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RADON-NIKODYM PROPERTY AND AREA FORMULA FOR BANACH
HOMOGENEOUS GROUP TARGETS

VALENTINO MAGNANI AND TAPIO RAJALA

Abstract. We prove a Rademacher-type theorem for Lipschitz mappings from a subset
of a Carnot group to a Banach homogeneous group, equipped with a suitably weakened
Radon-Nikodym property. We provide a metric area formula that applies to these mappings
and more generally to all almost everywhere metrically differentiable Lipschitz mappings
defined on a Carnot group.
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1. Introduction

A Banach space � has the so-called Radon-Nikodym property, in short RNP, when
all Lipschitz curves that take values in � are almost everywhere Fréchet differentiable.
Clearly, all�-valued Lipschitz mappings defined on the Euclidean space are almost every-
where Fréchet differentiable if and only if � has the RNP.

An important space that does not possess the RNP and that plays a role in some questions
of theoretical computer science is L1(0, 1). In this context, it has been proved in [14] that
a new counterexample to the Goemans-Linial conjecture would be a consequence of the
nonexistence of bi-Lipschitz embeddings of the first Heisenberg group H1 into L1(0, 1).
The work [3] by J. Cheeger and B. Kleiner has proved the absence of these embeddings by
proving a Rademacher type theorem for these mappings with respect to a suitable notion of
differentiability. We consider different classes of Banach spaces that need not have the RNP
and we prove that either the Heisenberg group or any other Carnot group, under suitable
algebraic conditions, do not admit any bi-Lipschitz embedding into these targets. This will
be a consequence of a differentiability result, according to our Theorem 1.1. Subsection 2.4
presents some examples of Banach homogeneous groups that fail to have the RNP and such
that our Theorem 1.1 still holds for these targets.

Precisely, our targets are Banach spaces equipped with a Banach Lie group structure,
that are metrized by a suitable left invariant distance. In the commutative case, they include
classical Banach spaces, but their main feature is that the RNP is only required for a closed
and possibly infinite dimensional subspace, that in the finite dimensional framework is
known as the horizontal subspace.

These infinite dimensional Lie groups can be naturally called Banach homogeneous
groups, since they are a natural extension of their well known finite dimensional version.
For the finite dimensional case, the reader can consult for instance [8]. A simple way to
present the infinite dimensional versions may consist in requiring the validity of the char-
acterizing properties that hold in the finite dimensional case, as the existence of a group
operation with a special structure, the existence of a homogeneous norm, along with dila-
tions and so on. This presentation by axioms can be found in [21].

We follow a different approach, detecting these groups as graded nilpotent Banach Lie
algebras, since all the above mentioned properties are just consequences, see Section 2.
In fact, one can see a Banach homogeneous group as a Banach space� equipped with a
graded nilpotent Lie product that turns it into a Banach Lie algebra. Thus, we automatically
get the group operation by the Dynkin formula for the Baker-Campbell-Hausdorff series,
in short BCH, that locally converges in general Banach Lie algebras, [6]. In our case, this
series is just a finite sum, since we consider nilpotent Lie algebras.

In sum, we equip � with three structures, since it is a Banach space, a Banach Lie
algebra and also a Banach Lie group. Its main feature is the decomposition into the direct
sum � = H1 ⊕ · · · ⊕ Hι, where H j are closed subspaces of �, seen as Banach spaces.
This yields a precise gradation on the Lie algebra structure of� that allows us to introduce
dilations δr : � −→ �, that are automatically group isomorphisms. Furthermore, one
can also construct a homogeneous norm on� that respects both the group operation and
dilations, hence defining the metric structure of�, see Section 2 for more details.



RADON-NIKODYM PROPERTY AND AREA FORMULA 3

As in the finite dimensional case, one can also define the special class of Banach stratified
groups, or Carnot groups, since the additional condition that H1 Lie generates � in the
finite dimensional case [8, 19], can be also stated in the infinite dimensional case. This
was already pointed out in the seminal work by M. Gromov, [10]. However, we will focus
our attention on the larger class of Banach homogeneous group targets, that presents some
additional difficulties in the proof of the almost everywhere differentiability of Lipschitz
mappings, as explained below.

Several examples of infinite dimensional Banach homogeneous groups will be presented
in Section 2. We mainly exploit a natural product construction by means of the Banach
spaces `p of p-summable sequences. The simplest example of infinite dimensional Banach
homogeneous group is the well known Heisenberg group modeled on H2 × R, where H is
a real Hilbert space with scalar product 〈·, ·〉. For any (h1, h2, t1), (h′1, h

′
2, t
′
2) ∈ H2 × R, the

group operation is defined as follows

(1) (h1, h2, t1)(h′1, h
′
2, t
′
2) = (h1 + h′1, h2 + h′2, t2 + t′2 + 〈h1, h′2〉 − 〈h2, h′1〉).

This product arises from the quantization relations of the Heisenberg algebra realized in
Quantum Mechanics, see for instance Chapter XII, Section 3 of [24]. Notice that this
group has an underlying Hilbert space structure. In Subsection 2.2, we introduce the infinite
product of Heisenberg groups�∞, whose underlying Banach structure is given by (`2)2×`1.
In Subsection 2.5 we present a construction to obtain an infinite product of the same Carnot
group. This provides many Banach homogeneous groups whose underlying linear space is
a genuinely infinite dimensional Banach space and we will also see that we have some
freedom in the choice of the Banach topology. It is clear that one could use a similar
construction also for products of different Carnot groups. Motivated by the simple case
given by (1) that arises from the Heisenberg group of Quantum Mechanics, one might also
expect further physical interpretations for special classes of Banach homogeneous groups.

We wish to clarify that the terminology “Carnot group” will refer throughout to a finite
dimensional group. The notion of differentiability between Carnot groups, [19], naturally
extends to the case of infinite dimensional Lie group targets, see Definition 3.2. This leads
us to the statement of our main result.

Theorem 1.1. Let� be a Banach homogeneous group such that its subspace H1 has the
RNP. IfG is any Carnot group and A ⊂ G, then any Lipschitz mapping f : A→� is almost
everywhere differentiable.

Since all finite dimensional linear spaces have the RNP, in the special case where A is
open and� is a Carnot group, then Theorem 1.1 also contains the differentiability result by
P. Pansu, [19]. If the source space of a Lipschitz mapping is a metric measure space with a
Poincaré inequality, namely a PI space, and its target is a Banach space with the RNP, then
J. Cheeger and B. Kleiner have established the a.e. differentiability in a suitable sense [2].
However, when the source space is a Carnot group, the differentiability from a PI space
does not imply the differentiability in the sense of Carnot groups, where “non-rectifiable
directions” are also considered, see Definition 3.2. Nevertheless, differentiability on PI
spaces can still provide bi-Lipschitz non-embedding theorems into Banach spaces with
the RNP, although this differentiability does not include the case of Lie group targets. It
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is also easy to observe that a special case of Theorem 1.1 implies the bi-Lipschitz non-
embeddability of noncommutative Carnot groups into any Banach space with the RNP.
In fact, these Banach spaces clearly constitute the simplest case of commutative Banach
homogeneous groups, whose first layer has the RNP.

In connection with area formulae and change of variables in Carnot groups, subsequent
works have extended this Rademacher type theorem to the case where A is any subset of a
Carnot group G and� is another Carnot group, [16], [22]. Further differentiability results
in this vein are also written for targets corresponding to equiregular Carnot-Carathéodory
spaces, see [12] and references therein. On the other hand, in all of these works a key point
is that all targets are also length metric spaces and this allows one to use the existence of
one dimensional Lipschitz extensions in order to achieve the a.e. differentiability on an
arbitrary subset. In Theorem 1.1 the target need not be a length metric space, therefore this
theorem turns out to be new also when the codomain is a finite dimensional homogeneous
group that is not stratified. In fact, we overcome this difficulty by Theorem 3.1, that is
the key tool. Here we establish the almost everywhere differentiability of Lipschitz curves
defined on an arbitrary subset of the real line and that take values in an arbitrary Banach
homogeneous group�. Although this Lipschitz curve need not have a Lipschitz extension
with respect to the homogeneous distance ρ on �, we use its Lipschitz extension with
respect to the Banach norm. This leads us to the a.e. differentiability of the projection of
the curve into the first layer of the target, that has the RNP. Then we use the geometric
properties of the density points, along with a suitable application of the Dynkin formula,
exploiting the explicit expression for the addends appearing in the finite expansion of the
group operation, [5]. This provides a new and simpler approach to the a.e. differentiability
of graded group-valued Lipschitz mappings defined on an arbitrary subset of the real line.

A natural issue related to Theorem 1.1 concerns the existence of nontrivial Lipschitz
mappings. We wish to make sure that there are Lipschitz mappings that are not a mere
composition of a Carnot group-valued Lipschitz mapping with a Lipschitz embedding into
a Banach homogeneous group. In Subsection 2.6, we construct Lipschitz mappings that
cannot have the form previously described. In fact, we consider a suitable infinite product
of a family of Lipschitz mappings { f k}k≥0, under the condition that all vanish at some point.
The corresponding product mapping G turns out to be a Lipschitz mapping taking values
in the infinite product �∞ introduced in Subsection 2.2. In the case all mappings f k do
not vanish at some point, the corresponding product mapping G is an example of Lipschitz
mapping with infinite dimensional image. Since the horizontal layer of �∞ has the RNP,
our Theorem 1.1 shows that G is also almost everywhere differentiable, when the source
space is any Carnot group.

