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Abstract—Maximizing the so-called deflection coefficient is
commonly used as an effective approach to design cooperative
sensing schemes with low computational complexity. In this
paper, an extension to the deflection coefficient is proposed which
captures the effects of the quantization processes at the sensing
nodes, jointly with the impact of linear combining at the fusion
center. The proposed parameter is then used to formulate a
new mixed-integer nonlinear programming problem as a fast
suboptimal method to design a distributed detection scenario
where the nodes report their sensing outcomes to a fusion center
through nonideal digital links. Numerical evaluations show that
the performance of the proposed method is very close to the
optimal case.

I. INTRODUCTION

Spectrum sensing is the key element in each cognitive radio
(CR) system and enables its user, commonly referred to as
secondary user (SU), to find transmission opportunities in
spectrum resources allocated exclusively to license holders.
In this context, the license holders are called primary users
(PU) and have the exclusive right of using the spectrum. The
reliability of spectrum sensing is greatly enhanced through
establishing certain kinds of cooperation among the sensing
nodes. This cooperation is commonly coordinated by and
the overall sensing outcome is generated in a special node
called the fusion center (FC). Specifically, each node first
performs spectrum sensing individually by using its own built-
in sensing scheme. Then, the sensing nodes send their local
sensing outcomes to the FC through the so-called reporting
channels and finally, the FC combines the received local
sensing outcomes to decide the presence or absence of the
PU.

It is worth noting that, for a distributed detection problem
with nonideal analogue communication channels between the
distributed nodes and FC, the globally optimal structure is to
perform likelihood ratio test (LRT) both at individual nodes
and at the FC [1]. However, how to efficiently find the optimal
LRT thresholds for individual nodes and for the fusion center
is still unknown [2]. For the quantized soft decision case,
i.e., when the reporting is performed through nonideal (i.e.,
erroneous) digital links, a solution for optimizing the local
quantization levels jointly with the LRT threshold at the FC
may or may not exist [3]. Even if the optimal solution exists,
the threshold calculations are not trivial and complex opti-
mization schemes are needed to solve them. These difficulties
are commonly avoided by assuming a linear fusion scheme
[2], [4]–[7] which is the base for our considered architecture.

In particular, linear combining is shown in [2] to perform
very closely to the optimal LRT method with much less
computational complexity.

Maximizing the so-called deflection coefficient (DC) [8], [9]
or its modified version, modified deflection coefficient (MDC)
[2], [4], [6], [7] is commonly used in the literature as a fast
suboptimal approach to design effective fusion schemes in
distributed detection scenarios. Using this parameter, i.e., the
variance-normalized distance between the centers of two con-
ditional distributions of the global test summary, is effective
in the sense that it provides very close results to the ones
obtained by the optimal LRT method at low computational
cost. This method is of special interest when direct formulation
of the false alarm and missed detection probabilities leads to
nonconvex optimization problems.

In this paper, we assume that the FC performs linear
combining on the reported local test summaries which receive
through nonideal digital reporting channels. We first extend
our previous analysis in [6] and [7] to the case in which
the CR nodes use analogue-to-digital converters (ADC) with
non-integer bit resolutions. Then, we propose a new version
of the deflection coefficient which captures the effects of the
quantization process at the CR nodes jointly with the linear
fusion at the FC. Through these extensions, we construct and
solve a new mixed-integer nonlinear programming problem to
optimize the linear combining process at the FC, jointly with
the number of levels used by each node for quantizing the
sensing outcomes before reporting them.

