
Igor Buzhinskii

 EVOLUTIONARY APPROACH FOR ACHIEVING
STRUCTURAL COVERAGE IN TESTING IEC 61499

FUNCTION BLOCK SYSTEMS

UNIVERSITY OF JYVÄSKYLÄ

FACULTY OF INFORMATION TECHNOLOGY

2015

ABSTRACT

Buzhinskii, Igor
Evolutionary approach for achieving structural coverage in testing IEC 61499
function block systems
Jyväskylä: University of Jyväskylä, 2015, 59 p.

Software Engineering, Master‟s thesis
Supervisors: Veijalainen, Jari; Vyatkin, Valeriy; Shalyto, Anatoly.

The topic of this thesis is automated test generation for control software
represented in a specific standard, the IEC 61499. This standard, which is
largely based on the concept of function block, establishes a way to design
distributed control systems in a visually clear way. The goal of the thesis was to
design a test generation approach or a number of such approaches that would
produce input test data with high coverage of the implementation of systems
under test. Coverage is a measure which expresses the fraction of the system
that was exercised at least ones when all tests in a test suite were run on this
system. To reach the stated goal, evolutionary computation, a general
optimization methodology, was employed. In this methodology, possible
solutions of the problem (in our case, test suites) are developed during a
simulated evolution process which involves mutating solutions (that is, altering
them insignificantly) and combining them into new ones.

Two methods of test suite generation were designed based on the mentioned
approaches. The experimental evaluation showed that one of them produces
test suites with high coverage but is time consuming, and another one is more
flexible and fast, but produces test suites with lower coverage. It was also
shown that the proposed methods are capable of identifying faults in control
software under test, which are mainly connected with unreachable system
segments.

Keywords: IEC 61499, industrial automation system, function block, test
generation, coverage criterion, testing automation, evolutionary computation.

TIIVISTELMÄ

Buzhinskii, Igor
Evoluutiomenetelmän käyttö IEC 61499 -standardia noudattavien
toimintolohkojen testiaineistojen generointiin
Jyväskylä: Jyväskylän yliopisto, 2015, 59 s.

Ohjelmistotuotanto, pro gradu – tutkielma
Ohjaajat: Veijalainen, Jari; Vyatkin, Valeriy; Shalyto, Anatoly.

Tämän opinnäytetyön teemana on testitapausten automaattinen generointi
IEC 61499-standardin mukaisille toimintolohkoille. Kyseinen standardi
perustuu oleellisesti äärellisiin automaatteihin, joille on määritelty
kaksiulotteinen visuaalinen esitysmuoto ja joista voidaan toisiinsa kytkemällä
koota yhdistettyjä toimintolohkoja. Lohkojen tilasiirtymiin liittyvän laskennan
kuvaamiseen on standardissa tarjolla erityinen ohjelmointikieli. Opinnäytetyön
tarkoituksena oli yhden tai useamman menetelmän kehittäminen, jotka
generoivat testiaineistoja em. standardin mukaisille toimintolohkojen
ohjelmallisiille toteutuksille. Tavoitteena oli tuottaa testiaineistoja, joilla on
mahdollisimman korkea tilasiirtymä- tai haarakattavuus. Testiaineistojen
generointi perustuu evoluutioalgoritmeihin, jotka pyrkivät maksimoimaan em.
kattavuudet toteutuksen suhteen. Algoritmit muokkaavat testiaineistoa
sukupolvi sukupolvelta paremmaksi em. kriteerien suhteen (periytyminen).
Muokkaus perustuu yksittäisten testitapausten vähäiseen muuttamiseen
(mutaatioihin) ja vanhojen testitapausten yhdistämiseen uusiksi testitapauksiksi
testiaineistossa (rekombinaatio).

Työssä kehitettiin kaksi testiaineistojen generointimenetelmää, joiden
ominaisuuksia testattiin kahdella yhdistetyn toimintolohkon toteutuksella.
Toinen näistä ohjaa pientä poimi-ja-sijoita laitekokonaisuutta ja toinen
lämpövoimalaitoksen yksinkertaistalaborotoriomallia. Tulokset osoittavat, että
toinen menetelmä generoi testiaineistoja, joilla on korkea kattavuus, mutta
laskenta-aika oli suhteellisen suuri. Toinen menetelmä on joustavampi ja laskee
nopeammin, mutta tuotettujen testiaineistojen kattavuus onoli pienempi kuin
edellisen. Menetelmiä kokeiltaessa selvisi myös, että ne kykenevät löytämään
testattavista järjestelmistä virheitä, eli saavuttamattomia tilasiirtymiä ja
ohjelmahaaroja.

Asiasanat: IEC 61499, teollinen automaatiojärjestelmä, toimintolohko,
testiaineiston generointi, kattavuuskriteeri, testauksen automatisointi,
evoluutiolaskenta.

FIGURES

FIGURE 1 A general scheme of an FB .. 13

FIGURE 2 An example of a concrete FB ... 13

FIGURE 3 An example of an ECC in a basic FB .. 14

FIGURE 4 An example of a composite FB.. 15

FIGURE 5 Examples of three crossover operators: single-point (top), two-point
(middle), and uniform (bottom) .. 26

FIGURE 6 The [0, 1] segment, the random choice of point on which determines
the selected individual (x, y, or z) in roulette selection .. 27

FIGURE 7 The general scheme of an iteration of the genetic algorithm 28

FIGURE 8 The scheme of the approach based on third-party tools 29

FIGURE 9 The scheme of the approach based on internal test representation .. 34

FIGURE 10 The scheme of one of the implementations of the pick-and-place
manipulator .. 39

FIGURE 11 The FB network corresponding to the model of three connected
cylinders shown in Fig. 10 .. 39

FIGURE 12 Heat production plant .. 40

FIGURE 13 An example of unreachable code due to an erroneous decision 44

FIGURE 14 The interface (left) and the FB network (right) of the composite FB
my_sensor2. ... 52

TABLES

TABLE 1 An example of a test with length 4 ... 22

TABLE 2 Coverage value statistics for Approach 1 .. 41

TABLE 3 Coverage value statistics for Approach 2 .. 41

TABLE 4 Execution time statistics for Approach 2, time is shown in seconds ... 42

TABLE 5 Test suite size statistics for both approaches, size is shown in the
number of methods called (i.e. input tuples from the evolutionary algorithm‟s
point of view) ... 42

TABLE OF CONTENTS

1 INTRODUCTION ... 7

2 METHODS ... 9

3 THE IEC 61499 STANDARD ... 11

3.1 Function blocks .. 11

3.2 Basic function blocks ... 13

3.3 Composite function blocks ... 15

3.4 Service interface function blocks ... 16

4 SOFTWARE TESTING AUTOMATION ... 17

4.1 Model-based testing .. 18

4.1.1 Coverage criteria .. 18

4.1.2 Test case generation techniques ... 19

4.2 Other testing automation techniques .. 20

4.3 Tests, test suites and coverage criteria for the considered problem ... 22

5 EVOLUTIONARY COMPUTATION ... 24

5.1 Evolutionary operators ... 25

5.1.1 Mutation .. 25

5.1.2 Crossover ... 25

5.1.3 Selection ... 26

5.2 Evolutionary algorithms ... 27

5.2.1 Random mutation hill climber ... 27

5.2.2 Genetic algorithm ... 27

5.2.3 Multi-objective optimization .. 28

6 APPROACH BASED ON THIRD-PARTY TOOLS .. 29

6.1 The first stage ... 30

6.2 The second stage .. 30

6.3 The third stage .. 31

6.4 Limitations of the approach ... 31

7 APPROACH BASED ON INTERNAL TEST REPRESENTATION 34

7.1 Function block translation into Java ... 34

7.2 Implementation of the evolutionary algorithm 35

7.2.1 Fitness functions ... 36

7.2.2 Mutation operator .. 36

8 EXPERIMENTAL EVALUATION .. 38

8.1 Systems under test ... 38

8.2 Experiment setup ... 40

8.3 Results ... 41

8.3.1 Results overview .. 42

8.3.2 Examination of generated test suites ... 43

9 DISCUSSION AND CONCLUSIONS .. 46

REFERENCES .. 48

APPENDIX 1 EXAMPLE OF JAVA CODE PREPARED FOR EVOSUITE
EXECUTION ... 52

APPENDIX 2 EXAMPLE OF A TEST SUITE PRODUCED BY EVOSUITE 59

1 INTRODUCTION

Control software is an important element in modern industrial automation
systems (Zoitl & Vyatkin, 2009), examples of which are manufacturing and
material handling systems. It is responsible for the safety and correctness of
their operation. This means that these systems should be properly tested or
verified. One of the recent standards for the design of such control systems is
IEC 61499 (IEC, 2012), which uses function blocks as building units of a software
system. It is aimed at increasing the flexibility and adaptability of such systems
(Zoitl etc., 2009) and is oriented towards distributed control.

