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Abstract

Computationally expensive multiobjective optimization problems arise, e.g. in many en-
gineering applications, where several conflicting objectives are to be optimized simultane-
ously while satisfying constraints. In many cases, the lack of explicit mathematical formulas
of the objectives and constraints may necessitate conducting computationally expensive and
time-consuming experiments and/or simulations. As another challenge, these problems may
have either convex or nonconvex or even disconnected Pareto frontier consisting of Pareto
optimal solutions. Because of the existence of many such solutions, typically, a decision
maker is required to select the most preferred one. In order to deal with the high com-
putational cost, surrogate-based methods are commonly used in the literature. This paper
surveys surrogate-based methods proposed in the literature, where the methods are inde-
pendent of the underlying optimization algorithm and mitigate the computational burden to
capture different types of Pareto frontiers. The methods considered are classified, discussed
and then compared. These methods are divided into two frameworks: the sequential and
the adaptive frameworks. Based on the comparison, we recommend the adaptive framework
to tackle the aforementioned challenges.
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1 Introduction
Many practical engineering problems often involve optimizing (either minimizing or max-
imizing) multiple, possibly incommensurable objective functions subject to a feasible set
determined by constraint functions. In such problems known as multiobjective optimization
problems (MOPs), the best solution for an objective function may be the worst solution for
some other objective functions. As a matter of fact, in a solution of an MOP, improvement
in the value of one objective is only possible by allowing impairment in the values of at
least one of the other objectives which is known as the concept of Pareto optimality [1]. A
solution of an MOP satisfying this concept is called a Pareto optimal solution, and the set
of all such solutions is referred to as a Pareto frontier (often also known as a Pareto optimal
set). Mathematically, without any additional information, all Pareto optimal solutions are
equally acceptable solutions of an MOP. It is, however, generally desirable to obtain one
solution to be implemented. Therefore, when solving an MOP, we need a decision maker
(DM) to compare several different solutions or to provide preference information in some
other way and to select the most preferred one. In this survey, we define solving an MOP
in two ways, i.e., finding a representation of the entire Pareto frontier to a DM or obtaining
the most preferred solution based on the preferences of a DM.

In real-world MOPs, the mathematical formulas of objective and constraint functions
could be either computationally expensive to evaluate and/or of a black-box type. For
black-box functions, all that is known about them is the output for a given input. When
dealing with these functions, mathematical properties such as convexity or continuity are
not available. In some problems, objective and constraint functions are evaluated using
real and/or computational experiments such as thermodynamic analysis, structural analy-
sis, computational fluid dynamics (CFD) or reservoir simulation which involve differential
equations to be solved. Numerical techniques such as finite element (FE) and finite difference
methods may be applied to solve these equations. These experiments are time consuming
and such problems are known as computationally expensive (intensive, costly) MOPs. For
example, each objective function evaluation in reservoir simulation problems may take sev-
eral days even after applying various techniques to improve the computational speed [2].
The Pareto frontiers of such problems may be convex, nonconvex or disconnected. How to
most efficiently solve these computationally expensive problems is an open research question
in the literature.

In this paper, we present a survey of methods to handle computationally expensive
MOPs. The focus of this survey is on general methods which are independent of the type of
the optimization algorithms used in them. The basic idea in such methods is to introduce a
computationally less expensive replacement problem known as a surrogate problem. Besides
methods considered here, methods have been developed in the literature where mechanisms
of nature-inspired methods such as evolutionary and particle swarm algorithms are essen-
tial elements of building the surrogates of the methods. See [3, 4, 5] for reviews of such
methods. As said, these methods are not considered here. Surveys on methods to solve
computationally expensive single objective optimization problems utilizing surrogate prob-
lems are given in [6, 7, 8, 9, 10]. In such methods, only one objective function is concerned,
while in multiobjective optimization methods, at least two objectives are considered. In
single objective optimization, comparing two solutions based on the concept of optimality
is possible: the smaller (or larger) the objective function value, the better the solution. In
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multiobjective optimization problems, however, the concept of Pareto optimality is needed.
In the literature, there are scalarization-based methods [11, 44] that transform an MOP into
a single objective optimization problem with respect to the preferences of a DM. Then, the
optimal solution of the single objective optimization problem is considered as a preferred
solution for the decision maker. In this survey, wherever such methods are employed to deal
with computationally expensive MOPs, we discuss them.

As far as we know, this is the first survey which fully concentrates on handling com-
putationally expensive MOPs by general methods as defined above. This survey covers 20
selected papers written in English and published in scientific journals before 2013. Besides
as an overview of the methods available, one can use this survey to find a method applicable
to one’s own problems.

A method where a computationally expensive MOP is handled using a surrogate prob-
lem is here termed a surrogate-based multiobjective optimization method. In what follows,
for the sake of simplicity, such methods are called surrogate-based methods. Handling a
computationally expensive MOP relying on a surrogate problem involves selecting sample
points, building, updating and solving the surrogate problem. Based on when the surrogate
problem is updated, surrogate-based methods are here classified into two frameworks: the
adaptive and the sequential framework. In accordance with when the sample points are
selected to update the surrogate problem, the adaptive framework is divided into types 1
and 2.

The motivation of this survey is to focus on the characteristics of the surrogate-based
methods to solve a computationally expensive MOP and compare these methods in four
aspects: (1) Can the methods deal with general black-box functions where information
regarding mathematical properties of the functions such as convexity or continuity is not
available? (2) Can the methods capture different types of Pareto frontiers? (3) How many
objective and constraint functions as well as decision variables can be handled by the meth-
ods? (4) What is the role of a DM during the solution process? For this comparison, we rely
on the results given by the authors of the papers considered on the employed benchmark
and real-world problems.

In surrogate-based methods, the quality of the Pareto frontier of the surrogate problem
depends on the accuracy of the surrogate problem and the performance of the optimization
algorithm employed to solve this surrogate problem. In the literature [12, 13, 14, 15], several
performance indices for measuring the quality of the Pareto frontier have been proposed.
According to [13], this quality can be assessed based on the number of solutions in the
Pareto frontier of the surrogate measured by e.g., overall non-dominated vector generation,
the distribution and spread of these solutions measured by e.g., 4 index and closeness of
the surrogate’s Pareto frontier to the Pareto frontier of the computationally expensive MOP
measured by e.g., generational distance, inverted generational distance and hyper-volume.
If such information is given in the papers considered, we also mention it.

The rest of this paper is organized as follows. In Section 2, the basic concepts used in
this survey, and a brief discussion on how a surrogate problem can be built, are addressed.
In Section 3, the classification of surrogate-based methods into the sequential and the adap-
tive frameworks is discussed. Details of the sequential framework and the related methods
are discussed in Section 4. Types 1 and 2 of the adaptive framework, and methods belong-
ing to them are discussed in Sections 5 and 6, respectively. There is a method in which
the sequential framework and type 1 of the adaptive framework are hybridized to handle
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computationally expensive MOPs. Therefore, it is discussed in Section 7. In Section 8, the
surrogate-based methods considered in this survey are compared. Future research directions
are also discussed. Finally, conclusions are drawn in Section 9.

2 Concepts

2.1 Definitions and notations

In the following, basic definitions and notations used in this survey are given (mostly from
[1]). Some of these are illustrated in Figure 1. In this paper, we deal with multiobjective
optimization problems of the form

minimize
x∈S

{f1(x), . . . , fk(x)}, (1)

where the set S is called the feasible decision region (set) (often also called the feasible design
space) which is a subset of the decision space Rn. We have k (≥ 2) objective functions
fi : S → R. We denote the vector of objective functions by f(x) = (f1(x), . . . , fk(x))T . An
example of the feasible decision region is S = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . ,m, hj(x) =
0, j = 1, . . . , p}, where gi : Rn → R, i = 1, . . . ,m, and hj : Rn → R, j = 1, . . . , p, are
called constraint functions. A solution x = (x1, . . . , xn)T ∈ Rn is called a decision (variable)
vector, where xi, i = 1, . . . , n, are decision variables. A decision vector x ∈ S satisfying
all the constraint functions is called a feasible decision vector. The image of the feasible
decision region in the objective space Rk is called the feasible objective region (set) (often
also called performance space) denoted by Z(= f(S)). The elements of Z are called feasible
objective vectors denoted by f(x) or z = (z1, . . . , zk)T , where zi = fi(x), i = 1, . . . , k, are
objective (function) values. For the sake of simplicity, we use the term a feasible solution
which refers to either a feasible decision vector or a feasible objective vector. If needed, we
clarify whether a feasible solution belongs to either S or Z.

A feasible solution x∗ ∈ S and the corresponding f(x∗) ∈ Z are said to be weakly Pareto
optimal for problem (1), if there does not exist another feasible solution x ∈ S such that
fi(x) < fi(x

∗) for all i = 1, . . . , k. Correspondingly, they are Pareto optimal for problem
(1), if there does not exist another feasible solution x ∈ S such that fi(x) ≤ fi(x

∗) for all
i = 1, . . . , k, and fj(x) < fj(x

∗) for at least one index j ∈ {1, . . . , k}. Obviously, a Pareto
optimal solution is a weakly Pareto optimal solution. The set of all Pareto optimal solutions
in the objective space is called a Pareto frontier (often referred to as a Pareto optimal set).
We also define a feasible solution xi

e = argminx∈S{fi(x)} for i = 1, . . . , k. The i-th extreme
solution (also called the anchor point [16]) for i = 1, . . . , k, is defined as zi

e = f(xi
e) (see

Figure 1). A hyperplane passing through all extreme solutions is called a utopia hyperplane
[16].

