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Tommi Kärkkäinen and Mirka Saarela
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40014, Jyväskylä, Finland

Abstract. Principal component analysis is one of the most popular ma-
chine learning and data mining techniques. Having its origins in statistics,
principal component analysis is used in numerous applications. However,
there seems to be not much systematic testing and assessment of prin-
cipal component analysis for cases with erroneous and incomplete data.
The purpose of this article is to propose multiple robust approaches for
carrying out principal component analysis and, especially, to estimate
the relative importances of the principal components to explain the data
variability. Computational experiments are first focused on carefully de-
signed simulated tests where the ground truth is known and can be used
to assess the accuracy of the results of the different methods. In addition,
a practical application and evaluation of the methods for an educational
data set is given.
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1 Introduction

Principal component analysis (PCA) is one of the most popular methods in
machine learning (ML) and data mining (DM) of statistical origin [12]. It is
typically introduced in all textbooks of ML and DM areas (e.g., [1, 10]) and is
used in numerous applications [15]. It seems that the versatile line of utilization
has also partly redefined the original terminology from statistics: in ML&DM,
the computation of principal components and their explained variability of data,
many times together with dimension reduction, is referred to as PCA, even if the
term analysis, especially historically, refers to statistical hypothesis testing [12].
However, nowadays the use of the term PCA points to the actual computational
procedure. Certainly one of the appealing facets of PCA is its algorithmic sim-
plicity with a supporting linear algebra library: a) create covariance matrix, b)
compute eigenvalues and eigenvectors, c) compute data variability using eigen-
values, and, if needed, transform data to the new coordinate system determined
by the eigenvectors. This is also the algorithmic skeleton underlying this work.

Even if much researched, the use of PCA for sparse data with missing values
(not to be mixed with sparse PCA referring to the sparsity of the linear model [6])
seems not to be a widely addressed topic, although [27] provides a comparison
of a set of second-order (classical) methods. We assume here that there is no



further information on the sparsity pattern so that the non-existing subset of
data is missing completely at random (MCAR) [18]. As argued in [24, 25], a
missing value can, in principle, represent any value from the possible range of an
individual variable so that it becomes difficult to justify assumptions on data or
error normality, which underlie the classical PCA that is based on second-order
statistics. Hence, we also consider the so-called nonparametric, robust statistical
techniques [13, 11], which allow deviations from normality assumptions while
still producing reliable and well-defined estimators.

The two simplest robust estimates of location are median and spatial median.
The median, a middle value of the ordered univariate sample (unique only for
odd number of points, see [16]), is inherently one-dimensional, and with missing
data uses only the available values of an individual variable from the marginal
distribution (similarly to the mean). The spatial median, on the other hand,
is truly a multidimensional location estimate and utilizes the available data
pattern as a whole. These estimates and their intrinsic properties are illustrated
and more thoroughly discussed in [16]. The spatial median has many attractive
statistical properties; particularly that its breakdown point is 0.5, that is, it
can handle up to 50% of the contaminated data, which makes it very appealing
for high-dimensional data with severe degradations and outliers, possibly in the
form of missing values. In statistics, robust estimation of data scattering (i.e.,
covariability) has been advanced in many papers [19, 28, 7], but, as far as we
know, sparse data have not been treated in them.

The content of this work is as follows: First, we briefly derive and define
basic and robust PCA and unify their use to coincide with the geometrical
interpretation. Then, we propose two modifications of the basic robust PCA
for sparse data. All the proposed methods are then compared using a sequence
of carefully designed test data sets. Finally, we provide one application of the
most potential procedures, i.e., dimension reduction and identifying the main
variables, for an educational data set, whose national subset was analyzed in
[24].

2 Methods

Assume that a set of observations {xi}Ni=1, where xi ∈ Rn, is given, so that N
denotes the number of observations and n the number of variables, respectively.
To avoid the low-rank matrices by the form of the data, we assume that n < N .
In the usual way, define the data matrix X ∈ RN×n as X =

(
xTi
)
, i = 1, . . . , N .