A stronger condition than the nonexistence of bi-Lipschitz embeddings is that of pure G-
unrectifiability. A purely G-unrectifiable metric space (Y, ρ) has the property that the image
of any Y-valued Lipschitz mapping from a subset of the Q-dimensional Carnot group G
has vanishing Hausdorff measure HQ

ρ . In particular, this implies that there does not exist
any bi-Lipschitz embedding of G into the metric space Y . In the finite dimensional setting,
the area formula leads to an algebraic characterization of purely G-unrectifiable stratified
groups, along with rigidity theorems, [17]. The simplest instance of this characterization is
that any set of positive measure in the Heisenberg group (or any noncommutative Carnot
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group) does not bi-Lipschitz embed into any fixed Euclidean space, as was first observed
by S. Semmes, [23]. This naturally introduces the question of a suitable area formula from
a measurable set of a Carnot group into an infinite dimensional target. We will present a
rather general area formula that also includes the mappings of Theorem 1.1.

For a general metric space target, the choice of the source space is crucial. In fact, for
metric space-valued Lipschitz mappings on a subset of a Euclidean space, B. Kirchheim
has proved their almost everywhere metric differentiability and also the corresponding area
formula, [13]. Carnot groups have a sufficiently rich structure to introduce the notion of
metric differentiability, when any of their subsets constitutes the source space, see Defini-
tion 4.1. In this case, the metric differential is given by a homogeneous seminorm, namely
a continuous function s : G −→ [0,+∞[ such that s(x) = s(x−1), s(δr x) = rs(x) and
s(x · y) ≤ s(x) + s(y) for all x, y ∈ G and r > 0. The additional condition that s(x) = 0
implies x = 0 means that s is a homogeneous norm.

On one side, when the source space is a noncommutative Carnot group, such as the
Heisenberg group, then counterexamples to the metric differentiability of Lipschitz map-
pings can be constructed, [15]. On the other side, if we restrict metric differentiability to
horizontal directions, then we still have an almost everywhere (horizontal) metric differen-
tiation for metric space-valued Lipschitz mappings on Carnot groups, [20].

Theorem 1.1 clearly provides nontrivial cases where metric space-valued Lipschitz map-
pings on Carnot groups are almost everywhere metrically differentiable. Other new targets
where the almost everywhere metric differentiability holds can be found by another recent
result of J. Cheeger and B. Kleiner, [4]. In fact, one can notice that the seminorm ‖ · ‖x
of Theorem 1.3 in [4] can be seen as a homogeneous seminorm on the whole Heisenberg
group H, therefore the limit in the statement of this theorem, with z2 equal to the unit ele-
ment, exactly yields the almost everywhere metric differentiability of Lipschitz mappings
from H to L1(0, 1), see also [3]. We observe that in all previously mentioned cases, where
the almost everywhere metric differentiability holds, one can apply the following new met-
ric area formula.

Theorem 1.2. Let A ⊂ G be measurable, let f : A −→ Y be Lipschitz and almost every-
where metrically differentiable. It follows that

(2)
∫

A
J(md f (x)) dHQ

d (x) =

∫
Y

N( f , y) dHQ
ρ (y) ,

where N( f , y) = ]
(
f −1(y)

)
for all y ∈ Y is the multiplicity function, d is the homogeneous

distance of G, ρ is the metric of Y and Q is the Hausdorff dimension of G.

As usual, the point of an area formula is its notion of Jacobian. The metric Jacobian J(s)
of the homogeneous seminorm s is defined as follows

J(s) =


H

Q
s (B1)

H
Q
d (B1)

if s is a homogeneous norm

0 otherwise
.(3)

If G is a Euclidean space, then (3) yields the Jacobian of [13]. If the target is a Banach
homogeneous group � equipped with a distance ρ given by a homogeneous norm, then
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we have to observe that differentiability with differential L : G −→ � implies metric
differentiability with homogeneous seminorm h → sL(h) = ρ

(
L(h), 0

)
with h ∈ G. Thus,

we get a more explicit formula for (3), that in the special case where� is another Carnot
group fits into the sub-Riemannian Jacobian introduced in [16], see Remark 4.1 for more
comments.

Concerning the proof of (2), a substantial difference in our approach with respect to that
of [13] is in the proof of the negligibility of the image of points where the metric differential
is not a homogeneous norm. In [13], this fact is achieved by combining the integral repre-
sentation of Kirchheim’s Jacobian with the use of ε-approximating graph extensions of the
mapping, as in [7]. Our argument is surprisingly more elementary, since it only uses the
very definition of metric differentiability without any use of the notion of metric Jacobian,
see Lemma 4.3.

By the metric area formula (2), for each Carnot group G, a Banach homogeneous group
whose horizontal subspace has the RNP is purely G-unrectifiable if none of its homoge-
neous subgroups is h-isomorphic to G, see Definition 3.1. In particular, a Banach space
with the RNP is purely G-unrectifiable whenever G is noncommutative. If G has step
higher than two, then any two step Banach homogeneous group whose horizontal subspace
has the RNP must be purely G-unrectifiable and so on. We have already mentioned that
whenever a metric space Y is purely G-unrectifiable, then in particular it cannot admit
any bi-Lipschitz embedding from G into Y . As a consequence, the previous theorems on
purely G-unrectifiability of some Banach spaces automatically provide new bi-Lipschitz
non-embeddability theorems into infinite dimensional targets.

2. Banach homogeneous groups

We start from the notion of Banach Lie algebra, namely a Banach space � equipped
with a continuous, bilinear and skew-symmetric mapping [·, ·] :�×� −→� that satisfies
the Jacobi identity. A nilpotent Banach Lie algebra� is characterized by the existence of
a positive integer ν ∈ N such that whenever x1, x2, . . . , xν+1 ∈�, we have

[· · · [[x1, x2], x3] · · · ], xν], xν+1] = 0

and there exist y1, y2, . . . , yν ∈� such that

[· · · [[y1, y2], y3] · · · ], yν] , 0.

The integer ν is uniquely defined and it gives the step of nilpotence of �. Therefore the
algebra� can be equipped with a canonical Banach Lie group operation

(4) xy = x + y +

ν∑
m=2

Pm(x, y) ,

that is the “truncated” Baker-Campbell-Hausdorff series. For any m ≥ 2, the polynomial
Pm is given by the Dynkin’s formula

(5) Pm(x, y) =
∑ (−1)k−1

k
m−1

p1!q1! · · · pk!qk!
x ◦ · · · ◦ x︸     ︷︷     ︸

p1 times

◦

q1 times︷     ︸︸     ︷
y ◦ · · · ◦ y ◦ · · · ◦ x ◦ · · · ◦ x︸     ︷︷     ︸

pk times

◦

qk times︷     ︸︸     ︷
y ◦ · · · ◦ y ,
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where xi1 ◦ xi2 ◦ · · · ◦ xik = [· · · [[xi1 , xi2], xi3] · · · ], xik] and the sum is taken over the 2k-tuples
(p1, q1, p2, q2, . . . , pk, qk) such that pi + qi ≥ 1 for all positive i, k ∈ N and

∑k
i=1 pi + qi = m.

Notice that P2(x, y) = [x, y]/2. Formula (5) was established by E. B. Dynkin in [5]. We
say that � equipped with the group operation (4) is a Banach nilpotent Lie group. If we
denote by L(�) the Lie algebra of � as a Lie group, we may wonder whether L(�) is
isomorphic to� seen as a Lie algebra equipped with the initially given Lie product [·, ·].
The answer to this question is yes, according to the following proposition, whose proof can
be established by the use of the BCH series for the group expansion.

Proposition 2.1. If� is a Banach nilpotent Lie group, then the given Lie algebra structure
on� is isomorphic to L(�).

If S 1, S 2, . . . , S n ⊂ � are closed subspaces of a Banach space � such that the mapping
J : S 1 × · · · × S n −→ � with J(s1, . . . , sn) =

∑n
l=1 sl is an isomorphism of Banach spaces,

then� = S 1 ⊕ · · · ⊕ S n denotes the corresponding direct sum. Any canonical projection on
S j is denoted by π j : � −→ S j.

Definition 2.1. We say that the Banach space � is a Banach homogeneous group if it
is equipped with a Banach Lie product [·, ·] : � × � −→ � and there exist ι closed
subspaces H1, . . . ,Hι such that � = H1 ⊕ · · · ⊕ Hι and whenever x ∈ Hi and y ∈ H j we
have [x, y] ∈ Hi+ j if i + j ≤ ι and [x, y] = 0 otherwise. This equips � with a special
family of Banach isomorphisms δr : � −→ �, r > 0, defined by δr x = rix if x ∈ Hi for
all i = 1, . . . , ι. These mappings are both group and algebra automorphisms of� and are
called dilations.

