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1. Introduction

In the modern society, it has become more and more important to support
decision makers in �nding solutions which take several con�icting objectives
into account and optimize the objectives simultaneously. For such problems, it
is not possible to �nd a single optimal solution because of the con�icting nature
of the objectives. Instead of a single optimal solution, these multiobjective opti-
mization problems have several so-called Pareto optimal solutions with di�erent
trade-o�s between the objectives.

When dealing with real-world optimization problems, it is usually needed to
�nd a single or few Pareto optimal solutions to be implemented which are called
most preferred solutions. In order to select such a solution(s), some additional
information is needed, such as how a solution should be changed in order it to get
a more preferred solution for the problem, what kind of trade-o�s are acceptable
or what are desirable values for objective functions. This preference information
can be obtained from a human decision maker (DM) having expertise in the
problem domain. Several methods have been developed for �nding the most
preferable solution (see, e.g., [1, 2] and references therein).

In this paper, we concentrate on so-called interactive methods (see, e.g., [2, 3]
and references therein), where the solution process makes progress iteratively
by asking the DM to specify preference information until most preferred one is
found. By exploring Pareto optimal solutions in this manner, the DM can learn
about the trade-o�s between the con�icting objective functions and, thus, gain
insight about the problem. In addition, the DM can learn about how feasible
his or her preferences are by comparing the expectations to the Pareto optimal
solutions found. This means that the DM can even change his or her preferences
during the solution process, if desired. Based on the learning the DM is able to
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make informed decisions on what kind of Pareto optimal solutions would best
satisfy his or her preferences.

Interactive methods have given promising results for solving real-world op-
timization problems involving wide variety of engineering �elds. These problem
include optimal control of a continuous casting of steel [4, 5], intensity modu-
lated radiotherapy treatment planning [6], optimizing con�gurations of an oxy-
fuel power plant process [7], operating wastewater treatment plant [8, 9], optimal
design and control of a paper mill [10], among others. For more examples of use
of interactive methods in various �elds see [11] and references therein.

Real-world multiobjective optimization problems can be computationally de-
manding. The function evaluations may depend, for example, on time-consuming
computations or simulations [9, 12, 10, 13]. If this is the case, an interactive mul-
tiobjective optimization process as outlaid above may become infeasible by the
long waiting times needed to generate new Pareto optimal solutions according
to the preference information speci�ed by the DM. In other words, the interac-
tive nature of the solution process su�ers and the most preferred solutions may
not be found. For example, the DM may be restricted to examining only very
few Pareto optimal solutions and may stop the solution process prematurely.

One approach to solving computationally demanding problems is to replace
computationally expensive functions by simpli�ed ones. However, if the problem
is simulation-based, that is, involves a simulator, it can be a so called black-box
problem without any additional information about the problem besides decision
variable and objective (and possibly constraint) function values. Another widely
used approach is to utilize parallelization techniques to decrease the computation
time. But it is possible that the problem is implemented in a way that does
not allow for parallelization, e.g., the used simulator may have only a limited
number of licenses available.

To summarize, when solving a computationally demanding multiobjective
optimization problem using an interactive method, it is quite possible that the
method requires more time to generate new Pareto optimal solutions than there
is to spare. If other approaches cannot be utilized or they do not provide enough
improvement in the time available, a natural way of handling such problems is
to replace the computationally demanding problem with a computationally less
demanding surrogate. In practice, this means that the DM is shown approximate
rather than Pareto optimal solutions during the interactive solution process.
However, applying the surrogate problem in multiobjective optimization has
signi�cant limitations and has been elaborated only in few studies (see e.g.
[14]).

A good accuracy of the surrogate problem is important in order to avoid
misleading the DM. Because the preference information speci�ed by the DM
indicates what kind of solutions he or she is interested in, this information
can be used to update the surrogate in an intelligent way. This means that
the accuracy of the surrogate varies and is most accurate near the interesting
solutions.

It has been reported in the literature that solution processes with interactive
methods often take quite few iterations (see e.g. [15, 2, pp. 134�135]). One
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reason for this may be the cognitive load set on the DM. The load could be
decreased if the amount of the preference information expected from the DM
was smaller.

In this paper, we combine an interactive multiobjective objective method
and a surrogate problem in an intelligent way to support the DM in order to
decrease the waiting times experienced by the DM and in addition to increase
the accuracy of the surrogate problem. We propose to enhance the solution
process with agents, i.e., entities that try to achieve some pre-de�ned goals by
autonomous and intelligent actions. In the proposed algorithm, we utilize the
agents to update the surrogate problem near solutions that are interesting to the
DM, to minimize waiting times imposed on the DM and to decrease the amount
of preference information expected from the DM. We describe the proposed
method as a general algorithm, as it does not depend on any speci�c methods or
techniques. In addition to the interactive method and to the surrogate problem
construction technique, the introduced agent assisted algorithm employs four
di�erent types of agents, each having their own goals.

To give more concrete ideas of how to implement agents, we demonstrate
the agent assisted algorithm implemented with the classi�cation-based NIMBUS
method [2, 16, 17] selected as the interactive method and the PAINT method
[18] selected as the surrogate problem construction technique. Furthermore, we
apply the agent assisted algorithm involving the two above-mentioned methods
to solve a computationally demanding two-stage separation problem and discuss
the advantages achieved.

The rest of this paper is organized as follows. In Section 2, we present
the concepts and background material utilized. This includes the interactive
NIMBUS method and the PAINT surrogate construction technique that are used
as examples. In addition, we include an brief overview of agent studies in relation
to this research. We introduce the new agent assisted interactive algorithm in
Section 3. In Section 4, we describe the four di�erent agents employed by the
algorithm in more detail. We demonstrate the advantages of the new algorithm
by giving an example of supporting a DM in solving a multiobjective two-stage
separation problem in Section 5. Finally, the paper is concluded by a discussion
and concluding remarks in Sections 6 and 7, respectively.

