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onformal mappings appeared perhaps for the �rst time in 1928 ina work by Grötzs
h under the name �most nearly 
onformal mappings�. Heessentially 
onsidered the problem of mapping a planar square to a planar(non-square) re
tangle by a di�eomorphism that sends the verti
es of thesquare to the 
orner points of the re
tangle. Even though these two do-mains are 
onformally equivalent, the given boundary 
ondition 
annot berealized by any 
onformal mapping. For a 
onformal mapping f , the ra-tio |f ′(z)|2/Jf(z), is identi
ally one by the Cau
hy-Riemann equations, andone was then lead to try to minimize the maximum of this quantity underdi�eomorphisms with the given boundary 
ondition. Similar questions weresubsequently 
onsidered by Tei
hmüller in the 1930's. The term �quasifon-formal mapping� was 
oined by Ahlfors in 1935. He relaxed the regularityassumption and 
onsidered homeomorphisms in the lo
al Sobolev 
lass W 1,2for whi
h
|Df(z)|2 ≤ KJf(z)almost everywhere for some 
onstant K ≥ 1. The restri
tion K ≥ 1 
omesfrom simple linear algebra: for ea
h n× n-matrix A,

detA ≤ |A|n,where detA refers to the determinant of A and
|A| = sup

|h|≤1

|Ah| = sup
|h|=1

|Ah|is the operator norm of the linear transformation asso
iated with A.In 1938, Morrey proved a powerful existen
e theorem, 
alled the measur-able Riemann mapping theorem. This essentially states that, in the plane,quasi
onformal mappings with any pres
ribed ratio |Df(z)|2/Jf(z) ∈ L∞ andany given dire
tion for the the maximal dire
tional derivative 
an be found.Other important developers of the theory in
lude Lavrantiev and Bojarski.Planar quasi
onformal mappings have sin
e then been applied to many en-tirely di�erent problems. Let us simply here list the following: Kleinian2



groups, Nevanlinna theory, surfa
e topology, 
omplex dynami
s, partial dif-ferential equations, inverse problems and 
ondu
tivity.Higher dimensional quasi
onformal mappings were already introdu
ed byLavrantiev in 1938. The theory began to �ourish around 1960 when impor-tant works by Loewner, Gehring, and Väisälä appeared. Other signi�
ant
ontributors in
lude Callender, Shabat, and Reshetnyak. Subsequently, thesemappings were introdu
ed also in non-Eu
lidean settings by Mostow, whoproved his 
elebrated rigidity theorem in 1968. Another 
elebrated result isthe reverse Hölder inequality of Gehring's from 1972. In higher dimensions,the theory of and te
hniques introdu
ed to study quasi
onformal mappingshave been su

essfully applied in di�erential geometry, topology, harmoni
analysis, partial di�erential equations, and non-linear elasti
ity, among other�elds.The purpose of these notes is to give an introdu
tion to the theory. Thesele
ted approa
h has been in�uen
ed by re
ent advan
es in the metri
 set-ting, but the framework is mostly that of a Eu
lidean spa
e. The 
on
eptof quasisymmetry will be 
ru
ial in our approa
h. We have tried to makethe notes as self-
ontained as possible. The reader is nevertheless assumed toknow the basi
s of the Lebesgue integration theory and Lp-spa
es. The topi
s
overed re�e
t the personal taste of the author. Naturally many importantaspe
ts must have been left untou
hed. For further reading, we re
ommendthe 
lassi
 monograph �Le
tures on n-dimensional quasi
onformal mappings�by Väisälä [30℄ and the monograph [4℄.These notes are based on 
ourses given at the University of Jyväskyläin 1997, 2004 and 2008 and at the University of Mi
higan in 2002. The
urrent notes are the out
ome of several iterations. We wish to thank all thepeople who have provided us with lists of typos. In our experien
e, most ofthe material 
an be 
overed in a one semester, graduate level topi
s 
ourse.Regarding the sour
es for the presented material, we wish to highlight [8℄,[14℄ and [30℄. There are rather few histori
al 
omments in what follows, andthe in
lusions or omissions of referen
es are essentially random.1 The metri
 de�nitionWe begin by introdu
ing the so-
alled metri
 de�nition of quasi
onformality.To this end, let (X, | · |), (Y, | · |) be metri
 spa
es and f : X → Yhomeomorphism. Let x ∈ X and r > 0. De�ne
Lf (x, r) := sup{|f(x) − f(y)| : |x− y| ≤ r},

lf (x, r) := inf{|f(x) − f(y)| : |x− y| ≥ r},3



and
Hf(x, r) :=

Lf (x, r)

lf(x, r)
.

f l  (x,r)f

f(x)
f(B)

x

B

r

L  (x,r)fFigure 1: The de�nition of Lf (x, r) and lf(x, r)A homeomorphism f is quasi
onformal if there exists H <∞ su
h that
Hf(x) := lim sup

r→0
Hf (x, r) ≤ Hfor all x ∈ X. We then say that f is (metri
ally) H-quasi
onformal.Here is a list of examples of quasi
onformal mappings in the Eu
lideansetting.1.1 Examples.1) Ea
h 
onformal f is quasi
onformal.2) The planar mapping f(x, y) = (x, 2y) is quasi
onformal.3) The �radial stre
hing� f(x) = x|x|ε−1, ε > 0, is quasi
onformal in alldimensions.4) There is quasi
onformal mapping f : R2 → R2 su
h that f(S1(0, 1)) isthe von Ko
h snow�ake 
urve.5) Ea
h di�eomorphism f : Ω → Ω′ is quasi
onformal in every subdomain

G ⊂⊂ Ω.Let us begin by 
onsidering 1) in the plane. Write z = x + iy and
f(z) = u(x, y) + iv(x, y) for a 
onformal mapping f, where u, v are realfun
tions. Then f is analyti
 and the Ja
obian determinant Jf of f is stri
tlypositive.By the Cau
hy-Riemann equations we have that

ux = vy, uy = −vx.4



Thus
Df(x, y) =

[
ux uy
vx vy

]

=

[
ux uy
−uy ux

]

.We 
on
lude that Jf (x, y) = (ux)
2+(uy)

2 = |∇u|2 = |∇v|2 and that∇u·∇v =
0. Moreover, also the two 
olumns of Df(x, y) are perpendi
ular and both oflength |∇u|. Thus, given a ve
tor h, we have that

|Df(x, y)h| = |∇u||h|.By the (
omplex) di�erentiability of f we 
on
lude that
lim sup
r→0

Hf(x, r) = 1everywhere. Noti
e also that
|Df(x, y)|2 = Jf(x, y)everywhere, where |A| = sup|h|≤1 |Ah| is the usual operator norm. Sin
e

f ′(x + iy) = ux(x + iy) − iuy(x + iy) for the 
omplex derivative f ′, we alsohave that |Df(x, y)| = |f ′(x + iy)|, where the latter term is the modulus ofthe 
omplex derivative and the former again the operator norm.For 2) one easily 
he
ks that f is indeed quasi
onformal, with
lim sup
r→0

Hf(x, r) = 2everywhere.The radial mapping des
ribed in 3) requires already some e�ort, see Chap-ter 10 below. We will also dis
uss the mapping referred to in 4) in more detailin Chapter 10.Regarding 5), noti
e that the Ja
obian Jf(x) of f is lo
ally bounded awayfrom zero and that |Df(x)| = sup|h|≤1 |Df(x)h| is lo
ally bounded. Thus,given G ⊂⊂ Ω, we have that
|Df(x)|n ≤ KJf (x)for some 
onstant K and all x ∈ G. This implies that

|Df(x)| ≤ K ′ min
|h|=1

|Df(x)h|with some 
onstant K ′ in G (in fa
t, we may take K ′ = |K|n−1). Thequasi
onformality then follows with H = K ′ using the di�erentiability of f.The metri
 de�nition is easy to state but it is hard to dedu
e propertiesof quasi
onformal mappings dire
tly from it. For example, it is not 
learfrom the de�nition if quasi
onformal mappings form a group. The problemis that the de�nition is an in�nitesimal one. In the next 
hapter we showthat it implies a global estimate whi
h is easier to work with.5



2 From lo
al to globalIn this 
hapter we prove the following global estimate and introdu
e thema
hinery needed for its proof.2.1 Theorem. Let f : Ω → Ω′ be H-quasi
onformal, where Ω,Ω′ ⊂ Rn aredomains, n ≥ 2. Then Hf(x, r) ≤ H ′(H, n) whenever B(x, 7r) ⊂ Ω.To help to understand the fundamental ideas of the proof, let us beginwith a simpler setting.2.1 Spe
ial 
aseSuppose that Ω = Ω′ = R2 and assume that f be a di�eomorphism.Assume that f is orientation preserving. Let x ∈ Ω. Then f is di�erentiableat x with Jf(x) > 0. It follows that
max
|e|=1

|Df(x)e| ≤ H min
|e|=1

|Df(x)e|and
|Df(x)|2 ≤ HJf(x),see Subse
tion 11.2 in the appendix. Let us show that Hf(x0, r) ≤ H ′. Wemay assume that x0 = 0 = f(x0). Denote L := Lf (0, r) and l := lf(0, r).De�ne

v(y) =







1 if |y| ≤ l

0 if |y| ≥ L
log L

|y|

log L
l

if l ≤ |y| ≤ L

.Then
|∇v(y)| =







0 if |y| < l

0 if |y| > L
1

|y| log L
l

if l < |y| < L

.
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Now
∫

R2

|∇v(y)|2 dy =

(

1

log L
l

)2 ∫

l≤|y|≤L

dy

|y|2

=

(

1

log L
l

)2 ∫ L

l

∫ 2π

0

1

r2
r dϕ dr

=

(

1

log L
l

)2

(logL− log l)2π

=
2π

log L
l

.Let u(x) = v(f(x)). Then (see Subse
tion 11.2 in the appendix)
∫

R2

|∇u(x)|2 dx ≤
∫

R2

|∇v(f(x))|2|Df(x)|2 dx

≤ H

∫

R2

|∇v(f(x))|2|Jf(x)| dx

= H

∫

R2

|∇v(y)|2 dy

=
2πH

log L
l

.Now, u = 1 on f−1(B(0, l)) and u = 0 on f−1(R2 \ B(0, L)). Let w0, z0 besu
h that |w0| = |z0| = r, w0 ∈ f−1(R2 \B(0, L)) and z0 ∈ f−1(B(0, l)). Set
w =

{
w0

2
if |w0 − z0| ≥

√
2r

w0+z0
|w0+z0|

r if |w0 − z0| <
√

2r
.Then, for πr

4
< t < r, S1(w, t) interse
ts both f−1(R2\B(0, L)) and f−1(B(0, l)).Now, sin
e u os
illates from 0 to 1 on S1(w, t), we have
1 ≤

∫

S1(w,t)

|∇u|
Hölder
≤ (2πt)1/2

(∫

S1(w,t)

|∇u|2
)1/2for ea
h πr

4
< t < r. Thus
∫

B(0,2r)

|∇u|2 ≥
∫ r

πr
4

(∫

S1(w,t)

|∇u|2
)

dt ≥
∫ r

πr
4

1

2πt
= C (1)where C is independent of r. Hen
e

L

l
≤ exp(CH).This gives us the desired global 
ontrol.7



2.2 Relaxing the regularity assumptionWe 
ontinue with the planar setting. We begin by disposing of the use of the
hain rule.Let us de�ne
ρ(x) =

{
|Df(x)|
|f(x)|

1
log L

l

on f−1(B(0, L) \B(0, l)) =: A

0 elsewhere .Then ∫

R2

ρ2 ≤ 2πH

log L
l

.If γ is a subar
 of S1(w, t) whi
h 
onne
ts f−1(R2 \B(0, L)) to f−1(B(0, l)),then f ◦ γ 
onne
ts R2 \B(0, L) to B(0, l), and so
∫

S1(w,t)

ρ ds ≥
∫

f◦γ

ds

|y| log L
l

≥ 1,where w and πr
4
< t < r are as above. Reasoning as in (1), using polar
oordinates, we 
on
lude that

∫

B(0,2r)

ρ2 ≥ C > 0.We no longer require the 
hain rule, but it still looks like we need f to bedi�erentiable. To relax this assumption, let us try to dis
retize the de�nitionof our fun
tion ρ. Re
all that we wish to bound L/l from above. We maythus assume that L ≥ 2l.Suppose A = f−1(B(0, L) \B(0, l)) ⊂ ⋃Bj, where Bj's are balls. Set
ρ(x) =

(

log
L

l

)−1∑ diam(f(Bj))

diam(Bj)

1

dist(0, f(Bj))
χ2Bj

(x).Then
∫

S1(w,t)

ρ ds =

(

log
L

l

)−1∑ diam(f(Bj))

diam(Bj)

1

dist(0, f(Bj))

∫

S1(w,t)

χ2Bj
ds.If the Bj's are small, then

∫

S1(w,t)

χ2Bj
ds ≥ diam(Bj)

28



whenever Bj ∩ S1(w, t) 6= ∅. Hen
e
∫

S1(w,t)

ρ ds ≥
(

log
L

l

)−1
1

2

∑

Bj∩S1(w,t)6=∅

diam(f(Bj))

dist(0, f(Bj))
.Assume that the sets f(Bj) are so small that ea
h f(Bj) interse
ts at mosttwo annuli Ai = B(0, 2il)\B(0, 2i−1l).Write ⌊t⌋ for the integer part of a realnumber t. Then

∑

Bj∩S1(w,t)6=∅

diam(f(Bj))

dist(0, f(Bj))
≥ 1

4

⌊log2
L
l
⌋

∑

i=1

∑

Bj∩S1(w,t)6=∅,f(Bj)∩Ai 6=∅

diam(f(Bj))

dist(0, f(Bj))

≥ 1

4

⌊log2
L
l
⌋

∑

i=1

∑

Bj∩S1(w,t)6=∅,f(Bj)∩Ai 6=∅

diam(f(Bj))

2il

≥ 1

4

⌊log2
L
l
⌋

∑

i=1

2i−1l

2il

≥ 1

8
log2

L

l
,and so ∫

S1(w,t)

ρ ds ≥ C > 0whenever πr
4
< t < r. As before, this gives

∫

B(0,2r)

ρ2 ≥ C > 0. (2)When we try to estimate ‖ρ‖L2(B(0,2r)) from above, we are fa
ed with theintegral
(

log
L

l

)−2 ∫

B(0,2r)

(
k∑

1

diam(f(Bj))

diam(Bj)

1

dist(f(Bj), 0)
χ2Bj

(x)

)2

dx. (3)Problems:1) How to sele
t balls Bj so that we 
an �nd an e�e
tive estimate on ourintegral? This requires 
ontrol on the overlap of the balls Bj .2) How to get rid of the annoying 2 in χ2Bj
?9



3) Even if we 
an handle 1) and 2), how 
an we handle dimensions n ≥ 3?Noti
e here that the proof of (2) strongly used the fa
t that we are inthe plane.We next introdu
e the te
hnology that will allow us to handle the aboveproblems.2.3 Covering theoremsWe will later use 
overing theorems to sele
t the above balls Bj . We beginwith a 
overing lemma that holds in all metri
 spa
es whose 
losed balls are
ompa
t.2.2 Theorem. (Vitali) Let B be a 
olle
tion of 
losed balls in Rn su
h that
sup{diamB : B ∈ B} <∞.Then there are B1, B2, . . . (possibly a �nite sequen
e) from this 
olle
tionsu
h that Bi ∩ Bj = ∅ for i 6= j and

⋃

B∈B

B ⊂
⋃

5Bj.For a proof we refer the reader to [20℄. Let us anyhow brie�y explain theidea in a simple 
ase. Suppose that the family B 
onsists of balls B(x, rx),where x ∈ A and A is bounded. Let M = supx∈A rx. Choose a ball B1 =
B(x, rx) so that rx > 3M/4. Continue by 
onsidering points in A \ 3B1,and repeating the �rst step (now letting M1 = supy∈A\3B1

ry) and after that
ontinue by indu
tion.In the Eu
lidean setting, a sub
olle
tion often 
an be 
hosen so that weonly have uniformly bounded overlap for the 
over.2.3 Theorem. (Besi
ovit
h) Let B be a 
olle
tion of 
losed balls in Rnsu
h that the set A 
onsisting of the 
enters is bounded. Then there is a
ountable (possibly �nite) sub
olle
tion B1, B2, . . . su
h that
χA(x) ≤

∑

χBj
(x) ≤ C(n)for all x.The sele
tion of the balls Bj eventually will be made using the Besi
ovit
h
overing theorem. In more general settings, say, in the Heisenberg group,Besi
ovit
h fails. The reason it holds in the Eu
lidean setting, is basi
allythe following fa
t: 10



Suppose that we are given B(x1, r1) and B(x2, r2) so that 0 ∈ B(x1, r1)∩
B(x2, r2), x1 /∈ B(x2, r2) and x2 /∈ B(x1, r1). Then the angle between theve
tors x1 and x2 is at least 60 degrees.For a proof of the Besi
ovit
h 
overing theorem, we again refer to [20℄.2.4 The maximal fun
tionWe will need maximal fun
tions to dispose of the 
onstant 2 in the term χ2Bjin (3). Maximal fun
tions turn out to be important for other things as well.Let u ∈ L1lo
(Rn). The non-
entered maximal fun
tion of u isMu(x) = sup

x∈B(y,r)

−
∫

B(y,r)

|u|.Here and in what follows,
−
∫

A

v =
1

|A|

∫

A

vwhen A is measurable with 0 < |A| < ∞, and |A| refers to the Lebesguemeasure of A.2.4 Remarks.1) A

ording to the Lebesgue di�erentiation theorem (
f. Remarks 4.3),Mu(x) ≥ |u(x)|almost everywhere. This fa
t is not be needed in this se
tion.2) There are many other maximal fun
tions. For example the restri
ted,
entered maximal fun
tionMC
δ u(x) = sup

0<r<δ
−
∫

B(x,r)

|u|.3) We always have MC
∞u(x) ≤ Mu(x) ≤ 2nMC

∞u(x).4) Noti
e that {Mu > t} is open for ea
h t ≥ 0 and, 
onsequently, Mu ismeasurable. Indeed, if x ∈ {Mu > t}, then it immediately follows fromthe de�nition that B(y, r) ⊂ {Mu > t}, for some B(y, r) 
ontaining x.2.5 Theorem.1) If u ∈ L1 and t > 0, then |{Mu > t}| ≤ 5n

t

∫

{Mu>t} |u| ≤ 5n

t
‖u‖1.11



2) If u ∈ Lp, p > 1, then ∫ (Mu)p ≤ C(p, n)
∫
|u|p.

Proof . 1) We may assume thatM :=
∫

{Mu>t} |u| <∞. For ea
h x ∈ {Mu >
t} there is a ball B su
h that x ∈ B and

−
∫

B

|u| > t.Then
|B| < t−1

∫

B

|u|and thus
diam(B) < C(n)t−1||u||1.If y ∈ B, then Mu(y) > t and thus B ⊂ {Mu > t}. So

|B| < 1

t

∫

B

|u| ≤ 1

t

∫

{Mu>t}∩B |u|.By the Vitali 
overing theorem we �nd pairwise disjoint balls B1, B2, . . . asabove so that {Mu > t} ⊂ ⋃ 5Bj . Then
|{Mu > t}| ≤

∑

|5Bj| = 5n
∑

|Bj| ≤
5n

t

∑
∫

Bj

|u| ≤ 5n

t

∫

{Mu>t} |u|.2) Re
all the Cavalieri prin
iple:
∫

|v|p = p

∫ ∫ |v(x)|

0

tp−1 dt dx

= p

∫ ∫ ∞

0

tp−1χ{|v|>t} dt dx

= p

∫ ∞

0

tp−1|{|v| > t}| dt.Fix t > 0. De�ne g(x) = |u(x)| χ{|u(x)|> t
2
}(x). Then |u(x)| ≤ g(x) + t

2
and soMu(x) ≤ Mg(x) + t

2
. Thus {x : Mu(x) > t} ⊂ {x : Mg(x) > t

2
}. Now, theCavalieri prin
iple, part 1) of our theorem and the Fubini theorem yield the

12



estimate
∫

(Mu(x))p = p

∫ ∞

0

tp−1|{Mu(x) > t}| dt

≤ p

∫ ∞

0

tp−1|{Mg(x) > t

2
}| dt

≤ p

∫ ∞

0

tp−12 · 5n
t

||g||1

≤ p

∫ ∞

0

tp−12 · 5n
t

∫

{|u(x)|> t
2
}|

|u| dx dt

≤ 2 · 5np
∫ ∞

0

tp−2

∫

Rn

χ{|u(x)|> t
2
}|u| dx dt

= 2 · 5np
∫

Rn

|u(x)|
∫ 2|u(x)|

0

tp−2 dt dx

=
2p5np

p− 1

∫

|u|p.

22.6 Remark.1) Let us single out, for future referen
e, the estimate
|{Mu(x) > t}| ≤ 2 · 5n

t

∫

{|u(x)|> t
2
}

|u| dxfrom the above proof.2) Suppose that u ∈ Lp(Ω), p > 1. Applying Theorem 2.5 to the zeroextension of u we 
on
lude that ∫
Ω
(Mu)p ≤ C(p, n)

∫

Ω
|u|p. Similarly,the inequality in part 1) of this remark 
an be restri
ted to Ω when

u ∈ L1(Ω).The 
ase p = 1 was not left out by a

ident from the previous theorem.2.7 Example. If u(x) = χB(0,1)(x), then Mu 6∈ L1(Rn). In fa
t, Mu /∈
L1(Rn) unless u is the zero fun
tion.The following lemma from [7℄ will allow us to handle problem 2) statedafter formula 3. 13



2.8 Lemma. (Bojarski) Fix 1 ≤ p < ∞. Let B1, B2, . . . be balls in Rn,
aj ≥ 0 and λ > 1. Then

‖
∑

ajχλBj
‖p ≤ C(λ, p, n)‖

∑

ajχBj
‖p.

