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Abstract
Stable isotopemixing models in aquatic ecology require δ13C values for food web endmem-

bers such as phytoplankton and bacteria, however it is rarely possible to measure these

directly. Hence there is a critical need for improvedmethods for estimating the δ13C ratios of

phytoplankton, bacteria and terrestrial detritus from within mixed seston. We determined the

δ13C values of lipids, phospholipids and biomarker fatty acids and used these to calculate iso-

topic differences compared to the whole-cell δ13C values for eight phytoplankton classes, five

bacterial taxa, and three types of terrestrial organic matter (two trees and one grass). The lipid

content was higher amongst the phytoplankton (9.5±4.0%) than bacteria (7.3±0.8%) or terres-

trial matter (3.9±1.7%). Our measurements revealed that the δ13C values of lipids followed phy-

logenetic classification among phytoplankton (78.2% of variance was explained by class),

bacteria and terrestrial matter, and there was a strong correlation between the δ13C values of

total lipids, phospholipids and individual fatty acids. Amongst the phytoplankton, the isotopic

difference between biomarker fatty acids and bulk biomass averaged -10.7±1.1‰ for Chloro-

phyceae and Cyanophyceae, and -6.1±1.7‰ for Cryptophyceae, Chrysophyceae and Diato-

mophyceae. For heterotrophic bacteria and for type I and type II methane-oxidizing bacteria

our results showed a -1.3±1.3‰, -8.0±4.4‰, and -3.4±1.4‰ δ13C difference, respectively,

between biomarker fatty acids and bulk biomass. For terrestrial matter the isotopic difference

averaged -6.6±1.2‰. Based on these results, the δ13C values of total lipids and biomarker fatty

acids can be used to determine the δ13C values of bulk phytoplankton, bacteria or terrestrial

matter with ± 1.4‰ uncertainty (i.e., the pooled SD of the isotopic difference for all samples).

We conclude that when compound-specific stable isotope analyses becomemore widely avail-

able, the determination of δ13C values for selected biomarker fatty acids coupled with estab-

lished isotopic differences, offers a promising way to determine taxa-specific bulk δ13C values

for the phytoplankton, bacteria, and terrestrial detritus embedded within mixed seston.
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Introduction
Stable isotope analyses (SIA) are increasingly used to investigate food web structure and carbon
transfer pathways in aquatic ecosystems. For example, SIA have been pivotal in developing
ideas about the relative contributions of autochthonous and allochthonous carbon sources in
lake food webs [1–6]. Application of SIA has also underpinned much of the work that has
revised views on the importance of littoral and benthic processes in lake ecosystems [7]. These
approaches generally use isotope mixing models (e.g. IsoSource, SIAR) [8, 9] to analyze the
data, and these mixing models require carbon isotope values (δ13C) for various end members,
often including phytoplankton, bacteria and terrestrial organic matter. Whereas the δ13C of
diets can be easily measured in laboratory experiments [10], it is rarely possible to physically
separate phytoplankton, bacteria, or terrestrial detritus from other components of the seston in
order to determine their δ13C values directly. Grey et al. [1] separated large diatoms from Loch
Ness seston samples by repeated sedimentation and determined their δ13C, while Vuorio et al.
[11] measured δ13C directly from various phytoplankton taxa from Finnish lakes after manual
separation of colonies under microscopy, but such physical separation is rarely feasible and the
high time demands for such methods make them impractical for routine use. Furthermore, the
approach applied by these authors can only be applied to large or colonial phytoplankton taxa
which may be also too large for most zooplankton to ingest. Additionally, there are large differ-
ences in diet quality amongst phytoplankton classes for zooplankton; for example, copepods
feed selectively on high quality phytoplankton and do not consume all phytoplankton taxa
evenly [12–14]. Vuorio et al. [11] also showed there can be large differences in stable isotopes
values between the main phytoplankton taxa. Hence obtaining robust δ13C values for phyto-
plankton and bacteria has proven to be an enduring problem for the SIA approach to aquatic
food web studies and often results in high uncertainties for diet contributions to zooplankton
[15].

Because direct determinations are usually not feasible, researchers have resorted to a variety
of indirect approaches. One approach has been to use values from appropriate primary con-
sumers as a surrogate for primary producer values (e.g. unionid mussel values to represent phy-
toplankton; [16]). Although this approach has the advantage of time-integration it suffers from
considerable uncertainty and of course also lacks the information about specific primary pro-
ducer δ13C values that would be very valuable in many contexts. This approach also assumes
the analyst actually knows the true diet of the primary consumer, which is never actually true
in natural systems. Marty & Planas [17] reviewed the indirect approaches that have been used
to estimate actual phytoplankton δ13C values. These include: 1) determining the δ13C value of
dissolved inorganic carbon (DIC) and applying an assumed fractionation factor between DIC
and phytoplankton; 2) simply using the δ13C of POM as an estimate of the phytoplankton sig-
nature; 3) correcting the δ13C of POM according to estimates of its phytoplankton proportion;
and 4) 13C-enriching phytoplankton to obtain a clearer separation from bacteria or allochtho-
nous POM and then applying methods 1–3. All of these approaches have obvious weaknesses
and none is entirely satisfactory. The most widely used approach is probably 1), but not all
studies are able to determine δ13C of DIC empirically, and as values differ widely between lakes
[18] and with season [19] using literature values is not appropriate [20]. Moreover, the carbon
isotope fractionation between DIC and phytoplankton is highly variable [18, 19] so that again
assuming a value based on literature reports is fraught with uncertainty [15]. In the case of bac-
teria even less is known. Heterotrophic bacteria are generally assumed to have similar δ13C sig-
natures to their organic matter source (for example allochthonous dissolved organic matter,
DOM), and there is some justification for this assumption [21]. The δ13C of methane-oxidizing
bacteria or photoautotrophic green sulphur bacteria has usually been estimated from the
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corresponding values for the carbon substrate (CH4 or DIC) and using fractionation factors
obtained from the literature. However, these fractionation factors have a very wide reported
range, e.g., -7.8 to -28.4‰ for methane oxidizing bacteria (MOB) and -12.0 to -13.7‰ for pho-
toautotrophic bacteria [22, 23, 24].