2. Background

Next we discuss the background material used in this paper. First we brie�y
describe the notations used and then provide information on the methods used,
that is, on the interactive NIMBUS method for multiobjective optimization
and the PAINT method for constructing the surrogate problem. We �nish this
section by de�ning agents in relation to our research.
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2.1. Interactive Multiobjective Optimization

In this paper, we consider multiobjective optimization problems of the form

minimize or maximize {f1(x), f2(x), . . . , fk(x)}
subject to x ∈ S, (1)

where fi : S → R are k (≥ 2) con�icting objective functions, and x = (x1, x2, . . . ,
xn)

T is the decision (variable) vector bounded by constraints that form the fea-
sible set S ⊂ Rn. Objective vectors f(x) = (f1(x), f2(x), . . . , fk(x))

T consist of
objective function values calculated at x.

A decision vector x̂ and the corresponding objective vector f(x̂) are called
Pareto optimal if there does not exist any other feasible x so that fi(x) ≤ fi(x̂)
for all i = 1, ..., k and fj(x) < fj(x̂) for least one j = 1, ..., k. Such objective
vectors are called Pareto optimal solutions to problem (1), and a set of Pareto
optimal solutions is called a Pareto frontier [2]. Finding the most preferred
Pareto optimal solution to problem 1 is called a solution process. For the solution
process discussed in this research, the most preferred Pareto optimal solution is
found by utilizing the DM's preferences, i.e. information about how a solution
should be changed in order to get a more preferred solution for the problem,
what kind of trade-o�s between objectives are acceptable for the DM or what
are desirable values for objective functions.

The ranges of objective function values in the set of Pareto optimal solu-
tions can be shown to the DM to give general understanding about attainable
solutions. The k-dimensional ideal objective vector contains the best values of
objective values whereas the worst objective function values form a nadir objec-
tive vector. Components of the ideal objective vector are obtained by minimizing
each of the objective functions individually subject to S whereas calculating the
nadir objective vector necessitates knowing the whole set of Pareto optimal so-
lutions and thus, usually estimated values are used (for further information, see
e.g. [19, 20, 2]).

Interactive methods typically convert the original problem with the prefer-
ence information speci�ed by the DM into single objective subproblems [2, 3].
By selecting the subproblems well and solving them with appropriate single
objective optimization methods we get Pareto optimal solutions re�ecting the
preferences.

The agent assisted algorithm proposed can be used with di�erent interac-
tive methods following the general core structure of interactive multiobjective
optimization methods [11]. The core structure can be described as follows:

1. Initialize the process, e.g., calculate ideal and nadir objective vectors.

2. By solving a method-speci�c subproblem generate an initial Pareto opti-
mal solution to be used as a starting solution.

3. Ask the DM to specify preference information related to the starting so-
lution (in the method-speci�c way).
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4. Generate new solution(s) based on the preference information by solving
appropriate subproblem(s).

5. Ask the DM to select the most preferred solution of the previously gener-
ated solutions and denote it as the new starting solution.

6. If the selected solution is satisfactory, stop. Otherwise continue from step
3.

It should be noted that in addition to the interactive approach described here
and utilized in this research, there exists several other approaches for solving
multiobjective optimization problems. When classifying di�erent approaches by
the role of the DM, in addition to the interactive methods where the the DM's
preferences are speci�ed in an iterative process, there exist three other classes
of methods [2]. If the DM's preferences are not taken available, the method is
referred to as a no preference method. When using an a priori method, the
DM's preferences are asked before starting the solution process. An a posteriori
method generates a representative set of Pareto optimal solutions, that is shown
to the DM. As justi�ed in the introduction, in this research, we consider only
interactive methods.

2.2. The Interactive NIMBUS Method

In this research we use the NIMBUS method [2, 16, 17] as the interactive
method. The NIMBUS method is based on the classi�cation of the objective
functions. At each iteration, the DM considers the objective function values of a
starting Pareto optimal solution xc, and is asked to classify objective functions
into up to �ve di�erent classes. The classes indicate what kind of changes in the
objective function values would provide a more satisfactory solution than xc.

For simplicity, we present the classes for functions to be minimized. The
classes are for functions fi whose values

should be improved (i ∈ I<),

should be improved to some aspiration level ẑi < fi(x
c) (i ∈ I≤),

are satisfactory at the moment (i ∈ I=),

are allowed to impair up till some bound εi > fi(x
c) (i ∈ I≥),

are allowed to change freely (i ∈ I�).

Based on the classi�cation information, up to four single objective subprob-
lems are formed. By solving these subproblems we obtain four new Pareto
optimal solutions, each following the classi�cation in a slightly di�erent way.
These solutions are shown to the DM, and he or she can select one of them or
one of the previously generated Pareto optimal solutions as the most preferred
solution or as a starting solution of a new classi�cation. For a more detailed
description of the NIMBUS method, see [16, 17, 11].
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2.3. The PAINT Surrogate Method

In this research, by a surrogate problem we refer to a problem that can
be used to replace the original, usually computationally expensive problem for
the duration of the interactive solution process. The surrogate problem is con-
structed in such a way that it can be solved signi�cantly faster than the original
problem while producing optimal solutions that approximate the solutions of
the original problem. Using a surrogate problem eliminates the issue of DM's
waiting time during the interactive solution process but, on the other hand,
poses new challenges such as controlling the accuracy.

In this research, we use the PAINT method [18] to construct a surrogate
problem of a computationally demanding multiobjective optimization problem.
In the PAINT method, the surrogate problem is constructed based on a pre-
computed set of Pareto optimal solutions. Here we refer to this set as a con-
structing set.

