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FAILURE OF TOPOLOGICAL RIGIDITY RESULTS FOR THE

MEASURE CONTRACTION PROPERTY

CHRISTIAN KETTERER AND TAPIO RAJALA

Abstract. We give two examples of metric measure spaces satisfying the measure con-
traction property MCP(K,N) but having different topological dimensions at different
regions of the space. The first one satisfies MCP(0, 3) and contains a subset isometric to
R, but does not topologically split. The second space satisfies MCP(2, 3) and has diameter
π, which is the maximal possible diameter for a space satisfying MCP(N − 1, N), but is
not a topological spherical suspension. The latter example gives an answer to a question
by Ohta.

1. Introduction

There are several generalizations of Ricci curvature lower bounds to metric measure
spaces that use optimal mass transportation. The definitions that have received the most
attention are the CD(K,N) definitions by Sturm [28, 29], and Lott and Villani [18]. In the
definitions the first number K ∈ R always refers to a lower bound on the Ricci curvature
and the second number N ∈ [1,∞] refers to an upper bound on the dimension of the space.
A less restrictive version of Ricci curvature lower bounds, called the measure contraction
property MCP(K,N) was studied by Sturm [29], and by Ohta [20, 21]. Recently also a
more restrictive class of definitions called the Riemannian Ricci curvature lower bounds
RCD

∗(K,N) have been considered [2, 1, 10, 3].
Common to all these definitions is stability under the measured Gromov-Hausdorff con-

vergence. However, with the CD(K,N) and MCP(K,N) definitions this stability has some-
times been sacrificed by assuming the space to be nonbranching. For the RCD

∗(K,N)
definitions such extra assumption seems unnecessary. This can be seen from the fact that
such spaces are already essentially nonbranching [27, 13]. For some time it was not clear if
the nonbranching assumption was just a technical assumption that was made to simplify
the proofs. This was the case for some of the results, like the local Poincaré inequalities
[26, 25]. However, it was recently shown by the second named author that in order to obtain
a local-to-global property for CD(K,N) it is necessary to assume nonbranching [24]. Notice
that, as our above discussion suggests, for the RCD

∗(K,N) a nonbranching assumption is
not needed for the local-to-global property [4, 13].

In this paper we further study the necessity of the nonbranching assumption in the
theory of Ricci curvature lower bounds in metric measure spaces. This time we focus on
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geometric (or topological) rigidity results. More specifically, we look at two classical rigid-
ity results from Riemannian geometry. The first result is the Cheeger-Gromoll splitting
theorem [8] saying that a Riemannian manifold M with non-negative Ricci curvature con-
taining an infinite line-segment is isometric to R × N where N is again a Riemannian
manifold with non-negative Ricci curvature. The second rigidity result is the Cheng max-
imal diameter theorem [9] stating that an n-dimensional Riemannian manifold with Ricci
curvature bounded from below by n − 1 and with diameter π is necessarily the standard
sphere Sn. Recall that, by the Bonnet-Meyers theorem, π is the maximal possible diameter
for an n-dimensional Riemannian manifold with Ricci curvature bounded from below by
n− 1.

Both of the above mentioned rigidity results have been proven in the abstract set-
ting of RCD

∗(K,N) spaces. The Cheeger-Gromoll splitting theorem was generalized to
RCD(0, N) spaces by Gigli [11]. Using this generalization and by studying the metric cones
over RCD

∗(K,N) spaces the first named author recently generalized the Cheng maximal
diameter theorem to RCD

∗(K,N) spaces [15].
Now that we know that the rigidity results hold for RCD

∗(K,N) spaces it is natural
to ask if they hold for the less restrictive definitions CD(K,N) and MCP(K,N). Since
CD(K,N) spaces include nonRiemannian Finsler manifolds, it would be unreasonable to
expect the Cheeger-Gromoll and Cheng theorems to hold in the same sharp form as for
the RCD∗(K,N) spaces. However, Ohta has shown that topological versions of the rigidity
results still hold in the Finsler setting. Indeed, he has proven a diffeomorphic splitting
theorem for Finsler manifolds of nonnegative weighted Ricci curvature [22]. Ohta also
proved in [21] that in nonbranching MCP(K,N) spaces a maximal diameter theorem holds
in the following topological form.