An alternative approach is to extract certain biochemical components associated with par-
ticular organisms from seston samples and determining the δ13C values of these biochemicals
directly. Provided the relationship between these values and those of the bulk organism bio-
mass are known and well constrained, the δ13C values of the bulk matter can then be estimated
robustly. Algal pigments and fatty acids (FAs) have been used as chemotaxonomic markers for
freshwater and marine phytoplankton because these biomolecules vary greatly amongst phyto-
plankton classes [10, 25, 26]. Analyses of the δ13C values of chlorophyll-a have been used to
obtain a δ13C value for phytoplankton in mixed seston [27, 28], and the carbon isotope differ-
ences between chlorophyll and whole algal cells appears to be rather constant [28]. However,
the chlorophyll approach cannot distinguish different phytoplankton taxa, which is often
important for consumers like zooplankton (e.g., Eudiaptomus) which are known to feed selec-
tively [12]. Potentially more useful would be compound-specific carbon isotope analyses of the
δ13C values of molecules such as FAs, and especially phospholipid fatty acids (PLFAs) [29, 30],
several of which can be used as diagnostic biomarkers for specific algae and bacteria taxa. Car-
bon isotopes of FA biomarkers have been used in a variety of ecological studies [20, 30, 31, 32,
33, 34, 35]. However, the δ13C PLFA approach could be used even more effectively for δ13C
determination of distinct bacteria, phytoplankton and terrestrial plants if data for δ13C differ-
ence between individual PLFA and bulk cell material of bacteria or phytoplankton were better
known. At present such differences have only been reported for saturated FAs [36, 37] and not
from specific FA biomarkers, and only for a few phytoplankton taxa.

The δ13C of bulk biomass is the sum of different carbon containing organic molecules [36]:

d13Cbiomass ¼ XCNAd
13CNA þ XCProtd

13CProt þ XCSaccd
13CSacc þ XCLipd

13CLip ð1Þ

where XC is mole fraction of carbon and subscripts NA, Prot, Sacc and Lip refer to nucleic
acids, proteins, saccharides and lipids, respectively. Autotrophs synthesize these carbon con-
taining biomolecules from CO2 via different enzymatic pathways which generates δ 13C differ-
ences between bulk tissue and biomolecules [36, 38].

In order to use cellular fatty acids for δ13C determination of bulk tissue, we studied the
integrity and stability of the δ 13C values of lipids amongst different freshwater algae and bacte-
ria under culture conditions similar to those commonly found in boreal lakes in the summer.
Here we present new data for δ13C differences between bulk cell biomass and total lipids, phos-
pholipids and FAs for 22 phytoplankton strains (including 4 cyanobacteria), 5 non-photo-
trophic bacterial species, and 3 terrestrial plants. We also discuss whether and how lipids and
FAs can be used as a tool to infer the bulk δ13C values of phytoplankton, bacteria and terrestrial
matter.

Materials and Methods

Phytoplankton and bacteria culturing
We cultured phytoplankton and bacteria representing a wide range of phylogenetic and func-
tional groups. Table 1 lists the different strains cultured with information about their source,
and the culture media used. Some strains were cultured independently during different years to
evaluate the repeatability of the δ13C difference within a taxon under similar conditions. The
selected phytoplankton represent eukaryotic algae and cyanobacteria typical of freshwater
lakes. The strains were grown either at 20°C or at 18°C with a light:dark-cycle of 16L:8D or
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Table 1. Culture conditions used for growth of phytoplankton, and bacteria, and details of terrestrial material analysed. Phytoplankton and bacteria
strains used for this study were obtained from different culture collections and universities. They were cultured using optimal media for each strain. Phyto-
plankton cultures were maintained under either a 14:10 or 16:8 h light:dark cycle. Temperature of all phytoplankton cultures was 18−20°C (average±SD) and
bacteria 23−30°C (average±SD). Terrestrial matter includes finely ground particles of leaves from one grass (Phragmites) and two tree (Betula and Alnus)
taxa. Due to the high number of strains we were not able to perform all analysis from all cultured strains. UWCC: Algal and Fungal Culture Collection of Uni-
versity of Washington, Seattle, Washington, USA; Peltomaa: Lammi Biological Station, University of Helsinki, Finland; CCAP: Culture Collection of Algae and
Protozoa, Ambleside, Cumbria, UK; Gilbert: Dartmouth College, New Hampshire, USA; NIVA: Norwegian Institute for Water Research, Oslo, Norway; UTEX:
University of Texas Culture Collection, University of Texas at Austin, Texas, USA; CPCC: Canadian Phycological Culture Centre, University of Waterloo,
Ontario, Canada; CCMP: National Center for Marine Algae and Microbiota, Bigelow Laboratory for Ocean Sciences, Maine, USA; Carolina: Carolina Biologi-
cal Supply Company, Burlington, North Carolina, USA. CFA = compound-specific SIA, TLS = lipid stable isotope, PLS = phospholipid stable isotope, C% =
carbon content (%), TL% = lipid content (%) and PL% = phospholipid content (%).

Species Strain
number

Collection Place Cultured Media Light
cycle

Temperature
(°C)

Analysis

Phytoplankton

Chlorophyceae (Green algae)

Chlamydomonas reinhardtii 1 UWCC1 Universtity of
Washington

L16 (Lindström 1983) 14:10 18±1 CFA, C%

Selenastrum capricornutum 2 UWCC1 Universtity of
Washington

L16 (Lindström 1983) 14:10 18±1 CFA, C%

Scenedesmus gracilis 3 University of
Basel

Universtity of
Jyväskylä

WC (Guillard and
Lorenzen 1972,
Guillard 1975)

14:10 20±1 CFA, PLS, C
%, PL%

Monoraphidium griffithii 4 NIVA-CHL8 Universtity of
Jyväskylä

WC (Guillard and
Lorenzen 1972,
Guillard 1975)

14:10 20±1 PLS, C%, PL
%

Euglenophyceae (Euglenoids)

Euglena gracilis 5 CCAP3 1224/
5Z

University of
Helsinki

16:8 20±1 CFA, C%

Chrysophyceae (Golden algae)

Mallomonas caudata 6 CCAP3 929/8 University of
Helsinki

WC (Guillard and
Lorenzen 1972,
Guillard 1975)