The constructing set can be generated with any multiobjective optimization
method that generates many Pareto optimal solutions (see e.g. [21, 2, 1]). We
utilize PAINT as it is applicable in both convex and nonconvex problems. More
details of the PAINT method can be found in [18].

2.4. Multiagent Systems

There does not exist a single, universally agreed de�nition of an agent, as
their usage varies from �eld to �eld. But on a general level, an agent is some
entity, located in an some environment, where the agent tries to reach some
pre-de�ned goal by automatic and intelligent actions [22]. Furthermore, the
environment typically contains several agents interacting with each other [23].
Such an environment is called a multiagent system.

Agent-based computational intelligence technologies have been widely stud-
ied (see e.g. [22, 23]) and applied in many areas of science dealing with complex
systems. Agent-based technologies were initially applied in information and
communication, but later they have been applied in di�erent �elds related to
engineering and manufacturing, such as production planning and resource allo-
cation [24]. In addition, they have been used for single (see e.g. [25, 26, 27, 28])
and multiobjective optimization but, to our knowledge, they have not been ap-
plied in interactive multiobjective optimization discussed in this research. In
[29], agents are utilized for generating Pareto optimal solutions by solving op-
timization problems that are similar to the subproblems used in interactive
methods, but there the DM's preference information is not taken to account.
In [30, 31, 32, 33, 34, 35], agents are utilized in enhancing existing evolutionary
multiobjective optimization methods, where the purpose is to �nd a represen-
tative set of Pareto optimal solutions, that is, in an a posteriori fashion. In [36],
multiple agents are utilized for supporting several DMs when solving a multi-
objective optimization problem with preference-based evolutionary method. In
the proposed method, agents negotiate a single reference point that should best
correspond to the reference points provided by all DMs. Furthermore, in [37]
agents are utilized to reduce the number of questions asked from the DM when
utilizing a priori method.
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In these approaches, unlike in the approach discussed in this research, the
DM does not interact with the solution process in order to learn about the
problem characteristics or to modify his or her preferences. Furthermore, the
previous research mostly concentrates on producing either all or a representative
set of Pareto optimal solutions, without discussion on how to select the most
preferred Pareto optimal solution that can be the basis for practical implemen-
tation of the product or process being designed.

In our research agents directly use preference information and actively assist
the DM in the interactive process of �nding the most preferred solution. We
de�ne an agent to have following properties:

Emergent: agents are able to solve complex problems with a set of simple rules.

Autonomous: agents have control of their inner state and they can take actions
without human intervention.

Reactive: agents take actions based on their environment.

Goal-oriented: agents aim at achieving some goal with their actions.

Communal: agents are able to communicate with other agents, be they human
or arti�cial.

Fault tolerant: agents can attempt to recover from a failure, e.g. a failure in
reaching their goal.

In the literature, it has been noted that by using multiple autonomous agents
that utilize several di�erent methods it is possible to obtain optimal solutions
for complex optimization problems more e�ciently in comparison to using only
a single agent (see e.g. [38, 39, 40]). This e�ect is usually demonstrated with
empirical studies, but it has been shown that the use of multiagent systems
should not adversely a�ect convergence properties of the optimization methods
[41]. Therefore we use four di�erent agents in our algorithm.

After having de�ned the main concepts to be used and introduced necessary
background material, in the next section we can introduce the new agent assisted
algorithm.

3. Agent Assisted Interactive Multiobjective Optimization Algorithm

The aim of this research is to provide the DM with assistance when solv-
ing a computationally demanding multiobjective optimization problem with an
interactive method. As mentioned earlier, interactive methods are iterative, in-
volving the DM in each iteration. In this section we introduce an agent assisted
interactive multiobjective optimization algorithm for this purpose.
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3.1. Introduction to the Agent Assisted Algorithm

An interactive method shows new Pareto optimal solution(s) to the DM,
who studies it/them and then speci�es information on his or her preferences.
Then the DM is shown new solution(s). With this iterative procedure the DM
can learn about the characteristics of the problem to form a �rm idea of the
Pareto optimal solutions that can be attained, and which of these solutions
best match with his or her preferences. At the same time the DM can adjust
one's preferences. As motivated in the introduction, waiting times can become
an issue with computationally demanding problems. In this section we present
the background for the new algorithm which can provide new Pareto optimal
solutions without waiting times.

One approach for providing the DM with new solutions in a timely manner
is to replace the computationally demanding problem with a surrogate problem,
as described in Section 2.3. This approach consists of the following three phases.

1. Construction phase. The surrogate problem is constructed.

2. Decision phase. The interactive method is employed to solve the surrogate
problem in communication with the DM.

3. Projection phase. The solution of the original problem is obtained based on
the solution of the surrogate problem. If needed, the surrogate problem is
updated in order to improve its accuracy and the second phase is repeated.

We distinguish the decision phase where the DM is actively involved from
construction and projection phases where his or her presence is not necessary.
The latter two phases can be referred to as o�ine phases. By replacing the
original problem with a surrogate problem we shift the computational burden
from decision phase to o�ine phases, thus eliminating waiting time of the DM.
On the other hand, this replacement means that, instead of Pareto optimal
solutions the DM is shown approximate Pareto optimal solutions, i.e., Pareto
optimal solutions of the surrogate problem. After the DM has found his or
her most preferred approximate Pareto optimal solution, as the name of the
projection phase suggests, the solution is projected to the Pareto frontier of
the original problem. This can be done using, for example, an achievement
scalarization function [42] as described in [11].