Theorem 1.1 (Ohta [21]). Let (X, d, µ) be a compact metric measure space satisfying the
MCP(N − 1, N) property for some N > 1 and assume that there exist xN , xS ∈ X with
d(xN , xS) = π such that

Cut(xN ) \ {xS} = Cut(xS) \ {xN} = ∅. (1.1)

Then there exists a topological measure space (Y, ν) such that (X, µ) is the spherical sus-
pension of (Y, ν) as a topological measure space.

Here the cut locus Cut(x) of a point x ∈ X is the set of points z ∈ X such that there
exist at least two distinct minimal geodesic between x and z. Under the nonbranching
assumption (1.1) is satisfied. In [21, 19] Ohta asked if the topological maximal diameter
result holds for MCP(K,N) spaces without the nonbranching assumption. We show that
this is not the case.

Theorem 1.2. There exists a compact geodesic metric measure space (Y, d, n) satisfying
MCP(2, 3) and diam(Y ) = π. Still the space is not a topological spherical suspension.

A slightly easier construction than the one showing the failure of the topological maximal
diameter theorem shows that also topological splitting results fail for MCP(0, N) spaces.
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Theorem 1.3. There exists a complete geodesic metric measure space (X, d,m) satisfying
MCP(0, 3) and containing an isometrically embedded copy of R. Still the space does not
topologically split.

Still several questions remain open between the positive results and the counter-examples
stated in Theorems 1.2 and 1.3. Two obvious questions are the following.

Question 1.4. Does a topological maximal diameter theorem hold in CD(K,N) spaces?

Question 1.5. Does a topological splitting theorem hold in CD(0, N) spaces?

Notice that there exist spaces satisfying CD(K,N) with positive K that contain lots of
branching geodesics [19], so Question 1.4 does not have an obvious answer via Theorem
1.1.

These questions are also related to the local structure of spaces with different Ricci
curvature lower bounds. It is still unknown even for RCD

∗(K,N) spaces if the Hausdorff
dimension or any other relevant dimension is constant almost everywhere. Perhaps the
currently best positive result in this direction is that RCD

∗(K,N) spaces have euclidean
weak tangents at almost every point [12]. The examples of this paper show that the least
restrictive definitions of Ricci curvature lower bounds discussed here - the MCP(K,N)
conditions - do not imply that the Hausdorff (or topological) dimension of the space is
almost everywhere constant.

2. Preliminaries

Before defining the spaces mentioned in Theorems 1.2 and 1.3 we recall some basics
including the definition of MCP(K,N) and its connection to other definitions of Ricci
curvature lower bounds in metric measure spaces.

First of all, by a geodesic γ in a metric space (X, d) we mean a map γ : [0, 1] → X
satisfying

d(γ(t), γ(s)) = |s− t|d(γ(0), γ(1)) for all s, t ∈ [0, 1].

The set of all geodesics in (X, d) is denoted by Geo(X). For γ ∈ Geo(X) we abbreviate
γt := γ(t) for all t ∈ [0, 1]. We also write length as l(γ) := d(γ0, γ1) for all γ ∈ Geo(X) and
define the evaluation maps

et : Geo(X) → X : γ 7→ γt for all t ∈ [0, 1].

The measure contraction property MCP(K,N) is defined using the functions sK with
K ∈ R. They are defined as

sK : [0, π/
√
K) → R : t 7→ sin(

√
Kt)√
K

, for K > 0,

sK : [0,∞) → R : t 7→ sinh(
√
−Kt)√

−K
, for K < 0 and

sK : [0,∞) → R : t 7→ t, for K = 0.
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Using these we define for all t ∈ [0, 1] and d ≥ 0

ς
(t)
K,N(d) = t

(

sK(td/
√
N − 1)

sK(d/
√
N − 1)

)N−1

if N > 1 and K ∈ R, and ς
(t)
K,1(d) = t if K ≤ 0.

Now we can introduce the MCP(K,N) condition as defined by Ohta [20].

Definition 2.1. For K ∈ R, N > 1, or K ≤ 0 and N = 1 a metric measure space
(X, d,m) is said to satisfy the (K,N)-measure contraction property, MCP(K,N) for short,
if for every point x ∈ X and a measurable set A ⊂ X with 0 < m(A) < ∞ (and A ⊂
B(x, π

√

(N − 1)/K) is K > 0) there exists a probability measure π on Geo(X) such that

(1) We have (e0)♯π = δx and (e1)♯π = m(A)−1
m|A;

(2) For t ∈ [0, 1],

dm ≥ (et)♯

(

ς
(t)
K,N(l(γ))m(A)dπ(γ)

)

holds as measures on X.