Proof . The 
ase p = 1 is 
lear. Let p > 1. Then, by the Lp−Lp/(p−1)-duality(see Subse
tion 11.3 in the appendix),
‖
∑

ajχλBj
‖p = sup

‖ϕ‖ p
p−1

≤1

∣
∣
∣
∣

∫
∑

ajχλBj
ϕ

∣
∣
∣
∣
.Now, using monotone 
onvergen
e and Theorem 2.5 we estimate

∣
∣
∣
∣

∫
∑

ajχλBj
ϕ

∣
∣
∣
∣
≤
∑

aj

∫

λBj

|ϕ|

≤
∑

aj |λBj| −
∫

λBj

|ϕ|

≤
∑

ajλ
n

∫

Bj

Mϕ
= λn

∫
∑

ajχBj
Mϕ

≤ λn‖
∑

ajχBj
‖p‖Mϕ‖ p

p−1

≤ λnC(p, n)‖
∑

ajχBj
‖p‖ϕ‖ p

p−1
.The 
laim follows. 2

2.5 Upper gradients and Poin
aré inequalitiesIn this se
tion we give a substitute for (1). We will later show that it allowsus to prove an analog of (2) in all dimensions.A Borel fun
tion g ≥ 0 is an upper gradient of u in U , if
|u(x) − u(y)| ≤

∫

γx,y

g ds (4)whenever x 6= y ∈ U and γx,y is a re
ti�able 
urve that joins x to y in U.Here we agree that inequality (4) holds, whatever an expression we have onthe left hand side, if the given line integral is in�nite, and that both u(x)and u(y) are �nite if the integral in question 
onverges.14



The re
ti�ability of γ : [a, b] → Rn above means that, for some M <∞,

k−1∑

j=1

|γ(tj+1) − γ(tj)| ≤Mwhenever a = t1 < t2 < · · · < tk = b and k ≥ 2. The supremum of su
hsums over all k ≥ 2 and all partitions is then the length of γ. Re
all thatea
h re
ti�able 
urve γ : [a, b] → Rn of length l 
an be parametrized by
γ0 : [0, l] → Rn so that |γ′0(t)| = 1 for a.e. t and γ0 is 1-Lips
hitz, i.e.
|γ0(t) − γ0(s)| ≤ |t− s| for all t, s ∈ [0, l]. Then

∫

γ

g ds :=

∫

[0,l]

g(γ0(t)) dt.For all this see [30℄.2.9 Examples.1) u ∈ C1, g = |∇u|. This is simply the fundamental theorem of 
al
ulusfor the absolutely (even Lips
hitz) 
ontinuous fun
tion u◦γ0 of a singlevariable:
u(γ(l)) − u(γ(0)) =

∫

[0,l]

< ∇u(γ0(t)), γ
′
0(t) > dt. (5)2) u Lips
hitz, g the pointwise Lips
hitz �
onstant�Lipu(x) = lim sup

r→0
sup

|x−y|≤r

|u(x) − u(y)|
r

.Noti
e that (u ◦ γ0)
′(t) ≤ Lipu(t) for almost every t.3) u anything, g ≡ ∞. In this 
ase, the right hand side of (4) is alwaysin�nite.Integration of (4), the Fubini theorem and spheri
al 
oordinates give usthe important Poin
aré inequality.2.10 Theorem. (Poin
aré inequality) Let u ∈ L1(B(x0, r)) ⊂ Rn, n ≥

2, and let g ∈ Lp(B(x0, r)), 1 ≤ p <∞, be an upper gradient of u in B(x0, r).Then
−
∫

B(x0,r)

|u− uB| ≤ C(n)r

(

−
∫

B(x0,r)

gp
)1/p

.Here uB := −
∫

B(x0,r)
u. 15



Proof . Let x ∈ B = B(x0, r). Then
∫

B

|u(x) − u(y)| dy ≤
∫

B

∫ 1

0

g(x+ t(y − x))|y − x| dt dy

=

∫ 1

0

∫

B

g(x+ t(y − x))|y − x| dy dt

≤
∫ 1

0

∫

B∩B(x,2tr)

g(z)

( |z − x|
t

)

t−n dz dt

≤ 2r

∫ 1

0

∫

B∩B(x,2tr)

g(z)t−n dz dt

≤ 2r

∫

B

g(z)

∫ 1

|z−x|
2r

t−n dt dz

≤ Cnr
n

∫

B

g(z)

|z − x|n−1
dz.Integrating with respe
t to x we obtain the estimate

∫

B

∫

B

|u(x) − u(y)| dy dx ≤ Cnr
n

∫

B

∫

B

g(y)

|y − x|n−1
dy dx

= Cnr
n

∫

B

g(y)

∫

B

1

|y − x|n−1
dx dy

≤ C ′
nr

n+1

∫

B

g.Now
−
∫

B

|u(x) − uB| dx = −
∫

B

∣
∣
∣
∣
−
∫

B

u(x) − u(y) dy

∣
∣
∣
∣
dx ≤ −

∫

B

−
∫

B

|u(x) − u(y)| dy dx.Combining the above estimates, we obtain the desired inequality for p = 1.The general 
ase follows by Hölder's inequality. 22.11 Remarks.1) The Poin
aré inequality also holds when n = 1 and the proof is easier:when x < y and x, y ∈ I, where I is a bounded interval, we have that
|u(y) − u(x)| ≤

∫ y

x

g(t) dt ≤
∫

I

g(t) dtby the upper gradient inequality. Integrating this estimate over I withrespe
t both of the variables, we obtain the Poin
aré inequality byrepeating the last steps of the proof of Theorem 2.10.16



2) It is easy to modify the proof of Theorem 2.10 so as to verify
(

−
∫

B(x,r)

|u− uB|p
)1/p

≤ C(n, p)r

(

−
∫

B(x,r)

gp
)1/p

.This is the usual form of the Poin
aré inequality.3) It is harder to prove that
(

−
∫

B(x,r)

|u− uB|
pn

n−p

)n−p
pn

≤ C(n, p)r

(

−
∫

B(x,r)

gp
)1/pwhen 1 ≤ p < n. This inequality is 
alled the Sobolev-Poin
aré inequal-ity.4) If u ∈ L1(B(x0, r)) has an upper gradient g ∈ L∞(B(x0, r)), then it eas-ily follows that u has a representative ũ (i.e. ũ = u almost everywhere)that is ||g||L∞-Lips
hitz. By the last step of the proof of Theorem 2.10we then 
on
lude that the Poin
aré inequality also holds for p = ∞.We are now ready to prove a substitute for (1).2.12 Theorem. Let u be 
ontinuous inB(x0, 3r), g ≥ 0 an upper gradient of

u inB(x0, 3r) and assume that u ≤ 0 on E, u ≥ 1 on F where E,F ⊂ B(x0, r)are 
ontinua with min{diam(E), diam(F )} ≥ δ0r > 0. Then
∫

B(x0,3r)

gn ≥ δ(δ0, n) > 0.

Proof . Let a = −
∫

B(x0,r)
u. Assume that a ≤ 1/2. Let x ∈ F and write

ri = 2−ir, i ≥ −1, Bi = B(x, ri). Then
u(x) = lim

i→∞
uBi

= lim
i→∞

−
∫

Bi

u.Now
1

2
≤ |u(x) − uB(x0,r)| ≤

∑

i≥0

|uBi
− uBi+1

| + |uB0 − uB(x0,r)|.

17



Also, B(x0, r) ⊂ B(x, 2r) and thus a simple estimate and the Poin
aré in-equality yield
|uB0 − uB(x0,r)| ≤ |uB(x,r) − uB(x,2r)| + |uB(x0,r) − uB(x,2r)|

≤ 2 · 2n−
∫

B(x,2r)

|u− uB(x,2r)|

≤ C(n)2r

(

−
∫

B(x,2r)

gn
)1/n

≤ C(n)(2r)1/n

(

(2r)−1

∫

B(x,2r)

gn
)1/n

.Similarly
|uBi

− uBi+1
| ≤ C(n)r

1/n
i

(

r−1
i

∫

Bi

gn
)1/n

.Thus
1

2
≤

∞∑

i=−1

C(n)r
1/n
i

(

r−1
i

∫

Bi

gn
)1/n

≤ C(n)r1/n sup
0<t≤2r

(

t−1

∫

B(x,t)

gn
)1/n

.Thus, for ea
h x ∈ F, there is a ball B(x, tx) so that tx ≤ 2r and
tx ≤ C(n)r

∫

B(x,tx)

gn.By Vitali we �nd pairwise disjoint balls B1, B2, . . . as above su
h that F ⊂
⋃

5Bk. Then
diam(F ) ≤

∑

diam(5Bk) ≤ C(n)r
∑

∫

Bk

gn ≤ C(n)r

∫

B(x0,3r)

gn.If a > 1/2, then we use E instead of F above. 22.13 Remark. By 
hoosing the balls Bi more 
leverly, one 
an show that
B(x0, 3r) may be repla
ed with B(x0, r).18



2.6 Proof of Theorem 2.1.We prove the estimate for B(x0, r). We may assume that x0 = 0 = f(x0).Re
alling that we wish to bound Hf(x0, r) =
Lf (x0,r)

lf (x0,r)
from above, we mayfurther assume that L ≥ 2l, where L := Lf(x0, r) and l := lf (x0, r). Let

A := f−1((B(0, L) \B(0, l)) ∩ Ω′) ∩B(0, 6r).For ea
h x ∈ A, pi
k 0 < rx < r/30 su
h that
H(x, rx) < 2H and diam(f(B(x, rx))) < l/4.By the Besi
ovit
h 
overing theorem we �nd a sub
olle
tion {Bj}j = {B(xj , rj)}jof {B(x, rx)}x so that

χA(x) ≤
∑

χBj
(x) ≤ C(n)for all x. Be
ause f is a homeomorphism, also

∑

χf(Bj)(x) ≤ C(n).Pi
k rj < rxj
< 2rj so that

diam(f(B(xj , rxj
))) ≤ 2 diam(f(Bj)).Be
ause A is 
ompa
t, already a �nite number of the balls B̂j = B(xj , rxj

)
over A, say B̂1, . . . , B̂k. De�ne
ρ(x) =

(

log
L

l

)−1 k∑

1

diam(f(B̂j))

diam(B̂j)

1

dist(0, f(B̂j))
χ2B̂j

(x).Then
ρ(x) ≤ 8

(

log
L

l

)−1 k∑

1

diam(f(Bj))

diam(Bj)

1

dist(0, f(Bj))
χ4Bj

(x).By Lemma 2.8
∫

ρn dx ≤ C(n)

(

log
L

l

)−n ∫
(

k∑

1

diam(f(Bj))

diam(Bj)

1

dist(0, f(Bj))
χBj

(x)

)n

dx

≤ C(n)

(

log
L

l

)−n k∑

1

(
diam(f(Bj))

dist(0, f(Bj))

)n

≤ C(n,H)

(

log
L

l

)−n k∑

1

|f(Bj)|
dist(0, f(Bj))n

.19



Denote Ai = {x : 2i−1l ≤ |x| ≤ 2il} and i0 = ⌊log L
l
/ log 2⌋ + 1. Then

k∑

1

|f(Bj)|
dist(0, f(Bj))n

≤
i0∑

1

∑

f(Bj)∩Ai 6=∅

|f(Bj)|
dist(0, f(Bj))n

≤
i0∑

1

C(n)
|B(0, 2i+1l))|

(2(i−2)l)n
,and so

∫

ρn dx ≤ C(n,H)

(

log
L

l

)1−n

. (6)Noti
e that f−1(Rn \ B(0, L)) 
ontains a 
ontinuum F that joins Sn−1(0, r)to Sn−1(0, 2r) in B(0, 2r). Be
ause f(B(0, r)) is open, it is easy to 
he
kthat B(0, l) ⊂ f(B(0, r)). De�ne E = f−1(B(0, l)). Then E is a 
ontinuum,
diam(E) ≥ r, diam(F ) ≥ r, and E,F ⊂ B(0, 2r). If γ is a re
ti�able 
urvethat joins E to F , then f ◦ γ joins B(0, l) to Rn \ B(0, L). Reasoning as in2.2 we see that ∫

γ

ρ ds ≥ ε0 > 0where ε0 does not depend on f, r or γ. De�ne
u(x) =

1

ε0
inf

∫

γx

ρ ds,where in�mum is taken over all re
ti�able 
urves that join x to F. Then u = 0in F and u ≥ 1 in E. Remember from the de�nition of ρ that ρ is bounded.Let u(y) > u(x). Then
|u(y)− u(x)| ≤

∫

γx,y

ρ

ε0

dsfor all re
ti�able 
urves γx,y 
onne
ting x to y. Thus ρ
ε0

is an upper gradientof u. Note that u is Lips
hitz be
ause
|u(x) − u(y)| ≤ sup

z∈B(x,2|x−y|)

ρ(z)

ε0

|x− y|.By Theorem 2.12 we 
on
lude that
∫

B(0,6r)

ρn dx ≥ εn0δ > 0. (7)A bound on L/l follows 
ombining (6) and (7), as desired.2.14 Remarks. 20



1) The assumption that n ≥ 2 was needed to ensure that the exponent
1 − n in (6) is negative. Thus the proof does not extend to the 
ase
n = 1. This is no a

ident. The simple quasi
onformal mapping f(x) =
x+exp(x) of a single variable shows that the 
laim of Theorem 2.1 failsfor n = 1.2) We only needed that

lim inf
r→0

Hf(x, r) ≤ Hfor all x ∈ Ω for our homeomorphism in the proof of Theorem 2.1. Thusthe quasi
onformality assumption 
an be relaxed to this 
ondition.3) It is now natural to inquire if the uniform boundedness of the lim supor lim inf of Hf(x, r) is really ne
essary. To this end, let E ⊂ [0, 1] bethe 1
3
-Cantor set. Then the Cantor fun
tion ξ : [0, 1] → [0, 1] maps

E to a set of positive length. Let Ω =]0, 1[×R and de�ne f(x, y) =
(x+ ξ(x), y). Then

lim sup
r→0

Hf(x, r) = 1outside E ×R and f : Ω → f(Ω) is a homeomorphism that takes a setof zero area to a set of positive area. We will soon prove that a qua-si
onformal mapping 
annot do this (one 
an also show dire
tly usingthe properties of the Cantor fun
tion that f 
annot be quasi
onformal).We 
an repla
e the 1
3
-Cantor set in this example with any Cantor set,even of Hausdor� dimension zero. Consequenty, uniform boundednessof Hf (x) outside a set of dimension one when n = 2 does not su�
efor the uniform boundedness of Hf(x, r). In higher dimensions, one re-pla
es R above by Rn−1 to see that the analog of dimension one is then

n− 1.On the other hand, if
lim inf
r→0

Hf(x, r) ≤ Houtside a set of σ-�nite (n − 1)-measure, one 
an prove that f is qua-si
onformal. This is rather easily seen from our previous argumentswhen n = 2: Let Ẽ be the ex
eptional set of σ-�nite length. Instead ofpi
king small balls 
entered at ea
h x ∈ A, do this for A \ Ẽ. De�ne ρas before. Then still
∫

ρ2 ≤ C(H)

(

log
L

l

)−1

.21



What about the lower bound? Let us refer to our previous argumentin 2.2. It 
ould well happen that our balls do not 
over the subar
 of
S1(w, t). However, one 
an prove that, for almost every t > 0, the set
Ẽ ∩ S1(w, t) is 
ountable. Then the balls we sele
ted 
over the subar
of S1(w, t) up to a 
ountable set for almost every t > 0. Hen
e theimages of the balls 
over f(S1(w, t)) up to a 
ountable set. Thus

∫

S1(w,t)

ρ ds ≥ ε0 > 0for almost every t > 0. The general setting is similar in spirit to thatin the plane.4) In the above proof, H ′ depends on H, n. It is not known if the 
laim
ould hold with someH ′ that does not depend on the dimension n. Thisis an interesting open problem. One 
annot in general take H ′ = Heven when f is a 
onformal mapping of the unit disk onto a simply
onne
ted planar domain.5) Theorem 2.1 extends to a rather abstra
t setting. Let X, Y be Ahlfors
Q-regular 1, Q > 1, suppose that 
losed balls are 
ompa
t, and thePoin
aré inequality with exponent p = Q holds for both X and Y . If
f : X → Y is quasi
onformal, then

Hf(x, r) ≤ H ′for all x ∈ X, r > 0. In fa
t, even
lim inf
r→0

Hf(x, r) ≤ Hfor all x su�
es. These results 
an be proved by suitably modifyingthe argument that we used above, see [5℄. The real di�
ulty is in 
ir-
umventing the Besi
ovit
h 
overing theorem. The size of ex
eptionalsets is not yet entirely understood in this general setting, see [18℄.6) A metri
 spa
e X is 
alled linearly lo
ally 
onne
ted (LLC), if there isa 
onstant C so thati) ea
h pair of points in any ball B 
an be joined by a 
ontinuum in
CB, and1A metri
 measure spa
e X is Ahlfors Q-regular, if there is a 
onstant C so that

C−1rQ ≤ µ(B(x, r)) ≤ CrQfor all x, r for some Borel measure µ. 22



ii) ea
h pair of points outside any ballB 
an be joined by a 
ontinuumin X \ C−1B.The spa
es in 5) are LLC. This 
onne
tivity 
ondition is used to �ndsubstitutes for the sets E and F in the proof of Theorem 2.1.3 Quasisymmetri
 mappingsBy Theorem 2.1 we know that quasi
onformality implies the uniform lo
alboundedness of Hf(x, r). We introdu
e the equivalent 
on
ept of quasisym-metry that turns out to be very useful.Let X and Y be metri
 spa
es and let η : [0,∞) → [0,∞) be a homeo-morphism. A homeomorphism f : X → Y is η-quasisymmetri
 (η-qs), if
|f(a) − f(x)|
|f(b) − f(x)| ≤ η

( |a− x|
|b− x|

)for all a 6= x 6= b.3.1 Remark. If f is η-quasisymmetri
, then
Hf(x, r) =

Lf (x, r)

lf(x, r)
≤ η(1).So, quasisymmetri
 mappings are quasi
onformal.We next prove that quasi
onformal mappings are lo
ally quasisymmetri
.3.2 Theorem. Let f : B(x0, 3r0) → Ω′ ⊂ Rn be a homeomorphism su
hthat Hf(x, r) ≤ H for all x ∈ B(x0, r0) and 0 < r < 2r0. Then f|B(x0,r0)

is
η-quasisymmetri
, where η depends only on n and H .
Proof . Let a 6= x 6= b be points in B(x0, r0) and let t = |a− x|/|b− x|.Case 1: t > 1. Write

aj = x+ j|b− x| a− x

|a− x|for j = 0, 1, . . . , k, where k = ⌊t⌋. Then
|f(aj) − f(aj−1)| ≤ H|f(aj−1) − f(aj−2)|,for j ≥ 2, and so

|f(aj) − f(aj−1)| ≤ Hj−1|f(a1) − f(x)| ≤ Hj|f(b) − f(x)|.23



Sin
e |f(a) − f(ak)| ≤ H|f(ak) − f(ak−1)|, we obtain
|f(a) − f(x)| ≤ |f(a) − f(ak)| +

k∑

j=1

|f(aj) − f(aj−1)|

≤ (k + 1)Hk+1|f(b) − f(x)|
≤ (t+ 1)H t+1|f(b) − f(x)|.

a1

ak

b

a

0x = a

Figure 2: Case 1Case 2: t < 1/9. Denote bj = x+ 3−j(b− x), for j ≥ 0, and
Bj = B((bj + bj−1)/2, 3

−j|b− x|),for j ≥ 1. Let j ≤ k = ⌊log3(1/t)⌋. Then |a− x| ≤ |bj − x| and so
|f(a) − f(x)| ≤ H|f(bj) − f(x)| ≤ H2|f(bj) − f(bj−1)| ≤ H2 diam(f(Bj)).This implies that

|f(a) − f(x)|n ≤ C(H, n)|f(Bj)|.

B

b

1b

1

Bk
a

x
bk

Figure 3: Case 2Sin
e the balls Bj are pairwise disjoint and
f(Bj) ⊂ f(B(x, |b− x|)) ⊂ B(f(x), H|f(b) − f(x)|),24



we obtain
k|f(a) − f(x)|n ≤ C(H, n)

k∑

j=1

|f(Bj)|

≤ C(H, n)|B(f(x), H|f(b) − f(x)|)|
≤ C ′(H, n)|f(b) − f(x)|n.Thus

|f(a) − f(x)|
|f(b) − f(x)| ≤ C ′′(H, n)(log(1/t))−1/n.Case 3: 1/9 ≤ t ≤ 1. Clearly

|f(a) − f(x)|
|f(b) − f(x)| ≤ H.Sele
t a homeomorphism η : [0,∞[→ [0,∞[ that is greater than or equal tothe above bounds. 23.3 Remarks.1) The proof goes through if f : X → Y , X is LLC and both X and Yare Q-regular.2) In fa
t, one 
an 
hoose C and s depending on n and H so that the re-stri
tion of f toB(x0, r) is η̃-quasisymmetri
 with η̃(t) = C max{ts, t1/s}.This requires a bit more work.3.4 Corollary. Let Ω,Ω′ ⊂ Rn, where n ≥ 2. Suppose that f : Ω → Ω′ isquasi
onformal and let 0 < λ < 1. Then there is an η = η(n,H, λ) so thatthe restri
tion of f to B(x, λd(x, ∂Ω)) is η-quasisymmetri
 whenever x ∈ Ω.

Proof . By Theorem 2.1, the assumptions of Theorem 3.2 are satis�ed forballs B(x, d(x, ∂Ω)/15). If 1/15 < λ < 1, one then iterates the quasisym-metry estimate for the 
ase λ = 1/15 so as to obtain quasisymmetry in
B(x, λd(x, ∂Ω)) (with a new 
ontrol fun
tion η that also depends on λ). 2It is easy to 
he
k, from the de�nition, that quasisymmetri
 mappingsform a group. The following proposition follows dire
tly from the de�nition.25



3.5 Proposition. Let f : A1 → A2 be η1-quasisymmetri
 and let g : A2 →
A3 be η2-quasisymmetri
. Then f−1 : A2 → A1 is η̂-quasisymmetri
, where
η̂(0) = 0 and

η̂(t) =
1

η−1
1 (1

t
)
,for t > 0, and g ◦ f : A1 → A3 is η̃-quasisymmetri
, where η̃(t) = η2(η1(t)).As a 
onsequen
e of Corollary 3.4 and Proposition 3.5 we now 
on
ludethat quasi
onformal mappings also form a group. This 
annot be easilyproven from the de�nition.3.6 Theorem. Let f : Ω1 → Ω2 be H1-quasi
onformal and let g : Ω2 → Ω3be H2-quasi
onformal. Then f−1 is H(H1, n)-quasi
onformal and g ◦ f is

H(H1, H2, n)-quasi
onformal.
Proof . By Corollary 3.4 there is η = η(n,H) so that the restri
tion of f toany ball B = B(x, d(x, ∂Ω1)/2) is η-quasisymmetri
. Then f−1 : f(B) → Bis η̂-quasisymmetri
 by Proposition 3.5. Given y ∈ Ω2, 
hoose x = f−1(y), let
B = B(x, d(x, ∂Ω)/2), noti
e that B(y, r) ⊂ f(B) for r < lf(x, d(x, ∂Ω1)/2),and apply Remark 3.1 to f−1.The quasi
onformality of the 
omposition follows by a similar argument.
23.7 Remark. Let Ω ⊂ R2 be bounded and simply 
onne
ted. Let f :
B2(0, 1) → Ω be quasi
onformal. Then the following are equivalent:1) f is quasisymmetri
.2) Ω is LLC.3) There is a quasi
onformal mapping g : R2 → R2 so that g|B2(0,1)

= f .The fa
t that 1) implies 2) is easy to prove. By Corollary 3.4, 3) yields 1).The remaining impli
ations are harder. To see that 2) implies 1), one reasonsas in the proof of Theorem 2.1 using Remark 2.13 and a suitable 
ase study.The fa
t that 1) implies 3) 
an be shown relying on te
hniques from Chapter10 below.
26



4 Gehring's lemma and regularity of quasi
on-formal mappingsWe will prove that quasi
onformal mappings are di�erentiable almost ev-erywhere, preserve the null sets for Lebesgue measure, and belong to theSobolev 
lass W 1,plo
 for some p = p(n,H) > n. This amounts to absolute
ontinuity of the 
omponent fun
tions of f on almost all lines parallel to the
oordinate axes (in the domain in question) and lo
al p-integrability of the
lassi
al partial derivatives.4.1 The volume derivativeIt will be important for us to pull ba
k the Lebesgue measure under ourquasi
onformal mapping.4.1 Proposition. Let f : Ω → Ω′ be a homeomorphism. Then
µ′
f(x) = lim

r→0

|f(B(x, r))|
|B(x, r)|exists almost everywhere in Ω, belongs to L1lo
(Ω) and

∫

E

µ′
f(x) dx ≤ |f(E)|for ea
h Borel set E ⊂ Ω, with equality whenever |A| = 0 implies |f(A)| = 0.This is a dire
t 
onsequen
e of the following Radon-Nikodym theoremwhen one 
hooses µ(A) = |f(A)| and λ(A) = |A|.4.2 Theorem. (Radon-Nikodym) Let µ and λ be Radon measures on