II. SYSTEM MODEL

A cognitive radio network (CRN) with K sensing nodes is
considered in this paper. These nodes cooperatively sense the
radio spectrum to find temporal and/or spatial vacant bands
for their data communication. In our adopted model, the kth
sample of the received PU signal at the ith CR node is
represented as{

xi(k) = νi(k), H0

xi(k) = his(k) + νi(k), H1
(1)

where H1 and H0 denote the hypotheses representing the
presence or absence of the PU, respectively. s(k) denotes
the signal transmitted by the PU and xi(k) is the received
signal by the the ith SU. hi is the listening channel block
fading gain and νi(k) ∼ CN (0, σ2

νi) denotes the additive white
Gaussian noise (AWGN). Without loss of generality, s(k) and



{νi(k)} are assumed to be independent of each other. CR node
i, i = 1, ...,K performs spectrum sensing using its built-
in sensor (which can be of any common types like Energy
Detection (ED), Cyclostationary Detection (CSD), etc.) to
derive a local test statistic ui and then uses the following
quantization rule to map it on a bit sequence of length di

ψi(ui) = qn,i if tn,i 6 ui < tn+1,i (2)

where ψi(·) denotes the quantization process at the ith SU,
qn,i, n = 1, ..., 2di is its nth quantization level, while tn,i and
tn+1,i denote the corresponding boundaries. Given the local
sensing method and the quantization processes incorporated
at the ith sensing node, the probability distribution of ψi is
obtained. We denote the number of quantization bits used in
all sensing nodes by d ,

[
d1, ..., dK

]T
.

The generated reporting bit sequences are then transmitted
to the FC through the reporting channel in an orthogonal
manner. The effect of reporting channel impairments on the
transmitted bit sequences of the ith CR node is modeled as
a bit error probability (BEP) denoted by Pb,i. The reporting
channel is assumed to affect each node’s transmitted reporting
bit sequence independently. Moreover, errors introduced on
different bits in a transmitted reporting sequence by the
reporting channel are assumed to be independent and identi-
cally distributed (i.i.d). Therefore, the received quantized test
statistics at the FC, yi, i = 1, ...,K, are independent discrete
random variables whose probability mass functions (pmf) can
be represented (for j = 0, 1) as [3]

Pr {yi = qn,i|Hj} =

2di∑
k=1

P
Dn,k

b,i (1− Pb,i)
di−Dn,k Pr {ψi(ui) = qk,i|Hj} (3)

where Dn,k is the Hamming distance between bit sequences
corresponding to levels qn,i and qk,i.

Focusing on transmitted and received bit strings in the
reporting phase, we model the effect of the reporting channel
by using the Exclusive OR (XOR) operator as ri = si ⊕ ei
where di-bit random variables si, ri, and ei denote the sent
and received bit sequences and error caused by the reporting
channel, respectively. If we denote the value of si associated
with the nth quantization level (i.e., qn,i) by sn,i, the following
invertible mapping describes the correspondence between the
quantization levels and the bit sequences{

Γ :
{

1, 2, ..., 2di
}
→
{

0, 1, ..., 2di − 1
}

sn,i = Γ(n)
(4)

In other words, si = Γ(n) if and only if ψi = qn,i, or
equivalently, si = n if and only if ψi = qΓ−1(n),i. Therefore,
the pmf of si can be expressed as (for n = 0, 1, ..., 2di − 1,
and j = 0, 1)

Psi|Hj
(n) , Pr {si = n|Hj} = Pr

{
ψi = qΓ−1(n),i|Hj

}
. (5)

Without loss of generality, we have assumed the same mapping
process for all CR nodes.

Given the BEP Pb,i, each bit in the random variable ei
follows the Bernoulli distribution. Consequently, the pmf of
ei is derived as, (for n = 0, 1, ..., 2di − 1)

Pei(n) = P
wH(n)
b,i (1− Pb,i)di−wH(n) (6)

where wH(n) denotes the Hamming weight of the binary
representation of n.