The challenge with a surrogate based approach is that the approximate
Pareto optimal solution may be too far from the Pareto frontier of the original
problem, i.e., the surrogate is not accurate enough. If the problem is computa-
tionally very demanding, the projection can take a long time. If the projected
solution is too di�erent from the corresponding approximate Pareto optimal
solution, the DM may need to start the interactive solution process again. In
the worst case, this may mean that �rst a new surrogate problem must be con-
structed before the interactive solution process can be started again and all
previous preference information may be wasted. This outcome is the complete
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Figure 1: Overall structure of the agent assisted algorithm

opposite to the aim of using the surrogate problem because it hinders the learn-
ing process rather than supports it. Therefore, the accuracy of the surrogate
problem plays an important role.

The aim of utilizing multiple independent agents, i.e., arti�cial decision mak-
ers, is to improve the accuracy of the surrogate problem in the intelligent way,
i.e. in those areas of the problem where the improvement is most needed. We
propose to utilize four di�erent types of agents which perform speci�c tasks
during di�erent phases of the solution process as described in the next section.

3.2. The Agent Assisted Algorithm

Now we are in a position to describe the proposed agent assisted interactive
algorithm, to be called an agent assisted algorithm. This algorithm is general
and not tailored for any speci�c interactive method or surrogate problem. The
agent assisted algorithm extends the interactive method by emphasizing the
intelligent updating of the surrogate problem, minimizing waiting times imposed
on the DM and decreasing the amount of preference information expected from
the DM, thus decreasing the cognitive load.

The overall structure of elements comprising the agent assisted algorithm can
be seen in Figure 1. There are four types of agents which both perform their
own tasks and communicate and share information with each other. Preference
agents use preference information expressed by the DM to build a preference
model, interactive method agents collect information about the parameters that
the interactive method uses to generate approximate Pareto optimal solutions,
based on this information optimization agents generate new Pareto optimal
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solutions, and �nally, surrogate agents are responsible for constructing and up-
dating the surrogate problem. Each type of agent is described in detail in the
next section.

The agent assisted algorithm consists of the following six steps. We indicate
for each step, to which of the phases it belongs: construction phase (c.p.),
decision phase (d.p.) or projection phase (p.p.).

1. (c.p.) The surrogate agent constructs the surrogate problem

• using information from all other agents, if available.

2. (d.p.) The DM uses the interactive method and speci�es preference infor-
mation based on the starting solution.

• Preference agents collect the preference information to build a model
of the DM's preferences.

3. (d.p.) The interactive method generates approximate Pareto optimal so-
lution(s) to be shown to the DM.

• The interactive method agents collect information on how approxi-
mate Pareto optimal solutions are generated.

4. (d.p.) The DM selects one approximate Pareto optimal solution

(a) as the new starting solution for the next iteration and continues with
step 2, or

(b) as the most preferred solution of the surrogate problem.

• Preference agents collect this information which is interpreted as pref-
erence of one solution over others.

5. (p.p.) The optimization agents generate new Pareto optimal solutions of
the original problem based on the information collected by the interactive
method agents and the preference agents.

6. The preference agents select a subset of Pareto optimal solutions which is
shown to the DM. The DM either

(a) continues with step 1, or

(b) selects one as the most preferred solution of the original problem and
stops.

The advantage of having separate o�ine and decision phases is that there
are no waiting times for the DM to see approximate Pareto optimal solutions
corresponding to his or her preferences. On the other hand, how long the o�ine
phase can take is agreed with the DM. It should be noted that it is possible to
choose one of the solutions in step 6 as the solution for the original problem using
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Figure 2: Detailed illustration of the agent assisted algorithm

preference agents without involvement of the DM. Therefore, in the extreme case
the DM's involvement can be restricted to steps 2 to 4.

In practice, the information from all other agents in step 1 advises where the
surrogate should be updated. This means that no previously speci�ed preference
information is wasted when the DM decides to continue with step 1 from step
6.

The presented description of the algorithm is very general for it can incorpo-
rate a large variety of interactive methods and surrogate problem construction
techniques. To be more speci�c, in the next section we select both the method
and the technique which allows us to describe what agents do in detail.

4. Agents in Detail

In this section we give more information about the four types of agents
utilized in the agent assisted algorithm. Figure 2 provides a more detailed
view of the roles of the agents in the algorithm. Because agents depend on the
interactive method and the surrogate problem selected, here we provide more
information assuming that NIMBUS is the interactive method and PAINT is
the method to construct the surrogate problem.

In general, each agent type can be implemented in various ways, and in
practice it is advisable to utilize several di�erent agents to compliment each
other. For this reason, we refer to several agents in what follows.
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4.1. Preference Agents

The main function of the preference agents is to build models of the DM's
preferences. These models are built in order to identify those areas of the Pareto
frontier which are interesting to the DM. The model of the DM's preferences
(preference model for short) is usually a mathematical description of all nec-
essary information allowing one to choose a solution or to specify preference
information on the DM's behalf. A preference model is generally de�ned as a
universal rule of selecting a subset of solutions from any given set of feasible
solutions, i.e., as a choice function [43]. Another general, but a simpler way of
modeling DM's preferences is de�ning a binary relation on the set of feasible
solutions (see e.g. [44, 45]) describing the DM's preference judgments for certain
pairs of solutions. These two concepts are mostly used for theoretical studies.
In practical multiobjective optimization methods, people use more compact and
problem-speci�c models of DM's preferences such as value functions (see e. g.
[46, 47]) and reference points (see e.g. [48, 49]).

The process of constructing a preference model based on observations of
the DM's behavior is called preference learning. For illustrating the agent as-
sisted algorithm, we have implemented simple techniques based on two basic
approaches: computer learning and human learning. The computer learning ap-
proach is based on the assumption that all DM's input re�ects his or her steady
preference model and, thus, a computer learning approach can be applied for
building a DM's preference model from this data. The human learning approach
assumes that as the interactive method progresses, the DM learns and adjusts
one's preferences. Thus constructing the preference model is reduced to predict-
ing its parameters for the next iteration based on the time series of parameters
in previous iterations. It should be noted that when using interactive methods,
it cannot be assumed that the DM could take hundreds of iterations, and the se-
lected preference model construction approach cannot depend on large amounts
of input data.