2.1 Derivation and interpretation of the classical PCA

We first provide a compact derivation underlying classical principal component
analysis along the lines of [4]. For the linear algebra, see, for example, [8]. In
general, the purpose of PCA is to derive a linear transformation to reduce the
dimension of a given set of vectors while still retaining their information content
(in practice, their variability). Hence, the original set of vectors {xi} is to be



transferred to a set of new vectors {yi} with yi ∈ Rm, such that m < n but also
xi ∼ yi in a suitable sense. Note that every vector x ∈ Rn can be represented
using a set of orthonormal basis vectors

[
u1 . . . un

]
as x =

∑n
k=1 zkuk, where

zk = uTk x. Geometrically, this rotates the original coordinate system.
Let us consider a new vector x̃ =

∑m
k=1 zkuk +

∑n
k=m+1 bkuk, where the last

term represents the residual error x − x̃ =
∑n
k=m+1(zk − bk) uk. In case of the

classical PCA, consider the minimization of the least-squares-error:

J =
1

2

N∑
i=1

‖xi− x̃i‖2 =
1

2

N∑
i=1

(xi− x̃i)
T (xi− x̃i) =

1

2

N∑
i=1

n∑
k=m+1

(zi,k−bk)2. (1)

By direct calculation, one obtains bk = uTk x̄, where x̄ = 1
N

∑N
i=1 xi is the sample

mean. Then (1) can be rewritten as ((uT v)2 = uT (v vT ) u for vectors u,v) so
that

J =
1

2

n∑
k=m+1

N∑
i=1

(
uTk (xi − x̄)

)2
=

1

2

n∑
k=m+1

uTkΣ uk, (2)

where Σ is the sample covariance matrix

Σ =

N∑
i=1

(xi − x̄) (xi − x̄)T . (3)

Note that the standard technique (e.g., in Matlab) for sparse data is to compute
(3) only for those data pairs where both values (xi)j and (xi)k exist. By setting
vi = xi − x̄, we have for the quadratic form, with an arbitrary vector x 6= 0:

xTΣx = xT
[
v1 vT1 + . . .+ vN vTN

]
x = (xTv1)2 + . . .+ (xTvN )2 ≥ 0. (4)

This shows that any matrix of the form of (3) is always at least positive semidef-
inite, with positive eigenvalues if vi’s span Rn, that is, if rank[v1 . . .vN ] ≥ n.
The existence of missing values clearly increases the possibility of semidefinite-
ness.

Now, let {λk,uk} be the kth eigenvalue and eigenvector of Σ satisfying

Σuk = λkuk, k = 1, . . . , n. (5)

This identity can be written in the matrix form as ΣU = UD, where D =
Diag{λ1, . . . , λn} (vector λ as the diagonal matrix) and U =

[
u1 u2 . . . un

]
.

Using (5) shows that (2) reduces to J = 1
2

∑n
k=m+1 λk. This means that the

reduced representation consists of those m eigenvectors that correspond to the
m largest eigenvalues of matrix Σ. For the unbiased estimate of the sample
covariance matrix Σ ' 1

N−1Σ, one can use scaling such as in (3) because it does
not affect eigenvectors or the relative sizes of the eigenvalues. Finally, for any
x ∈ Rn and y = UTx, we have

xTΣx = yTDy =

n∑
k=1

λky
2
k =

n∑
k=1

y2
k(

λ
− 1

2

k

)2 . (6)



Geometrically, this means that in the transformed coordinate system UTek
(eks are the base vectors for the original coordinates), the data define an n-
dimensional hyperellipsoid for which the lengths of the principal semi-axis are
proportional to

√
λk.

To this end, we redefine the well-known principle (see, e.g., [15]) for choos-
ing a certain number of principal components in dimension reduction. Namely,
the derivations above show that eigenvalues of the sample covariance matrix Σ
represent the variance along the new coordinate system, λk = σ2

k, whereas the
geometric interpretation related to (6) proposes to use the standard deviation
σk =

√
λk to assess the variability of data.

Proposition 1. The relative importance RIk (in percentages) of a new variable
yk for the principal component transformation based on the sample covariance

matrix is defined as RIk = 100
√
λk∑n

i=1

√
λi

, where λk satisfy (5). We refer to
√
λi

as the estimated variability of the ith (new) variable.

2.2 Derivation of robust PCA for sparse data

Formally, a straightforward derivation of the classical PCA as given above is ob-
tained from the optimality condition for the least-squares problem (1). Namely,
assume that instead of the reduced representation, the problem minx J (x) as
in (1) is used to estimate the location of the given data {xi}. In second-order

statistics, this provides the sample mean x̄ = 1
N

∑N
i=1 xi, whose explicit formula

can be obtained from the optimality condition (see [16]):

dJ (x̄)

dx
=

d

dx

1

2

N∑
i=1

‖xi − x‖2 =

N∑
i=1

(xi − x̄) = 0. (7)

The covariate form of this optimality condition
∑N
i=1(xi − x̄)(xi − x̄)T readily

provides us the sample covariance matrix up to the constant 1
N−1 .

