
Applicability of pulse shape analysis methods
in measurements of low energy gamma rays

from human lungs

Pertti Hallikainen
University of Jyväskylä

25.6.2015

Abstract

Pulse shape analysis methods were applied to gamma spectroscopy mea-
surements in an attempt to reduce the contribution from low-energy
Compton background events, with focus on measuring inhaled pluto-
nium from human lungs. No link between interaction depth and pulse
rise time was found with the BEGe-detector used. The human torso
phantom with plutonium-239 incorporated lungs used in the measure-
ments had an undesired americium-241 contamination. Detector prop-
erties that would better enable pulse shape analysis to enhance detector
performance are discussed.
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1 Introduction

The health hazards of working with plutonium were understood fairly quickly
after the element was first confirmed to exist in 1941. From past experiences
with radium, it was recognized that the alpha active plutonium could be
dangerous in the body even in small microgram amounts. In 1944, a tolerance
level of five micrograms of plutonium in the body was established. In 1945
this limit was reduced to one microgram [1].

Because the alpha particles emitted by plutonium are absorbed in the
body, plutonium workers’ plutonium intake could only be measured from nose
swipes and urine samples. The accompanying low energy gamma radiation
is absorbed effectively in tissue and obscured by Compton scattered gamma
rays in measured spectra, so that direct in-vivo measurements of plutonium
were not possible until the mid-1960s [2].

The need to protect radiation workers and the general public from the
harmful effects of ionizing radiation has motivated the development of whole-
body radioactivity monitors in the past decades. The first ones being built
in the 1950s, the International Atomic Energy Agency listed 181 monitors
in operation in 1969 [3]. In addition to routine monitoring, the monitors
have been used for medical diagnostics and metabolic studies of radioactive
tracers. Today commercially available whole-body counters are widely used
for nuclear safety and medical imaging.

In this master’s thesis the capabilities of modern signal processing elec-
tronics and list mode data acquisition are investigated, with special interest
in measurements of plutonium and americium from the human lungs. Pulse
shape analysis methods are applied in an attempt to distinguish background
events from true signal-like events.
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2 Theoretical aspects

2.1 Plutonium

Plutonium is a metallic radioactive element that is produced from uranium
in nuclear reactors and used in nuclear weapons, as a nuclear reactor fuel
and in nuclear batteries, for example in satellites. Most plutonium isotopes
decay through alpha radiation into uranium. 241Pu and 239Pu beta decay
into americium. Although alpha particles have short range and cannot pene-
trate deep into material, inhaled plutonium can be dangerous because alpha
particles are highly ionizing and because plutonium can stay in lungs and
deposit in bone matter for many years.

Plutonium’s alpha decay can be accompanied by low energy gamma rays
when the daughter nucleus relaxes from it’s excited state (Fig. 1). Some
plutonium isotopes beta decay into americium and neptunium. A typical
sample of plutonium contains a range of different isotopes and their respective
decay products, which themselves are also radioactive. Table 1 lists the decay
properties of a few plutonium isotopes.

Plutonium can be released into the environment from research facilities,
nuclear weapons testing, disposal of nuclear waste or from nuclear weapons
production facilities. Most of the plutonium found in nature originates from
nuclear bomb tests conducted before the 1980’s. Plutonium in the atmo-
sphere is deposited on the ground through dry and wet deposition and can
accumulate in food chains. Generally plutonium concentrations are very low,
typical reported figures are of the order of a few Bq per kilogram of soil and
a few hundred nBq per cubic meter of air.

When plutonium is inhaled, the emitted alpha particles damage lung cells,
causing lung cancer and other diseases. Part of the plutonium can enter the
bloodstream and travel to the kidneys, liver or spleen, or concentrate in
bone material, causing further damage. If ingested through contaminated
food, it passes through the body because the stomach cannot absorb it. The
biological half-life of 239Pu in the lungs is 500 days and on the bone surface
up to 50 years [4].

Metabolic models for plutonium in man are derived from animal studies
and a few studies made on man. The absorption of plutonium and other
actinides can be influenced by chemical composition, particle size, form and
mass of the ingested material, drugs and diet, among other variables. Mea-
sured absorption fractions have a wide spread of values, varying up to three
orders of magnitude even in the same species and the same chemical form of
the intake [5].
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Epidemiological methods have been used to estimate the health effects of
exposure to plutonium. Studies of plutonium workers in Los Alamos have
been unable to link exposure to higher cancer risk or mortality rates [6].
Studies of workers at the Mayak nuclear plant in the former Soviet Union
have shown increased lung cancer risks for higher plutonium doses [7]. Epi-
demiological studies’ statistical effectiveness is limited by the fact that there
are few people who have been exposed to plutonium.

Table 1: Decay properties of a few plutonium isotopes, extracted from
the Nudat database [8].

Isotope Decay mode Q-value Halflife Daughter nucleus
237Pu EC: 100 % QEC = 220 keV 45.7 d 237Np
238Pu α: 100 % Qα = 5600 keV 87.7 y 234U
239Pu α: 100 % Qα = 5200 keV 24100 y 235U
240Pu α: 100 % Qα = 5300 keV 6560 y 236U
241Pu β: 100 % Qβ = 21 keV 14.3 y 241Am
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Figure 1: Decay level scheme for 239Pu decaying to the groundstate of 235U, extracted from the Nudat database [8].
The 51.6 keV gamma ray is the gamma ray of interest because it has higher intensity than the 38.7 keV gamma ray
and is in the measurable region, unlike the 13 keV gamma ray.
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2.2 Interactions of radiation with matter

The three most important interactions of gamma rays in radiation detectors
are the photoelectric effect, Compton scattering and pair production. The
energy of the incident photon is either partially or completely absorbed in
these interactions, and the probability of a certain interaction occuring within
a certain material depends on the energy of the photon and on the properties
of the matter in question.

The mass attenuation coefficient µ/σ of an element (Fig. 2) is a measure
of how strongly the radiation is absorbed in that element. It is defined with

I(x)

I0

= e−µx = e−
µ
σ
·σx, (1)

where I0 is the original intensity of the radiation, I(x) is the intensity after the
radiation has traveled distance x in the material, µ is the linear attenuation
coefficient and σ the density of the material.

Figure 2: Mass attenuation coefficients of germanium as function of
photon energy [9].

In the photoelectric effect the photon is completely absorbed by an atom,
resulting in the atom ejecting a photoelectron. This creates a vacancy in
the atom, which is quickly filled by another electron from the other electron
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shells, generating x-ray radiation characteristic to the shell structure of the
atom. This mode of interaction is dominant for photons of relatively low
energies.

In Compton scattering, the incident photon scatters from an electron,
transferring part of the initial photon energy to the recoil electron in the
process. The scattered photon has lower energy, but can interact again.
The scattering probability increases linearly with the atomic number of the
interacting matter, as the number of available electrons increases.

Pair creation may occur when the energy of the gamma ray is above the
energy threshold required to create an electron-positron pair, namely 1.022
MeV. All the excess energy of the photon goes to the kinetic energy of these
particles and the photon is destroyed in the process. The positron eventually
annihilates with an electron, creating two 511 keV annihilation photons. This
interaction mode is most probable for photons of high energies.

The attenuation coefficient varies with the energy of the incident radiation
as the different interaction modes vary in strength with the energy (Fig. 2).
The probability for photelectric absorbtion and Compton scattering decreases
with increasing photon energy. There are discontinuous jumps at electron
shell energies when electrons from higher shells become available for the
photoelectric effect. Above the 1.022 MeV threshold when pair production
becomes available, the attenuation coefficient starts increasing.

In gamma-ray spectroscopy, information about the original radiation is
obscured by scattered photons, secondary x-ray radiation and annihilation
photons. The favorable interaction mode is where the whole energy of the
incident photon is deposited in the detector material [10].

2.3 Semiconductor detectors

The electrical conductivity of semiconductor materials falls between that of
insulators and conductors. At room temperature, a small number of electrons
are thermally excited from the valence band to the conduction band. The
energy gap between the bands is of the order of 5 eV or greater for insulators
and 1 eV for semiconductors.

The electrical conduction in seminconductors can be finely adjusted by
adding dopant materials, either electron donors or acceptors, that respec-
tively produce an excess of either electrons or holes in the material. These
are called n-type and p-type semiconductors, corresponding to either nega-
tively or positively charged primary charge carriers.

When p- and n-type semiconductors are brought into contact, the pri-
mary charge carriers from each material diffuse across the junction. Holes
and electrons join, forming a depletion region void of charge carriers at the
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junction. The fixed donor sites left behind create an electric field across the
depletion region, so that the diffusion of charge carriers eventually stops.

Semiconductor detectors consist of p- and n-type electrodes and a deple-
tion region between them. Absorption of gamma rays in the active region
generates charge carriers, both holes and electrons, which are then collected
with an electric field. The charge carriers induce a charge of opposite polar-
ity at the electrodes, which is in turn converted into a voltage pulse with a
charge sensitive preamplifier [11].

Elements with four valence electrons can accept and give electrons as eas-
ily, making them a preferred choice for semiconductor applications. Carbon
in it’s diamond form has very strong covalent bonds with an energy gap of
5.5 eV at room temperature, making it behave more like an insulator. The
remaining non-metallic elements in the carbon group, silicon and germanium,
have energy gaps of 1.11 eV and 0.66 eV at room temperature respectively,
and are the most used elements in semiconductor detectors. [12]

Germanium crystals can be manufactured with active regions centimeters
wide, while silicon crystals can not be made thicker than a few millimeters.
The wider active region is needed to detect higher energy gamma-rays. Sil-
icon can be used to detect x-rays, low energy gamma-rays and short-ranged
charged particle radiations. Germanium also has higher detection efficiency
due to it’s higher atomic number. Silicon’s higher transparency to high en-
ergy gamma-rays can be an advantage over germanium in some applications
[10].

2.4 Detector response to gamma radiation

While the generation of charge carriers at one interaction point can be con-
sidered instantaneous, the time it takes to collect the charge carriers depends
on detector geometry and resistivity, location of the interaction, gamma-ray
energy and the strength of the electric field inside the detector. When the
specifics of the detector are known, the interaction location can in principle
be deduced from the output signal [13, 14, 15].

The analysis of the detector response to deduce the interaction location
is complicated by events where the gamma ray energy isn’t absorbed in one
interaction, but charge carriers are generated at multiple interaction points.
These multi-site events are a result of Compton scattering and pair produc-
tion. Often the majority of events in full energy peaks are multi-site events,
where the full energy is captured after multiple scatterings [16].

Multi-site events are also caused by coincidence summing, where gamma
rays from the same gamma ray cascade enter the detector at the same time
and are detected as one, and in pile-up, where the measured activities are so
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high that the average time between two consecutive pulses is shorter than the
length of an individual pulse, such that the electronics of the measurement
system cannot distinguish between the two. Uncorrected pile-up results in
reduced counts in the full energy peak and summation peaks higher up in
the energy spectrum.

2.5 Pulse processing electronics

A traditional analog spectrum data acquisition system consists of a pream-
plifier, a shaping amplifier and a multi-channel analyzer. Different pulse
shaping methods are used for different applications (Fig. 3), such as fast
timing or coincidence counting. Common pulse shaping tasks include pile-
up rejection, baseline corrections and discriminating signal from background
noise.

Alternatively, a digital signal processor (DSP) can be used. The continu-
ous preamplifier pulse is digitized with a flash ADC and pulse shaping tasks
in the discrete time domain are implemented in the digital signal processor.
Digital signal processing allows pulse shaping parameters to be optimized in
software and pulse shapes to be recorded for off-line analysis. This is known
as list mode data acquisition [17].