As examples, we demonstrate the computer learning approach in the context
of NIMBUS in two ways. Both of them are implemented using two di�erent
machine learning techniques: polynomial-based kriging (e.g., [50]) and support
vector machines (e.g., [51]). In the �rst way, when training the agent, it is given
as the input a set of (approximate) Pareto optimal solutions presented to the
DM at each NIMBUS iteration, and as the output, the agent is given the solution
that the DM selected from that set. After the computer learning agent has been
trained with this data, it can be used to select one solution of a set of solutions
(that would be most preferred by the DM). In what follows, this is referred to
as a selecting agent. In the second computer learning way, the agent is given
a Pareto optimal solution as the input and the NIMBUS classi�cation speci�ed
by the DM in relation to that solution as the output. After the training, the
agent will give as the output a classi�cation information corresponding to any
solution given as the input. This is called a classi�cation agent. By combining
the selecting and the classi�cation agents, we can replace the DM in the o�ine
phase of the agent assisted algorithm.

12



As an example of the human learning approach, an agent can be created for
predicting coe�cient of each objective function fi in the achievement scalariz-
ing function. Then for each agent, a feedforward multilayer neural network is
trained. As the input, the agent is given the reference points (obtained from the
classi�cations as per [17]) provided by the DM during the previous NIMBUS
iterations. It is also given as the input the component of the reference point
corresponding to the objective function fi for the next classi�cation. After the
training, for each fi, the agent can be given a reference point as the input, and
it will give as the output the ith component of a new reference point. In this
way, the history of the preference information speci�ed during the NIMBUS
iterations is utilized. Here preference learning can be understood as predicting
how DM's input changes by analyzing the time series of previous input [52].

Besides step 2., step 6. of the agent assisted algorithm utilizes preference
agents when selecting which Pareto optimal solutions should be shown to the
DM. This is done by giving all Pareto optimal solutions generated as the input
to the selecting agent.

4.2. Interactive Method Agents

The main function of the interactive method agents is to �nd Pareto opti-
mal solutions during the o�ine phase. These solutions should correspond (as
described below) to the approximate Pareto optimal solutions the DM has found
during the decision phase. This can be achieved by �rst collecting information
on how approximate Pareto optimal solutions were generated in the decision
phase. Then, during the o�ine phase, this information is used to mimic the ac-
tions of the DM with the original problem to generate Pareto optimal solutions
which correspond to the DM's preferences. In other words, the classi�cations
made by the DM during the NIMBUS iterations are repeated with the original
problem.

In addition, the interactive method agents can also be used for projecting ap-
proximate Pareto optimal solutions obtained in the decision phase to the Pareto
frontier. Using interactive method agents in the two described ways may gener-
ate two di�erent Pareto optimal solutions per each approximate Pareto optimal
solution. Which of them is shown to the DM depends on the preference agent.
This increases understanding of attainable Pareto optimal solutions but, on the
other hand, also increases the computational cost. If desired, the projection can
be skipped.

4.3. Optimization Agents

The main function of the optimization agent is to generate Pareto optimal
solutions for the original multiobjective optimization problem. When using the
NIMBUS method, Pareto optimal solutions are generated by solving single ob-
jective subproblems. In the agent assisted algorithm, these subproblems are
solved by the optimization agents with several di�erent single objective opti-
mization methods. The methods used for solving the subproblems depend on
the used interactive methods. For solving the NIMBUS subproblems, we use
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global methods, such as di�erential evolution [53], controlled random search
[54] and genetic algorithm [55], and local methods such as COBYLA [56] and
proximal bundle method (if gradient information is available) [57] and their
hybrids.

Let us brie�y describe our approach to implementing optimization agents.
When employed in the agent assisted algorithm, an optimization agent usually
belongs to an agent group. For example, a new agent group is assembled for
each step 2. taken by the DM. The goal of an agent in a group is to �nd a
Pareto optimal solution corresponding to the preference information speci�ed
by the DM, i.e., each agent in the group tries to solve the same single objec-
tive NIMBUS subproblem. The agents in the same group di�er by which single
objective optimization method they employ, and by what parameters are given
to those methods. In step 5, all agents are run simultaneously, but the rate of
convergence for each agent in a group is studied on a decreasing interval and
the agents converging fastest are given more computing time. To improve their
convergence rate, the optimization agents are able to change their con�gura-
tion, i.e. what method they are using and what are the method parameters.
In addition, the optimization agents communicate with each other, providing
information about the best solutions found and about the con�gurations the so-
lutions have been found. This information is communicated also to the agents
in other groups.

Optimization agents continue solving the NIMBUS subproblems until they
cannot �nd con�gurations which provide improvement on the optimal values.
In addition, step 5 is given a maximum time available for obtaining new Pareto
optimal solution, and in practice, the optimization agents continue until the
given time runs out.

As single objective optimization is not in the scope of this paper, optimiza-
tion agents are not discussed here in more detail. They have been implemented
following the results of [28].

4.4. Surrogate Agent

The main function of the surrogate agent is update the surrogate problem
on those areas that DM has shown interest in. In the case of PAINT, it is
intuitively obvious that the accuracy of the surrogate problem depends on the
coverage of the constructing set. Therefore, adding a Pareto optimal solution
to the set usually improves the accuracy in the approximate Pareto optimal
solutions that can be obtained near that solution. Improving the accuracy can
be achieved by including Pareto optimal solutions generated by optimization
agents in the constructing set whenever appropriate.