Next we assume that there are missing values in the given data. To define
their pattern, let us introduce the projection vectors pi, with i = 1 . . . , N (see
[17, 2, 24, 25]), which capture the availability of the components:

(pi)j =

{
1, if (xi)j exists,

0, otherwise.
(8)

We also define the corresponding matrix P ∈ RN×n that contains these projec-
tions in the rows, being of compatible size with the data matrix X.

The spatial median s with the so-called available data strategy can be ob-
tained as the solution of the projected Weber problem

min
v∈Rn

J (v), where J (v) =

nj∑
i=1

‖Diag{pi}(xi − v)‖. (9)



As described in [16], this optimization problem is nonsmooth, that is, it is not
classically differentiable at zero. Instead, the so-called subgradient of J (v) al-
ways exists and is characterized by the condition

∂J (v) =

N∑
i=1

ξi for

(ξi)j =
Diag{pi}(v − xi)j
‖Diag{pi}(v − xi)‖

, if ‖Diag{pi}(u− xi)‖ 6= 0,

‖ξi‖ ≤ 1, when ‖Diag{pi}(u− xi)‖ = 0.

(10)
Then, the minimizer s of (9) satisfies 0 ∈ ∂J (s). In [20] it is shown, for the
complete data case, that if the sample {xi} belongs to a Euclidean space and is
not concentrated on a line, the spatial median s is unique. In practice (see [2]),
one can obtain an accurate approximation for the solution of the nonsmooth
problem by solving the following equation corresponding to the regularized form

N∑
i=1

Diag{pi}(s− xi)

max{‖Diag{pi}(s− xi)‖, ε}
= 0 for ε > 0. (11)

This can be solved using the SOR (Sequential Overrelaxation) algorithm [2] with
the overrelaxation parameter ω = 1.5. For simplicity, define ‖v‖ε = max{‖v‖, ε}.

To this end, the comparison of (7) and (11) allows us to define the robust
covariance matrix corresponding to the spatial median s:

ΣR =
1

N − 1

N∑
i=1

(
Diag{pi}(s− xi)

‖Diag{pi}(s− xi)‖ε

)(
Diag{pi}(s− xi)

‖Diag{pi}(s− xi)‖ε

)T
. (12)

This form can be referred to as the multivariate sign covariance matrix [5, 28, 7].
By construction, the nonzero covariate vectors have a unit length, so that they
only accumulate the deviations of angles and not the sizes of the available vari-
ables. Such an observation is related to one perspective on statistical robustness
that can be formalized using the so-called influence function [9]. Using ΣR as the
sample covariance matrix, one can, by again solving the corresponding eigenvalue
problem (5), recover a new basis {uk} for which the corresponding eigenvalues
{λk}, again, explain the amount of variability along the new coordinates. Be-
cause ΣR is based on the first-order approximation, the nonnegative eigenvalues
readily correspond to the geometric variability represented by the standard de-
viation in the second-order statistics, and, then, we do not need to take any
square roots when computing the relative importances of the robust procedure
as in Proposition 1. Hence, the two PCA approaches are comparable to each
other.

2.3 Projection using PCA-based transformation

In the matrix form, the existence of a new basis in the columns of the given
unitary matrix U, and given a complete location estimate for the sparse data
s ∈ Rn (i.e., the spatial median), for which we define the corresponding matrix
S ∈ RN×n by replication of sT in N rows, yields the transformed data matrix

Y = (P ◦ (X− S)) U, (13)



where ◦ denotes the Hadamard product. When U is ordered based on RIk’s,
the dimension reduction is obtained by selecting only m of the n coordinates
(columns) in Y. Hence, we see that even if there are missing values in the original
data, the resulting new data vectors become complete. We also know from the
basic linear algebra that, for complete data, both the length of the original
vectors and the angle between any two vectors are preserved in (13) because U is
unitary. However, in the case of missing data, some of the coordinate values of the
original vectors are not present, and then, presumably, the transformed vectors
in Y are of smaller length, i.e., closer to the origin in the transformed space.
Moreover, the angles might also become degraded. These simple observations
readily raise some doubts concerning the available data strategy in the form of
incomplete data vectors as proposed in (12).