One of the ways of ensuring that control systems work correctly is testing
(IEEE, 2013). In testing, a set of test cases, or tests for simplicity, is prepared for
the system to be checked for errors (such sets are called test suites). Each test is a
sequence of calls to the system (e.g. method calls for a particular class in case of
object-oriented programming). Systems of our interest have finite interface
specifications with events and input variables, and thus tests for them will
consist of event submissions with corresponding variable values. Such
submissions can also be represented as method calls.

Unlike software verification, testing cannot guarantee the correctness of
the system in practice (though, in theory, the problem can usually be solved by
preparing an impractically large set of test cases that would cover all parameter
values that would ever be used in production), but can still reveal many errors.
In addition, test execution usually takes less time than the verification
procedure. It is also possible to automate the procedure of test creation. A
simple and formal measure of the quality of a test suite is coverage, which might
be defined in a number of ways.

In the previous studies, much work was done in the field of model-based
testing (Broy, Jonsson, Katoen, Leucker & Pretschner, 2005, pp. 281–387). First,
various coverage criteria were defined (Broy etc., 2005, pp. 295–297), including
the ones which explicitly involve finite-state machines (Cormen, Leiserson,
Rivest & Stein, 2001), entities which are widely employed in the IEC 61499
standard. Then, test generation methods were developed which aimed at
covering the specification-based model of the software. Conversely, the goal of

8

this Master‟s thesis is to design a method of generating tests which cover the
implementation of IEC 61499 conformant software. Test generation for software
implementation is also a known problem, and one of its recent successful
solutions (Fraser & Arcuri, 2011) involves the evolutionary approach (Harman,
2011). In this approach, possible solutions of the problem (in our case, test suites)
are explored during a simulated evolution process, in which they are altered
(mutated) and combined with each other.

To the best of our knowledge, the evolutionary approach, as well as other
implementation-based approaches, was not applied to industrial automation
software and, in particular, to IEC 61499 control systems. This thesis addresses
the mentioned issue and presents two test suite generation methods. The first
method employs two third-party tools and suggest to split the problem into two
parts: first, translate the function block under test to a source code in a general
purpose language (e.g. Java), and second, to optimize the coverage of this
source code. The second approach uses a similar scheme, but is much less based
on third-party software, which makes it more flexible. The proposed methods,
which differ in their advantages and disadvantage, are shown to be applicable
in practice: they are able to detect real faults in control applications.

The following research questions are considered in the thesis:

1. Which features of the IEC 61499 standard are relevant for the test suite
generation problem?

2. How to represent tests and test suites for IEC 61499 applications?
3. Which approaches that tackle the stated problem or similar problems

already exist? Which elements of these approaches can be used in this
thesis?

4. Which evolutionary algorithms can be applied to solve the problem, if
any?

5. How to design the test generation method which will fulfill the goal of
the thesis?

6. How to evaluate the proposed solution?

The rest of the thesis is organized as follows. Section 2 outlines the
employed research methods, which will answer the research questions, namely
the literature review and constructive research. As an overall framework,
design science paradigm is adopted. Next, Sections 3, 4 and 5 describe the
background of the study: the IEC 61499 standard, software testing automation
and the field of evolutionary computation. The contribution of the thesis,
namely two test suite generation methods, is presented in Sections 6 and 7.
Finally, the evaluation and the comparison of the methods are performed in
Section 8, and the results of the thesis are concluded and discussed in Section 9.

9

2 METHODS

This section shortly describes the methodology of the research. To answer the
research questions stated in the introduction, two research methods are used.
The first research method is the literature review (Creswell, 2007). Three fields
of knowledge will be reviewed: the IEC 61499 standard, existing testing
automation techniques and evolutionary computations. Thus, research
questions 1–4 will be answered.

The second research method is artifact construction. Both methods are
embedded in the design science approach (Hevner, 2004), in which a new
artifact (in our case, a new method to generate test suites) is created and then
evaluated to show that it solves some yet unsolved problem or it solves it more
effectively than earlier approaches. The use of this method will help to answer
research questions 5 and 6.

In (Hevner, 2004), a framework is presented which addresses design
science research in information systems. However, the applicability of this
framework exceeds the domain of information systems. According to the
framework, two forces guide the research: business needs and applicable knowledge.
The latter includes such foundations and methodologies as theories, models,
methods, data analysis techniques, measures. The research itself comprises two
interconnected phases: the phase of development, where new constructs are
created, and the phase of evaluation of the construct. Typically, evaluation
follows development, but then the research process can continue with further
development and further evaluation. When new knowledge is created in the
process, it is added to the body of knowledge in the field.

In our case, the necessity to ensure the quality of the control software can
be viewed as an example of a business need. The employed knowledge will be
reviewed in the following sections of the thesis: the IEC 61499 standard,
concepts and approaches related to software testing and test generation, and
the evolutionary methods. The phases of the design research which will be
considered in the following sections are as follows:

10

1. During the phase of development, a new method of automated test
generation for FBs will be created. This phase will be split into two sub-
phases. First, after a review of existing software, a method will be
constructed based on third-party tools: the first tool will reduce the
problem to the more general problem of source coverage test generation,
and the second tool will solve this more general problem. Second, an
approach with more novelty will be developed which will exceed the
limitations of the first approach.

2. During the phase of evaluation, the proposed methods will be tested on
a number of instances, which will be selected from several systems under
test. Such systems are obtained based on a literature review. The
performance (i.e. obtained coverage percentage) and the execution time
of the methods will be measured and compared between each other.
These activities will involve empirical research, as dependent variables
(performance, run time and test suite size) will be measured and the
results of the measurements will be analyzed.

3. This thesis and the conference paper accepted to the INDIN‟2015
conference (Buzhinsky, Ulyantsev, Veijalainen & Vyatkin, 2015) will
report the results into the body of knowledge in the FB testing field.

11

3 THE IEC 61499 STANDARD

The IEC 61499 (IEC, 2012) is an open standard for distributed control and
automation which was introduced in 2005 by The International Electrotechnical
Commission (IEC). This standard is based on its predecessor, IEC 1131. The
purpose of its introduction was to allow the development of distributed control
systems, which can be allocated into many programmable logic controllers
(PLCs), with robust, reusable modules. Nowadays, the standard is attempted to
be used in production. An example is its application in shoe manufacturing
(Colla, Brusaferri & Carpanzano, 2006). However, its application faces several
challenges (Thramboulidis, 2006; Hall, Staron & Zoitl, 2007), namely,
unfamiliarity of practitioners with the semantics of the standard and the
inability of the standard to address the whole development process (e.g. it does
not address requirement elicitation). Nowadays, several tools support the
development of control systems represented in the standard. They include
ISaGRAF (Vyatkin & Chouinard, 2008), NxtStudio (nxtControl, 2014), and FBDK
(Vyatkin etc., 2008).

The IEC 61499 standard suggests viewing a control application as a
number of function blocks (FBs), either basic or composite ones, which are
interconnected to form a network. The concept of function block will be
explained in more detail in the following subsections. When developed,
function blocks are usually represented in the XML format.

3.1 Function blocks

An FB is an entity with a defined interface which can encapsulate both behavior
and state. Thus, FBs and their instances are close to the concepts of classes and
objects in object-oriented programming (Rumbaugh, Blaha, Premerlani, Eddy &
Lorensen, 1991); however, they do neither support inheritance nor
polymorphism. There are two main types of FBs, basic and composite FBs,
which will be described in the following subsections.

12

First, let us define an FB interface which is present in both FB types. In this
thesis, an FB interface is an octuple (EI, VI, DI, EO, VO, DO, MI, MO) where EI is
the set of input event types such that each event instance fired during the
execution of the system belongs to one of these types, VI is the set of input
variables, DI = { D1, …, D|VI| } is the set of input variable domains (domains are
finite and directly correspond to variable types typical for general-purpose
programming language: BOOL, INT, REAL, TIME, ARRAY, etc., and are
described in the standard), EO is the set of output event types (their instances are
also referred to as output actions), and VO and DO are the sets of output variables
and their domains.