Let us then briefly give the connection of the MCP(K,N) condition to other similar
curvature-dimension bounds. The CD(K,N) conditions by Sturm [28, 29] and Lott and

Villani [18] use the same weights ς
(t)
K,N asMCP(K,N) but require a convexity type inequality

between any two probability measures along some optimal transport geodesic. As shown
by the second named author in [25], CD(K,N) implies MCP(K,N). There is also a more
strict version of MCP(K,N) by Sturm [29]. He required the choice of geodesics be given by
a Markov kernel. It is not known if the CD(K,N) conditions imply this more strict version
of MCP(K,N). In this paper we will work with the definition of Ohta.

Changing slightly the weights ς
(t)
K,N to a more PDE-friendly versions give rise to so-called

reduced definitions that usually carry a ’∗’ in their abbreviation. The first set of reduced
definitions, CD∗(K,N) were considered by Bacher and Sturm in [5]. In nonbranching spaces
it was shown by Cavalletti and Sturm [7] that CD

∗(K,N) actually implies MCP(K,N).
Recently Cavalletti has shown [6] that in nonbranching spaces CD∗(K,N) gives the required
convexity-type inequalities for the CD(K,N) condition for a much larger class of transports.
It is still open if the CD

∗(K,N) really self-improves to CD(K,N).
The most recent additions to the set of definitions are the Riemannian Ricci curvature

lower bounds [2, 1, 10, 3]. These definitions start from the reduced weights and are therefore
denoted by RCD

∗(K,N). As the word ’Riemannian’ in the name of the condition suggests,
the RCD∗(K,N) condition rules out nonRiemannian Finsler structures that the CD∗(K,N)
condition includes. As was noted in [12] the RCD

∗(K,N) conditions imply MCP(K,N)
without the nonbranching assumption that was assumed in [7]. As in the case of CD(K,N),
it is not known if RCD∗(K,N) self-improves to RCD(K,N).

There are also other curvature-dimension conditions besides the ones mentioned so far.
One interesting notion is the coarse Ricci curvature by Ollivier [23]. Because by [20] we
know that MCP(K,N) spaces satisfy a Bishop-Gromov volume comparison theorem, the
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Figure 1. The space (X, d,m) satisfying MCP(0, 3).

MCP(K,N) spaces (and in particular our examples) have a lower bound on the coarse Ricci
curvature associated to the r-step random walk, see [16].

3. Examples of MCP(K,N) spaces with non-constant dimension

We now turn to the examples stated in Theorems 1.2 and 1.3. They are both constructed
as closed connected subsets of R2 equipped with the distance d coming from the l∞-norm,
i.e.

d((x1, y1), (x2, y2)) = sup(|x1 − x2|, |y1 − y2|) for all (x1, y1), (x2, y2) ∈ R
2. (3.1)

The first example we present here is a space satisfying MCP(0, 3). It is a tangent space of
the second space satisfying MCP(2, 3). Therefore, instead of proving the MCP(0, 3) prop-
erty, we could refer to this fact. (See Section 3.3 for more discussion.) We will still prove
the MCP(0, 3) property in the first example because it is simpler and makes it easier to
understand the second example.

In checking the examples we will use the convention that we are transporting from a
dirac mass at (x̃, ỹ) to a measure uniformly distributed on a set A.

3.1. Failure of topological splitting. Let us start with the easier example of Theorem
1.3 of a space (X, d,m) satisfying MCP(0, 3) containing an isometric embedding of the
euclidean real-line. As a subset of R2 the space X is defined as

{(x, y) ∈ R
2 : x ≤ −3|y| ≤ 0} ∪ (R+ × {0}),

see Figure 1 for an illustration.
The distance d on the space is the l∞-distance (3.1). The measure m restricted to the half-

infinite line segment L = (R+ × {0}) is H1|L, where H
1 is the one-dimensional Hausdorff

measure. On the cone C = {(x, y) ∈ R
2 : x ≤ −3|y| ≤ 0} we define m as a weighted

Lebesgue measure via

dm =
3

−2x
dL2.