2.4 Two modifications of the robust PCA procedure

Let us define two modifications of the robust PCA procedure that are based on
the similar form of the covariance matrix as defined in (12). As discussed above,
both the amount of variability of data and/or the main directions of variability
might be underestimated due to sparse data vectors, that is, missing coordinate
values. Our suggested modifications are both based on a simple idea: use only the
“almost complete” data in estimation (cf. the cascadic initializations of robust
clustering in [24, 25]). Note that this is one step further than the typical way of
using only the complete pairs or complete observations in the computation of a
covariance matrix.

The first suggested modification, for the computation of the relative impor-
tances of the principal components, is related to using the actual projections
along the new coordinate axis for this purpose. Similar to the alpha-trimmed
mean [3], which presumably neglects outlying observations, we use (see the tests
in [26]) the 10% and 90% percentiles, denoted as prc10(·) and prc90(·), related to
the transformed data matrix Y in (13). Namely, for the each new variable {yk},
its estimated variability is computed as

RIk = 100(prc90({yk})− prc10({yk})). (14)

Moreover, because it is precisely the sparsity that diminishes the lengths and
angles of the transformed data vectors, we restrict the computation of (14) to
that subset of the original data, where at most one variable is missing from an
observation xi. This subset satisfies

∑n
j=1(pi)j ≥ n− 1.

Our second suggested modification uses a similar approach, but already di-
rectly for the robust covariance matrix (12), by taking into account only those
observations of which at most one variable is missing. Hence, we define the fol-
lowing subsets of the original set of indices N = {1, 2, . . . , N}:

Ic = {i ∈ N | xi is complete},
Ij = {i ∈ N | variable j is missing from xi}.



We propose computing a reduced, robust covariance matrix Σ̃R as

Σ̃R =
1

Ñ − 1

∑
i∈Ic

viv
T
i +

n∑
j=1

∑
i∈Ij

viv
T
i

 , vi =
Diag{pi}(s− xi)

‖Diag{pi}(s− xi)‖ε
,

with Ñ = |Ic | +
∑
j |Ij |. Hence, only that part of the first-order covariability

that corresponds to the almost complete observations is used.

3 Computational results

Computational experiments in the form of simulated test cases, when knowing
the target result, are given first. The parametrized test is introduced in Sec-
tion 3.1, and the computational results for the different procedures are provided
in Section 3.2. Finally, we apply the best methods to analyze the educational
data of PISA in Section 3.3. As a reference method related to the classical,
second-order statistics as derived in Section 2.1, with sparse data, we use the
Matlab’s PCA routine with the ‘pairwise’ option.

3.1 The simulated test cases

For simplicity, we fix the number of observations as N = 1000. For the fixed size
of an observation n, let us define a vector of predetermined standard deviations as
σ =

[
σ1 σ2 . . . σn

]
. Moreover, let Ra,b(θ) ∈ Rn×n be an orthonormal (clockwise)

rotation matrix of the form

Rab(θ) = {M = In ∧Maa = Mbb = cos(θ), Mab = −Mba = − sin(θ)} ,

where In denotes the n × n identity matrix. Then, the simulated data {di}Ni=1

is generated as

dTi ∼
σ

2
+
[
N (0, σ1) N (0, σ2) . . . N (0, σn)

]
+ ηi

[
Rn

[
U([−σ1, σ1]) U([−σ2, σ2]) . . . U([−σn, σn])

]T ]T , (15)

where N (0, σ) denotes the zero-mean normal distribution with standard devia-
tion σ and U([−c, c]) the uniform distribution on the interval [−c, c], respectively.
Rn defines the n-dimensional rotation that we use to orientate the latter noise
term in (15) along the diagonal of the hypercube, that is, we always choose θ = π

4
and take, for the actual tests in 2D, 3D, 4D, and 6D,

R2 = R12(θ), R3 = R23(θ)R12(θ), R4 = R14(θ)R23(θ)R34(θ)R12(θ),

R6 = R36(θ)R45(θ)R56(θ)R14(θ)R23(θ)R34(θ)R12(θ).

Finally, a random sparsity pattern of a given percentage of missing values rep-
resented by the matrix P as defined in (8) is attached to data.