Finally, MI and MO are Boolean (i.e. consisting of zeros and ones) matrices
with sizes |EI|×|VI| and |EO|×|VO| respectively that define which events are
associated with which variables. Each step of an FB execution is triggered by
one of its input events. Multiple events cannot occur simultaneously: they will
always be processed sequentially. An association between an input event and
an input variable means that when the event is received, the corresponding
input variable is updated with the value which originates from another FB (in
particular, events and variable values may originate in service interface FBs
which may model the plant‟s sensors). Next, output events can be generated
and output data can be updated during FB execution steps. If an output event is
associated with some output variable, then the new value of the output variable
becomes available for other FBs (or for the plant‟s actuators which also can be
modeled as service interface FBs), when the event is generated. A more precise
definition of association is given in Section 3.3.

A scheme of an FB is presented in Fig. 1, and an example of a concrete FB
is shown in Fig. 2. This FB has three input event types (namely, E1, E2 and E3),
two input variables (a Boolean variable BOOL_VAR and an integer variable
INT_VAR), one output event (O1), and one Boolean variable OV. Furthermore,
the input event E2 is connected with both input variables, the input event E3 is
connected with BOOL_VAR, and the output event type O1 is connected with
output variable OV. It is visible from the figures that FBs are typically
represented in the “head and body” graphical notation, where event
connections are attached to the head, and data connections are attached to the
body.

13

FIGURE 1 A general scheme of an FB

FIGURE 2 An example of a concrete FB

3.2 Basic function blocks

According to the standard, basic FBs are implemented using the concept of
execution control charts (ECCs), which are also referred to as finite-state machines
(FSMs). Formally, a basic FB is a octuple (I, V, D, S, s0, δ, λ, α) where I is the FB
interface, V and D are the sets of internal variables and their domains (internal
variables are separate from input and output ones), S is the set of states (only
one state is active at each moment), s0 is the start state,
δ : S × E × D1 × … × D|VI| → S is the transition function, which determines the
new state when an event is received, λ : S → 2EO is the output function, which
determines the output events for each state, and α : S → L is the algorithm
function, which defines an algorithm (in the Structured Text language L, which is
based on Pascal) to be executed when a state becomes active. Algorithms can
operate with all three kinds of variables: input, output or internal ones. In

14

particular, they are the only means of updating internal variables and moving
data between input, internal and output variables.

All variables inside a basic FB are assumed to have default values (e.g.
false for the type BOOL), which means that transitions with unassociated events
and variables in guard conditions are possible.

ECCs are graphical diagrams for basic FBs. In them, states are connected
to each other with transitions. Transitions are usually triggered by events and
are executed, if guard conditions are met. Such conditions are defined over the
set of input variables VI, which is reflected in the comprehensive domain of the
transition function δ. The choice of transitions to be executed when an event is
received is always deterministic: situations when several transitions can execute
are arbitrated by priorities. It is also possible that no transitions are executed
when an event occurs. Moreover, it is possible that one input event causes
several state changes: this is due to spontaneous transitions, which do not
require events to be executed. If there is a spontaneous transition from the
current state with a satisfied guard condition, then it always executes.

FB invocation by an input event can result in a reaction: an output event
(possibly, several events or even an infinite sequence of events), a state change
and a change of variables. The absence of a reaction can be explained by not
emitting any events, by the lack of event-data associations (even if the event is
emitted, the new data is not visible outside the FB), or by an infinite loop in the
ECC. When an ECC is idle (i.e. there are no spontaneous transitions with
satisfied guard conditions which can be executed right now), the FB‟s state is
fully determined by the values of its variables and the state of the ECC.

An example of an ECC of an FB is shown in Fig. 3. This ECC is compatible
with the interface shown in Fig. 2, and thus can form a basic FB together with it.
The ECC has three states, two of which (S1 and S2) are associated with
algorithms (ALG_T and ALG_F), and one of which (S1) has an output action
(O1). Algorithms ALG_T and ALG_F alter the value of the Boolean output
variable OV.

FIGURE 3 An example of an ECC in a basic FB

15

3.3 Composite function blocks

Inside a composite FB there is a network of FBs of other types with event and
data connections between them. A composite FB is a quintuple (I, B, CE, CD, P)
where I is the FB interface, B is the set of nested FBs, CE and CD are the sets of
event and data connections, and P is the set of predefined input variable values of
nested FBs. Each connection joins outputs and inputs (either events or variables)
of nested FBs to each other, or, possibly, to inputs and outputs of the composite
FB being defined. Predefined variable values are useful when no input
connection is associated with a particular input variable of a nested FB. An
example of a composite FB is shown in Fig. 4 (this is a screenshot made in
NxtStudio). Its interface is visible at the left and at the right of the figure.

FIGURE 4 An example of a composite FB

Composite FBs are convenient abstractions, since they allow reusing
various particular arrangements of FBs of lower levels. Moreover, there is no
requirement to deploy all nested FBs inside a composite FB to a single device.
Thus, composite FBs represent a unified way of representing both distributed
and centralized control systems.

When an event is received by a composite FB, it is propagated to the inner
FBs it is linked to. This event triggers the execution of these FBs, which, in turn,
can generate new events. The standard assumes that the events inside
composite FBs are propagated in the breadth-first manner (Cormen etc., 2001).
We now describe the semantics of event-variable associations more precisely.
Assume that output event e1 is associated with output variable v1 in FB fb1, and
input event e2 is associated with input variable v2 in FB fb2. If e1 is fired by fb1,

16

and then e2 is received by fb2 after some time or immediately after this (e2 is not
obliged to originate in fb1 or even be of the same event type: it is possible for an
FB to accept an event from one FB and read variable values prepared by
another FB), then v2 will be updated with the value of v1 at the moment of firing
e1. If either of the associations is missing, the update will not take place.
However, some implementations of the standard violate the described
principles. For instance, the implementation of the standard from FBDK
assumes that events inside composite FBs are propagated in the depth-first
manner (Cormen etc., 2001) and that all changes in the output variables become
immediately available to FBs which receive their values as input ones, ignoring
possible absences of event-variable associations.

3.4 Service interface function blocks

Until now, we have not considered any interaction of the system of FBs with the
underlying devices. Service interface FBs are responsible for such activities. They
represent low level services provided by either software or hardware of the
devices.

The behavior of service interface FBs is difficult to consider during
automated test generation: to do so, one needs to have formal models of the
devices. However, as service interface FBs typically perform I/O operations,
they can be excluded from consideration and replaced by the inputs and
outputs of composite FBs. This can be done in the following way. Assume that
there is a service interface FB in the top-level FB of the system. Each its input
and output interface element (event or variable) will be transformed to an
output or input interface element of the top-level FB, respectively. Then the
service interface FB will be removed. It will further be assumed that basic and
composite FBs are the only types of FBs during the design of the test generation
method. Service interface FBs may contain errors too, though, so leaving them
out of scope of the thesis is one of the limitations of this study.

17

4 SOFTWARE TESTING AUTOMATION

As mentioned in the introduction, software testing is one of the ways to ensure
its reliability. Many types of software testing are known: unit testing, functional
testing, integration testing, load and stress testing, and so on (IEEE, 2013).
Manual creation of test cases can be hard, as the developer or the tester must
manually check different paths of software execution. Thus, to reduce the cost
of testing and to further improve the reliability of this process, test automation,
and, in particular, automation of input data generation can be considered
(Edvardsson, 1999).

In particular, we are interested in functional and unit testing of control
applications for industrial automation systems. For such systems, an especially
important testing stage is factory acceptance testing, which is the first
integration test of the software (Peltola, Sierla, Aarnio & Koskinen, 2013).
Another approach significant for such systems is loop checking, which “verifies
the I/O connectivity, control strategy and safety aspects of the control loop
application against the specifications” (Peltola etc., 2013). Furthermore,
interviews conducted in (Peltola etc., 2013) have also shown that coverage
analysis and source-based test generation is one of the target areas of functional
software testing. This area is very close to the one which will be dealt with in
the thesis.

Various approaches of software testing automation will be explored in this
section. First, a broad field of model-based testing (Broy etc., 2005, pp. 281–387),
heavily connected with the use of finite-state machines, will be reviewed.
Second, several other approaches, including constraint based and evolutionary
approaches (the latter will be adopted in the thesis), will be considered. The
section will finish with a description of testing formalism which will be
employed in the thesis.