As mentioned earlier, in the process of solving an MOP, a DM may be involved, whose
role is to give preference information, e.g., by comparing the obtained solutions. Based on
the literature [1, 17, 18], (s)he can provide his/her preferences, e.g., in the form of a reference
point z̄ = (z̄1, . . . , z̄k)T where z̄i is an aspiration level consisting of a desirable value for the
i-th objective function. Another approach to elicit information about a DM’s preference

4



x1 

x2 

f1(x) 

f2(x) 

Decision space Objective space 

Feasible decision region S Feasible objective region Z 

Feasible decision vector 
(feasible solution) x 

Extreme solution 𝒛𝑒2 
(anchor point) Pareto optimal solution Pareto frontier 

Feasible objective vector 
(feasible solution) f(x) 

Non-dominated solution 
within the circled solutions 

Utopia hyperplane 

weakly Pareto optimal solution 

Extreme solution 𝒛𝑒1 
(anchor point) 

Figure 1: Some definitions in MOPs

during the solution process is classification, i.e., the DM classifies the objectives into classes
in which the objective function values should be improved, can impair or are satisfactory.
See [1] for further information of the roles of a DM during the solution process.

In the literature, scalarizing an MOP means formulating a single objective optimization
problem such that an optimal solution for the single objective optimization problem is a
(weakly) Pareto optimal solution for the MOP. The following is an example of scalarization.
It involves a so-called achievement scalarizing function [19]:

minimize
x∈S

max
i=1,...,k

[wi(fi(x)− z̄i)] (2)

where wi ≥ 0 for all i = 1, . . . , k, are nonnegative weights, and z̄i for all i = 1, . . . , k, the
aspiration level for the i-th objective function provided by a DM. Different (weakly) Pareto
optimal solutions can be obtained by changing the reference point. Pareto optimal solutions
can be obtained by adding a so-called augmentation term to the objective function of the
problem 2 (see, e.g. [1]).

Let us assume that the set X = {x1, . . . ,xq} is an arbitrary subset of feasible solutions
in S, and F = {f(x1), . . . , f(xq)} the corresponding objective vectors in Z. A solution xi

(or f(xi)) for i = 1, . . . , q, that satisfies the definition of Pareto optimality with respect to
all solutions in X (or F ), is called a non-dominated solution in X (or F ) (see Figure 1). A
Pareto optimal solution is a non-dominated solution, but a non-dominated solution is not
necessarily a Pareto optimal solution. If X = S (or F = Z), then every non-dominated
solution is a Pareto optimal solution and vice versa. Non-dominated solutions for the given
set X can be identified by e.g., the Pareto fitness function [20] defined as:

Gi = 1− max
j∈{1,...,q}\{i}

[min{f̄1(xi)− f̄1(xj), . . . , f̄k(xi)− f̄k(xj)}], (3)

i = 1, . . . , q,
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where Gi denotes the Pareto fitness of the i-th feasible solution xi, and f̄l(x
i) for l = 1, . . . , k,

is the l-th normalized objective function value of the i-th feasible solution, given by:

f̄l(x
i) =

fl(x
i)− fl,min(x)

fl,max(x)− fl,min(x)
, (4)

where fl,max(x) and fl,min(x) represent the maximum and minimum values of the l-th ob-
jective function among all feasible solutions in X, respectively. When the Pareto fitness Gi

is greater than 1, the corresponding feasible solution is a non-dominated solution [21].

2.2 How to build a surrogate problem

As mentioned earlier, the basic idea in a surrogate-based method is to replace a computation-
ally expensive MOP with a computationally less expensive surrogate problem. One approach
to building a surrogate problem is to approximate each computationally expensive function
using metamodeling techniques such as polynomial functions [22], Kriging models [23], radial
basis functions (RBFs) [24], multivariate adaptive regression splines (MARS) [25], neural
networks [26] and support vector regression (SVR) [27]. To approximate a computationally
expensive function, sample points are required. These sample points which are solutions in
the decision space can be selected by sampling techniques such as Latin hypercube sampling
(LHS) [28], central composite design (CCD) [6], orthogonal array sampling (OAS) [6] and
full factorial sampling (FFS) [6]. See [6, 29, 30, 31] and [6, 29, 30, 31, 32, 33, 34, 36, 37] for
surveys of the sampling and metamodeling techniques and their characteristics, respectively.

Once a set of points is sampled, these points are evaluated with the computationally
expensive function for which the metamodel is to be fitted. Sample points can also be
generated by other methods such as a posteriori methods for multiobjective optimization
where a subset of (weakly) Pareto optimal solutions representing the Pareto frontier is
obtained. These methods are surveyed in [1, 38]. The obtained (weakly) Pareto optimal
solutions can be considered as a set of sample points. When a set of points evaluated with
the computationally expensive function is available, a metamodeling technique is employed
to fit a computationally inexpensive function to the sample points known as a surrogate
function (see Figure 2). Once the surrogate functions of all computationally expensive
functions are constructed, a computationally inexpensive MOP known as a surrogate problem
is formulated.
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According to [34], in the context of surrogate-based single objective optimization, we
want to build a surrogate problem to be most accurate in the region of the optimum.
In surrogate-based multiobjective optimization, the accuracy of the surrogate problem in
the region of the Pareto optimal solutions is desirable. Since each individual surrogate
function may not be accurate in such a region, the Pareto frontier of the surrogate problem
may not coincide with the Pareto frontier of the original, computationally expensive MOP.
The accuracy of the surrogate functions can be evaluated with statistical measurements
such as root mean square error (RMSE) [39], predicted error sum of squares (PRESS) [40],
cross-validation method [30] and R2 [32]. See [9, 30, 32, 37] for surveys of commonly used
criteria to evaluate the accuracy. In this survey, we study how the Pareto frontier of the
surrogate problem represents the Pareto frontier of the computationally expensive MOP by
the methods proposed in the papers considered.

Beside approximating each computationally expensive function, other approaches can
be used to build a surrogate of a computationally expensive MOP, e.g., by approximating
directly the Pareto frontier. These other approaches apply particular techniques which are
discussed in the subsequent sections.

In this survey, when summarizing the methods considered we sometimes call a computa-
tionally expensive MOP as an original problem. The objective and/or constraint functions
in the original and the surrogate problems are referred to as computationally expensive and
surrogate functions, respectively. These functions involve models based on which functions
are formed. For the sake of simplicity, we assume that all functions involved in the original
problem are computationally expensive. A set of non-dominated (or Pareto optimal) solu-
tions of the surrogate problem which may be evaluated with the computationally expensive
functions is considered as the approximated Pareto frontier of the original problem. We
also use the terms benchmark and application problems. The first one refers to the available
test problems in the literature, e.g. ZDT problems [41], used to compare the performance
of different methods. Application problems refer to the problems arising from industries
which are dealt with in the papers considered in this survey. If the information regarding
the characteristics of the Pareto frontiers of the benchmark and application problems like
convexity, nonconvexity or discontinuity as well as performance indices to assess the quality
of the surrogate’s Pareto frontier is provided by the authors of the surveyed papers, we also
mention it. There are methods that have been developed to solve some particular applica-
tion problems. While discussing such methods, first these problems are mentioned and then
the summary of the methods is discussed. One should notice that the benchmark problems
are not computationally expensive and, thus, their validity for properly testing the methods
surveyed is questionable.

3 Classification of surrogate-based methods
After reviewing the journal papers considered in this survey, we have found out that two
frameworks are employed to handle computationally expensive MOPs utilizing surrogates.
Nevertheless, there is no unified description of the main steps involved in surrogate-based
methods (see, e.g. [29, 30, 34, 42, 43]). Therefore, we consider two general frameworks,
i.e., sequential and adaptive frameworks to classify surrogate-based methods, inspired by
the classification in [30, 42], and based on when to update the surrogate problem. The key
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point in the sequential framework is to build an accurate surrogate problem and then to solve
it. In this framework, the approximated Pareto frontier (i.e., a set of non-dominated (or
Pareto optimal) solutions of the surrogate problem) is supposed to be as close as possible
to the Pareto frontier of the original problem. Details of the sequential framework and
methods belonging to this framework are discussed in Section 4. In the adaptive framework,
however, the key point is first to construct an initial surrogate problem. As mentioned
earlier, since the initial surrogate problem may not be accurate over the region of the Pareto
optimal solutions of the original problem, the approximated Pareto frontier (obtained by
solving the initial surrogate problem) may not represent the exact Pareto frontier of the
original problem. Hence, by updating and solving the surrogate problem iteratively, the
approximated Pareto frontier is supposed to coincide with the Pareto frontier of the original
problem.

In order to update the surrogate problem, new sample points (which are also termed
infill points in [31]) are required. These sample points can be selected from either a set of
non-dominated (or Pareto optimal) solutions of the surrogate problem or unexplored regions
in the decision and/or objective space. Based on when the sample points are selected to
update the surrogate problem, inspired by [42], we divide the adaptive framework into types
1 and 2. Details of the adaptive framework and methods in this framework are discussed
in Sections 5 and 6, respectively. In addition, there is a method in which the sequential
framework and type 1 of the adaptive framework are hybridized to handle computationally
expensive MOPs. This method is discussed in Section 7 after describing both frameworks.
All the methods considered in this survey are then compared in Section 8.

To solve a surrogate problem in both frameworks, two types of methods can be employed,
i.e., sampling-based and optimization-based ones. In a sampling-based method, a surrogate
problem is solved with an emphasis on a sampling process and without using any optimiza-
tion algorithms. In contrast, in an optimization-based method, a surrogate problem is solved
utilizing an optimization algorithm. If the aim of solving an MOP is to find the most pre-
ferred solution for a DM, depending on the way of giving the preference information, one can
employ an interactive method. An overview of such methods has been presented in [1, 44].
Several different solutions generated during the solution process can also be visualized for
the DM to compare them. See [45] for a review of visualization techniques.