Figure 3: Pulse processing modules needed for different spectroscopy
applications [17].
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2.6 Whole-body counting

Whole-body counting is used to measure the amount of gamma ray emitting
radionuclides in the human body, to estimate the radiation dose they give.
Typical applications include monitoring of persons occupationally exposed
to radioactive substances, routine monitoring of members of the public and
screening for internal contamination in a radiation emergency. Whole-body
counting can also give information about the route of intake and biokinetic
behavior of the radionuclides in the body.

Measuring living subjects brings with it a range of limiting factors and
uncertainties. For one, the measurement cannot last too many hours, at least
not in one sitting. Collecting enough statistics to detect low activities is not
possible without very effective detectors and shielding from background radi-
ation. Different subjects having different anatomy give rise to uncertainties
in calibration. Calculations of effective doses require one to know the time
and route of intake and the metabolism of the materials in the body, which
also introduces uncertainties [18].

Both semiconductor detectors and scintillator detectors can be used in
whole-body counters (Fig. 4). HPGe detectors are more expensive to use
because of the cooling they require, but have a superior energy resolution.
Scintillator detectors operate in room temperature and offer a better detec-
tion efficiency for applications where short measurement length is valued over
the ability to identify specific radioisotopes. NaI(Tl), CsI(Tl) and LaBr3(Ce)
are typical scintillating materials used. The use of silicon detectors for de-
tecting low energy gamma radiation in whole-body counting has also been
investigated [19].
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Figure 4: Example geometry of a whole-body measurement setup. NaI
scintillation detectors and the topmost HPGe semiconductor detector are
installed in a support ring around a motorized bed. An additional HPGe
detector is installed under the bed. The bed moves slowly during mea-
surement, so that the subject’s complete profile is measured. The whole
setup is installed in a low background chamber to reduce the amount of
background radiation [20].
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3 Statistical methods

3.1 Counting statistics

Because radioactive decay is a random process, any two identical measure-
ments will most likely not give identical results. Analysis of counting statis-
tics is needed to calculate results and estimate uncertainties from measured
spectra.

The measurement of radioactivity can be thought of as a sequence of
independent measurements, where each nucleus that has a chance to decay
represents an independent trial [10]. The probability that a gamma ray is
detected in a small time frame t is

p = εF (1− e−λt), (2)

where ε is the detector efficiency, F is gamma ray emission probability and
(1− e−λt) is the decay probability with time constant λ being a property of
the radioisotope. With n trials, the probability distribution of x successful
detections is the binomial distribution

Pn(x) =
n!

(n− x)!x!
px(1− p)n−x. (3)

When the detection probability p is small, the distribution can be approx-
imated with a Poisson distribution, and when the mean number of counts x̄
is large enough, the distribution can be further simplified to a Gaussian form

G(x) =

√
2

πx̄
e

−(x−x̄)2

2x̄ . (4)

The longer the measurement is, the closer the mean of the Gaussian distri-
bution is to the theoretical true value. The standard deviation of a Gaussian
distribution is the square root of its mean:

σG =
√
x̄. (5)

If the background count rate B changes between measurements, a best
estimate of the rate is given by the arithmetic mean. With N measured
background count rates Bi, the average background count rate is

B̄ =

N∑
i=1

Bi

N
. (6)

The experimental standard deviation of the background count rate B̄ is
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σexp.,B̄ =

√√√√ N∑
i=1

(Bi − B̄)2

N − 1
. (7)

3.2 Energy calibration

The spectrum given by a multichannel analyzer or a digital signal processor
is a spectrum of channels, each corresponding to a specific range of signal
heights. The energy calibration that relates channels to energies is done by
recognizing peaks with known gamma ray energies and then finding a linear
or quadratic relation between channels and energies. Common peaks used
for energy calibration are the 60Co 1173 keV and 1320 keV peaks, the 511
keV annihilation peak and the 1460 keV peak of 40K.

3.3 Efficiency calibration

The two ways to calculate the counts in a given peak are to either sum
directly the number of counts in the peak area or to fit an analytical function,
usually a Gaussian distribution, to the data and integrate the area under it.
Sometimes an exponential trailing edge is added to the low energy side of
the peak to account for incomplete charge collection. The sum limits are a
fixed number of channels around the peak, the integration limits a number
of Gaussian widths. Background counts under a peak of interest can be
removed by estimating a continuous background from the areas around the
peak.

An efficiency calibration is needed to convert the observed counts to a
more meaningful measure of source activity. The efficiency depends on the
intrinsic efficiency of the detector for detecting photons and the geometri-
cal efficiency of the measurement setup. For point sources the geometrical
efficiency is defined by the opening angle to the detector window, for more
complex source geometries the efficiency can be calculated with Monte Carlo
simulations.

For in vivo measurements, the efficiency calibration is done by using
phantoms with incorporated radionuclides. When the detector response to
specific levels of radiation in the phantom is known, the radioactive contents
of a measurement subject can be calculated. The accuracy of the calibration
depends on how well the geometry, absorption properties and distribution of
radioactive elements match between the calibration phantom and the subject
[10, 18].
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3.4 Limits of detection

A common problem in measurements of low activities is how to decide if
a signal is truly present in the spectrum or if a peak is caused by random
fluctuations of the background. There exist a number of standards on how
to present such decision limits [21, 22]. These concepts, most famously pre-
sented by Lloyd Currie [23], are shortly reviewed here for completeness of
this section.

For a measurement of given length, the critical limit LC is the minimum
number of counts needed for the sample to be considered to have non-zero
activity. For each limit LC there is a corresponding probability α that the sig-
nal was actually caused by random chance, called false detection probability.
False detections, or false positives, are called type I errors.

In the following it is assumed that the measured number of counts is
a random variable given by a related Gaussian distribution describing each
measurement setup. If the distribution of counts in blank background mea-
surements is known to have mean B̄ and standard deviation σB and a mea-
surement of a sample has S counts with standard deviation σS, the net counts
N = S − B̄ has standard deviation

σN =
√
σS2 + σB2. (8)

For a sample with no activity the standard deviation of the net counts
becomes

σ0 := σN=0 =
√
σB2 + σB2 =

√
2σB. (9)

Net counts in a measurement of a blank sample has probability α to exceed
the critical limit. The critical limit for net counts is given by

LC = k1−ασ0, (10)

where k1−α corresponds to the (1 − α)-quantile of the standard normal
distribution (Fig. 5).

Type II errors, false negatives, happen when a true activity is falsely
discarded as blank. The detection limit LD is the smallest net signal that
has probability β of giving a measurement result that is then discarded by
the critical limit LC . Typically α and β are chosen to be 0.05, but different
values can be used. With this definition, the detection limit is

LD = LC + k1−βσN , (11)

where k1−β corresponds to the (1-β)-quantile of the standard normal distri-
bution.
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Figure 5: At the detection limit LD the (1− β) confidence limit equals
the (1− α) detection threshold [24, 25].

When α and β are chosen to be 0.05, the mean blank count B̄ is suffi-
ciently high and the counting statistics allow the variances to be calculated
with equation (5), the expression for the detection limit can be simplified
using equations (8-11) to

LD = k2
1−β + 2LC = 2.71 + 4.65

√
B̄. (12)

The detection limit can be converted to the minimum detectable activity
AMDA with

AMDA =
LD
fεt

, (13)

where f is radiation yield per disintegration, ε is the absolute counting effi-
ciency and t is the counting time.

The minimum detectable activity is a measure of the performance of a
measurement setup. Like all statistical evaluations, it works best when there
are enough statistics. If the count rates are low, say only a few counts can
be measured in a reasonable amount of time, the real chances for type I and
II errors to happen will differ a lot from the parameters used in this model
[10, 24, 25].
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As an example use of the above formulae, let’s consider a measurement of
a sample that may contain 137Cs. The blank background sample is measured
for 3000 seconds, giving 5000 counts with an absolute counting efficiency
ε = 15%. The radiation yield per disintegration for the 661.7 keV gamma
ray of 137Cs is f = 0.851 [8]. Using equations (12) and (13), the minimum
detectable activity is

AMDA =
2.71 + 4.65

√
B̄

fεt
=

2.71 + 4.65 ∗
√

5000

0.851 ∗ 0.15 ∗ 3000s
≈ 0.866Bq. (14)
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4 Pulse shape analysis

4.1 Pulse shape analysis

The goal in pulse shape analysis is to define parameters to describe the pulse
shapes and to formulate a discrimination rule based on these parameters,
where as many signal-like events are accepted and as many background-
like events are rejected as possible. The improved peak-to-background ratio
should then allow smaller activities of radioactive materials to be found.

The typical preamplifier signal of a germanium detector features a sharp
rising edge followed by an exponential decay as the charge storing capacitor
in the amplifier discharges (Fig. 6). The amplitude of the charge pulse is di-
rectly proportional to the absorbed gamma-ray energy and the time constant
of the exponential decay is a property of the amplifier circuit. Information
about the charge collection can be looked for in the rising edge of the pulse.
Signal rise times for germanium detectors are typically below 300 ns [17, 26].

The time derivative of the charge pulse, the current pulse, gives informa-
tion about the charge collection speed. Peaks in the current pulse originate
from the highest densities of charge carriers arriving at the charge collect-
ing electrode. If there are multiple peaks, each corresponds to one cluster
of charge carriers created at one interaction location. A wider current peak
corresponds to a more spatially spread out distribution of charge carriers
[16].

16



Figure 6: Example SSE and MSE pulses with equal energy. The MSE
current pulse has much smaller amplitude compared to the SSE pulse.

While counting the number of peaks in the current pulse would be suffi-
cient in identifying multi-site events from single-site, identifying small over-
lapping peaks from signal noise can be difficult. A more effective method is to
consider the width and amplitude of the current pulse (Fig. 6). Because the
area of the current pulse is proportional to energy E, current pulses with just
one peak generally have higher amplitude A than pulses with multiple peaks.
This makes the ratio A/E an interesting parameter for rejecting multi-site
events. Similarly MSE pulses are generally wider than SSE pulses.

When measuring localized sources placed in front of the detector, the
density of interactions in the detector crystal decreases with detector depth
as the radiation is attenuated in material. Assuming the interactions of back-
ground events are evenly distributed in the detector volume, it is beneficial
to limit data collection to the events happening closest to the source. Se-
lecting a depth limit is a trade-off between detection efficiency and improved
peak-to-background ratio. The ability to implement depth limits through
pulse shape analysis would be cheaper than creating detector crystals with
application specific optimal crystal depths.

The pulse rise time tP when the signal has accumulated a percentage
P of its amplitude can be used as an indicator of interaction depth [26].
Charge generated close to the collection electrode is collected faster than
charge generated near the edges of the detector. Relating signal rise times to
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specific interaction depths requires detailed information about the detector.
Databases of pulse shapes for each interaction location can be built with

either measurements or computer simulations. A measurement setup would
consist of a tightly collimated incident beam and an additional collimated
detector for detecting 90◦ scattered gamma rays [27]. Pulse shape simulations
are done by defining the geometry of the detector, calculating the electric
field and the trajectories of charge carriers inside the detector and using the
Shockley-Ramo theorem to calculate the induced charge pulse.

Figure 7 shows T30 risetimes calculated from the simulated pulses of a
BEGe detector [26]. The z-coordinate refers to the depth of the detector and
the x-coordinate to the position along the disk shaped detector’s diameter.
The T30 risetimes vary between 0-120 ns. The speed of charge collecting
depends on the mobility of charge carriers in the semiconducting material
and the strength and geometry of the electric field. Charge generated near
the edges of the detector form slower rising pulses. The region where x is
between 26-57mm looks promising for linking interaction depth with pulse
risetime.