Ω ⊂ Rn. Then
D(µ, λ, x) := lim

r→0

µ(B(x, r))

λ(B(x, r))exists λ-a.e., is lo
ally integrable with respe
t to λ, and
∫

E

D(µ, λ, x) dλ(x) ≤ µ(E)for ea
h Borel set E with equality if an only if µ is absolutely 
ontinuouswith respe
t to λ. 27



Re
all that a measure µ is Radon, if µ(K) < ∞ for 
ompa
t sets, Borelsets are measurable,
µ(U) = sup{µ(K) : K ⊂ U 
ompa
t}for open U , and
µ(A) = inf{µ(U) : A ⊂ U open}for arbitrary A.We refer the reader to [20℄ for a proof of the Radon-Nikodym theorem.It is a rather dire
t appli
ation of a 
overing theorem that we have notdis
ussed.Let us however brie�y explain how a weaker version of Proposition 4.1
an be justi�ed using the 
overing theorems from 2.3. Instead of µ′

f , let us
onsider
u(x) = lim sup

r→∞

|f(B(x, r))|
|B(x, r)| ,and let us assume that we already know the Borel measurability of u. Let

E ⊂ Ω be a Borel set. We may assume that E ⊂⊂ Ω. Given k ∈ Z, write
Ek = {x ∈ E : 2k−1 < u(x) ≤ 2k}, and set E0 = {x ∈ E : u(x) = 0},
E∞ = {x ∈ E : u(x) = ∞}.Consider �rst E∞. Let 0 < r < d(E, ∂Ω) and �xM ≥ 1. For ea
h x ∈ E∞,we �nd 0 < rx < r so that

|B(x, r)| ≤M |f(B(x, rx))|.By the Vitali 
overing theorem, we �nd pairwise disjoint balls B1, B2, · · · asabove and so that E∞ ⊂ ∪j5Bj . Thus
|E∞| ≤ 5n

∑

|Bj| ≤ 5nM−1| ∪j f(Bj)|.There exists a 
ompa
t set F ⊂ Ω, independent of M, so that ∪jBj ⊂ F.Thus | ∪j f(Bj)| ≤ |f(F )| < ∞. By letting M tend to in�nity, we 
on
ludethat |E∞| = 0.Fix then ε > 0 and let k ∈ Z. Pi
k an open set Uk so that f(Ek) ⊂ Ukand |Uk| < |f(Ek)| + ε. For ea
h x ∈ Ek, pi
k 0 < rx < d(E, ∂Ω) so that
2k−1|B(x, rx)| ≤ |f(B(x, rx)|and f(B(x, rx)) ⊂ Uk. Using the Vitali 
overing theorem as above, we 
on-
lude that

2k−15−n|Ek| ≤ |Uk| < |f(Ek)| + ε,28



and letting ε→ 0, we infer that
2k−15−n|Ek| ≤ |f(Ek)|. (8)Regarding the opposite inequality, we 
hoose an open set Uk 
ontaining Ekso that |Uk| < |Ek| + ε. Given x ∈ Ek pi
k then rx so that

2k|B(x, rx)| ≥ |f(B(x, rx))|and B(x, rx) ⊂ Uk. By the Besi
ovit
h 
overing theorem, we �nd balls
B1, B2, · · · as above and so that

χEk
(x) ≤

∑

j

χBj
≤ CnχUk

.Summing over j and letting ε → 0, we 
on
lude that
|f(Ek)| ≤ 2kCn|Ek| (9)Summing over k in (8) and (9), and noti
ing that ∫

E0 u = 0, we arrive at
C−1
n |f(E \ E∞)| ≤

∫

E

u(x) ≤ Cn|f(E)|, (10)where Cn depends only on n. Re
alling that |E∞| = 0, we may repla
e E\E∞with E, provided f maps sets of measure zero to sets of measure zero.One 
an establish (10) with Cn = 1 by substituting a suitable morere�ned 
overing theorem [20℄ for the Besi
ovit
h and Vitali 
overing theoremsabove. The almost everywhere existen
e of the limit in the de�nition of µ′
falso follows from suitable versions of (8) and (9). The measurability of µ′

f isrutine.4.3 Remarks.1) (Lebesgue's di�erentiation theorem) Let u ∈ L1lo
. Then
lim
r→0

−
∫

B(x,r)

u(y) dy = u(x)for almost every x.Proof. By 
onsidering the positive and negative parts of u separately,we may assume that u ≥ 0. De�ne µ(E) =
∫

E
u for Lebesgue measur-able E ⊂ Rn. Then µ is a Radon measure and the Radon-Nikodymtheorem gives

∫

E

lim
r→0

−
∫

B(x,r)

u(y) dy dx =

∫

E

u dx.Thus the 
laim follows. 29



2) The Lebesgue di�erentiation theorem 
an be improved to: If u ∈ Lplo
,
p ≥ 1, then

lim
r→0

−
∫

B(x,r)

|u(y)− u(x)|p dy = 0for almost every x. This follows by applying the Lebesgue di�erentationtheorem to the fun
tions uq(y) = |u(y)− q|p, q ∈ Q.3) Let E ⊂ Rn be Lebesgue measurable. From 1), with u = χE , we seethat
lim
r→0

|E ∩B(x, r)|
|B(x, r)| = 1for almost every x ∈ E.4) The use of balls 
entered at x in the Lebesgue di�erentation theorem isnot essential. Indeed, 
onsider the 
olle
tion Q 
onsisting of all 
ubes

Q ⊂ Rn. If u ∈ L1lo
, then, for almost every x,
lim
j→∞

−
∫

Qj

u(y) dy = u(x)whenever Qj ∈ Q satisfy ∩jQj = {x}. This 
an be proved, for example,by �rst noti
ing that the 
laim is trivial if u is 
ontinuous, approximat-ing a general lo
ally integrable fun
tion by 
ontinuous ones, and by
ontrolling the error terms via the weak boundedness (as in part 1) ofTheorem 2.5) of the maximal operator [26℄.4.2 The maximal stre
hingSet
Lf (x) = lim sup

r→0

Lf(x, r)

r
.4.4 Lemma. Let f : Ω → Ω′ be a homeomorphism. The fun
tion Lf isBorel measurable and

µ′
f(x) ≤ Lf (x)

n ≤ Hf(x)
nµ′

f(x)for almost every x ∈ Ω. In parti
ular, Lf ∈ Lnlo
(Ω) when f is quasi
onformal.
Proof . The Borel measurability of Lf follows from the fa
t that, given a
ompa
t subset E of Ω,

{x ∈ E : Lf (x) < t} =
⋃

Ai,30



where the sets
Ai =

{

x ∈ E :
|f(x+ h) − f(x)|

|h| ≤ t− 1

i
for all 0 < |h| < d(E, ∂Ω)/i

}are 
losed by 
ontinuity of f . Let x ∈ Ω, 0 < r < d(x, ∂Ω). Then
|f(B(x, r))|
|B(x, r)| ≤

(
Lf (x, r)

r

)n

.Now
(
Lf (x, r)

r

)n

≤
(
Lf (x, r)

lf (x, r)

)n(
lf (x, r)

r

)n

≤
(
Lf (x, r)

lf(x, r)

)n |f(B(x, r))|
|B(x, r)| .Hen
e the 
laim follows by letting r tend to zero. 2Noti
e that, at a point x, where Df(x) exists, |Df(x)| is 
ontrolled interms of Lf(x). However, integrability of Lf does not a priori guaranteeabsolute 
ontinuity of f on almost all lines parallel to the 
oordinate axes.Indeed, Lf (x) = 1 almost everywhere for the homeomorphism f from part3) of Remarks 2.14, but f is not absolutely 
ontinuous on any line parallelto the x-axis. We are thus lead to modify the de�nition of Lf .For a homeomorphism f : Ω → Ω′ and ε > 0 de�ne

Lεf (x) = sup
r≤ε

Lf (x, r)

r
.Then Lεf is Borel measurable. Note that ε 7→ Lεf (x) is in
reasing and that

Lεf (x) → Lf (x), as ε→ 0.It is easy to 
he
k that, in dimension one, lo
al integrability of Lεf guar-antees the absolute 
ontinuity of f. The following result is a generalizationof this fa
t.4.5 Lemma. Let f : Ω → Ω′ be a homeomorphism, and let ε > 0. Then
|f(x) − f(y)| ≤

∫

γ

2Lεf dsfor all re
ti�able 
urves 
onne
ting x to y in Ω. In parti
ular, 2Lεf is an uppergradient of the 
omponent fun
tions fi of f in Ω, and of the fun
tion
u(x) = |f(x) − f(x0)|,whenever x0 ∈ Ω is �xed. 31



Proof . Fix x, y ∈ Ω and let γ = γ0 : [0, l] → Ω, be a re
ti�able 
urve joining
x to y. Assume �rst that d := diam(γ([0, l])) < ε. Let z ∈ γ([0, l]). Then
γ([0, l]) ⊂ B(z, d) and so

|f(x) − f(y)| ≤ diam(f(γ([0, l]))) ≤ 2Lf(z, d).Hen
e
|f(x) − f(y)| ≤

∫

[0,l]

2Lf(γ(s), d)

l
ds ≤

∫

[0,l]

2Lf(γ(s), d)

d
ds ≤

∫

γ

2Lεf ds.If d ≥ ε, 
hoose 0 = t1 < · · · < tk = l su
h that diam(γ([ti, ti+1])) < ε, for
1 ≤ i < k, and use the triangle inequality.The rest of the 
laim follows from the fa
ts that

|fi(x) − fi(y)| ≤ |f(x) − f(y)|,for 1 ≤ i ≤ n, and
|u(x) − u(y)| =

∣
∣|f(x) − f(x0)| − |f(y)− f(x0)|

∣
∣ ≤ |f(x) − f(y)|.

2The above proof did not employ the fa
t that f is a homeomorphism. Infa
t, the 
on
lusion holds for ea
h 
ontinuous f : Ω → Rk, k ≥ 1.We next show that Lεf is lo
ally p-integrable for all p < n, provided f isquasisymmetri
.4.6 Lemma. Let f be η-quasisymmetri
 in 2B, where B = B(x0, r0) ⊂ Rn,and let 0 < ε < diam(B)/100. Then
|{x ∈ B : Lεf (x) > t}| ≤ [5η(1)η(2)/t]n |f(B)|for t > 0.

Proof . If Lεf (x) > t, then there exists 0 < rx ≤ ε su
h that
Lf (x, rx)

rx
> t.Write Et = {x ∈ B : Lεf (x) > t}. By the Vitali 
overing theorem we �ndpairwise disjoint 
losed balls B1 = B(x1, r1), B2 = B(x2, r2), . . . as above so32



that Et ⊂ ⋃ 5Bj. Thus
|Et| ≤ 5n

∑

|Bj | ≤ 5n|B(0, 1)|t−n
∑

Lf(xj , rj)
n

≤ |B(0, 1)| [5η(1)/t]n
∑

lf(xj , rj)
n

≤ [5η(1)/t]n
∑

|f(B(xj, rj))|
≤ [5η(1)/t]n |f(2B)|.By quasisymmetry,

|f(2B)| ≤ |B(0, 1)|Lf(x0, 2r0)
n

≤ |B(0, 1)|lf(x0, r0)
nη(2)n

≤ |f(B)|η(2)n.

24.7 Lemma. Let f be η-quasisymmetri
 in 2B, where B = B(x0, r0) ⊂ Rn,and let 0 < ε < diam(B)/100. Then
−
∫

B

(Lεf )
p ≤ C(n, η, p)

( |f(B)|
|B|

)p/nfor 1 ≤ p < n.
Proof . Applying the Cavalieri formula and the previous lemma we see that

∫

B

(Lεf)
p = p

∫ ∞

0

tp−1|{x ∈ B : Lεf (x) > t}| dt

= p

[∫ t0

0

+

∫ ∞

t0

]

≤ p

∫ t0

0

tp−1|B| dt+ C(n, η, p)|f(B)|
∫ ∞

t0

tp−n−1 dt

= |B|tp0 + C(n, η, p)|f(B)|tp−n0 .Solve for t0 so that the two terms are equal. 24.8 Corollary. Let f : Ω → Ω′ be quasisymmetri
 (or quasi
onformal),where Ω,Ω′ ⊂ Rn are domains, n ≥ 2. Then f ∈W 1,nlo
 (Ω,Rn): |f | ∈ Lnlo
(Ω),the 
omponent fun
tions are absolutely 
ontinuous on almost all lines par-allel to the 
oordinate axes in Ω, and the 
lassi
al partial derivatives of the
oordinate fun
tions belong to Lnlo
(Ω).33



Re
all that absolute 
ontinuity of a fun
tion u : Ω → R on almost all linesparallel to the 
oordinate axes in Ω requires that, for (n− 1)− almost every
(x2, · · · , xn), u(t, x2, · · · , xn) is absolutely 
ontinuous on ea
h 
ompa
t linesegment in the x1-dire
tion in Ω, as a fun
tion of t, and analogously when
x1 above is repla
ed by xj , j = 2, · · · , n.

Proof . Fix a 
ube Q with Q ⊂ Ω, and pi
k 0 < ε < 1 so that Lεf ∈ L1(Q),see Lemma 4.7. Fix a 
oordinate dire
tion, say x1. Fiber Q by line segmentsparallel to the x1-axis. Denote J(x2, . . . , xn) = {y ∈ Q : y2 = x2, . . . , yn =
xn}. By the Fubini theorem Lεf ∈ L1(J(x2, . . . , xn)) for (n− 1)-almost every
(x2, . . . , xn). Let J = J(x2, . . . , xn) be su
h a line segment. By Lemma 4.5we have, for 1 ≤ j ≤ n,

|fj(t1, x2, . . . , xn) − fj(t2, x2, . . . , xn)| ≤
∫

J(t1,t2)

2Lεf ds,where J(t1, t2) = {x ∈ J : t1 ≤ x1 ≤ t2}. Sin
e Lebesgue integral is ab-solutely 
ontinuous with respe
t to Lebesgue measure, it follows that fj isabsolutely 
ontinuous on J and that ∂1fj(x) exists at almost every x ∈ J .Furthermore,
|∂1fj(x)| ≤ Lf(x),for su
h points. The above 
learly shows that fj is absolutely 
ontinuouson almost all lines parallel to the 
oordinate axes in Ω. Next, from Lemma4.4 we know that Lf ∈ Lnlo
(Ω). Be
ause a quasi
onformal mapping is lo
allyquasisymmetri
 by Corollary 3.4, the 
laim follows. 24.9 Remark. The previous results do not allow us to 
on
lude that a qua-sisymmetri
 mapping of the real line onto itself is absolutely 
ontinuous.Indeed, in the proof of Lemma 4.7 we only obtain the p-integrability of Lεffor p < 1 and thus Lemma 4.5 gives no estimate on the os
illation of f. Thisdoes not mean any weakness in our te
hnique be
ause one 
an give examplesof quasisymmetri
 mappings f : R → R that fail to be absolutely 
ontinuous.Next we will show that Lf ∈ Lplo
(Ω) for some p = p(n,H) > n.4.3 Gehring's lemmaThe following result is the starting point for the higher integrability of Lf .34



4.10 Lemma. (Reverse Hölder Inequality) Let f be η-quasisymmetri
on 2B ⊂ Rn. Then
(

−
∫

B

Lnf

)1/n

≤ C(n, η)−
∫

B

Lf .

Proof . There is nothing to be proved when n = 1. Thus assume that n ≥ 2.Let ε > 0 be small. Suppose B = B(x0, r0). De�ne u(x) = |f(x) − f(x0)|.Then, by Lemma 4.5, 2Lεf is an upper gradient of u and thus, by the Poin
aréinequality,
−
∫

B

|u− uB| ≤ C(n)r0−
∫

B

Lεf .Sin
e Lεf is lo
ally integrable, the monotone 
onvergen
e theorem impliesthat
−
∫

B

|u− uB| ≤ C(n)r0−
∫

B

Lf . (11)Now
uB = −

∫

B

|f(x) − f(x0)| ≥
1

|B|

∫

B\ 1
2
B

|f(x) − f(x0)| ≥
2−n

η(2)
Lf (x0, r0),and there is a δ = δ(n, η) > 0 su
h that

u(x) = |f(x) − f(x0)| ≤
2−n

2η(2)
Lf (x0, r0),whenever x ∈ δB. Thus

−
∫

B

|u− uB| ≥
1

|B|

∫

δB

(uB − u) ≥ C(n, η)Lf(x0, r0).This, 
ombined with (11), gives
Lf (x0, r0) ≤ C(n, η)r0−

∫

B

Lf . (12)So, by Lemma 4.4 and Proposition 4.1,
(

−
∫

B

Lnf

)1/n

≤ C(n, η)

(

−
∫

B

µ′
f

)1/n

≤ C(n, η)
|f(B)|1/n

r0

≤ C(n, η)
Lf(x0, r0)

r0
≤ C(n, η)−

∫

B

Lf .
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4.11 Remarks.1) Applying Hölder's inequality to the right hand side of (12) we obtainthe estimate
Lf(x0, r0) ≤ C(n, η)r0

(

−
∫

B

Lpf

)1/pfor p ≥ 1. In parti
ular, with p = n, we have
Lf(x0, r0) ≤ C(n, η)

(∫

B

Lnf

)1/n

.2) If X is Q-regular and if we have a p-Poin
aré inequality for some p < Q,then the proof of Lemma 4.10 gives
(

−
∫

B

LQf

)1/Q

≤ C(data)(−∫
B

Lpf

)1/pwhen f is η-quasisymmetri
.3) The reverse Hölder inequality also holds with balls repla
ed by 
ubes(assuming that f is quasisymmetri
 on√
nQ). Indeed, letB = B(x0, r0) ⊂

Q, where the edge length of Q is diam(B). Then Q ⊂ √
nB. By 1),

Lf(x0, r0) ≤ Cr0−
∫

B

Lf ,and by quasisymmetry
diam(f(Q)) ≤ 2η(

√
n)Lf(x0, r0).Following the proof of Lemma 4.10 we see that

(

−
∫

Q

Lnf

)1/n

≤ C
diam(f(Q))

r0
,and we 
on
lude that

(

−
∫

Q

Lnf

)1/n

≤ C−
∫

B

Lf ≤ C−
∫

Q

Lf .One 
an also verify the reverse Hölder inequality dire
tly for 
ubes,without using the Poin
aré inequality. Let us sket
h this in dimension36



two. Suppose that f is η-quasisymmetri
 on Q. Assume for notationalsimpli
ity that Q = [−1, 1]2. By quasisymmetry,
diam(f(Q)) ≤ 2η(

√
2)|f(1, t)−f(0, 0)| ≤ 2η(1)η(

√
2)|f(1, t)−f(−1, t)|for ea
h −1 ≤ t ≤ 1. As at the end of the proof of Lemma 4.10, wehave that

(

−
∫

Q

L2
f

)1/2

≤ C(n, η) diam(f(Q)).The 
laim follows by noti
ing (see the proof of Corollary 4.8)
|f(1, t) − f(−1, t)| ≤

∫

Jt

2Lf dsfor almost every −1 ≤ t ≤ 1, where Jt is the line segment between thepoints (1, t) and (−1, t), and then integrating with respe
t to t.As the �rst 
onsequen
e of the reverse Hölder inequality we show thatquasi
onformal mappings preserve the 
lass of sets of measure zero.4.12 Corollary. Let f : Ω → Ω′ be quasi
onformal, where Ω,Ω′ ⊂ Rn,
n ≥ 2. Then |f(E)| = 0, if and only if |E| = 0. In parti
ular,

|f(E)| =

∫

E

µ′
f dx,for Borel (and all Lebesgue measurable) sets E, and f maps Lebesgue mea-surable sets to Lebesgue measurable sets. Moreover, µ′

f (x) > 0 almost ev-erywhere.
Proof . Let |E| = 0. We may assume that E is bounded and E ⊂ Ω. Pi
kopen U ⊃ E so that U ⊂⊂ Ω. Then Lf ∈ Ln(U) by Lemma 4.4. Given
ε > 0, we further �nd an open set V with E ⊂ V ⊂ U and |V | < ε. For ea
h
x ∈ E, pi
k a ball B(x, rx) so that B(x, 15rx) ⊂ V . By the Vitali 
overingtheorem, we �nd su
h balls B1, B2, . . . so that Bi ∩ Bj = ∅ when i 6= j and
E ⊂ ∪5Bj. Then f(E) ⊂ f(∪5Bj) and

|f(∪5Bj)| ≤
∑

|f(5Bj)| ≤ η(5)C(n)
∑

Lf (xj, rj)
nand so, by part 1) of Remark 4.11,

|f(∪5Bj)| ≤ C(n, η)
∑

∫

Bj

Lnf = C(n, η)

∫

∪Bj

Lnf ≤ C(n, η)

∫

V

Lnf .37



Letting ε→ 0, we 
on
lude that |f(E)| = 0. The �only if� part follows fromthe fa
t that f−1 is also quasi
onformal. By the Radon-Nikodym theorem,
|f(E)| =

∫

E

µ′
f dx (13)for all Borel sets E. Let E ⊂ Ω be Lebesgue measurable. Pi
k a Borel set

F ⊃ E so that |F \ E| = 0. Then f(F ) is a Borel set, f(E) ⊂ f(F ) and
|f(F ) \ f(E)| = |f(F \E)| = 0. It follows that f(E) is Lebesgue measurableand that (13) holds also for E. Suppose �nally that µ′

f(x) = 0 in E with
|E| > 0. Then

|f(E)| =

∫

E

µ′
f dx = 0,whi
h 
ontradi
ts the fa
t that |f(E)| = 0 if and only if |E| = 0. 2We 
ontinue with a powerful tool from harmoni
 analysis, the Calderón-Zygmund de
omposition, and some 
onsequen
es of this de
omposition.The dyadi
 de
omposition of a 
ube Q0 
onsists of open 
ubes Q ⊂ Q0with fa
es parallel to the fa
es of Q0 and of edge length l(Q) = 2−il(Q0),where i = 1, 2, . . . refer to the generation in the 
onstru
tion. The 
ubesin ea
h generation 
over Q0 up to a set of measure zero and the 
losuresof the 
ubes in a �xed generation 
over Q0; there are 2in 
ubes of edgelength 2−il(Q0) in the ith generation and the 
ubes 
orresponding to the samegeneration are pairwise disjoint. For almost every x ∈ Q0, there is a (unique)de
reasing sequen
e Q0 ⊃ Q1 ⊃ . . . of 
ubes in the dyadi
 de
omposition sothat {x} =

⋂
Qi. In what follows, Q,Q0, Qx et
. are 
ubes.4.13 Theorem. (Calderón-Zygmund de
omposition) LetQ0 ⊂ Rn, u ∈

L1(Q0), and suppose that
t ≥ −
∫

Q0

u ≥ 0.Then there is a sub
olle
tion {Qj} from the dyadi
 de
omposition of Q0 sothat Qi ∩Qj = ∅ when i 6= j,
t < −
∫

Qj

u ≤ 2ntfor ea
h j, and u(x) ≤ t for almost every x ∈ Q0 \
⋃
Qj .