4 Sequential framework

4.1 General flowchart

Constructing an accurate surrogate problem is the key point in the sequential framework.
The flowchart in Figure 3 presents the main steps of methods belonging to this framework.
As can be seen in this figure, in Step 1 of a method in this framework, initial points are sam-
pled, and then evaluated with the computationally expensive functions in Step 2. After this,
function values at the sample points are available. A surrogate problem is then constructed
in Step 3. Evaluating the accuracy of the surrogate problem in Step 4 (highlighted in Fig-
ure 3) is critical in this framework. As mentioned earlier, the accuracy can be evaluated
by statistical measurements such as the cross-validation method, root mean square error
(RMSE), predicted error sum of squares (PRESS) and R2. If the surrogate problem is not
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sufficiently accurate, it is updated by selecting new sample points in Step 5, and Steps 2-4
are then repeated. If the sample points are selected only once to build a surrogate problem,
this is considered as a special case termed as one-stage sampling. In this case, Step 5 is not
conducted. After constructing the accurate enough surrogate problem, it is solved in Step
6 with a DM, if available. As mentioned earlier, the aim of solving the surrogate problem
can be to represent non-dominated (or Pareto optimal) solutions to a DM or to provide
the most preferred solution based on the preferences of a DM. The solution(s) obtained by
solving the surrogate problem are typically evaluated with the computationally expensive
functions in Step 7. As a result, the outcome of Step 7 is considered as the approximated
Pareto frontier of the original problem and/or the most preferred solution for a DM in Step
8. This outcome can also be visualized using an appropriate visualization technique. In this
framework, depending on the accuracy of the surrogate problem, the approximated Pareto
frontier is as close as possible to the Pareto frontier of the original problem. In Subsection
4.2, we summarize the methods belonging to the sequential framework. These methods are
then compared in Section 8.

Step 1: Input: Initial sample points 

Step 2: Evaluate function 
values of the sample points 

Step 3: Build/update the 
 surrogate problem 

Original problem 
(computationally 

expensive functions) 

Step 5: Select new sample points 

Step 4: 
Accuracy is 

met? 

Step 8: Output: Represent the 
approximated Pareto frontier 
and/or the most preferred solution 
for a DM  

Call 

Function 
values 

Step 6: Solve the surrogate 
problem (with a DM) 

No 

Yes 

Step 7: Evaluate function values 
of the solutions obtained 

Call 

Function 
values 

Figure 3: Flowchart of the sequential framework

4.2 Summary of methods in the sequential framework

In [46], an optimization-based method using polynomial functions is introduced. In Step 1 of
this method, initial points are sampled with OAS and then evaluated with the computation-
ally expensive functions in Step 2. Each computationally expensive function is approximated
by a quadratic or a cubic polynomial function in Step 3, and the surrogate problem is built.
The accuracy of the surrogate problem is evaluated with a cross-validation method in Step
4. If needed, new points are sampled in Step 5 to improve the accuracy, and Steps 2-4
are repeated. After constructing the accurate enough surrogate problem, highly correlated
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objectives among the surrogate functions may be dropped or a representative objective can
be used for all the correlated objectives (applying principal component analysis) [47]. In
Step 6, the surrogate problem is then solved using a population-based evolutionary multi-
objective optimization method called NSGA-II [48]. The non-dominated solutions obtained
are then locally improved by the ε-constraint method [49]. In this paper, the authors do
not discuss evaluating the non-dominated solutions obtained in Step 6 with the computa-
tionally expensive functions in Step 7. In Step 8, for an MOP with less than three objective
functions, the approximated Pareto frontier is visualized by fitting a polynomial function to
the non-dominated solutions in the objective space. This function is accurate in a limited
region of the objective space which is identified by convex hulls.

In [46], besides solving a computationally expensive MOP, the authors discuss the prob-
lem of Pareto drift (losing some non-dominated solutions in each generation of the dominance
based Multiobjective Evolutionary Algorithms (MOEAs)). They propose an implementa-
tion of an archiving strategy to preserve all good solutions. Regarding the issue of capturing
a nonconvex Pareto frontier, the authors mention that the number of convex hulls is im-
portant. In this method, a metamodeling technique is applied for two reasons, i.e., to build
the accurate enough surrogate problem, and to visualize the approximated Pareto frontier.
Finding the correlated functions along with a representation of an objective as a function
of the remaining objectives to visualize the approximated Pareto frontier can be a barrier
of using this method for MOPs with more than three objective functions. The efficiency
of this method was evaluated on an MOP of liquid-rocket single element injector with four
black-box objective functions and four decision variables requiring CFD simulations. In
this problem, the number of objective functions was reduced to three by applying principal
component analysis. The quality of the approximated Pareto frontier was assessed based on
the average and maximum distances between the non-dominated solutions in two successive
iterations of the optimization algorithm employed. This application problem was also stud-
ied in [29], where a discussion on the global sensitivity analysis of the objective functions
and the decision variables was considered.

In the sequential framework, there are two sampling-based methods which we discuss in
the following paragraphs. In [50], a sampling-based method called efficient Pareto frontier
exploration is introduced in which metamodeling techniques are employed to approximate
individual computationally expensive objective and/or constraint functions. In efficient
Pareto frontier exploration, first the DM provides desirable ranges for the decision variables.
Then, making use of two sampling techniques (i.e., CCD and LHS), two sets of initial points
are sampled within these ranges in the decision space in Step 1 and evaluated with the
computationally expensive functions in Step 2. For each set, the computationally expensive
functions are approximated with a second-order polynomial function and a Kriging model
in Step 3 to compare the results, and the surrogate problems are constructed. In Step 4,
using a cross-validation method, the accuracies of the surrogates are evaluated. If needed,
new sample points are selected in Step 5, and Steps 2-4 are repeated. In order to solve the
surrogate problems and to represent the corresponding non-dominated solutions in Step 6, a
considerable number of points is sampled and evaluated with the surrogate functions. Then
non-dominated solutions of the surrogate problems among the evaluated points are identified
using the Pareto fitness function (3). These non-dominated solutions are then evaluated in
Step 7 with the computationally expensive functions. The sets of evaluated non-dominated
solutions are considered as the approximated Pareto frontier of the original problem in Step
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8.
The efficient Pareto frontier exploration method was applied in designing a piezoelectric

bimorph actuator with two black-box objective functions and five decision variables. The
function evaluations involved applying the FE method using Abaqus [51]. The performance
of the efficient Pareto frontier exploration method was also evaluated on two benchmark
problems with convex, nonconvex and disconnected Pareto frontiers. The authors show
that the surrogate problem constructed based on initial sample points of LHS and the
Kriging model is more accurate than the other surrogates for these problems. The results
demonstrated that, while this method can capture a nonconvex and disconnected Pareto
frontier, it performs better for an MOP with a convex Pareto frontier. Since in this method,
a large number of sample points is required to solve the surrogate problem, it cannot be
applied to handle high-dimensional MOPs in the decision and objective spaces. The role of
a DM is also to provide desirable ranges for the decision variables which does not match
with the definition of a DM’s role in the literature as defined in Subsection 2.1.

In most of the methods discussed so far, surrogates of the computationally expensive
functions are built using metamodeling techniques to approximate computationally expen-
sive functions. In contrast, [52] proposes a sampling-based method called Feasible Goals
Method (FGM) to approximate the set Z (the feasible objective region) by means of a col-
lection of boxes in the objective space and without using any metamodeling technique. In
order to approximate the set Z with a finite number of boxes, it is assumed to be bounded.
In Step 1 of this method, evenly distributed initial points are sampled randomly, and then
evaluated with the computationally expensive functions in Step 2. In Step 3, a box in the
neighborhood of each point in the objective space is formed. The collection of the boxes is
considered as the surrogate of the feasible objective region. Utilizing the Chebyshev metric,
the authors introduce a probability function to evaluate the accuracy of the surrogate in
Step 4. To do this, a set of new evenly distributed points is sampled randomly in Step 5,
and evaluated with the computationally expensive functions in Step 2. If the probability
function value is less than a predetermined threshold, the farthest point is selected. Then,
a new box in the neighborhood of the selected point is formed to update the surrogate in
Step 3, and Steps 2-4 are repeated. Otherwise, that is, the surrogate is sufficiently accurate,
the surrogate problem is considered in Step 6 to select the most preferred solution in the
objective space by the DM. In this step, the collection of boxes is visually shown to a DM.
Then, the DM identifies a preferred solution. The center of the related box is computed
along with the associated decision vector value in Step 7, and displayed to the DM in Step
8. FGM was applied to a set of application problems such as pollution monitoring station
problem with five nonlinear objective functions and two decision variables. The feasible
objective region of this problem was nonconvex. This method can handle black-box func-
tions, since in practice, the boundedness of Z can be assumed by considering boundaries for
the decision variables. Developments of FGM to approximate both convex and nonconvex
Pareto frontiers are discussed in [53].

So far, we have discussed methods involving all steps in the sequential framework. In
the following paragraphs, we discuss methods involving one-stage sampling. As mentioned
earlier, in one-stage sampling, sample points are selected only once. In [54], an optimization-
based method is developed which is applied to solve an MOP of crash safety design of vehicles
with three black-box objective functions and five decision variables. LS-DYNA [55] is em-
ployed as a simulation software. In this method, initial points are sampled with an extension

11



of LHS called optimal Latin hypercube sampling (OLHS) in Step 1 and then evaluated with
the computationally expensive functions involving the FE method in Step 2. After that,
stepwise regression and a quadratic polynomial function are applied to approximate each
computationally expensive function and, then the surrogate problem is built in Step 3. The
accuracy of this problem is evaluated based on R2 in Step 4. Non-dominated solutions of
the surrogate problem are obtained using NSGA-II in Step 6. This set of non-dominated
solutions is considered as the approximated Pareto frontier of the original problem in Step
8. This set is not evaluated with the computationally expensive functions in Step 7.