18

4.1 Model-based testing

The general idea of model-based testing (MBT) (Broy etc., 2005, pp. 281–291) is to
employ formal models of software, which can be obtained from the
requirements, to analyze the systems and to generate test suites which can
show conformance of software to its specification. For reactive systems, on
which we focus in this thesis, finite-state machines (FSMs) can serve as such
models. In MBT, coverage of models is usually an important goal to achieve.
However, the topic of the thesis deals with the test coverage of software
implementation. Nevertheless, since FSMs are one of the key entities of the IEC
61499 standard, many ideas from MBT might facilitate the design of a coverage
test generation method. In this section, several approaches to coverage test suite
generation and coverage criteria known from MBT will be reviewed.

4.1.1 Coverage criteria

Coverage criteria of test suites are used to assess their adequacy. Many criteria
can be viewed either in the strict way, or in percentage values. According to
(Broy etc., 2005, pp. 295–297), there are three types of coverage criteria:
structural, functional and stochastic ones. Structural criteria are based on the
structure of the software model – in our case, on the structure of FSMs:

 State coverage requires that all the states are visited during test execution.

 Transition coverage assumes that all the transitions of the finite-state
specification are covered.

 Boundary interior coverage demands all loops to be covered a certain
number of times.

 Path coverage, the strongest structural criterion and the hardest one to
achieve, designates that each path in the specification is covered by at
least one test case.

 Round-trip coverage (Binder, 2000) requires that all transition sequences
which begin and end in the same state (e.g. the initial one), or round-trip
paths, are covered. More precisely, every transition and every loop on
each round-trip path must be exercised at least once.

Functional coverage criteria assume that some model of environment is
available together with the specification. This model specifies several possible
scenarios of system behavior and thus restricts test cases by them. These
scenarios are used to obtain the expected outputs of the implementation, while
the inputs originate from the specification.

The final type of coverage criteria is represented by stochastic criteria. They
are based on the probabilities of entering different parts of the specification,
which are calculated according to the user‟s behavior. In the simplest case,

19

when all the transitions of the model are equiprobable, test case selection is
performed randomly.

In the context of white-box test generation approaches, another
subdivision of coverage criteria into control flow oriented and data flow oriented is
also considered. Control flow oriented coverage criteria are usually defined in
terms of decisions and conditions, which are typically expressed as if-then-else
constructs:

 Decision coverage, or branch coverage, requires that each outcome of each
decision in the specification is covered. For example, if there is an „if‟
decision, then both „then‟ and „else‟ branches must be covered by some
test cases in the test suite (it is possible that both branches are covered in
a single test case).

 Condition coverage demands the coverage of both outcomes of each
condition inside each decision. For example, if an „if‟ decision is
represented as an „and‟ operation of some conditions A, B, and C, then
each outcome of A, B, and C must be triggered by at least one test case in
the same test suite.

 Decision condition coverage requires both decision and condition coverage,
achieved by the same test suite.

 Finally, multiple condition coverage states that each combination of
condition outcomes is reached. For example, if there is a composite
decision (A and B) or (C and D) in an „if‟ or „while‟ clause, all 16 value
combinations for A, B, C, and D should be tested.

Data-based coverage criteria, in contrast to control flow oriented ones, are
defined in terms of a flow graph, which represents the program (e.g. a compiled
version of a model) as a set of linear computations (nodes of the graph) and
decisions, which transfer control between the nodes, and in terms of paths in
this graph. The general idea is to follow variables from the points of their
definition to the points where they are used. In this review, we will omit
concrete data-based criteria, as their descriptions require a large amount of
definitions to be done beforehand.

Another known technique is partition based testing (Gutjahr, 1999). This
technique suggests splitting the input domain (e.g. possible values of some
input variable) into several subdomains. Such divisions can be obtained from
conditions, and the requirement is to have a test in a test suite that involves at
least one input value from each of the subdomains. This makes partition based
approaches similar to the ones which employ structural coverage criteria, which
were reviewed before.

4.1.2 Test case generation techniques

According to (Broy etc., 2005, pp. 323–324), three main test generation
approaches are known: theorem proving, symbolic execution and model

20

checking. Theorem proving deals with partitioning the software model into
several equivalence classes, such that for each equivalence class, any test case in
this class is assumed to check the presence of the same error, typical of this
equivalence class. Once the equivalence classes are identified, each of them is
viewed as a single test case. The partition is based on a formal specification of
the software, and the number of equivalence classes can vary. In particular, it
can depend on the size of the specification. For example, Helke, Neustupny &
Santen (1997) transform predicates from the specification into a disjunctive
normal form (DNF), and the number of equivalence classes is equal to the
number of obtained disjuncts.

The second technique is symbolic execution, which is actually a software
verification approach. It suggests replacing the inputs of the system with
symbols (variables and constraints over them) and thus can handle unbounded
values. Symbolic execution is applicable for both models and code. An example
of the application of this approach is the work in (von Styp & Yu, 2013).

There is also a number of techniques which combine symbolic execution
with constrain solving, including the ones that use symbolic and concrete
execution together. A survey of such techniques can be found in (Cadar & Sen,
2013). Symbolic methods of this kind traverse the control flow graph (CFG) of
the program, maintaining a set of constraints which are required for the current
path to be executed. Tests are obtained by solving these constraints.

The final approach is model checking (Clarke, Grumberg & Peled, 1999),
which is again a verification method. One of the types of model checking
involves testing a model of a system against its temporal specification. In case
of failure, model checking algorithms generate counterexamples, which explain
why the model does not conform to the specification. To apply model checking
for MBT, test specifications are expressed as temporal properties, and the
problem of test generation is simply reduced to the identification of
counterexamples for these specifications. For example, this approach is taken in
(Enoiu, Sundmark & Pettersson, 2013).

4.2 Other testing automation techniques

One of the first approaches to automated test generation was the one
introduced by DeMilli & Offutt (1991). The technique presented in the paper is
based on the constraint satisfaction problem and mutation analysis. The
generated test data approximates relative adequacy, or mutation adequacy: a
test satisfies the relative adequacy criterion, when it causes a certain number of
incorrect programs to fail. In turn, incorrect programs are generated as
mutations of the original program under test. Algebraic constraints are
generated and then solved in order to ensure the failure of mutated programs.

Edvardsson (1999) separates test data generation methods into three types.
The first and the simplest type is random testing: it just suggests randomly
generating input test data for the program unit under test, and, quite obviously,

21

it usually does not perform well in terms of coverage. The second approach is
goal-oriented test data generation, which is subdivided into the chaining approach
and the more successful assertion-oriented approach. In the former, data
dependencies are used to solve branch predicates, and in the latter, assertions
are inserted into the source code either manually or automatically, and then the
test generator attempts to find any path of program execution which breaks the
assertions. The final approach, path-oriented test data generation, is the strongest
one. In this approach, test generator attempted to follow specific paths.

In (Hussain & Frey, 2006), a UML-based unit test case generation method
is presented specifically for the IEC 61499 standard. This method complements
the whole development process also proposed in (Hussain & Frey, 2006). Both
state and activity UML diagrams, which represent software specification on
different levels of abstraction, are subject to test generation. Round-trip path
coverage is attempted to be reached for state diagrams, because it can disclose
missing event/action pairs. To do this, test cases are generated from finite
transition trees constructed from each of the state diagrams. As for activity
diagrams, they are assumed to represent the functionality of basic FBs. Test
cases generated from them cover particular paths and are obtained from control
flow graphs. To enforce the execution of such paths, certain internal variables
are set to specific values, and certain input events are activated.

In (Peltola etc., 2013), MBT is augmented with simplified model creation,
which is supported by code generation from source information stored in the
CAEX format (IEC, 2008). This format is applicable for storing various
hierarchical objects and supports object-oriented concepts. In this case, it is used,
for example, to store information about a control loop within the system. The
suggested approach is applied to a system under test represented in the using
the IEC 61131-3 notation (IEC, 2003). In this study, Conformiq Designer
(Conformiq, 2014) is used for both creating MBT models (which contain state
diagrams and some additional information) and test generation. The coverage
results of the obtained tests are encouraging.