Proof . For almost every x ∈ Q0 there is a de
reasing sequen
e {Qj} ofdyadi
 
ubes so that {x} =
⋂
Qj . By the Lebesgue di�erentiation theorem38



(see part 3) of Remarks 4.3)
lim
j→∞

−
∫

Qj

u = u(x)for almost every su
h x. Let u(x) > t and assume that the above holds for xwith the sequen
e {Qj}. Then there must be maximal Qx := Qj(x) so that
−
∫

Qx

u > t.For this 
ube we have
t < −
∫

Qx

u ≤ 2n−
∫

Qj(x)−1

u ≤ 2nt.We 
an pi
k su
h a 
ube Qx for almost every x with u(x) > t. It is then easyto 
hoose the desired sub
olle
tion from the 
ubes Qx. 2The dyadi
 maximal fun
tion of a measurable fun
tion u (with respe
tto a 
ube Q0) is de�ned by
MQ0u(x) = sup

x∈Q⊂Q0

−
∫

Q

|u|,where the supremum is taken over all 
ubes Q that belong to the dyadi
de
omposition of Q0 and whose 
losures 
ontain x.4.14 Remark. As for the usual maximal fun
tion, we have the weak typeestimate
|{x ∈ Q0 : MQ0u(x) > t}| ≤ 2 · 5n

t

∫

{x∈Q0:|u(x)|> t
2
}

|u|for the dyadi
 maximal fun
tion. Moreover,
∫

Q0

(MQ0u)
p ≤ C(p, n)

∫

Q0

|u|pfor p > 1. The proof of the weak type estimate is a
tually easier than for theusual maximal operator be
ause no 
overing theorem is needed.The following simple 
onsequen
e of the Calderón-Zygmund de
ompo-sition is essentially the 
onverse of the weak type estimate for the dyadi
maximal fun
tion. 39



4.15 Lemma. Let u ∈ L1(Q0) and suppose t ≥ −
∫

Q0
|u|. Then

∫

{x∈Q0:|u(x)|>t}

|u| ≤ 2nt|{x ∈ Q0 : MQ0u(x) > t}|.

Proof . By the Calderón-Zygmund de
omposition we �nd pairwise disjoint
ubes Q1, Q2, . . . so that
t < −
∫

Qj

|u| ≤ 2ntfor all j, and |u(x)| ≤ t almost everywhere in Q0 \
⋃
Qj . Then

∫

{x∈Q0:|u(x)|>t}

|u| ≤
∑

∫

Qj

|u|

≤
∑

2nt|Qj |
≤ 2nt|{x ∈ Q0 : MQ0u(x) > t}|,be
ause

MQ0u(x) ≥ −
∫

Qj

|u| > tfor ea
h x ∈ Qj . 2We are now ready to prove an important result. For histori
al reasons,it is only 
alled a lemma (Gehring's lemma). I learned the trun
ation tri
kemployed in the proof below from Xiao Zhong.4.16 Lemma. (Gehring's lemma, 1973) Let u ∈ Lq(Q0), 1 < q < ∞and suppose that
(

−
∫

Q

|u|q
)1/q

≤ C−
∫

Q

|u| (14)for all dyadi
 sub
ubes Q ⊂ Q0. Then there is s = s(q, n, C) > q so that
(

−
∫

Q0

|u|s
)1/s

≤ 21/sC−
∫

Q0

|u|. (15)In parti
ular, u ∈ Ls(Q0).
Proof . We begin by noti
ing that

MQ0(|u|q)(x) ≤ CqMQ0u(x) (16)40



for ea
h x ∈ Q. Let then t ≥ t0 := −
∫

Q0
|u|q. Combining Lemma 4.15, (16)and the weak type estimate from Remark 4.14, we 
on
lude that

∫

{x∈Q0:|u(x)|q>t}

|u|q ≤ 2nt|{x ∈ Q0 : MQ0(|u|q)(x) > t}|

≤ 2nt|{x ∈ Q0 : MQ0u(x) > C−qt1/q}|

≤ 2n+15nt1−
1
q

∫

{x∈Q0:|u(x)|> 1
2
C−qt1/q}

|u|,provided t ≥ t0. Consequently, for these values of t,
∫

{x∈Q0:|u(x)|q>t}

|u|q ≤ Cnt
1− 1

q

∫

{x∈Q0:|u(x)|>δt1/q}

|u|, (17)where Cn depends only on n and δ = 2−1C−q. Multiplying both sides of (17)by tp−2 and integrating over the interval [t0, j], where j > t0 is �xed, resultsin
∫ j

t0

tp−2

∫

{x∈Q0:|u(x)|q>t}

|u|q dxdt ≤
∫ j

t0

tp−1−1/q

∫

{x∈Q0:|u(x)|>δt1/q}

|u| dxdt.(18)Write b(j, s, u(x)) = min{j, s|u(x)|q} when s > 0. Noti
e that
b(j, s, u(x)) ≤ sb(j, 1, u(x))when s ≥ 1. By the Fubini theorem,

∫ j

t0

tp−1−1/q

∫

{x∈Q0:|u(x)|>δt1/q}

|u| dxdt

=

∫

Q0

|u|
∫ b(j,δ−q ,u(x))

t0

tp−1−1/q dtdx

≤ q(pq − 1)−1

∫

Q0

b(j, δ−q, u(x))p−1/q|u| dx

≤ q(pq − 1)−1δ1−pq

∫

Q0

b(j, 1, u(x))p−1/q|u| dx

≤ q(pq − 1)−1δ1−pq

∫

Q0

b(j, 1, u(x))p−1|u|q.Similarly,
∫ j

t0

tp−2

∫

{x∈Q0:|u(x)|q>t}

|u|q dxdt =

∫

Q0

|u|q
∫ b(j,1,u(x))

t0

tp−2 dtdx

= (p− 1)−1

∫

Q0

(
b(j, 1, u(x))p−1 − tp−1

0

)
|u|q dx.41



Combining the above estimates for the left and right hand sides of (18) we
on
lude that
−
∫

Q0

min{j, |u(x)|q}p−1|u(x)|q ≤ C ′(−
∫

Q0

|u|q)p ≤ C ′Cpq(−
∫

Q0

|u|)pqwhere C ′ = ((p− 1)−1 − q(pq − 1)−1δ1−pq)
−1
, provided C ′ > 0.We used (14)at the last step. Choosing p > 1 so that C ′ = 2 allows us to 
on
lude the
laim via the monotone 
onvergen
e theorem. 2Given a domain Ω ⊂ Rn and 1 ≤ p ≤ ∞, we let W 1,p(Ω) denote the 
ol-le
tion of all fun
tions u ∈ Lp(Ω) that are absolutely 
ontinuous on almost alllines parallel to the 
oordinate axes in Ω and whose 
lassi
al partial deriva-tives belong to Lp(Ω). Then W 1,p(Ω,Rn) refers to mappings f : Ω → Rnwhose ea
h 
omponent fun
tion fj , j = 1, · · · , n, belongs to W 1,p(Ω). Thede�nitions of W 1,plo
 (Ω) and W 1,plo
 (Ω,Rn) should then be obvious.4.17 Corollary. Let f : Ω → Ω′ be quasi
onformal, where Ω,Ω′ ⊂ Rn,

n ≥ 2. There is p = p(n,H) > n and a 
onstant C = C(n, p,H) so that1) f ∈W 1,plo
 (Ω,Rn) and
(

−
∫

Q

Lpf

)1/p

≤ C

(

−
∫

Q

Lnf

)1/nwhenever 2Q ⊂ Ω.2) If 2Q ⊂ Ω and E ⊂ Q is measurable, then
|f(E)|
|f(Q)| ≤ C

( |E|
|Q|

)1−n/p

.

Proof . 1) By Remark 4.11 we have
(

−
∫

Q

Lnf

)1/n

≤ C−
∫

Q

Lfwhever 2Q ⊂ Ω. The Sobolev regularity and the asserted inequality followfrom Gehring's lemma be
ause f is absolutely 
ontinuous on almost all linesparallel to the 
oordinate axes and
|∂jfi(x)| ≤ Lf(x)42



for almost every x, see Corollary 4.8 and its proof.2) By Corollary 4.12, Lemma 4.4, Hölder's inequality, Proposition 4.1, andpart 1) we see that
|f(E)| =

∫

E

µ′
f ≤ C

∫

E

Lnf

≤ C

(∫

E

Lpf

)n/p

|E|1−n/p

≤ C

(

−
∫

Q

Lpf

)n/p

|E|1−n/p|Q|n/p

≤ C−
∫

Q

Lnf
︸︷︷︸

≤Cµ′f

|E|1−n/p|Q|n/p

≤ C|f(Q)||E|1−n/p|Q|n/p−1.

2

4.4 Ap-weightsWe will brie�y point out the 
onne
tion between Ap-weights and reverseHölder inequalities. The results of this se
tion will not be needed later on.We refer the reader to [26℄ for proofs of the fa
ts presented in this se
tion.Let w ∈ L1lo
, w > 0 almost everywhere. If −∞ < s < t <∞ and |E| > 0,then
(

−
∫

E

ws
)1/s

≤
(

−
∫

E

wt
)1/t

.So, when p > 1, we have that
(

−
∫

B

w1/(1−p)

)1−p

≤
(

−
∫

B

wp
)1/pfor ea
h ball B. We say that w is an Ap-weight (belongs to the Mu
kenhoupt

Ap-
lass), if for all balls
(

−
∫

B

wp
)1/p

≤ Cp,w

(

−
∫

B

w1/(1−p)

)1−p

,when 1 < p <∞, and
−
∫

B

w ≤ C1,wessinfBw,43



when p = 1. Clearly A1 ⊂ Ap ⊂ Aq when 1 ≤ p ≤ q. We �nally set
A∞ =

⋃

p>1Ap.One of the 
onne
tions between Ap-
lasses and reverse Hölder inequalitiesis given by the following result.4.18 Fa
t. Let w ∈ L1lo
, w > 0 almost everywhere. Then w ∈ A∞ if andonly if there exist q > 1 and C su
h that
(

−
∫

B

wq
)1/q

≤ C−
∫

B

wfor all balls B.4.19 Corollary. Let n ≥ 2. If f : Rn → Rn is quasi
onformal, then µf ∈
A∞.Given w ∈ Ap, p > 1, one 
an use the above reverse Hölder inequality toprove that w ∈ Aq for some q < p that depends on n, p, Cp,w.

Ap-weights are of their own interest. One of their important properties isthat they work well with maximal fun
tions.4.20 Fa
t. Let 1 < p <∞. The inequality
∫

(Mu)pw ≤ C

∫

|u|pwholds for ea
h Lebesgue measurable u if and only if w ∈ Ap.One 
an further 
hara
terize A∞ by the following 
ondition. There are
onstants C and δ so that
∫

E
w

∫

Q
w

≤ C

( |E|
|Q|

)δ (19)for ea
h 
ube Q and ea
h measurable E ⊂ Q. Given a domain G, let us write
A∞(G) for the 
olle
tion of all w for whi
h (19) holds with uniform 
onstantsfor ea
h 
ube Q ⊂ G with diam(Q) ≤ d(Q, ∂G). Then, in dimensions n ≥ 2,a homeomorphism f : Ω → Ω′ is quasi
onformal if and only if, for ea
hsubdomain G ⊂ Ω, w ◦ f−1 ∈ A∞(f(G)) for ea
h w ∈ A∞(G) and w ◦ f ∈
A∞(G) for ea
h w ∈ A∞(f(G)) with uniform bounds in both 
ases. For thissee [25℄.
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4.5 Di�erentiability almost everywhereWe begin with an almost everywhere di�erentiability result that goes ba
kto Cesari and Calderón. Re
all that u ∈ W 1,plo
 (Ω) means that u is lo
ally p-integrable, absolutely 
ontinuous on almost all lines parallel to the 
oordinateaxes in Ω and that the 
lassi
al partial derivatives are lo
ally p-integrable.4.21 Theorem. Let p > n and let u ∈ W 1,plo
 (Ω) be 
ontinuous. Then u isdi�erentiable almost everywhere.This result is optimal in the sense that there exist 
ontinuous fun
tionsin W 1,nlo
 that are nowhere di�erentiable.We need a few te
hni
al results for the proof of this theorem.4.22 Lemma. Let u ∈ W 1,1lo
 (Ω) and Ω0 ⊂⊂ Ω. Given 0 < r < d(Ω0, ∂Ω),set
ur(x) = −

∫

B(x,r)

u(y) dyfor x ∈ Ω0. Then ur ∈ C1(Ω0) and
∇ur(x) = −

∫

B(x,r)

∇u(y) dy.

Proof . Fix 0 < r < d(Ω0, ∂Ω), x ∈ Ω0 and 1 ≤ j ≤ n. Let 0 < |t| <
d(Ω0, ∂Ω) − r. By the absolute 
ontinuity of u on almost all lines parallel tothe xj-axis in Ω,

u(y + tej) − u(y) =

∫

[0,t]

∂ju(y + sej) dsfor almost all y ∈ B(x, r). Integrating this estimate and invoking the Fubinitheorem we infer that
ur(x+ tej) − ur(x)

t
= −
∫

B(x,r)

u(y + tej) − u(y)

t
dy

= −
∫

B(x,r)

−
∫

[0,t]

∂ju(y + sej) ds dy

= −
∫

[0,t]

−
∫

B(x,r)

∂ju(y + sej) dy ds.

= −
∫

[0,t]

−
∫

B(x+sej ,r)

∂ju(y) dy

︸ ︷︷ ︸

=:f(s)

ds.45



Sin
e ∂ju ∈ L1(Ω), it follows that f is 
ontinuous. Hen
e
∂jur(x) = lim

t→0
−
∫

[0,t]

f(s) ds = f(0) = −
∫

B(x,r)

∂ju(y) dy.

24.23 Lemma. Suppose that v ∈ Lp(λB), 1 ≤ p < ∞, where λ > 1. Given
0 < ε < d(B, λBc), set

vε(x) = −
∫

B(x,ε)

v(y) dyfor x ∈ B. Then vε → v in Lp(B).

Proof . Let w ∈ Lp(λB). Let 0 ≤ ψε ∈ L∞ be su
h that ∫ ψε = 1 andsptψε ⊂ B(0, ε). Extend w as zero to Rn \ λB. Then
wψε :=

∫

Rn

ψε(y)w(x− y) dyis bounded on B:
|wψε(x)| ≤ ‖ψε‖L∞

∫

λB

|w|.Choose now
ψε(y) =

1

|B(0, ε)|χB(0,ε)(y)and write wε = wψe. By the Hölder inequality,
|wε| =

∫

Rn

ψε(y)
1/p|w(x− y)|ψε(y)(p−1)/p ≤

(∫

Rn

ψε(y)|w(x− y)|p dy
)1/pand so

∫

B

|wε|p ≤
∫

λB

∫

Rn

ψε(y)|w(x− y)|p dy dx

=

∫

Rn

ψε(y)

∫

λB

|w(x− y)|p dx dy

≤
∫

λB

|w|p.If w is 
ontinuous on λB, then
‖w − wε‖Lp(B) → 0,46



as ε → 0. Let δ > 0. Re
all that 
ontinuous fun
tions are dense in Lp(λB),see Subse
tion 11.3 in the appendix. Choose a 
ontinuous w su
h that
‖v − w‖Lp(λB) < δ,and take ε > 0 so small that
‖w − wε‖Lp(B) < δ.Then

‖v − vε‖Lp(B) ≤ ‖v − w‖Lp(B) + ‖w − wε‖Lp(B) + ‖wε − vε
︸ ︷︷ ︸

=(w−v)ε

‖Lp(B) < 3δ.Thus vε → v in Lp(B). 24.24 Corollary. If u ∈W 1,1(B), then
∫

B

|u− uB| dx ≤ C diam(B)

∫

B

|∇u| dx.

Proof . Let 0 < δ < 1. Then, for 0 < r < δ/2, ur is well de�ned and C1 in
(1 − δ)B. Thus, by the usual Poin
aré inequality,
∫

(1−δ)B

|ur(x) − (ur)(1−δ)B | dx ≤ C(1 − δ) diam(B)

∫

(1−δ)B

|∇ur(x)| dx.By letting r → 0 we see that this inequality holds for u (vr tends to v in
L1 when v ∈ L1 and r → 0 by Lemma 4.23). The 
laim follows by letting
δ → 0; noti
e that u(1−δ)B → uB. 24.25 Corollary. Let u ∈W 1,p(5B) and let p > n. Then

|u(x) − u(y)| ≤ C(n, p)|x− y|1−n/p
(∫

B(x,2|x−y|)

|∇u|p
)1/pfor all Lebesgue points x, y ∈ B of u.
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Proof . Let x, y ∈ B be Lebesgue points of u. De�ne Bi = B(x, 2−i|x− y|)for i ≥ 0. Then, by Corollary 4.24 and the Hölder inequality,
|u(x) − uB0 | ≤

∞∑

i=1

|uBi−1
− uBi

|

≤ 2n
∞∑

i=0

−
∫

Bi

|u− uBi
|

≤ C(n, p)

∞∑

i=0

2−i|x− y|
(

−
∫

Bi

|∇u|p
)1/p

≤ C(n, p)
∞∑

i=0

(2−i|x− y|)1−n/p

(∫

Bi

|∇u|p
)1/p

≤ C(n, p)|x− y|1−n/p
(∫

B(x,|x−y|)

|∇u|p
)1/p

.Similarly,
|u(y)− uB(y,|x−y|)| ≤ C(n, p)|x− y|1−n/p

(∫

B(y,|x−y|)

|∇u|p
)1/p

.Moreover, denoting Bx = B(x, |x− y|), By = B(y, |x− y|) and ∆ = Bx ∩By,we have
|uBx − uBy | ≤ |uBx − u∆| + |u∆ − uBy |

≤ −
∫

∆

|u− uBx| + −
∫

∆

|u− uBy |

≤ C(n)

(

−
∫

Bx

|u− uBx| + −
∫

By

|u− uBy |
)

≤ C(n, p)|x− y|1−n/p
(

−
∫

B(x,2|x−y|)

|∇u|p
)1/p

.The 
laim follows by the triangle inequality. 24.26 Remarks.1) If u ∈W 1,plo
 (Ω), p > n, then
ũ(x) = lim sup

r→0
−
∫

B(x,r)

u48



is 
ontinuous and satis�es the modulus of 
ontinuity given in the 
orol-lary. This easily follows from the previous 
orollary. Noti
e that, bythe Lebesgue di�erentiation theorem, ũ = u almost everywhere. We
all ũ the 
ontinuous representative of u. A fun
tion u ∈W 1,nlo
 (Ω) doesnot need to have a 
ontinuous representative when n > 1. An exampleof this is u(x) = log log |x|−1, |x| < e−1.2) The 
ontinuous representative ũ belongs toW 1,plo
 (Ω): By the 
ontinuityof ũ and the fa
t that ũ = u almost everywhere, we have that
ũ(x) = lim

r→0
(ũ)r(x) = lim

r→0
ur(x)for all x. By Lemma 4.22, ∂j(ur)(x) = (∂ju)r(x) for all x and 1 ≤ j ≤ n.Fix a 
ube Q ⊂⊂ Ω and 1 ≤ j ≤ n. Sin
e (∂ju)r → ∂ju in L1(Q), itfollows that ∫

J
(∂ju)r →

∫

J
∂ju for almost every line segment J ⊂ Qparallel to the xj-axis. Let J be su
h a line segment with endpoints xand y. Then

ũ(x)−ũ(y) = lim
r→0

(ur(x)−ur(y)) = lim
r→0

∫

J

∂j(ur) = lim
r→0

∫

J

(∂ju)r =

∫

J

∂ju.It follows that ũ is absolutely 
ontinuous on almost all lines in Ω andthat ∂j ũ = ∂ju almost everywhere, as desired.We are now ready to prove Theorem 4.21.
Proof . Let u ∈W 1,plo
 (Ω) be 
ontinuous. Then, by part 2) of Remark 4.3, atalmost every x0, ∇u(x0) exists and

lim
r→0

−
∫

B(x0,r)

|∇u(x) −∇u(x0)|p dx = 0.Fix su
h an x0 and de�ne
w(x) = u(x) − u(x0) −∇u(x0) · (x− x0).Then w ∈ W 1,plo
 (Ω) and ∇w(x) = ∇u(x) − ∇u(x0) whenever ∇u(x) exists.By Corollary 4.25,

|w(x) − w(x0)| ≤ C(n, p)|x− x0|
(

−
∫

B(x0,5|x−x0|)

|∇u(y) −∇u(x0)|p dy
)1/p

.Thus
lim
x→x0

|u(x) − u(x0) −∇u(x0) · (x− x0)|
|x− x0|

= lim
x→x0

|w(x) − w(x0)|
|x− x0|

= 0.49



24.27 Remark. By Theorem 4.21, Lips
hitz fun
tions are di�erentiable al-most everywhere. This immediately implies that ea
h Lips
hitz mapping
f : Rn → Rn is almost everywhere di�erentiable.Given a domain Ω ⊂ Rn, re
all that W 1,plo
 (Ω,Rn) denotes the 
olle
tionof mappings f : Ω → Rn whose ea
h 
omponent fun
tion fj , j = 1, · · · , n,belongs to W 1,plo
 (Ω).4.28 Corollary. Let f : Ω → Ω′ be quasi
onformal, where Ω,Ω′ ⊂ Rn,
n ≥ 2, are domains. Then f belongs to W 1,plo
 (Ω,Rn) for some p > n and, foralmost every x ∈ Ω, f is di�erentiable at x with Jf(x) 6= 0 and satis�es

|Df(x)|n ≤ Hf(x)
n−1|Jf(x)|.