16:8 20±1 CFA, TLS, C
%, TL%

Synura sp. 7 SCCAP K-1875 University of
Helsinki

WC (Guillard and
Lorenzen 1972,
Guillard 1975)

16:8 20±1 CFA, C%

Raphidophyceae (Raphidophyte
algae)

Gonyostomum semen 8 GSB 02**/
04***

University of
Washington

L16 (Lindström 1983) 14:10 18±1 CFA, C%

Cryptophyceae (Cryptomonads)

Cryptomonas sp. 9 SCCAP K-1876 University of
Helsinki

AF6 (Watanabe et al.
2000)

16:8 20±1 CFA, C%

Cryptomonas erosa 10 Gilbert4, U.S.A.
*

Universtity of
Ottago

16:8 20±1 TLS, PLS, C
%, TL%, PL%

Crytomonas ozolinii 11 UTEX6 LB
2782

University of
Washington

L16 (Lindström 1983) 14:10 18±1 CFA, TLS, C
%, TL%

Rhodomonas minuta 12 CPCC7 344 University of
Washington

L16 (Lindström 1983) 14:10 18±1 CFA

Rhodomonas lacustris 13 NIVA5 8/82 University of
Washington

L16 (Lindström 1983) 14:10 18±1 TLS, PLS, C
%, TL%, PL%

Bacillariophyceae (Diatoms)

Fragilaria crotonensis 14 UTEX6 LB
FD56

Universtity of
Washington

Diatom medium
(Beakes et al. 1986)

14:10 18±1 CFA, C%

Cyclotella meneghiniana 15 PAE Lab,
Belgium

Universtity of
Washington

Diatom medium
(Beakes et al. 1986)

14:10 18±1 CFA, C%

Navicula pellicosa 16 UTEX6 B664 Universtity of
Washington

Diatom medium
(Beakes et al. 1986)

14:10 18±1 TLS, PLS, C
%, TL%, PL%

(Continued)
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Table 1. (Continued)

Species Strain
number

Collection Place Cultured Media Light
cycle

Temperature
(°C)

Analysis

Diatoma tenuis 17 CPCC 62 University of
Jyväskylä

Chu-10 14:10 20±1 TLS, C%, TL
%

Dinophyceae (Dinoflagellates)

Peridinium cintum 18 SCCAP K-1721 University of
Jyväskylä

WC + Se (Guillard and
Lorenzen 1972,
Guillard 1975)

14:10 20±1 TLS, PLS, C
%, TL%, PL%

Cyanophyceae (Cyanobacteria)

Synechococcus elongatus 19 UTEX LB 563 University of
Washington

L16 (Lindström 1983) 14:10 18±1 CFA,TLS,
PLS, C%, TL
%, PL%

Microcystis aeruginosa 20 UTEX LB 2063 University of
Washington

L16 (Lindström 1983) 14:10 18±1 CFA,

Limnothrix planctonica 21 NIVA-CYA 107 Universtity of
Jyväskylä

WC (Guillard and
Lorenzen 1972,
Guillard 1975)

14:10 20±1 TLS, PLS, C
%, TL%, PL%

Pseudanabaena limnetica 22 NIVA 276/11 Universtity of
Jyväskylä

WC (Guillard and
Lorenzen 1972,
Guillard 1975)

14:10 20±1 TLS, PLS, C
%, TL%, PL%

Terrestrial matter

Pragmites australis 23 University of
Eastern Finland

CFA,TLS,
PLS, C%, TL
%, PL%

Alnus rubra 24 University of
Washington

CFA,TLS,
PLS, C%, TL
%, PL%

Betula nana 25 University of
Jyväskylä

CFA,TLS,
PLS, C%, TL
%, PL%

Heterotrophic bacteria (Gram+,
Actinobacteria)

Actinobacterium Candidatus
Rhodoluna limnophila

26 MWH-VicMua1 University of
Innsbruck

NSY medium (Hahn
et al. 2004)

24±1 CFA,TLS,
PLS, C%, TL
%, PL%

Heterotrophic bacteria (Gram-, Proteobacteria,
Betaproteobacteria)

Betaproteobacterium
Polynucleobacter necessarius
ssp. asymbioticus

27 MWH-Mekk-D6 University of
Innsbruck

NSY medium (Hahn
et al. 2004)

24±1 CFA,TLS,
PLS, C%, TL
%, PL%

Autotrophic green sulfur bacteria (Phylum Chlorobi)

Chlorobium phaerobacteroidetes 28 DSM 267 DSMZ CFA, C%

Methane oxidizing bacteria (Type I, Proteobacteria, Gammaproteobacteria)

Methylobacter tundripaludum 29 SV96T University of
Jyväskylä

M2 medium (DSMZ
medium 921)

23±1 CFA, C%

Methylomonas methanica 30 LW13 University of
Washington

NMS (Whittenbury,
Philips & Wilkinson,
1970)

30±1 CFA, C%

Methane oxidizing bacteria (Type II, Proteobacteria, Gammaproteobacteria)

Methylosinus trichosporium 31 OB3b University of
Jyväskylä

NMS (Whittenbury,
Philips & Wilkinson,
1970)

30±1 CFA, C%

doi:10.1371/journal.pone.0133974.t001
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14L:10D and in growth media specific for the strains (Table 1). We used plastic or glass vials
with volume> 200 mL. Depending on the cell density, 0.5–3 mL of the phytoplankton stock
was inoculated per 100 mL of fresh culture media every two weeks. The condition of the cells
was examined under a microscope and samples for phytoplankton analysis were harvested in
the late phase of exponential growth, usually 2–3 weeks after the inoculation.