A complex, combined approach to the test generation problem is taken in
(Fraser & Arcuri, 2011), where a tool called EvoSuite is presented. This tool
supports automated unit test case generation for Java source code. Generated
test suites are compatible with the JUnit library. The approach is based on
evolutionary search (see Section 5) and optimizes test suites with respect to
source coverage. Other techniques employed include hybrid search, dynamic
symbolic execution and testability transformation. In addition, test oracles,
which assess the correctness of the program‟s behavior, are automatically
created in the form of assertions which summarize the behavior of the program.
The effectiveness of assertions is estimated using mutation testing, which was
already mentioned when describing the constraint-based approach (DeMilli etc.,
1991). These assertions can be manually checked for semantic correctness by the
developer. The successful results of EvoSuite reflect the words from
(Edvardsson, 1999): “The most promising search methods seems to be

22

simulated annealing and genetic algorithms for their data type independence
and iterative relaxation for its predictability.”

4.3 Tests, test suites and coverage criteria for the considered
problem

In this subsection, some theory about tests, which will be used in the thesis, is
explained, and the problem which will be dealt with in it is stated. To define a
test, we first fix an FB. Assume that it has events E1, …, En and input variables
V1, …, Vm with domains D1, …, Dm, where domains represent possible values of
particular data types. Next, Boolean values Wij signify whether the event Ei is
associated with the variable Vj. In addition, consider an element ⊥ , which does
not belong to any of Dj, j = 1..m. This element stands for “no value” and is used
when an event is not associated with an input variable.

An input tuple is a tuple (Ei, α1, …, αm), where αj, j = 1..m is either from Dj, if
Wij, or is ⊥ otherwise. Thus, an input tuple only contains the values of the
variables a particular event is associated with. Input tuples can be fed to the FB
and thus trigger its single execution step. Also note that since multiple events
cannot arrive simultaneously, there is only one event in the tuple.

A test case, or test for short, is a finite sequence of input tuples. Note that
outputs are not included into tests, because they are not significant for defining
coverage criteria and maximizing them. A test can describe a series of FB
execution steps, one step per input tuple, between which the FB persists its state.
It is also assumed that before test execution the FB is in its initial state: all ECCs
are in their start states, and all the variables are initialized with their default
values. An example of a test for an FB with the interface from Fig. 2 is shown in
Table 1.

TABLE 1 An example of a test with length 4

Tuple index Ei α1 (BOOL_VAR) α1 (INT_VAR)

1 E3 true ⊥
2 E1 ⊥ ⊥
3 E2 false –100
4 E2 false 42

Finally, a test suite is a finite set of tests. The purpose of considering test
suites as objects subject to optimization is that many tests can be required to
achieve full coverage of a software system.

We are now ready to define some coverage measures of basis FBs, which
are based on the measures reviewed previously:

 Transition coverage is the share of all transitions inside the ECC of the FB
which are executed at least once when all the tests are executed.

23

 n-transition coverage is the share of executed n-tuples of consequent
transitions of the ECC. For example, for n = 2 this means the share of all
transition pairs.

 Branch coverage is the branch coverage of the source code (see section
4.1.1) which represents the FB. In this case, it is assumed that the source
is obtained from the FB using some deterministic transformation.

As for coverage measures for composite FBs, they might be calculated as
integrated measures of the inner basic FBs. One might count either instances or
instance types inside a composite FB (we will further consider the coverage of
instance types). In addition, one can also measure the number of visited event
and data connections.

At this point, we are ready to answer three of the six research questions
stated in the introduction. First, we have identified that the features of the
IEC 61499 standard which are relevant for test suite generation are the
interfaces of FB and the internal finite-state structure of basic FBs (this answers
research question 1). The interface of an FB, or, more precisely, its input
interface, which consists of input events and variables, defines the form of the
test elements – input tuples. In turn, ECCs inside basic FBs can be employed to
define coverage criteria, such as transition coverage. Second, research question
2 about the representation of tests and test suites for IEC 61499 applications has
just been answered in this subsection. Next, in Section 4.2 we have reviewed
several existing test data generation techniques and, in particular, the
evolutionary approach taken in (Fraser & Arcuri, 2011). This approach will be
considered in more detail in Section 5. Thus, we have answered research
question 3 and will answer research question 4 in the next section.

Based on the formalism presented in this subsection and on the
knowledge reviewed previously, the problem of the research can be defined:
design a method which generates test suites and maximizes one of the coverage
criteria for a given FB (either basic or composite). Further we will use transition
coverage, n-transition coverage and branch coverage as coverage criteria.
Among them, transition coverage is the one widely used in MBT, and it
employs a specific feature of our problem – finite-state structure of basic FBs. N-
transition coverage is not so popular, but it is an example of a more complex
coverage measure. Eventually, branch coverage is widely applied in software
engineering and, unlike other considered coverage criteria, requires that all
parts of algorithms inside basic FBs are covered. To design the test generation
method, we will take the evolutionary approach.

24

5 EVOLUTIONARY COMPUTATION

In this section, the concept of evolutionary computation will be presented.
Several simple (e.g. the random mutation hill climber (Mitchell, Holland &
Forrest, 1994)) and more complex (e.g. the genetic algorithm (Koza, 1992))
algorithms will be presented. The presented algorithms might be used within
the test generation methods which will be proposed in the thesis.

Evolutionary and genetic algorithms are general optimization methods
which are applicable for various discrete and continuous problems. Problems,
for which evolutionary algorithms are applied, are usually not solvable in
polynomial time by precise algorithms (unless P equals NP). Such problems
include, for example, the travelling salesperson problem (Larrañaga, Kuijpers,
Murga, Inza & Dizdarevic, 1999) and the job shop problem (Della Croce, Tadei
& Volta, 1995). Evolutionary algorithms usually do not guarantee that an
optimal solution of the considered problem will be found in a reasonable time.
Still, they are effective in practice.

The basic idea of evolutionary computation is as follows. Evolutionary
algorithms use some particular representations of possible solutions (also called
individuals) and usually reach new solutions by making small adjustments to
initial ones (these changes are called mutations) or by combining different
solutions (this operation is known as crossover). A quality measure, fitness
function, which maps individuals into the real axis, guides the evolutionary
search (we further assume that the aim is to maximize the fitness function), so
that the worse individuals are discarded, and the best ones are retained. This
procedure is known as selection, and its exact implementation (e.g. how to
discard individuals, how many individuals to discard) varies among different
evolutionary algorithms.

Many concrete techniques exist that employ evolutionary ideas. In the
following subsections, basic evolutionary operators (mutation, crossover, and
selection) and several concrete evolutionary methods will be reviewed.

25

5.1 Evolutionary operators

Throughout the review of the evolutionary operators, we will consider two
optimization problems. The first one, the OneMax problem (Schaffer &
Eshelman, 1991), is very simple and well-known in the literature. In this
problem, a certain bit string of length n should be guessed, which corresponds
to the maximal value of the fitness function. For simplicity, it is often assumed
that this string is formed of n ones. In this case, the fitness function of a bit
string is equal to the number of ones in this string, and the goal is to identify the
n-one string being guided by fitness function values. No prior knowledge of the
target string is assumed. The second considered problem is the problem stated
in this research: find a test suite with a high value of a chosen coverage criterion.
The selected coverage criterion is used as the fitness function.

5.1.1 Mutation

The idea of the mutation operator is to apply a small change to an individual.
This operator receives an individual and, assuming the availability of some
source of randomness, produces a new individual. The following mutations are
typically used for the OneMax problem:

 Flip a bit on a random position.

 For each position, flip a bit at this position with the probability 1/n.

As for the coverage test generation problem, possible mutations are:

 Select a random test in the test suite, select a random position in it,
randomly replace an event at this position, and randomly generate input
data for this event.

 Select a random test in the test suite, select a random input data value,
and randomly generate a new value.

 Select a random test in the test suite, select a random input data value,
and adjust this value (e.g. for integer variables, either add or subtract a
small number).

5.1.2 Crossover

The crossover operator uses two individuals to generate one or two new
individuals. Similarly to the mutation operator, it needs to access some source
of randomness. For OneMax and for string optimization problems in general,
several typical crossover operators are known:

 The single-point crossover operator selects a random position and
exchanges the portions of the strings after this position.

26

 The two-point crossover operator selects two random positions and
exchanges the portions of the strings between them.

 The uniform crossover operator exchanges strings on each position
independently with some probability (often ½).

The described crossover operators are illustrated in Fig. 5, where the
exchanged parts of bit strings before and after the transformations are shown in
blue.