Proof . By Corollary 4.17 and Theorem 4.21 applied to the 
oordinate fun
-tions of f , f belongs to W 1,plo
 (Ω,Rn), for some p > n, and is di�erentiablealmost everywhere.Suppose that f is di�erentiable at x0 and that Jf(x0) = detDf(x0) = 0.Then
|f(B(x0, r))| ≤ (|Df(x0)| + ε(r))n−1 rn−1ε(r)r,where ε(r) → 0, as r → 0. Thus

µ′
f(x0) = lim

r→0

|f(B(x0, r))|
|B(x0, r)|

= 0.Be
ause µ′
f > 0 almost everywhere by Corollary 4.12 and f is di�erentiablealmost everywhere, Jf 6= 0 almost everywhere.Suppose that f is di�erentiable at x0 with Jf (x0) = detDf(x0) 6= 0.Then

|Df(x0)| ≤ Hf(x0) min
|h|=1

|Df(x0)h|.Be
ause
|Jf(x0)| ≥

(

min
|h|=1

|Df(x0)h|
)n−1

|Df(x0)|,see Subse
tion 11.2 we 
on
lude that
|Df(x0)|n ≤ Hf(x0)

n−1|Jf(x0)|.
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4.29 Remarks.1) The exponent n − 1 for H in Corollary 4.28 is optimal. This is seenby 
onsidering the quasi
onformal mapping f(x) = Ax, where A is adiagonal matrix whose diagonal entrees are all 1 expe
t for a singleentry whi
h is, say, 2.2) If f : Ω → Ω′, both domains in Rn, is a homeomorphism and di�eren-tiable at x, y ∈ Ω, then either Jf(x) ≥ 0 and Jf(y) ≥ 0 or Jf(x) ≤ 0and Jf(y) ≤ 0. This 
an be proved using the so-
alled topologi
al de-gree, whi
h we have not introdu
ed. Combining this with Corollary4.28 allows us to 
on
lude that, given a quasi
onformal mapping f, de-�ned in a domain Ω ⊂ Rn, n ≥ 2, either Jf (x) > 0 almost everywherein Ω or Jf(x) < 0 almost everywhere in Ω.3) If f ∈ W 1,plo
 (Ω,Rn), where Ω ⊂ Rn, n ≥ 2 is a domain, is a homeo-morphism and p > n − 1 (p ≥ 1 in the plane), then f is di�erentiablealmost everywhere, see [23℄. If p = n−1 and n ≥ 3, then f need not bedi�erentiable anywhere. The positive results are non-trivial. For the
ounterexample, one pi
ks a 
ontinuous fun
tion u ∈ W 1,n−1lo
 (Rn−1) of
n− 1 variables that fails to be di�erentiable anywhere and de�nes

f(x1, · · · , xn) = (x1, · · · , xn−1, xn + u(x1, · · · , xn−1)).4) If p < n − 1, it is not known if the Ja
obian of a homeomorphism
f ∈ W 1,plo
 (Ω,Rn) 
an 
hange its sign. For p > n − 1, the Ja
obiandeterminant 
annot 
hange its sign by 1) and 2) and this is expe
tedto also hold when p = n− 1.Added: Hen
l and Malý, Ja
obians of Sobolev homeomorphisms, toappear in Cal
. Var. have very re
ently shown that one 
an relax theassumption p > n − 1 to p > pn, where pn is the integer part of n/2,espe
ially p3 = 1. The 
ase 1 < p ≤ pn remains open when n > 3.5 The analyti
 de�nitionIn this 
hapter we give an analyti
 de�nition for quasi
onformality by estab-lishing the following 
hara
terization of quasi
onformality.5.1 Theorem. Suppose that Ω,Ω′ ⊂ Rn are domains, n ≥ 2. Let f : Ω → Ω′be a homeomorphism. Then the following are equivalent:1) f is quasi
onformal. 51



2) There exists η su
h that f |B is η-quasisymmetri
 for ea
h ball B with
2B ⊂ Ω.3) f ∈W 1,1lo
 (Ω,Rn) and there is K su
h that

|Df(x)|n ≤ K|Jf(x)|almost everywhere in Ω.5.2 Remark. It follows that either Jf > 0 almost everywhere in Ω or that
Jf < 0 almost everywhere in Ω, see Corollary 4.28 and Remarks 4.29.We already saw in Chapter 3 that 1) and 2) are equivalent and Corollary4.28 shows that 1) implies 3). In order to dedu
e 1) from 3) we introdu
esome preliminary results.Re
all the notation

µ′
f(x) = lim

r→0

|f(B(x, r))|
|B(x, r)|that we used for homeomorphisms. One of our aims is to show that Jf islo
ally integrable for a homeomorphism that is lo
ally in the Sobolev 
lass

W 1,1lo
 . This will be done by relating Jf to µ′
f . It is rather easy to do this atthe points of di�erentiability of our homeomorphism. The problem is that, indimensions n ≥ 3, our regularity assumption f ∈ W 1,1lo
 (Ω,Rn) (see Remarks4.29) does not by itself guarantee di�erentiability even at a single point. Inorder to over
ome this, we will use Lips
hitz �approximations� to f, but theprize we have to pay is that these Lips
hitz mappings need not be inje
tive.Given a 
ontinuous mapping f : Ω → Rn, we write

µ′
f(x) = lim sup

r→0

|f(B(x, r))|
|B(x, r)| .Be
ause f(B(x, r)) is 
ompa
t and so measurable, µ′

f(x) is indeed de�ned.We 
annot however apply the Radon-Nikodym theorem as we did in the
onne
tion with Proposition 4.1: µ(A) = |f(A)| does not ne
essarily de�nea measure when f fails to be inje
tive. We will be able to get around thisproblem.5.3 Lemma. Let f : Ω → Rn be 
ontinuous and assume that f ∈W 1,1lo
 (Ω,Rn).Then
|Jf(x)| ≤ µ′

f(x)almost everywhere in Ω. 52



The proof of this result will be based on a sequen
e of lemmas.5.4 Lemma. Let f : Ω → Rn be 
ontinuous and assume that f is di�eren-tiable at x0 ∈ Ω. Then
|Jf(x0)| = µ′

f(x0).

Proof . We already saw in the proof of Corollary 4.28 that if Jf (x0) = 0and f is di�erentiable at x0, then µ′
f(x0) = 0. Suppose that Jf (x0) 6= 0. Wemay assume that x0 = 0 = f(x0). Be
ause Jf (0) 6= 0, the inverse matrix

(Df(0))−1 exists. De�ne g(x) = (Df(0))−1f(x). Then g is di�erentiable at
0, Dg(0) = I, and moreover,

|f(B(0, r))| = |Df(0) g(B(0, r))| = |Jf(0)||g(B(0, r))|.Thus it su�
es to show that
lim
r→0

|g(B(0, r))|
|B(0, r)| = 1.Be
ause g is di�erentiable at 0 and Dg(0) = I,

|g(x) − x| ≤ ε(|x|)|x|, (20)where ε(|x|) → 0 as |x| → 0. It follows that
|g(B(0, r))|
|B(0, r)| ≤ |B(0, r + ε(r)r)|

|B(0, r)| = (1 + ε(r))n −→ 1, as r → 0,so espe
ially
lim sup
r→0

|g(B(0, r))|
|B(0, r)| ≤ 1.For the opposite inequality we use the fa
t that

B
(
0, (1 − ε)r

)
⊂ g
(
B(0, r)

) (21)for given ε > 0 whenever 0 < r < rε. This follows from Lemma 11.10 in theappendix, sin
e now |g(x) − x| ≤ ε for |x| < rε by inequality (20). Thus by(21) we obtain for r < rε that
|g(B(0, r))|
|B(0, r)| ≥ |B(0, (1 − ε)r)|

|B(0, r)| = (1 − ε)n −→ 1, as ε → 0,so
lim inf
r→0

|g(B(0, r))|
|B(0, r)| ≥ 1.This proves the lemma. 253



5.5 Lemma. (M
Shane extension) Let A ⊂ Rn and f : A → Rm be
L-Lips
hitz, that is

|f(x) − f(y)| ≤ L|x− y|for all x, y ∈ A. Then there exists a (
√
mL)-Lips
hitz f̃ : Rn → Rm su
hthat f̃ |A = f.

Proof . Let m = 1. De�ne
f̃(x) = inf

a∈A
{f(a) + L|x− a|}.Then f̃(x) = f(x) when x ∈ A: Sin
e f is L-Lips
hitz on A,

f(x) ≤ f(a) + L|x− a| when x, a ∈ A,and so f̃(x) ≥ f(x). Also, 
learly f̃(x) ≤ f(x).Given x, y ∈ Rn, we have that
f̃(x) = inf

a∈A
{f(a) + L|x− a|

︸ ︷︷ ︸

≤L(|y−a|+|y−x|)

}

≤L|y − x| + f̃(y).Be
ause this also holds with x repla
ed by y, we 
on
lude that f̃ is L-Lips
hitz.Let us then 
onsider the 
ase m ≥ 2. For given f = (f1, . . . , fm) de�ne
f̃ = (f̃1, . . . , f̃m) as in the previous 
ase. Now

|f̃(x) − f̃(y)|2 =

m∑

1

|f̃i(x) − f̃i(y)|2 ≤ mL2|x− y|2,and the 
laim follows. 25.6 Remark. By 
hoosing a suitable extension di�erent from the M
Shaneextension, one 
ould require above f̃ to be L-Lips
hitz. This 
an be doneusing the so-
alled Kirszbaum extension.5.7 Lemma. Let u ∈ W 1,1(3B) and ε > 0. Then there is a set Aε ⊂ B sothat |B \ Aε| < ε and u|Aε is Lips
hitz.
54



Proof . Write B = B(x0, r0). Let x, y ∈ B be Lebesgue points of u. Choose
Bj = B(x, 2−j|x − y|) for j ≥ 0 and Bj = B(y, 2j+1|x− y|) for j < 0. Thenby the Poin
aré inequality (as in the proof of Theorem 2.12),

|u(x) − u(y)| ≤
∞∑

−∞

|uBj
− uBj+1

| ≤
∞∑

−∞

Cn−
∫

Bj

|u− uBj
|

≤ Cn

∞∑

−∞

rj−
∫

Bj

|∇u|

≤ Cn|x− y|
(M3r0 |∇u(x)| + M3r0 |∇u(y)|

)

≤ 2Cn|x− y|λwhen both x and y belong to the set {z ∈ B : M3r0 |∇u(z)| ≤ λ}. Thus wehave Cnλ-Lips
hitz 
ontinuity outside the setBadλ = {z ∈ B : M3r0 |∇u(z)| > λ} ∪ {z ∈ B : z non-Lebesgue point of u}.By Remark 2.6,
|Badλ| ≤ 5n2

λ

∫

{|∇u(z)|>λ
2
}∩3B

|∇u|
︸ ︷︷ ︸

−→
λ→∞

0

= o
(

1
λ

)

and the 
laim follows. 25.8 Remark. The above proof shows that u is Cnλ-Lips
hitz in B \ Badλ,where |Badλ| = o
(

1
λ

). Use the M
Shane extension theorem to extend therestri
tion of u to this set as Cnλ-Lips
hitz fun
tion uλ to all of B. Then
∫

B

|∇u−∇uλ| ≤
∫Badλ

|∇u| + |∇uλ| ≤
∫Badλ

|∇u| + Cnλo
(

1
λ

)
−→
λ→∞

0be
ause
∇uλ(x) = ∇u(x) (22)at almost every point x of Gλ = B \ Badλ .Reason: If E ⊂ Ω is measurable, ∂iv and ∂iw exist almost everywhere in Eand v = w on E, then ∂iv = ∂iw almost everywhere in E: Simply noti
e thatalmost every point x of E is of linear density one in the xi-dire
tion.One 
an do even better. Consider the setBad′λ = {x ∈ B : M3r0u(x) ≥ λ}.55



Then |Bad′λ| = o
(

1
λ

). So, when λ is large, the distan
e from any point inBad′λ to B \Bad′λ is at most one. Thus the M
Shane extension uλ of u from
B \ (Badλ ∪Bad′

λ) is Cnλ-Lips
hitz and bounded in absolute value by 2Cnλon B. It follows that
∫

B

|u− uλ| + |∇u−∇uλ| −→
λ→∞

0.The �nal estimate of the pre
eding remark yields the following 
orollary:5.9 Corollary. If u ∈W 1,1(3B), then there is a sequen
e (ϕj)
∞
1 of Lips
hitzfun
tions su
h that

|{x ∈ B : ϕj(x) 6= u(x)}| → 0and ∫

B

|u− ϕj| + |∇u−∇ϕj| → 0as j → ∞.5.10 Remarks.1) One 
an get rid of the 
onstant 3 above (see Figure 4)
y

xFigure 4: Remark 5.10 (1).2) The same argument as above gives the 
orollary for W 1,p and with
∫

B

|u− ϕj|p + |∇u−∇ϕj|p → 0 as j → ∞.Proof of Lemma 5.3. Assume that f : Ω → Rn is 
ontinuous and f ∈
W 1,1lo
 (Ω,Rn). Let B ⊂ Ω be a ball with 3B ⊂ Ω. It su�
es to prove that

|Jf(x)| ≤ µ′
f(x) for a.e. x ∈ B.56



Let ε > 0. Pi
k a Lips
hitz mapping f̃ : Rn → Rn su
h that for the set
B = {x ∈ B : f̃(x) 6= f(x)} we have |B| < ε, see Corollary 5.9. Be
ause
f̃ is Lips
hitz, it is di�erentiable almoste everywhere in B \ B; see Remark4.27. By Lemma 5.4, |Jf̃(x)| = µ′

f̃
(x) at the points of di�erentiability. By thereasoning in Remark 5.8, see (22), Jf̃(x) = Jf(x) almost everywhere in B\B.So it su�
es to prove that µ′

f̃
(x) ≤ µ′

f(x) almost everywhere in G = B \ B.Let x ∈ G. Then
|f̃(B(x, r))|
|B(x, r)| ≤ |f̃(B(x, r) ∩G)| + |f̃(B(x, r) ∩ B)|

|B(x, r)|

≤ |f(B(x, r))|
|B(x, r)| +

Ln|B(x, r) ∩ B|
|B(x, r)| ,and the 
laim follows be
ause the last term tends to zero for almost every

x ∈ G by Remarks 4.3 3). 25.11 Corollary. Let f : Ω → Ω′ be a homeomorphismwith f ∈W 1,1lo
 (Ω,Rn).If
|Df(x)|n ≤ K|Jf(x)|almost everywhere in Ω for some 1 ≤ K <∞, then f ∈W 1,nlo
 (Ω,Rn).

Proof . By Lemma 5.3, |Jf(x)| ≤ µ′
f(x) almost everywhere in Ω. The 
laimfollows be
ause µ′

f ∈ L1lo
(Ω), by Proposition 4.1. 25.12 Lemma. Let f : Ω → Ω′ be a homeomorphism, f ∈ W 1,1lo
 (Ω,Rn), andlet u : Ω′ → [0,∞) be Borel measurable. Then
∫

Ω

u(f(x))|Jf(x)| ≤
∫

Ω′

u.

Proof . Let a > 1 and set Gj = {y ∈ Ω′ : aj < u(y) ≤ aj+1} for j ∈ Z.Then Ω′ \⋃Gj = {y ∈ Ω′ : u(y) = 0}. Thus, by Proposition 4.1 and Lemma
57



5.3,
∫

Ω

u(f(x))|Jf(x)| =

∫

f−1(∪Gj)

u(f(x))|Jf(x)|

=
∑

∫

f−1(Gj)

u(f(x))|Jf(x)|

≤
∑

∫

f−1(Gj)

aj+1µ′
f(x) dx

≤
∑

aj+1|Gj| ≤ a
∑

∫

Gj

u dy = a

∫

Ω′

u.Let a→ 1 to 
omplete the proof. 25.13 Lemma. Let f : Ω → Ω′ be a homeomorphism, f ∈ W 1,nlo
 (Ω,Rn)and |Df(x)|n ≤ K|Jf(x)| almost everywhere in Ω. If u is C1 on Ω′, then
u ◦ f ∈W 1,nlo
 (Ω) and

∫

Ω

|∇(u ◦ f)|n ≤ K

∫

Ω′

|∇u|n .

Proof . Clearly u ◦ f is absolutely 
ontinuous on almost all lines parallel tothe 
oordinate axes in Ω be
ause f is and u is lo
ally Lips
hitz. Be
ause
u ◦ f is lo
ally bounded, it thus su�
es to show the lo
al n-integrability of
|∇(u ◦ f)| and the asserted inequality. Let f̃ be as in the proof of Lemma5.3. Then f̃ is di�erentiable almost everywhere and Df(x) = Df̃(x) almosteverywhere in G (see Remark 5.8). Thus, using the usual 
hain rule andProposition 11.1, we see that

|∇(u ◦ f)(x)|n = |∇u(f(x))Df(x)|n
≤ |Df(x)|n|∇u(f(x))|n ≤ K|Jf(x)||∇u(f(x))|nalmost everywhere in G. It follows that this inequality holds almost every-where in Ω. Use Lemma 5.12 to 
omplete the proof. 2Proof of 3) ⇒ 1) in Theorem 5.1. Let B = Bn(x0, r0) ⊂ 2B ⊂ Ω, andde�ne l, L as in the proof of Theorem 2.1, see Figure 5. We may again assume
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that L ≥ 2l. By Corollary 5.11, f ∈W 1,nlo
 (Ω,Rn). De�ne
u(y) =







1 if |y − f(x0)| ≤ l

0 if |y − f(x0)| ≥ L

log
1

|y − f(x0)|
− log

1

L

log
L

l

if l ≤ |y − f(x0)| ≤ L ,and set uε(y) = −
∫

B(y,ε)
u(z)dz for ε > 0. Then uε is C1 by Lemma 4.22 and

f

L

f(x) lΩ

x r

f(B)

B Figure 5: f(B(x, r)
)thus, by Lemma 5.13, uε ◦ f ∈W 1,nlo
 (Ω) and

∫

Ω

|∇(uε ◦ f)|n ≤ K

∫

Ω′

|∇uε|n . (23)Next ∫

Ω′

|∇uε|n →
∫

Ω′

|∇u|n = ωn−1

(
log L

l

)1−n (24)when ε → 0 by Lemma 4.22 and dominated 
onvergen
e (also by Lemma4.22 and Lemma 4.23). Here ωn−1 is the (n− 1)-dimensional measure of theunit sphere.Noti
e that f−1(Bn(f(x0), l)) is a 
onne
ted set 
ontaining x0 and its
losure interse
ts Sn−1(x0, r). Furthermore, f−1(Rn\B(f(x0), L)) has an open
omponent G whose 
losure interse
ts both Sn−1(x0, r) and Sn−1(x0,
3r
2
).Wemay then sele
t 
ontinua E ⊂ f−1(Bn(f(x0), l)) and F ⊂ G, both of diameterat least r0/4 so that uε = 1 on E and uε = 0 on F for all su�
iently small

ε. Thus ∫

Ω1

|∇(uε ◦ f)|n ≥ δn > 0 (25)59



for all su�
iently small ε > 0 be
ause of the size of the 0- and 1-sets of uεand the fa
t that u ◦ f ∈ W 1,1(2B); noti
e that the proof of Theorem 2.12only assumed a Poin
aré inequality, whi
h holds in our setting by Corollary4.24.A bound on L/l and so also quasi
onformality of f follow by 
ombining(23), (24) and (25). 25.14 Remarks. 1) Regarding the relationship between the 
onstants Hand K in parts 1) and 3) of Theorem 5.1, we have the estimates K ≤
Hn−1 and H ≤ exp(CnK

1/(n−1)).The �rst of these is sharp and 
ontained in Corollary 4.28 and these
ond follows from the proof of Theorem 5.1 above. The se
ond es-timate 
an be improved to Hf (x) ≤ K almost everywhere, but, forexample, for the simple planar quasi
onformal mapping de�ned by
f(x, y) = (x, 2y) in the upper 
losed half plane and by f(x, y) = (x, y/2)in the lower half plane, one has K = 2 and H = 4. On the other hand,one 
an 
onstru
t examples (in the plane [19℄) that show the sharpnessof the given global bound on H.2) Noti
e that the analyti
 de�nition requires the pointwise inequality atalmost every point. One 
ould then expe
t that the metri
 de�nition
ould also be slightly relaxed. This is indeed the 
ase in the sense thata homeomorphism f : Ω → Ω′ satis�es

f ∈W 1,nlo
 (Ω,Rn) and |Df(x)| ≤ K min
|h|=1

|Df(x)h|almost everywhere if and only if lim infr→0Hf (x, r) < ∞ outside aset of σ-�nite (n − 1)-measure and lim infr→0Hf(x, r) ≤ K almosteverywhere. Above, lim sup instead of lim inf naturally works as well.6 K-quasi
onformal mappingsLet us 
all from now on a homeomorphism f : Ω → Ω′ with f ∈W 1,1lo
 (Ω,Rn)and
|Df(x)|n ≤ K|Jf(x)| a.e. in Ω

K-quasi
onformal (K-q
) a

ording to the analyti
 de�nition. We will typ-i
ally abuse the notation and only talk about K-quasi
onformal mappingsbelow. Above, Ω,Ω′ ⊂ Rn are domains and we assume that n ≥ 2. Noti
ethat ea
h 
onformal f is 1-q
. 60



6.1 Remark. If f is K-q
, then(i) f is di�erentiable almost everywhere,(ii) f ∈W 1,plo
 (Ω,Rn) for some p = p(n,K) > n,(iii) either Jf(x) > 0 a.e. in Ω or Jf (x) < 0 a.e. in Ω ,(iv) f is lo
ally Hölder 
ontinuous,(v) |f(E)| =
∫

E
|Jf | whenever E ⊂ Ω is measurable,(vi) |f(E)|

|f(Q)| ≤ C

( |E|
|Q|

)α whenever E ⊂ Q ⊂ 2Q ⊂ Ω, where
C = C(n,K), 0 < α = α(n,K).All this follows by 
ombining our previous results.By Theorem 3.6 we know that quasi
onformal mappings form a group.It turns out that the analyti
 de�nition allows us to give sharp estimates onthe asso
iated 
onstants of quasi
onformality.6.2 Theorem. Let f1 : Ω1 → Ω2 be K1-q
 and f2 : Ω2 → Ω3 be K2-q
.Then f2 ◦ f1 : Ω1 → Ω3 is K1K2-q
.

Proof . We already know that f2 ◦ f1 is quasi
onformal be
ause the threedi�erent de�nitions (in Theorem 5.1) give the same 
lass of mappings. Thus
f2 ◦ f1 ∈ W 1,1lo
 (Ω1,R

n) (and even W 1,plo
 (Ω1,R
n) for some p > n). Now f2 isdi�erentiable almost everywhere in Ω2, f1 is di�erentiable almost everywherein Ω1, and be
ause f1 
annot map a set of positive measure to a set of measurezero, we 
on
lude that

D(f2 ◦ f1)(x) = Df2(f1(x))Df1(x)for almost every x ∈ Ω1. In parti
ular, for su
h a point x,
|D(f2 ◦ f1)(x)|n = |Df2(f1(x))Df1(x)|n.For almost every x ∈ Ω1,

|Df1(x)|n ≤ K1|Jf1(x)|,and for almost every y = f1(x) ∈ Ω2,

|Df2(f1(x))|n ≤ K2|Jf2(f1(x))|.61



Be
ause f1 
an not map a set of positive measure to a set of measure zero,both inequalities hold for almost every x ∈ Ω1. Thus
|D(f2 ◦ f1)(x)|n ≤ K2K1|Jf2(f1(x))||Jf1(x)| = K2K1|Jf2◦f1(x)|for almost every x ∈ Ω1. 26.3 Theorem. Let f : Ω → Ω′ be K-q
. Then f−1 : Ω′ → Ω is Kn−1-q
.6.4 Remark. The 
onstants K1K2 and Kn−1 in Theorem 6.2 and Theorem6.3 are sharp. To see this, simply 
onsider the linear quasi
onformal map-pings f1, f2, f asso
iated to the diagonal matri
es A1, A2 and A where the�rst diagonal entry of A1 is K1/(n−1)

1 , of A2 is K1/(n−1)
2 and all the rest are 1,and the n− 1 �rst diagonal entries of A are all K and the last one is 1.For the proof of Theorem 6.3 we need some elementary linear algebra:6.5 Proposition. If detA 6= 0 and |A|n ≤ K| detA|, then

|A−1|n ≤ Kn−1| detA−1| .