If a preference agent has an inaccurate preference model, it can instruct
optimization agents to generate a solution that does not correspond to the
DM's preferences. Even if a surrogate agent adds it in the constructing set,
the accuracy of the surrogate does not su�er because the solution added is
Pareto optimal. The worst consequence of this is increased computational cost.
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5. Case Study: Two-Stage Separation Problem

To demonstrate the bene�ts of the agent assisted algorithm we apply it
in a two-stage separation problem, originally considered in [58]. The related
multiobjective optimization problem is computationally demanding. The so-
lution process was carried out with the implementations of agents, NIMBUS
and PAINT contained in the IND-NIMBUS software framework where the DM
used a graphical user interface. For further implementation details of the two
methods, see [11, 8], respectively.

In the two-stage separation problem, an incoming feed of water and general
impurity are separated into permeate and retentate. The process model consid-
ered here consists of two pumps pumping the feed to two �lters and two pumps
recycling a part of the permeate back to the �lters. The goal of the two-stage
separation problem is to extract a maximum amount of retentate (kg) from an
incoming feed while minimizing the amount of impurity (kg) in the permeate
and minimizing the energy (Kj) used by the pumps. The two-stage separation
process is studied for the duration of a typical factory shift length, discretized
over a time horizon. In addition to objective functions, the problem model
consists of a single constraint and 100 decision variables of which four are con-
tinuous and 96 are binary valued. The problem is nonconvex, i.e., it contains
multiple local optimal solutions. When using Intel R© Core

TM

i7-2600 running at
3.4GHz, a single simulation of the problem model took 5 seconds on an average.
In order to reliably obtain optimal solutions when using a di�erential evolution
[53] method, an average of 15000 simulations were required. More details of the
two-stage separation problem can be found in [58].

Originally in [58], due to time constraints, the two-stage separation problem
was solved with a restricted number of function evaluations. The preferences
speci�ed by the DM and the corresponding Pareto optimal solutions generated
with the interactive NIMBUS method can be seen in Table 1. Here, each section
of the table represents a single iteration of the interactive method, where the �rst
(bolded) row indicates the starting solution shown to the DM, the second row
indicates the preferences speci�ed by the DM and the following rows indicate
the Pareto optimal solutions generated. For more details of the solution process,
see [58].

In Table 1, each Pareto optimal solution is denoted by zj , of which z7 denotes
the solution selected as the most preferred one by the DM. However, as noted
in [58], the solutions generated are not actually Pareto optimal because the
optimization methods did not necessarily converge, as the optimization had to
be stopped prematurely due to the time constraints.

In what follows, we apply the agent assisted algorithm in the two-stage sep-
aration problem. The aim of the problem is to design a new type of separation
process, and the process designer acted as the DM for during the solution pro-
cess. Because we want to utilize all preference information provided in the
previous research, we denote the results of [58] as the �rst decision phase for the
agent assisted algorithm and start with the o�ine phase of step 5. In addition,
preference agents selected only one Pareto optimal solution in step 6 with which
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Iter Issue Max Min Min
Permeate (kg) Impurity Energy (kJ)

z1 2222 11.02 16842

1 Classif I≥=2000 I≤=2.300 I≤=9500.000

z12 1732 3.92 12402
z13 1483 2.02 14632
z14 2096 3.39 16155
z1
3 1483 2.02 14632

2 Classif I≤=1900 I≥=2.35 I≤=9600.000

z15 950 6.84 11606
z16 1240 2.06 14939
z1
6 1240 2.06 14939

3 Classif I≤=1500 I≥=2.4 I≤=12000.000

z17 1348 2.14 9329
z18 1236 2.07 9339
z19 1234 1.85 9857

Pref. z1
7 1348 2.14 9329

Table 1: Solution process of the two-stage separation problem in [58]

we proceeded to step 1, where the surrogate problem was constructed for the
�rst time with the PAINT method. In this way, we could build the surrogate
problem with increased accuracy on the ares that the DM had shown interested
in. The DM started the second decision phase with step 2 and the agent assisted
algorithm was followed till step 6 (b).

In what follows, we provide some details of the individual steps taken in the
solution process. The o�ine phase in step 5 was started with the optimiza-
tion agents �rst using the information from the interactive method agents to
mimic the actions of the DM summarized in Table 1. For example, from the
information of the iteration 3 of Table 1, four new interactive method agents
were created. Each of them corresponded to one of the subproblems of the
NIMBUS method generating a Pareto optimal solution (corresponding to the
classi�cation information). Each of the interactive agents employed a group of
eight optimization agents. These 32 agents, using di�erent optimization meth-
ods with di�erent parameters, generated four new Pareto optimal solutions (one
for each group). One of these solutions was (1764, 0.20, 12030). To obtain this
result, the optimization agents spent a total of 2600 function evaluations.

Let us consider this Pareto optimal solution for a while. It was used by
the preference agent called classi�cation agent to generate two new sets of pref-
erence information. As an example, the classi�cation agent-based on support
vector machines produced the classi�cation

(
I≤2270, I≥2.3, I≤7500

)
. Then this

preference information was passed to interactive method agents to generate new
Pareto optimal solutions. The corresponding actions were taken for each of the
remaining three Pareto optimal solutions of iteration 3. Naturally, the corre-
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Figure 3: Graphical user interface used by the DM

sponding steps were repeated for iterations 1 and 2 of Table 1. In this way,
preference information available from the previous research was utilized.

Step 5 of the �rst o�ine phase was continued until the amount of time agreed
with the DM was used up. In step 6, the preference agents selected one Pareto
optimal solution z21 (see Table 2) which was shown to the DM. Because the DM
wanted to improve it, the second o�ine phase was started with step 1.

In step 1, the Pareto optimal solutions generated in step 5 of the �rst o�ine
phase were used to construct a surrogate problem of the two-stage separation
problem. The solution process continued with the second decision phase con-
sisting of repeated steps from 2 till 4.