FIGURE 5 Examples of three crossover operators: single-point (top), two-point (middle),
and uniform (bottom)

Similar ideas can be applied for the test suite optimization problem, where
an individual is a test suite. Possible ideas of crossover between test suites
include:

 Exchange two different test suites on the test basis according to one of
the three crossover types.

 Select two random tests from both test suites and exchange them on the
event basis according to one of the three crossover types.

5.1.3 Selection

The selection operator is typically applied in algorithms which operate with
many individuals in each time, like the genetic algorithm, which will be
reviewed further. In this case, the problem is to retain a certain number of
individuals while discarding the others. Possible options for the selection
operator include:

 Sort the individuals according to their fitness values and select the
required number of best ones. This technique is the simplest one.

 Tournament selection: for each individual to choose, select several random
individuals (often 2) and then select the best one among them.

 Roulette selection: align the individuals on the [0, 1] segment with the
lengths proportional to their fitness values, and then select the required

27

number of individuals by uniformly drawing points from the segment.
This process is illustrated in Fig. 6.

FIGURE 6 The [0, 1] segment, the random choice of point on which determines the selected
individual (x, y, or z) in roulette selection

5.2 Evolutionary algorithms

Several evolutionary algorithms will be presented in this subsection. We will
start from the trivial random mutation hill climber, and continue with the
genetic algorithm (GA) and multi-objective optimization. A more thorough
survey of evolutionary algorithms and metaheuristics (algorithms from a more
general class of optimization techniques) can be found in (Boussaïd, Lepagnot
& Siarry, 2013).

5.2.1 Random mutation hill climber

The random mutation hill climber (RMHC) (Mitchell etc., 1994) is a simple
evolutionary algorithm. It stores only one individual, the current solution, in
memory. First, an initial solution x is randomly generated (e.g. a random bit
string in case of OneMax). Then, until the stopping criterion is reached, the
following actions are iterated: a new solution y is generated as a mutation of x,
and, if the fitness value f(y) ≥ f(x), then x is replaced by y. The following
stopping criteria are often used:

 A certain number of iterations are executed.

 A certain fitness value is reached.

 There has been no fitness improvement during a certain number of
iteration (so-called stagnation).

5.2.2 Genetic algorithm

The genetic algorithm (Koza, 1992), or simply GA, is an algorithm which stores
multiple individuals (circa 100) at the same time. This pool of individuals is
called a generation. Initially, the generation is comprised of randomly generated
individuals. After that, on each iteration some individuals are subject to
crossover and mutation, and then a new generation of the same size is selected
from both the old and the new individuals. The scheme of a single iteration is
shown in Fig. 7.

28

FIGURE 7 The general scheme of an iteration of the genetic algorithm

Many variations of the GA exist. They include, for example, the island GA,
where there are several generations on several computational devices with
subtle migration between them, and the steady-state GA, where each iteration is
performed on just two individuals.

5.2.3 Multi-objective optimization

Multi-objective optimization (Deb, 2001) is different from the classical
evolutionary methods in the way that it aims to optimize several criteria
simultaneously. This approach might be reasonable for the problem of coverage
test generation, because it would allow considering several coverage criteria in
one run. The size of the test suite might be also considered as an additional
criterion to minimize, because, among two test suites with the same coverage,
the smaller one is often more beneficial.

Let f1, … , fn be the criteria to maximize. A solution x is dominated by a
solution y, if fi(y) ≥ fi(x) for all i, and fi(y) > fi(x) for at least one i. If neither x
dominates y nor y dominates x, then these individuals are incomparable. Multi-
objective algorithms, like NSGA-II (Srinivas & Deb, 1994), often involve an
approximation of the so-called Pareto frontier, which is the inclusion maximal set
of solutions not dominated by each other. The quality of the approximation,
which can be measured as the difference between the hypervolumes (Deb, 2001,
p. 332) of the optimal frontier and the found one, is usually improved during
the algorithm‟s execution. Multi-objective evolutionary algorithms are actively
developed presently. A survey of recent multi-objective algorithms in this field
can be found in (Zhou, Qu, Li, Zhao, Suganthan & Zhang, 2011).

29

6 APPROACH BASED ON THIRD-PARTY TOOLS

Now, having finished reviewing the literature and answering research
questions 1–3 (in the end of Section 4) and 4 (in Section 5), we are finally ready
to start to construct test generation methods. One of them will be presented in
this section, another one in Section 7, and Section 8 will deal with their
evaluation. Thus, the remaining research questions 5 and 6 will be resolved.

The first proposed coverage test suite generation approach combines FB
transformation to Java source code and the evolutionary search of test suites
which maximize the coverage of the obtained Java code. The approach employs
two third-party tools: FBDK (http://www.holobloc.com/doc/fbdk/) and
EvoSuite (Fraser & Arcuri, 2011) and supports the optimization of branch and
transition coverage. The approach is summarized in Fig. 8. The input of the test
generation method is an .fbt XML file which describes the FB under test. Such
files can be created using development environments such as FBDK or
NxtStudio (nxtControl, 2014). If this FB is composite, XML descriptions of the
nested FBs should also be available. The method comprises three stages, which
are described below. The first two stages of the method were implemented in
Java, and a bash script was written for the third stage. After describing the
stages of the method, we discuss its limitations.

FIGURE 8 The scheme of the approach based on third-party tools

30

6.1 The first stage

A third-party tool, FBDK, transforms the .fbt description of the FB under test to
a Java source file consisting of a single Java class. For a basic FB, it creates a Java
class with state, event and variable declarations, event processing methods and
methods for its algorithms. A class for a composite FB declares its nested FBs
and creates connections between them in its constructor. This transformation is
automated and is implemented as a call to a Java library supplied with FBDK.

6.2 The second stage

On the second stage, the obtained source code is transformed to prepare it for
evolutionary test generation, which will be done by another tool. It is important
that these transformations must not alter the behavior of the FB. First, a new
Java class is created which includes the FBDK-generated class as a nested one.
For composite FBs, all their dependencies are also included as nested classes.
Nested classes are marked as private to suppress the generation of tests which
call their methods. Next, for each input event of the FB under test a public
method is created in the outer class mentioned above. Thus, only such event
methods are accessible from the outside. Each generated event method accepts
the variables associated with the input event as arguments, updates variable
values of the proper instance of a nested FBDK-generated class and executes a
corresponding event method on this instance.

Additionally, for each transition in each nested FB class, an empty private
method is added to the outer class. This method is executed along with the
execution of the code corresponding to the transition and, due to its emptiness,
does not change the behavior of FBs. The purpose of these methods is to allow
test generation which optimizes transition coverage (see the next stage): if all
these methods are covered, then all transitions are covered, and vice versa.
When branch coverage is selected to be optimized instead, such methods are
not generated.

An example of code obtained from FBDK and transformed according to
the rules described in this subsection, including additional dummy methods for
transitions, is shown in Appendix 1. This code represents a composite FB
my_sensor2 from the PnP system, which will be described in Section 8.1. The
interface and the FB network of this FB are presented in the beginning of the
appendix.

31

6.3 The third stage

On the third stage, the modified source code is fed to EvoSuite, a tool which
generates tests for Java programs using branch coverage as the fitness function.
It implements several evolutionary algorithms, among which the default
steady-state GA is chosen. Depending on the coverage criterion employed,
EvoSuite is configured to either generate tests to cover the whole class (in case of
branch coverage), or to cover only the transition methods created in the end of
the previous stage (in case of transition coverage). The search is performed for a
fixed time span. The result of EvoSuite execution is a JUnit test suite. As only
event methods were left public in the previous stage of the approach, such test
suites are comprised of sequences of their executions supplied with input
variable values. Here is the example of a test from Table 1 as it would appear in
the body of a single JUnit test:

 @Test

 public void test_0() {

 ExampleFB fb = new ExampleFB();

 fb.service_E3(true);

 fb.service_E1();

 fb.service_E2(false , -100);

 fb.service_E2(false , 42);

 }

In this case, the JUnit test suite consisting of this single test case is an
ordinary Java class with the single method test_0() inside. An example of an
entire test suite for a composite FB is presented in Appendix 2. It comprises of
two tests. This test suite was generated by EvoSuite, in response to the FB
description from Appendix 1.