Remark 2.1. A Banach homogeneous group can be seen as a Banach graded nilpotent Lie
group equipped with dilations. This is the natural terminology from the finite dimensional
case of graded Lie groups, see [8, 9]. The decomposition � = H1 ⊕ · · · ⊕ Hι with the
properties stated in the previous definition defines a gradation of�.

The gradation of � along with the Dynkin formula (5) yields some positive constants
σ1, . . . , σι, depending on the norm of the Lie product, such that

(6) ‖x ‖ = max{σi|xi|
1/i : 1 ≤ i ≤ ι}

with σ1 = 1, satisfies ‖δr x‖ = r ‖x‖ and ‖xy‖ ≤ ‖x‖ + ‖y‖. We have denoted by | · | the
underlying norm on� that makes it a Banach space. This convention will be understood
in the sequel. The properties of ‖ · ‖ that we have previously seen, allow us to say that ‖ · ‖
is a Banach homogeneous norm of�.

If we set ρ(x, y) = ‖x−1y‖, then we have obtained a left invariant homogeneous distance
on� with respect to the group operation such that ρ(δr x, δry) = r ρ(x, y) for all x, y ∈ �
and r > 0. We say that ρ is a Banach homogeneous distance on�. In the sequel, we assume
that every Banach homogeneous group� is equipped with the Banach homogeneous norm
(6) and the corresponding homogeneous distance ρ, unless otherwise stated.

For the subsequent examples, we recall the standard class of Banach spaces

`p =

{
(xk)k≥0 ∈ R

N :
∞∑

k=0

|xk|
p < ∞

}
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where p ≥ 1 is any real number and |(xk)k≥0|p = (
∑∞

k=0 |xk|
p)1/p.

2.1. Two steps Banach homogeneous groups. It is not difficult to construct the general
model for a two step Banach homogeneous group. We consider two Banach spaces � and
�. We have the Banach space �2 = �⊕� with the product norm. The structure of Banach
homogeneous group is given by the bounded skew-symmetric bilinear form β : �×�→ �
via the formula [(x, t), (x′, t′)] =

(
0, β(x, x′)

)
for all x, x′ ∈ � and t, t′ ∈ �. Thus, the Lie

group operation on �2 is given by the following formula

(x, t) · (x′, t′) = (x + x′, t + t′) +
[
(x, t), (x′, t′)

]
= (x + x′, t + t′ + β(x, x′)).

Let |(x, t)| = |x|� + |y|� denote the product norm in the Banach space �2. Let c > 0 be
such that |β(x, x′)|� ≤ c |x|�|x′|� for all x, x′ ∈ � and fix any constant σ > 0 such that
σ ≤

√
2/c. Then the function ‖(x, t)‖ = max{|x|�, σ|t|

1/2
�
} defines a homogeneous norm on

�2 and clearly for any r > 0 the group isomorphism δr(x, t) = (rx, r2t) for (x, t) ∈ �2 is a
dilation of �2. In sum, only the mapping β suffices to equip �2 with the structure of two
step Banach homogeneous group.

2.2. An infinite product of Heisenberg groups. We wish to consider a concrete example
of nontrivial two step Banach homogeneous group. This group, that we denote by �∞,
can be seen as a suitably topologized infinite product of the same Heisenberg group. As
a Banach space �∞ coincides with (`2)2 × `1, where the horizontal subspace is � = (`2)2

and � = `1. Any element x ∈ �∞ corresponds to (x1, x2, x3) where xi = (xi j) j≥0. We also

write |xi|2 =
√∑∞

j=0 x2
i j for i = 1, 2 and |x3|1 =

∑∞
j=0 |x3 j|. For any x, y ∈ �∞, we define the

skew-symmetric bilinear mapping β : (`2)2 × (`2)2 −→ `1 as follows

β
(
(x1, x2), (y1, y2)

)
=

(
0, 0, (x1 j y2 j − x2 j y1 j) j≥0

)
.

It follows that for all (x1, x2), (y1, y2) ∈ (`2)2 we have

|β
(
(x1, x2), (y1, y2)

)
|1 ≤

(
|x1|

2
2 + |x2|

2
2
)1/2(
|y1|

2
2 + |y2|

2
2
)1/2

.

According to the general model of two step Banach homogeneous group, the function

‖(x1, x2, x3)‖ = max
{√
|x1|

2
2 + |x2|

2
2,
√
|x3|1

}
defines a homogeneous norm on �∞.

2.3. Infinite products of Engel groups. Let us consider the Engel group E with graded
decomposition S 1 ⊕ S 2 ⊕ S 3 and graded basis (e11, e12, e3, e4), namely (e11, e12), (e3) and
(e4) are bases of S 1, S 2 and S 3, respectively. The only nontrivial bracket relations of E
as a Lie algebra are L(e11, e12) = e3 and L(e11, e3) = e4, then L : E × E −→ E defines a
Lie product on E. We define H1 = (`2)2, H2 = `p, H3 = `q and set �∞ = H1 × H2 × H3,
where 1 ≤ p ≤ 2 and q ≥ 1. An element x of �∞ can be written as (x1, x2, x3), where
x1 = (x11, x12), x1i = (xk

1i)k≥0 ∈ `
2, i = 1, 2, x2 = (xk

2)k≥0 ∈ `
1 and x3 = (xk

3)k≥0 ∈ `
1.

We observe that for all ξ, η ∈ `2 and ζ ∈ `p, we have

|(ξkηk)k≥0|p ≤

∞∑
k=0

|ξkηk| ≤ |ξ|2 |η|2 and |(ξkζk)k≥0|q ≤

∞∑
k=0

|ξkζk| ≤ |ξ|2 |η|2 ≤ |ξ|2 |η|p .
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Thus, the products ξ · η =
∑∞

k=0 ξ
kηkek

p ∈ `
p and ξ · ζ =

∑∞
k=0 ξ

kζkek
q ∈ `

q are well defined,
where (ek

p)k≥0 and (ek
q)k≥0 are the canonical Schauder basis of `p and `q, respectively. A nice

point in the construction of �∞ is that we do not need to construct the group operation, but
it suffices to construct a continuous Lie product. Thus, we set

[x, y] =
(

0 , x11 · y12 − x12 · y11 , x11 · y2 − x2 · y11
)
.

We fix the product Banach norm |x| = |x11|2 + |x12|2 + |x2|p + |x3|q and observe that

|[x, y]| ≤ 4|x| |y|

showing the continuity of [·, ·] with respect to the Banach norm | · |. The Jacobi identity
follows from the one of L(·, ·).

Remark 2.2. Notice that the arbitrary choice of p ∈ [1, 2] and q ∈ [1,+∞) in the infinite
product of Engel groups emphasizes, as one could expect, that there are infinitely many
Banach topologies that we can use for our construction of a Banach homogeneous group.
This fact will be also seen in Subsection 2.5.

2.4. Banach homogeneous groups that fail the RNP. It is possible to construct Banach
homogeneous groups that do not have the RNP, although their first layer has this property.
As a consequence, these targets satisfy the assumptions of Theorem 1.1.

A simple example is a Banach Heisenberg group � = H1 ⊕ H2, where H1 = L2(0, 1)2

and H2 = L1(0, 1). We define β : H1 × H1 → H2 as

β
(
(u1, v1), (u2, v2)

)
= u1v2 − u2v1

that clearly satisfies ‖β
(
(u1, v1), (u2, v2)

)
‖L1(0,1) ≤ ‖(u1, v1)‖L2(0,1)2 ‖(u2, v2)‖L2(0,1)2 . Using the

group operation of Subsection 2.1, we have defined a two step homogeneous group that
fails the RNP and whose first layer has the RNP.

Let us now construct a Banach Engel group that fails to have the RNP. We define the
Banach space � = H1 ⊕ H2 ⊕ H3, where

H1 = L3(0, 1) × L3(0, 1), H2 = L3/2(0, 1), and H3 = L1(0, 1) .

For i = 1, 2, we consider xi ∈ � as (ui, vi, zi, ti), where ui, vi ∈ L3(0, 1), zi ∈ L3/2(0, 1) and
ti ∈ L1(0, 1). Then define Lie product

[x1, x2] =
(

0 , 0 , u1 v2 − u2 v1 , u1 z2 − u2 z1
)
.

We fix the Banach norm |xi| = |ui|L3(0,1) + |vi|L3(0,1) + |zi|L3/2(0,1) + |ti|L1(0,1) and observe that

|[x1, x2]| ≤ 4|x1| |x2| .

It follows that the Lie product [·, ·] is continuous with respect to | · |. The Jacobi identity is a
simple verification. We also notice that the first layer of � has the RNP, hence Theorem 1.1
also applies to this target.
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2.5. Infinite products of Carnot groups. The previous cases suggest a general “product
construction” for any graded group G = S 1 ⊕ · · · ⊕ S υ. Thus, we set �∞ = H1 × · · · × Hυ,
where Hi = (`pi)ni and ni = dim S i for all i = 1, . . . , υ and the real numbers pi ≥ 1,
whenever 1 ≤ i, j ≤ υ and i + j ≤ υ, satisfy the following inequality

(7) pi+ j ≥
1
2

max{pi, p j}.