A collection of the results generated during the second decision phase as
well as the preference information speci�ed can be seen in Table 2. The Pareto
optimal solutions were generated based on the preferences speci�ed by the DM
in a graphical user interface shown in Figure 3. Here, the DM has provided
classi�cation for the iteration 2 of the solution process (described in Table 2),
and the method has generated four new approximated Pareto optimal solutions,
that are shown to the DM. In the Figure 3, the DM is shown a single Pareto
optimal solution, namely the solution a23, on the left side. As can be seen,
the Pareto optimal solution is shown with three vertical bars, each of which
corresponding to an objective function. The �rst objective function is to be
maximized, which is indicated by having the bar starting from the right end.
The lowest (estimated) value that each objective function can achieve is shown
to left of the bar, and the highest (estimated) value is shown to the right. The
relative position of the current objective function value is indicated with an
arrow pointing down, as well as the exact numeric value below the bar. The
DM indicates preferences by clicking the bar on location where the value is
desired to be changed or by inputting a numeric value to the edit box located
to the right of the bar. The obtained solutions are shown on the right side of
the �gure. For more information on the graphical user interface used during the
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Iter Issue Max Min Min
Permeate (kg) Impurity Energy (kJ)

Ideal 4693 0.00 0
Nadir 0 23.56 48532
z24 1773 0.29 8488

1 Classif I≥=1050 I< I≤=3400

a21 1051 0.25 4380
a22 983 0.23 4100
a23 109 0.03 466
a24 1030 0.25 4294
a23 109 0.03 466

2 Classif I≤=1000.0 I≥=0.1 I≥=3500.0

a25 469 0.10 2368
a26 962 0.29 3889
a27 580 0.12 2952
a28 988 0.28 4032
a25 469 0.10 2368

3 Classif I≤=1000.0 I≤=0.1 I≥=5000.0

a29 974 0.23 4102
a210 580 0.12 2952
a211 990 0.23 4158
a25 469 0.10 2368

4 Classif I≤=2000.0 I≥=0.12 I≥=9000.0

a212 566 0.12 2881
a213 1909 0.57 7735
a214 902 0.21 3928
a215 1952 0.59 7887
a212 566 0.12 2881

5 Classif I≤=2000.0 I≥=0.13 I≥=9000.0

a216 606 0.13 3033
a217 1909 0.57 7735
a218 938 0.22 4001
a219 1952 0.59 7887

Pref. a27 580 0.12 2952

Table 2: Solution process in the second decision phase with the agent assisted algorithm
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decision phase by the DM, see [11].
Based on his understating of the problem (gained during the �rst decision

phase), the DM decided to minimize the amount of impurity as much as possible,
while maintaining reasonable bounds (to be seen in the table) for the other
objectives. This was the �rst classi�cation. He was shown four approximate
Pareto optimal solutions of which he selected a23 as it had the best impurity
even though the values of the other objectives were not satisfactory.

For the second iteration, he gave an upper bound 0.10 for the impurity, while
aspiring for the value 1000 for the permeate (to be maximized) and maintaining
an upper bound of 3500 for the energy consumption. For the third iteration, he
decided to continue with a25 as this solution obeyed the upper bound of impurity
even though the permeate value 469 was low.

In the third iteration, he allowed increment of energy consumption till 5000,
in order to obtain the desired value 1000 for the permeate. From the results
shown, he noticed that by increasing the impurity level, he might be able to
obtain a better permeate value while maintaining a reasonable level of energy
consumption.

The fourth iteration was started again from a25 to see the e�ect of increasing
the upper bound of impurity to 0.12. As hoped for, the permeate amount
improved while the impurity bound was not violated without impairing the
energy consumption. He selected a25.

In the �fth iteration, he allowed the impurity to rise up to 0.13 in order to im-
prove the permeate amount. In addition, he allowed the energy consumption to
rise till 9000. This iteration was not satisfactory and he selected (580, 0.12, 2952)
as the �nal approximate solution. This was the last step 4 (b) of the second
decision phase.

After the second decision phase, the second o�ine phase of the agent assisted
algorithm was started with the data summarized in Table 2. From the Pareto
optimal solutions obtained in the second o�ine phase, the preference agents
suggested four Pareto optimal solutions which would be preferred by the DM.
Their number was four because it was a cognitively feasible number for the DM.
These solutions are shown in Table 3. When compared to previously obtained
solutions, as reported in Table 1, several of the previos solutions were worse
on respect of all objective vector compontents, and therefore new solutions are
strictly better than them. Of the new solutions, the DM selected z33 as the most
preferred solution for the two-stage separation problem. In it, the permeate
and energy values were reasonable while maintaining a good impurity. The DM
stopped the solution process because he was satis�ed with the �nal solution.

As far as the solution process with the agent assisted algorithm is concerned,
for the two-stage separation problem the algorithm could intelligently update
the surrogate problem and enabled interaction with the DM without noticeable
waiting times. To be more speci�c, the DM was able to obtain new approximate
Pareto optimal solutions immediately after having speci�ed preference informa-
tion. This enabled him to explore the two-stage separation problem with �ve
di�erent preferences, that is, iteration, by spending only about half an hour of
his time. This is a remarkable improvement compared to the original research
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Issue Max Min Min
Permeate (kg) Impurity Energy(kJ)

z31 323 0.10 2858
z32 479 0.14 4240
z33 1870 0.18 10697

z34 2901 0.60 26348

Table 3: Pareto optimal solutions obtained from second o�ine phase

reported in [58], where he was able to give only one classi�cation per day.
The construction sets generated based on the preference information speci-

�ed by the DM are illustrated in Figure 4. Here, Pareto optimal solutions gen-
erated based on the �rst decision phase are marked with diamonds and those
based on the second decision phase are marked with circles. If the agent assisted
algorithm had been continued, the PAINT surrogate problem would have been
constructed from a combination of these two sets. The vectors of aspiration lev-
els speci�ed by the DM are marked with triangles pointing downwards for the
�rst decision phase and with triangles pointing upwards for the second decision
phase. As can be seen, the agent assisted algorithm was able to identify how
the DM's interests changed and to generate new solutions on the Pareto frontier
in those areas.