In [56], an optimization-based method is developed, and is applied to solve a biobjective
optimization problem of designing a bus body with 13 constraints and 31 decision variables.
The objective and constraint functions are evaluated with the FE method using simulation
software called MSC Nastran [57] and LS-DYNA. In Step 1 of this method, initial points
are sampled with OLHS and evaluated with the computationally expensive functions in
Step 2. Then, stepwise regression is applied to approximate each objective and constraint
function making use of a hybrid of a linear polynomial function and a Gaussian RBF, and
the surrogate problem is constructed in Step 3. The accuracy of the surrogate problem
is evaluated based on PRESS in Step 4. The surrogate problem is then solved in Step 6.
The non-dominated solutions obtained are evaluated with the computationally expensive
functions in Step 7. The set of evaluated solutions is considered as the approximated Pareto
frontier of the original problem in Step 8. In this paper, two evolutionary algorithms, i.e.,
NSGA-II and AMISS-MOP [58] were employed to solve the surrogate problem. The authors
concluded that the spread of non-dominated solutions obtained by NSGA-II was wider than
AMIS-MOP, but the convergence of AMISS-MOP was better than NSGA-II.

In [59] steps similar to those of [54] and [56] are followed to solve a design optimiza-
tion problem of a solar thermal building system with two black-box objective functions and
two decision variables involving the Polysun simulation software [60]. In this method, the
sample points are selected only once with the Poisson disk node distribution [61]. Each
computationally expensive function is approximated with a cubic RBF. The biobjective
surrogate problem is solved with NSGA-II. In this paper, the accuracies of the surrogate
problems constructed with four sampling techniques, i.e., Cartesian distribution [62], Hexag-
onal distribution [63], uniform distributions [64] and Poisson disk node distribution were also
compared. To assess the quality of the approximated Pareto front, the original problem was
also solved. Then, the average Euclidean distance between the Pareto frontiers of the origi-
nal problem and the surrogates was considered. The authors concluded that the surrogate
problem constructed with the Poisson disk node distribution sample points and a cubic RBF
outperformed the others in terms of the accuracy.

In the optimization-based methods discussed so far, a surrogate problem is constructed
using metamodeling techniques to approximate each computationally expensive function. In
[65], however, an optimization-based method called PAINT is proposed to approximate the
Pareto frontier of a computationally expensive MOP directly without utilizing any meta-
modeling techniques. In this method, a linear mixed integer multiobjective optimization
problem is introduced as a surrogate of the original problem. In PAINT, initial sample
points are generated by an a posteriori method in Steps 1 and 2. These sample points are
Pareto optimal solutions of the original problem. Then, a PAINT interpolation between the
sample points is created in Step 3 and the surrogate problem is introduced. The accuracy of
the surrogate problem is high, if a large number of well-distributed Pareto optimal solutions
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is used as sample points. This problem can be solved with any interactive multiobjective
optimization method, and a preferred approximated solution for a DM is obtained in Step 6.
After finding this solution, it is then projected to the Pareto frontier of the original problem
with the achievement scalarizing function (2) in Steps 7 and 8.

In PAINT, only the objective space is considered. Although the authors claim that
PAINT can represent a nonconvex Pareto frontier, it cannot capture a disconnected Pareto
frontier. In addition, the approximation of the Pareto frontier loses the connection to the
decision space when solving the surrogate problem. However, after projecting the preferred
approximated solution to the Pareto frontier, the closest Pareto optimal solution both in
the decision and objective spaces is obtained. The efficiency of this method was evaluated
on a benchmark problem with a convex Pareto frontier. This method was also applied in
approximating the Pareto frontier of an MOP of wastewater treatment planning with three
black-box objective functions described in [66]. The number of constraint functions and
decision variables was not mentioned.

All the described methods are compared in Section 8. Table 1 summarizes the charac-
teristics of the methods in the sequential framework with respect to sampling techniques,
metamodeling techniques, number of objective and constraint functions as well as decision
variables in the considered benchmark and application problems, whether the methods in-
volve one-stage sampling and whether they are optimization- or sampling-based. In this
table, for every method, the most challenging MOP that was considered as a benchmark or
an application problem is mentioned. Since the number of equality constraints in all prob-
lems are zero (p = 0), it is not mentioned in the table. As can be seen, most of the problems
considered are limited to two or three objective functions except [52] with five objective
functions. As mentioned earlier, since the method in [16] hybridizes both the sequential and
the adaptive frameworks, we discuss it in Section 7.
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Figure 4: Flowchart of the adaptive framework: type 1

5 Adaptive framework: type 1

5.1 General flowchart

As mentioned in Section 3, another class of surrogate-based methods is the adaptive frame-
work. In this framework, as can be seen in the flowcharts in Figures 4 and 6, in comparison
with the sequential framework (Figure 3), after sampling, first an initial surrogate problem
is constructed. As mentioned earlier, the approximated Pareto frontier (obtained by solving
the initial surrogate problem) may not represent the exact Pareto frontier of the original
problem. Therefore, the surrogate problem is iteratively solved and updated by selecting
new sample points such that, the approximated Pareto frontier is supposed to coincide with
the Pareto frontier of the original problem. As described in Section 3, the new sample
points can be selected from either a set of non-dominated (or Pareto optimal) solutions of
the surrogate problem or unexplored regions in the decision and/or objective space. Based
on when new sample points are employed to update the surrogate problem, we divide this
framework into types 1 and 2. In type 1, the sample points generated before assessing a
stopping criterion (Step 4 highlighted in Figure 4) are utilized to update the surrogate prob-
lem. In type 2, not only the sample points generated before assessing the stopping criterion
(Step 4 highlighted in Figure 6) are considered, but also new sample points are generated
and selected after assessing the stopping criterion (Step 6 highlighted in Figure 6) to update
the surrogate problem. In this section, we discuss type 1 of the adaptive framework. Type
2 is considered in Section 6.

The flowchart in Figure 4 shows the main steps of methods belonging to type 1 of the
adaptive framework. As can be seen, in the first step of type 1, initial points are sampled,
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and then evaluated with the computationally expensive functions in Step 2. After this,
function values of the sample points are available. In Step 3, the initial surrogate problem
is constructed. In order to capture the Pareto frontier or to provide the most preferred
solution based on the preferences of a DM, if available, new sample points are generated in
Step 4. These points can be obtained by solving the surrogate problem and/or sampling
unexplored regions in the decision and/or objective space depending on a sampling process.
In accordance with a method-dependent criterion, a subset of points among the generated
points is selected. In Step 5, assessing a stopping criterion may require to evaluate the
selected sample points with the computationally expensive functions and/or to update the
surrogate problem. There are different stopping criteria which are discussed in more detail
in the following subsection. If a stopping criterion is met, the set of non-dominated (or
Pareto optimal) solutions or the most preferred solution of the last surrogate problem which
may have been evaluated with the computationally expensive functions are considered as
the approximated Pareto frontier of the original problem or the most preferred solution for
a DM in Step 6. These solutions can also be visualized using an appropriate visualization
technique. Otherwise, that is, when a stopping criterion is not met, if the surrogate problem
has already been updated, Steps 4-5 are repeated. If not, first the surrogate problem is
updated with the evaluated sample points and then Steps 4-5 are repeated.

In Subsection 5.2, we describe how the above steps are conducted by methods in type 1
of the adaptive framework. We compare these methods in Section 8.

5.2 Summary of methods in the adaptive framework:

type 1

In [67], first an optimization-based method called adaptive approximation in single objective
optimization (AASO) is developed, and then it is extended to adaptive approximation in
multiobjective optimization (AAMO). AAMO is the oldest method in the literature devel-
oped based on the adaptive framework. In Step 1 of AAMO, initial points are sampled
with any sampling technique (e.g., LHS) and evaluated with the computationally expensive
functions in Step 2. Then in Step 3, each computationally expensive function is approxi-
mated with a Kriging model, and an initial surrogate problem is built. In Step 4, a set of
non-dominated solutions of the surrogate problem is obtained by Multiobjective Genetic Al-
gorithm (MOGA) [68] and denoted by P0. Among these points, using the maximin distance
design criterion [69], a number of isolated points is selected. In Step 5, these points are eval-
uated with the computationally expensive functions, and utilized to update the surrogate
problem. The solutions in the set P0 obtained in Step 4 are again evaluated with the up-
dated surrogate problem. A set of non-dominated solutions among these evaluated points is
identified and denoted by Pnew. If the difference between the number of the non-dominated
solutions in P0 and in Pnew is less than a predetermined threshold, the set Pnew is considered
as the approximated Pareto frontier in Step 6. Otherwise, the set Pnew is inserted into an
initial population of MOGA and the method continues with Step 4.

Similar to [46], the authors in [67] also discuss the difficulties of GA-based algorithms
in identifying extreme solutions in the Pareto frontier. To overcome these difficulties, they
propose a method called combined AASO-AAMO in which the AASO and AAMO methods
are combined. In combined AASO-AAMO, after obtaining a set of non-dominated solutions
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of the surrogate problem in Step 4, all objective functions in the surrogate problem are
individually minimized. The obtained optimal solutions along with the set Pnew are inserted
into an initial population of MOGA. The combined AASO-AAMO method was tested on
solving an I-beam design problem with two nonlinear objective functions, one nonlinear
constraint function and four decision variables. The quality of the approximated Pareto
frontier was assessed based on closeness of it to the Pareto frontier of the application problem.
While this method can handle black-box functions, the application of combined AASO-
AAMO to a practical optimization problem involving actual computationally expensive or
noisy simulations is mentioned as a future research direction.