The two heterotrophic bacterial strains studied are archetypal lake bacteria; Actinobacter-
ium Candidatus Rhodoluna limnophila MWH-VicMua1 [39] and Betaproteobacterium Poly-
nucleobacter necessarius ssp. asymbioticusMWH-Mekk-D6 [40] grown in liquid NSY medium
[41] on a rotary shaker at room temperature. Methane-oxidizing bacteria (MOB) type IMethy-
lomonas methanica (LW13) and MOB type IIMethylosinus trichosporium (OB3b) were cul-
tured using nitrate mineral salts medium (NMS; 30 mL) [42] under a methane and air gas
phase (50:50 v/v) and incubated at 30°C for 2 days. The purity of these cultures was checked
using solid NMS medium supplemented with 10% LB Broth Miller medium (Luria-Bertani,
Difco). MOB type IMethylobacter tundripaludum SV96T [43] was cultured on M2 medium
(Deutsche Sammlung von Mikroorganismen und Zellkulturen, DSMZ; medium 921, pH 6.8,
+23°C, 120 rpm) with KNO3 as a nitrogen source. The biomass of green sulphur bacterium
Chlorobium phaeobacteroides DSM 267 (Pfennig 1968, emend. Imhoff 2003) was obtained
from the DSMZ (Braunschweig, Germany).

Terrestrial Carbon Sources
Fallen leaves of dwarf birch (Betula nana) from Kilpisjärvi (Finland) were ground to fine parti-
cles using a Retch ZM 100 GWB ultra centrifugal mill, and leaves of the common reed (Phrag-
mites australis) from Joensuu (Finland) were ground using a Fritsch Planetary Mono Mill
Pulverisette. Additionally, we used red alder (Alnus rubra) organic matter generated by milling
and sieving senesced leaves from Seattle (U.S.A., [13]).

Stable isotope analyses of bulk biomass
Freeze-dried, homogenized phytoplankton, bacteria and terrestrial matter were weighed (0.6–
1.5 mg) in tin cups for δ13C analyses, which were carried out on a Carlo-Erba Flash 1112 series
Element Analyzer connected to a Thermo Finnigan Delta Plus Advantage Isotope Ratio Mass
Spectrometry (IRMS) at the University of Jyväskylä, Finland. Each sample was run in duplicate
and compared to the NBS-22 standard using fish muscle and birch as a laboratory-working
standard. The precision of the δ13C determination (standard deviation of replicate standards)
was 0.2‰ for all samples.

Fatty acid analyses
Lipids were extracted with chloroform:methanol:water (4:2:1) from freeze-dried phytoplank-
ton, bacteria and terrestrial matter samples (1–4 mg). Sonication (10 min) was used to enhance
lipid extraction, and samples were centrifuged to facilitate phase separation, after which the
chloroform phase was transferred to new tubes. Chloroform was evaporated under a N2 gas
stream and the remaining lipids were dissolved in toluene. In addition to the total lipid frac-
tion, the phospholipid polar lipid fraction was also obtained via solid phase extraction using sil-
ica cartridges (500 mg, Agilent). The cartridges were dehydrated with methanol and
preconditioned with chloroform; the sample was introduced in chloroform and then eluted
with 10 ml chloroform and 10 ml acetone. The polar lipid fraction was eluted with 10 ml of
methanol and evaporated to dryness.

Methanolic H2SO4 (1% v/v) was added to produce FA methyl esters, and samples were
transmethylated in a water bath at 50°C overnight. FA methyl esters were extracted twice with
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n-hexane, and excess n-hexane was evaporated under N2. The samples were stored at -20°C
until analysis.

Fatty acid methyl esters were analyzed using a gas chromatograph (Shimadzu Ultra)
equipped with a mass detector (GC-MS) at the University of Jyväskylä (Finland). An Agilent
DB-23 column (30 m x 0.25 mm x 0.15 µm) was used with the following temperature program:
60°C for 1.5 min, then the temperature was increased at 10°C min-1 to 100°C, followed by
2°C min-1 to 140°C, and 1°C min-1 to 180°C and finally heated at 2°C min-1 to 210°C and held
for 6 min. Helium gas was used as a carrier gas with an average velocity of 34 cm sec-1. Identifi-
cation of fatty acids was based on retention times of standards and mass spectra, and we used
specific ions as reference ions for identification of each fatty acid methyl ester. The location of
the double bond of MUFA (monounsaturated fatty acids) was verified with dimethyl disul-
phide (DMDS) adducts [44]. For quantification we used a characteristic mass ion ratio (m/z)
for each fatty acid group. Fatty acid concentrations were calculated using calibration curves
based on known standard solutions of a FAME standard mixture. The Pearson correlation
coefficient was>0.99 for each individual FA calibration curve. Full description of the method
can be found elsewhere [45].

Stable isotope analyses of total lipids and phospholipids
The total lipid and phospholipid contents of bacteria, phytoplankton and terrestrial matter
were measured gravimetrically using the following protocol: after chloroform:methanol extrac-
tion, extracts were dried under nitrogen and 500 μL of chloroform was added to vials and
100 μL of each sample with replicateswas transferred to smooth-wall tin capsules. Also, 100 μL
replicates of phospholipids were transferred to smooth-wall tin capsules. Capsules were
allowed to dry overnight under a fume hood, after which the weight of lipid was measured. The
δ13C values of the total lipids and phospholipids were then determined with an EA-IRMS sys-
tem using the method described above. A blank sample of 100 μL of chloroform was used in
stable isotope runs to confirm that all chloroform was evaporated from the capsules.

Gas Chromatography Combustion Stable Isotope Ratio Mass
Spectrometry (GC-C-IRMS)
The δ13C values of FAs were determined using a GC-C TA III connected to an Isotope Ratio
Mass Spectrometer (IRMS, DELTAPLUSXP, Thermo Co.) at the Department of Environmen-
tal Sciences of the University of Eastern Finland, Kuopio, Finland. Fatty acids were separated
using a 30 m DB-23 column (0.25 mm x 0.15 mm) and then oxidized to carbon dioxide in an
oxidation reactor at a temperature of 940°C with the reduction reactor kept at 630°C. The tem-
perature program of the GC column started at 50°C and was kept for 1 minute at 50°C, after
which the temperature was raised by 30°C min-1 to 140°C, and then by 1°C min-1 to 220°C,
and finally by 15°C min-1 to 300°C. The total run time was 94.3 minutes. The injector tempera-
ture was kept at 270°C. The samples were run against an internal standard,>99% hexadeca-
noic acid methyl ester (C17H34O2, Indiana University, Arndt Schimmelmann), with a δ13C
value of -30.74‰. This hexadecanoic acid methyl ester standard was used for drift and linear
correction. For linear correction, four different concentrations of hexadecanoic were run after
which a correction equation was calculated. For the hexadecanoic acid standard the calculated
precision was ± 0.6‰ and the accuracy was ± 0.3‰. To take into account possible δ13C
changes during methylation, precision and accuracy were also calculated using tridecanoic and
nonadecanoic acid methyl ester standards, which were first run with an EA-IRMS (DELTA-
PLUSXP, Thermo Co.) and then calculated for every GC-C-IRMS sample run. The calculated
accuracy of these samples was ± 0.9‰, and the precision was ± 0.6‰. Only peaks with a total
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height of 50 mV at mass 44 were counted. The δ13C value of individual FAs was manually cal-
culated using individual background values.