6.4 Limitations of the approach

The main limitation of the approach is the small number of supported coverage
goals. It natively supports branch coverage, since this is the coverage measure
optimized by EvoSuite. The method also supports transition coverage, which is
implemented by method stub insertion into the Java code, so that the coverage
of all these method is equivalent to the coverage of all transitions of all ECCs
inside the FB under test. One might also implement state coverage in a similar
way. Nonetheless, there are coverage measures which cannot be implemented
by method insertion.

An example of such a measure is n-transition coverage for n > 1: in this
case the objects subject to coverage are tuples of consequent transitions, and the
coverage of each tuple requires the execution of several code segments in a

32

particular order. Hence, the method insertion trick is not applicable. Other
examples of coverage criteria not supported by the approach are boundary
interior coverage and path coverage. A possible way of addressing such
coverage measures is to consider the order of executed code segments at
runtime. However, the use of FBDK to translate FBs into Java does not allow this
solution. In the next section, the facilitation of the translation implemented
specifically for this thesis will allow us to handle such coverage criteria as n-
transition coverage.

Another limitation, in case of branch coverage, is the presence of code
branches which are always covered or are impossible to cover at all due to the
technical artifacts of the FB translation to Java. An example of a code segment
which is covered in every test is the constructor of the FB class. Next, consider
the following example of a branch of FBDK-generated code which is impossible
to cover:

 public void service_INIT() {

 if ((eccState == index_START)) {

 state_INIT();

 transition_OR_2();

 }

 }

This method determines the right transition to execute in case of the

incoming event INIT. If we assume that the START state is only one in the ECC,
then the condition eccState == index_START always holds, and thus the
implicit „else‟ branch of the conditional operator is always missed. This fact
does not imply the fault in the FB, but the branch coverage of the FBDK-
generated code of this FB will never become 100%.

Finally, while translating FBs into Java, FBDK assumes nested FBs of a
composite FB are executed in the depth-first search order, while the IEC 61499
standard specifies the breadth-first search traversal. This means that the
execution of composite FBs in FBDK-generated code is not truly equivalent to
the behavior specified by the standard. Imagine a composite FB fb, such that
several basic FBs fb1, …, fbn inside emit different events e1, …, en when they are
executed, and these events are connected to the event outputs of fb. Then,
depending on the execution order of fb1, …, fbn, fb will generate output events
e1, …, en in different order. As for the execution of basic FBs, such problems do
not arise, and the Java code simply presents the behavior of an ECC explicitly.

Moreover, if the developer of FBs uses FBDK, then the problem does not
arise even for composite FBs, because the behavior shown by FBDK is exactly
the one demonstrated by the FBDK-generated Java code, and the
transformations described in Section 6.2 do not alter its behavior. However, if
one applies a different development tool (e.g. NxtStudio), it is recommended to
check whether the generated tests are executed in the same way by the
development tool and the Java code. One of the reasons for tools with different
implementations of the standard to exist is that the IEC 61499 standard is

33

imprecise in some aspects, including the semantics of FB execution. Thus, one
cannot speak about the equivalence of the behavior of a code to the behavior of
the corresponding FB without specifying the concrete implementation of the
standard.

34

7 APPROACH BASED ON INTERNAL TEST
REPRESENTATION

The second test generation approach, which is presented in this section, is
aimed to overcome some of the limitations of the approach based on third-party
tools and to get better execution times by facilitating the domain knowledge.
The scheme of the approach is presented in Fig. 9. The first stage of the method
involves the translation of FBs into Java similar to the one performed by FBDK.
However, it is more flexible and allows processing visited FB parts (e.g.
transitions and states) at runtime, which widens the set of supported coverage
criteria (see Section 6.4). The second stage of the method constitutes running a
simple evolutionary algorithm, the random mutation hill climber (RMHC)
mentioned in Section 5.2.1, to find a proper test suite for the given coverage
criterion. In the remainder of this section we describe both stages of the method.

FIGURE 9 The scheme of the approach based on internal test representation

7.1 Function block translation into Java

In this subsection, instead of providing the complete description of the
implemented FB translation to Java, which is mostly technical, we focus on
several features of the translations which are important in the context of this
thesis. These features are listed below.

35

 The translation explicitly schedules the execution of basic FBs inside a
composite FB. The units subject to scheduling are only basic FBs: all
boundaries of composite FBs, except the ones of the FB under test, are
removed for simplicity. That is, if FB fb2 was nested inside fb1, and fb3 was
nested inside fb2, then fb2 will be removed and fb3 will be directly nested
inside fb1. If there was a connection entering fb2 and further going to fb3,
then after the boundary removal it will directly go to fb3. The similar
property holds for connection originating in fb3 and escaping fb2.

 It is possible to execute FBs both in the breadth-first and in the depth-
first search order. The first strategy is specified by the IEC 61499
standard, and is used, for example, in the NxtStudio development
environment, and the second one is assumed in FBDK. More generally, if
one has an FB development tool with a particular implementation of the
standard (which possibly violates the standard in some minor ways, like
FBDK does), it is easy to modify the proposed approach to generate the
code with the behavior representing the mentioned implementation.

 For a basic FB, the translation creates a class with state and variable
declarations, algorithm methods and event processing methods, which
accept relevant variable values as parameters. Thus, the translation is
visually similar to the one performed by FBDK. To simplify the
translation of algorithms, their code is still generated by FBDK. Classes
for composite FBs embody all the classes for basic FBs they depend on as
nested ones.

 While executing a transition, a special method is called which accepts the
information about the transition (its source, destination and guard
condition). This method, which is implemented outside the
automatically generated code, calls a processing routing specific for the
selected coverage criterion. For instance, for transition coverage this
routine counts the number of unique executed transitions, and for branch
coverage it does nothing, because this criterion depends only on covered
pieces of code.

7.2 Implementation of the evolutionary algorithm

There are many options among evolutionary algorithms to choose from. The
number of these options is far beyond the number of algorithms reviewed in
Section 5.2. For simplicity, the random mutation hill climber was implemented.
Implementations of algorithms which use generations with more than one
individual (e.g. the genetic algorithm) were not considered due to the fact that it
is always possible to construct a solution which is not worse than a given set of
solutions. To do this, it is sufficient to merge all the tests from the solutions: this
will ensure that the obtained composite test suite will cover all system parts
covered by the initial test cases. It is also possible to minimize the composite

36

test suite (i.e. remove the tests which can be removed without the loss of
coverage) to improve its sizes (smaller test suites are usually preferred to larger
ones because they take less time to execute and are easier to comprehend). Thus,
one individual in the generation is sufficient.

The evolution starts with a single test composed of a single randomly
generated input tuple, and stops if the fitness value has not improved during
the last 1000 mutations. Below we describe our implementation of fitness
functions and our choice of the mutation operator.

7.2.1 Fitness functions

The employed fitness functions naturally correspond to chosen coverage
criteria: branch, transition and 2-transition coverage. They additionally take into
account the size of the test suite: for two test suites with identical coverage
values, the shorter one is preferred.

The branch coverage fitness value is computed by the means of the JaCoCo
Java code coverage library (http://www.eclemma.org/jacoco/). Before each
fitness evaluation, it processes the .class Java byte code corresponding to the FB
under test to insert information used in determining the branch coverage value.
Unlike branch coverage, the evaluation of transition and 2-transition coverage is
much simpler: the information about unique executed transitions and transition
pairs is maintained during test execution as described in the end of Section 7.1.
In this case, the special transition processing method calls a routing which
updates the set of unique executed transitions or transition pairs.

Finally, each evaluated test suite is executed with the help of reflection, the
feature of Java which permits the execution of methods when their names and
parameters and unknown at compile time, but known at run time. An
alternative, but much slower solution would be to compile each test suite before
fitness function evaluation.

7.2.2 Mutation operator

The mutation operator is parameterized by three numbers: prem – the probability
to try reducing the test suite, padj – the probability to try adjusting the test suite
by adding or modifying input tuples, and Nop, the maximum number of
operations which can be performed during mutation. The last parameter
controls the strength of the mutation. In our study, we use prem = 0.3, padj = 0.4
and Nop = 3. The detailed description of the mutation of a test suite is listed
below.

 Removal mutation. With the probability of prem either a random test or a
random input tuple in a random test (each option with the probability of
½) is attempted to be removed from the test suite. In this case the new
individual will be accepted by the hill climber, if its coverage value has
not been decreased as a result of mutation. This mutation is aimed to

37

reduce the size of the test suite, which is naturally increased during the
evolution.

