense that there exist continuous functions
in 2" that are nowhere differentiable.

We need a few technical results for the proof of this theorem.

4.22 Lemma. Let u € VVlOC
set

() = Ji )y

for x € Q. Then u, € C*(£) and

(Q) and Qy CcC Q. Given 0 < r < d(Qp, 02),

Vu,(x) :]{B( )Vu(y) dy.

Proof. Fix 0 < r < d(£20,09), x € Qg and 1 < j < n. Let 0 < [t| <
d(Q20,0) — r. By the absolute continuity of u on almost all lines parallel to
the z;-axis in (2,

u(y +te;) —u(y) = dju(y + se;) ds
(0,]

for almost all y € B(z,r). Integrating this estimate and invoking the Fubini
theorem we infer that

u(x + tej) —up(w) u(y +te;) — u(y)
t _][ d

Y
][ Oju(y + se;) ds dy
r) J[0,t]

fo
N T
Ll

y) dy ds.

g

B(z+sej,r

)

=:f(s)
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Since d;u € L*(), it follows that f is continuous. Hence

yu(a) =lim [ f(s)ds =50 = )y

=0 /10,1

4.23 Lemma. Suppose that v € L?(AB), 1 < p < oo, where A > 1. Given

0 <e <d(B,\B°), set
v =f o)y
B(z,e)

for x € B. Then v. — v in LP(B).

Proof. Let w € LP(AB). Let 0 < ¢, € L> be such that [¢. = 1 and
sptip. C B(0,¢). Extend w as zero to R™ \ AB. Then

wy, = | Y(y)w(r —y)dy
Rn
is bounded on B:
o @) < ol [ Jul

AB

Choose now 1

Ve(y) = B0,y P09 (y)

and write w. = wy,. By the Holder inequality,

/ P < / e ()w(e — y)P? dy da
B AB JR™

= [ o) [ Juta =iz

< / |wl?.
AB

If w is continuous on AB, then

|lw — we| o5y — 0,
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as € — 0. Let 0 > 0. Recall that continuous functions are dense in LP(AB),
see Subsection 11.3 in the appendix. Choose a continuous w such that

lv = wllr(rpy <6,
and take € > 0 so small that

|w — we||Lr(p) < 6.
Then

[0 = vell Lo sy < v = wllLe) + lw — wellLrs) + | we = v [|r5) < 36

=(w—v)e

Thus v. — v in LP(B). 0

4.24 Corollary. If u € WH(B), then

/]u—uB\dngdiam(B)/\Vu]dx.
B B

Proof. Let 0 < < 1. Then, for 0 < r < §/2, u, is well defined and C' in
(1 — 9)B. Thus, by the usual Poincaré inequality,

/ up(2) — (ur)—s)p] da < C(1 — §) diam(B) / Y, (2)] da.
(1-6)B (1-8)B

By letting r — 0 we see that this inequality holds for u (v, tends to v in
L' when v € L' and 7 — 0 by Lemma 4.23). The claim follows by letting
0 — 0; notice that uq_sp — up. O

4.25 Corollary. Let u € W'?(5B) and let p > n. Then

lu(z) — u(y)| < C(n,p)lz —y[ " (/B \Vu|1’) 1/p

(z,2]z—yl)

for all Lebesgue points x,y € B of u.
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Proof. Let x,y € B be Lebesgue points of u. Define B; = B(x,2 |z — y|)
for i > 0. Then, by Corollary 4.24 and the Holder inequality,

(o]
\u(x) - uBO‘ < Z |uBi—1 — Uup,
=1 .
<2 Z][ lu — up,
i=0 V Bi
o 1/p
< 32 e -l (f 1vur)
i=0 i

[e'e) 1/?
< C(np) 3@ — gy ( / |wp)
i=0 B;
1/p
< C(n, )z =y ( / rwp) .
B(z,|z—yl)

Similarly,
1/p
|Vul? ) :

Moreover, denoting B, = B(z, |xr —vy|), B, = B(y, |r —y|) and A = B, N By,
we have

u(y) — ub(yoyp| < Cn,p)|z — y["/ </B

(y,lz—yl)

lup, —up,| < |up, —ual + |ua — up,|

<[ Ju—un ]+ f uun

A A

< C(n) (f uun, |+ f ru—usyr>
B. B,

1/p
< Cln,p)le -y (][ |wp) .
B(z,2|lz—yl)

The claim follows by the triangle inequality. a

4.26 Remarks.
1) If u € W.2(Q), p > n, then

loc
a(z) = lim sup][ u
r—0 B(z,r)
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is continuous and satisfies the modulus of continuity given in the corol-
lary. This easily follows from the previous corollary. Notice that, by
the Lebesgue differentiation theorem, © = w almost everywhere. We
call @ the continuous representative of u. A function u € VVlf)C”(Q) does
not need to have a continuous representative when n > 1. An example
of this is u(z) = loglog |z| 7}, |z| < e7L.

2) The continuous representative @ belongs to W-”(Q): By the continuity

of  and the fact that © = v almost everywhere, we have that
u(z) = lir%(ﬂ)r(x) = lir% u ()

for all z. By Lemma 4.22, 0;(u,)(z) = (O;u),(x) forallzand 1 < j < n.
Fix a cube Q@ cC Q and 1 < j < n. Since (9;u), — dju in L(Q), it
follows that [,(d;u), — [, 0;u for almost every line segment J C Q
parallel to the x;-axis. Let J be such a line segment with endpoints x
and y. Then

() —ily) = lim (u, () —u, (y)) = lim [ Oy(u,) = lim [ (D), = / Oyu.
J J

r—0 r—0 J r—0

It follows that u is absolutely continuous on almost all lines in €2 and
that 0;u = Oju almost everywhere, as desired.

We are now ready to prove Theorem 4.21.

Proof. Let u € W P(Q) be continuous. Then, by part 2) of Remark 4.3, at

loc
almost every xy, Vu(xg) exists and

lim |Vu(z) — Vu(zo)|P de = 0.
r—0 B(zo,r)

Fix such an zy and define
w(z) = u(xr) — u(xg) — Vu(xg) - (x — xp).
Then w € W,2P(Q) and Vw(z) = Vu(z) — Vu(z) whenever Vu(z) exists.

loc

By Corollary 4.25,

jw(z) — w(zo)| < C(n, p)la — ol <][ IVu(y) = Vu(zo)[” dy) l/p.

B(zo,5|x—x0])

Thus

I lu(z) — u(wo) — Vu(zg) - (x — x0)|
im =
o |z — o] S, |z — x|
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4.27 Remark. By Theorem 4.21, Lipschitz functions are differentiable al-
most everywhere. This immediately implies that each Lipschitz mapping
f R — R" is almost everywhere differentiable.

Given a domain  C R", recall that W'I})f(Q,R”) denotes the collection
of mappings f :  — R" whose each component function f;, j = 1,--- ,n,

belongs to W27 ().

4.28 Corollary. Let f : 2 — Q' be quasiconformal, where €2, C R",
n > 2, are domains. Then f belongs to W,"7(, R™) for some p > n and, for

loc

almost every x € Q, f is differentiable at = with J;(z) # 0 and satisfies
D f(x)|" < He(a)" | Jp(2)].

Proof. By Corollary 4.17 and Theorem 4.21 applied to the coordinate func-
tions of f, f belongs to I/Vl(l)’f(Q,R”), for some p > n, and is differentiable
almost everywhere.
Suppose that f is differentiable at x¢ and that J¢(zg) = det D f(xo) = 0.
Then
|f(B(xo,m))| < (IDf (o) +&(r)" " r"e(r)r,

where ¢(r) — 0, as r — 0. Thus

(o) — iy E B0

=0 [B(zo,7)|
Because py > 0 almost everywhere by Corollary 4.12 and f is differentiable
almost everywhere, J; # 0 almost everywhere.
Suppose that f is differentiable at zg with J;(zo) = det Df(zg) # 0.
Then

|Df(xo)| < Hy(wo) ‘f}ﬂg |D f(xo)h|.

Because -
el = (smin DS ei]) D50
see Subsection 11.2 we conclude that

[Df (wo)[" < Hp(xo)" ' J4(x0)]-
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4.29 Remarks.

5

1)

The exponent n — 1 for H in Corollary 4.28 is optimal. This is seen
by considering the quasiconformal mapping f(z) = Az, where A is a
diagonal matrix whose diagonal entrees are all 1 expect for a single
entry which is, say, 2.

If f:9Q — € both domains in R", is a homeomorphism and differen-
tiable at =,y € €, then either Jy(z) > 0 and J¢(y) > 0 or Js(x) <0
and J¢(y) < 0. This can be proved using the so-called topological de-
gree, which we have not introduced. Combining this with Corollary
4.28 allows us to conclude that, given a quasiconformal mapping f, de-
fined in a domain 2 C R", n > 2, either J¢(x) > 0 almost everywhere
in Q or Jy(x) < 0 almost everywhere in €.

If f € WLP(Q,R"), where Q C R*, n > 2 is a domain, is a homeo-
morphism and p > n — 1 (p > 1 in the plane), then f is differentiable
almost everywhere, see [23|. If p = n—1 and n > 3, then f need not be
differentiable anywhere. The positive results are non-trivial. For the
counterexample, one picks a continuous function u € Wl’"fl(R"‘_l) of

loc
n — 1 variables that fails to be differentiable anywhere and defines

f(xla e >-Tn) = (xla' 3 Tp—1,Tn +U(.CE1,' o >xn71))-

If p < n—1, it is not known if the Jacobian of a homeomorphism
f e VVI})’CP(Q,R") can change its sign. For p > n — 1, the Jacobian
determinant cannot change its sign by 1) and 2) and this is expected

to also hold when p =n — 1.

Added: Hencl and Maly, Jacobians of Sobolev homeomorphisms, to
appear in Calc. Var. have very recently shown that one can relax the
assumption p > n — 1 to p > p,, where p, is the integer part of n/2,
especially p3 = 1. The case 1 < p < p,, remains open when n > 3.

The analytic definition

In this chapter we give an analytic definition for quasiconformality by estab-
lishing the following characterization of quasiconformality.

5.1 Theorem. Suppose that Q, Q" C R™ are domains, n > 2. Let f : Q —
be a homeomorphism. Then the following are equivalent:

1)

f is quasiconformal.

51



2) There exists 1 such that f|g is n-quasisymmetric for each ball B with
2B C (.

3) f € Wi (Q,R") and there is K such that

[Df(x)[" < K|J¢(x)|
almost everywhere in 2.

5.2 Remark. It follows that either J; > 0 almost everywhere in €2 or that
J¢ < 0 almost everywhere in 2, see Corollary 4.28 and Remarks 4.29.

We already saw in Chapter 3 that 1) and 2) are equivalent and Corollary
4.28 shows that 1) implies 3). In order to deduce 1) from 3) we introduce
some preliminary results.

Recall the notation

B
Hrle) = I B )

that we used for homeomorphisms. One of our aims is to show that J; is
locally integrable for a homeomorphism that is locally in the Sobolev class
WLl This will be done by relating J; to Wy Tt is rather easy to do this at
the points of differentiability of our homeomorphism. The problem is that, in
dimensions n > 3, our regularity assumption f € W,"!(Q, R") (see Remarks
4.29) does not by itself guarantee differentiability even at a single point. In
order to overcome this, we will use Lipschitz “approximations” to f, but the
prize we have to pay is that these Lipschitz mappings need not be injective.