For any i = 1, . . . , υ we set the basis (ei1, . . . , eini) of S i, hence (eiu) 1≤i≤υ
1≤u≤ni

is a basis of G. For
an element x of�∞ we will use the equivalent notation (x1, . . . , xυ), where xi = (xi1, . . . , xini)
and xiu = (xk

iu)k≥0 ∈ `
pi . We set the norms

(8) |xi|pi =

 ∑
1≤u≤ni

∑
k≥0

|xk
iu|

pi


1/pi

and |x| =
υ∑

i=1

|xi|pi .

Notice that we can also write |xi|pi =
(∑

1≤u≤ni
(|xiu|pi)

pi
)1/pi

. Using the previous notation, for
any x ∈ �∞ we set

xk =
∑
1≤i≤υ

1≤u≤ni

xk
i j eiu ∈ G.

We denote by L the Lie product of G, then for any x, y ∈ �∞ and any k ∈ N, we set

L(xk, yk) =
∑
1≤i≤υ

1≤u≤ni

Liu(xk, yk) eiu ∈ G .

We also define Lk(x, y) = L(xk, yk) and Lk
iu(x, y) = Liu(xk, yk). Taking into account that

whenever 1 ≤ i, j ≤ υ, i + j ≤ υ, 1 ≤ u ≤ ni, 1 ≤ v ≤ n j, we have

(9) L(eiu, e jv) =
∑

1≤r≤ni+ j

βr
iu, jv e(i+ j)r

for some coefficients βr
iu, jv that determine the Lie algebra structure ofG, we expandL(xk, yk)

using (9), establishing the formula

Lk
ir(x, y) =

∑
1≤a,b≤υ, a+b=i,
1≤u≤na , 1≤v≤nb

βr
au,bv xk

au yk
bv

where k ∈ N, i = 2, . . . , υ and r = 1, . . . , ni. As a consequence, we introduce the elements

Lir(x, y) =
(
Lk

ir(x, y)
)

k≥0 and Li(x, y) =
(
Li1(x, y), . . . ,Lini(x, y)

)
.

By elementary computations, one can check that there exist constants C1i > 0 such that

|Lk
ir(x, y)|pi ≤ C1i

∑
1≤a,b≤υ
a+b=i

(|xk
a|pa)

pi (|yk
b|pb)

pi

where xk
a = (xk

a1, . . . , x
k
ana

) and (|xk
a|pa)

pa =
∑na

r=1 |x
k
ar|

pa for any x ∈ �∞ and any a = 1, . . . , υ.
Thus, we can consider the sum with respect to k and r, getting constants C2i > 0 such that

(10)
∑

1≤r≤ni

∞∑
k=0

|Lk
ir(x, y)|pi ≤ C2i

∑
1≤a,b≤υ
a+b=i

∞∑
k=0

(|xk
a|pa)

pi (|yk
b|pb)

pi .



RADON-NIKODYM PROPERTY AND AREA FORMULA 11

Finally, we observe that( ∞∑
k=0

(|xk
a|pa)

pi (|yk
b|pb)

pi

)1/pi

≤ |
(
|xk

a|pa

)
k≥0|2pi |

(
|yk

b|pb

)
k≥0|2pi

and the condition (7) yields
∞∑

k=0

(|xk
a|pa)

pi (|yk
b|pb)

pi ≤

(
|
(
|xk

a|pa

)
k≥0|pa |

(
|yk

b|pb

)
k≥0|pb

)pi

.

Taking into account (8), we have |
(
|xk

a|pa

)
k≥0|pa = |xa|pa and |

(
|yk

b|pb

)
k≥0|pb = |yb|pb . As a result,

taking into account (10), we get(
|Li(x, y)|pi

)pi =
∑

1≤r≤ni

∞∑
k=0

|Lk
ir(x, y)|pi ≤ C2i

∑
1≤a,b≤υ
a+b=i

(|xa|pa)
pi (|yb|pb)

pi ≤ C2iυ
2|x|pi |y|pi ,

that immediately implies that

[x, y] =
(
0,L2(x, y), . . . ,Lυ(x, y)

)
∈ �∞ and |[x, y]| ≤

υ∑
i=2

(C2iυ
2)1/pi |x| |y|.

Finally, the Jacobi identity for the product [·, ·] follows from the Jacobi identity of L.

Remark 2.3. It is clear that the previous “product construction” can be suitably generalized
to the cases of different Carnot groups. The obvious case is taking the product of �∞ with
a different Carnot group G1, but many other similar possibilities can arise.

2.6. An infinite product of Lipschitz maps. Let us consider any sequence of Lipschitz
mappings f k : X −→ H, where (X, d) is a metric space and H is the first Heisenberg group
equipped with the homogeneous norm |(ξ1, ξ2, ξ3)|H = max

{
|(ξ1, ξ2)|,

√
|ξ3|

}
and the group

operation (ξ1, ξ2, ξ3)(η1, η2, η3) = (ξ1 + η1, ξ2 + η2, ξ3 + η3 + ξ1η2 − ξ2η1). We have denoted
by | · | both the Euclidean norm in R2 and in R. Up to left translations, we can assume that
for some x0 ∈ X we have

(11) f k(x0) = 0 for all k ∈ N.

Let us define Lip( f k) = supx,y∈X, x,y{| f
k(x)−1 f k(y)|H/d(x, y)}, then we set Lk = Lip( f k) and

select any sequence (rk)k≥0 of positive numbers such that

(12) C0 =

( ∞∑
k=0

r2
k L2

k

)1/2

< +∞ .

We wish to construct the infinite product of the mappings gk = δrk ◦ f k, where k ∈ N. We
expect that the new target is the infinite product�∞ = (`2)2 × `1, defined in Subsection 2.2.
Following the notations of this subsection, we set f k(x) = ( f k

11(x), f k
12(x), f k

2 (x)) ∈ H, so that

gk(x) =
(
rk f k

11(x), rk f k
12(x), r2

k f k
2 (x)

)
∈ H for all k ∈ N.

Setting gk(x) = (gk
11(x), gk

12(x), gk
2(x)) ∈ H, we define G1 j(x) = (gk

1 j(x))k≥0 with j = 1, 2 and
G2(x) = (gk

2(x))k≥0. Clearly, Lip(gk) = rkLk, therefore condition (11) yields

max
{
|gk

1(x)|,
√
|gk

2(x)|
}

= |gk(x)|H ≤ rk Lk d(x, x0)
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where gk
1(x) = (gk

11(x), gk
12(x)). By (12), it follows that G11(x),G12(x) ∈ `2 and G2(x) ∈ `1.

As a consequence, we have that
(
G1(x),G2(x)

)
∈ �∞ for all x ∈ X, where we have defined

G1(x) = (G11(x),G12(x)). We use both the norm ‖ · ‖ and the group operation introduced
in Subsection 2.2 for the Banach homogeneous group �∞. With these notions, for the
mapping G : X −→ �∞ defined as G(x) =

(
G1(x),G2(x)

)
for x ∈ X, we have

‖G(x)−1G(y)‖ = max
{
|−G1(x) + G1(y)|2,

√
|−G2(x) + G2(y) −G11(x) ·G12(y) + G12(x) ·G11(x)|1

}
where we have used the product z · w =

∑∞
k=0 z jw je j ∈ `

1, where z,w ∈ `2 and (ek)k≥0 is
the canonical Schauder basis of `1. The condition (12) finally leads us to the following
Lipschitz continuity

‖G(x)−1G(y)‖ ≤ C0 d(x, y) for all x, y ∈ X.

3. Differentiability

This section is devoted to the proof of Theorem 1.1. We equip a Carnot group G with
a continuous left invariant distance d such that d(δr x, δry) = rd(x, y) for all x, y ∈ G and
r > 0, namely, a homogeneous distance. The set Bx,r ⊂ G denotes the open ball of center x
and radius r with respect to d. When the center x of the open ball is the origin, namely the
unit element of G, we simply write Br. The same rule is used for closed balls Dx,r of center
x and radius r > 0. The set of density points D(A) of A ⊂ G is formed by all x ∈ G with

lim
r→0+

H
Q
d (A ∩ Bx,r)

H
Q
d (Bx,r)

= 1.

In the sequel,� is a Banach homogeneous group with gradation H1⊕· · ·⊕Hι and equipped
with homogeneous norm ‖ · ‖ given by (6). The Carnot group G has the decomposition into
the direct sum S 1 ⊕ · · · ⊕ S υ, where the layers satisfy the condition [S 1, S j] = S j+1 for all
j = 1, . . . , υ − 1 and [S 1, S υ] = {0}.

Definition 3.1. A homogeneous homomorphism, in short h-homomorphism, from G to�
is a continuous Lie group homomorphism L : G −→ � such that L(δGr x) = δ�r L(x) for all
x ∈ G and r > 0, where δGr and δ�r are dilations in G and�, respectively.

Definition 3.2. Let A ⊂ G and let � be a Banach homogeneous group equipped with a
Banach homogeneous distance ρ. We say that f : A −→ � is differentiable at the density
point x ∈ A if there exists an h-homomorphism L : G −→� such that

ρ( f (x)−1 f (xz), L(z)) = o
(
d(z, 0)

)
as z ∈ x−1A and d(z, 0) → 0+. The mapping L is the differential of f at x, that is uniquely
defined and denoted by D f (x).