Data analyses
In total, 67 fatty acids were included in the data set used for detecting differences in FA compo-
sition amongst the phytoplankton, bacteria and terrestrial plants. We used permutational mul-
tivariate analysis of variance (PERMANOVA; [46]) with unrestricted permutation of raw data
and type III sums of squares to test whether these groups had significant differences in their FA
composition, and visualized the results in a principal component analysis (PCA) plot.

We also used PERMANOVA to test for differences in the average δ13C isotopic difference
between FA groups (SAFA, MUFA, ω-3-PUFA, ω-6-PUFA, biomarkers and all fatty acids) and
biomass amongst the phytoplankton classes, and visualized the patterns in a non-metric multi-
dimensional scaling (NMS) plot. All of the multivariate analyses operated on euclidean dis-
tances of untransformed data. Phytoplankton strains 1, 15 and 19 were excluded from the
statistical analyzes of δ13C isotopic difference between FA and bulk biomass because of missing
data for ω6-FA. NMS is a dimension reduction method that preserves the rank-order of the
distances between samples. The stress value is a measure of how well the data can be presented
in fewer dimensions (generally 2–3), with values of ca.<0.15 indicating a useful ordination.
Samples that are close to each other in the NMS ordination have a similar δ13C isotopic differ-
ence between the group of fatty acid and bulk tissue, while samples far apart have large differ-
ences in their δ13C isotopic values.

Isotopic difference (Δ)
The difference between δ13C of lipids/phospholipids/fatty acid and δ13C of bulk biomass s was
calculated using the following equation [47,48]:

d13Clipod=PL=biomarkerFA�biom ¼ d13Clipid=PL=FA=biomarkerFA�d
13Cbiom ð2Þ

where δ13Cbiom is the δ13C value of the bulk biomass, δ13Clipid is the δ
13C value of total lipid

fraction, δ13CPL is the δ
13C value of the phospholipid fraction, 13CFA is the δ13C value of the

individual fatty acids, and δ13Cbiomarker FA is the average of δ13C values of the group character-
istic fatty acids, called here as biomarkers (biomarker FA) (Table 2). The term isotopic differ-
ence (Δ) is used here when discussing the distributions of isotopes between substances.

Results

Carbon and lipid content
The total carbon content of dry weight (DW) was similar (45.2±7.6% of DW) amongst the phy-
toplankton, bacteria and terrestrial matter samples with only a few exceptions (Table 2).
Amongst the phytoplankton, the carbon content was highest in Chlorophyceae (52.4±1.5%)
and lowest in Bacillariophyceae (34.1±1.5%). Heterotrophic bacteria (46.7±1.2%) and terres-
trial tree leaves (46.1±1.6%) had similar carbon content compared to phytoplankton, but lower
carbon content was found for the grass Phragmites (29.6±0.6%) and the bacterium Chlorobium
(28±2.1%). The lipid content was higher amongst the phytoplankton (9.5±4.0%) than bacteria
(7.3±0.8%) or terrestrial plants (3.9±1.7%) (Table 2). However, the total lipid content varied
between the studied organisms being highest in Chlorophyceae (18.9±1.9%) and lowest in
Phragmites (1.7±0.1% of DW). The average phospholipid content was only 1.9±1.3% of DW
amongst all phytoplankton, bacteria and terrestrial matter, but was slightly higher in phyto-
plankton (2.1±1%) and in bacteria (4.0±0.1%) than in terrestrial matter (0.4±0.3%).
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Fatty acid biomarkers
The FA profiles of the phytoplankton, bacteria and terrestrial matter differed greatly (S1
Table). In total, 67 different FAs were determined from the phytoplankton, bacteria, and terres-
trial plants, many of which were characteristic for the different groups. The FA composition
of phytoplankton, bacteria and terrestrial OM differed significantly (Fig 1, PERMANOVA,
F2,25 = 3.680, p< 0.001; pairwise comparisons: t = 1.523–2.202, p< 0.03); and these differences
can also be seen in the PCA, although the two axes captured a relatively low proportion of the
total variance (44.7%), with diatoms and bacteria clustered on the right side of the PCA plot,
and other phytoplankton and terrestrial plants clustered on the left side. From all the FA quan-
tified, we selected characteristic FAs, which were not prevalent or even found in other groups,
as specific biomarker FA (Table 2). Other criteria for these biomarkers were high concentra-
tions and good precision between compound-specific runs. Therefore, some of the biomarkers
selected for compound specific runs differed from traditional biomarkers in marine or freshwa-
ter studies. All of the phytoplankton biomarkers selected belonged to the ω-3 or ω-6 series and
thus were clearly distinct from those of bacteria and terrestrial matter. Distinctions between
phytoplankton were made based on the C16, C18, C20 and C22 polyunsaturated FA (PUFA).

Iso- and anteiso-branched FAs were used as biomarkers for heterotrophic Candidatus Rho-
doluna limnophila (Actinobacteria; Gram+), whereas cy-19:0t was used as a specific FA bio-
marker for Polynucleobacter necessarius ssp. asymbioticus (Betaproteobacteria; Gram-). For
autotrophic green sulphur bacteria (phylum Chlorobi, Chlorobium sp.) we used the FA 15:0
and 15:1ω7c. The FA 16:1ω8c, 16:1ω6c and 16:1ω5t monounsaturated FA characterized the
MOB type I (Gammaproteobacteria), but due to the co-elution of 16:1ω7c and 16:1ω8c only

Fig 1. Fatty acid profiles of phytoplankton, bacteria and terrestrial plants. Principal component analysis
(PCA) of the fatty acid composition of the phytoplankton, bacteria and terrestrial plants. Proportion of
explained variance is in parentheses. PCA was run with all 67 fatty acids, but only eigenvectors > 0.3 are
shown.

doi:10.1371/journal.pone.0133974.g001
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16:1ω6c and 16:1ω5t were used to estimate the δ13C value of MOB. Similarly, 18:1ω6c and
18:1ω5t were used as specific biomarkers for MOB type II (Alphaproteobacteria). Furthermore,
terrestrial plants could be separated from phytoplankton and bacteria through their high con-
tent of long chain saturated FAs (C20-C30), which are ideal biomarkers for terrestrial plants.