To conclude, the simulated data are parametrized by the vector σ, which
defines the true data variability. Moreover, the target directions of the principal
components are just the original unit vectors ek, k = 1, . . . , n. Their estimation
is disturbed by the noise, which comes from the uniform distribution whose
width coordinatewise coincides with the clean data. Because the noise is rotated
towards the diagonal of the hypercube, its maximal effect is characterized by
maxk σk

mink σk
. By choosing σk’s as the powers of two and three for n = 2, 3, 4, 6, we

are then gradually increasing the effect of the error when the dimension of the
data is increasing. Finally, we fix the amount of noise to 10% so that ηi = 1
with a probability of 0.1 in (15). In this way, testing up to 40% of missing values
randomly attached to {di} will always contain less than 50% of the degradations
(missing values and/or noise) as a whole.

3.2 Results for the simulated tests

The test data generation was repeated 10 times, and the means and standard
deviations (in parentheses) over these are reported. As the error measure for
the directions of {uk}, we use their deviation from being parallel to the target
unit vectors. Hence, we take DirE = maxk{1− |uTk ek|}, k = 1, . . . , n, such that
DirE ∈ [0, 1]. In the result tables below, we report the relative importances of
RIk in the order of their importance. ‘Clas’ refers to the classical PCA, ‘Rob’ to
the original robust formulation, ‘RobP’ to the modification using percentiles for
the importances, and ‘RobR’ to the use of the reduced covariance matrix Σ̃R.
The real relative importances (‘True’) by generation are provided in the third
column.

From all simulated tests (Tables 1-4), we see that the the classical method
and ‘RobP’ show the closest relative importances of the principal components to
the true geometric variability in the data. Moreover, both of these approaches
show a very stable behavior, and the results for the relative importances do not
change that much, even when a high number of missing data is present. The
results for the other two approaches, the basic robust and ‘RobR’, on the other
hand, are much less stable, and particularly the basic robust procedure starts
to underestimate the relative importances of the major components when the
amount of missing data increases.

The directions remain stable for all the simulated test cases, even when a
large amount of missing data is present. Over all the simulated tests, the ‘RobP’
with the original robust covariance bears the closest resemblance to the true
directions. It can tolerate more noise compared to ‘Clas’, as shown in Table 3.
We also conclude that the missing data do not affect the results of the PCA
procedures as much as the noise. Tables 3 and 4 show that, for a large noise, the
increase in sparsity can actually improve the performance of the robust method
because it decreases the absolute number of noisy observations. Interestingly, as
can be seen from Table 4, the geometric variability was estimated accurately,
even if the directions were wrong.



Table 1. Results for σ = [3 1]

Missing PC True(Std) Clas(Std) Rob(Std) RobP(Std) RobR(Std)

0%
1 75.0(0.00) 73.7(0.8) 73.0(1.1) 73.0(1.3) 73.0(1.1)
2 25.0(0.00) 26.3(0.8) 27.0(1.1) 27.0(1.3) 27.0(1.1)

DirE - 0.001 0.004 0.004

10%
1 75.0(0.00) 73.9(0.9) 68.9(1.2) 73.2(1.3) 68.9(1.2)
2 25.0(0.00) 26.1(0.9) 31.1(1.2) 26.8(1.3) 31.1(1.2)

DirE - 0.001 0.005 0.005

20%
1 75.0(0.00) 73.5(1.2) 65.1(1.0) 72.5(1.7) 65.1(1.0)
2 25.0(0.00) 26.5(1.2) 34.9(1.0) 27.5(1.7) 34.9(1.0)

DirE - 0.001 0.009 0.009

30%
1 75.0(0.00) 73.8(1.0) 62.4(0.9) 73.0(1.4) 62.4(0.9)
2 25.0(0.00) 26.2(1.0) 37.6(0.9) 27.0(1.4) 37.6(0.9)

DirE - 0.001 0.003 0.003

40%
1 75.0(0.00) 74.0(0.8) 60.3(1.6) 73.1(1.4) 60.3(1.6)
2 25.0(0.00) 26.0(0.8) 39.7(1.6) 26.9(1.4) 39.7(1.6)

DirE - 0.002 0.008 0.008

3.3 Results for PISA data set

Next, we apply the different PCA methods tested in the previous section to
a large educational data set, namely the latest data from the Programme for
International Student Assessment1 (PISA 2012). The data contain 485490 ob-
servations, and as variables we use the 15 scale indices [24] that are known to
explain the student performance in mathematics, the main assessment area in
PISA 2012. The scale indices are derived variables that summarize information
from student background questionnaires [22], and are scaled so that their mean
is zero with a standard deviation of one. Due to the rotated design of PISA (each
student answers only one of the three different background questionnaires), this
data set has 33.24% of missing data by design, a special case of MCAR.