In the sequel, saying that H1 has the RNP precisely means that the restriction of the
Banach norm of� onto H1 turns this closed subspace into a Banach space with the RNP.

Theorem 3.1. Let� be a Banach graded Lie group such that H1 has the RNP. Let A ⊂ R
and let γ : A→� be a Lipschitz mapping. Then γ is almost everywhere differentiable.
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Proof. We can obviously assume that A is closed, since the target is a complete metric
space. Our Lipschitz bound on ‖δ 1

h

(
γ(t)−1γ(t + h)

)
‖ for all t, t + h ∈ A implies that

|γ j(t + h) − γ j(t) +
∑ι

m=2 Pm j
(
− γ(t), γ(t + h)

)
|

h j

is also bounded, where Pm j = π j ◦ Pm. It is not restrictive to assume that h > 0 and A is
bounded. Since � is a Banach space and γ is also Lipschitz with respect to the Banach
norm, we can apply the [11], to get Lipschitz extension f defined on a bounded interval
containing A. In the sequel, we denote by f j the mapping π j ◦ f for all j + 1, . . . , ι. The
Radon-Nikodym property of H1 implies that f1 is a.e. differentiable on the bounded interval
containing A. For a.e. t in the bounded interval, we have

(13)
1
h

∫ t+h

t−h
| ḟ1(s) − ḟ1(t)| ds→ 0 as h→ 0+,

where the integral is understood to be the Bochner integral, see [1, Chapter 5] for the basic
properties of the Bochner integral. We can restrict our attention to all density points t of A
that are also points of differentiability and such that ḟ1 satisfies (13). Now, we fix any point
t of A having these properties.

We consider the left translated g(s) = f (t)−1 f (s) ∈ �. We also set g j = π j ◦ g for all
j = 1, . . . , ι, observing that g1(s) = f1(s)− f1(t) ∈ H1. Both mappings g and g1 are Lipschitz
continuous with respect to d and | · |, respectively, and have the same Lipschitz constants of
f and f1, respectively.

If we fix n ∈ N \ {0}, then we have hn,t > 0, depending on n and t, such that for all
h ∈ (A − t) ∩

]
0, hn,t

[
we have dist(A, t + i

nh) < i
n2 h ≤ h

n for i = 0, . . . , n. Thus, there exist
points ti ∈ A, for i = 0, 1, . . . , n, so that

(14)
∣∣∣∣∣t +

i
n

h − ti

∣∣∣∣∣ ≤ h
n
,

t0 = t and tn = t + h. We write g j(t + h) = A j − B j, where A j =
∑n−1

i=0

(
g j(ti+1) − g j(ti) +

∑ι
m=2 Pm j(−g(ti), g(ti+1)

))
B j =

∑n−1
i=0

∑ι
m=2 Pm j(−g(ti), g(ti+1)

) .(15)

We observe that

|A j| ≤

n−1∑
i=0

|π j
(
g(ti)−1g(ti+1)

)
| =

n−1∑
i=0

|π j
(
f (ti)−1 f (ti+1)

)
|,

hence A j is bounded by
∑n−1

i=0 |ti+1 − ti|
j, up to a constant factor only depending on the

Lipschitz constant of f . Since |ti+1 − ti| ≤ 3h/n, we get a constant κ1 j > 0 such that

(16) |A j| ≤ κ1 j h j/n j−1.

We denote by l0 > 0 a number only depending on the Lipschitz constant of f and such that

max{‖ f (t′)−1 f (t′′)‖, | f (t′) − f (t′′)|, | f1(t′) − f1(t′′)|, . . . , | fι(t′) − fι(t′′)|} ≤ l0 |t′ − t′′|
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for all t′, t′′ belonging to the bounded interval containing A. By the Dynkin formula (5),
the term Pm j(−g(ti), g(ti+1)) in (15) can be written as a linear combination of

(17) π j

(
∆i ◦ g(τ1,i) ◦ · · · ◦ g(τm−2,i)

)
,

where ∆i ∈ {−g(ti) ◦ g(ti+1), g(ti+1) ◦
(
− g(ti)

)
} and τ1,i, . . . , τm−2,i ∈ {ti, ti+1}. Therefore we

have ∆i ∈ {±g(ti) ◦ g(ti+1)} and the previous term can be written as

(18) ±π j

(
g(ti) ◦

(
g(ti+1) − g(ti)

)
◦ g(τ1,i) ◦ · · · ◦ g(τm−2,i)

)
.

Up to a change of sign, this term is the sum of elements

(19)
(
gl1(ti+1) − gl1(ti)

)
◦ gl2(ti) ◦ gl3(τ1,i) ◦ · · · ◦ glm(τm−2,i) ,

where 1 ≤ l1, . . . , lm < j and l1 + · · · + lm = j. Recall that the range of m ∈ N is 2 ≤ m ≤ j.
We start with the case m = j, where the element to consider is

(20)
(
g1(ti+1) − g1(ti)

)
◦ g1(ti) ◦ g1(τ1,i) ◦ · · · ◦ g1(τm−2,i) .

We can write this element as follows( ∫ ti+1

ti
ġ1

)
◦

[( ∫ ti

t
ġ1 − ġ1(t)

)
+ (ti − t)ġ1(t)

]
◦ g1(τ1,i) · · · ◦ g1(τm−2,i).

This can be considered as the sum of
( ∫ ti+1

ti
ġ1

)
◦
( ∫ ti

t
ġ1 − ġ1(t)

)
◦ g1(τ1,i) ◦ · · · ◦ g1(τm−2,i)

and
( ∫ ti+1

ti
ġ1

)
◦
(
(ti − t)ġ1(t)

)
◦ g1(τ1,i) ◦ · · · ◦ g1(τm−2,i). The norm of the first element is not

larger than l j−2
0 h j−2

( ∫ max{ti,ti+1}

min{ti,ti+1}

|ġ1|

) ( ∫ t+h

t
|ġ1 − ġ1(t)|

)
, hence we get

(21)
∣∣∣∣∣( ∫ ti+1

ti
ġ1

)
◦
( ∫ ti

t
ġ1 − ġ1(t)

)
◦ · · · ◦ g1(τm−2,i)

∣∣∣∣∣ ≤ l j−2
0 h j−2

( ∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1
∣∣∣)( ∫ t+h

t
|ġ1 − ġ1(t)|

)
.

The second one can be written as( ∫ ti+1

ti
ġ1 − ġ1(t)

)
◦

(
(ti − t)ġ1(t)

)
◦ g1(τ1,i) ◦ · · · ◦ g1(τm−2,i) ,

hence its norm is less than or equal to l j−1
0 h j−1

∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1 − ġ1(t)
∣∣∣. We have proved that

|g1(ti+1) ◦ g1(ti) ◦ g1(τ1,i) ◦ · · · ◦ g1(τm−2,i)| is less than

l j−2
0 h j−2

( ∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1

∣∣∣)( ∫ t+h

t
|ġ1 − ġ1(t)|

)
+ l j−1

0 h j−1
∫ t+ (i+2)

n h

t+ (i−1)
n h

∣∣∣ġ1 − ġ1(t)
∣∣∣.

This proves that

(22) |g1(ti+1)◦g1(ti)◦· · ·◦g1(τm−2,i)| ≤ 3 l j−1
0 h j−1

(1
n

∫ t+h

t
|ġ1− ġ1(t)|+

∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1− ġ1(t)
∣∣∣) .



RADON-NIKODYM PROPERTY AND AREA FORMULA 15

Notice that in the case j = 2, the estimate (22) can be read as

(23)
∣∣∣∣ 2∑

m=2

Pm2(−g1(ti), g1(ti+1))
∣∣∣∣ ≤ 3

2
l0 h

(1
n

∫ t+h

t
|ġ1 − ġ1(t)| +

∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1 − ġ1(t)
∣∣∣) ,

for all 0 < h < hn,t, t + h ∈ A and all possible choices of ti ∈ A satisfying (14), that clearly
also depend on h. Arguing by induction, suppose that

(24)
∣∣∣∣ l∑

m=2

Pml(−g(ti), g(ti+1))
∣∣∣∣ ≤ κ2l hl−1

( h
n2 +

1
n

∫ t+h

t−h
|ġ1 − ġ1(t)| +

∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1 − ġ1(t)
∣∣∣)

holds for all l = 2, . . . , j, for all t, t + h ∈ A, 0 < h < hn,t, j and any choice of ti ∈ A satisfying
(14) for all i = 1, . . . , n − 1, t0 = t and tn = t + h. In view of (23), the induction hypothesis
is true for j = 2. Thus, for any t ∈ A, we have to find an hn,t, j+1 > 0 such that

(25)
∣∣∣∣ j+1∑

m=2

Pm( j+1)(−g(ti), g(ti+1))
∣∣∣∣ ≤ κ2( j+1) h j

( h
n2 +

1
n

∫ t+h

t−h
|ġ1− ġ1(t)|+

∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1− ġ1(t)
∣∣∣)

for any choice of ti ∈ A satisfying (14) and all 0 < h < hn,t, j+1 such that t + h ∈ A. Since
gl(t + h) = Al − Bl, we observe that our inductive assumption yields

(26) |gl(t + h)| ≤ 3 κ2l hl−1
∫ t+h

t−h
|ġ1 − ġ1(t)| + (κ1l + κ2l)

hl

n
for any t, t + h ∈ A with 0 < h < hn,t, j and all l = 2, . . . , j, where j ≥ 2. Arguing as in
the previous steps, by the Dynkin formula, the single addends Pm( j+1)(−g(ti), g(ti+1)) with
2 ≤ m ≤ j are finite sums of elements

(27)
(
gl1(ti+1) − gl1(ti)

)
◦ gl2(ti) ◦ gl3(τ1,i) ◦ · · · ◦ glm(τm−2,i) ,

where 1 ≤ l1, . . . , lm ≤ j, l1 + · · · + lm = j + 1 and 2 ≤ m ≤ j + 1. If m = j + 1, then the
general validity of (22) in our case gives

(28) |g1(ti+1) ◦ g1(ti) ◦ · · · ◦ g1(τm−2,i)| ≤ 3 l j
0 h j

(1
n

∫ t+h

t−h
|ġ1 − ġ1(t)| +

∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1 − ġ1(t)
∣∣∣)

for all 0 < h < hn,t and all ti ∈ A satisfying (14). Let us now consider the case 2 ≤ m < j+1,
where we have to apply our inductive hypothesis. Concerning (27) we have two main cases.
The first one is when l1 = 1. Thus, we consider the set

J0 = { j ∈ N : 2 ≤ j ≤ m, l j ≥ 2}.