The δ13C values of bulk biomass and fatty acids
The bulk δ13C values of the phytoplankton, bacteria and terrestrial matter and the δ13C values
of the individual FA are presented in S2 table. The δ13C values of bulk biomass differed widely
between organisms. The most depleted δ13C value (-69.1±0.1‰) was measured from type II
MOB (Methylosinus trichosporium) and the least depleted δ13C value (-13.6±0.6‰) was mea-
sured from the Chlorophyte Scenedesmus gracilis. The δ13C values of the phytoplankton
showed some differences between different cultures and between taxa grown under the similar
culture conditions (S2 Table); however, this topic is not the focus of this study and these results
were not pursued further.

The δ13C values of all FA within the phytoplankton, bacteria and terrestrial matter varied
within each strain with SD ranging from 0.9 to 5.8‰. The δ13C values of all FA were most con-
sistent (SD<2.2‰) amongst the Chlorophyceae, Chrysophycea, Chlorobium and heterotrophic
bacteria, and least consistent (SD = 4.1–5.8‰) in Euglena, Phragmites,Methylobacter and
Methylosinus. The high deviation in Euglena was related to the number of carbons in the FA,
the most depleted FA having 22 carbon molecules in the FA chain. Amongst all FA of the cul-
tured MOBs, the δ13C values of 16:1ω8c or/and 18:1ω8c were higher and 16:1ω6c/5t lower in
relation to other FA. The δ13C values of biomarker FA were on average more consistent than
other FA and SD values were was less than ±2‰ for all of the studied phytoplankton, bacteria
and terrestrial matter samples.

Isotopic difference of lipids and fatty acids
Carbon (δ13C) isotopic difference between lipid/phospholipid FA and bulk biomass of the cul-
tured phytoplankton, bacteria and terrestrial matter are presented in Table 2, and for phyto-
plankton alone in Fig 2. Total lipid and phospholipid extractions of phytoplankton, bacteria
and terrestrial matter were similarly depleted or enriched in 13C relative to bulk biomass (Pear-
son’s correlation r = 0.967, p<0.01). Additionally, the carbon isotopic differences between lip-
ids and bulk biomass were strongly correlated with the carbon isotopic differences between FA
and bulk biomass (Pearson’s correlation r>0.89, p<0.01, Fig 3). The carbon isotopic difference
between total lipids or phospholipids and bulk biomass was similar (-4.8±0.6‰ and -5.5±0.6‰,
respectively) amongst all phytoplankton classes except Dinophyceae. The carbon isotopic differ-
ence between total lipid or phospholipid fraction and bulk biomass was less pronounced inAlnus
and Betula than in Phragmites. The carbon isotopic difference between lipids and bulk biomass
was close to zero in Betaproteobacteria but was -1.4±0.9‰ in Actinobacteria.

Class identity explained 78% of the variation in the phytoplankton carbon isotopic differ-
ence between FA and the bulk biomass and, and this differed significantly amongst most of the
7 phytoplankton classes (Fig 4, PERMANOVA, F6,14 = 11.281, p< 0.001). Total lipid fatty
acids and the phospholipid fatty acids of phytoplankton, bacteria and terrestrial matter were
similarly depleted or enriched in 13C relative to average biomass, except for Cyanobacteria,
which were systematically more 13C depleted in the PLFA fraction than in the total fraction
(S2 Table). The carbon isotopic difference between FA groups and bulk phytoplankton bio-
mass varied amongst the phytoplankton classes, but also amongst the different FA groups
(Fig 2, Fig 4). The carbon isotopic difference between biomass and FA groups was most stable
in Gonyostomum semen (Raphidophyte), and varied the most in Euglena gracilis. However, the
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carbon isotopic difference between PUFA and bulk phytoplankton biomass had less uncer-
tainty than amongst the other FA groups (e.g., SAFA), apart from the chlorophytes for which
the biomarker FA (16:4ω3) was more 13C-depleted than other PUFA in relation to the average
biomass. Therefore, the δ13C value of phytoplankton within the seston could be calculated

Fig 2. Isotopic difference between fatty acid and bulk biomass of freshwater phytoplankton. The carbon isotopic difference (Δ δ13C, mean ± SD)
between fatty acid groups and bulk biomass varied amongst the phytoplankton classes.

doi:10.1371/journal.pone.0133974.g002

Fig 3. Isotopic difference between lipids or fatty acids and bulk biomass. a) The carbon isotopic difference (Δ δ13C) between total lipids and bulk
biomass is strongly correlated with the isotopic difference between biomarker fatty acids and bulk biomass for phytoplankton, bacteria and terrestrial organic
matter. b) Carbon isotopic difference between total fatty acids and bulk biomass is strongly correlated with that between bulk biomass phospholipid fatty
acids.

doi:10.1371/journal.pone.0133974.g003
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using the δ13C value of any PUFA. This is advantageous because biomarker PUFA make it pos-
sible to distinguish different co-occurring phytoplankton.