Given a continuous mapping f : Q — R" we write
/

_ f(B(x,1))]
) = s SR

Because f(B(x,r)) is compact and so measurable, j/;(z) is indeed defined.
We cannot however apply the Radon-Nikodym theorem as we did in the
connection with Proposition 4.1: p(A) = |f(A)| does not necessarily define
a measure when f fails to be injective. We will be able to get around this
problem.

5.3 Lemma. Let f : Q — R” be continuous and assume that f € W1 (Q,R").
Then

| Jp(2)] < p()

almost everywhere in 2.
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The proof of this result will be based on a sequence of lemmas.

5.4 Lemma. Let f: ) — R” be continuous and assume that f is differen-
tiable at x¢ € €). Then

[Ty (o)| = 4 (o)-
Proof. We already saw in the proof of Corollary 4.28 that if J;(zp) = 0
and f is differentiable at xo, then 1is(z9) = 0. Suppose that J¢(zg) # 0. We
may assume that zo = 0 = f(x). Because J;(0) # 0, the inverse matrix
(Df(0))~! exists. Define g(z) = (Df(0))"!f(x). Then g is differentiable at
0, Dg(0) = I, and moreover,
[f(B(0,))] = [Df(0) g(B(0,7))| = [J£(0)[|g(B(0,7))].
Thus it suffices to show that

1 lo(BO.M)|
8 1B,

Because ¢ is differentiable at 0 and Dg(0) = 1,
|9(z) — x| < e(lz])]=], (20)
where ¢(|z]) — 0 as |z| — 0. It follows that

(B0, )| _ |B(O,r +e(r)r)|
[B(O,r)| = |B(0,7)]

so especially

=(1+e(r)" —1, asr—0,

: 9(B(0,7))]
limsup ———"+
o IBO
For the opposite inequality we use the fact that
B(0,(1—¢)r) C g(B(0,r)) (21)

for given ¢ > 0 whenever 0 < r < r.. This follows from Lemma 11.10 in the
appendix, since now |g(z) — x| < € for |z| < r. by inequality (20). Thus by
(21) we obtain for r < r. that

9(B(0,7))| _ [B(O,(1—e)r)]

=(l—g)"—1, ase—0,

[BO,n)] —  |B(0,7)]
SO B0
lim inf 7‘9( (0,7)) =
r=0 [B(0,7)]
This proves the lemma. g
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5.5 Lemma. (McShane extension) Let A C R” and f: A — R™ be
L-Lipschitz, that is

[f(@) = f(y)l < Llz =y
for all #,y € A. Then there exists a (y/mL)-Lipschitz f:R" = R™ such
that fla = f.

Proof. Let m = 1. Define
f(a) = inf {f(a) + L|z — al}.

Then f(z) = f(x) when z € A: Since f is L-Lipschitz on A,
f(z) < f(a)+ Llx —a| when z,a € A,

and so f(z) > f(x). Also, clearly f(z) < f(x).
Given z,y € R", we have that

flo)=mf{f(a)+ Llz—a| }
ac N——

<L(ly—al|+|y—=l)

<Lly —z| + f(y).

Because this also holds with x replaced by y, we conclude that f is L-
Lipschitz.

Let us then consider the case m > 2. For given f = (f1,..., fin) define
f= (fl, ce fm) as in the previous case. Now

(@) = F)P =Y 1file) = fily)? < mL?x —y,

and the claim follows. O

5.6 Remark. By choosing a suitable extension different from the McShane
extension, one could require above f to be L-Lipschitz. This can be done
using the so-called Kirszbaum extension.

5.7 Lemma. Let u € Wh(3B) and € > 0. Then there is a set A. C B so
that |B\ A.| < ¢ and u|,4. is Lipschitz.
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Proof. Write B = B(xg,r9). Let x,y € B be Lebesgue points of u. Choose
B;j = B(x,277|x — y|) for j > 0 and B; = B(y, 2’|z — y|) for j < 0. Then
by the Poincaré inequality (as in the proof of Theorem 2.12),

fu(@) — )] < 3 ug, —up <Y cn]i fu — up,|
—0o0 —00 J

0 B
< Cla = y[ (May| V()] + Maro [Vu(y)])
< 2C,|x — y|A

when both z and y belong to the set {z € B : Ms,,|Vu(z)| < A}. Thus we
have O, A\-Lipschitz continuity outside the set

Bad, = {z € B : M3,,|Vu(2)| > \} U{z € B : z non-Lebesgue point of u}.
By Remark 2.6,

5"2
Bady| < 7 [ Vul =0 (3)
{IVu(z)|>41n3B

-

N~
—s 0
A—o00

and the claim follows. O

5.8 Remark. The above proof shows that u is C,A-Lipschitz in B\ Bad,,
where [Bad,| = 0(}). Use the McShane extension theorem to extend the
restriction of u to this set as C,, A-Lipschitz function u, to all of B. Then

/\vu_vm\s/ Wu|+\w|s/ Vul + Codo (2) — 0
B Bad

Bad, A—00
because
Vuy(z) = Vu(x) (22)

at almost every point = of G = B\ Bad, .
Reason: If E C () is measurable, 0;v and 0;w exist almost everywhere in F
and v = w on E, then 0;v = J;w almost everywhere in E: Simply notice that
almost every point z of F is of linear density one in the x;-direction.

One can do even better. Consider the set

Bad) = {z € B: Ms,u(z) > \}.
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Then |Bad}| = o (%) So, when A is large, the distance from any point in
Bad) to B\ Bad) is at most one. Thus the McShane extension u, of u from
B\ (Bady UBad}) is C,,A-Lipschitz and bounded in absolute value by 2C,, A
on B. It follows that

/ lu —uy| + |Vu — Vuy| — 0.
B A—00

The final estimate of the preceding remark yields the following corollary:

5.9 Corollary. If u € W(3B), then there is a sequence (p;)3° of Lipschitz
functions such that

{z € B: pj(x) #ulx)}[ —0
and

[ lu= il +19u= Vs =0
as j — oQ.
5.10 Remarks.

1) One can get rid of the constant 3 above (see Figure 4)

Figure 4: Remark 5.10 (1).

2) The same argument as above gives the corollary for W' and with
/ lu— ;" + |Vu—Vyp,;F -0 asj— oo.
B

Proof of Lemma 5.3. Assume that f : 2 — R" is continuous and f &€
WhHQ,R). Let B C Q be a ball with 3B C Q. It suffices to prove that

loc

| Jy(x)] < piy(x) forae. x e B.
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Let ¢ > 0. Pick a Lipschitz mapping f : R® — R™ such that for the set
B={zeB: f(x) # f(x)} we have |B| < ¢, see Corollary 5.9. Because
f is Lipschitz, it is differentiable almoste everywhere in B\ B; see Remark
4.27. By Lemma 5.4, |J(z)| = u’f(x) at the points of differentiability. By the
reasoning in Remark 5.8, see (22), J7(z) = J¢(z) almost everywhere in B\ B.
So it suffices to prove that ,u/f(x) < ps(x) almost everywhere in G = B\ B.
Let x € G. Then

[f(Bz, )| _ |f(Blz,r) 0 G)| +|f(B(z,r) N B)|

|B(z,r)| ~ | B(,7)]
< B, )| L"|B(z,r)N B
| B(,7)] |B(z,r)|

and the claim follows because the last term tends to zero for almost every
z € G by Remarks 4.3 3). O

5.11 Corollary. Let f : Q — €2 be a homeomorphism with f € T/Vl(l)cl(Q,R")
If
IDf(z)|" < K[Js(z)|

almost everywhere in © for some 1 < K < oo, then f € W,\"(Q, R™).

ocC

Proof. By Lemma 5.3, |J¢(z)| < p/s(x) almost everywhere in 2. The claim
follows because py € Li,.(2), by Proposition 4.1. O

loc

5.12 Lemma. Let f: Q — Q' be a homeomorphism, [ € VVI})’CI(Q,R”), and
let u: Q" — [0,00) be Borel measurable. Then

[ uts@niistol < [ u

Proof. Let a > 1 andset G; = {y € O : &/ < u(y) < '} for j € Z.
Then '\|JG; ={y € @ : u(y) = 0}. Thus, by Proposition 4.1 and Lemma
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5.3,

Let a — 1 to complete the proof. a

5.13 Lemma. Let f : Q — @ be a homeomorphism, f € W,."(Q,R")

and |Df(z)|" < K|J;(z)| almost everywhere in Q. If u is C* on €, then
wo f € Wi (2) and

/|Vuof|”<K V"

Proof. Clearly uo f is absolutely continuous on almost all lines parallel to
the coordinate axes in {2 because f is and u is locally Lipschitz. Because
u o f is locally bounded, it thus suffices to show the local n-integrability of
|V(uo f)| and the asserted inequality. Let f be as in the proof of Lemma
5.3. Then f is differentiable almost everywhere and D f (x) =D f (x) almost
everywhere in G (see Remark 5.8). Thus, using the usual chain rule and
Proposition 11.1, we see that

[V(wo /)(@)]" = [Vu(f(z))Df(z)]"
< [Df ()" Vu(f(@)]" < K[Jp(@)[[Vu(f(2)]"

almost everywhere in G. It follows that this inequality holds almost every-
where in ). Use Lemma 5.12 to complete the proof. O

Proof of 3) = 1) in Theorem 5.1. Let B = B"(x,r9) C 2B C €, and
define [, L as in the proof of Theorem 2.1, see Figure 5. We may again assume
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that L > 21. By Corollary 5.11, f € W,2"(Q, R"). Define

loc

(

1 if [y — f(zo)| <1
0 if |y — f(zo)| = L
u(y) =9 log ——— —log ~
=Tl L e <y — fag) < L,
log —
( l
and set u.(y fB (0.) 2)dz for € > 0. Then u. is C' by Lemma 4.22 and

Figure 5: f(B(z,r))

thus, by Lemma 5.13, u. o f € W.™(€) and

/ |IV(u. o0 f/)I" < K \Vusln (23)

Next
n n 1-n
/Q/ |Vu|" — N |[Vul™ = w,_4 (log %) (24)

when ¢ — 0 by Lemma 4.22 and dominated convergence (also by Lemma
4.22 and Lemma 4.23). Here w,,_; is the (n — 1)-dimensional measure of the
unit sphere.

Notice that f~1(B™(f(xo),l)) is a connected set containing xo and its
closure intersects S"(zg, r). Furthermore, f~1(R™\ B(f(x), L)) has an open
component G whose closure intersects both S™*(z, ) and 5" *(zo, &). We
may then select continua E C f~1(B"(f(x¢),l)) and F C G, both of diameter
at least ro/4 so that u. = 1 on F and u. = 0 on F for all sufficiently small
e. Thus

V(w0 f)|" > 6, >0 (25)

951
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for all sufficiently small ¢ > 0 because of the size of the 0- and 1-sets of u.
and the fact that uo f € W (2B); notice that the proof of Theorem 2.12
only assumed a Poincaré inequality, which holds in our setting by Corollary
4.24.