In [70], an optimization-based method is developed which is applied to solve an MOP
of injection-molding process with five black-box objective functions and three decision vari-
ables. To do this, initial points are sampled with LHS in Step 1 and evaluated with the
computationally expensive functions in Step 2 involving the Moldex3D simulation software
[71]. Each computationally expensive function is approximated in Step 3 with a Kriging
model, and the initial surrogate problem is built. In Step 4, new sample points are selected
randomly. The objective function values of these points are evaluated with the surrogate
functions. The variances of the objective function values of these points are also calculated
with the Kriging model. For each point, a vector consisting of these variances is considered.
These vectors are sorted using the non-dominated sorting method [48] (variances are max-
imized). Then, a subset of points with the largest variances (at the first front) is selected
randomly. In Step 5, the selected points are evaluated with the computationally expensive
functions and added to the sample points set. Then, the surrogate problem is updated. In
other methods in type 1 of the adaptive framework, the surrogate problem is solved in Step
4. In this method, however, the surrogate problem is solved using NSGA-II in Step 5 to
assess the stopping criterion.

The authors in [70] employ the concept of user-defined indifference threshold [12] as the
stopping criterion in Step 5. This threshold refers to the change in each objective function
value within which the non-dominated solutions are indifferent to each other. Applying
the user-defined indifference thresholds, the objective space is discretized into a collection
of hyperboxes. Using the method of [12], if the distances between the boundaries of the
hyperboxes are less than the predetermined threshold, the method stops. The set of non-
dominated solutions of the last surrogate problem is considered as the approximated Pareto
frontier of the original problem in Step 6. Otherwise, the method repeats Steps 4-5. Ac-
cording to the authors, the quality of the approximated Pareto frontier was assessed based
on the average error percentage between the non-dominated solutions obtained by solving
the surrogate and the original problems.

In [72], an optimization-based method is developed to represent an approximation of the
Pareto frontier as well as to identify the most preferred solution for a DM with respect to
a reference point consisting of desirable aspiration levels for all objectives. In this method,
initial points are sampled randomly in Step 1, and evaluated with the computationally ex-
pensive functions in Step 2. Then, each computationally expensive function is approximated
with an extension of SVR called µ − ν−SVR, and the surrogate problem is built in Step
3. This surrogate problem is then solved with an evolutionary multiobjective optimization
method called SPEA2 [73] in Step 4. In order to approximate well a neighborhood of the
closest Pareto optimal solution to the reference point provided by the DM, among the gener-
ated non-dominated solutions, the point with the minimum value of an order-approximating
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Figure 5: Extended approximated Pareto front

achievement function [1] is selected. Moreover, to update the surrogate problem, another
point is selected based on a specific parameter associated with the µ− ν−SVR. In Step 5, if
the number of computationally expensive function evaluations is less than a predetermined
threshold, the selected points are evaluated with the computationally expensive functions.
The surrogate problem is then updated, and the method returns to Step 4. Otherwise, the
set of non-dominated solutions of the last surrogate problem is considered as the approxi-
mated Pareto frontier of the original problem. The point with the minimum value of the
order-approximating achievement function is also considered as the most preferred solution
for the DM. The efficiency of this method was evaluated on a benchmark problem with a
nonconvex and disconnected Pareto frontier, and on a welded beam design problem with two
nonlinear objective functions, four nonlinear constraint functions and four decision variables.

In [74], an optimization-based method is developed to handle noisy black-box single
objective optimization problems. This method is then extended to handle computationally
expensive MOPs. The authors call both methods qualSolve. They claim that it is the first
method to handle a computationally expensive noisy MOP. However, the performance of the
qualSolve method for MOPs is only evaluated with deterministic benchmark problems. Here,
we focus on qualSolve for MOPs. In Step 1 of qualSolve, initial points are sampled with LHS
and evaluated with the computationally expensive functions in Step 2. Each computationally
expensive function is approximated with a thin plate spline RBF in Step 3, and a surrogate
problem is built. In Step 4, the surrogate problem is solved by a multiobjective optimization
method to represent its Pareto frontier. Using this Pareto frontier, the extended Pareto
frontier, i.e., the set of weakly Pareto optimal solutions in Zs + Rk is represented where Zs

is the feasible objective region of the surrogate problem. Figure 5 which is a modification of
a figure in [74] shows the extended Pareto frontier in which s1 and s2 are the approximated
objective functions.

To update the surrogate problem, in every iteration of the method, a sample point is
selected from either the Pareto frontier of the surrogate problem or in an area near the
extended Pareto frontier of the surrogate problem. This point can be a Pareto optimal
solution, or a feasible solution in the objective space, near the extended Pareto frontier of
the current surrogate problem. To select the new sample point, the authors introduce a
quality function based on two functions, i.e., a distance and a weight function. The distance
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function is defined as the smallest Euclidean distance between a feasible solution in the
objective space and a solution on the extended Pareto frontier of the current surrogate
problem. The weight function controls the procedure of selecting new sample points from
either the Pareto frontier or an area near the extended Pareto frontier in the feasible objective
region of the current surrogate problem. The quality function is formulated with respect to
the weight and distance functions. The point that maximizes the quality function is used
to update the surrogate problem. In Step 5, if the number of computationally expensive
function evaluations is less than a predetermined threshold, the selected point is evaluated
with the computationally expensive functions. The surrogate problem is then updated, and
the method returns to Step 4. Otherwise, the Pareto frontier of the last surrogate problem
is considered as the approximated Pareto frontier of the original problem in Step 6.

The performance of this method was evaluated on a set of benchmark problems such as
Kursawe [75] and OKA1 [76]. The authors concluded that qualSolve performed well on the
Kursawe problem with a nonconvex and disconnected Pareto frontier. It, however, failed
to represent the convex Pareto frontier of OKA1, since OKA1 has a very strong nonlinear
behavior close to the minimum solution to one of the objective functions. They note that
qualSolve was developed in a project on simulation-based multiobjective optimization of the
Volvo D5 diesel engine with three black-box objective functions and five decision variables
[77] involving CFD simulation using Star-CD [78]. The authors consider the execution
time, as a main downside of the qualSolve method for MOPs. Because the quality function
includes an integral equation, the evaluation time of this function rises exponentially with
the dimension of the decision space. They mention that qualSolve is suitable for problems
with less than six decision variables. They also discuss that representing the extended Pareto
frontier can be hard for three or more objective functions.

In [79], an optimization-based method called approximate normal constraint (ANC) is
introduced in which the idea of employing the normal constraint method [80, 81] is followed.
In the ANC method, a neural network with a single hidden layer is used to handle compu-
tationally expensive MOPs. To do this, first one of the computationally expensive objective
functions is optimized to calculate the corresponding extreme solution. The authors, how-
ever, do not provide any guideline to choose this function. In a neighborhood of the extreme
solution obtained in the decision space, initial points are sampled randomly in Step 1 and
evaluated with the computationally expensive functions in Step 2. These points are used
to train a neural network to approximate each computationally expensive function, and to
build a surrogate problem in Step 3. In Step 4, the other extreme solutions are calculated by
minimizing the corresponding objective functions in the surrogate problem, and a utopia hy-
perplane is constructed. A set of evenly distributed points is then generated on the utopia
hyperplane. For each point on the hyperplane, the surrogate problem is scalarized using
the scalarizing technique introduced in the normal constraint method [80, 81], and a single
objective optimization problem is formulated.

The authors claim that by solving the single objective optimization problem, a non-
dominated solution in an area near the Pareto frontier of the original problem can be ob-
tained. Therefore, a set of non-dominated solutions can be generated near the Pareto frontier
of the original problem by forming and solving the single objective optimization problem for
each point on the hyperplane. In Step 5, these non-dominated solutions are evaluated with
the computationally expensive functions. To keep the number of the training sample points
constant, the points that are the farthest from the current utopia hyperplane are removed.
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The evaluated points are added to the training set, and the surrogate problem is updated. If
the number of computationally expensive function evaluations is less than a threshold, the
method returns to Step 4. Otherwise, the set of non-dominated solutions obtained near the
Pareto frontier of the original problem is considered as the approximated Pareto frontier.

The efficiency of the ANC method was evaluated on benchmark problems with nonconvex
Pareto frontiers. The efficiency was also assessed on an MOP of ground vehicle suspension
design with five black-box objective functions and eleven decision variables. The authors
compared the efficiency of the ANC method with MOGA and a method called Parameter
Space Investigation (PSI) described in [1] and references therein. They provided remarks to
show that the ANC outperformed the others. The authors claim that ANC can be used to
refine the solutions obtained with other methods which approximate the Pareto frontier at
once (i.e., genetic algorithms [68] and quasi Monte Carlo method [82]).