Figure 7: Signal rise times in nanoseconds for a BEGe detector with
3500 V operating voltage, calculated from simulated pulses in a 1 mm grid
[26]. Assuming the disk shaped crystal is completely symmetrical and has
no imperfections, the pictured middle slice gives complete information of
the rise times in the whole crystal volume.
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4.2 Rejection limit and rejection fraction

Rejecting background events from signal-like events requires a suitable pa-
rameter to describe the pulse shapes and a rejection limit to tell the different
event types apart. Ideally there would be a binary parameter, 1 for true event
and 0 for background, but since a full energy event and a background event
can produce identical pulse shapes, only a fraction rB of the background
events can ever be rejected. At the same time a fraction rS of true signal-like
events are rejected. The background rejection fraction rB can be calculated
from the background count rates before, AB,i , and after, AB,f , the rejection
rule has been applied:

rB =
AB,i − AB,f

AB,i
, (15)

Similarly, the signal rejection fraction rS is

rS =
AS,i − AS,f

AS,i
, (16)

for count rates AS,i and AS,f of the peak before and after discrimination. For
the ideal discrimination method rB = 1 and rS = 0, so that all background
events are rejected. For a more realistic but still effective method rB >> rS
should hold.

Pulse shape discrimination methods can only work if the background
events are sufficiently different from the signal events. One such case is when
signal events are dominantly SSE and background events dominantly MSE.
The discrimination rule can either be decided from a calibration measurement
and then applied to an actual measurement of the sample, or formed from
the actual measurement itself. A calibration measurement is useful when the
same rejection rule is to be used for multiple measurements, or to monitor
changes in the parameter values over time.

Figure 8 illustrates the different situations where pulse shape discrim-
ination is possible, of limited use and near impossible. The pulse shape
parameter values of background events form a continuum in the energy re-
gion of interest. The pulse shape parameter values of events in peak A are
easily separated from the background. Rejection limits can be placed above
and under the parameter values of peak B to remove some of the background
events. The variance of parameter values for peak C is larger than the vari-
ance for background events. After removing the events in the background
continuum, only few signal events are left.

The same idea holds when using multiple pulse shape parameters: the
discrimination is more effective when the value ranges for the background
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events and the events of interest do not overlap too much.

Figure 8: Sketch of the use of pulse shape parameter distributions in
finding discrimination limits. The ovals A, B and C represent higher
concentrations of events, corresponding to their respective peaks in the
energy spectrum. Events in A can be completely separated from back-
ground, the background for B can be reduced and background rejection
can be done at the cost of counting efficiency for events in C.

4.3 Formulae for pulse shape parameters

The software used in this work, Igor Pro, operates in arrays of data called
waves. Each array consists of indexes i starting from 0, their corresponding
x-values x[i] and data points y(x) = y[i]. Indexes and x-values are linked
through an x-scaling factor, so that the x-values are always equally spaced.
Igor Pro has a number of inbuilt routines for working with waveform data;
these were used wherever applicable [28]. The formulae for the pulse shape
parameters are presented here in the format they were implemented in code
(Appendix 1), and are different from their original definitions [26, 29] only
by a few normalization constants.

The digital signal processor digitizes waveforms by taking samples of the
analog signal’s amplitude in fast time intervals. The resulting array is filled
with integer measures of pulse height and each array index corresponds to a
measure of time through the fixed sampling rate (Fig. 9). All pulse shape
parameters are calculated from this charge pulse Q(t) and it’s derivative, the
current pulse j(t) = dQ/dt.
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Figure 9: An analog-to-digital converter (ADC) measures the height of
an analog pulse at a constant sampling frequency f = 1/∆t. At higher
sampling frequencies the resulting digital signal comes closer and closer
to the original analog pulse shape. The digital pulse can be stored to be
analyzed after the measurement.

The amplitude of the current pulse A divided by energy E is an efficient
parameter for separating MSE and SSE events [16]. The current pulse is
numerically differentiated from the charge pulse Q(t). The electronic noise
of the detector and data acquisition is smoothed with a moving average
algorithm with a 67 ns window. Figure 6 on page 17 shows example SSE and
MSE pulses with equal energy.

Rise time tP is defined as the time when the charge pulse Q(t) has reached
P% of the maximum. For digitized signals with a non-zero baseline, the rise
time is defined from the relation

Q(tP ) = Qmin +
P

100
(Qmax −Qmin). (17)

To find tP , the rising edge of the charge pulse is searched from the maximum
towards the left. To make the resulting rise time more independent of vari-
ations in triggering, the 30%/90% of full height rise times T30 and T90 are
calculated with T30 = t30 − t10 and T90 = t90 − t10.

The width of the current pulse is another good parameter for finding
multi-site events. Wider, more spread out pulses are usual for MSE events.
Full width at 10% maximum is calculated from

W = t10,trailing edge − t10,leading edge, (18)

where the t10 values are searched to the left and to the right of the current
pulse maximum.

The asymmetry of the current pulse is a measure of the pulse ”skewness”.
Asymmetry tells if the majority of charge carriers arrived “early” or “late”
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relative to the middle point of the pulse (Fig. 10). It is calculated from the
front and back areas F and B of the current pulse with

S =
F −B
F +B

, (19)

where

F =
Nmid−1∑
i=N0

j[i]∆t, (20)

B =
Nf∑

i=Nmid

j[i]∆t. (21)

The time granularity of the indices i is given by ∆t, the summation limits
N0 and Nf are the indices corresponding to the t10 values the width of the
current pulse was calculated from, and Nmid is the middle point of the pulse,
calculated with

Nmid =
N0 +Nf

2
. (22)

Asymmetry values vary between -1 and 1. Forward-leaning pulses have pos-
itive values and backward-leaning pulses have negative values.

Figure 10: Current pulses are typically not symmetrical. The asymme-
try parameter S tells if the majority of the charge carriers arrived ”fast”
or ”slow”, relative to the rest of the pulse.
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Asymmetry can be used to tell MSE and SSE events apart, since MSE
pulses feature multiple peaks and SSE pulses just one peak; SSE pulses are
more likely to be symmetrical. Asymmetry can also be useful when inter-
actions in one part of the detector tend to produce forward leaning pulses
and backward leaning pulses can be attributed to another region. Usually
this distinction would be between regions close to the collecting electrode
and regions further away from it. Both holes and electrons contribute to the
net signal, but must travel paths of different length at their respective drift
velocities, explaining the different shapes of SSE events [29].

One problem with using the t10 values for the summation limits is that
they are blind to secondary peaks that occur beyond those points (Fig. 11).
Alternatively the front and back areas can be calculated relative to the lo-
cation of the current pulse maximum, and N0 and Nf values chosen so the
front and back areas have a fixed width. Fixed limits may leave out part of
the pulse too, or extend far beyond it, but they may work better if there are
a lot of pulses with secondary peaks that can not otherwise be accounted for.

Pulse moment I is another measure of how the current is spread in the
current pulse. While asymmetry distinguishes forward and backward leaning
pulses from symmetric ones, pulse moment tells if most of the current is
close to the centre of the pulse or further away from it. Pulse moment I is
calculated with

I =
Nf∑
i=N0

j[i](Nmid − i)2

(F +B)W 2
, (23)

where F , B and W , from equations (20), (21) and (18), are used to normalize
the values. If the current pulses have a lot of noise extending to negative
values, it may be helpful to replace j[i] with max(0, j[i]) to limit the negative
effect of noise in these equations.

Figure 12 illustrates how the pulse moment I can distinguish pulses of
equal asymmetry S. MSE pulses are generally more spread out than SSE
pulses, so their pulse moments are also typically higher.
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Figure 11: Calculating asymmetry with fixed limits has the chance to
find secondary peaks that would occur beyond t10 values. Here the values
are calculated with respect to the current maximum, with 250 ns windows
in both directions.

Figure 12: The pulse moment I describes how tightly packed the charge
carriers are to the middle of the pulse. Pulses with the same asymmetry
S can be distinguished by differening pulse moments.
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5 Experimental setup

5.1 Whole body phantom

The anthropomorphic radiodosimetric whole body phantom, Radek model
ARDF-09T, consists of head, neck, torso and knee joint phantoms, each
with a number of detachable parts. The phantom is modeled after an 18-20
year old male and is made of materials with radiation absorption properties
comparable to that of human tissue and bones.

The chest phantom used in this work has replacement lungs, heart, liver
and kidneys with incorporated radionuclides 241Am and 239Pu, but of the
radioactive organs, only the replacement lungs were used in this work. The
lung activities were 43 kBq of 241Am and 191.3 kBq of 239Pu, respectively
for the two sets of radioactive lungs. The radioactive materials are evenly
distributed within the phantom material. Any trace quantities of other ra-
dioactive isotopes within the phantom were not documented by the manu-
facturer.

The phantom was placed 5 cm away from the detector window, so that
the detector was centered on the middle of the chest (Fig. 13). To simulate
natural radiation in humans, 40K rods were placed under the phantom, such
that the 1460 keV peak count rate was matched with a reference human
measurement. These rods increase the Compton background in the low-
energy region, and an attempt is made to reject the Compton-scattered events
through pulse shape analysis.

5.2 Low background measurement room

The steel measurement room has walls of 150 mm steel, 3 mm lead and 4
mm copper to shield against background radiation. The room accommodates
enough space for bed-geometry whole-body counting, but the new setup had
not yet been built. The air-conditioning system and concrete for surrounding
walls have been chosen so the background radiation level would be as low as
possible.
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Figure 13: Photo of the measurements with the phantom in the low
background chamber.
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5.3 Detector specifications

The Broad Energy Germanium (BEGe) detector used was Canberra model
BE3820. BEGe detectors cover the energy range from 3 keV to 3 MeV and
have high resolution even at low energies (Table 2). The disk shaped crystal
has 70 mm diameter, 20 mm thickness and an active area of 38 cm2. The
0.5 mm thick carbon epoxy entrance window is 5 mm away from the crystal.
All measurements were done at the recommended bias voltage of 4000 V.

Table 2: Resolution of the BEGe detector used.

Energy FWHM, manufacturer FWHM, measured

59.5 keV 0.660 keV 0.53 keV

1332.5 keV 2.100 keV 1.37 keV

5.4 Electronics and data acquisition

The energies and pulse shapes are collected with a XIA Pixie-4 Digital
Gamma Finder board, which was mounted in a National Instruments PXI-
1033 chassis (Fig. 17). Pixie-4 has four input channels which can be operated
separately or in coincidence mode. Pulse heights are calculated to 16-bit pre-
cision and can be binned up to 32000 channels. Events are timestamped with
37.5 MHz clock frequency. Pile-up inspection, pulse shaping and triggering
parameters can be adjusted through software [30].