Since m < j + 1, we have J0 , ∅. Precisely, J0 is made by p distinct elements { j1, . . . , jp}

with 1 ≤ p ≤ m − 1. We also set I0 = {2, . . . ,m} \ J0. If p < m − 1, namely I0 , ∅, then
I0 = {i1, . . . , im−p−1} and li = 1 for all i ∈ I0. By the consequence (26) of the inductive
assumption, since 0 < ti+1 − t, ti − t ≤ h < hn,t, j, it follows that the norm of (27) is less than
or equal to

l0 |ti+1 − ti|
(
l0h

)m−p−1 ∏
l=l j1 ,...,l jp

(
3 κ2l hl−1

∫ t+h

t−h
|ġ1 − ġ1(t)| + (κ1l + κ2l)

hl

n

)
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for all 0 < h < ht,n, j, with t + h ∈ A. Thus, there exists κ3(m, p) > 0, only depending on l0,
κ1l and κ2l, for all l = 2, . . . , j, such that

(29)
∣∣∣∣(gl1 (ti+1) − gl1 (ti)

)
◦ gl2 (ti) ◦ gl3 (τ1,i) ◦ · · · ◦ glm (τm−2,i)

∣∣∣∣ ≤ κ3(m, p) h j
(1
n

∫ t+h

t−h
|ġ1−ġ1(t)|+

h
n2

)
.

Explicitly, we can choose κ3(m, p) = 9 lm−p
0 (12l0 + 1)p−1

(
max2≤l≤ j κ1l + κ2l

)p
.

The remaining case is l1 ≥ 2. We observe that for the integers l such that 2 ≤ l ≤ ι, the
consequence (26) of the inductive assumption yields

(30) |gl(t′)| ≤ (t′ − t)l(κ1l + κ2l + 12 κ2l l0)

for all t′ ∈ A such that 0 < t′ − t < hn,t, j. In the case l = 1, we have |g1(t′)| ≤ l0 (t′ − t) for
all t′ ∈ A ∩ (t,+∞). Now, the general term (27) can be written as the sum of

(31)
(
gl1(ti+1) − gl1(ti) +

l1∑
m=2

Pml1
(
− g(ti), g(ti+1)

))
◦ gl2(ti) ◦ gl3(τ1,i) ◦ · · · ◦ glm(τm−2,i)

and of

(32)
( l1∑

m=2

Pml1
(
− g(ti), g(ti+1)

))
◦ gl2(ti) ◦ gl3(τ1,i) ◦ · · · ◦ glm(τm−2,i).

Since the first factor of (31) is πl1

(
g(ti)−1g(ti+1)

)
, the norm of (31) is not greater than

(33) ll1
0
|ti − ti+1|

l1

σl1
(κ1l + κ2l + l0 + 12κ2ll0)m−1 hl2+···+lm .

Now, we observe that the norm of (32) is less than or equal to the following number

(34)
∣∣∣∣ l1∑

m=2

Pml1
(
− g(ti), g(ti+1)

)∣∣∣∣ |gl2(ti)| |gl3(τ1,i)| · · · |glm(τm−2,i)| .

By the induction hypothesis (24), the first factor of this product is less than or equal to

κ2l1 hl1−1
( h
n2 +

1
n

∫ t+h

t−h
|ġ1 − ġ1(t)| +

∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1 − ġ1(t)
∣∣∣) ,

hence, as before, taking into account (26), the product (34) is not larger than

(35) κ2l1 hl1−1
( h
n2 +

1
n

∫ t+h

t−h
|ġ1 − ġ1(t)| +

∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1 − ġ1(t)
∣∣∣) κ4(m) hl2+···+lm ,

where κ4(m) = (κ1l + κ2l + l0 + 12κ2ll0)m−1. Taking into account the decomposition of (27)
into the sum of (31) and (32) and using the estimates (33) and (35), we get a geometric
constant κ5(m), only depending on l0 and all κ1,l and κ2l with l = 2, . . . , j, such that

(36)

∣∣∣∣(gl1 (ti+1) − gl1 (ti)
)
◦ gl2 (ti) ◦ · · · ◦ glm (τm−2,i)

∣∣∣∣
κ5(m) h j ≤

h
n2 +

1
n

∫ t+h

t−h
|ġ1 − ġ1(t)| +

∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1 − ġ1(t)
∣∣∣
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in the case l1 ≥ 2. Joining both cases l1 = 1 and l1 ≥ 2, namely, joining (29) with (36), we
get a new constant κ6(m) ≥ κ5(m) depending on the same constants of κ5(m), such that

(37)

∣∣∣∣(gl1 (ti+1) − gl1 (ti)
)
◦ gl2 (ti) ◦ · · · ◦ glm (τm−2,i)

∣∣∣∣
κ6(m) h j ≤

h
n2 +

1
n

∫ t+h

t−h
|ġ1 − ġ1(t)| +

∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1 − ġ1(t)
∣∣∣

whenever 2 ≤ m ≤ j + 1, l1, l2, . . . , lm ≥ 1, l1 + l2 + · · · + lm = j + 1, t, t + h ∈ A,
0 < h < min{hn,t, j, hn,t} and ti ∈ A satisfy (14) for all i = 1, . . . , n − 1, where t0 = t and
tn = t + h. Thus, under the same conditions, since Pm( j+1)(−g(ti), g(ti+1)) is a finite linear
combination of elements (27), we also have

|Pm( j+1)(−g(ti), g(ti+1))| ≤ κ7(m) h j
( h
n2 +

1
n

∫ t+h

t−h
|ġ1 − ġ1(t)| +

∫ t+ (i+2)
n h

t+ (i−1)
n h

∣∣∣ġ1 − ġ1(t)
∣∣∣)

for a suitable constant κ7(m) > 0, depending on κ6(m). This immediately leads us to (25)
and concludes our argument by induction. As a consequence, taking into account that
g j(t + h) = A j − B j and B j =

∑n−1
i=0

∑ j
m=2 Pm j(−g(ti), g(ti+1)), we obtain

(38) |g j(t + h)| ≤ 3 κ2 j h j−1
∫ t+2h

t−2h
|ġ1 − ġ1(t)| + (κ1 j + κ2 j)

h j

n
for all j = 2, . . . , ι and all 0 < h < hn,t, j. It follows that

(39) lim sup
h→0

|g j(t + h)|
|h| j

≤ (κ1 j + κ2 j)
1
n
,

hence for the arbitrary choice of n ∈ N \ {0}, we have proved that there exists

lim
h→0

t+h∈A

δ 1
h

(
γ(t)−1γ(t + h)

)
.

This concludes the proof. �

Proof of Theorem 1.1. We can clearly assume that A is closed, since f is Lipschitz and the
target is a complete metric space. It is also not restrictive to assume that A is also bounded.
Let v1, v2, . . . , vN ∈ S 1 be a set of horizontal directions of G such that |vi| = 1 for all
i = 1, . . . ,N and for some T > 0 we have that

V = {δt1v1 · · · δtN vN : |ti| < T }

is a neighbourhood of the origin containing B1. For all x ∈ G and v ∈ G \ {0} we write the
one dimensional set of parameters for which we hit the set A as A(x, v) = {t ∈ R | xδtv ∈ A}.
Take one of the directions vi and denote by Zi the one-dimensional subgroup spanned by it.
Let Wi be the complementary subgroup, so that G is the semidirect product of Zi and Wi.
Then by Theorem 3.1 for any x ∈ Wi the limit

(40) lim
t→0

t∈A(xδsvi,vi)

δ 1
t

(
f (xδsvi)−1 f (xδsviδtvi)

)
exists for L1-almost every s ∈ A(x, vi). Considering Wi as a vector space and using the
Fubini’s theorem, we get the existence of the limit in (40) forLn-almost every (x, s) ∈ Wi×R
for which xδsvi ∈ A, where n denotes the topological dimension of G.
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Since both HQ with respect to the homogeneous distance d and Ln with respect to the
understood Euclidean metric on G are Haar measures of G, applying the previous argument
to all directions vi, forHQ-almost all x ∈ A all the limits

(41) ∂vi f (x) = lim
t→0

t∈A(x,vi)

δ 1
t

(
f (x)−1 f (xδtvi)

)
with i = 1, 2, . . . ,N exist. Let us fix any ε > 0. Since A is bounded, in view of both Lusin
and Severini-Egorov theorems, we have a compact set C ⊂ A, made of density points, such
that for all i = 1, 2, . . . ,N the limits ∂vi f (x) exist at every point x ∈ C, the convergence

(42) δ 1
t

(
f (x)−1 f (xδtvi)

)
→ ∂vi f (x) as t → 0 and t ∈ A(x, vi)

is uniform on C, the maps x 7→ ∂vi f (x) are continuous on C, the convergence of the densities

(43)
H1(B(x, r) ∩ A ∩ {xδtvi : t ∈ R})

2r
→ 1

as r ↓ 0 is uniform for x ∈ C andHQ(A \C) < ε. Let us choose x ∈ C. We know that

(44) lim
d(0,z)→0

d(C, xz)
d(0, z)

= 0.