In [43], an optimization-based method is developed to handle computationally expensive
black-box MOPs. In this method, the aim is to find the most preferred solution for a
DM rather than to represent an approximation of the entire Pareto frontier. The authors
introduce two sampling functions. They describe how to capture disconnected parts of
the Pareto frontier by generating a set of sample points as evenly distributed as possible
using the first sampling function. The second sampling function provides the most preferred
solution for a DM. In addition, to approximate computationally expensive functions with
RBF, they utilize a new estimation proposed in [83] for the width parameter of a Gaussian
kernel in RBF based on the number of and distances between sample points. In [43], a
set of initial points is sampled with LHS in Step 1 and evaluated with the computationally
expensive functions in Step 2. The width parameter is also calculated based on the number
of sample points. In Step 3, each computationally expensive function is approximated with
the Gaussian RBF, and a surrogate problem is built. The multiobjective surrogate problem
is scalarized with the weighted Lp-norm function known e.g., in [1] as the method of weighted
metrics in which a DM provides his/her preferences by the weights. In Step 4, this scalarized
problem is optimized with the differential evolution algorithm [84]. This optimal solution is
added to the sample points set and the width parameter is recalculated.

Introducing the first sampling function based on the current sample points, a set of sam-
ple points as evenly distributed as possible is obtained. These points are added to the current
sample points. Then, the second sampling function is introduced and optimized based on the
updated sample points and a modification of the Pareto fitness function (3). Both functions
are approximated using a Gaussian RBF. In Step 5, if a stopping criterion based on the
selected points is not met, the optimal solution obtained with the second sampling function
is added to the current sample point. The updated sample points are evaluated with the
computationally expensive functions. The width parameter is recalculated, and the surro-
gate problem is updated. The method then returns to Step 4. Otherwise, the last optimal
solution of the second sampling function is considered as the most preferred solution for the
DM.

Regarding the new estimated width parameter, the authors mention that this estimation
has been obtained with a heuristic approach. Therefore, the validity of the new parameter is
not proved mathematically. They also propose that this parameter can be used for SVR. The
performance of this method was evaluated on a set of benchmark problems with nonconvex
and disconnected Pareto frontiers. The efficiency of the method was also evaluated on an
MOP of variable blank holder force trajectory in deep drawing with two nonlinear objective
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functions and six decision variables. The numerical simulation was done by LS-DYNA.
In the optimization-based methods discussed so far in this subsection, a surrogate prob-

lem is constructed with metamodeling techniques to approximate each computationally ex-
pensive function. In [85], however, an interactive optimization-based method called Pareto
Navigation method is introduced for convex problems to find the most preferred solution
with respect to a DM’s preference without using any metamodeling techniques, and is ap-
plied in intensity-modulated radiation therapy planning. Based on a figure in this paper,
we conclude that the application problem has six objective functions. Moreover, there is no
information regarding the number of constraint functions and the decision variables. In this
method, a set of initial sample points is generated with an a posteriori method (Steps 1 and
2). Then, in Step 3, convex hulls of these points are constructed in both the decision and
objective spaces. The set of sample points is shown to the DM who must select one of them.
The DM provides his/her preference information by specifying an aspiration level called a
goal for one of the objective functions and upper bounds for the other objective functions.
With respect to the given preference information, a convex scalarization problem introduced
in [86] (based on a reference point) is formulated as the surrogate problem in Step 3, which
is optimized in Step 4. The optimal solution of this problem is a convex combination of the
Pareto optimal solutions in the sample points set in the decision and objective spaces corre-
sponding to the given preferences. In Step 5, if the DM desires, this point can be evaluated
with the computationally expensive functions. If the DM is not satisfied with this point, it
can be added to the sample points set, and the surrogate problem is updated. Then, the
method returns to Step 4. Otherwise, the obtained point is considered as the most preferred
solution for the DM in Step 7.

In [87], an interactive method called Pareto navigator is introduced. In this method,
conducting Steps 1 and 2, i.e., constructing a convex hull, and showing the set of sample
points to the DM are similar to the Pareto navigation method [85]. In Step 3 of the Pareto
navigator method, however, the DM provides the preference information in a form of a
classification or a reference point consisting of desirable values for all objectives. The main
difference between this method and the method in [85] is that in the latter, only one solution
with respect to the given preference is generated whereas, in this method, multiple solutions
corresponding to the given preference are available when moving from the current solution
towards the reference point specified.

To be more specific, a search direction with respect to the preference information is
formed. Then, based on the convex hull, the single objective optimization problem (2),
where the reference point is parametrically moved along the search direction, is formulated as
the surrogate problem. If the DM desires, (s)he can control the speed of movement. Pareto
optimal solutions to the surrogate problem are generated by solving the single objective
optimization problem for different reference points until the DM wants to stop. If the DM
wishes, the corresponding Pareto optimal solution of any point generated is obtained by
projecting this point to the Pareto frontier of the original problem using the achievement
scalarization function (2) in Step 5. If the DM is satisfied with the projected Pareto optimal
solution, it is considered as the most preferred solution for the DM in Step 7. Otherwise, the
DM can change the preference information, that is, the direction of movement and/or the
starting solution. If desired, it is possible to add the projected Pareto optimal solution to the
sample points set in order to improve the accuracy of the surrogate problem. Then, Steps
4-5 are repeated. The performance of this method was evaluated on a simple problem with
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three nonlinear objective functions, three linear constraint functions, two decision variables
and a simple nonconvex Pareto frontier. In the Pareto navigation method [85], the objective
functions and the Pareto frontier are assumed to be convex, whereas in Pareto navigator
[87], a simple nonconvex Pareto frontier can be captured by the convex hull. Capturing a
complex nonconvex Pareto frontier is mentioned as a future research direction in [87]. While
the Pareto navigation method keeps the connection to the decision space, Pareto navigator
loses the connection with the decision space when navigating in the objective space. In the
Pareto navigation method [85], convexity of the objective functions is assumed, which is an
obstacle to deal with black-box functions. However, the method in [87] can handle black-box
functions.

In [21], a sampling-based method called Pareto Set Pursuing (PSP) is introduced, which
is an extension of the Mode Pursuing Sampling (MPS) method proposed in [88]. In Step 1 of
PSP, initial points are sampled randomly. These points are evaluated with the computation-
ally expensive functions in Step 2, and are saved in an archive based on their Pareto fitness
values. In Step 3 of the method, two metamodeling techniques (a quadratic polynomial
function and a linear RBF) are used to approximate the computationally expensive func-
tions. Using the two surrogate problems, the authors introduce two functions to guide the
sampling process, and devise two criteria for selecting between them during the sampling in
Step 4. The first function selects sample points towards the extremes of the Pareto frontier,
and the second one towards the entire Pareto frontier of the original problem. These sample
points are then combined with the sample points in the archive and a subset of these is
selected with the help of the second function. The selected points are evaluated in Step 5
with the computationally expensive functions and added to the archive. The authors have
two criteria to stop the sampling process. If the stopping criteria are not met, the surrogate
problem is updated. Then, the method returns to Step 4. Otherwise, the non-dominated so-
lutions in the archive are considered as the approximated Pareto frontier. The authors claim
that PSP can capture a nonconvex and disconnected Pareto frontier. Similar to [46, 67], the
authors also discuss the difficulties of GA-based algorithms in identifying extreme solutions
in the Pareto frontier. They claim that the first function can overcome this difficulty. As far
as the accuracy of the surrogate problem is concerned, the authors claim that the accuracy
of their method is not critical when solving an MOP. The efficiency of PSP was evaluated
on solving an MOP of fuel cell component design with one nonlinear objective function, one
black-box objective function, one black-box constraint function and three decision variables.

In [89], the PSP method [21] is modified for mixed integer MOPs as the MV-PSP method.
In the MV-PSP method, the basic idea of employing a surrogate problem is similar to the
PSP method. To deal with discrete variables, however, random sampling in PSP would
most likely generate infeasible discrete sample points [89]. In order to rectify this issue, the
authors use a method to sample feasible discrete points during the sampling process. The
performance of the MV-PSP method was evaluated on solving an MOP of welded beam
design with two nonlinear objective functions, four nonlinear constraint functions and four
decision variables. In this paper, the performance of the MV-PSP method was also compared
with the performance of six evolutionary multiobjective optimization algorithms, i.e., AbYSS
[90], CellDE [91], FastPGA [92], NSGA-II [48], OMOPSO [93] and SPEA2 [94]. These
evolutionary algorithms, however, have not been developed to deal with computationally
expensive MOPs. To compare these methods, a set of benchmark problems with convex,
nonconvex and disconnected Pareto frontiers was considered. Since the basic idea of MV-
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Figure 6: Flowchart of the adaptive framework: type 2

PSP and PSP is the same, for MOPs with real-valuated and discrete decision variables,
PSP and MV-PSP were applied, respectively. In this comparison, spread, generational
distance, inverted generational distance, hyper-volume, generalized spread and percentage of
the Pareto optimal solutions were considered as the performance indices to assess the quality
of the solutions obtained by these methods. Based on this comparison, the authors claim
to be relatively safe to mention that with a limited number of computationally expensive
function evaluations, the PSP and MV-PSP methods outperform the compared methods for
MOPs with two to three objective functions and less than eight decision variables. They
observe that when the dimensionality increases to ten decision variables, PSP does not offer
any superiority over the others. Handling this weakness is mentioned as a future research
direction in [89].

To summarize, in this subsection, we have surveyed methods in type 1 of the adaptive
framework. In the following section, methods in type 2 of this framework are considered.
After surveying all methods in the adaptive framework, we summarize characteristics of
them in Table 2 of Subsection 6.2.