In order to derive the pmf of ri, we use the fact that the
assumed reporting channel contamination does not depend on
the reported bit sequence si, nor the behavior of the PU, i.e.,
[7]

Pri|Hj
(n) =

2di−1∑
k=0

Pr {ri = n|ei = k|Hj}Pr {ei = k}

=

2di−1∑
k=0

Pr {si = n⊕ k|ei = k|Hj}Pr {ei = k}

=

2di−1∑
k=0

Pr {si = n⊕ k|Hj}Pr {ei = k}

=

2di−1∑
k=0

Psi|Hj
(n⊕ k)P

wH(k)
b,i (1− Pb,i)di−wH(k) (7)

Assuming a general M-ary modulation for the reporting
channel, the reporting BEP can be expressed as

Pb,i = cMQ

√c′′M
di

 (8)

where c′′M =
c′M |hr,i|2Er

N0log2M
, Q(x) ,

∫∞
x

exp(−t2/2)dt/
√

2π
is the Q-function, cM and c′M are two constants determined
by the modulation type. hr,i, Er, and N0 denote the reporting
channel gain, reporting signal energy, and noise power spectral
density, respectively.

Linear combining is performed at the FC, meaning that,
the global test statistic yc is constructed as a weighted sum
of the received quantized levels, i.e., yc = wT y where w ,
[w1, ..., wK ]

T and y , [y1, ..., yK ]
T . Finally, yc is compared

against a predefined threshold ξ to decide the presence or
absence of the PU, i.e.,{

H1, yc ≥ ξ
H0, yc < ξ

(9)

The detector performance is commonly measured using two
probabilities, namely the probability of false alarm Pfa =
Pr {yc ≥ ξ|H0} and the probability of missed detection Pmd =
Pr {yc < ξ|H1}. Both false alarm and missed detection prob-
abilities depend on the probability distribution of the global
test statistics yc which can be derived as a convolution of the
pmfs of K independent random variables {yi}Ki=1.

III. REPORTING-FUSION OPTIMIZATION

Our goal is to jointly optimize w and d to achieve the best
cooperative sensing performance. We determine the weighting
vector w at the FC and d used by the sensing nodes, through



jointly considering the effects of both the listening and report-
ing channels.

We first formulate the optimization problem based on min-
imizing the missed detection probability subject to an upper
bound on the false alarm probability

min
w,d

Pmd (P1)

s.t. Pfa ≤ α

where α is the given upper limit on the false alarm probability.
According to the central limit theorem, if K is large enough,

we can assume a Gaussian distribution for yc and the false
alarm and missed detection probabilities can be expressed in
closed form as

Pfa = Q

(
ξ −µµµTH0

w√
wTΣH0

w

)
(10)

Pmd = 1−Q

(
ξ −µµµTH1

w√
wTΣH1

w

)
(11)

where (for j = 1, 2) µµµHj
, E [y|Hj ] and ΣHj

,
E
[
yyT |Hj

]
= diag(σ2

y1|Hj
, ..., σ2

yK |Hj
). We have found

through numerical evaluations that Gaussian distribution fits
well for K ≥ 5. Now if we eliminate ξ in Eqs. (10) and (11)
by considering a target false alarm probability Pfa = α, (P1)
is converted to

max
w,d

Q

(
Q−1(α)

√
wTΣH0w − aTw√
wTΣH1w

)
(P2)

where Q−1(·) is the functional inverse of the Q-function,
a , [a1, ..., aK ]

T , µµµH1 − µµµH0 and for i = 1, ...,K we
have ai , E [yi|H1] − E [yi|H0]. In our previous work [7],
we have developed a Branch-and-Bound (BnB) procedure to
solve (P2). Moreover, we have shown in [7] that the statistics
of the reported quantized test summaries, i.e., a, ΣH0

, and
ΣH1 can be obtained by the following relation

E[yλi |Hj ] =

2di∑
n=1

qλn,iPri|Hj
(Γ(n)) , λ = 1, 2, ... (12)

where Pri|Hj
(n) can be expressed as a function of di as

Pri|Hj
(n) = (1− Pb,i)di Psi|Hj

(n)

+

di∑
ne=1

Pne

b,i (1− Pb,i)di−ne

di∑
k1=1

di∑
k2=1
k2 6=k1

...

di∑
kne=1

kne 6=k1,...,kne−1

Psi|Hj
(g(n, k1, k2, ..., kne

)) (13)

and

g(n, k1, k2, ..., kne) , n+ [2u(0.5− bk1(n))− 1] 2k1−1

+ [2u(0.5− bk2(n))− 1] 2k2−1 + ...