A bound on L/l and so also quasiconformality of f follow by combining
(23), (24) and (25). O

5.14 Remarks. 1) Regarding the relationship between the constants H
and K in parts 1) and 3) of Theorem 5.1, we have the estimates K <
H™ ' and H < exp(C, K1),

The first of these is sharp and contained in Corollary 4.28 and the
second follows from the proof of Theorem 5.1 above. The second es-
timate can be improved to H;(z) < K almost everywhere, but, for
example, for the simple planar quasiconformal mapping defined by
f(z,y) = (z,2y) in the upper closed half plane and by f(z,y) = (z,y/2)
in the lower half plane, one has K = 2 and H = 4. On the other hand,
one can construct examples (in the plane [19]) that show the sharpness
of the given global bound on H.

2) Notice that the analytic definition requires the pointwise inequality at
almost every point. One could then expect that the metric definition
could also be slightly relaxed. This is indeed the case in the sense that
a homeomorphism f :  — ¢ satisfies

fEW(QRY)  and  [Df(x)| < K min|Df(x)h]
almost everywhere if and only if liminf, .o Hf(x,7) < oo outside a
set of o-finite (n — 1)-measure and liminf, .o H¢(z,r) < K almost
everywhere. Above, lim sup instead of lim inf naturally works as well.

6 K-quasiconformal mappings

Let us call from now on a homeomorphism f: Q — Q' with f € W'l(l)cl(Q, R™)
and

|IDf(z)|" < K|J¢(x)| ae. inQ

K -quasiconformal (K-qc) according to the analytic definition. We will typ-
ically abuse the notation and only talk about K-quasiconformal mappings
below. Above, €, C R™ are domains and we assume that n > 2. Notice
that each conformal f is 1-qc.
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6.1 Remark. If f is K-qc, then
(i
(ii

) [ is differentiable almost everywhere,
)

(iii) either J¢(xz) > 0 a.e. in Q or Jy(z) < 0 a.e. in 2,
)
)

f
f € WP(Q,R™) for some p = p(n, K) > n,

loc

(iv) f is locally Holder continuous,

(v) |f(E)] = [;]J¢| whenever E C § is measurable,

(vi) };Eg;{ <C (%)a whenever £ C Q) C 2Q) C (2, where

C=CnK), 0<a=an,K).

All this follows by combining our previous results.

By Theorem 3.6 we know that quasiconformal mappings form a group.
It turns out that the analytic definition allows us to give sharp estimates on
the associated constants of quasiconformality.

6.2 Theorem. Let f; : Q; — s be Ki-qc and fy : Qs — Q3 be Ky-qc.
Then f2 @) fl . Ql — Qg is KlKg—qc.

Proof. We already know that f, o f; is quasiconformal because the three
different definitions (in Theorem 5.1) give the same class of mappings. Thus
fao fi € Wol (9, R") (and even W,.P(9,R") for some p > n). Now f, is
differentiable almost everywhere in 2, f is differentiable almost everywhere
in 21, and because f; cannot map a set of positive measure to a set of measure
zero, we conclude that

D(fz2 0 fi)(z) = Dfafi(x))D fi(x)

for almost every x € ;. In particular, for such a point z,
[D(f20 f1)(@)|" =D fo(fi(2))D fr(z)]".
For almost every x € €2y,
D fr(a)]" < Kl Jp ()],
and for almost every y = fi(z) € Q,
1D fa(fr(@)]" < Kol Jp, (fi(2))]-
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Because f; can not map a set of positive measure to a set of measure zero,
both inequalities hold for almost every x € €)y. Thus

[D(f20 f)(@)" < KoK | g, (f(@)]| 5 (2)] = KoK [ Tpop ()]

for almost every z € ;. O

6.3 Theorem. Let f: Q — ' be K-qc. Then f~!: Q' — Qis K" !qc.

6.4 Remark. The constants K; K, and K™ ! in Theorem 6.2 and Theorem
6.3 are sharp. To see this, simply consider the linear quasiconformal map-

pings f1, fo, f associated to the diagonal matrices A;, A, and A where the
first diagonal entry of A; is K}/("fl), of Ay is K;/("fl) and all the rest are 1,

and the n — 1 first diagonal entries of A are all K and the last one is 1.

For the proof of Theorem 6.3 we need some elementary linear algebra:
6.5 Proposition. If det A # 0 and |A|" < K|det A|, then
A7 < K" det A7)

Proof. By Proposition 11.2 in the appendix, we find two orthonormal bases
so that the matrix of A with respect to these bases is diagonal. Notice that
the associated changes of bases preserve lenghts. Thus the operator norms
of A and A~! and the determinants of A, A~! can be readily read of from
this diagonal representation D of A (see Lemma 11.4 in the appendix). We
may assume that
At ... O
D=|: -
0 ... A\
with [A1] > [N > ... > |\, > 0. Then
I/ ... 0
D' = : " :
0 ... 1/,

Because |[\|" < K|A;...\,|, we have that |\;| < K|\,| for each j. Thus

1 1 1 \"! K1
D7 = = < — K"ldet A7
S WE W <|An\> RN |det A7
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O

Proof of Theorem 6.3. We already know that f~! is quasiconformal
and so f~' € Wb (', R"). Also f preserves the null sets for the Lebesgue
measure and, at almost every x, f is differentiable with J;(z) # 0. In partic-

ular, for almost every = € )

1=D(f" o f)(x) = Df '((2))Df ().

So
D (f(@) = [Df@)]
for almost every = € Q and so also for almost every y = f(x) € Q. Because

fis K-qc, we have |Df(x)|" < K|det D f(x)|, and consequently Proposition
6.5 gives the claim. O

6.6 Remark. Combining Corollary 4.25, almost everywhere differentiability
of qc mappings and Corollary 4.17 we see that each K-qc mapping is locally
Holder-continuous:

p>n 1/p
(@) = f)I 2 Cla— | ( / \Df|p>

1/p
B

Gehring .
< Clz—y|" P/ DS,
B

where p = p(n, K) > n. Thus f is Holder continuous with some exponent
that depends on K, n. It is then natural to ask for the best possible Holder
exponent.

6.7 Theorem. Let f: Q) — Q' be K-qc. If 7B C 2, then

() = 7o) NG
diam—f(B) < On, K) <diamB> ’

where C; = C(n), whenever z,y € B.
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Proof. Let g : Q1 — Q5 be K-qc, let yg € 2y and let y € )y satisfy
ly — vo| < d(yo, 0822)/3. Write r = d(yo, 0€23)/2. We define

1, if [z — yo| < |y — w0l
0, if |z —yo| >7r
0(2) = log — 1 _log L
"l P
og T , ifly—wol <z —wol <.
\ ‘y—y0|

Write 4 = v o g and extend u as zero to the exterior of €2;. Then, as in the
proof of Theorem 5.1,

1-—n
V" < K \Vv\”SKwn_1<log( " )) SNEH

Q1 Qs ’y - yO’

where w,,_; is the (n — 1)-dimensional measure of the unit sphere. Suppose
that we could show that

i C)Lyrlyor) \\
/Ql vl = s (log (Ig‘l(y) - g‘l(yo)|) ) ' )

Then, combining (26) and (27) and the fact that the support of u is compactly
contained in €2, we would conclude that

Fo—1/(n—1)
197 () — g~ (wo)] < C(n)Ly1 (o, ) (‘y - yo') .

r

Applying this to the K" '-qc (see Theorem 6.3 ) mapping g = f~1: Q' — Q,
the claim would easily follow with C} = 1. It is not easy to establish (27),
but it is not hard to prove the lower bound with some constant C,,, which is
sufficient for the claim of our theorem:

Write L = Ly-1(yo,7), o = g~ '(y0) and s = [¢7'(y) — g~ (vo)|. If
o
B(z0,3s)

/ |Vu|™ > d(n) >0
B(z0,3s)

by the proof of the corresponding earlier estimate (Theorem 2.12); notice
that v = 1 on the compact, connected set g~ (B(yo, |y — 30|)) of diameter at

Y

Wi

then
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least s. Notice further that u(z) = 0 on R™\ B(yo, L). Pick w € S"(yo,2L).

Then
][ u=20.
B(w,L)

and ][ u =0,
B(w,L)

3L

Now, we may assume that

[
B(z0,3s)

and thus (see Figure 6)

wiro

2L

Figure 6: Choice of B;’s in the proof of 6.7
k 1/n
w1 <30 (f 9t
j=0 B;

1/n
B.

J

W=
INA
H'M»

7=1

k

IN

Jj=0

1/n
< C(k+ 1) b/m (/ |vu\”> .
— UB;

<clog %

This gives the desired lower bound for [, [Vul™. O
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6.8 Remarks. 1) Given a domain 2 C R", n > 2, and compact sets E, ' C
Q with ENF =0, set

cap,,(F, F; Q) inf /|Vu\”

uEA(E F;Q)

where
AE,F;Q)={ueCOQUEUF)NW () u>1lin Eand u < 0in F}.

This is called the conformal capacity (varionational n-capacity, n-capacity)
of E and F with respect to 2. As a part of the proof of Theorem 5.1 we
essentially showed the fact that

cap, (f1(E), f7Y(F);Q) < K cap,(E, F; Q)

whenever E, F' C ' are compact and f : Q — Q' is K-qc.
The basic estimates are:

(i) f ECE, FCF and Q C 0, then
cap,(E, F;Q) < cap,(E', F'; Q).

(ii) If B(z,r) C B(z, R) C €, then
cap,, (E(x,r), S" Yz, R); Q) = cap,, (E(x,r), S" Yz, R); B(x, R))

S wtzjln—l .
(log )
In fact, the inequality can also be reversed:

If u € A(B(z,7),S" (2, R); B(x, R)) is C', then the fundamental the-
orem of calculus and Hélder’s inequality give

R
| g/ Vu(tw)| dt
TR n—1 n—1
g/ V(w575 dt

()" ([fosrea)

for every w € S"71(0,1). The desired inequality follows by raising both
sides of this inequality to power n and integrating over S™~1(0,1) with
respect to w. Approximation then gives the same for general test func-
tions.

1/n
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(iii) If £, F C B(z,r) are continua with

min{diam F, diam F'}
r

Z 51 > 07
then
cap,(E, F'; B(xz,r)) > 0(61,n) > 0.

(iv) If 2 is bounded and £ C Q is a continuum, then
Wn—1

10g C(n) diamQ)n1

cap,, (E,00Q;Q) >
diam F

This is not trivial; one uses symmetrization [11].

One in fact also has the estimates [11]

cap, (E, F:R") > Wn_1 _
PalE R 2 o Cm + )"

d(E,F)

min{diam(F),diam(F)}’ and

given continua E, F' C R", where t =
cap, (E, F;R") > cap,(E, F;R")/2
when E, F' C RY}.

2) If we use (iv) in the proof of the Holder-continuity estimate, we see that
one can take C; = 1, so that the Holder exponent is o« = 1/K. This is sharp:

f(x) = z|z|""VE) s K-qe.