To measure the energy of a gamma ray from the digitized preamplifier
pulse, Pixie-4 uses a fast trigger filter to detect the arrival of the gamma
ray and a slow energy filter to determine an amplitude that is directly pro-
portional to the gamma-ray energy (Fig. 15). The equation used for these
trapezoidal filters is

Vfilter,k =
1

L
(−

k−L−G∑
i=k−2L−G+1

Vi +
k∑

i=k−L+1

Vi), (24)

where Vi are the digitized voltage points of the preamplifier pulse, L is the
trapezoid’s rise time and G is the length of the trapezoid’s flat top (Fig. 14).
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Figure 14: Trapezoidal filtering in the Pixie-4. The amplitude of the
ADC pulse and the amplitude of the filter pulse are both proportional to
the energy of the detected gamma ray. [30]

Figure 15: The fast trigger filter is used to detect when a gamma ray
comes in and the slow energy filter is used to measure the energy. The
trigger threshold needs to be high enough to not trigger from signal noise,
but low enough to catch low energy events. [30]
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The energy filter gives a correct measure of the gamma-ray energy only
if the pulse is sufficiently separated from the neigbouring pulses (Fig. 16).
With long filtering times or high pulse frequencies, unhandled pulse pile-up
can become a serious problem. Pixie-4 automatically rejects stacked pulses
by requiring trigger pulses to be atleast a duration PeakSep apart from each
other. This duration is calculated from the energy filter parameters Lslow
and Gslow with

PeakSep = Lslow +Gslow + c, (25)

where constant c depends on how many ADC samples are averaged before
entering the filtering logic [31].

Figure 16: Pixie-4 detects pile-up by inspecting the fast filter for a
duration PeakSep after the arrival of a pulse. If another pulse arrives in
this time, both pulses are rejected. In this figure, the first pulse passes
this test, and pulses two and three fail it. [30]

The Pixie Viewer user interface is based on Wavemetrics’ Igor Pro [28].
In this work, Igor Pro was also used as a platform for pulse shape analysis.
To streamline the analysis process, a custom graphical user interface was
programmed in Igor Pro. The interface allows the user to define rejection
limits individually for each pulse shape parameter, create energy spectra and
histograms of parameter values, calculate rejection fractions and view the
rejected and accepted pulse shapes (Fig. 18). The Igor Pro code file for the
parameter calculations and the custom interface is appended (Appendix 1).
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Figure 17: Pixie-4 board mounted in the PXI-1033 chassis.

Figure 18: Screen capture of the interface programmed for the pulse
shape analysis. The scatter plot here is the (T90, T30) plot of the 59.5
keV 241Am peak from a calibration measurement. The shape is fairly
typical; the majority of events fall in a linear region, while a few events
straggle outside it because of their higher T90 values.
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6 Results

6.1 Calibration and background measurements

Figure 19: Bacgkround spectra measured inside the low background
chamber and in the room next to it.

The energy calibration was done with 241Am and 60Co point sources (Fig.
20). The pulse shaping parameter tau, corresponding to the time constant
of the preamplifier, was optimized as instructed in the Pixie-4 user’s manual
to τ = 56.47. Traces were recorded with length 4.0 µs and delay 1.0 µs.
Other trigger filter and energy filter parameters were left to their default
values (Table 3) [30]. The background was measured both inside and outside
the low background chamber to get an idea how effective the shielding was
(Figure 19).

Table 3: Pixie-4 energy and trigger filter parameters (Eq. 24).

Energy filter Trigger filter

Rise time (µs) 5.973 0.080

Flat top (µs) 1.173 0.080

Threshold - 25

Tau (µs) 56.47 -
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Figure 20: Equipment used in the measurements: 40K rods, collimators,
370 kBq 60Co source, 2582.6 Bq 241Am source and gas mantle containing
thorium and other radioactive materials from it’s decay chain.
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6.2 Measurements with the phantom

Measurements of the phantom revealed a 241Am contamination in the suppos-
edly non-radioactive reference phantom (Fig. 21). According to the man-
ufacturer, the background phantom should not have contained radioactive
materials. Table 4 shows the measured count rates in the 241Am 59.5 keV
peak for various background phantom pieces. The detector-source distance
in these measurements was about 20 cm, varying with the size of the phan-
tom parts. The background was removed by taking the area left of the peak
to be indicative of the background counts.

The low energy radiation from americium adds to the background in
measurements done with the phantom. The contamination is problematic
for pulse shape analysis because the pulse shapes introduced by it are very
similar in shape with the signals of the plutonium peaks of interest. More
importantly, the assumption that interaction locations of background events
would be evenly distributed in the detector volume does not hold, since
the gamma rays producing the low energy background come from the same
direction and undergo their interactions in the same part of the detector as
the radiation of interest.

It is likely that there were multiple isotopes of plutonium in the phantom
from the manufacturing process, as separating these isotopes from each other
is difficult. The quantities of these trace isotopes were not documented by
the manufacturer. While some of the 241Am may come about as a decay
product of 241Pu, it is unclear how the radioactive materials ended up in the
background phantom.

Rods of 40K placed under the phantom increased the background count
rate only little compared to the background caused by the contamination.
The appropriate number of rods was determined by matching the 1460 keV
peak count rate to a reference human measurement.
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Table 4: Results from measurements of individual reference phantom
parts, compared to a 241Am point source. Calculated point source activ-
ities do not take into account the geometries or absorption properties of
different phantom parts, but give an estimate of the order of magnitude
of the activity relative to the reference point source.

241Am 59.5 keV net
count rate (cps)

point source
activity (Bq)

241Am point source 2.84 2582.6

left lung 0.020 17.9

right lung 0.008 6.9

back of torso 0.016 14.1

chest 0.082 74.6

liver 0.014 12.5

stomach 0.0007 0.64

pancreas 0.175 159

heart 0.004 3.8

Figure 21: Spectra of the chamber background, background phantom
and phantom with 239Pu and 241Am incorporated lungs. Most of the
background events in the low energy region are caused by the americium
in the phantom pieces. Phantom was measured with 40K rods placed
under it, increasing the Compton background slightly.
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6.3 Pulse shape analysis in the low energy region

The pulse shape parameters explored were the ratio of current pulse ampli-
tude and energy A/E, charge pulse rise times T30 and T90, current pulse
width W , asymmetry S and normalized moment I. No single parameter
or parameter combination was found that would separate background pulse
from signal pulse in the low energy region. Plots of pulse shape parameters
against energy (Fig. 22) show that the ranges of parameter values for the
peaks of interest and their backgrounds are near identical. Few events can
be discarded to achieve rB > rS for the rejection fractions, but the achieved
improvement in peak-to-background ratio is not statistically significant.

Figure 22: T30, T90 and A/E distributions in the low energy region
for the measurement of the phantom with lungs containing 239Pu. Com-
paring these with the sketch in Figure 8, it is apparent that effectively
no discrimination between signal and background events can be done.
Similar distributions were found for the other pulse shape parameters.
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6.4 A/E for separating MSE and SSE

Figure 23: A/E distribution for a sample containing 232Th. The SSE
band at A/E = 8 · 106, with a slight energy dependence, separates SSE
and MSE events.

The distribution of A/E values against energy (Fig. 23) consists of a band of
SSE events, with events under the band being more likely to be MSE events.
The A/E values are more spread out in the low energy region, mostly because
noise in the current pulse is more pronounced at low energies.

The performance of the A/E parameter in separating MSE and SSE
events was tested by measuring a source containing 232Th, as its grand-
daughter nucleus 228Ac has a gamma branch at 1588.2 keV, right next to
the double-escape peak of 208Tl at 1592.5 keV. Double escape peaks are
dominantly SSE, since a scattered gamma ray is less likely to still be able
to produce a electron-positron pair. The 1588.2 keV gamma rays give dom-
inantly MSE pulse shapes, since they are typically fully absorbed only after
multiple scatterings [16].

The A/E distribution for the two peaks of interest (Fig. 24) show the
expected result, where events in the 1588.2 keV peak have lower A/E values
than events in the 1592.5 keV peak. The rejection limit was set at A/E =
7.5245 · 106, with events below the limit being rejected. With this limit,
the rejection fraction for the dominantly MSE peak was 74.8 % and for the
dominantly SSE peak 10.4 % (Fig. 25).
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Figure 24: A/E distributions for the double-escape peak of 208Tl at
1592.5 keV and for the 1588.2 keV peak of 228Ac. The rejection limit is
at A/E = 7.5245 · 106.

Figure 25: The two peaks of interest before and after the A/E = 7.5245·
106 rejection limit was applied.
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6.5 Pulse width, asymmetry and moment

Figure 26: Asymmetry-width distribution of events in 212Pb 238.6 keV
peak.

The other pulse shape parameters couldn’t separate MSE and SSE events as
efficiently as the A/E parameter. Some general observations can be made
from their distributions, for example that wider pulses and pulses with higher
moment are more likely to be MSE, as expected. Pulses with high width
and moment are degenerate with respect to the asymmetry parameter (Fig.
26), corresponding to secondary pulses occuring either before or after the
maximum of the current pulse.

6.6 Pulse rise times for depth of interaction separation

Separating events based on depth of interaction was tested with collimated
point sources. The charge carriers are collected slower when they are gen-
erated further away from the collecting electrode. Low energy gamma rays
from 241Am and scattered gamma rays from 60Co were used, with the ex-
pectation that high energy gamma rays from 60Co would get closer to the
electrode and thus their scattering events would have faster rise times. Colli-
mating to the centre and to the side of the detector was tested to see if there
was any difference in pulse rise times.

Collimators with widths 3.5 cm and 1.2 cm were used. Adding blocks of
lead to collimate through a 2 mm slit was also tested, but no differences in
pulse rise times between low energy gamma rays and scattered high energy
gamma rays were found (Fig. 27). The measured values are in line with
pulse shape simulations done for this detector model (Fig. 28).
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Figure 27: Results from collimator tests with cobolt and americium
sources. Rise time T30 can not distinguish cobolt’s gamma rays’ scat-
tering events from americium’s full energy events. Few gamma rays get
close to the electrode, where T30 < 50ns.

Figure 28: Simulated T30 values for the detector model used in the
measurements. The simulation method is described in [26].
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6.7 Anomalous pulses

Sometimes the digital signal analysis board lets through anomalous pulse
shapes, where the energy determination is most likely incorrect (Fig. 29).
These pulse shapes are fairly easy to find, as the pulse shape parameters
calculated from them are often orders of magnitude different from the usual
values. While these anomalies are fairly rare and thus don’t affect the mea-
surement statistics much, tracking their numbers may be useful in making
sure the measurement system stays stable.

Figure 29: Examples of anomalous pulse shapes captured by the digital
signal processor.
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7 Discussion

The attempt to reduce Compton background at low gamma ray energies with
various pulse shape parameters was ineffective. Parameter distributions for
measurements of 241Am and 60Co point sources collimated to the centre of
the BEGe detector were effectively identical. Different depth of interaction
distributions for high and low energy gamma radiation were expected to
produce differing parameter distributions.

Probable causes for the failure of this method are imperfect collimating
and pronounced signal noise in low energy pulses. Most likely the variance of
pulse shapes coming from a given interaction location is comparable to the
variance accross the detector volume, making the determination of interac-
tion location very difficult.

Pulse shape analysis in this fashion is an interesting proposition for many
gamma spectroscopy applications. At this point the limiting factor is not
necessarily the required computing power, but stability and predictability
of the detector response and electronics and the ability of the detector to
produce different pulse shapes for different event types, preferably without
the need to use collimators to make these differences visible.

The antropomorphic phantom that was to be used in the application of
this pulse shape analysis method was found to contain a contamination of ra-
dioactive 241Am. The low energy background caused by this contamination
would have made the background filtering task very difficult, as the pulse
shapes of these background events were effecively identical to the pulses
caused by the plutonium radiation. Although any real plutonium inhala-
tion case may also be accompanied by such low energy gamma ray emitting
”contaminants”, this Compton-reducing method was to be tested against a
background of scattered high energy radiation, not against a background of
near-identical radiation.