Proof . By Proposition 11.2 in the appendix, we �nd two orthonormal basesso that the matrix of A with respe
t to these bases is diagonal. Noti
e thatthe asso
iated 
hanges of bases preserve lenghts. Thus the operator normsof A and A−1 and the determinants of A,A−1 
an be readily read of fromthis diagonal representation D of A (see Lemma 11.4 in the appendix). Wemay assume that
D =






λ1 . . . 0... . . . ...
0 . . . λn




with |λ1| ≥ |λ2| ≥ . . . ≥ |λn| > 0. Then

D−1 =






1/λ1 . . . 0... . . . ...
0 . . . 1/λn




 .Be
ause |λ1|n ≤ K|λ1 . . . λn|, we have that |λj| ≤ K|λn| for ea
h j. Thus

|D−1|n =
1

|λn|n
=

1

|λn|

(
1

|λn|

)n−1

≤ Kn−1

|λ1 . . . λn|
= Kn−1| detA−1|.62



2Proof of Theorem 6.3. We already know that f−1 is quasi
onformaland so f−1 ∈ W 1,nlo
 (Ω′,Rn). Also f preserves the null sets for the Lebesguemeasure and, at almost every x, f is di�erentiable with Jf (x) 6= 0. In parti
-ular, for almost every x ∈ Ω

I = D(f−1 ◦ f)(x) = Df−1(f(x))Df(x).So
Df−1(f(x)) =

[
Df(x)

]−1for almost every x ∈ Ω and so also for almost every y = f(x) ∈ Ω′. Be
ause
f is K-q
, we have |Df(x)|n ≤ K| detDf(x)|, and 
onsequently Proposition6.5 gives the 
laim. 26.6 Remark. Combining Corollary 4.25, almost everywhere di�erentiabilityof q
 mappings and Corollary 4.17 we see that ea
h K-q
 mapping is lo
allyHölder-
ontinuous:

|f(x) − f(y)|
p>n

≤ C|x− y|1−n/p
(∫

B

|Df |p
)1/p

= C |x− y|1−n/p rn/p
(

−
∫

B

|Df |p
)1/pGehring

≤ C̃|x− y|1−n/p rn/p−
∫

B

|Df |,where p = p(n,K) > n. Thus f is Hölder 
ontinuous with some exponentthat depends on K,n. It is then natural to ask for the best possible Hölderexponent.6.7 Theorem. Let f : Ω → Ω′ be K-q
. If 7B ⊂ Ω, then
|f(x) − f(y)|
diam f(B)

≤ C(n,K)

( |x− y|
diamB

)C1/K

,where C1 = C1(n), whenever x, y ∈ B.
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Proof . Let g : Ω1 → Ω2 be K-q
, let y0 ∈ Ω2 and let y ∈ Ω2 satisfy
|y − y0| < d(y0, ∂Ω2)/3. Write r = d(y0, ∂Ω2)/2. We de�ne

v(z) =







1, if |z − y0| ≤ |y − y0|
0, if |z − y0| ≥ r

log
1

|z − y0|
− log

1

r

log
r

|y − y0|
, if |y − y0| ≤ |z − y0| ≤ r .Write u = v ◦ g and extend u as zero to the exterior of Ω1. Then, as in theproof of Theorem 5.1,

∫

Ω1

|∇u|n ≤ K

∫

Ω2

|∇v|n ≤ K ωn−1

(

log

(
r

|y − y0|

))1−n

, (26)where ωn−1 is the (n − 1)-dimensional measure of the unit sphere. Supposethat we 
ould show that
∫

Ω1

|∇u|n ≥ ωn−1

(

log

(
C(n)Lg−1(y0, r)

|g−1(y) − g−1(y0)|

))1−n

. (27)Then, 
ombining (26) and (27) and the fa
t that the support of u is 
ompa
tly
ontained in Ω, we would 
on
lude that
|g−1(y) − g−1(y0)| ≤ C(n)Lg−1(y0, r)

( |y − y0|
r

)K−1/(n−1)

.Applying this to the Kn−1-q
 (see Theorem 6.3 ) mapping g = f−1 : Ω′ → Ω,the 
laim would easily follow with C1 = 1. It is not easy to establish (27),but it is not hard to prove the lower bound with some 
onstant Cn, whi
h issu�
ient for the 
laim of our theorem:Write L = Lg−1(y0, r), x0 = g−1(y0) and s = |g−1(y) − g−1(y0)|. If
−
∫

B(x0,3s)

u ≤ 2
3
,then ∫

B(x0,3s)

|∇u|n ≥ δ(n) > 0by the proof of the 
orresponding earlier estimate (Theorem 2.12); noti
ethat u = 1 on the 
ompa
t, 
onne
ted set g−1(B(y0, |y− y0|)) of diameter at64



least s. Noti
e further that u(x) = 0 on Rn \B(y0, L). Pi
k w ∈ Sn−1(y0, 2L).Then
−
∫

B(w,L)

u = 0.Now, we may assume that
−
∫

B(x0,3s)

u ≥ 2
3

and −
∫

B(w,L)

u = 0,and thus (see Figure 6)
w

3L

2L

L

L

y(  )

B

Bk−1

kB

0

x0

g−1

Figure 6: Choi
e of Bj's in the proof of 6.7
1
3
≤

k∑

j=1

|uBj
− uBj−1

| ≤
k∑

j=0

Crj

(

−
∫

Bj

|∇u|n
)1/n

≤
k∑

j=0

C̃

(
∫

Bj

|∇u|n
)1/n

≤ C̃(k + 1)
︸ ︷︷ ︸

≤c log cL
s

(n−1)/n

(
∫

S

Bj

|∇u|n
)1/n

.This gives the desired lower bound for ∫
Ω1

|∇u|n. 265



6.8 Remarks. 1) Given a domain Ω ⊂ Rn, n ≥ 2, and 
ompa
t sets E,F ⊂
Ω with E ∩ F = ∅, set

capn(E,F ; Ω) = inf
u∈A(E,F ;Ω)

∫

Ω

|∇u|n ,where
A(E,F ; Ω) =

{
u ∈ C(Ω ∪E ∪ F ) ∩W 1,nlo
 (Ω) : u ≥ 1 in E and u ≤ 0 in F} .This is 
alled the 
onformal 
apa
ity (varionational n-
apa
ity, n-
apa
ity)of E and F with respe
t to Ω. As a part of the proof of Theorem 5.1 weessentially showed the fa
t that
capn

(
f−1(E), f−1(F ); Ω

)
≤ K capn(E,F ; Ω′)whenever E,F ⊂ Ω′ are 
ompa
t and f : Ω → Ω′ is K-q
.The basi
 estimates are:(i) If E ⊂ E ′, F ⊂ F ′ and Ω ⊂ Ω′, then

capn(E,F ; Ω) ≤ capn(E
′, F ′; Ω′) .(ii) If B(x, r) ⊂ B(x,R) ⊂ Ω , then

capn
(
B(x, r), Sn−1(x,R); Ω

)
= capn

(
B(x, r), Sn−1(x,R);B(x,R)

)

≤ ωn−1
(
log R

r

)n−1 .In fa
t, the inequality 
an also be reversed:If u ∈ A(B(x, r), Sn−1(x,R);B(x,R)) is C1, then the fundamental the-orem of 
al
ulus and Hölder's inequality give
1 ≤

∫ R

r

|∇u(tw)| dt

≤
∫ R

r

|∇u(tw)|tn−1
n

−n−1
n dt

≤
(∫ R

r

dt

t

)n−1
n
(∫ R

r

|∇u(tw)|ntn−1 dt

)1/nfor every w ∈ Sn−1(0, 1). The desired inequality follows by raising bothsides of this inequality to power n and integrating over Sn−1(0, 1) withrespe
t to w. Approximation then gives the same for general test fun
-tions. 66



(iii) If E,F ⊂ B(x, r) are 
ontinua with
min{diamE, diamF}

r
≥ δ1 > 0 ,then

capn(E,F ;B(x, r)) ≥ δ(δ1, n) > 0.(iv) If Ω is bounded and E ⊂ Ω is a 
ontinuum, then
capn(E, ∂Ω; Ω) ≥ ωn−1

(

log C(n) diam Ω
diamE

)n−1This is not trivial; one uses symmetrization [11℄.One in fa
t also has the estimates [11℄
capn(E,F ; Rn) ≥ ωn−1

(log(C(n)(1 + t)))n−1given 
ontinua E,F ⊂ Rn, where t = d(E,F )
min{diam(E),diam(F )}

, and
capn(E,F ; Rn

+) ≥ capn(E,F ; Rn)/2when E,F ⊂ Rn
+.2) If we use (iv) in the proof of the Hölder-
ontinuity estimate, we see thatone 
an take C1 = 1, so that the Hölder exponent is α = 1/K. This is sharp:
f(x) = x|x|−(1−1/K) is K-q
.3) The Hölder exponent we found is thus 1/K (in terms of �H�, 1/H indimension two). By Corollary 4.25, f ∈ W 1,plo
 is lo
ally Hölder-
ontinuouswith exponent 1− n

p
. To obtain the Hölder exponent 1/K via Corollary 4.25,one would need f to be in the Sobolev 
lass W 1,pKlo
 with

pK =
nK

K − 1
.The radial mapping

f(x) = x|x|−(1−1/K)belongs to W 1,plo
 exa
tly when p is stri
tly less than this pK .6.9 Conje
ture. Let Ω,Ω′ ⊂ Rn be domains, where n ≥ 2. If f : Ω → Ω′ is
K-quasi
onformal, then f ∈W 1,plo
 for all p < pK .This holds when n = 2 by results by Astala [2℄. In higher dimensions, the
onje
ture would follow if a 
ertain 
onje
ture in 
al
ulus of variations getsproved [16℄. 67



7 Sobolev spa
es and 
onvergen
e of quasi
on-formal mappingsWe will show that quasi
onformality is stable under lo
ally uniform 
onver-gen
e in the following sense.7.1 Theorem. Let fj : Ω → Ωj be K-q
 for ea
h j ≥ 1, and suppose that
fj → f : Ω → Ω′ lo
ally uniformly. If f is a homeomorphism, then f is K-q
.7.2 Remarks. 1) In the plane, one obtains the following 
on
lusion in termsof the metri
 de�nition. Suppose that fj : Ω → Ωj are quasi
onformal interms of the metri
 de�nition withHfj

(x) = lim supr→0Hfj
(x, r) ≤ H almosteverywhere in Ω for ea
h j. If the sequen
e (fj)j 
onverges lo
ally uniformlyto a homeomorphism f : Ω → Ω′, then f is quasi
onformal with Hf(x) ≤ Halmost everywhere in Ω.To see this noti
e �rst that ea
h fj is H-q
 by Corollary 4.28. ThusTheorem 7.1 shows that f is H-q
. By Corollary 4.28 we know that fis di�erentiable at almost every x with Jf(x) 6= 0. Fix su
h an x. As inthe proof of Proposition 6.5, we may assume that Df(x) is diagonal withdiagonal entries λ1, λ2 satisfying |λ1| ≥ |λ2| > 0. Then

λ2
1 ≤ H|λ1λ2|and it follows that |λ1| ≤ H|λ2|. This implies that Hf (x) ≤ H, as desired.2) Let n ≥ 3. There is a sequen
e of q
 mappings fj : Rn → Rn sothat fj → f lo
ally uniformly, the (metri
) H-dilatations of fj are all al-most everywhere bounded by some H0 > 1 and the H-dilatation of f is notessentially bounded by H0 . Su
h examples have been found by Iwanie
 [15℄.3) The assumption that the limit fun
tion be a homeomorphism is notsuper�uous. Indeed, the sequen
e (fj)j of 1-quasi
onformal mappings de�nedby setting fj(x) = x/j 
onverges lo
ally uniformly to the 
onstant fun
tion

f(x) ≡ 0.4) One 
an 
hara
terize the 
lass of K-quasi
onformal mappings by a
ompleteness property related to Theorem 7.1. We will return to this inChapter 8.In order to prove Theorem 7.1 we need a better understanding of theSobolev spa
es than what immediately follows from the de�nition that wehave used this far. We begin by stating a 
hara
terization for the membershipin the Sobolev 
lass and by sket
hing its proof.7.3 Theorem. (De�nitions of Sobolev spa
es.) Let u ∈ Lp(Ω), 1 ≤
p <∞, Ω ⊂ Rn. Then the following are equivalent:68



1) (ACL) There is ũ ∈ W 1,p(Ω) with ũ = u almost everywhere.2) (H) There is a sequen
e (ϕj)j ⊂ C1(Ω) so that ϕj → u in Lp(Ω) and
(∇ϕj)j is Cau
hy in Lp(Ω).3) (W) For ea
h 1 ≤ j ≤ n there is vj ∈ Lp(Ω) so that

∫

Ω

u ∂jϕ = −
∫

Ω

vjϕfor ea
h ϕ ∈ C∞
0 (Ω).4) There is ũ and g ∈ Lp(Ω) so that ũ = u almost everywhere in Ω and gis an upper gradient of ũ in Ω.

Proof . (sket
h)2)⇒ 1): Passing to a subsequen
e, we may assume that (ϕj(x))j 
onvergesfor almost every x. We de�ne
ũ(x) = lim

j→∞
ϕj(x)whenever the limit exists, and set, say, ũ(x) = 0 for the remaining x ∈ Ω.Then ũ(x) = u(x) almost everywhere in Ω. By the fundamental theorem of
al
ulus applied to the fun
tions ϕj and the Hölder inequality, one obtainsabsolute 
ontinuity in Ω on the lines for whi
h both

∫

I

|∇u−∇ϕj|p −→
j→∞

0for ea
h 
ompa
t subinterval I in Ω and limj→∞ ϕj(x) exists for some x ∈ I.By the Fubini theorem, this holds for almost all lines parallel to the 
oordi-nate axes. It also easily follows that the 
lassi
al partial derivatives of ũ existalmost everywhere in Ω and that they are obtained as limits of the partialderivatives of the approximating fun
tions.1)⇒ 2): We already proved in Chapter 5 that u 
an be approximated inthis manner by Lips
hitz fun
tions, provided Ω = Rn. In this 
ase, the 
laimfollows by taking averages, see Lemma 4.22. For the general 
ase, one uses apartition of unity: 0 ≤ ψi ≤ 1, ψi ∈ C∞
0 (Ω) su
h that ∑∞

1 ψi = 1 in Ω andthe supports have bounded overlap. Considering uψi, the statement easilyfollows.1)⇒ 3): Integrate by parts, vj is the 
lassi
al partial derivative.69



3)⇒ 2): We use the (smooth) 
onvolution approximation: Let
ψ1(x) =

{

0, |x| ≥ 1

C exp
(

1
|x|2−1

)

, |x| < 1 ,where C is 
hosen so that ∫
Rn ψ1 dx = 1. De�ne
ψε(x) =

1

εn
ψ1

(x

ε

)

.If v ∈ Lplo
, set
vε(x) = (ψε ∗ v)(x) =

∫

ψε(x− y)v(y) dy ,when B(x, ε) ⊂⊂ Ω. If v ∈ Lp(Rn), then vε → v in Lp(Rn), see the proof ofLemma 4.23. Also vε(x) → v(x) when x is a Lebesgue point of u.Fix x ∈ Ω and ε > 0 small 
ompared to d(x, ∂Ω). Now
uε(x+ hei) − uε(x)

h

=
1

εn

∫

Ω

1

h

[

ψ1

(
x+ hei − y

ε

)

− ψ1

(
x− y

ε

)]

︸ ︷︷ ︸

−→
h→0

1

ε

∂ψ1

∂xi

(
x− y

ε

)

= εn
∂ψε
∂xi

(x− y)

u(y) dy

−→
h→0

∫

Ω

∂ψε
∂xi

(x− y) u(y) dyby the dominated 
onvergen
e theorem:
∫

G

∣
∣
∣
∣

1

h

[

· · ·
]

u(y)

∣
∣
∣
∣
dy ≤ 1

ε

∫

G

‖∇ψ1‖∞ |u| dy .Thus
∃ ∂uε

∂xi
(x) =

∫

Ω

∂ψε
∂xi

(x− y) u(y) dyand be
ause ψε is smooth, we see that uε is C1. Moreover, when u ∈ W 1,p,
∂uε

∂xi
(x) =

∫
∂ψε(x− y)

∂xi
u(y) dy

= −
∫
∂ψε(x− y)

∂yi
u(y) dy

=

∫

ψε(x− y) vi(y) dy .70



If vi ∈ Lp(Rn), then this 
onvolution sequen
e 
onverges to vi in Lp(Rn).When u is given, use a partition of unity to redu
e the setting to that of Rn.2)⇒ 4): Re
all that we have already shown that 2) implies 1). Pi
k aCau
hy sequen
e (ϕj)j of C1-fun
tions in the norm ‖ϕ‖Lp(Ω) + ‖∇ϕ‖Lp(Ω) sothat ϕj → u and ∇ϕj → ∇u in Lp(Ω). Then a subsequen
e of (ϕj) 
onvergesto u almost everywhere and we de�ne ũ as the pointwise limit of su
h a �xedsubsequen
e. Write E for the set where this subsequen
e does not 
onverge.We set ũ(x) = 0 when x ∈ E. We may assume that
‖∇u−∇ϕj‖Lp(Ω) ≤ 2−j .Let γ be a re
ti�able 
urve. If

lim
j→∞

∫

γ

|∇u−∇ϕj|p = 0, then lim
j→∞

∫

γ

|∇u−∇ϕj| = 0,and if further the sequen
e (ϕj(x))j 
onverges for some x ∈ γ, then the uppergradient inequality holds for the pair ũ, |∇u| along γ and along any sub
urveof γ (see (5); in fa
t (ϕj(y))j then 
onverges for all y ∈ γ). Consider then are
ti�able 
urve γ so that
∫

γ

|∇u−∇ϕj | 9 0.when j → ∞. Then there is δ > 0 so that
∫

γ

|∇u−∇ϕj| ≥ δ (28)for in�nitely many j. Now
∫

γ

∑

j

|∇u−∇ϕj | ds = ∞and ∫

Rn

(∑

|∇u−∇ϕj |
)p

≤ 1.De�ne
g = h(x) + |∇u(x)| +

∑

|∇u−∇ϕj | ,where we set h(x) to be in�nite if x ∈ E and h(x) = 0 when x /∈ E. We mayassume that g is a Borel fun
tion. It now easily follows that g is an uppergradient of ũ. 71



4)⇒ 1): This is immediate from the de�nitions. 2We now easily obtain the important weak 
ompa
tness property ofW 1,p(Ω),
p > 1. Re
all that vjk ⇀ v in Lp(Ω) refers to weak 
onvergen
e, see Subse
-tion 11.3 in the appendix.7.4 Corollary. Let (uj)j be bounded in W 1,p(Ω), 1 < p < ∞. Then thereis u ∈ W 1,p(Ω) so that ujk ⇀ u in Lp(Ω) and ∇ujk ⇀ ∇u in Lp(Ω) for asubsequen
e (ujk)k .
Proof . Both (uj)j and (∇uj)j are bounded in Lp(Ω). Thus there exist uand v = (v1, . . . , vn) in Lp(Ω) so that

ujk ⇀ u and ∇ujk ⇀ v in Lp(Ω),see Subse
tion 11.3 in the appendix. Now
∫

Ω

∂i ϕujk = −
∫

Ω

ϕ∂iujk

↓ ↓
∫

Ω

∂iϕu = −
∫

Ω

ϕviby the weak 
onvergen
e, when ϕ ∈ C1
0(Ω). Thus u ∈ W 1,p(Ω) and ∇u =

(v1, . . . , vn). 27.5 Remark. Corollary 7.4 does not extend to the 
ase p = 1. For example,when Ω = B2(0, 1) and uj(x) = min{1,max{0, jx2}}, we have that uj ⇀
u = χB2

+(0,1), where B2
+(0, 1) = B2(0, 1) ∩ {(x1, x2) : x2 > 0}. Thus the onlypotential weak limit of a subsequen
e of (uj)j is u. Moreover, our sequen
e

(uj)j is bounded in W 1,1(Ω) and u /∈W 1,1(Ω).Proof of Theorem 7.1. FixB ⊂ 2B ⊂⊂ Ω. Then fj| 3
2
B is η-quasisymmetri
with η independent of j (Corollary 3.4 and Theorem 5.1). It follows from theuniform 
onvergen
e of the mappings fj that f is η-quasisymmetri
 on 3

2
B.Be
ause B was arbitrary, we 
on
lude from Theorem 5.1 that f is K1-q
 in

Ω for some K1. It remains to be proven that we may 
hoose K1 = K.Let B = B(x, r) be as above. For ea
h ε > 0 there is jε su
h that
f(B(x, r − ε)) ⊂ fj(B) ⊂ f(B(x, r + ε)) (29)72



for j ≥ jε. Indeed, it su�
es to 
he
k that
B(x, r − ε) ⊂ f−1(fj(B)) ⊂ B(x, r + ε).The se
ond in
lusion follows using the uniform 
onvergen
e of our sequen
eand the uniform 
ontinuity of f−1 on f(3

2
B). Regarding the �rst in
lusion,noti
e that, given ε̃ there is jε̃ so that

|f−1 ◦ fj(y) − y| ≤ ε̃for all y with |x− y| = r when j ≥ jε̃. Thus the desired in
lusion follows byapplying Lemma 11.10 to
h(z) =

1

r

(
f−1 ◦ fj(rz + x) − f−1 ◦ fj(x)

)
.Be
ause f is quasi
onformal and |∂B| = 0, we 
on
lude from Corollary4.12 that |f(∂B)| = 0, Thus, it follows from Remark 6.1 and (29) that

∫

B

|Jfj
| = |fj(B)| j→∞−→ |f(B)| =

∫

B

|Jf | .Now ∫

B

|Dfj|n ≤ K

∫

B

|Jfj
| ≤Mfor some �niteM be
ause |fj(B)| → |f(B)| <∞. Moreover, there isM ′ <∞so that |fj(x)| ≤ M ′ for x ∈ B for all j. Thus the sequen
e (fj) is boundedin W 1,n(B,Rn) and so a subsequen
e 
onverges to some g ∈ W 1,n(B,Rn)weakly, i.e.

fjk ⇀ g, Dfjk ⇀ Dg in Ln(Ω) .Be
ause fj → f uniformly on B we 
on
lude that g = f . Thus
∫

B

|Df |n =

∫

B

|Dg|n ≤ lim inf
k→∞

∫

B

|Dfjk|n

≤ K lim inf
k→∞

∫

B

|Jfk
| = K

∫

B

|Jf | .Let x ∈ Ω be a Lebesgue point both for |Df(x)|n and |Jf(x)|. Then
|Df(x)|n = lim

r→0
−
∫

B(x,r)

|Df |n ≤ K lim
r→0

−
∫

B(x,r)

|Jf | = K|Jf(x)| ,and the proof is 
omplete. 273



7.6 Corollary. Let fj : B → fj(B) ⊂ Rn be K-q
. Assume that thesequen
e (fj)j is bounded in W 1,1(B; Rn). Then a subsequen
e 
onvergeslo
ally uniformly to a 
ontinuous mapping f ∈ W 1,n(Ω; Rn). If f is a home-morphism, then f is K-q
.
Proof . Fix B̃ ⊂ 2B̃ ⊂ B. By Remark 6.6

|fj(x) − fj(y)| ≤ C|x− y|1−n
p |B| 1

p
−1

∫

B

|Dfj|whenever x, y ∈ B̃ ⊂ 2B̃ ⊂ B, and so our sequen
e is equi
ontinuous on B̃.Also, ea
h fj is η-quasisymmetri
 in B̃ with some η independent of j, whi
htogether with the estimate
∫

B

|fj | ≤M <∞implies that |fj | ≤ M ′ on B̃. Invoking the Arzela-As
oli theorem we mayapply Theorem 7.1 to 
on
lude the 
laim. 2

8 On 1-quasi
onformal mappingsAs mentioned earlier, ea
h 
onformal mapping is 1-q
. Thus there are plentyof 1-q
 mappings in the plane. However, the stru
ture of global 1-q
 map-pings is simple in all dimensions n ≥ 2. This also holds for 1-quasi
onformalmappings a

ording to the metri
 de�nition, see part 1) of Remarks 5.14.8.1 Theorem. Let f : Rn → Rn be 1-q
, n ≥ 2. Then there is a 
onstant
M > 0 so that

|f(x) − f(y)| = M |x− y|for all x, y ∈ Rn.Theorem 8.1 does not extend to the 
ase n = 1 (for the metri
 de�nition)as is seen by 
onsidering the 1-quasi
onformal mapping f : R → R de�ned by
f(x) = x3. We postpone the proof of Theorem 8.1 for a while and 
ontinuewith a version of the Liouville theorem a

ording to whi
h there are very few1-q
 mappings in dimensions n ≥ 3. This result is due to Gehring.8.2 Theorem. Let Ω,Ω′ ⊂ Rn, n ≥ 3, be domains and f : Ω → Ω′ be 1-q
.Then f is the restri
tion of a Möbius transformation to Ω.74



Re
all that a Möbius transformation is a �nite 
omposition of re�e
tionswith respe
t to spheres and hyperplanes.The proof of Theorem 8.2 will be based on the usual Liouville theoremwhi
h assumes a priori regularity of the mappings in question.8.3 Theorem. (Liouville) Let Ω,Ω′ ⊂ Rn be domains, n ≥ 3, and f : Ω →
Ω′ be 1-q
, f ∈ C3(Ω) and Jf > 0 in Ω. Then f is the restri
tion of a Möbiustransformation to Ω.We omit the proof and refer the reader to [17℄ for a proof.Proof of Theorem 8.2. We may assume that Jf (x) ≥ 0 almost everywherein Ω, see Remark 5.2. Noti
e that f is lo
ally Lips
hitz and so is f−1 (bothare Hölder 
ontinuous with exponent 1 by part 2) of Remarks 6.8. Thus

|x− y|
C

≤ |f(x) − f(y)| ≤ C|x− y|when x is �xed and y is su�
iently 
lose to x; C may depend on x butit is lo
ally bounded. Consequently Jf is bounded away from zero lo
ally(almost everywhere). Be
ause f is 1-q
, we have that |Df(x)|n = Jf(x)almost everywhere with Jf(x) > 0. Fix su
h an x. We 
on
lude from basi
linear algebra (see Proposition 11.3 and Proposition 11.4 in the appendix)that
|Df(x)h| = Jf(x)

1/n|h|for ea
h h ∈ Rn. Thus
adDf(x) = Jf(x)

1−2/nDf(x)tby Proposition 11.5. Let ej be one of the 
oordinate ve
tors. Then theprevious equation shows that
adDf(x)ej = Jf (x)

1−2/n∇fj(x).Noti
e further that |∇fj(x)| = |Df(x)tej | = Jf(x)
1/n.We thus 
on
lude fromProposition 11.8 that fj is n-harmoni
 in Ω, and thus C1 by Proposition11.6. Be
ause |∇fj(x)| is (lo
ally) bounded away from zero, it follows fromProposition 11.7 that f is C∞-smooth. The 
laim thus follows from Theorem8.3.8.4 Lemma. Let f : Rn → Rn be a homeomorphism so that

f
(
Sn−1(x, r)

)
= Sn−1

(
f(x), Rx,r

)75



for all x ∈ Rn, r > 0. Then there is M > 0 so that
|f(x) − f(y)| = M |x− y|for all x, y ∈ Rn.