3) The Holder exponent we found is thus 1/K (in terms of “H”, 1/H in
dimension two). By Corollary 4.25, f € WP is locally Holder-continuous

loc

with exponent 1 — %. To obtain the Holder exponent 1/K via Corollary 4.25,
one would need f to be in the Sobolev class VVli’fK with

nk
K—-1

PKk =

The radial mapping
fx) = x|z ")

belongs to WP exactly when p is strictly less than this pg.

loc

6.9 Conjecture. Let 2, C R" be domains, where n > 2. If f: Q — Q' is
K-quasiconformal, then f € W? for all p < pg .

oc

This holds when n = 2 by results by Astala [2]. In higher dimensions, the
conjecture would follow if a certain conjecture in calculus of variations gets
proved [16].
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7 Sobolev spaces and convergence of quasicon-
formal mappings

We will show that quasiconformality is stable under locally uniform conver-
gence in the following sense.

7.1 Theorem. Let f; : 2 — Q; be K-qc for each j > 1, and suppose that
fi — f:Q — @ locally uniformly. If f is a homeomorphism, then f is K-qc.

7.2 Remarks. 1) In the plane, one obtains the following conclusion in terms
of the metric definition. Suppose that f; : & — €; are quasiconformal in
terms of the metric definition with Hy, (x) = limsup, o Hy,(z,7) < H almost
everywhere in 2 for each j. If the sequence (f;); converges locally uniformly
to a homeomorphism f: Q — @', then f is quasiconformal with H(x) < H
almost everywhere in (2.

To see this notice first that each f; is H-qc by Corollary 4.28. Thus
Theorem 7.1 shows that f is H-qc. By Corollary 4.28 we know that f
is differentiable at almost every z with J¢(x) # 0. Fix such an z. As in
the proof of Proposition 6.5, we may assume that D f(x) is diagonal with
diagonal entries Aj, Ay satisfying |A;| > |Az] > 0. Then

A < HIMA

and it follows that [A\;| < H|Ay|. This implies that H;(z) < H, as desired.

2) Let n > 3. There is a sequence of qc mappings f; : R* — R" so
that f; — f locally uniformly, the (metric) H-dilatations of f; are all al-
most everywhere bounded by some Hy > 1 and the H-dilatation of f is not
essentially bounded by Hjy. Such examples have been found by Iwaniec [15].

3) The assumption that the limit function be a homeomorphism is not
superfluous. Indeed, the sequence (f;); of 1-quasiconformal mappings defined
by setting f;(x) = x/j converges locally uniformly to the constant function
f(z)=0.

4) One can characterize the class of K-quasiconformal mappings by a
completeness property related to Theorem 7.1. We will return to this in
Chapter 8.

In order to prove Theorem 7.1 we need a better understanding of the
Sobolev spaces than what immediately follows from the definition that we
have used this far. We begin by stating a characterization for the membership
in the Sobolev class and by sketching its proof.

7.3 Theorem. (Definitions of Sobolev spaces.) Let u € LF(Q), 1 <
p < 00, £ C R™ Then the following are equivalent:
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) (ACL) There is u € WH?(Q) with @ = u almost everywhere.

1) (

2) (H) There is a sequence (¢;); C C*(Q) so that p; — w in LP(Q) and
(Vi;); is Cauchy in LP().

3) (

) (W) For each 1 < j < n there is v; € LP(Q) so that

/U@@Z—/%w
Q Q

4) There is @ and g € LP(Q2) so that @ = u almost everywhere in Q and ¢
is an upper gradient of @ in 2.

for each ¢ € C§°(Q).

Proof. (sketch)
2) = 1): Passing to a subsequence, we may assume that (¢;(z)); converges
for almost every x. We define
i(2) = lim ;(z)
j—o0
whenever the limit exists, and set, say, a(x) = 0 for the remaining = € .
Then u(x) = u(x) almost everywhere in 2. By the fundamental theorem of

calculus applied to the functions ¢; and the Holder inequality, one obtains
absolute continuity in €2 on the lines for which both

[1ve-vep 0
I )=

for each compact subinterval [ in 2 and lim;_.., ¢;(z) exists for some x € I.
By the Fubini theorem, this holds for almost all lines parallel to the coordi-
nate axes. It also easily follows that the classical partial derivatives of & exist
almost everywhere in €2 and that they are obtained as limits of the partial
derivatives of the approximating functions.

1) = 2): We already proved in Chapter 5 that u can be approximated in
this manner by Lipschitz functions, provided €2 = R™. In this case, the claim
follows by taking averages, see Lemma 4.22. For the general case, one uses a
partition of unity: 0 < ¢; <1, ¢; € C§(2) such that > " ¢; = 1 in Q and
the supports have bounded overlap. Considering u1);, the statement easily
follows.

1) = 3): Integrate by parts, v; is the classical partial derivative.
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3) = 2): We use the (smooth) convolution approximation: Let

he) =1 =t
r) =
1 Cexp <|$|2 1) lz] <1,

where C' is chosen so that fRn 1 dx = 1. Define
1 x
vl = 5 (2)

Ifvel?

10c7

o (2) = (e % )z /wex— y)dy,

when B(z,e) CC Q. If v € LP(R™), then v® — v in LP(R"), see the proof of
Lemma 4.23. Also v*(z) — v(z) when x is a Lebesgue point of w.
Fix z € Q and € > 0 small compared to d(z,0$2). Now

u(x + he;) — ut(x)

he; — —
R ey R

_ — J—
h—0 € Ox; € 81*2- Ty
e

o ) ae T yul)dy

by the dominated convergence theorem:

1 1
LIl Juw| ar<t [iveloiay.
Thus e o0
Uu 5

and because 1. is smooth, we see that u is C'. Moreover, when v € WP,

) = [ H ) ay

-/ %ﬂu(y) dy

/¢a viy) dy.
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If v; € LP(R™), then this convolution sequence converges to v; in LP(R™).
When w is given, use a partition of unity to reduce the setting to that of R™.

2) = 4): Recall that we have already shown that 2) implies 1). Pick a
Cauchy sequence (i;); of C'-functions in the norm ||| ) + V@l 1o S0
that ¢; — wand Vy; — Vuin LP(2). Then a subsequence of (¢;) converges
to u almost everywhere and we define @ as the pointwise limit of such a fixed
subsequence. Write E for the set where this subsequence does not converge.
We set @(z) = 0 when 2 € E. We may assume that

Hvu - v@jHLp(Q) < 277.

Let v be a rectifiable curve. If

lim [ |[Vu—Vg;/P =0, then lim [ |[Vu— V| =0,
j—o0

700y ¥

and if further the sequence (p;(x)); converges for some = € ~, then the upper
gradient inequality holds for the pair @, |Vu| along v and along any subcurve
of v (see (5); in fact (¢;(y)); then converges for all y € ). Consider then a
rectifiable curve v so that

y

when 7 — oco. Then there is § > 0 so that
[1vu-9e0 25 (28)
-

for infinitely many j. Now
/ E |IVu—Vp,|ds =00
T

and

[ (Zivu-va)) <t

g = h(z) +|Vu(z)] + Y |[Vu = Vil

where we set h(x) to be infinite if z € F and h(xz) = 0 when z ¢ E. We may
assume that ¢ is a Borel function. It now easily follows that ¢ is an upper
gradient of .

Define
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4) = 1): This is immediate from the definitions. O

We now easily obtain the important weak compactness property of W1?(§2),
p > 1. Recall that v;, — v in LP(Q) refers to weak convergence, see Subsec-
tion 11.3 in the appendix.

7.4 Corollary. Let (u;); be bounded in W'?(Q), 1 < p < co. Then there
is u € WH(Q) so that u;, — w in LP(Q) and Vu;, — Vu in LP(Q) for a
subsequence (u;, ) -

Proof. Both (u;); and (Vu;); are bounded in LP(€2). Thus there exist u
and v = (vy,...,v,) in LP(Q2) so that

uj, = u and Vu;, —v in LP(Q),

see Subsection 11.3 in the appendix. Now

/@'SOUjk = —/<Paz‘ujk
Q Q

l

!
/&wu = _/@Ui
Q Q

by the weak convergence, when ¢ € C}(Q2). Thus u € W'(Q) and Vu =
(U17---7vn)- O

7.5 Remark. Corollary 7.4 does not extend to the case p = 1. For example,
when Q = B?(0,1) and u;(z) = min{1, max{0, jzs}}, we have that u; —
u = Xp2 (0,1, Where B%(0,1) = B*(0,1) N {(z1,22) : 22 > 0}. Thus the only
potential weak limit of a subsequence of (u;); is u. Moreover, our sequence
(u;); is bounded in WH1(Q) and u ¢ WHH(Q).

Proof of Theorem 7.1. Fix B C 2B CC ). Then fj\%B is n-quasisymmetric
with 1 independent of j (Corollary 3.4 and Theorem 5.1). It follows from the
uniform convergence of the mappings f; that f is n-quasisymmetric on %B.
Because B was arbitrary, we conclude from Theorem 5.1 that f is Kj-qc in

Q) for some K. It remains to be proven that we may choose K; = K.
Let B = B(z,r) be as above. For each € > 0 there is j. such that

f(B(z,r —¢)) C [;(B) C f(B(z,r +¢)) (29)
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for 7 > j.. Indeed, it suffices to check that
B(x,r —¢) C f'(fj(B)) C B(x,r +¢).

The second inclusion follows using the uniform convergence of our sequence
and the uniform continuity of f~* on f(2B). Regarding the first inclusion,
notice that, given € there is j: so that

|fh o fily) —yl<é

for all y with |x — y| = r when j > js. Thus the desired inclusion follows by
applying Lemma 11.10 to

h(z) = % (ffl o filrz +x) — fto f](a:)) )

Because f is quasiconformal and |0B| = 0, we conclude from Corollary
4.12 that |f(0OB)| = 0, Thus, it follows from Remark 6.1 and (29) that

[l = 1@ =X 1w = [ 1,
/B’ijfnéK/B\ij\SM

for some finite M because | f;(B)| — | f(B)| < co. Moreover, there is M’ < oo
so that |f;(x)] < M’ for z € B for all j. Thus the sequence (f;) is bounded
in WhH"(B,R") and so a subsequence converges to some g € WhH"(B,R")
weakly, i.e.

fi. — g9, Dfj, = Dg in L"(Q).

Because f; — f uniformly on B we conclude that g = f. Thus

/’Df‘":/ ]Dg\”gliminf/\ijk\"
B B
<Kl1m1nf/\Jfk\—K/‘Jf|

Let z € Q be a Lebesgue point both for |Df(x)|™ and |J¢(z)|. Then

i@l =t DS <Kl (] = K|y,
"0 B@r) "0 Br)
and the proof is complete. O
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7.6 Corollary. Let f; : B — f;(B) C R" be K-qc. Assume that the
sequence (f;); is bounded in W'!(B;R"). Then a subsequence converges
locally uniformly to a continuous mapping f € Wh*(Q;R"). If f is a home-
morphism, then f is K-qc.

Proof. Fix B C 2B C B. By Remark 6.6
_n 1_
Ihuﬂ—b@HSOw—mlﬂBvll!DM

whenever z,y € B C 2B C B, and SO our sequence is equicontinuous on B.
Also, each f; is n-quasisymmetric in B with some 7 independent of j, which
together with the estimate

[ i< <o
B

implies that |f;| < M’ on B. Invoking the Arzela-Ascoli theorem we may
apply Theorem 7.1 to conclude the claim. O

8 On 1-quasiconformal mappings

As mentioned earlier, each conformal mapping is 1-qc. Thus there are plenty
of 1-qc mappings in the plane. However, the structure of global 1-qc map-
pings is simple in all dimensions n > 2. This also holds for 1-quasiconformal
mappings according to the metric definition, see part 1) of Remarks 5.14.