Digital pulse shape analysis may prove to be useful in improving detection
limits at low energies, but it will require detailed information about the
detector response and more advanced algorithms to find rejection rules for
different event types. Meanwhile, the equipment may be used to monitor
stability of a measurement setup or to demonstrate the multitude of pulse
shapes given by a detector.

It is probably fair to say that a specifically designed Low Energy Ger-
manium Detector (LEGe) is always going to be better suited for low energy
measurements than the more general purpose BEGe detector, even if digital
pulse shape analysis could be used. Count rate and peak-to-background ra-
tio can be maximized with the correct choice of entrance windows, detector
depth and size of contacts among other available manufacturing choices. An-
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other option to get the Compton-reducing effect is to use a Compton shield,
a surrounding array of detectors run in anti-coincidence mode with the pri-
mary detector. The allure of digital pulse shape analysis is that perhaps the
same effect could be achieved without needing to purchase new detectors for
a very specific gamma spectroscopy application, if the old detector can be
digitally enhanced to do the same work.
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8 Appendix: Igor Pro code file

#pragma rtGlobals=3 // Use modern global access method and strict

wave access.

//######################

// Pulse Shape Analysis

//######################

// Written by Pertti Hallikainen, 2014

//

// Contents

// - Examples of Igor Pro syntax

// - Calculating pulse shape parameters for all traces in a .bin

file, filtering events based on rejection limits

// - Plotting scatter plots and histograms

// - Pulse shape parameter calculations

// - User interface code

// Usage:

// 0. Run user_globals() to initialize global waves.

// 1. Open a .bin binary file in the List Mode Trace window.

// 2. Macros>Parameter viewer, or run parameter_viewer()

// 3. Press Read Data (this takes a while)

// 4. Press Reset filter

// 5. Mess around with filter values, X and Y waves

// 6. Reset filter - button resets all the filter values that have

a blank checkbox

// 7. Histogram tab to histogram parameter values

// 8. Analysis tab to compare filtered energy spectrum to original

spectrum

// analysis doesn’t work if you don’t have energy selected as

the histogram input

// 9. Trace tab to view traces that passed/didn’t pass the filter

// constant fraction lines are at 10%, 30% and 90% of the charge

pulse

//

//#################################
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//Reference for displaying waves

//displayVs(temp_AE, temp_Energies)

//displayHistogram(root:user:energies,x0=0, x1=18000, Nbins=2000,

bottomLabel="Channel")

//displayHistogram(root:user:AE, x0=0, x1=1e-14, Nbins=600,

bottomLabel="A/E"))

//#################################

//#########################

// Examples of Igor pro syntax

//#########################

// Example of custom menu items

Menu "Macros"

"Display current and charge pulses", Trace_display()

"Parameter viewer", parameter_viewer()

End

// Example of optional parameters

// Test:

// parameter_test(1,2, c=3, d=4)

// parameter test(1,2)

Function parameter_test(a,b, [c,d])

variable a,b,c,d

if(ParamIsDefault(c) && ParamIsDefault(d))

Print "missing optional parameters c and d."

endif

Print a,b,c,d

End

//#########################################################

// - Reading data from binary file

// - Selecting a collection of events based on pulse shape

parameters

//#########################################################

// Reads data from the currently open .bin file. Use List mode

trace window to change the file.

// Calculates pulse shape parameters for all the events. This is

the most computationally intensive part of the analysis.

// Data is stored in global waves at root:user:

Function read_data()

variable i, NumEvents
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Nvar ChosenModule = root:pixie4:ChosenModule

wave listmodewave = root:pixie4:listmodewave

NumEvents = listmodewave[ChosenModule]

// Create waves for parameter values

Make/O/N=(NumEvents) root:user:AE

Make/O/N=(NumEvents) root:user:Energies

Make/O/N=(NumEvents) root:user:Broad

make/O/N=(NumEvents) root:user:asymmetry

make/O/N=(NumEvents) root:user:width

make/O/N=(NumEvents) root:user:risetime30

make/O/N=(NumEvents) root:user:risetime90

make/O/N=(NumEvents) root:user:moment

Wave AE = root:user:AE

Wave Energies = root:user:Energies

Wave Broad = root:user:Broad

Wave asymmetry = root:user:asymmetry

wave width = root:user:width

wave risetime30 = root:user:risetime30

wave risetime90 = root:user:risetime90

wave moment = root:user:moment

// channel 0

Wave trace = root:pixie4:trace0

variable time_before = datetime

for(i=0; i<NumEvents; i+=1) // loop through all events

changeEvent(i)

Energies[i] = get_energy()

AE[i] = get_AE()

Broad[i] = get_broad()

asymmetry[i] = get_asymmetry()

width[i] = get_width()

moment[i] = get_moment()

normalize(trace)

wave normalizedWave

risetime30[i] = get_dt(normalizedWave, 0.1, 0.3, 1)

risetime90[i] = get_dt(normalizedWave, 0.1, 0.9, 1)

if(!mod(i,25000))

Print num2str(i)+"/"+num2str(NumEvents)+" events

calculated."
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endif

endfor

print "Process took "+num2str(datetime-time_before)+" seconds,

"+num2str(i)+"/"+num2str(NumEvents)+" total events"

End

// Clears filters that were not checked

Function reset_filter([checkLocks])

variable checkLocks

Wave AE = root:user:AE

Wave Energies = root:user:Energies

wave risetime30 = root:user:risetime30

wave risetime90 = root:user:risetime90

wave moment = root:user:moment

wave width = root:user:width

wave asymmetry = root:user:asymmetry

variable lock_minEnergy, lock_maxEnergy, lock_minAE, lock_maxAE,

lock_minT30, lock_maxT30, lock_minT90, lock_maxT90 =0

variable lock_minMoment, lock_maxMoment, lock_minWidth,

lock_maxWidth, lock_minAsymmetry, lock_maxAsymmetry = 0

if(checkLocks)

ControlInfo lockMinEnergy

lock_minEnergy = V_value

ControlInfo lockMaxEnergy

lock_maxEnergy = V_value

ControlInfo lockMinAE

lock_minAE = V_value

ControlInfo lockMaxAE

lock_maxAE = V_value

ControlInfo lockMinMoment

lock_minMoment = V_value

ControlInfo lockMaxMoment

lock_maxMoment = V_value

ControlInfo lockMinWidth

lock_minWidth = V_value

ControlInfo lockMaxWidth

lock_maxWidth = V_value

ControlInfo lockMinT30

lock_minT30 = V_value

ControlInfo lockMaxT30

lock_maxT30 = V_value

ControlInfo lockMinT90
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lock_minT90 = V_value

ControlInfo lockMaxT90

lock_maxT90 = V_value

ControlInfo lockMinAsymmetry

lock_minAsymmetry = V_value

ControlInfo lockMaxAsymmetry

lock_maxAsymmetry = V_value

endif

if(!lock_minEnergy)

NVAR Emin = root:user:Emin

Emin = 0

endif

if(!lock_maxEnergy)

NVAR Emax = root:user:Emax

Emax= Wavemax(energies)

endif

if(!lock_minAE)

NVAR AEmin = root:user:AEmin

AEmin=0

endif

if(!lock_maxAE)

NVAR AEmax = root:user:AEmax

AEmax=Wavemax(AE)

endif

if(!lock_minMoment)

NVAR momentMin = root:user:momentMin

momentMin = wavemin(moment)

endif

if(!lock_maxMoment)

NVAR momentMax = root:user:momentMax

momentMax = wavemax(moment)

endif

if(!lock_minWidth)

NVAR widthMin = root:user:widthMin

widthMin = wavemin(width)

endif

if(!lock_maxWidth)

NVAR widthMax = root:user:widthMax

widthMax = wavemax(width)

endif

if(!lock_minT30)

NVAR T30min = root:user:T30min

T30min=max(Wavemin(risetime30),0)

49



endif

if(!lock_maxT30)

NVAR T30max = root:user:T30max

T30max=Wavemax(risetime30)

endif

if(!lock_minT90)

NVAR T90min = root:user:T90min

T90min=max(Wavemin(risetime90),0)

endif

if(!lock_maxT90)

NVAR T90max = root:user:T90max

T90max=Wavemax(risetime90)

endif

if(!lock_minAsymmetry)

NVAR Smin = root:user:asymmetryMin

Smin=max(Wavemin(asymmetry),-1)

endif

if(!lock_maxAsymmetry)

NVAR Smax = root:user:asymmetryMax

Smax=Wavemax(asymmetry)

endif

End

// Normalizes the wave to have values in [0,1].

Function normalize(w)

Wave w

Duplicate/O w, normalizedWave

smooth/S=2 5,normalizedWave //smooth/B=1 5, normalizedWave

variable wMax = waveMax(normalizedWave)

variable wMin = waveMin(normalizedWave)

normalizedWave = (normalizedWave-wMin)/(wMax-wMin)

End

// This function filters the events stored by read_data() based on

rules defined in passed_filter()

// The events that pass the filter are stored in temp_parameterName

Function filter_events()

variable i, NumEvents

Nvar ChosenModule = root:pixie4:ChosenModule

wave listmodewave = root:pixie4:listmodewave

// References to global waves

Wave Energies = root:user:Energies
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Wave Broad = root:user:Broad

Wave AE = root:user:AE

Wave asymmetry = root:user:asymmetry

wave width = root:user:width

wave risetime30 = root:user:risetime30

wave risetime90 = root:user:risetime90

wave moment = root:user:moment

NumEvents = numpnts(Energies)

// Create waves for those events that pass the filter

Make/O/N=(NumEvents) temp_AE

Make/O/N=(NumEvents) temp_Energies

Make/O/N=(NumEvents) temp_Broad

make/O/N=(NumEvents) temp_asymmetry

make/O/N=(NumEvents) temp_width

make/O/N=(NumEvents) temp_risetime30

make/O/N=(NumEvents) temp_risetime90

make/O/N=(NumEvents) temp_moment

make/O/N=(NumEvents) temp_passed=-1

make/O/N=(NumEvents) temp_failed=-1

variable j=0, f=0

for(i=0; i<NumEvents; i+=1) // loop through all events

variable E = Energies[i]

variable B = Broad[i]

variable A = AE[i]

variable S = asymmetry[i]

variable w = width[i]

variable t30 = risetime30[i]

variable t90 = risetime90[i]

variable m = moment[i]

if(passed_filter(E,A,B,S,w, t30, t90, m, i))

temp_Energies[j] = E

temp_AE[j] = A

temp_Broad[j]=B

temp_asymmetry[j]=S

temp_width[j]=w

temp_risetime30[j]=t30

temp_risetime90[j]=t90

temp_passed[j]=i

temp_moment[j]=m
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j+=1

else

temp_failed[f]=i

f+=1

endif

endfor

if(j>0)

redimension/N=(j) temp_Energies, temp_AE, temp_Broad,

temp_asymmetry, temp_width, temp_risetime30,

temp_risetime90, temp_passed, temp_moment

endif

if(f>0)

redimension/N=(f) temp_failed

endif

End

// Filter rules

// E=energy in 16bit units, A=current maximum/energy, B=Broad,

S=asymmetry, W=width, i=event number

// use the plot function displayVs(root:user:parameterName,

root:user:energies) to get an idea of the range of values

// use the plot function displayHistogram(root:user:parameterName,

x0, x1, Nbins) for a more detailed picture.