6 Adaptive framework: type 2

6.1 General flowchart

The flowchart in Figure 6 outlines the main steps of methods belonging to type 2 of the
adaptive framework. As mentioned earlier, the initial approximated Pareto frontier may not
represent the exact Pareto frontier of the original problem. Thus, by solving and updating
the surrogate problem iteratively, the approximated Pareto frontier is supposed to coincide
with the Pareto frontier of the original problem. To do this, sampling new points is required
iteratively. In type 1, sample points selected before assessing a stopping criterion are utilized
to update the surrogate problem (Step 4 highlighted in Figure 4). In type 2, not only
the sample points generated before assessing the stopping criterion are considered (Step
4 highlighted in Figure 6), but also new points are sampled after assessing the stopping
criterion in other regions of the decision and/or objective space to update the surrogate
problem (Step 6 highlighted in Figure 6).
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As can be seen in the flowchart in Figure 6, a set of initial points is sampled in Step 1,
and then evaluated with the computationally expensive functions in Step 2. After this, the
function values of the sample points are available. In Step 3, an initial surrogate problem is
built. In Step 4, a set of new sample points is generated relying on the surrogate problem.
Similar to type 1, these points can be generated and selected e.g., by solving the surrogate
problem with a DM if available. In Step 5, a stopping criterion is checked, which may require
to evaluate the selected sample points with the computationally expensive functions. If the
criterion is not met, based on a method-dependent criterion, a subset of non-dominated
solutions generated in Step 4, which may have been evaluated with the computationally
expensive functions, is selected. Then, in Step 6, a set of new points in other regions of
the decision and/or objective space is sampled. These points along with the sample points
selected in Step 5 are considered, and Steps 2-5 are then repeated. Otherwise, the set of non-
dominated (or Pareto optimal) solutions or the most preferred solution of the last surrogate
problem, which may have been evaluated with the computationally expensive functions, is
considered as either the approximated Pareto frontier of the original problem or the most
preferred solution for a DM, respectively. These solutions can also be visualized by an
appropriate visualization technique. In Subsection 6.2, we summarize the methods in type 2
of the adaptive framework. These methods are then compared with other methods in type
1 of the adaptive framework in Section 8.

6.2 Summary of methods in the adaptive framework:

type 2

In [42], an optimization-based method is introduced using a quadratic polynomial function.
The authors claim that this method is highly efficient and is less dependent on the accuracy
of the surrogate problem. From this point of view, they claim that the framework of their
method is a new framework which covers surrogate-based methods, and consider it as a
novel multiobjective optimization method based on an approximation model management
technique. Type 2 of the adaptive framework has been inspired by this paper. In [95] also
an optimization-based method similar to the idea in [42] is introduced. Without loss of
generality, we summarize these methods together. In both methods, the sample points are
selected within a trust region in the decision space. To do this, an initial trust region is
considered in the decision space by initializing its parameters, i.e., trust region center, radius
and bounds, threshold and control constants to update the trust region. The authors also
define a set of equations to update the trust region in each iteration of the methods.

After initializing the trust region, in [42, 95] initial points are sampled using OLHS and
LHS, respectively, within the trust region in Step 1, and evaluated with the computationally
expensive functions in Step 2. Each computationally expensive function is approximated in
Step 3 with a quadratic polynomial function and a Gaussian RBF in [42] and [95], respec-
tively, and the initial surrogate problem is constructed. In Step 4, non-dominated solutions
of these surrogate problems are obtained by solving them using µ-MOGA [96]. Then, in
both methods, the set Pa consisting of a subset of evenly distributed non-dominated so-
lutions in the decision space from the obtained non-dominated solutions is considered. In
Step 5, the points in Pa are evaluated with the computationally expensive functions. The
non-dominated solutions of the evaluated points are stored in an archive Pe. In order to
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check a stopping criterion, the set Pt = Pa ∩ Pe is considered. Then, a ratio between the
number of points in Pt and Pa is calculated. Based on this ratio, the predefined equations
and the constants, the trust region is updated by adjusting its parameters.

In [42], if the radius of the updated trust region is less than a given threshold, or the
number of iterations of solving and updating the surrogate problem is more than a given
threshold, the method stops. In [95], other criteria based on the calculated ratio or the
accuracy of the surrogate problem are also checked. If either of the stopping criteria is met,
in both methods, the set Pe is considered as the approximated Pareto frontier of the original
problem in Step 7. Otherwise, in both methods, a set of new points is sampled with LHS
in Step 6. These points and those points from Pe that fall into the updated trust region are
considered. In [42], Steps 2-5 are then repeated. In [95], a subset of those points from Pe

that are in the updated trust region is first removed with respect to a distance coefficient.
This action avoids singularity in the matrix of updating the RBF. The remaining points
along with the new sample points are selected, and Steps 2-5 are repeated.

These methods can capture nonconvex and disconnected Pareto frontiers. The authors
in [42] discuss that capturing such Pareto frontiers depends on the initial trust region radius.
The efficiency of the method in [42] was evaluated on a black-box biobjective optimization
problem of variable binder force in a car sheet metal forming with three decision variables.
LS-DYNA was employed as a simulator. As far as the method in [95] is concerned, the
distribution of the non-dominated solutions relies on the quality of µ-MOGA. The distance
coefficient affects the performance of this method. Based on the obtained results using the
benchmark problems, the authors suggest the best value for the distance coefficient. The
performance of this method was evaluated on a structure optimization problem of a vehicle
door with two black-box objective functions, two black-box constraint functions and five
decision variables involving the FE method. In [42], closeness of the Pareto frontiers of the
surrogate and benchmark problems was considered to assess the quality. In [95], the quality
was assessed based on the spread of non-dominated solutions obtained by the surrogate
problem and closeness of them to the Pareto frontier of the benchmark problems.

All the methods described in Sections 5 and 6 are compared in Section 8. Table 2 sum-
marizes the characteristics of the methods belonging to both types 1 and 2 in the adaptive
framework with respect to sampling techniques, metamodeling techniques, number of ob-
jective and constraint functions as well as decision variables in the considered benchmark
and application problems, and whether the methods are optimization- or sampling-based.
In this table, for every method, the most challenging MOP that was considered as a bench-
mark or an application problem is mentioned. Since the number of equality constraints in
all problems are zero (p = 0), it is not mentioned in the table. As can be seen, most of
the problems consist of two or three objective functions except [70, 79] with five objective
functions.
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7 A hybrid method
In [16], a two-stage optimization-based method called Pseudo Response Surface (PRS) which
hybridizes both the sequential framework and type 1 of the adaptive framework is introduced.
Since discussion on the frameworks utilized in Sections 4 and 5 are necessary to describe this
method, we discuss it in this section. This method is compared with other methods in Section
8. PRS consists of two stages where handling computationally expensive constraint functions
is not addressed. In the first stage, a surrogate problem is built and updated iteratively in
the same way in type 1 of the adaptive framework to generate a set of as evenly distributed
feasible solutions as possible near the Pareto frontier of the original problem. This set is
utilized to build another surrogate problem in stage two with the sequential framework. The
second surrogate problem is accurate near the Pareto frontier of the original problem and
intentionally inaccurate in other regions of the objective space. By formulating and solving
the second surrogate problem, an approximation of the Pareto frontier is represented.

In stage one of PRS, extreme solutions are calculated. The extreme solutions, the utopia
hyperplane and normal constraint method [80, 81] are employed to generate feasible solutions
near the Pareto frontier of the original problem. In Step 1 of type 1 of the adaptive framework
utilized in this stage, a set of evenly distributed points including the extreme solutions is
generated on the utopia hyperplane. Near every point on the hyperplane, a set of new
points is sampled with FFS or LHS. These points are evaluated with the computationally
expensive functions in Step 2. The individual computationally expensive functions are then
approximated with a multiquadric RBF in Step 3, and an initial surrogate problem is built.
In Step 4, the surrogate problem is scalarized using the normal constraint method introduced
in [80, 81]. A feasible solution near the Pareto frontier is generated by solving this scalarized
problem. In Step 5, this point is evaluated with the computationally expensive functions,
and replaced with the oldest sample point in the sample points set. The surrogate problem
is then updated. Steps 4 and 5 are repeated until all points on the hyperplane are used.
As a result, in the first stage, a set of evenly distributed feasible solutions near the Pareto
frontier is obtained in Step 6. These points are considered as the evaluated initial sample
points for Steps 1 and 2 of the sequential framework used in stage two.

As mentioned earlier, the second stage of PRS concentrates on building an accurate
surrogate problem near the Pareto frontier and is intentionally inaccurate in other regions
of the objective space. To do this, based on the dimensionality of the decision space, a
number of new sample points is selected far from the sample points set obtained from stage
one. Instead of evaluating the selected points with the computationally expensive functions,
every objective function value of these points is set such that each point has a higher objective
value in comparison with the objective function value of the nearest point among the sample
points evaluated with the computationally expensive functions. Then, each computationally
expensive function is approximated with an extension of RBF called E-RBF [97] in Step 3 of
the sequential framework, and an initial surrogate problem is built. In Step 4, the accuracy
of the surrogate problem is evaluated near the Pareto frontier of the original problem by
RMSE. In Step 5, if the accuracy is not sufficient, new points near the Pareto frontier are
obtained using the first stage, and the surrogate problem is updated in Step 3.

Having the accurate enough surrogate problem, the set of non-dominated solutions is
obtained in Step 6 by solving the surrogate problem of the stage two. This set is considered
as the approximated Pareto frontier of the original problem in Step 8. These solutions are
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not evaluated with the computationally expensive functions in Step 7. The performance
of PRS was evaluated on benchmark problems with nonconvex Pareto frontiers. The PRS
method was also applied to a complex structural optimization problem requiring the FE
method and analysis of rigidified inflatable structures. It had two black-box objective func-
tions, three black-box constraints and three decision variables. The authors claim that the
computational cost in simulation-based MOPs can be reduced considerably since the surro-
gate problem obtained with PRS is accurate near the Pareto frontier. While, the authors
state that the approximated Pareto frontier is the Pareto frontier of the original problem,
mathematical proof of this statement was mentioned as a future research direction. This
method assumes that the ranges of the objective function values are available to compute
the extreme solutions. This assumption can be a challenge. Although the authors expect
that PRS can capture a disconnected Pareto frontier, they mention handling multimodalities
and disconnected Pareto frontiers as a future research direction.