In other words, the projection of m to the first coordinate is the Lebesgue measure L1 and
the measure m is equally distributed in X ∩ ({x} × R) for all x ∈ R.

Let us then check that the space (X, d,m) satisfies MCP(0, 3). We will always transport
measure linearly in the horizontal direction. Hence it is sufficient to check MCP(0, 3) sep-
arately for sets A

x
= {(x, y) ∈ A : y ∈ R} with x ∈ R. There are several cases to check

depending on the position of the measure µ0 = δ(x̃,ỹ) and the coordinate x ∈ R.
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(x, y)(x, y)

(x, y) (x̃, ỹ) (x̃, ỹ)
(x̃, ỹ)

x̃
2

x̃
2

Figure 2. The cases where the selection of geodesics is not euclidean.

If x, x̃ > 0, we are on the one-dimensional part and we have a unique geodesics from
(x̃, ỹ) to (x, y) and along such geodesics we have

dµt

dm
=

1

t

dµ1

dm
≤ 1

t3
dµ1

dm
for all t ∈ (0, 1].

If x < 0 < x̃, we can transport using a set of geodesics such that each image of a geodesic
is a subset of a set of the form

{(x, y) : y = ax, x ≤ 0} ∪ L where |a| ≤ 2

3
,

in other words, we first transport along a euclidean geodesic to the origin and then continue
along L. See the first case in Figure 2. Then the induced optimal transport satisfies

dµt

dm
≤ 1

t

dµ1

dm
≤ 1

t3
dµ1

dm
for all t ∈ (0, 1].

Compared to the previous case the first equality has now change to an inequality due to
the fact that the density might drop when we pass through the origin.

Next we have to check the different cases when x̃ < 0. Let us first look at the easier
case where x < x̃. In this case we can again use euclidean geodesics. Since the density of
the reference measure m with respect to L2 is increasing in C as x increases, we have the
estimate

dµt

dm
≤ 1

t2
dµ1

dm
≤ 1

t3
dµ1

dm
for all t ∈ (0, 1].

The final case is when x̃ < x. In this case we still have three subcases to select the
geodesic(s) from (x̃, ỹ) to a point (x, y). The division to subcases at x̃

2
is due to the fact

that all geodesics from (x̃, ỹ) to ({ x̃
2
} × R) ∩ C have the same length.

In the subcase x̃ < x ≤ x̃/2 we simply take the euclidean geodesic. In the subcase
x̃/2 < x < 0 we take a geodesic that first goes along the euclidean geodesic from (x̃, ỹ) to
( x̃
2
, x̃y

2x
) and then along the euclidean geodesic from ( x̃

2
, x̃y

2x
) to (x, y). See the second case

in Figure 2. The third subcase is when x > 0. In this subcase we first spread the measure
uniformly from (x̃, ỹ) to {x̃/2}× [−x̃/6,−x̃/6], then contract along the euclidean geodesics
to the origin and then move to (x, y) along the euclidean geodesic. See the third case in
Figure 2. Now in the case x̃ < x ≤ x̃/2 we have

dµt

dm
=

1 + 2(x̃−x)
x̃

(1− t)

t2
dµ1

dm
≤ 2− t

t2
dµ1

dm
≤ 1

t3
dµ1

dm
for all t ∈ (0, 1].
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In the case x̃/2 < x we have

dµt

dm
=

1

t

dµ1

dm
≤ 1

t3
dµ1

dm
for all t ∈ [x̃/(2x̃− 2x), 1]

and

dµt

dm
=

2− 2(x̃−x)
x̃

t
(

2(x̃−x)
x̃

t
)2

dµ1

dm
≤ 2− t

t2
dµ1

dm
≤ 1

t3
dµ1

dm
for all t ∈ (0, x̃/(2x̃− 2x)].

All cases now being checked we have shown that (X, d,m) satisfies MCP(0, 3).

Remark 3.1. One can check that the space also satisfies the convexity inequality of the
CD(0, N) condition for many transports. This is clearly the case for measures transported
inside L. For transports between C and L this is less trivial, but still true. However, for
transports in C the CD(0, N) condition (in fact CD(K,∞) for any K ∈ R) fails. The
problematic transports are the ones going in the diagonal direction where one is forced to
use euclidean geodesics. Here the density change of the reference measure m with respect
to L2 destroys the CD(0, N) property.