In Table 5, the relative importances {RIk} are depicted. The table also shows
the variance-based view for the classical method, denoted as ‘ClsVar’. As can be
seen from the table, the first principal component is much higher for ‘ClsVar’
than for the other approaches. In consequence, fewer principal components would
be selected with ‘ClsVar’ when a certain threshold of how much the principal
components should account for is given. As illustrated in Fig. 1, if the threshold
is set to 90%, we would select 11 components with ‘ClsVar’ but 13 for both the
classical PCA and for the ‘RobP’.

In Fig. 2, the loadings of the first two principal components are visualized
for the classical and for the robust version. We see that for both versions, the
three scale indices ANXMAT, FAILMAT, and ESCS are the most distinct from
the others. However, the robust version is able to distinguish this finding more
clearly. That index of economic, social and cultural status (ESCS) accounts for

1 Available at http://www.oecd.org/pisa/pisaproducts/.

http://www.oecd.org/pisa/pisaproducts/


Table 2. Results for σ = [4 2 1]

Missing PC True(Std) Clas(Std) Rob(Std) RobP(Std) RobR(Std)

0%

1 57.1(0.00) 56.3(0.7) 58.6(1.3) 55.8(1.0) 58.6(1.3)
2 28.6(0.00) 28.6(0.8) 28.9(1.2) 28.7(1.0) 28.9(1.2)
3 14.3(0.00) 15.2(0.3) 12.6(0.4) 15.5(0.4) 12.6(0.4)

DirE - 0.005 0.017 0.017

10%

1 57.1(0.00) 56.3(0.8) 55.7(1.3) 55.8(1.0) 54.5(1.6)
2 28.6(0.00) 28.6(0.9) 30.0(1.2) 28.6(0.9) 30.7(1.2)
3 14.3(0.00) 15.1(0.4) 14.3(0.6) 15.5(0.5) 14.8(0.8)

DirE - 0.008 0.015 0.015

20%

1 57.1(0.00) 56.2(0.8) 51.7(1.4) 55.6(1.1) 51.7(1.4)
2 28.6(0.00) 28.6(0.9) 30.7(1.2) 28.8(1.3) 31.5(1.5)
3 14.3(0.00) 15.2(0.3) 17.6(0.8) 15.6(0.5) 16.7(0.7)

DirE - 0.005 0.020 0.014

30%

1 57.1(0.00) 56.0(0.7) 49.2(0.7) 55.3(0.9) 50.9(0.7)
2 28.6(0.00) 28.8(0.8) 31.6(0.8) 29.0(0.9) 32.1(1.3)
3 14.3(0.00) 15.2(0.4) 19.2(1.0) 15.7(0.5) 17.1(1.3)

DirE - 0.006 0.013 0.012

40%

1 57.1(0.00) 56.2(0.9) 46.2(1.4) 55.8(1.2) 49.9(1.6)
2 28.6(0.00) 28.7(1.2) 32.0(1.7) 28.5(1.3) 32.5(1.7)
3 14.3(0.00) 15.1(0.4) 21.8(1.1) 15.6(0.7) 17.6(1.0)

DirE - 0.010 0.014 0.013

Fig. 1. Cumulative sum of the relative importances for the classical PCA using vari-
ance, the classical PCA, and the robust PCA using percentiles (from left to right).

much of the variability in the data, being the “strongest single factor associated
with performance in PISA” [21], is always highlighted in PISA documentations
and can be clearly seen in Fig. 2, especially from the robust PC 1.



Table 3. Results for σ = [27 9 3 1]

Missing PC True(Std) Clas(Std) Rob(Std) RobP(Std) RobR(Std)

0%

1 67.5(0.00) 62.5(0.8) 66.9(0.9) 63.6(1.1) 66.9(0.9)
2 22.5(0.00) 22.1(0.6) 23.6(0.8) 22.9(0.8) 23.6(0.8)
3 7.5(0.00) 10.1(0.2) 6.9(0.4) 9.1(0.4) 6.9(0.4)
4 2.5(0.00) 5.3(0.2) 2.6(0.2) 4.5(0.2) 2.6(0.2)

DirE - 0.168 0.080 0.080

10%

1 67.5(0.00) 62.5(0.8) 62.3(1.3) 64.0(1.2) 60.3(2.3)
2 22.5(0.00) 22.1(0.6) 25.7(0.9) 23.0(0.9) 26.9(1.7)
3 7.5(0.00) 10.0(0.2) 8.6(0.5) 9.0(0.4) 9.2(0.6)
4 2.5(0.00) 5.3(0.2) 3.5(0.3) 4.0(0.2) 3.6(0.4)