Function passed_filter(E,A,B,S,W, t30, t90, moment i)

Variable E, A, B, S, W, t30, t90, moment, i

// Get the filter limits

NVAR Emin = root:user:Emin

NVAR Emax = root:user:Emax

NVAR AEmin = root:user:AEmin

NVAR AEmax = root:user:AEmax

NVAR T30min = root:user:T30min

NVAR T30max = root:user:T30max

NVAR T90min = root:user:T90min

NVAR T90max = root:user:T90max

NVAR momentMin = root:user:momentMin

NVAR momentMax = root:user:momentMax

NVAR widthMin = root:user:widthMin

NVAR widthMax = root:user:widthMax

NVAR asymmetryMin = root:user:asymmetryMin

NVAR asymmetryMax = root:user:asymmetryMax

if(AEmin<=A && A<=AEmax)

if(asymmetryMin<=S && S<=asymmetryMax)
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if(widthMin<=w && w<=widthMax)

if(momentMin<=moment && moment<=momentMax)

if(Emin<=E && E<=Emax)

if(T30min<=t30 && t30<=T30max && T90min<=t90 &&

t90<=T90max)

return 1

endif

endif

endif

endif

endif

endif

return 0

End

//###########################

// Plot functions

//###########################

// Scatter plot

Function displayVs(yWave, xWave)

Wave yWave, xWave

Display yWave vs xWave

ModifyGraph mode=3, marker=1, gmSize=1 // scatter display mode

End

// Sorts the values in inputWave into a histogram

// Running this function again overwrites the previous histogram

// Duplicate histogramWave to store the results

// inputWave = wave of pulse shape parameter values

(root:user:energies, temp_asymmetry, etc)

// Optional parameters:

// x0 and x1 = histogram limits, Nbins = number of bins,

bottomLabel = name of the parameter

//For example displayHistogram(root:user:energies, x0=0, x1=10000,

Nbins=10000, bottomlabel="Channel")

Function displayHistogram(inputWave,[x0, x1, Nbins, bottomLabel])

Wave inputWave

Variable x0, x1, Nbins

String bottomLabel

if(ParamIsDefault(x0) || ParamIsDefault(x1))

variable xmin=waveMin(inputWave)
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variable xmax=waveMax(inputWave)

x0=xmin-0.1*abs(xmin)

x1=xmax+0.1*abs(xmax)

endif

if(ParamIsDefault(Nbins))

Nbins = 100

endif

if(ParamIsDefault(bottomLabel))

bottomLabel = ""

endif

Make/O/N=1 histogramWave

variable dx=(x1-x0)/Nbins

if(dx>0)

histogram/B={x0,dx,Nbins} inputWave, histogramWave

histogramWave=histogramWave/dx

endif

//display histogramWave

//ModifyGraph mode=5, hbFill=2 //histogram display mode

//Label left "Counts"

//Label bottom bottomLabel

End

//###############################

//Pulse shape parameter calculations

//###############################

// Current maximum/ energy

Function get_AE()

Wave current

variable currentMaximum = wavemax(current)

variable E = get_energy()

if(E>0)

return currentMaximum/E

else

return -1

endif

End
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//Asymmetry relative to current pulse maximum

//Front and back have width 0.25e-6 seconds

Function get_asymmetry()

Wave current

variable x_at_max = get_x_at_max(current)

variable F= get_F(x_at_max)

variable B= get_B(x_at_max)

if(F>0 && B>0) // current should be positive, areas should be

positive

return (F-B)/(F+B) // result is between -1 and +1

else

return -10

endif

End

Function get_F(x_at_max)

variable x_at_max

wave current

variable x0 = get_x0(x_at_max)

variable n = numpnts(current)

variable dt = pnt2x(current, n)/n

return sum(current, x0, x_at_max)*dt

End

Function get_B(x_at_max)

variable x_at_max

wave current

variable x1 = get_x1(x_at_max)

variable n = numpnts(current)

variable dt = pnt2x(current, n)/n

return sum(current, x_at_max, x1)*dt

End

Function get_x0(x_at_max)

variable x_at_max

variable x0 = x_at_max - 0.25e-6

return max(0, x0)

End
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Function get_x1(x_at_max)

variable x_at_max

wave current

variable x1 = x_at_max + 0.25e-6

variable x2 = pnt2x(current, numpnts(current)-1)

return min(x1, x2)

End

Function get_moment()

wave current

variable x_at_max = get_x_at_max(current)

variable index_at_max = get_index_at_max(current)

variable F = get_F(x_at_max)

variable B = get_B(x_at_max)

variable x0 = get_x0(x_at_max)

variable x1 = get_x1(x_at_max)

variable p0 = x2pnt(current, x0)

variable p1 = x2pnt(current, x1)

variable moment

variable i

variable dm

for(i=p0;i<p1; i+=1)

dm = current[i]

if(dm>=0)

dm = dm*(i-index_at_max)^2

moment+=dm

endif

endfor

variable dem = (F+B) *(x1-x0)^2

if(dem>0)

return moment/dem

else

return -1

endif

End

// Width of the current pulse from 10% to 10% of maximum in seconds

Function get_width()

wave current

return get_dt(current, 0.1, 0.1, 0)

End
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// Width from p0 of maximum to p1 of maximum

// e1 defines the edge at p1

// e1 = 1 for rising, 0 for declining

Function get_dt(w, p0, p1, e1)

wave w

variable p0, p1, e1

if(p0>p1 || (e1!=0 && e1!=1))

print "[ERROR]: Illegal arguments."

return -1

endif

variable max_loc = get_index_at_max(w)

variable x0 = get_tx(w, p0, 1, max_loc, max_loc, x1=0)

variable x1 = x0

if(e1==0)

x1 = get_tx(w, p1, 0, max_loc, max_loc)

else

x1 = get_tx(w, p1, 1, max_loc, x2pnt(w,x0))

endif

if((numtype(x0)!=0) || (numtype(x1)!=0))

return -1

endif

return (x1-x0)*1e9

End

// Returns time t where pulse has x% of it’s maximum

// tx = the fraction, edge = 1 for rising, 0 for declining,

max_loc = index of maximum, x0, x1 = search limits

// if x1 is not specified, search is started from x0 and ends at

the end of the wave

// if x1 is smaller than x0, search is done from right to left

Function get_tx(w, tx, edge, max_loc, x0, [x1])

wave w

variable tx, edge // tx between 0 and 1, edge=1 for rising, 0

for declining

variable max_loc, x0, x1 // search limits

variable wMax = w[max_loc]

if(ParamIsDefault(x1))

FindLevel/EDGE=(edge)/Q/R=[(x0)] w, tx*wMax

else

FindLevel/EDGE=(edge)/Q/R=[(x0),(x1)] w, tx*wMax

endif

return V_LevelX

End
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// Differentiates the charge pulse (trace)

Function get_current_pulse()

Wave trace = root:pixie4:trace0 //trace1, trace2, trace3 for

other channels

Duplicate/O trace, current

Differentiate current

Smooth/S=2 5,current

End

// Returns the index of the location where the wave w has it’s

maximum.

Function get_index_at_max(w, [accuracy])

Wave w

variable accuracy

//limit the search +-0.5 microseconds from edges:

variable maxValue = wavemax(w, 0.5e-6, pnt2x(w,

numpnts(w))-0.5e-6)

FindValue/V=(maxValue)/T=(accuracy) w //accuracy 1e-7 by default

return V_value

End

// Returns the x value of the location where the wave w has it’s

maximum

Function get_x_at_max(w)

Wave w

variable indexAtMax=get_index_at_max(w)

return pnt2x(w, indexAtMax)

End

// Returns the energy of the chosen event

Function get_energy()

Wave ListModeChannelEnergy = root:pixie4:ListModeChannelEnergy

return ListModeChannelEnergy[0]

End

//####################################

// Utility functions

//####################################

Function getTrace(eventNumber, [channelNumber])

Variable eventNumber, channelNumber
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if(ParamIsDefault(channelNumber))

channelNumber=0

endif

changeEvent(eventNumber)

String wav = "root:pixie4:trace"+num2str(channelNumber)

Make/O/N=300 outputwave

Duplicate/O $wav, outputwave

return outputwave

End

// Test commands

// print root:pixie4:ChosenEvent

// changeEvent(10)

// print root:pixie4:ChosenEvent

Function changeEvent(eventNumber)

Variable eventNumber

NVAR ChosenEvent=root:pixie4:ChosenEvent //reference to global

variable

ChosenEvent = eventNumber

Pixie_IO_ReadEvent()

End

Function displayTrace(eventNumber, [channel])

Variable eventNumber, channel

if(ParamIsDefault(channel))

channel=0

endif

Make/O/N=300 tempWave

tempWave = getTrace(eventNumber, channelNumber=channel)

Display tempWave

End

Function energySpectrum()

wave energies = root:user:energies

displayHistogram(energies,x0=0, x1=18000, Nbins=18000,

bottomLabel="Channel")

End
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//############################

// Here begins the GUI code

//############################

DoWindow/F ListModeTracesDisplay2

if (V_Flag!=1)

PauseUpdate; Silent 1 // building window...

Display/K=1 /W=(250,175,700,500)

root:pixie4:trace0,root:pixie4:trace1,root:pixie4:trace2,root:pixie4:trace3

as "List Mode Traces"

DoWindow/C ListModeTracesDisplay2

AppendToGraph/L=L1 current

ModifyGraph freePos(L1)=0

ModifyGraph axisEnab(left)={0,0.47}

ModifyGraph axisEnab(L1)={0.53,1}

ModifyGraph cbRGB=(10000,44032,58880)

ModifyGraph mode=6

ModifyGraph grid=1

ModifyGraph mirror=0

ModifyGraph

rgb(trace1)=(0,65280,0),rgb(trace2)=(0,15872,65280),rgb(trace3)=(0,26112,0)

SetAxis/A/N=1 left

Label bottom "Time from first sample"

Label left "Pulse (16bit scale)"

Label L1 "Current"

ModifyGraph lblPos(L1)=64

ModifyGraph lblPos(left)=64

ControlBar 120 // Control bar size

SetVariable TraceDataFile, value=root:pixie4:DataFile,

pos={300,10},size={200,18},title="Data File"

SetVariable TraceDataFile,

fsize=10,proc=Pixie_Ctrl_CommonSetVariable//,bodywidth=100

Button FindTraceDataFile,

pos={520,8},size={40,20},proc=Pixie_Ctrl_CommonButton,title="Find",fsize=11
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SetVariable

CallReadEvents,pos={300,30},size={200,18},proc=change_event,title="Event

Number "

SetVariable CallReadEvents,format="%d",fsize=10//,bodywidth=70

SetVariable CallReadEvents,limits={0,Inf,1},value=

root:pixie4:ChosenEvent

ValDisplay Hitpattern, pos = {300,55}, title = "Hit Pattern

0x", format ="%4.4X", value =

root:Pixie4:EventHitpattern, size={100,20},fsize=10

ValDisplay TimeStampHI, pos = {420,55}, title = "Event Time",

value = root:Pixie4:EventTimeHI, size={100,20},fsize=10

ValDisplay TimeStampLO, pos = {530,55}, value =

root:Pixie4:EventTimeLO, size={40,20},fsize=10

// Initialize Channel Energy List Data

Pixie_MakeList_Traces(0)

Button EventFilterDisplay,

pos={310,80},size={70,25},proc=Pixie_Plot_FilterDisplay,title="Digital

Filter",fsize=11

Button HelpList_Mode_Traces,

pos={405,80},size={70,25},proc=Pixie_CallHelp,title="Help",fsize=11

Button

EventDisplayClose,pos={500,80},size={70,25},proc=Pixie_AnyGraphClose,title="Close",help={"Close

Panel"} ,fsize=11

endif

EndMacro

Function change_event(ctrlName,varNum,varStr,varName):

SetVariableControl

String ctrlName, varStr,varName

Variable varNum

Pixie_IO_ReadEvent()

End
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Window parameter_viewer() : Graph

DoWindow/F risetimeWindow

if (V_Flag!=1)

PauseUpdate; Silent 1 // building window...