Now, we choose u = δt1v1 · · · δtN vN with |ti| < T and t ∈ (−1, 1). Thus, we are able to find a
sequence vt

1, . . . , v
t
N ∈ G so that

(45) xvt
1 · · · v

t
i ∈ C and d(vt

i, δttivi) = d(C, xvt
1 · · · v

t
i−1δttivi)

for all i = 1, . . . ,N. Such a sequence exists since C is compact. We will also use the
elements wt

1, . . . ,w
t
N ∈ G such that for all i = 1, . . . ,N we have xvt

1 · · · v
t
i−1wt

i ∈ A,

wt
i ∈ {δhvi : h ∈ R} and d(wt

i, δttivi) = d({xvt
1 · · · v

t
i−1δhvi : h ∈ R} ∩ A, xvt

1 · · · v
t
i−1δttivi).

Such a sequence exists because A is closed and (43) uniformly holds. Moreover, the same
uniform convergence of (43) yields

(46)
d(wt

i, δttivi)
t

→ 0

uniformly with respect to x that varies in C, |ti| < T and i = 1, . . . ,N, as t → 0. Notice that
we have not emphasized the dependence on x. The different sets of projected elements {vt

i}

and {wt
i} are illustrated in Figure 1. For all t ∈ (−1, 1), we have

δ 1
t
( f (x)−1 f (xvt

1 · · · v
t
N)) =

N∏
i=1

δ 1
t
( f (xvt

1 · · · v
t
i−1)−1 f (xvt

1 · · · v
t
i)).

From (43) it follows in particular that whenever x ∈ C for every a > 0 the following
homogeneity property

(47) δa∂vi f (x) = ∂avi f (x) .

Thus, we define ηt
i = xvt

1 · · · v
t
i−1 ∈ C for every i = 1, . . . ,N and consider the inequality

ρ(δ 1
t
( f (ηt

i)
−1 f (ηt

iw
t
i)), ∂δti vi f (x)) ≤ ρ(δ 1

t
( f (ηt

i)
−1 f (ηt

iw
t
i)), ∂δ 1

t
wt

i
f (ηt

i))

+ ρ(∂δ 1
t

wt
i
f (ηt

i), ∂δti vi f (ηt
i)) + ρ(∂δti vi f (ηt

i), ∂δti vi f (x)) .
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PSfrag replacements
xδtt1v1

xvt
1

xδtt1v1δtt2v2
xvt

1vt
2

xvt
1wt

2

x
A
C

Figure 1. The choice of elements vt
i and wt

i in the proof of Theorem 1.1.

The first addend on the right hand side uniformly converges to 0 when x varies in C, as
t → 0. In fact, ηt

i ∈ C and the uniform convergence of (41) is preserved under rescaling,
where δ 1

t
wt

i = δhttivi and ht uniformly converges to one on C as t → 0, due to (46).
Since we have the rescaling of partial derivatives, we get

ρ(∂δ 1
t

wt
i
f (ηt

i), ∂δti vi f (ηt
i)) = ρ(δhtti∂vi f (ηt

i), δti∂vi f (ηt
i))

that uniformly goes to zero as x ∈ C and t → 0, again due to (46). This implies the uniform
convergence of the second addend to zero. Finally, the third term converges uniformly to 0
by the continuity of ∂vi f on C. Joining (44) and (45), we have that

(48) δ1/t(vt
1 · · · v

t
i)→

i∏
l=1

δtlvl

uniformly with respect to all i = 1, . . . ,N and |ti| < T as t → 0. It follows that

t−1d(vt
i, δttivi)→ 0 as t → 0

for all i = 1, . . . ,N and |ti| < T . This convergence is not uniform with respect to x, although
we could make it even uniform with respect to x by choosing this element in a “slightly
smaller subset of C”. We have t−1d(wt

i, v
t
i) ≤ t−1d(wt

i, δttivi) + t−1d(δttivi, vt
i) → 0 as t → 0.

This gives
δ 1

t
( f (ηt

iw
t
i)
−1 f (ηt

iv
t
i))→ 0 as t → 0 .

Combining the previous limit with (42), we get that

δ 1
t
( f (ηt

i)
−1 f (ηt

iv
t
i)) = δ 1

t
( f (ηt

i)
−1 f (ηt

iw
t
i))δ 1

t
( f (ηt

iw
t
i)
−1 f (ηt

iv
t
i))→ ∂δti vi f (x)

as t → 0. This limit is uniform with respect to all |ti| < T , but it may depend on x.
Therefore, we are led to the existence of the following limit

(49) lim
t→0

δ 1
t

(
f (x)−1 f (xvt

1 · · · v
t
N)

)
=

N∏
i=1

∂δti vi f (x),
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that is uniform with respect to u ∈ V . This allows us to define Lx(u) =
∏N

i=1 ∂δti vi f (x) for
all u = δt1v1 · · · δtN vN ∈ G. Therefore the definition of Lx(u) is independent of the choice of
the representation of u. The choice of the “nonlinear difference quotient”

δ 1
t

(
f (x)−1 f (xvt

1 · · · v
t
N)

)
has been made in order to get the existence of the h-homomorphism Lx. In fact, Lx is an
h-homomorphism since for all u = δt1v1 · · · δtN vN and w = δτ1v1 · · · δτN vN , we have

Lx(uw) =

N∏
i=1

∂δti vi f (x)
N∏

i=1

∂δτi vi f (x) = Lx(u)Lx(w).

The homogeneity of Lx is obvious due to the homogeneity of partial derivatives (47). Let
(yi)∞i=1 ⊂ A be any sequence so that yi → x. Define λp = d(x, yp) and let zp ∈ G be such that
x−1yp = δλpzp. It follows that

lim
p→∞

ρ( f (x)−1 f (yp), Lx(x−1yp))
d(x, yp)

= lim
p→∞

1
λp
ρ( f (x)−1 f (xδλpzp), Lx(δλpzp))

= lim
p→∞

ρ(δ 1
λp

( f (x)−1 f (xδλpzp)), Lx(zp)) = 0

since both the limits (49) and (48) for i = N are uniform. Thus, Lx is the h-differential of f
at x. The arbitrary choice of ε > 0 concludes the proof. �

4. The metric area formula

Let us fix a metric space Y equipped with a distance ρ and let G denote a stratified group
equipped with both a homogeneous distance d and the Hausdorff measureHQ

d constructed
with respect to d. The integer Q is the homogeneous dimension of G. Since G is a locally
compact real Lie group, the measure HQ

d is the Haar measure of G. For all homogeneous
distances σ on G, we setHQ

σ = βQ hQ
σ and

hQ
σ(A) = sup

ε>0
inf

 ∞∑
j=0

diamσ(E j)Q

2Q : A ⊂
∞⋃
j=0

E j, diamσ(E j) ≤ ε


where the constant βQ > 0 is fixed.

Definition 4.1 (Metric differentiability). Let A ⊂ G and let f : A −→ Y . We fix a density
point x ∈ A. Then we say that f is metrically differentiable at x if there exists a homoge-
neous seminorm s such that ρ( f (x), f (xz)) − s(z) = o(‖z‖) as z ∈ x−1A and ‖z‖ → 0+. The
homogeneous seminorm s is unique and it is denoted by md f (x), which we call the metric
differential of f at x.

Notice that in the case G is a Euclidean space, formula (2) yields the Kirchheim’s area
formula established in [13], where the following notion of Jacobian is used

(50) J(s) =
nωn∫

Sn−1 s(x)−n dHn−1
|·|

(x)
.

Here s denotes a seminorm on Rn and | · | is the standard Euclidean norm. In fact, the
metric differential in this case is precisely a seminorm. By the special geometric properties
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of normed spaces, Lemma 6 of [13] shows that J(‖ · ‖) = Hn
‖·‖

(A)/Hn
|·|
(A) for any A ⊂ X

of positive measure, where X is a finite dimensional Banach space with norm ‖ · ‖. This
immediately shows that formula (3) gives the Kirchheim’s Jacobian when the Carnot group
is replaced by a Euclidean space. The following remark shows that the metric Jacobian in
stratified groups coincides with the sub-Riemannian Jacobian of [16].