DirE - 0.157 0.045 0.046

20%

1 67.5(0.00) 62.5(1.0) 56.9(1.2) 64.2(1.2) 58.3(1.7)
2 22.5(0.00) 22.1(0.7) 27.4(1.0) 22.9(0.9) 28.1(1.1)
3 7.5(0.00) 10.1(0.3) 11.0(0.6) 8.9(0.5) 9.8(1.0)
4 2.5(0.00) 5.4(0.3) 4.7(0.4) 3.9(0.2) 3.7(0.4)

DirE - 0.164 0.032 0.031

30%

1 67.5(0.00) 62.7(0.8) 52.1(1.6) 64.4(0.9) 57.7(1.3)
2 22.5(0.00) 22.0(0.6) 28.2(1.4) 23.2(0.6) 28.2(1.5)
3 7.5(0.00) 10.0(0.4) 13.2(1.0) 8.6(0.4) 10.2(0.5)
4 2.5(0.00) 5.3(0.3) 6.5(0.5) 3.8(0.2) 3.9(0.4)

DirE - 0.177 0.023 0.038

40%

1 67.5(0.00) 62.7(0.8) 46.9(0.8) 64.2(1.4) 55.9(1.2)
2 22.5(0.00) 22.2(0.6) 28.7(1.0) 23.5(1.3) 29.8(1.5)
3 7.5(0.00) 9.9(0.3) 15.7(0.5) 8.8(0.3) 10.8(1.1)
4 2.5(0.00) 5.2(0.3) 8.6(0.8) 3.6(0.4) 3.5(0.5)

DirE - 0.189 0.016 0.040

4 Conclusions

Although PCA is one of the most widely used ML and DM techniques, systematic
testing and assessment of PCA in the presence of missing data seem to still be
an important topic to study. In this article, we have proposed a robust PCA
method and two modifications (one using percentiles for the importance and
one with a reduced covariance matrix) of this method. The testing of these three
approaches was done in comparison with the classical, reference PCA for sparse
data. First, we illustrated the results for carefully designed simulated data and
then for a large, real educational data set.

From the simulated tests, we concluded that the percentiles-based robust
method and the classical PCA showed the best results, especially when the
relative importance of the principal components were compared with the true
variability of the data. The basic robust approach started to underestimate the
relative importance of the major components when the amount of missing data
increased. The results of the simulated tests were stable, and the variance be-



Fig. 2. Principal component loadings for PISA data for the classical (left) and robust
(right) approaches.

tween repeated test runs was very small. Likewise, the estimated directions re-
mained also stable even with a large amount of missing data. Tests with PISA
data showed that the proposed robust methods are applicable for large, real data
sets with one-third of the values missing, where the interpretation of the robust
result yielded clearer known discrimination of the original variables compared to
the classical PCA.

The classical PCA uses variance to estimate the importance of the princi-
pal components, which highlights (as demonstrated in Table 5 and Figure 1)
the major components. As shown by the simulated results, it is more prone to
nongaussian errors in the data. These points might explain some of the difficul-
ties the classical method faced in applications [23]. In [14], seven distinctions of
the PCA problem in the presence of missing values were listed: 1) no analytical
solution since even the estimation of the data covariance matrix is nontrivial,
2) the optimized cost function typically has multiple local minima, 3) no ana-
lytical solution even for the location estimate, 4) standard approaches can lead
to overfitting, 5) algorithms may require heavy computations, 6) the concept of
the PCA basis in the principal subspace is not easily generalized, and 7) the
choice of the dimensionality of the principal subspace is more difficult than in
classical PCA. We conclude that the proposed robust methods successfully ad-
dressed all these distinctions: 1) well-defined covariance matrix, 2) being positive
semidefinite, 3) a unique location estimate in the form of the spatial median, 4)
resistance to noise due to robustness, 5) the same linear algebra as in the clas-
sical approach, and 6)–7) a geometrically consistent definition of the principal
subspace and its dimension related to the data variability.

Acknowledgments. The authors would like to thank Professor Tuomo Rossi
for many helpful discussions on the contents of the paper.