8.1 Theorem. Let f : R® — R” be 1-qc, n > 2. Then there is a constant
M > 0 so that

[f(z) = f(y)| = Mz —y|
for all z,y € R™.

Theorem 8.1 does not extend to the case n = 1 (for the metric definition)
as is seen by considering the 1-quasiconformal mapping f : R — R defined by
f(z) = x3. We postpone the proof of Theorem 8.1 for a while and continue
with a version of the Liouville theorem according to which there are very few
1-qc mappings in dimensions n > 3. This result is due to Gehring.

8.2 Theorem. Let Q,Q C R", n > 3, be domains and f :  — € be 1-qc.
Then f is the restriction of a Mdbius transformation to 2.

74



Recall that a Mobius transformation is a finite composition of reflections
with respect to spheres and hyperplanes.

The proof of Theorem 8.2 will be based on the usual Liouville theorem
which assumes a priori regularity of the mappings in question.

8.3 Theorem. (Liouville) Let 2, C R" be domains, n > 3, and f : Q —
QY be 1-qc, f € C3(Q) and J; > 0in Q. Then f is the restriction of a Mdbius
transformation to 2.

We omit the proof and refer the reader to [17] for a proof.

Proof of Theorem 8.2. We may assume that J¢(x) > 0 almost everywhere
in , see Remark 5.2. Notice that f is locally Lipschitz and so is f~! (both
are Holder continuous with exponent 1 by part 2) of Remarks 6.8. Thus

|z —y|

o S If@) = fwl<Cle—yl

when z is fixed and y is sufficiently close to x; C' may depend on z but
it is locally bounded. Consequently J; is bounded away from zero locally
(almost everywhere). Because f is 1-qc, we have that |Df(x)|" = J¢(x)
almost everywhere with J¢(x) > 0. Fix such an z. We conclude from basic
linear algebra (see Proposition 11.3 and Proposition 11.4 in the appendix)
that

[Df(x)h] = Jy(z)""|h]

for each h € R™. Thus
ad Df(x) = Jy(x)' "*"Df(x)'

by Proposition 11.5. Let e; be one of the coordinate vectors. Then the
previous equation shows that

ad Df(z)e; = Jr(2)' 72"V f;(z).

Notice further that |V f;(x)| = |Df(z)te;| = J;(z)/™. We thus conclude from
Proposition 11.8 that f; is n-harmonic in , and thus C' by Proposition
11.6. Because |V f;(x)| is (locally) bounded away from zero, it follows from
Proposition 11.7 that f is C°°-smooth. The claim thus follows from Theorem
8.3.

8.4 Lemma. Let f:R"” — R" be a homeomorphism so that
f(Snil(xfr)) = Snil(f(x% Rx,r)
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for all x € R™, r > 0. Then there is M > 0 so that

[f(z) = f(y)| = Mz —y|
for all z,y € R™.

Proof. Let us first observe that lines get mapped to lines: If z is the midpoint

Figure 7: Line segment is mapped to a line segment

of [x,y], then f(2) lies on [f(z), f(y)] and furthermore

as we can see from Figure 7. By iterating, we see that for a given line L there
is My, so that |f(z) — f(y)| = M|z — y| whenever z,y € L.

L

Figure 8: when LN L' # ()

Let then L and L' be lines. Suppose first that LN L' # (. If L = L', then
My, = My,. Otherwise the setting looks like in Figure 8 and thus My = M.
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If LNL =0, pick L" so that LN L" # () and L' N L" # 0. a

Proof of Theorem 8.1. It suffices to show that

F(S" Ha,r)) = 8" (f(2), R.r) (30)

for all z € R™ and r > 0 (Lemma 8.4 will then give the claim). Fix = and r.
By using translations, rotations and dilations, we may assume that z = 0,
r=1, f(er) = ey and B(0,1) C f(B(0,1)).

Set

W = {f :R" - R": fis1l-qc, f(0) =0, f(e;) =€y and B(0,1) C f(B(0, 1))}

Define a = sup;cy, [f(B(0,1))]. Then a < oo because each such f is 7-gs
with a fixed n and so f(B(0,1)) C B(0,n(1)).

We will show that a = |B(0,1)|. Clearly a > |B(0,1)|]. Suppose a >
|B(0,1)] and pick a sequence (f;); of mappings in W so that |f;(B(0,1))| —
a. Then (f;) is bounded in W*(2B). Indeed

(2
f3(B(0,2)) < B(0,n(1)n(2)),

[ i< [ 1<a
2B 2B

Thus, by Corollary 7.6, f;, — ¢ uniformly in B(0,3/2) for some mapping
g and some subsequence (f;, ). Because f; (0) = 0 and f; (e1) = e; and
each f;, is n-quasisymmetric, it follows from the uniform convergence that
g is a homeomorphism. Invoking Corollary 7.6 again, we conclude that g is
1-qc. As in the proof of Theorem 7.1, we see that B(0,1) C ¢g(B(0,1)) (and
that |g(B(0,1))| = a). Thus g € W. Notice that g(B(0,1))\ B(0, 1) contains
some non-trivial open set U because |g(B(0,1))| = a > 1. Clearly |g(U)| > 0.
Consider h = go g. Now h € W and

[R(B(0,1))] = 1g(g(B(0,1)))] > [g(B(0,1)) Ug(U)| > a+g(U)| > a,

which contradicts the definition of a.

We have proven that a = |B(0, 1)|. Returning to our fixed mapping f, this
shows that |f(B(0,1))| = |B(0,1)|. By assumption, B(0,1) C f(B(0,1)),
and we conclude that f(B(0,1)) = B(0,1). It follows that f(B(z,r)) =
B(f(z), Ry,) for all z,r. This implies (30). O

and so
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8.5 Remark. The proof of Theorem 8.1 was based on a compactness argu-
ment. In fact, compactness can be used to characterize quasiconformality in
the following sense.

We call a mapping 7" : R® — R” similarity if there is a constant A > 0 so
that |7'(z) —T'(y)| = M|z —y| for all z, y € R". Next, we say that a family F of
homeomorphisms f : R" — R" is complete with respect to similarities if, for
each f € F and all similarities 7', S, the composite mapping g = T'o fo.S also
belongs to F. We call a homemorphism f : R” — R" normalized if f(0) =0
and f(e;) = ey, where e; is the unit vector in the zj-direction. Then the
family F is said to satisfy the compactness condition if every infinite set of
normalized mappings in F contains a subsequence which converges locally
uniformly to a homeomorphism.

We have the following result: Let a family F of homeomorphisms f :
R™ — R™ n > 2, be complete with respect to similarities. Then F satisfies
the compactness condition if and only if there is 1 < K < oo so that each
f e Fis K-qc.

The above statement is not hard to prove using the results and ideas
gathered this far. The compactness condition for K-qc mappings follows
using Corollary 7.6 and the normalization once we recall that each of the
mappings f is n-quasisymmetric with a fixed 7. For the converse, one first
proves that there is H < oo so that Hy(z,r) < H for each f € F, all z € R"
and every r > 0 and then applies the equivalence of the metric and analytic
definitions.

Here is a sketch of a proof of the estimate on H¢(z, ). By the compactness
property it easily follows that there is H < oo so that |f(z)| < H for each
normalized f € F and all z € S"1(0,1). Given f € F, z, and r > 0, pick
y € S"7!(z,r) that realizes l;(x,r). Map e; to y and 0 to z using a similarity
S, f(x) to 0 and f(y) to e; using a similarity 7', and apply the above bound
tog=TofolS.

9 Mapping theorems

We begin by discussing the planar setting. It is convenient to use complex
notation: we identify R? with C and write a point z € C as z = x + iy,
where z,y are real. Let f € W'l(l)cl(Q, C) be continuous, where 2 C C'is a
domain. Writing f(z) = u(z) + iv(z) with u,v real-valued, we notice that
both v and v have, at almost every z, partial derivatives ug,u,, v, v, with

respect to z,y. Then
O: f(2) = uy(2) + ivy(2),

y(2) +ivy(2).

&
—
—~
&
I
g
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We will employ the derivatives df, Of defined by
1 .
01(2) = (0. ()~ 10,(f))

— 1 ]
0f(2) = 5 (0.1(2) +i0,(/))
Recalling the Cauchy-Riemann equations
Uy = Vy, Uy = —Vy,

we notice that 0f(z) = 0 if f is analytic. In fact, for a continuous f €
WhH(Q; €), 9f(2) = 0 almost everywhere only when f is analytic.

loc

Let us further denote by 9, f(2) the derivative of f in the direction ' (if
it happens to exist). In the real notation, this is simply D f(z,y)(cos «, sin «)
if f is differentiable at the point (z,y) and it is easy to check that, in our
complex notation,

Ouf(2) = 0f (2)e"™ + Of ()" (31)
In fact, one has for each h € C
Df(:)h = O (=) + Bf ()1,

where £ is the complex conjugate of h (for h = x + iy, h = 2 — iy). Now
0o f(2) has maximal length when the two vectors in the sum (31) point to
the same direction, i.e. when

a+argdf(z) = —a +arg df(z)
(modulo 27), and minimal length when these two vectors point to opposite

directions. Here argw denotes the argument of a complex number w. Thus
the maximal directional derivative has the value

0f(2)] +10f ()]

and corresponds to the choice

1 _
a = g (argdf(z) —arg 0f(2))
and one has the minimal value

10f(2)| = [0 (2)]]
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corresponding to

a = g + 1(arggf(z) —argdf(z)).

[\]

Moreover,
[ T3 (2)] = [(10f (=) + [0f ()10 (2)] = [0 (2)])]
= [[0f (=) = [9f ().

9.1 Theorem. Let p: C — C satisfy ||p||z~ < 1. Then there is a quasicon-
formal mapping f : C — C so that

Af(2) = p(2)0f(2)
almost everywhere.

This is a very strong existence theorem. Notice that J;(z) # 0 almost
everywhere because f is quasiconformal. Thus the discussion before Theorem

9.1 shows that
DFG _ 1+ |u(2)
[Jp(2)] 1= |u(2)]

almost everywhere. Moreover, for almost every z,

1+ u)
= ()|

and the differential D f(z) maps disks B(z,r) centered at z to ellipses with
major axes of the length

2|Df(2)r = 2[0f(2)[r(1 +[u(2)])

and minor axes of the length

200f(2)[r(1 = |pu(2)]).

The orientation of these ellipses is not determined by p(z). However, consider
the collection of all ellipses £ with center x so that the ratio of the major
and the minor axis is Hf(z) and the angle determined by the minor axis and
the real line is

Hy(2)

1
a=garg w(z).

Then the differential D f(z) maps these ellipses to discs centered at f(z).
We will omit the proof of Theorem 9.1 and refer the reader to [4] for the
proof and further extensions of this existence theorem.
Let us recall the Riemann mapping theorem, see [23] for a proof.
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9.2 Theorem. (Riemann Mapping Theorem) Each simply connected do-
main {2 C C is conformally equivalent to the unit disk.

It follows that, given simply connect, proper subdomains Q, € of the
plane, there is a conformal mapping f : Q2 — '. We continue with a quasi-
conformal version of this statement.