Remark 4.1. Let L : G −→ � be an injective h-homomorphism from a stratified group
G to a Banach homogeneous group�. Let us define sL(x) = ρ(L(x), 0) for all x ∈ G and
notice that sL is a homogeneous distance on G, due to the injectivity of L. One can easily
check thatHQ

sL(B1) = H
Q
ρ (L(B1)). It follows that

(51) J(sL) =
H

Q
ρ

(
L(B1)

)
H

Q
d (B1)

.

When � is in particular a Carnot group, then (51) shows that the metric Jacobian (3)
coincides with the “sub-Riemannian Jacobian” introduced in Definition 10 of [16]. One
can relate these Jacobians with the classical ones computed by matrices. In fact, as proved
in Proposition 3.18 of [16], there is a geometric constant C, a priori also depending on the
subspace L(G), such that

(52) J(sL) = C
√

det(LT
0 L0) ,

where L0 is the matrix representing L as a linear mapping from G to L(G) with respect to
a fixed scalar product. Of course, when one chooses distances with many symmetries the
constant C will not depend on the subspace L(G). Formula (52) extends to our framework,
since in the general case where the target is a Banach homogeneous group�, we have that
L(G) is still a finite dimensional linear subspace of�.

The key ingredient for the area formula is the linearization procedure associated to the
a.e. differentiability, see Lemma 3.2.2 of [7]. For metric valued Lipschitz mappings with
Euclidean source space, Kirchheim uses the separability of all compact convex sets, ac-
cording to 2.10.21 of [7], in order to get the following separability of norms: there exists
a countable family of norms {‖ · ‖i} such that for every 0 < ε < 1 and every norm ‖ · ‖ we
have some ‖ · ‖i0 such that (1 − ε)‖ · ‖i0 ≤ ‖ · ‖ ≤ (1 + ε)‖ · ‖i0 .

Let us point out that a metric ball with respect to a homogeneous distance need not be
a convex set. However, the previous separability of norms still holds for homogeneous
norms, since the point is that a Carnot group G is a boundedly compact metric space and
the class of nonempty compact sets in G is separable with respect to the Hausdorff distance
between compact sets.

Lemma 4.1. There exists a countable family F of homogeneous norms such that for every
ε ∈ (0, 1) and every homogeneous norm ν, there exists s ∈ F such that

(53) (1 − ε) s ≤ ν ≤ (1 + ε) s.

Next, we recall the measure theoretic notion of Jacobian, see [18].
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Definition 4.2 (Measure theoretic Jacobian). Let E ⊂ G be a closed set, f : E −→ Y
Lipschitz and x ∈ E. Then we define

J f (x) = lim sup
r→0+

H
Q
ρ

(
f (E ∩ Dx,r)

)
H

Q
d (Dx,r)

.

Lemma 4.2. Let E ⊂ G be closed and let f : E −→ Y be Lipschitz. Denote by D ⊂ E
the subset of points where f is metrically differentiable and the metric differential is a
homogeneous norm. Then the following statements hold.

(1) There exists a family of Borel sets {Ei}i∈N such that D =
⋃∞

i=0 Ei and f|Ei is bi-
Lipschitz onto its image.

(2) ForHQ-a.e. x ∈ D we have J
(
md f (x)

)
= J f (x).

Proof. Let F = {si : i ∈ N} be as in Lemma 4.1. Fix an arbitrary ε ∈ (0, 1) and define for
all i, n ∈ N the set

Di,n = {x ∈ D : |ρ
(
f (xu), f (x)

)
− si(u)| ≤ εsi(u) for all u ∈ x−1E with ‖u‖ < e−n} .

Combining metric differentiability with Lemma 4.1 gives D =
⋃

i,n∈NDi,n. Since G is
separable, we can coverDi,n with a countable family of sets Dzl,e−n/4∩Di,n with l ∈ N. Then
for all x, y ∈ Dzl,e−n/4 ∩Di,n, we immediately get

(54) (1 − ε) si(x−1y) ≤ ρ
(
f (x), f (y)

)
≤ (1 + ε) si(x−1y).

This concludes the proof of the first statement. Now, we fix z ∈ Di,n ∩ D(Di,n). Then for
all r ∈ ]0, e−n/2[ and x, y ∈ Dz,r ∩Di,n, the inequalities (54) again hold. As a consequence,
setting L = Lip( f ), we get

H
Q
ρ

(
f (Dz,r ∩ E)

)
H

Q
d (Dz,r)

≤ (1 + ε)QH
Q
si (Dz,r)

H
Q
d (Dz,r)

+ LQH
Q
d (Dz,r \ Di,n)

H
Q
d (Dz,r)

and
H

Q
ρ

(
f (Dz,r ∩ E)

)
H

Q
d (Dz,r)

≥
H

Q
ρ

(
f (Dz,r ∩Di,n)

)
H

Q
d (Dz,r)

≥ (1 − ε)QH
Q
si (Dz,r ∩Di,n)

H
Q
d (Dz,r)

.

Therefore we have

(1 − ε)Q H
Q
si (D1)

H
Q
d (D1)

≤ lim sup
r→0+

H
Q
ρ

(
f (Dz,r ∩ E)

)
H

Q
d (Dz,r)

≤ (1 + ε)Q H
Q
si (D1)

H
Q
d (D1)

,

for an arbitrary ε > 0. This leads us to the conclusion. �

Lemma 4.3. Let f : G −→ Y be a Lipschitz mapping. Let E0 be the set of points x ∈ G for
which there exists vx ∈ G with ‖vx‖ = 1 such that for all ε > 0 we have 0 < rε < ε such that

(55) ρ
(
f (xδrvx), f (x)

)
≤ ε rε

for all 0 < r ≤ rε. It follows thatHQ
ρ

(
f (E0)

)
= 0.
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Proof. Let L ≥ 1 denote a Lipschitz constant of f , choose x ∈ E0 and fix an arbitrary R > 0.
Take an arbitrary ε > 0 such that 4ε < 1 and Bx,ε ⊂ BR. By definition of E0, we have vx ∈ S
and 0 < rε < ε/2 such that (55) holds. Defining

S vx,ε =
⋃

0≤r≤rε

Bxδrvx,
εrε
L
⊂ Bx,ε ,

by triangle inequality, we get f (S vx,ε) ⊂ Bρ( f (x), 2εrε). Now, fix N = [L/2ε] and choose
two distinct integers i, j between 0 and N. By triangle inequality, one observes that

Bxδ 2εrε i
L

vx,
εrε
L
∩ Bxδ 2εrε j

L
vx,

εrε
L

= ∅.

This leads us to HQ
d (S vx,ε) > C εQ−1 rQ

ε . As a result, the measure µR = ( f|BR)]H
Q
ρ on Y

satisfies
µR

(
Bρ( f (x), 2εrε)

)
(2εrε)Q ≥

C
2Qε

.

From the arbitrary choice of ε > 0, it follows that

lim sup
t→0+

µR
(
Bρ( f (x), t)

)
tQ = +∞

for every x ∈ E0 ∩ BR, where µR is a finite Borel regular measure on Y . Finally, standard
differentiation theorems give HQ

ρ

(
f (E0 ∩ BR)

)
= 0 and the arbitrary choice of R > 0

concludes the proof. �

Corollary 4.1. Let E ⊂ G be a closed set and let f : E −→ Y be a Lipschitz mapping,
whose metric differential exists on a subset E0 ⊂ E and at all point of this set it is not a
homogeneous norm. ThenHQ

ρ

(
f (E0)

)
= 0.

Proof. The image f (E) is separable in Y , so in particular it is a separable metric space that
can be isometrically embedded into l∞. Hence we can assume that Y = l∞. With this target,
the componentwise extension of f immediately yields a Lipschitz extension f̃ defined on
all of G, having the same Lipschitz constant. Take x ∈ E0 ⊂ D(E) and vx ∈ G such that
‖vx‖ = 1 and md f (x)(vx) = 0. It is easy to check that f̃ is metrically differentiable at x and
md f (x) = md f̃ (x). Therefore f̃ satisfies conditions of Lemma 4.3 and our claim holds. �

Proof of Theorem 1.2. Since HQ
d is Borel regular and f is Lipschitz, it is not restrictive to

assume that A is closed and that f is everywhere metrically differentiable. By definition of
metric Jacobian, J(md f (z)) = 0 whenever z belongs to the subset A0 of A where the metric
differential is not a homogeneous norm. Corollary 4.1 implies HQ

ρ ( f (A0)) = 0, hence (2)
holds for the restriction f|A0 . By Lemma 4.2, we have A \ A0 =

⋃∞
j=0 E j where E j are Borel

sets and f|E j is injective and J f equals J(md f (·))HQ-almost everywhere, hence Theorem 2
of [18] establishes (2) for f|(A\A0) and concludes the proof. �
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[10] M. Gromov, “Carnot-Carathéodory spaces seen from within”. In Subriemannian Geometry, Progress in

Mathematics, 144, edited by A. Bellaiche and J. Risler, 79-323. Basel: Birkhäuser Verlag, 1996
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