It should be noted that the amount of preference information speci�ed by the
DM did not decrease when compared to the original research. The slowness of
the original solution process was explained by the computationally demanding
problem. Now that the DM could see new solutions without having to wait for
hours, it encouraged him to do a more thorough search of the interesting area of
the approximate Pareto frontier. Nevertheless, the preference agents decreased
the cognitive load in step 6 by allowing him to consider only a subset of the
generated Pareto optimal solutions.

Originally, the DM regarded impurity as the most important objective. How-
ever, during the solution process he learned that he had to trade-o� and give
up in impurity in order to get reasonable values for the other objectives.

The aim of this research is not simply to decrease the overall computational
cost of solving a multiobjective optimization problem. The main idea is to
shift the computationally demanding elements from the decision phase to the
o�ine phase in order to decrease waiting times imposed on the DM. Interest-
ingly, when comparing the results obtained by the optimization agents during
the o�ine phase to the results obtained with the interactive NIMBUS method
(without the surrogate problem), the optimization agents were able to converge
signi�cantly faster and, thus, computational savings were clear. For example,
optimization agents were able to generate the solution z13 with 1700 function
evaluations, but generating a similar solution without agents took almost 15000
function evaluations. This was not studied further, as our main focus was on
supporting the DM in solving multiobjective optimization problems with inter-
active methods.
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Figure 4: Construction sets created from DM's preferences
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6. Discussion

With the new agent assisted algorithm we were able to generate satisfactory
solutions to the DM and support him when solving the two-stage separation
problem. The same DM was involved in the original research reported in [58]
and found the new algorithm more convenient for exploring the Pareto frontier
of the problem. He appreciated the fact that new approximate Pareto optimal
solutions corresponding to his preference information were generated without
waiting times.

It is intuitively evident that the agent assisted algorithm can increase the
number of objective function evaluations used when solving a multiobjective
optimization problem. In step 5 of the agent assisted algorithm, the agents
generate more Pareto optimal solutions than the plain NIMBUS method would.
However, by producing more Pareto optimal solutions based on the DM's pref-
erences, the agent assisted algorithm is able to provide the DM with a more
complete view of the problem. In this regard, the agent assisted algorithm could
also be applied for computationally inexpensive problems by generating addi-
tional Pareto optimal solutions in the decision phase. The preference agents
could then, as in step 6 of the agent assisted algorithm, select some of these
Pareto optimal solutions to be shown to the DM. In this way, the agent assisted
algorithm could encourage the DM to consider unexplored ares of the Pareto
frontier that could be of interest. It could even be possible to employ the hu-
man learning agents to generate new preference information without additional
function evaluations.

On the other hand, it is possible that the increase of the computational cost
introduced by the agent assisted algorithm is not that signi�cant. As pointed
out in Section 5, it seems that the agent assisted algorithm was actually able
to reduce the computational cost of solving the two-stage separation problem
by an order of magnitude. It is possible that as the optimization agents are
guided based on the preference information obtained from the DM, they are
able to converge faster towards the Pareto frontier. In addition, this e�ect may
be ampli�ed as the optimization agents share information on the best solutions
found including the history of previous iterations of the interactive method.
However these results cannot be directly generalized to all solution methods.

When shortening the waiting times imposed on the DM, there is naturally
some price to be paid. In the agent assisted algorithm this means showing
approximate Pareto optimal solutions to the DM. This may cause some impre-
ciseness of preference information. Clearly, the DM must be informed of this.
On the other hand, real-world problems contain typically nonlinear and non-
convex objective functions. Furthermore, these problems are usually considered
as a black-box, i.e. the exact formulations or even characteristics of the objec-
tives problem are usually do not know before solving the problem. Therefore,
even when solving the problem without using surrogates, we cannot guarantee
that the obtained Pareto optimal solutions are accurate. In practice, the time
available for solving the problem usually determines the quality of the obtained
solutions. As the agent assisted algorithm allows for conducting the time inten-
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sive parts of the solution process without involvement of the DM, it is possible
to expand the time available and therefore provide the DM with more accurate
solutions.

Naturally, if di�erent interactive methods and surrogate problem construct-
ing techniques are used, appropriate agents of the four types must be developed.
However, the ideas of implementing agents presented here are not limited to the
considered application.

7. Conclusions

In this paper, we have introduced an agent assisted interactive multiobjec-
tive optimization algorithm for solving computationally demanding problems.
Motivated by the bene�ts of using interactive methods we, with this algorithm,
enable applying them in computationally demanding problems. The algorithm
is general and can be used with di�erent interactive methods and surrogate
problem construction techniques.

The algorithm employs a computationally inexpensive surrogate problem
and four types of agents. The agents observe the DM's actions when using an
interactive method. With these observations the agents intelligently increase
the accuracy of the surrogate by updating it in the areas the DM is interested
in, without a need for additional information. Besides that, the agents working
with the surrogate problem shorten the waiting times imposed on the DM and
decrease the amount of preference information required.

We solved a computationally demanding two-stage separation problem with
the new agent assisted algorithm involving the interactive NIMBUS method
and the PAINT method to construct the surrogate problem. The DM appre-
ciated the fast solution process and the results obtained. As the experiences
were most encouraging, we consider this research direction to be fruitful and
conclude that agent assisted algorithm should be applied in and tested with
various computationally demanding problems.
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