Display/K=1 /W=(250,175,700,500) temp_risetime30 vs

temp_risetime90 as "Pulse shape parameter viewer"

ModifyGraph mode=3, marker=1, gmSize=1

DoWindow/C risetimeWindow

ModifyGraph cbRGB=(10000,44032,58880)

ModifyGraph mirror=0

ControlBar 157

TabControl AnalysisTab pos={3,3}, size={365, 150}, fsize=12

TabControl AnalysisTab tabLabel(0)="Filter"

TabControl AnalysisTab value=0, labelBack=(51456,44032,58880)

TabControl AnalysisTab, proc=change_tab,

tabLabel(1)="Histogram", tabLabel(2)="Analysis",

tabLabel(3)="Trace"

TabControl AdvancedTab pos={371, 3}, size={226,150},

fsize=12, value=0, labelBack=(51456,44032,58880)

TabControl AdvancedTab tabLabel(0)="Settings", proc=change_tab

//Filter tab

SetVariable setMinEnergy,pos={10,25},size={150,18},title="Min

energy: "

SetVariable setMinEnergy,format="%d",fsize=10

SetVariable setMinEnergy,limits={0,Inf,1},value=

root:user:Emin, proc=changeFilterValues_control

Checkbox lockMinEnergy, pos={163,26}, size={9,9}, title=""

SetVariable setMaxEnergy,pos={10,40},size={150,18},title="Max

energy: "

SetVariable setMaxEnergy,format="%d",fsize=10

SetVariable setMaxEnergy,limits={0,Inf,1},value=

root:user:Emax, proc=changeFilterValues_control

Checkbox lockMaxEnergy, pos={163,41}, size={9,9}, title=""
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SetVariable setMinAE,pos={10,55},size={150,18},title="Min AE:

"

SetVariable setMinAE,format="%.3e",fsize=10

SetVariable setMinAE,limits={0,Inf,0},value= root:user:AEmin,

proc=changeFilterValues_control

Checkbox lockMinAE, pos={163,56}, size={9,9}, title=""

SetVariable setMaxAE,pos={10,70},size={150,18},title="Max AE:

"

SetVariable setMaxAE,format="%.3e",fsize=10

SetVariable setMaxAE,limits={0,Inf,0},value= root:user:AEmax,

proc=changeFilterValues_control

Checkbox lockMaxAE, pos={163,71}, size={9,9}, title=""

SetVariable setMinMoment,pos={10,85},size={150,18},title="Min

moment: "

SetVariable setMinMoment,format="%.3e",fsize=10

SetVariable setMinMoment,limits={-Inf,Inf,0},value=

root:user:momentMin, proc=changeFilterValues_control

Checkbox lockMinMoment, pos={163,86}, size={9,9}, title=""

SetVariable

setMaxMoment,pos={10,100},size={150,18},title="Max

moment:"

SetVariable setMaxMoment,format="%.3e",fsize=10

SetVariable setMaxMoment,limits={-Inf,Inf,0},value=

root:user:momentMax, proc=changeFilterValues_control

Checkbox lockMaxMoment, pos={163,101}, size={9,9}, title=""

SetVariable setMinWidth,pos={10,115},size={150,18},title="Min

width: "

SetVariable setMinWidth,format="%.3e",fsize=10

SetVariable setMinWidth,limits={0,Inf,0},value=

root:user:widthMin, proc=changeFilterValues_control

Checkbox lockMinWidth, pos={163,116}, size={9,9}, title=""

SetVariable setMaxWidth,pos={10,130},size={150,18},title="Max

width: "

SetVariable setMaxWidth,format="%.3e",fsize=10

SetVariable setMaxWidth,limits={0,Inf,0},value=

root:user:widthMax, proc=changeFilterValues_control

Checkbox lockMaxWidth, pos={163,131}, size={9,9}, title=""
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SetVariable setMinT30,pos={190,25},size={150,18},title="Min

T30: "

SetVariable setMinT30,format="%.3e",fsize=10

SetVariable setMinT30,limits={0,Inf,0},value=

root:user:T30min, proc=changeFilterValues_control

Checkbox lockMinT30, pos={342,26}, size={9,9}, title=""

SetVariable setMaxT30,pos={190,40},size={150,18},title="Max

T30: "

SetVariable setMaxT30,format="%.3e",fsize=10

SetVariable setMaxT30,limits={0,Inf,0},value=

root:user:T30max, proc=changeFilterValues_control

Checkbox lockMaxT30, pos={342,41}, size={9,9}, title=""

SetVariable setMinT90,pos={190,55},size={150,18},title="Min

T90: "

SetVariable setMinT90,format="%.3e",fsize=10

SetVariable setMinT90,limits={0,Inf,0},value=

root:user:T90min, proc=changeFilterValues_control

Checkbox lockMinT90, pos={342,56}, size={9,9}, title=""

SetVariable setMaxT90,pos={190,70},size={150,18},title="Max

T90: "

SetVariable setMaxT90,format="%.3e",fsize=10

SetVariable setMaxT90,limits={0,Inf,0},value=

root:user:T90max, proc=changeFilterValues_control

Checkbox lockMaxT90, pos={342,71}, size={9,9}, title=""

SetVariable

setMinAsymmetry,pos={190,85},size={150,18},title="Min

asym: "

SetVariable setMinAsymmetry,format="%.3e",fsize=10

SetVariable setMinAsymmetry,limits={-inf,Inf,0},value=

root:user:Asymmetrymin, proc=changeFilterValues_control

Checkbox lockMinAsymmetry, pos={342,86}, size={9,9}, title=""

SetVariable

setMaxAsymmetry,pos={190,100},size={150,18},title="Max

asym:"

SetVariable setMaxAsymmetry,format="%.3e",fsize=10

SetVariable setMaxAsymmetry,limits={-inf,Inf,0},value=

root:user:Asymmetrymax, proc=changeFilterValues_control

Checkbox lockMaxAsymmetry, pos={342,101}, size={9,9}, title=""
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//Histogram tab

PopupMenu Select_histogramWave, pos ={10, 25}, title="Input:

", value="T30;T90;A/E;Energy"

PopupMenu Select_histogramWave, proc=select_Xwave, mode=4

SetVariable setLowLimit, pos={10, 50}, title="Low: ",

format="%.3e", fsize=10,

limits={0,inf,0},value=root:user:lowLimit, size={130,18}

SetVariable setHighLimit, pos={10, 65}, title="High: ",

format="%.3e", fsize=10,

limits={0,inf,0},value=root:user:highLimit, size={130,18}

SetVariable setNbins, pos={10, 80}, title="Nbins: ",

format="%d", fsize=10,

limits={10,inf,1},value=root:user:histo_bins,

size={130,18}

Button HistogramButton, pos={100,125}, size={70,25},

proc=histogram_button, title="Histogram", fsize=11

//Analysis tab

SetVariable setBgLow, pos={10, 25}, title="Bg Low: ",

format="%d", fsize=10,

limits={0,inf,1},value=root:user:bgLow, size={130,18}

SetVariable setBgHigh,pos={10, 40}, title="Bg High: ",

format="%d", fsize=10,

limits={0,inf,1},value=root:user:bgHigh, size={130,18}

SetVariable setSgLow, pos={10, 55}, title="Sg Low: ",

format="%d", fsize=10,

limits={0,inf,1},value=root:user:sgLow, size={130,18}

SetVariable setSgHigh,pos={10, 70}, title="Sg High: ",

format="%d", fsize=10,

limits={0,inf,1},value=root:user:sgHigh, size={130,18}

Button CalculateButton, pos={40,100}, size={70,25},

proc=calculate_button, title="Calculate", fsize=11

//Trace tab

TitleBox eventNumberTitle, title="Event number",

size={58,25}, pos={30,25}, frame=0, fsize=13

SetVariable setEventNumber, pos={30, 44}, title=" ",

format="%d", fsize=10, limits={0,inf,1}
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SetVariable setEventNumber, value=root:pixie4:ChosenEvent,

size={80,18}, proc=setEventNumber_control

Button smallerEventNumberButton, pos={10,40}, size={20,22},

title="<", fsize=15, proc=changeEventNumber_button

Button largerEventNumberButton, pos={110,40}, size={20,22},

title=">", fsize=15, proc=changeEventNumber_button

Checkbox limitToPassedEventsCheckbox, pos={150,30},

title="Limit to events that passed the filter", fsize=11,

proc=limitEvent_checkbox

Checkbox limitToFailedEventsCheckbox, pos={150, 45},

title="Limit to events that didn’t pass the filter",

fsize=11, proc=limitEvent_checkbox

Checkbox addConstantFractionLines, pos={150, 70}, title="Show

constant fraction lines", fsize=11,

proc=showConstantFraction_checkbox

//Settings tab

Button ReadDataButton, pos={380,25}, size={70,25},

proc=readData_button, title="Read data", fsize=11

Checkbox autoApplyFilterCheckbox, pos={380,55}, title="Auto

apply filter changes", fsize=11

PopupMenu Select_xWave, pos = {380,95}, title="X:",

value="T30;T90;A/E;Energy;Moment;Width;Asymmetry",

proc=select_Xwave, mode=2

PopupMenu Select_yWave, pos = {380,120}, title="Y:",

value="T30;T90;A/E;Moment;Width;Asymmetry",

proc=select_Ywave

Button ApplyFilterButton,

pos={470,95},size={60,22},proc=apply_filter,title="Apply

filter",fsize=11

Button GraphButton,

pos={470,119},size={60,22},proc=scatterPlot_button,title="Graph",fsize=11

Button ResetFilterButton, pos={530,95}, size={60,22},

proc=apply_filter, title="Reset filter", fsize=11

change_tab("AnalysisTab", 0)

change_tab("AdvancedTab", 0)

endif

EndMacro
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//Buttons and controls

Function limitEvent_checkbox(ctrlName, value)

String ctrlName

variable value

if(value==1)

SetVariable setEventNumber, disable=2

if(!cmpstr(ctrlName, "limitToPassedEventsCheckbox"))

Checkbox limitToFailedEventsCheckbox, disable=2

else

Checkbox limitToPassedEventsCheckbox, disable=2

endif

else

SetVariable setEventNumber, disable=0

Checkbox limitToFailedEventsCheckbox, disable=0

Checkbox limitToPassedEventsCheckbox, disable=0

endif

NVAR p_index = root:user:passedList_Index

NVAR f_index = root:user:failedList_index

p_index = -1

f_index = -1

End

Function showConstantFraction_checkbox(ctrlName, value)

String ctrlName

variable value

wave t10_cfLine, t30_cfLine, t90_cfLine

removeFromGraph/Z t10_cfLine, t30_cfLine, t90_cfLine

if(value==1)

wave trace = root:pixie4:trace0

normalize(trace)

wave normalizedWave

variable max_loc = get_index_at_max(normalizedWave)

variable t10 = get_tx(normalizedWave, 0.1, 1, max_loc,

max_loc, x1=0)

variable t30 = get_tx(normalizedWave, 0.3, 1, max_loc,

max_loc, x1=0)

variable t90 = get_tx(normalizedWave, 0.9, 1, max_loc,

max_loc, x1=0)

variable np = numpnts(trace)

make/O/N=(np) t10_cfLine=trace(t10)

make/O/N=(np) t30_cfLine=trace(t30)

make/O/N=(np) t90_cfLine=trace(t90)
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setScale/P x, 0, pnt2x(trace, np-1)/np, t10_cfLine

setScale/P x, 0, pnt2x(trace, np-1)/np, t30_cfLine, t90_cfLine

appendToGraph t10_cfLine, t30_cfLine, t90_cfLine

modifyGraph rgb(t10_cfLine)=(0,0,65535)

modifyGraph rgb(t30_cfLine)=(0,65535,0)

modifyGraph rgb(t90_cfLine)=(40000,40000,20000)

endif

End

Function

changeFilterValues_control(ctrlName,varNum,varStr,varName) :