Table 4. Results for σ = [32 16 8 4 2 1]

Missing PC True(Std) Clas(Std) Rob(Std) RobP(Std) RobR(Std)

0%

1 50.8(0.00) 48.1(0.5) 55.3(1.0) 48.6(0.8) 55.3(1.0)
2 25.4(0.00) 24.3(0.4) 26.7(0.6) 24.4(0.4) 26.7(0.6)
3 12.7(0.00) 12.6(0.2) 10.6(0.4) 12.7(0.3) 10.6(0.4)
4 6.3(0.00) 7.5(0.2) 4.7(0.3) 7.1(0.2) 4.7(0.3)
5 3.2(0.00) 4.4(0.1) 1.6(0.1) 4.3(0.1) 1.6(0.1)
6 1.6(0.00) 3.2(0.1) 1.0(0.1) 2.8(0.2) 1.0(0.1)

DirE - 0.298 0.374 0.374

10%

1 50.8(0.00) 48.0(0.6) 51.6(1.1) 48.5(1.1) 51.0(1.9)
2 25.4(0.00) 24.3(0.5) 27.5(0.8) 24.8(0.6) 28.1(1.1)
3 12.7(0.00) 12.6(0.2) 12.0(0.5) 12.8(0.4) 12.0(0.9)
4 6.3(0.00) 7.5(0.2) 5.5(0.2) 7.0(0.2) 5.5(0.4)
5 3.2(0.00) 4.4(0.1) 2.2(0.2) 4.2(0.1) 2.2(0.2)
6 1.6(0.00) 3.2(0.2) 1.3(0.1) 2.7(0.2) 1.3(0.2)

DirE - 0.318 0.277 0.358

20%

1 50.8(0.00) 48.2(0.5) 48.6(1.0) 48.9(1.6) 51.3(1.4)
2 25.4(0.00) 24.2(0.5) 27.3(0.8) 24.6(0.6) 27.3(0.7)
3 12.7(0.00) 12.7(0.3) 13.2(0.8) 13.0(0.6) 12.3(1.2)
4 6.3(0.00) 7.4(0.2) 6.4(0.3) 7.0(0.3) 5.5(0.6)
5 3.2(0.00) 4.4(0.2) 2.7(0.3) 4.0(0.2) 2.2(0.2)
6 1.6(0.00) 3.2(0.2) 1.7(0.2) 2.4(0.2) 1.3(0.3)

DirE - 0.372 0.090 0.137

30%

1 50.8(0.00) 48.1(0.6) 43.8(1.2) 48.6(1.4) 49.4(2.4)
2 25.4(0.00) 24.3(0.5) 27.5(0.8) 25.0(0.8) 28.5(1.7)
3 12.7(0.00) 12.6(0.1) 15.0(0.6) 12.9(0.5) 12.5(0.8)
4 6.3(0.00) 7.5(0.2) 7.6(0.5) 7.1(0.4) 5.8(0.8)
5 3.2(0.00) 4.3(0.1) 3.8(0.5) 4.0(0.2) 2.2(0.2)
6 1.6(0.00) 3.2(0.2) 2.3(0.3) 2.4(0.2) 1.5(0.4)

DirE - 0.335 0.092 0.468

40%

1 50.8(0.00) 48.0(0.6) 39.7(1.5) 48.3(1.7) 50.2(2.9)
2 25.4(0.00) 24.3(0.4) 26.6(1.0) 25.1(1.1) 28.3(2.4)
3 12.7(0.00) 12.6(0.3) 15.8(1.0) 13.0(0.7) 11.9(1.3)
4 6.3(0.00) 7.5(0.2) 9.5(0.8) 7.3(0.3) 6.0(0.8)
5 3.2(0.00) 4.4(0.3) 5.1(0.5) 3.9(0.3) 2.2(0.3)
6 1.6(0.00) 3.1(0.2) 3.3(0.4) 2.3(0.2) 1.3(0.2)

DirE - 0.516 0.078 0.518

Table 5. Results for PISA data

RI1 RI2 RI3 RI4 RI5 RI6 RI7 RI8 RI9 RI10 RI11 RI12 RI13 RI14 RI15
ClsVar 29.5 11.4 10.4 8.6 6.8 5.0 4.4 4.1 3.8 3.7 3.2 3.0 2.8 2.0 1.3

Cls 15.3 9.5 9.1 8.3 7.3 6.3 5.9 5.7 5.5 5.4 5.0 4.8 4.7 4.0 3.3
RobP 13.1 11.9 8.6 7.5 7.2 6.5 6.5 5.9 5.9 5.2 4.8 4.8 4.5 3.9 3.7
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