It is not clear if the above example satisfies the MCP(0, 3) condition as defined by Sturm
[29]. In Sturm’s definition one should be able to find a distribution of geodesics between
any two points so that the MCP(K,N) condition is satisfied along the geodesics given by
the distributions. The key point in the definition is that the distribution is symmetric.

3.2. Failure of topological maximal diameter theorem. The space (Y, d, n) we de-
scribe here with the maximal diameter π is similar to our previous example. As a subset
of R2 the space Y is defined as

Y = D ∪ L,

where

D = {(x, y) ∈ R
2 : 9|y| ≤ 1/4− |x|} and L = ([−π/2,−1/4] ∪ [1/4, π/2])× {0}.

See Figure 3 for an illustration. Again the distance d is the l∞-distance (3.1). The measure
is similar to the measure m, but this time the projection of the measure to the interval
[−π/2, π/2] is of the form dn = cos2(x)dL1. Again we define the measure in such a way
that the density is constant on ({x} ×R)∩ Y for all x ∈ [−π/2, π/2]. The projected space
(p1Y, de, (p1)♯n) clearly satisfies CD(2, 3). It is not that surprising that (Y, d, n) satisfies
MCP(2, 3): the projection deals with the long distances and on the other hand it is already
known that sufficiently small balls in R

n with the l∞ norm satisfy MCP(n, n+1), see [29].
The transition from the one-dimensional part to the two-dimensional part can then be
carried out similarly as in the previous example.

Nevertheless, let us check that the space (Y, d, n) really satisfies MCP(2, 3). Let A ⊂ Y
with n(A) > 0 and (x̃, ỹ) ∈ Y . We again transport linearly in the horizontal direction and
so it suffices to check that for all x ∈ [−π/2, π/2] we can select geodesics γ from (x̃, ỹ) to
({x} × R) ∩A such that

dµt

dn
(γt) ≤

sin2(l(γ))

t sin2(tl(γ))

dµ1

dn
(γ1) for all t ∈ (0, 1]. (3.2)
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0
1
4

−1
4

π
2−π

2

Figure 3. The space (Y, d, n) satisfying MCP(2, 3).

We again consider different cases separately depending on the position of (x̃, ỹ) and x.
First of all, if 1/4 ≤ |x|, |x̃| ≤ π/2 we can take the measures µt to be uniformly distributed
on the slices ({x}×R)∩ Y . Since the space (p1Y, de, (p1)♯n) satisfies CD(2, 3), we have the
desired inequality (3.2) in this case.

The second case is when |x| ≤ 1/4 and 1/4 ≤ |x̃| ≤ π/2. In this case we take the
geodesics along which we transport to be such that their images are subsets of sets of the
type

L ∪
{

(x, y) ∈ R
2 : cy = 1/4− |x| ≥ 0

}

, with |c| ≥ 9.

Because inside D we are changing the density as if we were transporting in (p1Y, de, (p1)♯n)
and the density relative to this transport only drops when we leave D, again the fact that
we have the inequality (3.2) follows from the observation that the space (p1Y, de, (p1)♯n)
satisfies CD(2, 3).

The final case to check is when |x̃| ≤ 1/4. By symmetry we may assume that x̃ ≤ x. As
in the previous example we define the chosen geodesics from (x̃, ỹ) to a point (x, y) ∈ A in
three subcases. This time the division to subcases is driven by the fact that the distances
from (x̃, ỹ) to all the points in ({(1/4 + 4x̃)/5} × R) ∩D are equal, meaning that beyond
that distance we can transport along vertically uniformly distributed measures.

Let us list the subcases. First, if x̃ < x ≤ (1/4+ 4x̃)/5, we take the euclidean geodesics.
In the subcase (1/4+4x̃)/5 < x < 1/4 we take a geodesic that first goes along the euclidean
geodesic that goes via the point (1/4, 0) from (x, y) to (max{0, (1/4+4x̃)/5}, y′) and then
along the euclidean geodesic from (max{0, (1/4+4x̃)/5}, y′) to (x̃, ỹ). The third subcase is
when x > 1/4. In this subcase we first transport the mass along the euclidean geodesic to
the point (1/4, 0), then spread the measure uniformly to ({max{0, (1/4+4x̃)/5}}×R)∩D
along euclidean geodesics and finally contract it to (x̃, ỹ) along euclidean geodesics.