Proof . Let us �rst observe that lines get mapped to lines: If z is the midpoint
z yx

f(z)
f(y)

f(x)

Figure 7: Line segment is mapped to a line segmentof [x, y], then f(z) lies on [f(x), f(y)] and furthermore
|f(x) − f(z)| = |f(z) − f(y)|,as we 
an see from Figure 7. By iterating, we see that for a given line L thereis ML so that |f(x) − f(y)| = ML|x− y| whenever x, y ∈ L.

f(x)x

L

L’

r

r
ML’

r

r

ML

Figure 8: when L ∩ L′ 6= ∅Let then L and L′ be lines. Suppose �rst that L∩L′ 6= ∅. If L = L′, then
ML = ML′ . Otherwise the setting looks like in Figure 8 and thus ML = ML′ .76



If L ∩ L′ = ∅, pi
k L′′ so that L ∩ L′′ 6= ∅ and L′ ∩ L′′ 6= ∅. 2Proof of Theorem 8.1. It su�
es to show that
f
(
Sn−1(x, r)

)
= Sn−1

(
f(x), Rx,r

) (30)for all x ∈ Rn and r > 0 (Lemma 8.4 will then give the 
laim). Fix x and r.By using translations, rotations and dilations, we may assume that x = 0,
r = 1, f(e1) = e1 and B(0, 1) ⊂ f(B(0, 1)).Set
W =

{
f : Rn → Rn : f is 1-q
 , f(0) = 0, f(e1) = e1 and B(0, 1) ⊂ f(B(0, 1))

}De�ne a = supf∈W |f(B(0, 1))|. Then a < ∞ be
ause ea
h su
h f is η-qswith a �xed η and so f(B(0, 1)) ⊂ B(0, η(1)).We will show that a = |B(0, 1)|. Clearly a ≥ |B(0, 1)|. Suppose a >
|B(0, 1)| and pi
k a sequen
e (fj)j of mappings in W so that |fj(B(0, 1))| →
a. Then (fj) is bounded in W 1,n(2B). Indeed

fj(B(0, 2)) ⊂ B(0, η(1)η(2)),and so ∫

2B

|Df |n ≤
∫

2B

|Jf | ≤ c0.Thus, by Corollary 7.6, fjk → g uniformly in B(0, 3/2) for some mapping
g and some subsequen
e (fjk)k. Be
ause fjk(0) = 0 and fjk(e1) = e1 andea
h fjk is η-quasisymmetri
, it follows from the uniform 
onvergen
e that
g is a homeomorphism. Invoking Corollary 7.6 again, we 
on
lude that g is1-q
. As in the proof of Theorem 7.1, we see that B(0, 1) ⊂ g(B(0, 1)) (andthat |g(B(0, 1))| = a). Thus g ∈W . Noti
e that g(B(0, 1))\B(0, 1) 
ontainssome non-trivial open set U be
ause |g(B(0, 1))| = a > 1. Clearly |g(U)| > 0.Consider h = g ◦ g. Now h ∈W and

|h(B(0, 1))| = |g
(
g(B(0, 1))

)
| ≥ |g(B(0, 1)) ∪ g(U)| ≥ a + |g(U)| > a,whi
h 
ontradi
ts the de�nition of a.We have proven that a = |B(0, 1)|. Returning to our �xed mapping f, thisshows that |f(B(0, 1))| = |B(0, 1)|. By assumption, B(0, 1) ⊂ f(B(0, 1)),and we 
on
lude that f(B(0, 1)) = B(0, 1). It follows that f(B(x, r)) =

B(f(x), Rx,r) for all x, r. This implies (30). 277



8.5 Remark. The proof of Theorem 8.1 was based on a 
ompa
tness argu-ment. In fa
t, 
ompa
tness 
an be used to 
hara
terize quasi
onformality inthe following sense.We 
all a mapping T : Rn → Rn similarity if there is a 
onstant λ > 0 sothat |T (x)−T (y)| = λ|x−y| for all x, y ∈ Rn. Next, we say that a family F ofhomeomorphisms f : Rn → Rn is 
omplete with respe
t to similarities if, forea
h f ∈ F and all similarities T, S, the 
omposite mapping g = T ◦f ◦S alsobelongs to F . We 
all a homemorphism f : Rn → Rn normalized if f(0) = 0and f(e1) = e1, where e1 is the unit ve
tor in the x1-dire
tion. Then thefamily F is said to satisfy the 
ompa
tness 
ondition if every in�nite set ofnormalized mappings in F 
ontains a subsequen
e whi
h 
onverges lo
allyuniformly to a homeomorphism.We have the following result: Let a family F of homeomorphisms f :
Rn → Rn, n ≥ 2, be 
omplete with respe
t to similarities. Then F satis�esthe 
ompa
tness 
ondition if and only if there is 1 ≤ K < ∞ so that ea
h
f ∈ F is K-q
.The above statement is not hard to prove using the results and ideasgathered this far. The 
ompa
tness 
ondition for K-q
 mappings followsusing Corollary 7.6 and the normalization on
e we re
all that ea
h of themappings f is η-quasisymmetri
 with a �xed η. For the 
onverse, one �rstproves that there is H <∞ so that Hf(x, r) ≤ H for ea
h f ∈ F , all x ∈ Rnand every r > 0 and then applies the equivalen
e of the metri
 and analyti
de�nitions.Here is a sket
h of a proof of the estimate onHf(x, r). By the 
ompa
tnessproperty it easily follows that there is H < ∞ so that |f(x)| ≤ H for ea
hnormalized f ∈ F and all x ∈ Sn−1(0, 1). Given f ∈ F , x, and r > 0, pi
k
y ∈ Sn−1(x, r) that realizes lf (x, r). Map e1 to y and 0 to x using a similarity
S, f(x) to 0 and f(y) to e1 using a similarity T, and apply the above boundto g = T ◦ f ◦ S.9 Mapping theoremsWe begin by dis
ussing the planar setting. It is 
onvenient to use 
omplexnotation: we identify R2 with C and write a point z ∈ C as z = x + iy,where x, y are real. Let f ∈ W 1,1lo
 (Ω; C) be 
ontinuous, where Ω ⊂ C is adomain. Writing f(z) = u(z) + iv(z) with u, v real-valued, we noti
e thatboth u and v have, at almost every z, partial derivatives ux, uy, vx, vy withrespe
t to x, y. Then

∂xf(z) = ux(z) + ivx(z),

∂yf(z) = uy(z) + ivy(z).78



We will employ the derivatives ∂f, ∂f de�ned by
∂f(z) =

1

2
(∂xf(z) − i∂y(f)),

∂f(z) =
1

2
(∂xf(z) + i∂y(f)).Re
alling the Cau
hy-Riemann equations

ux = vy, uy = −vx,we noti
e that ∂f(z) = 0 if f is analyti
. In fa
t, for a 
ontinuous f ∈
W 1,1lo
 (Ω; C), ∂f(z) = 0 almost everywhere only when f is analyti
.Let us further denote by ∂αf(z) the derivative of f in the dire
tion eiα (ifit happens to exist). In the real notation, this is simply Df(x, y)(cosα, sinα)if f is di�erentiable at the point (x, y) and it is easy to 
he
k that, in our
omplex notation,

∂αf(z) = ∂f(z)eiα + ∂f(z)e−iα. (31)In fa
t, one has for ea
h h ∈ C

Df(z)h = ∂f(z)h + ∂f(z)h,where h is the 
omplex 
onjugate of h (for h = x + iy, h = x − iy). Now
∂αf(z) has maximal length when the two ve
tors in the sum (31) point tothe same dire
tion, i.e. when

α + arg ∂f(z) = −α + arg ∂f(z)(modulo 2π), and minimal length when these two ve
tors point to oppositedire
tions. Here argw denotes the argument of a 
omplex number w. Thusthe maximal dire
tional derivative has the value
|∂f(z)| + |∂f(z)|and 
orresponds to the 
hoi
e

α =
1

2
(arg ∂f(z) − arg ∂f(z))and one has the minimal value
||∂f(z)| − |∂f(z)||79




orresponding to
α =

π

2
+

1

2
(arg ∂f(z) − arg ∂f(z)).Moreover,

|Jf(z)| = |(|∂f(z)| + |∂f(z)|)(|∂f(z)| − |∂f(z)|)|

= ||∂f(z)|2 − |∂f(z)|2|.9.1 Theorem. Let µ : C → C satisfy ||µ||L∞ < 1. Then there is a quasi
on-formal mapping f : C → C so that
∂f(z) = µ(z)∂f(z)almost everywhere.This is a very strong existen
e theorem. Noti
e that Jf(z) 6= 0 almosteverywhere be
ause f is quasi
onformal. Thus the dis
ussion before Theorem9.1 shows that

|Df(z)|2
|Jf(z)|

=
1 + |µ(z)|
1 − |µ(z)|almost everywhere. Moreover, for almost every z,

Hf(z) =
1 + |µ(z)|
1 − |µ(z)|and the di�erential Df(z) maps disks B(z, r) 
entered at z to ellipses withmajor axes of the length

2|Df(z)|r = 2|∂f(z)|r(1 + |µ(z)|)and minor axes of the length
2|∂f(z)|r(1 − |µ(z)|).The orientation of these ellipses is not determined by µ(z). However, 
onsiderthe 
olle
tion of all ellipses E with 
enter x so that the ratio of the majorand the minor axis is Hf(z) and the angle determined by the minor axis andthe real line is

α =
1

2
arg µ(z).Then the di�erential Df(z) maps these ellipses to dis
s 
entered at f(z).We will omit the proof of Theorem 9.1 and refer the reader to [4℄ for theproof and further extensions of this existen
e theorem.Let us re
all the Riemann mapping theorem, see [23℄ for a proof.80



9.2 Theorem. (Riemann Mapping Theorem) Ea
h simply 
onne
ted do-main Ω ( C is 
onformally equivalent to the unit disk.It follows that, given simply 
onne
t, proper subdomains Ω,Ω′ of theplane, there is a 
onformal mapping f : Ω → Ω′. We 
ontinue with a quasi-
onformal version of this statement.9.3 Theorem. (Measurable Riemann Mapping Theorem) Let Ω,Ω′ (

C be simply 
onne
ted subdomains and suppose that µ : Ω → C satis�es
‖µ‖L∞ < 1. Then there is a quasi
onformal mapping f : Ω → Ω′ so that

∂f(z) = µ(z)∂f(z) a.e. in Ω.In fa
t, f is 1 + ‖µ‖∞
1 − ‖µ‖∞

-q
.
Proof . Given Ω,Ω′ and µ, we extend µ as zero to the rest of C. ThenTheorem 9.1 gives us a quasi
onformal mapping as asserted, ex
ept for therequirement that f(Ω) = Ω′. In any 
ase, f(Ω) is a simply 
onne
ted propersubdomain of C, and thus the usual Riemann mapping theorem provides uswith a 
onformal mapping g : f(Ω) → Ω′. Setting f̃ = g ◦ f, it is easy to
he
k using the �
hain rules�

∂(g ◦ h) = ∂g(h)∂h + ∂g(h)∂h,

∂(g ◦ h) = ∂g(h)∂h+ ∂g(h)∂h,that f̃ has all the required properties. 2We dedu
e from Theorem 8.2 that there is no Riemann mapping theoremin higher dimensions.9.4 Corollary. Let f : Bn → f(Bn) ⊂ Rn be 1-q
, n ≥ 3. Then f(Bn) is aball or a half spa
e.One 
ould still hope for a �quasi
onformal Riemann mapping theorem�for n ≥ 3. Unfortunately, this hope is futile:9.5 Example. Let Ω ⊂ R3 be as in Figure 9. Then there is no quasi
onfor-mal mapping f : B3(0, 1) → Ω.
81



Ft
E

Ω

−1 0 x1

2g(t)=t

Figure 9: Domain Ω of the example 9.5
Reason : Suppose there is a quasi
onformal mapping f : B3(0, 1) → Ω. Pi
ka 
ir
le Ft of radius 2t2 around the 
usp at the level x1 = t and let E = [−1, 0]on x1-axis. Then (see Figure 10)

capn(E,Ft ; Ω) ≤ capn

(

B
(
(t, 0, 0), 2t2

)
, S2

(
(t, 0, 0) , t

)
; Ω
)

=
ω2

(

log t
2t2

)2 −→ 0 when t→ 0 .

0 x1
2t

t

t

2

Ft

Figure 10: B((t, 0, 0) , 2t2
) and S2

(
(t, 0, 0) , t

).Be
ause f is K-q
 for some K, it follows that
cap3

(

f−1(E), f−1(Ft);B
3(0, 1)

)

≤ K cap3(E,Ft ; Ω) −→ 0 when t→ 0 .82



But, on the other hand,
min

{

diam f−1(E), diam f−1(Ft)
}

d
(
f−1(E), f−1(Ft)

) ≥ 10−6for all t, and thus
cap3

(

f−1(E), f−1(Ft);B
3(0, 1)

)

≥ δ(3, 10−6) > 0.To be pre
ise, we have 
heated a bit above. Indeed, E interse
ts the boundaryof Ω and thus it is not 
lear if f−1(E) is 
ompa
t (nor even if f−1 has anextension to the points −1, 0). It is easy to �x this by repla
ing E with
Ej ⊂ E whi
h is the segment [−1 + 1/j,−1/j] with j su�
iently large.Noti
e that f−1(y) ne
essarily tends to the boundary of B3(0, 1) when ytends to ∂Ω.By the above example, not every topologi
ally ni
e Ω ⊂ Rn, n ≥ 3, isquasi
onformally equivalent to the unit ball. One does not in fa
t know anygeneral geometri
 
riteria for this equivalen
e. The following result due toGehring gives a su�
ient 
ondition for quasi
onformal equivalen
e. For aproof see [30℄.9.6 Theorem. If ∂Ω is di�eomorphi
 to Sn−1(0, 1), then there is a quasi-
onformal mapping f : Bn(0, 1) → Ω.Based on Corollary 9.4 it is natural to ask if domains in Rn, n ≥ 3, thatare K-q
 equivalent to the unit ball for a suitably small K are more regularthan one a priori expe
ts. This turns out to be true in the sense that theyare even quasisymmetri
ally equivalent to the unit ball.9.7 Theorem. Let n ≥ 3. There exists K0 = K0(n) > 1 su
h that if
f : Bn → f(Bn) ⊂ Rn is K-q
, 1 ≤ K < K0 and bounded, then f isquasisymmetri
. In parti
ular, f extends to a homeomorphism f̃ : B

n →
f(Bn).This theorem is from [3℄, [27℄. The proof heavily relies on results due toReshetnyak [23℄ that essentially give an asymptoti
 version of Theorem 8.2when the distortion K tends to 1.9.8 Remark. There are still plenty of quasi
onformal mappings. For ex-ample, there is a quasi
onformal mapping f : Bn → f(Bn) ⊂ Rn so that
|∂Ω| = ∞. See [31℄ for this. 83



10 Examples of quasi
onformal mappings10.1 Example. (Basi
 mappings)1) Linear transformations: If f : Rn → Rn is linear and invertible, then f isquasi
onformal.2) Radial stret
hings: Let f(x) = x|x|a−1 = x
|x|
|x|a, where 0 < a <∞. Then

f is K-q
, where
K =

{

an−1 if a ≥ 1

a−1 if 0 < a < 1 .In the planar setting, it is easy to establish this estimate on K by using
omplex notation. Indeed, let f : C → C, f(z) = z|z|a−1 = z(1+a)/2 z(a−1)/2.Then
∂f(z) = 1

2
(a− 1)z

1
2
(1+a)z

1
2
(a−3)

∂f(z) = 1
2
(a + 1)z

1
2
(a−1)z

1
2
(a−1) ,so

µ(z) =
∂f

∂f
=
a− 1

a+ 1

z

z
.Thus |µ(z)| = |a− 1|/(a+1), and the desired estimate follows by the dis
us-sion in the beginning of Chapter 9.The higher dimensional setting requires a bit more thinking. We leavethis to the reader with the following hints. First of all, f maps balls 
enteredat the origin to balls 
entered at the origin. Let x 6= 0. The matrix Df(x) isdiagonal when x lies on the x1-axis and the required estimate then easily fol-lows. Also, the image of B(x, r) in this 
ase is approximatively determined bythe image ellipsoid of B(x, r) under the linear transformation 
orrespondingto Df(x). Next, given x 6= 0, the image of B(x, r) under f is, modulo a rota-tion, the image of B(z, r), where z lies on the x1-axis and satis�es |z| = |x|,and f is di�erentiable at x. Combining this with the approximation fromabove gives the 
laim.3) Folding maps: Let (r, ϕ, z) be the 
ylindri
al 
oordinates of x = (x1, . . . , xn) ∈

Rn, n ≥ 2; this means that r > 0, 0 ≤ ϕ < 2π, z ∈ Rn−2, and
x1 = r cosϕ , x2 = r sinϕ and z = (x3, . . . , xn) .Let 0 < α, β ≤ 2π, and let Ωα = {(r, ϕ, z) : 0 < ϕ < α}, Ωβ = {(r, ϕ, z) :

0 < ϕ < β}. Then the mapping f : Ωα → Ωβ , (r, ϕ, z) → (r, (β/α)ϕ, z) is
K-q
, where

K =

{

(β/α)n−1 for α ≤ β

α/β for α > β .84



The estimate on K is obtained using the diagonal representation of Df(x)obtained using suitable orthonormal 
oordinates.
f

α β

Ω
Ω

α
β

Figure 11: Folding map f : Ωα → Ωβ4) Cone map: Let (R,ϕ, θ) be the spheri
al 
oordinates of (x1, x2, x3) ∈ R3;this means that R > 0, 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π, and
x1 = R sin θ cosϕ x2 = R sin θ sinϕ and x3 = R cos θ .For 0 < α ≤ π the domain Cα = {(R,ϕ, θ) : 0 ≤ θ < α} is 
alled a 
one ofangle α. The mapping f : Cα → Cβ, (R,ϕ, θ) → (R,ϕ, βθ/α) (see Fig. 12for the spe
ial 
ase where β = π/2), is K-q
 for 0 < α ≤ β < π, where

K =
β2 sinα

α2 sin β
.For β = π the quasi
onformality fails. Use similar 
oordinates as for 3) toverify the 
laim.

r= π/2

f g

β=π/2

βC  = H

α

Cα

C 8Figure 12: Maps f : Cα → Cπ/2 and g : H → C∞ .5) Cone to an in�nite 
ylinder: Let H be the half-spa
e determined by
H = Cπ/2 . Let C∞ be the in�nite 
ylinder C∞ = {(r, ϕ, x3) : r ≤ π/2}85



(in 
ylindri
al 
oordinates). Then g : H → C∞, whi
h maps the point
(R,ϕ, θ) ∈ H (spheri
al) to (r = θ, ϕ, x3 = logR) ∈ C∞ (
ylindri
al), is
π2/4-q
 ; see Figure 12. Espe
ially, for ea
h 
one Cα of angle 0 < α < π,there is a quasi
onformal mapping h : Cα → C∞.10.2 Example. (�Dust to dust�) Given n ≥ 2 and 0 < λ < n, 0 < λ′ < n,there is a K-q
 map f : Rn → Rn and Cantor sets E,E ′ of Hausdor�dimensions λ, λ′, respe
tively, so that f(E) = E ′. Here K depends on n, λ, λ′.
Reason : Let I = [0, 1]n ⊂ Rn and Ii, i = 1, . . . , 2n be the dyadi
 sub
ubesof I with side length 1

2
. Fix 0 < s < 1

2
and for ea
h i = 1, . . . 2n pi
k asimilarity mapping gi : I 7→ Ii : x 7→ sx+ ai, where ai ∈ Ii is 
hosen so thatthe 
enters of Ii and Qi = gi(I) 
oin
ide. Let

Fj =
⋃

1≤i1,i2...,ij≤2n

gi1 ◦ gi2 ◦ . . . ◦ gij (I) . (32)It is easy to see that F1 ⊃ F2 ⊃ . . . . Moreover, the 
ubes gi1 ◦ . . . ◦ gij(I)and gi′1 ◦ . . . ◦ gi′j(I) are disjoint if ik 6= i′k for some 1 ≤ k ≤ j . We de�ne aCantor set Cn
s by setting

Cn
s =

∞⋂

j=1

Fj . (33)Then the Hausdor� dimension of Cn
s is n log 1

2

log s
, see [20℄.Fix 0 < s < 1

2
and 0 < s′ < 1

2
and the 
orresponding Cantor 
onstru
tionsas above. It is easy to see that there exists a K-quasi
onformal f1 : Rn → Rnso that f1(x) = x outside I, and f1(x) = g′i ◦ g−1

i (x) if x ∈ Qi , where Kdepends basi
ally only on the ratio 1
2
−s′

1
2
−s

. For example, de�ne ψ : [−1
4
, 1

4
]n →

[−1
4
, 1

4
]n by
ψ(x) =

{
s′

s
x , when 0 ≤ q||x||max ≤ s

2
and

x
( 1

2
−s′

1
2
−s

+ s′−s
4||x||max(

1
2
−s)