8 Comparison of surrogate-based multiobjec-
tive optimization methods
After giving an overview of surrogate-based methods proposed in the literature, we compare
them in this section. As mentioned in Section 1, in this comparison, we concentrate on
the attributes of the methods in four aspects: 1) Can the methods handle general black-
box functions where information regarding mathematical properties of the functions such
as convexity and continuity is not available? 2) Can the methods capture different types
of Pareto frontiers? 3) How many objective and constraint functions as well as decision
variables can be handled by the methods? 4) What is the role of a DM during the solution
process? For this comparison, we consider the results given by the authors of individual
papers on the benchmark and application problems that they have used to evaluate the
performance of their methods. Throughout this comparison, we also discuss future research
directions.

As far as black-box functions are concerned, all the described methods except [85] can
handle such functions. In [85], the convexity of the objective functions is assumed which
cannot be guaranteed when considering black-box functions. We observe that only in [74]
dealing with noisy black-box functions is discussed. However, the authors evaluated the effi-
ciency of their method on benchmark problems without noise. Based on these observations,
more research to figure out how metamodeling techniques can be applied to handle noisy
black-box functions is required.

As far as handling nonconvex and disconnected Pareto frontiers is concerned, we observe
that capturing a potential region to select sample points for updating the surrogate problem
has a vital and a critical role. In [21, 43, 72, 74, 89], metamodeling techniques not only
are employed to build the surrogate problem, but also to introduce functions for sampling.
In [21, 89] these functions choose sample points towards the extreme solutions and the
Pareto frontier. In [74], the sampling function selects sample points from or close to the
extended Pareto frontier of the surrogate problem. In [43], the aim of employing the sampling
function is to generate evenly distributed sample points. The authors argue that sampling
evenly distributed points to build and update the surrogate problem may help to capture
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disconnected parts of the Pareto frontier.
In [70], the sample points are selected based on the variances of the objective function

values of the sample points predicted by the Kriging model. In addition, expected improve-
ment is another criterion related to Kriging model used in nature-inspired methods [99] to
select a new point for updating a surrogate problem. Such a criterion can also be consid-
ered in non-nature inspired methods. In [72], Lagrangian multiplier values given by the
metamodeling technique play a role to select new sample points. In [42, 95], the trust region
strategy is employed to select sample points from the explored and unexplored regions in the
decision and/or objective space. In both methods, the sample points are selected to update
the surrogate problem before and after assessing a stopping criterion. In [50], a consider-
able number of sample points is selected to capture nonconvexity and discontinuity, which
highly relies on the accuracy of the surrogate problem. In [46], convex hulls are discussed
to capture a nonconvex Pareto frontier. In this paper, a metamodeling technique is utilized
to approximate a function which visualizes the approximated Pareto frontier. This function
represents an objective as a function of other objectives.

The authors in [87] claim that a simple nonconvex Pareto frontier can be captured by
their method, because a convex hull is applied. In the PAINT method [65], which can
capture a nonconvex Pareto frontier, an interpolation between sample points is built. In
[16, 79], the idea of the normal constraint method [80, 81] is employed to generate sample
points near the Pareto frontier of the original problem. In [16], the surrogate problem is
constructed by type 1 of the adaptive framework to generate initial sample points. These
points are used to form a surrogate problem of a computationally expensive MOP by the
sequential framework. However, handling a disconnected Pareto frontier in [16, 46, 65, 70] is
not considered. Based on the above observations, developing a method to handle the issues
of nonconvexity and discontinuity in the Pareto frontier deserves research efforts.

One can see that in [16, 21, 43, 74, 89], RBFs have been employed to handle computa-
tionally expensive MOPs. The benchmark or application problems in [16] have nonconvex
Pareto frontiers, while in [21, 43, 74, 89], they have nonconvex and disconnected Pareto
frontiers. Now, a question arises whether the type of a metamodel technique has any impact
on capturing a nonconvex and disconnected Pareto frontier. In addition, we observe that
many methods developed in the adaptive framework can capture a nonconvex and discon-
nected Pareto frontier. Based on this observation, we recommend employing the adaptive
framework to handle the issue of nonconvexity and discontinuity in the Pareto frontier.

The methods of [65, 85, 87] introduce surrogate problems to approximate directly the
Pareto frontier. Both methods in [65, 87] lose the connection to the decision space when
solving the surrogate problems. Nevertheless, the corresponding decision vector value is
available after projecting the approximated preferred solution obtained by the surrogate
problems to the Pareto frontier of the original problem (although, this can be time consum-
ing). In contrast, the Pareto navigation method [85] keeps the connection to the decision
space during the navigation in the objective space. Apart from an approximation of the
Pareto frontier in the objective space, there is a possibility to approximate the set of Pareto
optimal solutions in the decision space. In [98], a method is proposed to approximate this
set in the decision space rather than in the objective space. In this method, however, han-
dling a computationally expensive MOP is not concerned. Moreover, this method requires
differentiability of the objective and constraint functions, and, thus, we do not discuss it
further. However, one can consider the idea of approximating the set of Pareto optimal
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solutions in the decision space as an approach to handle computationally expensive MOPs.
In addition, developing a method to approximate the Pareto frontier directly rather than
each computationally expensive function in which the connection to the decision space is
kept, can be considered for further research.

As far as the number of objective and constraint functions as well as decision variables
is concerned, except in [52, 56, 70, 79], the authors in other considered papers employed
benchmark and/or application problems limited to at most three objective functions, four
constraint functions and seven decision variables. The highest number of objective functions
(k = 5) was considered in [52, 70, 79, 85]. In [52], a surrogate problem is formed based on a
sampling strategy, in [79], based on a neural network, in [70], based on a Kriging model and
in [85], based on the convex hulls. The sampling strategy, however, can be unstable to handle
an MOP with a high number of decision variables. In addition, training a neural network
is time consuming. In [52, 56, 70, 79], it remains unclear how to capture a disconnected
Pareto frontier. In [85], the convexity of the objective functions is required. An MOP
with the highest number of constraint functions (m = 13) and decision variables (n = 31)
was considered in [56] based on the sequential framework. In [21, 89], the authors note that
their methods can be employed to solve a computationally expensive MOP with two or three
objective functions and less than seven decision variables. Moreover, applying the method in
[74] to handle an MOP with more than three objective functions and six decision variables
is unsuitable. In other methods, the authors do not discuss upper bounds on the number
of objective and constraint functions as well as decision variables. See [9] for a review on
handling a high-dimensional design problem. The ideas may be extended to deal with an
MOP with a high number of objective and constraint functions and decision variables.

Considering the role of a DM as defined in Subsection 2.1 in solving an MOP has been
discussed in [43, 52, 65, 72, 85, 87]. A DM provides his/her preferences in the form of
weights in [43, 72], while in [52], (s)he compares the generated solutions. In [85], a DM
provides his/her preferences as a goal for one of the objective functions and upper bounds
for the other ones. In [87], (s)he can express the preferences by means of a classification or
a reference point consisting of aspiration levels for all objectives. In this aspect, PAINT has
a distinguished feature, because a mixed integer linear multiobjective surrogate problem of
the original problem is created without involving preferences. Therefore, it can be employed
with any interactive method. The aim in methods of [43, 52, 65, 85, 87] is to provide the
most preferred solution for a DM rather than to approximate the entire Pareto frontier.
Involving a DM when solving an MOP has not been considered in many papers and, thus,
can be considered as another future research direction.

As mentioned earlier, the quality of the approximated Pareto frontier can be assessed
based on [12, 13, 14, 15], the number of solutions in the approximated Pareto frontier, the
distribution and spread of these solutions and closeness of the approximated Pareto frontier
to the Pareto frontier of the original problem. Evaluating the performance of the surveyed
methods based on these aspects with respect to a limited number of computationally ex-
pensive function evaluations requires implementing and testing them on a common set of
benchmark problems. Nevertheless, the benchmark problems considered in the surveyed
papers were not computationally expensive. Thus, to assess the performance of surrogate-
based methods to handle computationally expensive problems, developing computationally
expensive benchmark problems is a future research topic.
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9 Conclusions
Many real-world (engineering) problems involve multiple conflicting objectives (and possibly
constraints) that are computationally expensive to evaluate. In order to deal with the high
computational cost, various surrogate-based methods which are independent of the type of
the optimization algorithms used in them, have been proposed in the literature. So far,
however, no survey has been available summarizing their characteristics, similarities and
differences. This survey provided an overview of the methods available and with it, one can
find out whether there exist a method applicable for one’s own problems.

Based on when the surrogate problem is built and updated, we classified these methods
into the sequential and the adaptive frameworks. A special case of the sequential framework
termed as one-stage sampling was also considered. In this case, points were sampled only
once to build the surrogate problem. In accordance with when sample points are selected to
update the surrogate problem, we divided the adaptive framework into types 1 and 2. The
considered papers were then summarized and compared. Based on this comparison, we can
identify the following challenges as future research directions:

• handling noisy black-box functions,

• capturing a nonconvex and disconnected Pareto frontier,

• handling a high number of objective and constraint functions as well as decision vari-
ables,

• providing the most preferred solution for a DM when solving computationally expen-
sive MOPs.

In order to capture a nonconvex and disconnected Pareto frontier, we recommend devel-
oping a method in the adaptive framework. We hope that this survey opens new horizons
for the researchers interested in this topic.
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