+
[
2u(0.5− bkne

(n))− 1
]

2kne−1 (14)

where ki, i = 1, ..., ne denotes the location of ith 1 in k,
bj(n), j = 1, ..., di denotes the value of jth bit in n and u(·)
is the step function which equals to 1 when its argument is
positive and 0 otherwise.

For simplicity, we have considered discrete values for di
so far. However, the number of quantization levels in ADCs
is commonly characterized by their so-called bit resolution
which is not necessarily an integer. For instance, one can use
a 5.32-bit ADC to quantize a signal to 40 levels. Therefore, we
extend the proposed analysis to account for non-integer values
of di. We formally represent this matter by first modifying the
mapping process as{

Γ :
{

1, 2, ..., 2di
}
→
{

0, 1, ..., 2ddie − 1
}

sn,i = Γ(n)
(15)

where ddie denotes the smallest integer greater that or equal
to di. Then, the definition for the pmf has to be extended to
account for the redundant bit strings. Since they are not used,
their probability mass equals zero, i.e.,

Psi|Hj
(n) = 0 for n ∈

{
0, ..., 2ddie − 1

}
−RΓ (16)

whereRΓ denotes the range of the mapping process Γ. Finally,
the pmf of the received bit strings is modified as

Pri|Hj
(n) = (1− Pb,i)ddie Psi|Hj

(n)

+

ddie∑
ne=1

Pne

b,i (1− Pb,i)ddie−ne

ddie∑
k1=1

ddie∑
k2=1
k2 6=k1

...

ddie∑
kne=1

kne 6=k1,...,kne−1

Psi|Hj
(g(n, k1, k2, ..., kne

)) (17)

The optimal linear fusion of analogue sensing outcomes can
be derived through considering the Lagrange dual problem and
Karush-Kuhn-Tucker (KKT) conditions [5]. Similarly, for a
given d, (P2) can be solved for optimal weighting vector as

w̃ = Σ
−1/2
H0

[
Q−1(α)IK + ζA

]−1
c (18)

where A , ΣH1Σ
−1
H0

and c , Σ
−1/2
H0

a. ζ is the single root
of the polynomial equation∥∥∥[Q−1(α)IK + ζA

]−1
c
∥∥∥ = 1 (19)

and satisfies

Q−1(α)IK + ζA � 0 (20)

where 0 stands for the null matrix and � represents the
element-wise inequality. Note that (19) and (20) specify ζ as
a function of d.

In order to gain insight about the major elements in (P2),
we rewrite it in the following form by using (18) and through
some basic algebraic manipulations,

min
d,ζ

ϕ(d, ζ) (P3)

s.t. (19) and (20)



where

ϕ(d, ζ) ,
Q−1(α)−

∑K
i=1

a2i
Q−1(α)σ2

yi|H0
+ζσ2

yi|H1√∑K
i=1

a2iσ
2
yi|H1(

Q−1(α)σ2
yi|H0

+ζσ2
yi|H1

)2

Since the Q-function is strictly decreasing with respect to
its argument, we have removed it from (P3) and turned the
problem into a minimization.