) when s
2
≤ ||x||max ≤ 1

4
,and �nally set for x ∈ Ii that

f1(x) = ψ(x− bi) + bi , (34)where bi denotes the 
enter of Ii (whi
h also is the 
enter of Qi). On Ic, wede�ne f1 to be identity. It is an easy exer
ise to 
he
k that f1 satis�es thedesired properties (see Figure 13 in the two-dimensional 
ase).86



Figure 13: The initial map f1We de�ne a sequen
e of fun
tions fj indu
tively: assuming that fj isde�ned, we de�ne the mapping fj+1 by setting fj+1(x) = fj(x) outside Fjand
fj+1(x) = g′i1 ◦ fj ◦ g−1

i1
, if x ∈ gi1 ◦ · · · ◦ gij (I) (35)when x ∈ Fj. It is easy to 
he
k that fj is a homemorphism that maps Fjonto F ′

j . Moreover, be
ause ea
h gi and g−1
i is 1-q
, ea
h fj is K-q
 with the
onstant K 
orresponding to the 
onstru
tion of f1 above.It is immediate from the 
onstru
tion that the sequen
e (fj)j of K-q
maps 
onverges uniformly to a homemorphism f that maps Cs

n onto Cs′

n .From Theorem 7.1 we dedu
e that f is K-q
.10.3 Example. (Re�e
tion) Let f : Rn
+ → Rn

+ be a K-q
 map that mapsbounded sets to bounded sets. Then f is quasisymmetri
 and thus f extendsto a (quasisymmetri
) homeomorphism f̃ : R
n

+ → R
n

+. De�ne
f̂(x) =







f(x) if xn > 0

f̃(x) if xn = 0

f(x) if xn < 0 ,where x = (x1, x2, . . . ,−xn). Then f̂(x) : Rn → Rn is K-q
.
Reason : Repeat the argument we used to prove that the analyti
 de�nitionimplies the metri
 de�nition (Theorem 5.1) to see that f is quasisymmetri
(see Figure 14). For the K-quasi
onformality of f̂ it su�
es to 
he
k that
f̂ ∈W 1,nlo
 . For ea
h bounded G ⊂ Rn we have

∫

G+

|Df |n ≤ K

∫

G+

|Jf | <∞,87
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Figure 14: f : Rn
+ → Rn

+be
ause f maps bounded sets to bounded sets. Similarly, ∫
G−

|Df̂ |n <∞.Thus we only need to 
he
k that
∫

∂ifjϕ = −
∫

fj∂iϕ for all ϕ ∈ C∞
0 (Rn).This is trivial when i = 1, . . . , n − 1; almost every line parallel to the �rst

n− 1 
oordinate axes lies either in the upper half spa
e or in the lower one.For i = n, integrate by parts along lines up to boundary in both sides; theboundary term showing up gets 
an
elled be
ause f is 
ontinuous.10.4 Example. (Lifting) Let f : Rn → Rn be quasisymmetri
, n ≥ 1.Then there is a quasi
onformal mapping f̂ : Rn+1 → Rn+1 so that f̂ |Rn = f .
Reason : For n = 1 de�ne
f̂(x, y) =

(

1
2

∫ 1

0

f(x+ ty) + f(x− ty) dt,

∫ 1

0

f(x+ ty) − f(x− ty) dt

)for y > 0 and use re�e
tion (Example 10.3). This is the Beurling-Ahlforsextension.The high dimensional 
ase is hard essentially be
ause of topologi
al dif-�
ulties. The setting n = 2 is due to Ahlfors [1℄, n = 3 to Carleson [9℄ and
n ≥ 4 to Tukia and Väisälä [29℄. Noti
e that, in dimensions n ≥ 2, we
ould simply assume that f be quasi
onformal. For n = 1 one really needsto assume quasisymmetry be
ause there exist quasi
onformal mappings ofthe real line that fail to be quasisymmetri
.10.5 Example. (�Generalized lifting�) Let f : R → f(R) ⊂ R2 be qua-sisymmetri
. Then there is quasi
onformal mapping f̂ : R2 → R2 so that
f̂ |R = f . 88
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Figure 15: Conformal h : R2
+ → Ω1

Reason : (See Figure 15.) One 
an show using the fa
t that f : R → ∂Ω1 isquasisymmetri
 that Ω1 is LLC. Then the Riemann mapping theorem givesus a 
onformal mapping h : R2
+ → Ω1 and g is quasisymmetri
 by the usualarguments (we may assume that h maps bounded sets to bounded sets; seethe proof of Theorem 5.1). We 
an then extend h to a quasisymmetri
mapping h̃ : R2

+ → Ω1. Now h̃−1 ◦ f : R → R is also quasisymmetri
. Bylifting, there is a quasi
onformal mapping g : R2 → R2 so that g|R = h̃−1 ◦ f .Then f1 = h̃ ◦ g : R2
+ → Ω1 is quasisymmetri
 and f1|R = f . Repeat thesame pro
edure to obtain a quasisymmetri
 mapping f2 : R2

− → Ω2 so that
f2|R = f , and de�ne f̂ in pie
es.10.6 Remark. There are quasisymmetri
 mappings f : Rn → f(Rn) ⊂
Rn+1 that do not extend to a homeomorphism f̃ : Rn+1 → Rn+1, when
n ≥ 2.10.7 De�nition. A Jordan 
urve γ ⊂ Ĉ is a quasi
ir
le if there is a quasi-
onformal mapping f : C → C so that γ = f(S1) or γ \ {∞} = f(R).Above, Ĉ refers to the Riemann sphere (the one-point 
ompa
ti�
ationof C.) One 
an 
he
k that ea
h quasi
onformal mapping f : C → C extendsto a homeomorphism f̂ : Ĉ → Ĉ; this extension is also quasi
onformal onthe Riemann sphere.10.8 Remark. The following are equivalent:(1) γ is a quasi
ir
le(2) one of the 
omponents of C \ γ is LLC(3) both 
omponents are LLC 89



(4) If z, w, y ∈ γ and y is �between� z and w, then
|z − y| + |w − y| ≤ C|z − w|with C > 0 independent of z, w and y.

z

y w

γ

10.9 Example. (The snow�ake mapping) Take pie
ewise linear mappings
fk : [0, 1] → C as in Figure 16. Then extend the 
onstru
tion to entire R as

10 0 1

f
1

f
2

10 0 1

Figure 16: First iterations of the snow�ake mapin Figure 17 to obtain pie
ewise linear mappings f̂k : R → C. The mappings
0 1 3

f
2

0 1 3Figure 17: Extension of f2 to R
f̂k are uniformly quasisymmetri
. By Arzela-As
oli, we obtain a quasisym-metri
 mapping f : R → γ ⊂ C, where γ is a version of the von Ko
hsnow�ake 
urve. The mapping f satis�es the estimate

1

C
|x− y|

log 3
log 4 ≤ |f(x) − f(y)| ≤ C |x− y|

log 3
log 4for x, y ∈ [0, 1]. Eventually, take a quasi
onformal extension f̃ : C → C of f .90



10.10 Remarks. 1) One 
an 
hange the 
onstru
tion so that, for a given
1
2
< α ≤ 1, there is fα so that

1

C
|x− y|α ≤ |f(x) − f(y)| ≤ C |x− y|αfor x, y ∈ R.2) In higher dimensions, similar 
onstru
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tangleLet us explain why one 
annot map a square 
onformally to a re
tanglewhi
h is not a square, so that the verti
es get mapped to the verti
es. Noti
ethat this statement is a bit ambiguous. Indeed, the 
onformal mapping isa priori only de�ned in the open square and thus the meaning of verti
esbeing mapped to verti
es is not 
lear. Be
ause of the simple geometry ofboth of these domains, one 
an easily verify that any 
onformal mappingne
essarily extends to a homeomorphism of the 
losed square onto the 
losedre
tangle. Thus, we are 
laiming that there is no homeomorphism between93



a 
losed square and and a 
losed, non-square re
tangle whi
h is 
onformal inthe open square and maps the sides of the square to the sides of the re
tangle.Let us 
all the square Q and the re
tangle R and the mapping f. Bytranslating and s
aling, we may assume without loss of generality that Q =
]0, 1[×]0, 1[ and that R =]0, 1[×]0, L[ for some L > 0.We may further assumethat the verti
al sides of Q get mapped to the verti
al sides of R. Considerthe line segment Iy = {(t, y) : 0 ≤ t ≤ 1} for 0 < y < 1. Be
ause f(Iy) joinsthe verti
al sides of R, we 
on
lude that

∫

Iy

|Df(x, y)| dx ≥ L.By Hölder's inequality we dedu
e that
L2 ≤

∫

Iy

|Df(x, y)|2 dx.Integrating with respe
t to y and using the inequality
|Df(x, y)|2 ≤ Jf(x, y)that follows from the Cau
hy-Riemann equations (
f. Se
tion 1) we arrive at

L2 ≤
∫

Q

|Df(x, y)|2 dx dy ≤
∫

Q

Jf (x, y) dx dy ≤ |R|,where |R| is the area of R. Sin
e |R| = L, we 
on
lude that L ≤ 1. Theopposite inequality follows by reversing the roles of Q and R in the aboveargument.11.2 Some linear algebraLet A be a n× n-matrix. The operator norm of A is de�ned by
|A| = sup

|h|=1

|Ah|,where |h|, |Ah| are the eu
lidean lengths of the given ve
tors. Sometimes onealso uses the norm
||A||HS =

√
∑

i,j

a2
ij
alled the Hilbert-S
hmidt norm. These two norms are 
learly equivalent.94



11.1 Proposition. For ea
h h ∈ Rn, we have that
|hA| ≤ |A||h|.To see that this estimate holds, noti
e �rst that
|hA| = |Atht|.It thus su�
es to show that |At| ≤ |A|. To this end, 
hoose a unit ve
tor

h ∈ Rn so that |Ath| = |A|. Now
|At|2 =< Ath,Ath >=< AAth, h >≤ |A||Ath||h| ≤ |A||At|,and the 
laim follows.Noti
e that we a
ually proved above that |At| ≤ |A|. Re
alling that

(At)t = A, we arrive at the equality
|At| = |A|. (36)We 
ontinue with a result a

ording to whi
h linear mappings 
an alwaysbe represented by diagonal matri
es.11.2 Proposition. Let L : Rn → Rn be a linear mapping. Then there areorthonormal bases {v1, . . . , vn} and {w1, . . . , wn} so that the matrix of L withrespe
t to these bases is diagonal.

Proof . Pi
k v1, with |v1| = 1, so that |Lv1| = sup|h|=1 |Lh|. If |Lv1| = 0,then the zero matrix will do (use then the standard bases). We will take
w1 = Lv1

|Lv1|
. Assume for simpli
ity that |Lv1| = 1.Claim: If v⊥v1, then Lv⊥Lv1.Suppose not. We 
an assume that |v| = 1 and that 〈Lv, Lv1〉 > 0. Then

Lv = cLv1 +w for some c > 0, where w⊥Lv1. Thus |L(v1 + εv)| ≥ 1 + cε for
ε > 0. Now

|L(v1 + εv)|
|v1 + εv| ≥ 1 + cε√

1 + ε2
=

1 + 2cε+ c2ε2

1 + ε2
> 1,when ε > 0 is small, whi
h 
ontradi
ts the fa
t 1 = |Lv1| = sup|h|=1 |Lh|.This proves the above 
laim.Then pi
k v2 with |v2| = 1 and so that

|Lv2| = sup
|h|=1,h⊥v1

|Lh|.Repeat the argument as in the �rst step. After n steps, we have found therequired basis. 2We dedu
e the following familiar property of linear transformations.95



11.3 Proposition. If L : Rn → Rn is linear and one-to-one, then L mapsballs to ellipsoids.
Proof . By the linearity of L, it su�
es to show that L(B

n
(0, 1)) is an ellip-soid. Relying on the pre
eding proposition, we may assume that the matrix
orresponding to L is diagonal. Sin
e L is one-to-one, the diagonal entries ofthis matrix are non-zero. The 
laim follows. 2Let us re
all the standard fa
t that, under a linear transformation, themeasure of the image of a set E is obtained by multiplying the measure of

E by the absolute value of the determinant of the matrix representing thelinear transformation.11.4 Proposition. We have
|AE| = | detA||E|for ea
h measurable set E.Noti
e that our 
laim is trivial when A is diagonal. Thus the previousproposition essentially gives our 
laim. The only problem is that one wouldneed the fa
t that the determinant does not depend on the 
hoi
e of theorthonormal bases involved. A rigorous elementary proof of our 
laim 
anbe found in [24℄.To ea
h n × n- matrix A we asso
iate the adjun
t matrix adA, de�nedby setting
(adA)ji = detA′

ij ,where (adA)ji refers to the entry of adA at row i and 
olumn j and A′
ij isthe matrix obtained from A by repla
ing the entry at row i and 
olumn jwith 1 and all the other entries in the 
orresponding row and 
olumn by 0.If A is invertible, then adA = A−1 detA, and, more generally,

A adA = I detA, (37)where I is the identity matrix.11.5 Proposition. Let λ > 0 and suppose that A satis�es
|Ah| = λ|h|for all h ∈ Rn. Then

adA = (detA)1−2/nAt.96



Proof . Clearly |AE| = λn|E| for ea
h measurable set. Thus Proposition11.4 shows that
λ = (detA)1/n. (38)Write B = 1

λ
A. Then |Bh| = |h| for all h ∈ Rn, and so |B| = 1. From (36)we 
onlude that also |Bt| = 1.Fix h with |h| = 1. Then

1 =< Bh,Bh >=< BtBh, h >,and be
ause
|BtBh| ≤ |Bt||B||h| = 1,we 
on
lude that BtBh = h. It follows that B−1 = Bt.Now

At = λBt = λB−1 = λ2A−1. (39)Combining (39) with (37) and (38) we 
on
lude that
adA = A−1 detA = (detA)1−2/nAt,as desired. 2

11.3 Lp-spa
esRe
all that Lp(Ω), 1 ≤ p <∞, 
onsists of (equivalen
e 
lasses) of measurablefun
tions u with ∫

Ω

|u|p <∞.We write
||u||Lp = ||u||p :=

(∫

Ω

|u|p
)1/p

.Furthermore, L∞(Ω) 
onsists of those measurable fun
tions on Ω that areessentially bounded. Then ||u||L∞ = ||u||∞ is the essential supremum of |u|over Ω. If 1 < p <∞, we set p′ = p/(p−1), and we de�ne 1′ = ∞.With thisnotation, we have the Minkowski
||u+ v||p ≤ ||u||p + ||v||pand Hölder

||uv||1 ≤ ||u||p||v||p′97



inequalities.One often needs the following spheri
al 
oordinates. Given a Borel fun
-tion u ∈ L1(Bn(0, 1)) we have that
∫

B(0,1)

u =

∫

Sn−1(0,1)

∫ 1

0

u(tw)tn−1 dtdw.We say that a sequen
e (ui)i 
onverges to u in Lp(Ω) if all these fun
tionsbelong to Lp(Ω) and if ||u−ui||p → 0 when i→ ∞.We then write ui → u in
Lp(Ω). If ui → u in Lp(Ω), then there is a subsequen
e (uii)k of (ui)i whi
h
onverges to u pointwise almost everywhere. For 1 ≤ p < ∞, 
ontinuousfun
tions are dense in Lp(Ω) : given u ∈ Lp(Ω) one 
an �nd 
ontinuous uiwith ui → u both in Lp(Ω) and almost everywhere. This 
an easily seen by�rst approximating u by simple fun
tions, then approximating the asso
iatedmeasurable sets by 
ompa
t sets and �nally approximating the 
hara
teristi
fun
tions of the 
ompa
t sets by 
ontinuous fun
tions.The dual of Lp(Ω) is Lp/(p−1)(Ω) when 1 < p <∞. Then

||u||p = sup
||ϕ|| p

p−1
=1

||uϕ||1.One of the inequalities easily follows by Hölder's inequality and the other by
hoosing ϕ to be a suitable 
onstant multiple of |u|p−1.We also need the following weak 
ompa
tness property: if (uj)j is abounded sequen
e in Lp(Ω), 1 < p < ∞, then there is a subsequen
e (ujk)kand a fun
tion u ∈ Lp(Ω) so that
lim
k→∞

∫

Ω

ujkϕ =

∫

Ω

uϕfor ea
h ϕ ∈ Lp/(p−1)(Ω). We then write
uuk

⇀ u.This notation should in prin
iple in
lude the exponent p, but the exponentin question is typi
ally only indi
ated when its value is not obvious. Thisfun
tion u, 
alled the weak limit, is unique and satis�es
||u||p ≤ lim inf

k→∞
||ujk||p.The existen
e of the weak limit u follows from the fa
t that Lp(Ω), 1 <

p < ∞, is re�exive. Furthermore, the norm estimate on u is a 
onsequen
eof a general result a

ording to whi
h a norm is lower semi
ontinuous with98



respe
t to the asso
iated weak 
onvergen
e. In general, weak 
onvergen
e isde�ned by 
onsidering bounded linear mappings T : X → R; in the 
ase of
Lp(Ω), 1 < p < ∞, they 
an be identi�ed with elements of Lp/(p−1)(Ω). If
vj = (vj1, · · · , vjn) ∈ Lp(Ω), then

vj ⇀ umeans that
vji → uifor ea
h 1 ≤ i ≤ n.When we apply the above to a sequen
e Aj(x) of n×n-matrix fun
tions,we 
on
lude that the boundedness in Lp(Ω), 1 < p < ∞ of the sequen
e

(|Aj(x)|)j guarantees the existen
e of an n×n-matrix fun
tion A(x) ∈ Lp(Ω)so that the rows (or 
olumns) of a subsequen
e of (|Aj(x)|)j 
onverge weaklyto the 
orresponding rows (or 
olumns) of A(x). Noti
e that boundednessabove is independent of the initial norm (like the operator or Hilbert-S
hmidtone).Then ||A||p ≤ Cn lim infk→infty ||Ajk||p. In fa
t, one 
an show that
||A||p ≤ lim inf

k→infty
||Ajk||p;the Lp-norms generated by the operator or Hilbert-S
hmidt norms are equiv-alent and so the asso
iated 
on
epts of weak 
onvergen
e 
oin
ide.11.4 Regularity of p-harmoni
 fun
tionsLet Ω ⊂ Rn be a domain. We say that a 
ontinuous fun
tion u ∈W 1,p

loc (Ω) is
p-harmoni
, 1 < p <∞, if

∫

Ω

< |∇u|p−2∇u(x),∇ϕ > dx = 0for ea
h ϕ ∈ C∞
0 (Ω).11.6 Proposition. Ea
h fun
tion u, p-harmoni
 fun
tion in Ω, is (lo
ally)

C1,α-smooth, where α = α(p, n).Noti
e that when p = 2, our p-harmoni
 fun
tion is in fa
t harmoni
 andthen C∞-smooth. In general, for p 6= 2, this is not true. The di�
ulty lies inthe fa
t that our equation is the degenerate. This is in fa
t the only obsta
leas the the next proposition asserts.11.7 Proposition. Let u be p-harmoni
 in Ω and C1 with |∇u(x)| > 0(lo
ally). Then u is C∞-smooth. 99



Proofs for the regularity results above 
an be found for example in thepaper �Regularity of the derivatives of solutions to 
ertain degenerate ellipti
equations� by J.L.Lewis in Indiana Math. J. 32 (1983), pp. 849�858.In the planar setting, the 
oordinate fun
tions of a 
onformal mappingare harmoni
. In higher dimensions, they turn out to be n-harmoni
. Thisis based on the following result.11.8 Proposition. Let f ∈ W 1,n−1
loc (Ω,Rn) and ϕ ∈ C∞

0 (Ω), where Ω ⊂ Rnis a domain. Let ej be one of the 
oordinate ve
tors. Then
∫

Ω

< adDf(x)ej,∇ϕ(x) > dx = 0.If f is C2-smooth, the 
laim follows from a dire
t 
omputation usingthe de�nition of adDf(x) and the fa
t that, for a C2-smooth fun
tion u,
∂j∂ju(x) = ∂i∂ju(x). To relax the regularity assumption to f ∈W 1,n−1

loc (Ω,Rn),approximate f by smooth mappings and observe that the entries of adDf(x)ane (n−1)-fold produ
ts of the partial derivatives of the 
oordinate mappingsof f.11.5 Fixed point theorem and related resultsThe following result is the Brouwer �xed point theorem.11.9 Theorem. If G : B(0, 1) → B(0, 1) is 
ontinuous, then there is at leastone �xed point x ∈ B(0, 1) (i.e. G(x) = x).Noti
e that, in dimension one, the 
laim easily follows from the meanvalue theorem. The higher dimensional version 
an be rather easily redu
edto the �Hairly Ball Theorem� a

ording to to whi
h an even dimensionalsphere does not admit any 
ontinuous �eld of non-zero tangent ve
tors. Thisredu
tion and a surprisingly simple analyti
 proof of this 
lassi
al topologi
alresult 
an be found in the paper �Analyti
 proofs of the `hairy ball theorem'and the Brouwer �xed point theorem,� by John Milnor in the Ameri
anMathemati
al Montly, Vol. 85, No. 7, pp. 521�524.We employ the �xed point theorem to prove the following result that
ould also be established using degree theory.11.10 Lemma. Let h : B
n
(0, 1) → Rn be a 
ontinuous mapping satisfying

|h(x) − x| ≤ ε when |x| = 1.Then B(0, 1 − ε) ⊂ h
(
B(0, 1)

). 100



Proof . Assume that there is x0 ∈ B(0, 1 − ε) \ h(B(0, 1)) and de�ne
F (x) =

{

h(2x) when |x| < 1
2

(
2|x| − 1

)
x
|x|

+ 2
(
1 − |x|

)
h
(
x
|x|

) when 1
2
≤ |x| ≤ 1 .Then F is 
ontinuous, F (B(0, 1/2)

)
= h

(
B(0, 1)

) and F (x) = x if |x| = 1.Also, for 1
2
≤ |x| ≤ 1 we see that F (x) ∈

[
x
|x|
, h(x)
|h(x)|

], and so |F (x)| > 1−ε (seeFigure 18). Thus x0 /∈ F
(
B(0, 1)

). Let g : Rn → Rn be a homeomorphism
| |
x
x

| |
x
xh

1

x

F(x)

1− ε

Figure 18: F (x) when 1
2
≤ |x| ≤ 1.so that g(x) = x if |x| = 1 and g(x0) = 0 and de�ne for x ∈ B(0, 1)

G(x) = − g
(
F (x)

)

∣
∣g
(
F (x)

)∣
∣
.Then G : B(0, 1) → {x : |x| = 1} is 
ontinuous, and if |x| = 1, then

G(x) = −x. This means that G does not have a �xed point, whi
h 
ontra-di
ts the previous Brouwer's �xed point theorem. 2The te
hniques from algebrai
 topology that are usually used to provethe Brouwer �xed point theorem also yield related results. One of them is�invarian
e of domain� whi
h is a stronger version of the previous lemma.11.11 Theorem. Let Ω ⊂ Rn be a domain and f : Ω → Rn be 
ontinuousand one-to-one. Then f(Ω) is a domain and f : Ω → f(Ω) is a homeomor-phism.Noti
e that the 
laim is trivial when n = 1. Indeed, then f is eitherstri
tly in
reasing or stri
ly de
reasing.101