9.3 Theorem. (Measurable Riemann Mapping Theorem) Let Q, Q' C
C be simply connected subdomains and suppose that p : Q — C satisfies
|pt]l ;oo < 1. Then there is a quasiconformal mapping f : Q — €' so that

0f(2) = u(2)0f(z) a.e. in Q.

L+ [lpflo

In fact, f is ——= -qc.
1= [l

Proof. Given €, and pu, we extend p as zero to the rest of C. Then
Theorem 9.1 gives us a quasiconformal mapping as asserted, except for the
requirement that f(2) = . In any case, f(2) is a simply connected proper
subdomain of C, and thus the usual Riemann mapping theorem provides us
with a conformal mapping g : f(2) — . Setting f =gof, it is easy to
check using the “chain rules”

d(g o h) = dg(h)Oh + dg(h)Oh,

d(goh) = dg(h)oh + dg(h)Oh,
that f has all the required properties. O

We deduce from Theorem 8.2 that there is no Riemann mapping theorem
in higher dimensions.

9.4 Corollary. Let f: B* — f(B") C R" be 1-q¢, n > 3. Then f(B") is a
ball or a half space.

One could still hope for a “quasiconformal Riemann mapping theorem”
for n > 3. Unfortunately, this hope is futile:

9.5 Example. Let QO C R? be as in Figure 9. Then there is no quasiconfor-
mal mapping f : B3(0,1) — Q.
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Figure 9: Domain €2 of the example 9.5

Reason : Suppose there is a quasiconformal mapping f : B3(0,1) — €. Pick
a circle F} of radius 2¢? around the cusp at the level z; = ¢ and let E = [—1, 0]
on zp-axis. Then (see Figure 10)

cap,,(E, Fy; Q) < cap,, (E((t, 0,0), 2t2) , SQ((t, 0,0) ,t) ;Q)

— v — 0 whent—0.

T\ 2
<log @>

Figure 10: B((¢,0,0),2t*) and S*((¢,0,0),¢).
Because f is K-qc for some K, it follows that

capy (f71(E), £ 71 (F); BY0,1)) < K capy(B, F;2) — 0 when t — 0.
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But, on the other hand,

min { diamn f1(B), diam [ 1(F)}
> 10
d(f~(E), f~(F))

for all ¢, and thus
caps (f*l(E), FUE); B0, 1)) > §(3,107%) > 0.

To be precise, we have cheated a bit above. Indeed, E intersects the boundary
of Q and thus it is not clear if f~!(F) is compact (nor even if f~! has an
extension to the points —1,0). It is easy to fix this by replacing F with
E; C E which is the segment [—1 4 1/j,—1/j] with j sufficiently large.
Notice that f~!(y) necessarily tends to the boundary of B3(0,1) when y
tends to 0.

By the above example, not every topologically nice 2 C R™, n > 3, is
quasiconformally equivalent to the unit ball. One does not in fact know any
general geometric criteria for this equivalence. The following result due to
Gehring gives a sufficient condition for quasiconformal equivalence. For a
proof see [30].

9.6 Theorem. If 99 is diffeomorphic to S"71(0,1), then there is a quasi-
conformal mapping f : B"(0,1) — Q.

Based on Corollary 9.4 it is natural to ask if domains in R", n > 3, that
are K-qc equivalent to the unit ball for a suitably small K are more regular
than one a priori expects. This turns out to be true in the sense that they
are even quasisymmetrically equivalent to the unit ball.

9.7 Theorem. Let n > 3. There exists Ky = Ky(n) > 1 such that if
f B — f(B") C R"is K-q¢c, 1 < K < K, and bounded, then f is
quasisymmetric. In particular, f extends to a homeomorphism f : B" —

f(B").

This theorem is from [3], [27]. The proof heavily relies on results due to
Reshetnyak [23] that essentially give an asymptotic version of Theorem 8.2
when the distortion K tends to 1.

9.8 Remark. There are still plenty of quasiconformal mappings. For ex-
ample, there is a quasiconformal mapping f : B" — f(B") C R" so that
|0€2| = oo. See [31] for this.
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10 Examples of quasiconformal mappings

10.1 Example. (Basic mappings)

1) Linear transformations: If f: R™ — R™ is linear and invertible, then f is
quasiconformal.

2) Radial stretchings: Let f(x) = z|z|* ! = ‘—;m“, where 0 < a < co. Then

f is K-qc, where
K _ a” ' ifa>1
~Ja! if0<a<l1.

In the planar setting, it is easy to establish this estimate on K by using
complex notation. Indeed, let f : C — C, f(z) = z|z|*"! = 2(1+0)/2z(a=1)/2,
Then

Bf(2) = L(a —1)z30+9z3(3)
0f(2) = $(a+1)z30 Nzl D),
SO _
(= -01”
e = of a+1%°

Thus |p(z)| = |a—1]/(a+1), and the desired estimate follows by the discus-
sion in the beginning of Chapter 9.

The higher dimensional setting requires a bit more thinking. We leave
this to the reader with the following hints. First of all, f maps balls centered
at the origin to balls centered at the origin. Let  # 0. The matrix D f(x) is
diagonal when x lies on the x;-axis and the required estimate then easily fol-
lows. Also, the image of B(x,r) in this case is approximatively determined by
the image ellipsoid of B(x,r) under the linear transformation corresponding
to D f(z). Next, given x # 0, the image of B(x,r) under f is, modulo a rota-
tion, the image of B(z,r), where z lies on the zj-axis and satisfies |z| = |z],
and f is differentiable at x. Combining this with the approximation from
above gives the claim.

3) Folding maps: Let (r, ¢, z) be the cylindrical coordinates of x = (z1,...,x,) €
R™, n > 2; this means that » >0, 0 < ¢ < 27, 2 € R" 2, and

ry =rcosp, ro=rsing and z = (x3,...,2,).
Let 0 < a, 8 < 2w, and let Q, = {(r,p,2): 0 < p <a}, Qs ={(re2):

0 < ¢ < B}. Then the mapping f : Q, — Qg, (r,0,2) — (r,(6/a)p, 2) is
K-qc, where

o [l fora<s
B als for a > (3.
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The estimate on K is obtained using the diagonal representation of D f(x)
obtained using suitable orthonormal coordinates.

Figure 11: Folding map f : Q, — Qg

4) Cone map: Let (R, p,0) be the spherical coordinates of (1, z2,x3) € R3;
this means that R > 0,0 < ¢ <27, 0 <0 <7, and

x1 = Rsinfcosp xo = Rsinfsiny and x3 = Rcosf.

For 0 < a < 7 the domain C, = {(R,,0) : 0 < 6 < «a} is called a cone of
angle a. The mapping f : C, — Cps, (R, ¢,0) — (R, p,30/a) (see Fig. 12
for the special case where 8 = 7/2), is K-qc for 0 < o < § < 7, where

3% sin o

a?sin 3

For § = 7 the quasiconformality fails. Use similar coordinates as for 3) to
verify the claim.

r= T/Z

Figure 12: Maps f: Cy — Crp and ¢g: H — C.

5) Cone to an infinite cylinder: Let H be the half-space determined by
H = Crjy. Let Cy be the infinite cylinder Coo = {(r, ¢, x3) : r < 7/2}
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(in cylindrical coordinates). Then g : H — Cy, which maps the point
(R,¢,0) € H (spherical) to (r = 0,p,23 = logR) € Cy (cylindrical), is
7% /4-qc; see Figure 12. Especially, for each cone C, of angle 0 < a < T,
there is a quasiconformal mapping h : C, — C.

10.2 Example. (“Dust to dust”) Givenn >2and0 <A <n,0< X <n,
there is a K-qc map f : R® — R" and Cantor sets E, E’ of Hausdorff
dimensions A, X', respectively, so that f(F) = E’. Here K depends on n, A, X'

Reason : Let I = [0,1]" C R® and I;, i = 1,...,2" be the dyadic subcubes

of I with side length % Fix 0 < s < % and for each ¢ = 1,...2" pick a
similarity mapping g; : [ — [I; : x — sx + a;, where a; € I; is chosen so that

the centers of I; and Q; = g;(I) coincide. Let

Fjj: U gi1ogi20“‘ogij(1)‘ (32)

1<iy,d2...,1, <27

It is easy to see that [ D F, D .... Moreover, the cubes g; o...0 g; (/)
and gy o...0 gz-;_([) are disjoint if 4 # 4 for some 1 < k < j. We define a
Cantor set C7' by setting

cr=F (33)

1

Then the Hausdorff dimension of C?' is nllzggg, see [20].

Fix0 < s < % and 0 < ¢ < % and the corresponding Cantor constructions

as above. It is easy to see that there exists a K-quasiconformal f; : R” — R”

so that fi(r) = x outside I, and fi(z) = g/ o g; () if z € Q;, where K
1

!

depends basically only on the ratio 5;__88 . For example, define 1 : [—i, i]” —
2
[_i’ i]n by

1 /

38 s'—s s 1

T (2 + ) when 2 < ||z < =
= T Wl I=9) 3 < [lllmes < 7

o) = {%x, when 0 < ¢||2||max < 5 and

and finally set for x € I; that

where b; denotes the center of I; (which also is the center of @);). On I¢, we
define f; to be identity. It is an easy exercise to check that f; satisfies the
desired properties (see Figure 13 in the two-dimensional case).
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9
] iy

Figure 13: The initial map f;

We define a sequence of functions f; inductively: assuming that f; is
defined, we define the mapping f;+1 by setting fj11(x) = f;(x) outside F;
and

fi+1(x) = gi, 0 fjog;" ifw € gy o~ 0g;(I) (35)
when z € Fj. It is easy to check that f; is a homemorphism that maps F;
onto Fj. Moreover, because each g; and gi—1 is 1-qc, each f; is K-qc with the
constant K corresponding to the construction of f; above.

It is immediate from the construction that the sequence (f;); of K-qc
maps converges uniformly to a homemorphism f that maps C? onto C? .
From Theorem 7.1 we deduce that f is K-qc.

10.3 Example. (Reflection) Let f : R} — R” be a K-qc map that maps
bounded sets to bounded sets. Then f is quas1syrnrnetr1c and thus f extends
to a (quasisymmetric) homeomorphism f : R} — R.. Define

flz) ifx,>0
f@) ifx, <0,

where T = (21,20, ..., —x,). Then f(z): R® — R™ is K-qc.

Reason : Repeat the argument we used to prove that the analytic definition
implies the metric definition (Theorem 5.1) to see that f is quasisymmetric
(see Figure 14). For the K-quasiconformality of f it suffices to check that
f € Wk". For each bounded G C R™ we have

loc
/ Dfr< K [ 1] < oo,
Gy Gy
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Figure 14: f: R} — R7

because f maps bounded sets to bounded sets. Similarly, [, IDf|" < co.
Thus we only need to check that

/ékfjcp = —/fjaicp for all p € C5°(R™).

This is trivial when ¢ = 1,...,n — 1; almost every line parallel to the first
n — 1 coordinate axes lies either in the upper half space or in the lower one.
For ¢« = n, integrate by parts along lines up to boundary in both sides; the
boundary term showing up gets cancelled because f is continuous.

10.4 Example. (Lifting) Let f : R® — R" be quasisymmetric, n > 1.

Then there is a quasiconformal mapping f : R — R 50 that f‘Rn =f.
Reason : For n =1 define

A~

foa) = (& [ st se—wman [ v - - w)a)

for y > 0 and use reflection (Example 10.3). This is the Beurling-Ahlfors
extension.