It is worth noting that, the local sensing outcomes have
greater variances when H1 is true (i.e., when the PU is
present), compared to H0 case. Since the local sensing
outcomes pass through the same quantization and reporting
processes to reach the FC—regardless of whether the PU is
active or not—the received sensing outcomes at the FC have
greater variances in general when the PU signal is present.
That is, σ2

yi|H1
≥ σ2

yi|H0
. Hence, we have

w̃TΣH1w̃ ≥ w̃TΣH0w̃ = 1 (21)

Applying this inequality on our cost function ϕ(d, ζ), we
derive an upper bound, i.e.,

ϕ(d, ζ) ≤ Q−1(α)−
K∑
i=1

a2
i

Q−1(α)σ2
yi|H0

+ ζσ2
yi|H1

(22)

A closer look at (22) leads to some interesting observations.
In fact, the term inside the summation is the ratio of two
performance metrics. Specifically, the numerator a2

i measures
the sensor ability to discriminate betweenH0 andH1, whereas
the denominator, measures the sensor uncertainty in declaring
either H0 or H1. Note that due to (20), the denominator in
(22) represents a positive linear combination of reported test
summary variances σ2

yi|H0
and σ2

yi|H1
. Therefore, the ratio in

(22) can be interpreted as the SNR (measuring the detection
quality) of the ith sensor report when received at the FC.
In fact, it can be considered as an extended version of the
DC and MDC which have been introduced in literature as
good measures for performance optimization in cooperative
spectrum sensing. We refer to the ratio in (22) as extended
deflection coefficient (EDC).

These observations motivate us to propose a new approach
for the discussed joint reporting-fusion optimization based on
the EDC. We formally define EDC as

∆2
ext ,

(E [yc|H1]− E [yc|H0])
2

Q−1(α)Var {yc|H0}+ ζVar {yc|H1}
(23)

Replacing yc with its weighted sum definition, we have

∆2
ext =

(
aTw

)2
wT [Q−1(α)ΣH0

+ ζΣH1
] w

(24)

We aim at finding w and d such that

max
w,d

∆2
ext (P4)

s.t. ‖w‖ = 1

The constraint on the weight vector norm is necessary here to
derive a unique solution since the EDC does not depend on

‖w‖. In order to derive an analytical solution for (P4) we first
eliminate w as follows. Through the linear transformation [2]

w′ = Σ
1/2
ext w (25)

the EDC is converted to

∆2
ext =

w′TΣ
−T/2
ext aaTΣ

−1/2
ext w′

w′Tw′
≤
∥∥∥Σ−T/2ext a

∥∥∥2

(26)

where Σext , Q−1(α)ΣH0
+ζΣH1

and the inequality follows
the Rayleigh-Ritz inequality. The equality is achieved when

w′ = Σ
−T/2
ext a (27)

Therefore, the optimal w which maximizes the EDC is derived
as a function of d as

wedc =
Σ
−1/2
ext w′∥∥∥Σ−1/2
ext w′

∥∥∥ (28)

Replacing w with its EDC-optimal value wedc, the EDC can
be rewritten as a function of d

∆2
ext = aTΣ−1

ext a =

K∑
i=1

a2
i

Q−1(α)σ2
yi|H0

+ ζσ2
yi|H1

(29)

Now, by comparing (29) with (22) we see that maximizing
the variance-normalized distance between the centers of two
conditional distributions of the global test summary yc is
equivalent to minimizing the upper bound in (22). Moreover,
due to the existence of ζ in (29), (P4) is a MINLP problem
which is NP-hard in general. A standard method for solving
a MINLP is the BnB procedure. As mentioned before, we
have developed a BnB algorithm in [7] for (P3) and a
similar approach can be used to solve (P4) as well. Here,
we develop an alternative suboptimal approach based on EDC
which leads to nearly optimal performance, but at much lower
computational cost. The proposed method is based on the fact
that σ2

yi|H0
and σ2

yi|H1
only depend on di and considering a

fixed value for ζ, converts (P4) from a (K + 1)-dimensional
problem into K one-dimensional integer programs. In other
words, the computational complexity of the optimization is
drastically decreased by considering a fixed ζ. Therefore, we
decompose the optimization procedure into two consecutive
processes in an iteration loop. Specifically, starting with an
initial point for d denoted by d(0), at kth iteration, we seek
the best d(k) based on ζ(k−1) by solving the following set of
optimizations,
For i = 1, ...,K,

d
(k)
i = argmax

di

a2
i

Q−1(α)σ2
yi|H0

+ ζ(k−1)σ2
yi|H1

(P5)

where d
(k)
i and ζ(k) denote the values of di and ζ at kth

iteration, respectively. Then, through considering (19) and (20)
we find ζ(k) for d(k). Consequently, at each iteration we are
dealing with K one-dimensional nonlinear integer programs.
Therefore, the computational complexity of this approach
increases linearly with the number of sensing nodes K.