The carbon isotopic difference between all FAs or biomarker FAs and bulk biomass,
amongst Chlorophyceae (Selenastrum, Scenedesmus, Chlamydomonas) was -7.0±1.7‰ and
-9.9±1.2‰, respectively, with little difference amongst the different strains tested. Amongst the
Cryptophyceae (Cryptomonas, Rhodomonas), the carbon isotopic difference between all FA, or
biomarker FA and bulk biomass was similar across strains with an average of -5.6±1.9‰ and
-7.0±0.7‰, respectively. Additionally, the carbon isotopic difference between biomarker FA
and bulk biomass was similar between Cryptophyceae and Chrysophyceae (-7.1±0.9‰). How-
ever, the carbon isotopic difference between all FA and bulk biomass was greater among Chry-
sophyceae (-7.8±1.5‰) than Cryptophyceae (-5.9±2.2‰). In the Cyanobacteria, different
biomarker FAs were used forMicrocystis and Synechococcus, as Synechococcus does not contain
18:3ω6, but had a high proportion of 16:1ω7, which is also a common FA in many gram-nega-
tive bacteria and diatoms and thus cannot be used as a specific biomarker for Synechococcus.
The carbon isotopic difference between selected biomarker FA and bulk biomass was similar
(-11.4±0.7‰) for the two differentMicrocystis cultures and Synechococcus. Nevertheless there
was more variation (SD = ±3.7‰) in the isotopic difference between the monounsaturated
FAs and bulk biomass for the cyanobacteria strains. Bacillariophyceae (Fragillaria, Cyclotella)
had the lowest isotopic difference amongst all of the phytoplankton between biomarker FA
(-4.1±0.8‰) or all FA (-4.0±1.7‰) and bulk biomass. There was considerable variation in
the carbon isotopic difference between FAs (-6.0±4.4‰) and bulk biomass of Euglena gracilis,
although variation was less amongst selected biomarker FA (-6.0±0.5‰).

Amongst the heterotrophic bacteria, the carbon isotopic difference between the biomarker
FA and bulk biomass was -2.2±0.1‰ for Actinobacteria, -0.4±0.6‰ for Betaproteobacteria,
and -4.7±0.2‰ for Chlorobium. The carbon isotopic difference between biomarker FA and
bulk biomass was similar forMethylobacter andMethylomonas with an average of -8.0±4.4‰,
but was only -3.4±1.4‰ forMethylosinus type II MOB.

Fig 4. Isotopic distinction between freshwater phytoplankton by their δ13C value of fatty acids. A non-
metric multidimensional scaling (NMS) plot visualizing the amongst-class differences in the phytoplankton
isotopic difference (Δ δ13C) between the bulk biomass and fatty acid groups. Stress for the 2-dimensional
solution was 0.06, and the variables are presented as vectors.

doi:10.1371/journal.pone.0133974.g004
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Discussion
In the virtual absence of direct δ13C values for phytoplankton, bacteria and terrestrial matter
from mixed seston, different indirect methods have been developed to estimate these values.
These indirect methods have either been based on the use of substrates and assumed fraction-
ation factors or have tried to track and separate distinct sources from seston using chlorophyll-
a content or nitrogen and hydrogen isotopes with mixing models [17, 49]. However, all these
methods have serious shortcomings [17]. For example, when using the lake DIC δ13C value
with an assumed photosynthesis fractionation factor to estimate phytoplankton δ13C, there is
high uncertainty in the bulk δ13C estimate due to the fact that DIC δ13C in lake water can vary
widely [18, 19], while the photosynthesis fractionation can also vary between 0 and -20‰ [15,
18]. Biomolecules offer a semi-direct method for determining bulk phytoplankton, bacteria
and terrestrial matter δ13C values because the biomolecules originate from the organisms
themselves and thus only the isotopic carbon difference is required to convert δ13C for the bio-
molecule to bulk cell δ13C values. Here we used lipids and FAs as specific biomarkers to over-
come the shortcomings of existing indirect methods. Our results show the carbon isotopic
carbon difference between lipids and bulk tissue to be rather consistent amongst algae and bac-
teria at the class level. Our semi-direct method has a precision (SD in δ13C values of biomarker
FA) of�±1.4‰ for the carbon isotopic difference between biomarker FAs and bulk biomass
for phytoplankton, bacteria (excluding MOB type I), and terrestrial matter, which would also
be the maximum uncertainty of calculated δ13C values for these specific resources. This uncer-
tainty includes analytical bias and also the impact of culture conditions on the carbon isotopic
difference. This semi-direct method is a substantial improvement over earlier methods.

Fatty acids have been previously shown to be effective taxonomic biomarkers for freshwater
phytoplankton and marine macrophytes [30, 45, 50]. Additionally, a recent study of Galloway
andWinder [51] showed that various environmental factors including nutrients, temperature,
and light also impact FA profiles. However, these authors also found taxonomic affiliation
explained 3–4 times more FA variation than did environmental conditions. Futhermore, dur-
ing summer stratification the surface temperature of boreal and temperate lakes is usually
between 15°C and 25°C, and even a temperature increase from 25 to 35°C had a relatively
small impact on the abundance of ω-3 in Australian microalgae [52], thus our results should be
applicable for lakes in different climate zones.

We selected specific FAs for each taxon so that the δ13C of FAs approach could separate
phytoplankton, bacteria and terrestrial matter from each other at the taxa level in mixed seston
samples. Our examination of 8 phytoplankton classes, 5 non-phototrophic bacterial taxa and 3
terrestrial plants revealed that δ13C difference between the FA and the bulk biomass of the
studied phytoplankton, bacteria and terrestrial plants follows taxonomic categories. Our results
also show a strong correlation between the isotopic difference of total lipids/phospholipids/
fatty acids and bulk biomass on tested cultured conditions. Therefore, total lipid extractions
from seston can be used to derive δ13C values for phytoplankton and bacteria. In phytoplank-
ton, the carbon isotopic difference between the average of all FAs and the bulk biomass appears
to be rather stable within the taxa we studied (Table 2). Additionally, our biomarker FA
approach turned out to be more stable and reliable than the average carbon isotopic differences
for all FAs. In the case of bacteria, the carbon isotopic difference between the average of all FA
and bulk biomass was low for Actinobacteria and Betaproteobacteria, but higher for MOB and
autotrophic green sulphur bacteria.