The high dimensional case is hard essentially because of topological dif-
ficulties. The setting n = 2 is due to Ahlfors [1], n = 3 to Carleson [9] and
n > 4 to Tukia and Viisdld [29]. Notice that, in dimensions n > 2, we
could simply assume that f be quasiconformal. For n = 1 one really needs
to assume quasisymmetry because there exist quasiconformal mappings of
the real line that fail to be quasisymmetric.

10.5 Example. (“Generalized lifting”) Let f : R — f(R) C R? be qua-
sisymmetric. Then there is quasiconformal mapping f : R?> — R? so that

fl=".
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Figure 15: Conformal h: R? —

Reason : (See Figure 15.) One can show using the fact that f : R — 00 is
quasisymmetric that €2; is LLC. Then the Riemann mapping theorem gives
us a conformal mapping h : RZ — ) and g is quasisymmetric by the usual
arguments (we may assume that A maps bounded sets to bounded sets; see
the proof of Theorem 5.1). We can then extend h to a quasisymmetric
mapping h : @ — Q1. Now hlo f: R — R is also quasisymmetric. By
lifting, there is a quasiconformal mapping ¢ : R? — R? so that g|g = A~ o f.
Then fi = hog : @ — () is quasisymmetric and fi|g = f. Repeat the
same procedure to obtain a quasisymmetric mapping fs : R2 — O, so that
folr = f, and define f in pieces.

10.6 Remark. There are quasisymmetric mappings f : R" — f(R") C
R™*! that do not extend to a homeomorphism f : R**!' — R when
n > 2.

10.7 Definition. A Jordan curve v C Cis a quasicircle if there is a quasi-
conformal mapping f : C — C so that y = f(S?) or v\ {0} = f(R).

Above, C refers to the Riemann sphere (the one-point compactification
of C.) One can check that each quasiconformal mapping f : C — C extends
to a homeomorphism f . C — @; this extension is also quasiconformal on
the Riemann sphere.

10.8 Remark. The following are equivalent:
(1) v is a quasicircle
(2) one of the components of C\ 7 is LLC

(3) both components are LLC
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(4) If z,w,y € v and y is “between” z and w, then
2=yl +w—y[ < Clz —wl

with C' > 0 independent of 2z, w and y.

10.9 Example. (The snowflake mapping) Take piecewise linear mappings
fr : [0,1] = C as in Figure 16. Then extend the construction to entire R as

f

1
/NVJ\~4
0 1

— e &— 00— 00— 00—

0 1

Figure 16: First iterations of the snowflake map

in Figure 17 to obtain piecewise linear mappings fk : R — C. The mappings

/N

f
2
T 0

0 1 3 0 1 3

Figure 17: Extension of f; to R

fk are uniformly quasisymmetric. By Arzela-Ascoli, we obtain a quasisym-
metric mapping f : R — ~ C C, where v is a version of the von Koch
snowflake curve. The mapping f satisfies the estimate

1 log3 log3
oz =yt < [f(2) = fly)] < Cla —y[re
for x,y € [0,1]. Eventually, take a quasiconformal extension f : C — C of f.
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10.10 Remarks. 1) One can change the construction so that, for a given
% < a <1, there is f, so that

é’x_y\agyf(x)—f(y)féc\x—y!a

for z,y € R.

2) In higher dimensions, similar constructions have been made by David and
Toro for « close to 1 [10].

References

1]

2]

3]

4]

5]

(6]

7]

8]

9]

Ahlfors, L.: Extension of quasiconformal mappings from two to three
dimensions. Proc. Nat. Acad. Sci. U.S.A. 51 (1964) 768-771.

Astala, K.: Area distortion of quasiconformal mappings. Acta Math.
173 (1994), no. 1, 37-60.

Astala, K. and Heinonen J.: On quasiconformal rigidity in space and
plane. Ann. Acad. Sci. Fenn. Ser. A T Math. 13 (1988), no. 1, 81-92.

Astala, K., Iwaniec, T. and Martin, G.: Elliptic Partial Differential
Equations and Quasiconformal Mappings in Plane. Princeton Univer-
sity Press, 2009.

Balogh, Z.M., Koskela, P. and Rogovin, S.: Absolute continuity of
quasiconformal mappings on curves. Geom. Funct. Anal. 17 (2007),
no. 1, 645-664.

Beurling, A. and Ahlfors, L.: The boundary correspondence under
quasiconformal mappings. Acta Math. 96 (1956), 125-142.

Bojarski, B.: Remarks on Sobolev imbedding inequalities. Com-
plex Analysis, Joensuu 1987, 52-68. Lecture Notes in Math., 1351,
Springer, Berlin, 1988.

Bojarski, B. and Iwaniec, T.: Analytical foundations of the theory of
quasiconformal mappings in R™. Ann. Acad. Sci. Fenn. Ser. A T Math.
8 (1983), no. 2, 257-324.

Carleson, L.: The extension problem for quasiconformal mappings.
Contributions to analysis (a collection of papers dedicated to Lipman
Bers), pp. 39-47. Academic Press, New York, 1974.

91



[10] David, G. and Toro, T.: Reifenberg flat metric spaces, snowballs, and
embeddings. Math. Ann. 315 (1999), no. 4, 641-710.

[11] Gehring, F.W.: Symmetrization of rings in space. Trans. Amer. Math.
Soc. 101 (1961) 499-519.

[12] Gehring, F.W.: The LP-integrability of the partial derivatives of a
quasiconformal mapping. Acta Math. 130 (1973), 265-277.

[13] Hajtasz, P. and Maly, J.: Approzimation in Sobolev spaces of non-
linear expressions involving the gradient. Ark. Mat. 40 (2002), no. 2,
245-274.

[14] Heinonen, J. and Koskela, P.: Quasiconformal maps in metric spaces
with controlled geometry. Acta Math. 181 (1998), no. 1, 1-61.

[15] Iwaniec, T.: The failure of lower semicontinuity for the linear dilata-
tion. Bull. London Math. Soc. 30 (1998), no. 1, 55-61.

[16] Iwaniec, T.: Nonlinear Cauchy-Riemann operators in R"™. Trans.
Amer. Math. Soc. 354 (2002), no.5, (2002), 1961-1995.

[17] Iwaniec, T. and Martin, G.: Geometric function theory and non-linear
analysis. Oxford Mathematical Monographs. The Clarendon Press,
Oxford University Press, New York, 2001.

[18] Koskela, P. and Wildrick, K.: Ezceptional sets for the definition of
quastconformal mappings in metric spaces. Int. Math. Res. Notices 16

(2008).

[19] Lehto, O., Virtanen, K.I. and Véiséla, J.: Contributions to the distor-
tion theory of quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A
I No. 273 (1959), 14 pp.

[20] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Frac-
tals and rectifiability. Cambridge Studies in Advanced Mathematics,
44. Cambridge University Press, Cambridge, 1995.

[21] Muckenhoupt, B.: Weighted norm inequalities for the Hardy mazimal
function. Trans. Amer. Math. Soc. 165 (1972), 207-226.

[22] Reshetnyak, Yu. G.: Stability theorems in geometry and analysis.
Mathematics and its Applications, 304. Kluwer Academic Publishers
Group, Dordrecht, 1994.

92



23]

[24]

[25]

26]

27]

28]

29]

[30]

[31]

11

11.1

Rickman, S.: Quasireqular mappings. Ergebnisse der Mathematik und
ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas
(3)], 26. Springer-Verlag, Berlin, 1993.

Rudin, W.: Real and complex analysis. Third edition. McGraw-Hill
Book Co., New York, 1987.

Staples, S.: Mazimal functions, A.-measures and quasiconformal
maps. Proc. Amer. Math. Soc. 113 (1991), no. 3, 689-700.

Stein, E.M.: Harmonic analysis: real-variable methods, orthogonality,
and oscillatory integrals. With the assistance of Timothy S. Murphy.
Princeton Mathematical Series, 43. Monographs in Harmonic Analy-
sis, III. Princeton University Press, Princeton, NJ, 1993.

Trotsenko, D. A.: Continuation of spatial quasiconformal mappings
that are close to conformal. Sibirsk. Mat. Zh. 28 (1987), no. 6, 126—
133, 219.

Tukia, S. and Viisala, J.: Quasisymmetric embeddings of metric
spaces. Ann. Acad. Sci. Fenn. Ser. A T Math. 5 (1980), no. 1, 97-114.

Tukia, S. and Vaisala, J.: Quasiconformal extension from dimension
n to n+ 1. Ann. of Math. (2) 115 (1982), no. 2, 331-348.

Viisila, J.: Lectures on n-dimensional quasiconformal mappings. Lec-
ture Notes in Mathematics, Springer-Verlag, Berlin, 1971.

Viiséla, J.: Quasiconformal maps and positive boundary measure.
Analysis 9 (1989), no. 1-2, 205-216.

Appendix

Conformal mappings of a square onto a rectangle

Let us explain why one cannot map a square conformally to a rectangle

which is not a square, so that the vertices get mapped to the vertices. Notice

that this statement is a bit ambiguous. Indeed, the conformal mapping is
a priori only defined in the open square and thus the meaning of vertices
being mapped to vertices is not clear. Because of the simple geometry of

both of these domains, one can easily verify that any conformal mapping

necessarily extends to a homeomorphism of the closed square onto the closed
rectangle. Thus, we are claiming that there is no homeomorphism between
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a closed square and and a closed, non-square rectangle which is conformal in
the open square and maps the sides of the square to the sides of the rectangle.

Let us call the square ) and the rectangle R and the mapping f. By
translating and scaling, we may assume without loss of generality that ) =
10, 1[x]0, 1] and that R =]0, 1[x]0, L] for some L > 0. We may further assume
that the vertical sides of () get mapped to the vertical sides of R. Consider
the line segment [, = {(¢,y) : 0 <t <1} for 0 <y < 1. Because f([,) joins
the vertical sides of R, we conclude that

|Df(z,y)|dx > L.

Iy

By Holder’s inequality we deduce that

L*< | |Df(z,y) da.
Iy

Integrating with respect to y and using the inequality
IDf(z,y)* < Jy(x,y)
that follows from the Cauchy-Riemann equations (cf. Section 1) we arrive at
2 < [Dfg)Pddy < [ o) dedy <R,
Q Q

where |R| is the area of R. Since |R| = L, we conclude that L < 1. The
opposite inequality follows by reversing the roles of ) and R in the above
argument.

11.2 Some linear algebra

Let A be a n x n-matrix. The operator norm of A is defined by

|A| = sup |Ah],
|h|=1

where |h|, | Ah| are the euclidean lengths of the given vectors. Sometimes one

also uses the norm
1Allms = [> a2
1,J

called the Hilbert-Schmidt norm. These two norms are clearly equivalent.
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11.1 Proposition. For each h € R™, we have that
|hA[ < [A]|n].
To see that this estimate holds, notice first that
|hA| = |A'hY|.
It thus suffices to show that |Af| < |A|. To this end, choose a unit vector
h € R™ so that |A*h| = |A]. Now
|A']? =< A'h, A'h >=< AA'h, h >< |A||A'h||h| < |A||AY,

and the claim follows.
Notice that we acually proved above that |A'| < |A|. Recalling that
(A")! = A, we arrive at the equality

A" = |A. (36)

We continue with a result according to which linear mappings can always
be represented by diagonal matrices.