TABLE I
LOW-COMPLEXITY LINEAR FUSION OF QUANTIZED REPORTS IN

COOPERATIVE SENSING

Input: ε
Output: Suboptimal d, w
1. Initialize d as d(0);
2. Solve (19) and (20) for ζ(0);
3. k ← 0;
4. ϕ(0) ← ϕ(d(0), ζ(0));
5. do
6. k ← k + 1;
7. Solve (P5) for d(k);
8. Plug d(k) into (19) and (20) and solve them for ζ(k);
9. ϕ(k) ← ϕ(d(k), ζ(k));
10. while

∣∣ϕ(k) − ϕ(k−1)
∣∣ ≥ ε;

11. return d(k) and ζ(k);

Numerical evaluations indicate that the desired performance
is achieved by only a few iterations. A pseudocode of the
proposed algorithm is presented in Table I.

IV. NUMERICAL RESULTS

The ED and uniform quantization have been adopted as
local sensing and test summary quantization methods at the
CR nodes, respectively. In all simulations, there are K = 5
cooperating nodes which transmit their sensing outcomes
over the reporting channels using the BPSK modulation. The
PU signal is modeled as a direct-sequence spread-spectrum
BPSK signal using Walsh-Hadamard code with length 16, i.e.,
processing gain of 16 are considered in all simulation results.
The maximum number of quantization bits in each node is 7.

Fig. 1 depicts the results derived as Complementary Re-
ceiver Operational Characteristics (CROC) curves. Specifi-
cally, three cases have been considered as: Case#1) Depicts the
performance of uniform linear combining at the fusion center
and maximum number of quantization bits at the sensing
nodes, Case#2) Depicts the performance of optimal linear
combining at the fusion center and maximum number of
quantization bits at the sensing nodes, Case#3) Depicts the
performance of the proposed joint optimization, i.e., optimal
linear combining at the fusion center and optimal number of
quantization bits at the sensing nodes.

It is worth noting that, Case#1, Case#2, and Case#3 repre-
sent the detector design without any optimization, only with
optimal weighting, and with joint reporting-fusion optimiza-
tion respectively. The plots clearly illustrate the effectiveness
of our proposed detector in terms of lower false alarm and
missed detection probabilities which are shown as CROC
curves closer to the origin. Moreover, it can be observed that
the achieved optimization results based on both the Gaussian
approximation and EDC are in close agreement with each
other. Note that the optimal linear combining based on the
Gaussian approximation is known to provide nearly-optimal
performance [2].

V. CONCLUSION

In this paper, an extension to the deflection coefficient has
been proposed which captures the effects of the quantization

Fig. 1. CROC curves for the energy detection using 20 samples of the PU
signal and uniform quantization with Chebyshev probability (see [7]) of 95%.
The listening channel SNR levels at sensor inputs are {0, -2.7, -3.1, -1.4, -6.9}
in dB. The reporting channel SNR levels are {10, 13, 12, 14, 11} in dB. The
results are obtained using 10,000 noise realizations.

processes at the sensing nodes, jointly with the impact of
the linear combining at the fusion center. The proposed
parameter has been used to formulate a new MINLP problem
as a fast suboptimal method to design a distributed detection
scenario where the nodes report their sensing outcomes to a
fusion center through nonideal digital links. Numerical results
demonstrate the effectiveness of the proposed design approach.
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