The calculated isotopic differences between biomarker FAs and bulk biomass were system-
atically similar amongst the phytoplankton species within the same class (SD�±1.2‰), but
varied between classes showing the importance of differentiating phytoplankton at the class
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level when estimating the δ13C value of phytoplankton in ecological studies. Differences
between classes might indicate different biosynthetic pathways and enzymatic processes. The
acetogenic pathway is used for alkyl lipids and n-fatty acids, whereas the mevalonic-acid path-
way is used for isoprenoid lipids (sterols and hopanoids) and the methylerythritol-phophate
pathway for isoprenoid lipids (phytols and hopanoids in cyanobacteria) [38]. In cells that con-
tain a chloroplast, the chloroplast is usually the site for fatty acid synthesis. However, in cells
without chloropasts FA are produced in the cytosol [36]. According to the theoretical calcula-
tions of Hayes [36], a decrease in abundance of lipids relative to carbohydrates may increase
the isotopic difference between biomass and lipids, and thus increase isotopic depletion (e.g.,
from -2‰ to -4‰). However, the impact of cellular composition is estimated to be less than
±1‰ in marine systems, which is less than the uncertainty for our method. Additionally, the
lipid content of our cultured phytoplankton or bacteria did not correlate with the lipid-biomass
isotopic difference.

The clear in lipid isotopic difference between Bacillariophyceae and the other eukaryotes,
emphasizes that each phytoplankton group should have its own lipid isotopic difference value
as well as its own characteristic PLFA. Additionally, even though we were not able to run δ13C
from the FA of Peridinium (Dinophyceae), we found that in this dinoflagellate the carbon iso-
topic difference between total lipids or phospholipids and the bulk biomass is much lower than
any other phytoplankton class. The reason for this is not known, but raises the question of
whether mixotrophy could affect the carbon isotopic difference, as many dinoflagellates,
including Peridinium, are known to be mixotrophic [53]. Nevertheless, even though our cul-
tures were not axenic and contained some bacteria there was little variation between species.
Even if our culture conditions differed from previous studies [36, 37] our FA isotopic difference
factor (-7.0±0.7‰) for Cryptophytes was similar to those from previous studies. Differences
between cyanobacteria and other phytoplankton groups may reflect the fact that the former are
prokaryotic and the latter eukaryotic. However, the values for cyanobacteria also clearly dif-
fered from those for other autotrophs as well as heterotrophic bacteria.

For some organisms (e.g., Actinobacteria) the δ13C values for different FAs were very con-
sistent (SD<±1‰). In general, variation (SD) was usually� ±2.2‰ excluding Euglena, Phrag-
mites,Microcystis, Synechococcus and all MOB cultures (SD< ±4.6‰). Generally it was noted
that the δ13C values of the FA groups were least stable amongst the SAFA, which usually have
more enriched δ13C values and thus should not be used to estimate δ13C of bulk biomass. The
more 13C-enriched values of SAFAs can possibly be explained by the fact that excess carbohy-
drates are converted to palmitic acid (16:0) [54] and then further elongated to stearic acid
(18:0). Therefore the δ13C value of the saturated FA is also impacted by the carbohydrates,
which are generally more 13C-enriched than FA [37]. Furthermore, the most common SAFAs
(i.e., 16:0 and 18:0) are ubiquitous in algae, terrestrial plants and bacteria and therefore have no
utility as biomarkers. We also found that the δ13C values of long chain PUFAs were more 13C-
depleted than other FAs, which might result from the elongation or desaturation processes dur-
ing the synthesis of these FAs.

Our results for the heterotrophic Actinobacteria and Betaproteoabacteria showed a -0.4 and
-2.0‰ carbon isotopic difference between FAs and bulk biomass, respectively. These results
are close to the previous measurements by Blair [55], Hayes [56] and Cowie et al. [57] who
reported -2 to -3‰ lipid fractionation in heterotrophic bacteria. Our repeated measurements
of gram positive Actinobacteria showed low variation in the δ13C values of FAs, which simpli-
fies their recognition in pelagic samples [58]. The calculation of δ13C for heterotrophic gram
negative bacteria is more difficult due to the lack of a specific bacterial biomarker, except in our
study organism Polynucleobacter sp. which contains cyclo-19:0 which had isotopic difference
value of -0.4±0.6‰.
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Those MOB that use the ribulose monophosphate pathway, e.g.Methylomonas,Methylomi-
crobium,Methylobacter, and Methylococcus, are reported to have a similar δ13C isotopic differ-
ence (-2 to -6‰) as heterotrophic bacteria [33,56]. However, in our study this was true for
Methylomonas methanica, but not for the slower growingMethylobacter tundripaludum which
had a higher isotopic difference of -10 to -12‰. Altogether our results suggested a -8.0±4.4‰
isotopic difference between biomarker FAs and bulk biomass for MOB type I. This 4‰ uncer-
tainty is still a large improvement over earlier methods which estimated the δ13C of MOB bio-
mass using the fractionation between the carbon source and biomass (-7.8 to -28.4‰; [24]).
Interestingly, our low isotopic difference (~3‰) forMethylosinus trichosporium contrasts with
earlier studies of MOB type II which proposed a high fractionation between bulk biomass and
FAs because of the serine pathway [33, 59].

We conclude that compound specific analyses of biomarker FAs offer a promising tool for
more precise δ13C determinations for the phytoplankton, bacteria and terrestrial organic mat-
ter embedded within lake seston. Even more accurate results can be obtained through δ13C esti-
mation from specific biomarker FA. The reproducibility of δ13C isotopic difference is high for
phytoplankton and thus the analyses can and should be made at least at the class level. Simi-
larly, the biomarker FA together with the δ13C isotopic difference can be used for heterotrophic
gram positive bacteria, type I and type II MOB and green sulphur bacteria. When compound-
specific stable isotope analyses of specific biomarkers becomes more widely available and
cheaper, it may finally become possible to routinely separate phytoplankton and bacteria from
terrestrial matter and other components of the seston. Such analyses could elevate aquatic food
web studies to a much higher level of resolution.

Conclusion
Stable isotopes are a useful tool for determining consumer diets and this approach has recently
been used to quantify allochthonous and autochthonous subsidies in zooplankton diets [1–6].
Whereas diet stable isotope values can be easily determined in laboratory experiments, various
indirect methods have been used in field studies resulting in great uncertainty in results [17].
Here we established a semi-direct compound specific method for deriving bulk δ13C values for
phytoplankton, terrestrial matter and bacteria by determining lipid and fatty acid δ13C values
and calculating the isotopic difference between lipids/fatty acids and bulk biomass. Our results
showed that when using the δ13C value of fatty acids, the bulk biomass of phytoplankton and
bacteria (excluding MOB) can be calculated with ±1.4‰ precision.
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