11.2 Proposition. Let L : R* — R" be a linear mapping. Then there are
orthonormal bases {vy, ..., v,} and {wy, ..., w,} so that the matrix of L with
respect to these bases is diagonal.

Proof. Pick vy, with |v,| = 1, so that |Lvi| = sup,_; [Lh|. If [Lv| = 0,
then the zero matrix will do (use then the standard bases). We will take
wy = éi’; . Assume for simplicity that |Lv;| = 1.
Claim: Ifl vlvq, then Lvl Lv;.

Suppose not. We can assume that |v| = 1 and that (Lv, Lv;) > 0. Then
Lv = cLvy +w for some ¢ > 0, where w1 Lv;. Thus |L(v; +ev)| > 1+ ce for
e > 0. Now

U1 + €V + ce + 2ce 4 c°¢
L S 1 _1 2 22
oy +ev] T V1I4¢2 14 €2

when ¢ > 0 is small, which contradicts the fact 1 = [Lvi| = supy,_; |Lh|.
This proves the above claim.
Then pick vy with |vy] = 1 and so that

|Lvs| = sup |Lh|.
h|=1,h Lo

> 1,

Repeat the argument as in the first step. After n steps, we have found the
required basis. O

We deduce the following familiar property of linear transformations.
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11.3 Proposition. If L : R” — R” is linear and one-to-one, then L maps
balls to ellipsoids.

Proof. By the linearity of L, it suffices to show that L(B"(0,1)) is an ellip-
soid. Relying on the preceding proposition, we may assume that the matrix
corresponding to L is diagonal. Since L is one-to-one, the diagonal entries of
this matrix are non-zero. The claim follows. O

Let us recall the standard fact that, under a linear transformation, the
measure of the image of a set F is obtained by multiplying the measure of
E by the absolute value of the determinant of the matrix representing the
linear transformation.

11.4 Proposition. We have
|AE| = | det A|| E|
for each measurable set E.

Notice that our claim is trivial when A is diagonal. Thus the previous
proposition essentially gives our claim. The only problem is that one would
need the fact that the determinant does not depend on the choice of the
orthonormal bases involved. A rigorous elementary proof of our claim can
be found in [24].

To each n x n- matrix A we associate the adjunct matrix ad A, defined
by setting

(ad A)]z = det A;j,
where (ad A);; refers to the entry of ad A at row i and column j and Aj; is
the matrix obtained from A by replacing the entry at row ¢ and column j
with 1 and all the other entries in the corresponding row and column by 0.
If A is invertible, then ad A = A~!det A, and, more generally,

AadA=1Tdet A, (37)
where [ is the identity matrix.
11.5 Proposition. Let A > 0 and suppose that A satisfies
|Ah| = A|h|

for all h € R™. Then
ad A = (det A)' =2/ A",
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Proof. Clearly |AE| = A"|E| for each measurable set. Thus Proposition
11.4 shows that
A = (det A)'/™. (38)

Write B = $A. Then |Bh| = |h] for all h € R", and so |B| = 1. From (36)
we conlude that also |B| = 1.
Fix & with |4| = 1. Then

1 =< Bh, Bh >=< B'Bh,h >,
and because
|B*Bh| < |B*||B||h| = 1,

we conclude that B!Bh = h. It follows that B~! = B*.
Now
At =AB'=\B7' = X241 (39)

Combining (39) with (37) and (38) we conclude that
ad A= A" det A = (det A)' YAt

as desired. O

11.3 LP-spaces

Recall that LP(€2), 1 < p < oo, consists of (equivalence classes) of measurable

functions v with
/ |ul? < oo.
Q

1/p
lullr = llully = ( / \uwp) .
Q

Furthermore, L>(2) consists of those measurable functions on 2 that are
essentially bounded. Then ||u||z~ = [|u||s is the essential supremum of |u|
over Q. If 1 < p < 0o, we set p = p/(p—1), and we define 1’ = co. With this
notation, we have the Minkowski

We write

[+ vllp < fullp + [[0]]

and Holder
uv]]r < [lullpl[v]]y
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inequalities.
One often needs the following spherical coordinates. Given a Borel func-
tion u € L'(B"(0,1)) we have that

1
/ u :/ / u(tw)t" ™ dtdw.
B(0,1) sn=1(0,1) Jo

We say that a sequence (u;); converges to u in LP(2) if all these functions
belong to LP(§2) and if ||u —u;||, — 0 when i — co. We then write u; — u in
LP(Q). If u; — w in LP(Q), then there is a subsequence (u;,)x of (u;); which
converges to u pointwise almost everywhere. For 1 < p < oo, continuous
functions are dense in LP(€2) : given u € LP(2) one can find continuous u;
with u; — u both in LP(Q) and almost everywhere. This can easily seen by
first approximating u by simple functions, then approximating the associated
measurable sets by compact sets and finally approximating the characteristic
functions of the compact sets by continuous functions.

The dual of LP(Q) is LP/®=1(Q) when 1 < p < co. Then

lullp = sup [lue]lr.
el _g, =1

One of the inequalities easily follows by Holder’s inequality and the other by
choosing ¢ to be a suitable constant multiple of |u|P~!.

We also need the following weak compactness property: if (u;); is a
bounded sequence in LP(2), 1 < p < oo, then there is a subsequence (u;, )i
and a function u € LP(2) so that

lim [ u;, ¢ = / up
for each ¢ € LP/*=D(Q). We then write

Uy, — U.

This notation should in principle include the exponent p, but the exponent
in question is typically only indicated when its value is not obvious. This
function wu, called the weak limit, is unique and satisfies

[l < liminf {fu;,[[,-
— 00

The existence of the weak limit u follows from the fact that LP(Q), 1 <
p < 00, is reflexive. Furthermore, the norm estimate on u is a consequence
of a general result according to which a norm is lower semicontinuous with
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respect to the associated weak convergence. In general, weak convergence is
defined by considering bounded linear mappings 7' : X — R; in the case of
LP(Q), 1 < p < oo, they can be identified with elements of LP/®~V(Q). If

v; = (v],---,v)) € LP(Q), then
v — U

means that
vl —
for each 1 < i < n.

When we apply the above to a sequence A;(x) of n X n-matrix functions,
we conclude that the boundedness in LP(Q2), 1 < p < oo of the sequence
(|A;(x)]); guarantees the existence of an n x n-matrix function A(x) € LP(Q2)
so that the rows (or columns) of a subsequence of (|A;(z)|); converge weakly
to the corresponding rows (or columns) of A(z). Notice that boundedness
above is independent of the initial norm (like the operator or Hilbert-Schmidt
one).Then ||A||, < C, iminfy_;,f1y || A, ||,- In fact, one can show that

.
1Al < imnt |4,

the LP-norms generated by the operator or Hilbert-Schmidt norms are equiv-
alent and so the associated concepts of weak convergence coincide.

11.4 Regularity of p-harmonic functions
Let Q C R be a domain. We say that a continuous function u € W,2?(9) is
p-harmonic, 1 < p < oo, if

/ < |VulP*Vu(z), Ve > dr =0
Q

for each ¢ € C§°(92).

11.6 Proposition. Each function u, p-harmonic function in €2, is (locally)
Cl*-smooth, where a = a(p,n).

Notice that when p = 2, our p-harmonic function is in fact harmonic and
then C*°-smooth. In general, for p # 2, this is not true. The difficulty lies in
the fact that our equation is the degenerate. This is in fact the only obstacle
as the the next proposition asserts.

11.7 Proposition. Let u be p-harmonic in Q and C* with |Vu(z)| > 0
(locally). Then wu is C*°-smooth.
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Proofs for the regularity results above can be found for example in the
paper “Regularity of the derivatives of solutions to certain degenerate elliptic
equations” by J.L.Lewis in Indiana Math. J. 32 (1983), pp. 849-858.

In the planar setting, the coordinate functions of a conformal mapping
are harmonic. In higher dimensions, they turn out to be n-harmonic. This
is based on the following result.

11.8 Proposition. Let f € W,2" ' (Q,R") and ¢ € C(Q), where Q € R”

loc
is a domain. Let e; be one of the coordinate vectors. Then

/ <adDf(x)e;, Vo(x) > dx = 0.
Q

If fis C*-smooth, the claim follows from a direct computation using
the definition of ad D f(z) and the fact that, for a C*-smooth function u,
9;0;u(x) = 0;0;u(x). To relax the regularity assumption to f € W2 (Q, R™),
approximate f by smooth mappings and observe that the entries of ad D f(x)
ane (n—1)-fold products of the partial derivatives of the coordinate mappings

of f.

11.5 Fixed point theorem and related results

The following result is the Brouwer fixed point theorem.

11.9 Theorem. If G : B(0,1) — B(0,1) is continuous, then there is at least
one fixed point x € B(0,1) (i.e. G(x) = x).

Notice that, in dimension one, the claim easily follows from the mean
value theorem. The higher dimensional version can be rather easily reduced
to the “Hairly Ball Theorem” according to to which an even dimensional
sphere does not admit any continuous field of non-zero tangent vectors. This
reduction and a surprisingly simple analytic proof of this classical topological
result can be found in the paper “Analytic proofs of the ‘hairy ball theorem’
and the Brouwer fixed point theorem,” by John Milnor in the American
Mathematical Montly, Vol. 85, No. 7, pp. 521-524.

We employ the fixed point theorem to prove the following result that
could also be established using degree theory.

11.10 Lemma. Let A : EH(O, 1) — R™ be a continuous mapping satisfying
|h(z) — x| <e when |z| = 1.
Then B(0,1 —¢) C h(B(0,1)).
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Proof. Assume that there is zp € B(0,1 —¢) \ h(B(0, 1)) and define

h(2z) when |z] < 3
r)= T T 1
(Q\x]—l)m+2(1—]x\)h<—) when 1 < |a| < 1.

|z

Then F is continuous, F'(B(0,1/2)) = h(B(0,1)) and F(z) = z if |z = 1.
Also, for 3 < |z| < 1 we see that F(z) € [ﬁ, %} ,and so |F(z)| > 1—¢ (see
Figure 18). Thus zo ¢ F(B(0,1)). Let g : R* — R™ be a homeomorphism

"l

F(x)

Figure 18: F(z) when 1 < |z| < 1.
so that g(z) = z if |z| = 1 and g(xy) = 0 and define for = € B(0,1)
_ 9(F(@))
l9(F ()]

Then G : B(0,1) — {x : |z| = 1} is continuous, and if |z] = 1, then
G(z) = —z. This means that G does not have a fixed point, which contra-
dicts the previous Brouwer’s fixed point theorem. O

G(z) =

The techniques from algebraic topology that are usually used to prove
the Brouwer fixed point theorem also yield related results. One of them is
“invariance of domain” which is a stronger version of the previous lemma.

11.11 Theorem. Let {2 C R" be a domain and f : 2 — R” be continuous
and one-to-one. Then f(2) is a domain and f : Q@ — f(Q) is a homeomor-
phism.

Notice that the claim is trivial when n = 1. Indeed, then f is either
strictly increasing or stricly decreasing.
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