SetVariableControl

String ctrlName, varStr, varName

Variable varNum

ControlInfo autoApplyfilterCheckbox

if(V_Value)

apply_filter("")

endif

End

Function setEventNumber_control(ctrlName,varNum,varStr,varName) :

SetVariableControl

String ctrlName, varStr, varName

Variable varNum

Pixie_IO_ReadEvent()

ControlInfo addConstantFractionLines

if(V_Value)

showConstantFraction_checkbox("", 1)

endif

End

Function changeEventNumber_button(ctrlName): ButtonControl

String ctrlName

ControlInfo limitToPassedEventsCheckbox

variable limitToPassed=V_Value

ControlInfo limitToFailedEventsCheckbox

variable limitToFailed=V_Value

wave temp_passed, temp_failed

variable newValue, newIndex

NVAR p_index = root:user:passedList_Index

NVAR f_index = root:user:failedList_index

NVAR oldValue = root:pixie4:ChosenEvent

wave energies = root:user:energies
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if(!cmpstr(ctrlName, "smallerEventNumberButton"))

if(limitToPassed)

newIndex=p_index-1

if(0<=newIndex && newIndex<numpnts(temp_passed))

newValue=temp_passed[newIndex]

p_index=newIndex

else

if(numpnts(temp_passed)>0)

p_index=0

newValue=temp_passed[p_index]

endif

endif

elseif(limitToFailed)

newIndex=f_index-1

if(0<=newIndex && newIndex<numpnts(temp_failed))

newValue=temp_failed[newIndex]

f_index=newIndex

else

if(numpnts(temp_failed)>0)

f_index=0

newValue=temp_failed[f_index]

endif

endif

else

newValue = oldValue-1

endif

elseif(!cmpstr(ctrlName, "largerEventNumberButton"))

if(limitToPassed)

newIndex=p_index+1

if(0<=newIndex && newIndex<numpnts(temp_passed))

newValue=temp_passed[newIndex]

p_index=newIndex

endif

elseif(limitToFailed)

newIndex=f_index+1

if(0<=newIndex && newIndex<numpnts(temp_failed))

newValue=temp_failed[newIndex]

f_index=newIndex

endif

else

newValue = oldValue+1

endif

endif
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if(0<=newValue && newValue<numpnts(energies))

oldValue = newValue

setEventNumber_control("",0,"","")

endif

End

Function select_Xwave(ctrlName, value, valueStr)

String ctrlName, valueStr

variable value

get_xWave(value)

if(!cmpstr(ctrlName,"Select_histogramWave"))

wave temp_risetime30, xWave

NVAR low = root:user:lowLimit

NVAR high = root:user:highLimit

variable xmin=waveMin(xWave)

variable xmax=waveMax(xWave)

low=xmin-0.1*abs(xmin)

high=xmax+0.1*abs(xmax)

endif

End

Function get_xWave(value)

variable value

wave temp_risetime30, temp_risetime90, temp_AE, temp_energies,

temp_moment, temp_width, temp_asymmetry

make/O/N=(numpnts(temp_risetime30)) xWave

switch(value)

case 1:

xWave = temp_risetime30

break

case 2:

xWave = temp_risetime90

break

case 3:

xWave = temp_AE

break

case 4:

xWave = temp_energies

break

case 5:

xWave = temp_moment

break
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case 6:

xWave = temp_width

break

case 7:

xWave = temp_asymmetry

break

endswitch

End

Function select_Ywave(name, value, valueStr)

String name, valueStr

variable value

wave temp_risetime30, temp_risetime90, temp_AE, temp_moment,

temp_width, temp_asymmetry

make/O/N=(numpnts(temp_risetime30)) yWave

switch(value)

case 1:

yWave = temp_risetime30

break

case 2:

yWave = temp_risetime90

break

case 3:

yWave = temp_AE

break

case 4:

yWave = temp_moment

break

case 5:

yWave = temp_width

break

case 6:

yWave = temp_asymmetry

break

endswitch

End

Function apply_filter(ctrlName): ButtonControl

String ctrlName

if(!cmpstr(ctrlName, "ResetFilterButton"))

reset_filter(checkLocks=1)

endif
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filter_events()

scatterPlot_button("applyFilter")

End

Function calculate_button(ctrlName): ButtonControl

String ctrlName

NVAR bgLow = root:user:bgLow

NVAR bgHigh= root:user:bgHigh

NVAR sgLow = root:user:sgLow

NVAR sgHigh= root:user:sgHigh

histogram_button("calculate")

wave histogramWave, originalEnergies

if(waveExists(histogramWave) && waveExists(originalEnergies))

variable oBg = sum(originalEnergies, bgLow, bgHigh)

variable oSg = sum(originalEnergies, sgLow, sgHigh)

variable fBg = sum(histogramWave, bgLow, bgHigh)

variable fSg = sum(histogramWave, sgLow, sgHigh)

variable pBg = (oBg-fBg)*100/oBg

variable pSg = (oSg-fSg)*100/oSg

Print "Background counts reduced by "+num2str(pBg)+"%, signal

counts reduced by "+num2str(pSg)+"%."

endif

End

Function readData_Button(ctrlName): ButtonControl

String ctrlName

read_data()

End

Function setCollection_Button(ctrlName): ButtonControl

String ctrlName

Wave AE = root:user:AE

Wave Energies = root:user:Energies

Wave Broad = root:user:Broad

Wave asymmetry = root:user:asymmetry

wave width = root:user:width

wave risetime30 = root:user:risetime30

wave risetime90 = root:user:risetime90

wave moment = root:user:moment

wave temp_AE, temp_energies, temp_broad, temp_asymmetry,

temp_width, temp_risetime30, temp_risetime90, temp_moment

AE = temp_AE

Energies = temp_energies
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Broad = temp_broad

asymmetry = temp_asymmetry

width = temp_width

risetime30 = temp_risetime30

risetime90 = temp_risetime90

moment = temp_moment

End

Function scatterPlot_button(ctrlName): ButtonControl

String ctrlName

wave xWave, yWave

ControlInfo select_xWave

select_Xwave("select_xWave", V_Value, S_value)

ControlInfo select_yWave

select_Ywave("select_yWave", V_Value, S_value)

if(waveExists(xWave) && waveExists(yWave))

RemoveFromGraph/Z $"#0"

RemoveFromGraph/Z $"#0"

AppendToGraph yWave vs xWave

ModifyGraph mode=3, marker=1, gmSize=1

endif

End

Function histogram_button(ctrlName): ButtonControl

String ctrlName

wave xWave

ControlInfo select_histogramWave

get_Xwave(V_Value)

if(waveExists(xWave))

NVAR low=root:user:lowLimit

NVAR high=root:user:highLimit

NVAR histo_bins=root:user:histo_bins

wave histogramWave

wave oEnergies = root:user:energies

displayHistogram(oEnergies, x0=low, x1=high, Nbins=histo_bins)

duplicate/O histogramWave, originalEnergies

displayHistogram(xWave, x0=low, x1=high, Nbins=histo_bins)

RemoveFromGraph/Z $"#0"

RemoveFromGraph/Z $"#0"

AppendToGraph histogramWave

ModifyGraph mode=5, hbFill=2

endif
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End

Function tracePlot()

wave current

RemoveFromGraph $"#0"

AppendToGraph root:pixie4:trace0

AppendToGraph/L=L1 current

ModifyGraph freePos(L1)=0

ModifyGraph axisEnab(left)={0,0.47}

ModifyGraph axisEnab(L1)={0.53,1}

ModifyGraph lblPos(L1)=64

End

Function change_tab(name, tab)

String name

Variable tab

if(!cmpstr(name, "AnalysisTab"))

//Filter tab

SetVariable setMinEnergy, disable= (tab!=0)

SetVariable setMaxEnergy, disable= (tab!=0)

SetVariable setMinAE, disable= (tab!=0)

SetVariable setMaxAE, disable= (tab!=0)

SetVariable setMinT30, disable= (tab!=0)

SetVariable setMaxT30, disable= (tab!=0)

SetVariable setMinT90, disable= (tab!=0)

SetVariable setMaxT90, disable= (tab!=0)

SetVariable setMinMoment, disable= (tab!=0)

SetVariable setMaxMoment, disable= (tab!=0)

SetVariable setMinWidth, disable= (tab!=0)

SetVariable setMaxWidth, disable= (tab!=0)

SetVariable setMinAsymmetry, disable= (tab!=0)

SetVariable setMaxAsymmetry, disable= (tab!=0)

Checkbox lockMinEnergy, disable = (tab!=0)

Checkbox lockMaxEnergy, disable = (tab!=0)

Checkbox lockMinAE, disable = (tab!=0)

Checkbox lockMaxAE, disable = (tab!=0)

Checkbox lockMinT30, disable = (tab!=0)

Checkbox lockMaxT30, disable = (tab!=0)

Checkbox lockMinT90, disable = (tab!=0)

Checkbox lockMaxT90, disable = (tab!=0)

Checkbox lockMinMoment, disable= (tab!=0)

Checkbox lockMaxMoment, disable= (tab!=0)
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Checkbox lockMinWidth, disable= (tab!=0)

Checkbox lockMaxWidth, disable= (tab!=0)

Checkbox lockMinAsymmetry, disable= (tab!=0)

Checkbox lockMaxAsymmetry, disable= (tab!=0)

//Histogram tab

PopupMenu Select_histogramWave, disable = (tab!=1)

PopupMenu Select_histogramWave, disable = (tab!=1)

SetVariable setLowLimit, disable = (tab!=1)

SetVariable setHighLimit, disable = (tab!=1)

SetVariable setNbins, disable = (tab!=1)

Button HistogramButton, disable = (tab!=1)

//Analysis tab

SetVariable setBgLow, disable = (tab!=2)

SetVariable setBgHigh, disable = (tab!=2)

SetVariable setSgLow, disable = (tab!=2)

SetVariable setSgHigh, disable = (tab!=2)

Button CalculateButton, disable = (tab!=2)

//Trace tab

TitleBox eventNumberTitle, disable = (tab!=3)

SetVariable setEventNumber, disable = (tab!=3)

Button smallerEventNumberButton, disable = (tab!=3)

Button largerEventNumberButton, disable = (tab!=3)

Checkbox limitToPassedEventsCheckbox, disable = (tab!=3),

value=0

Checkbox limitToFailedEventsCheckbox, disable = (tab!=3),

value=0

Checkbox addConstantFractionLines, disable = (tab!=3), value=0

if(tab==3)

tracePlot()

else

showConstantFraction_checkbox("", 0)

endif

else

//Settings tab

Button ReadDataButton, disable = (tab!=0)

Checkbox autoApplyFilterCheckbox, disable = (tab!=0)

PopupMenu Select_xWave, disable = (tab!=0)

PopupMenu Select_yWave, disable = (tab!=0)

Button ApplyFilterButton, disable= (tab!=0)

Button GraphButton, disable = (tab!=0)

Button ResetFilterButton, disable = (tab!=0)

endif

End

75