Let us check the density in the different subcases. To deal with the first subcase x̃ <
x ≤ (1/4 + 4x̃)/5 we observe that ht ≤ (5/4− t/4)h1 for the vertical height ht of D at γt,
where γ is a geodesic from (x̃, ỹ) to (x, y). From this (and the estimates below) we have
that

dµt

dn
≤ ht

t2h1

dµ1

dn
≤ (5/4− t/4)

t2
dµ1

dn
≤ sin2(l)

t sin2(tl)

dµ1

dn
(3.3)

for all t ∈ (0, 1] and l ∈ (0, 1/2] and so (3.2) follows. (To see the third inequality in (3.3)
define fl(t) :=

(

5
4
− t

4

)

sin2(tl) − t sin2(l) and notice that fl(t) ≤ 0 for all t ∈ [0, 1] and

l ∈ (0, 1/2] since fl(0) = fl(1) = 0 and f ′′

l (t) = − l
2
sin(2tl) + (5 − t) l

2

2
cos(2tl) ≥ 0 for all

t ∈ [0, 1] and l ∈ (0, 1/2].)
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In the second and third subcases (1/4+4x̃)/5 < x, until we hit (max{0, (1/4+4x̃)/5}, y′)
we have (3.2) by the projection as before. After (max{0, (1/4 + 4x̃)/5}, y′) we have (3.2)
by the estimate (3.3) for l ∈ (0, 1

2
]. When l > 1

2
we can estimate the time t0 when we hit

(max{0, (1/4 + 4x̃)/5}, y′) by

t0 ≤
1

l

( 1
4
+ 4x̃

5
− x̃

)

≤ 2
1
4
− x̃

5
≤ 1

5
.

In this case obtaining (3.2) is easy, since verifying (3.3) for t ∈ [0, 1
5
] and l ∈ (1

2
, π
2
+ 1

4
)

reduces to verifying that fl(t) ≤ 0 for such t and l. This follows for example by estimating
(

5

4
− t

4

)

sin2(tl) ≤ 5

4
sin2(tl) ≤ 5

4
(tl)2 ≤ 1

4
tl2 ≤ t sin2(l)

for t ∈ [0, 1
5
] and l ∈ (1

2
, π
2
+ 1

4
). This completes the proof of the MCP(2, 3) condition for

our space (Y, d, n).

3.3. Final remarks. Both of our examples above had boundary points in the sense that
there are geodesics that cannot be infinitely extended as local geodesics. It is natural to ask
if one can modify the examples to have no boundary. By identifying the top and bottom
boundaries in the two-dimensional parts of the spaces we should be able to get rid of most
of the boundary points. However, even after the identification the point where the space
changes from one-dimensional to two-dimensional will be a boundary point in the above
sense. The nonextendable geodesics are the nonvertical geodesics in the two-dimensional
side that are travelling more in the vertical direction than in the horizontal direction.
When they reach the point where the dimension changes they cannot be extended to the
one-dimensional part so that they are geodesic in a neighbourhood of the point where the
dimension changes.

It is also interesting to consider the tangent spaces of the spaces (X, d,m) and (Y, d, n)
in the sense of measured Gromov-Hausdorff limits of blow-ups. First observation is that
the space (X, d,m) is the mGH-tangent of (Y, d, n) at the points (a, 0) and (−a, 0). This
way we could prove the fact that (X, d,m) satisfies MCP(0, 3) by proving that any tangent
of a MCP(K, 3) space does.

Notice that the tangents of (X, d,m) at points X \ {(0, 0)} and (Y, d, n) at points Y \
{(1/4, 0), (−1/4, 0)} are all convex subsets of normed spaces. On the other hand we know
from [14] that some subRiemannian spaces like the Heisenberg group satisfy MCP(K,N).
With only such nice examples at hand it is natural to ask what are the tangent spaces of
MCP(K,N) spaces (almost everywhere) in general? This is also related to the uniqueness
of the tangents, compare to the following result by Le Donne [17].

Theorem 3.2 (Le Donne). Let (Z, d, µ) be a doubling-measured geodesic metric space.
Assume that for µ-almost every x ∈ Z the space Z has only one tangent. Then for µ-
almost every point x ∈ Z the tangent space is a Carnot group G endowed with a subFinsler
left-invariant metric with the first layer of the Lie algebra of G as horizontal distribution.
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