 Copy mutation. If the removal mutation was not applied, with the
probability if padj select a random test, copy it and perform a random
number of adjustments of the test, which is uniformly distributed
between 1 and Nop. Each adjustment is either a replacement of a random
input tuple in the test by a randomly generated one, or an insertion of a
new random generated input tuple into a random position within the
test (each option with the probability of ½). For this mutation, it is crucial
that the test is copied prior to the adjustment since this ensures than
none of the coverage goals passed by the old test suite will be missed by
the new one. However, the disadvantage of such mutations is the fast
increase of the test suite size, which should be compensated by removal
mutations.

 Creation mutation. If other mutations were not applied, generate a new
test and insert it into the test suite. The length of the new test is
uniformly distributed between 1 and Nop.

38

8 EXPERIMENTAL EVALUATION

This section describes the conducted experimental evaluation of the proposed
test generation approaches applied to two sets of FBs and the obtained results.
The first, obvious objective of the experimental evaluation is to evaluate the
proposed test generation methods – in terms of achieved coverage values,
execution time and size of the generated test suites. An additional objective is to
compare both approaches.

8.1 Systems under test

We employ two software systems which are designed to control simple plants
in the laboratory environment. The first system or, more precisely, a set of
similar systems, is the control application for the pick-and-place (PnP)
manipulator which was earlier used in (Patil, Vyatkin & Sorouri, 2012) to
evaluate an approach to a different problem. The system consists of 31 basic
and 17 composite FBs implemented in FBDK.

One of the hardware implementations of this device is shown in Fig. 10 as
a screenshot made in FBDK (this tool can be used not only to develop FBs, but
also to model the interaction of the control system with the model of the
hardware). This screenshot shows two horizontal and one vertical cylinders
connected one to another. This system of cylinders should pick objects from
three plates and place them into the bin to the left of the plates. The screenshot
from FBDK in Fig. 11 shows the FB network of the FB PnpCylinders, which
models the connections between the cylinders.

39

FIGURE 10 The scheme of one of the implementations of the pick-and-place manipulator

FIGURE 11 The FB network corresponding to the model of three connected cylinders
shown in Fig. 10

The second system is the application which regulates a heat production
plant (HPP) shown in Fig. 12. In (Peltola etc., 2013), an IEC 61131 application is
mentioned, and the system we work with is the result of the redesign of this
application to comply with the IEC 61499 standard. The NxtStudio software
(nxtControl, 2014) was used for the redesign. FBs designed in NxtStudio can be
processed with FBDK after minor adjustments. This version of the system,
however, is not very modular and has only one composite FB, which represents
the entire application. Twelve other FBs are basic.

40

FIGURE 12 Heat production plant

The number of input events among the FBs from the described control
systems ranges from 1 to 7 with the median value of 2. The number of input
variables among these FBs is generally higher: it ranges from 0 to 34 with the
median value of 6. Basic FBs have between 2 and 15 states and between 2 and 21
transitions with median values of 3 and 4, respectively. Finally, the length of
FBs, counted as the number of lines of resulting Java code, ranges from 92 to
4725 with the median value of 320. Large source size (i.e. more than 1000 lines
of code) are typical for composite FBs, since the code for FBs on which the
composite FB depends is included into the code of the composite FB.

8.2 Experiment setup

We separately evaluated the approach based on third-party tools (it is described
in Section 6, below it will be referred to it as Approach 1) and the approach
based on internal test representation (it was described in Section 7 and will be
called Approach 2). The computation was performed on a PC with a 2.2 GHz
Intel Core i7-2670QM CPU. For each FB, each considered coverage measure, a
single run of each approach was performed. Branch and transition coverage
were aimed to be maximized for both methods. Additional experiments for 2-

41

transition coverage were performed only with Approach 2, since Approach 1
does not support this coverage criterion.

We used different stopping criterions for different approaches. For
Approach 1, a fixed time span was given for EvoSuite to find the solution. Note
that the execution time of FB translation by FBDK and the time of the
adjustment of the obtained code were not considered since they lasted less than
a second. Ten minutes were available for EvoSuite to generate tests for basic FBs,
and twenty minutes for composite ones. The time given to find a test suite for
composite FBs was larger since the size of Java code generated for them was
also larger. As for Approach 2, due to its manual implementation it was
possible to use a better stopping criterion based on stagnation: the run was
stopped after the fitness value did not improve during 1000 last evaluations.
Finally, both approaches stopped if they obtained 100% coverage.

Each test suite found by each approach was additionally minimized after
the runs. For Approach 1, this operation employed the built-in feature of
EvoSuite, and for Approach 2, a greedy procedure was used: input tuples were
removed from the test suite until no tuple could be removed without the
decrease of the coverage value.

8.3 Results

The results of the experiments are outlined in Tables 2–5, where basic statistics
is shown for all groups of experiments. Coverage value statistics is shown for
both approaches in Tables 2 and 3:

TABLE 2 Coverage value statistics for Approach 1

FB type, coverage
criterion

Min First quartile Median Third quartile Max

Basic, branch 54.1% 86.4% 91.7% 94.4% 98.7%
Composite, branch 32.0% 77.0% 83.0% 89.7% 94.3%
Basic, transition 55.6% 100.0% 100.0% 100.0% 100.0%
Composite, transition 5.7% 92.0% 100.0% 100.0% 100.0%

TABLE 3 Coverage value statistics for Approach 2

FB type, coverage
criterion

Min First quartile Median Third quartile Max

Basic, branch 42.9% 71.4% 82.7% 93.0% 98.8%
Composite, branch 7.7% 56.6% 66.7% 86.6% 91.2%
Basic, transition 55.6% 100.0% 100.0% 100.0% 100.0%
Composite, transition 5.7% 70.0% 92.2% 100.0% 100.0%
Basic, 2-transition 41.2% 100.0% 100.0% 100.0% 100.0%
Composite, 2-transition 0.4% 64.6% 86.4% 99.7% 100.0%

42

Meaningful execution time statistics is available only for Approach 2, since
for Approach 1 had a priori determined execution times (10 minutes for basic
FBs, 20 minutes for composite FBs). It is provided in Table 4:

TABLE 4 Execution time statistics for Approach 2, time is shown in seconds

FB type, coverage
criterion

Min First quartile Median Third quartile Max

Basic, branch 2.4 3.3 4.8 7.7 17.4
Composite, branch 3.2 18.2 38.0 65.0 298.9
Basic, transition 0.0 0.0 0.1 0.3 2.5
Composite, transition 0.0 1.2 5.4 15.2 160.6
Basic, 2-transition 0.0 0.1 0.2 1.1 29.4
Composite, 2-transition 0.0 3.9 37.8 185.4 1646.9

We additionally provide statistics of test suites for both FB types and both

approaches, which is available in Table 5:

TABLE 5 Test suite size statistics for both approaches, size is shown in the number of
methods called (i.e. input tuples from the evolutionary algorithm‟s point of view)

FB type, approach Min First quartile Median Third quartile Max

Basic, Approach 1 1 4 12 27 77
Basic, Approach 2 1 4 11 17.5 52
Composite, Approach 1 1 8 32 64 95
Composite, Approach 2 1 5 39 47.75 89

8.3.1 Results overview

We start analyzing the results with the overview of the data presented in the
tables. First of all, coverage values are better for basic FBs independently of
coverage criteria, and this can be explained by the size difference and the fact
that perfect coverage is not always required for composite FBs, unless they
represent entire software systems.

Next, transition coverage was generally easier to achieve than the branch
one. Perfect (100%) result was achieved with Approach 1 for more than 75% of
the basic FBs (in fact, for 42 out of 43) and for more than 50% (11 out of 18)
composite FBs. This can be explained by the fact that achieving transition
coverage is an easier goal: there is no need to cover all execution paths of ECC
algorithms. As for Approach 2, its results are worse, but still encouraging.
Approach 2 is also capable of optimizing 2-transition coverage, unlike
Approach 1, and the values of 2-transition coverage are quite close to the ones
of transition coverage for Approach 2.

Following that, branch coverage values are generally lower than the
transition coverage ones, and again, they are better for Approach 1. However,
as mentioned in Section 6.4, the presence of always covered and unreachable
goals does not allow to properly compare branch coverage values of both

43

methods. Thus, we manually examined the tests generated by the approaches
and confirmed the superiority of the Approach 1 on branch coverage. Detailed
comments on this examination will be given further.

As we see, Approach 1 outperforms Approach 2 in terms of obtained
coverage values. We additionally tried to improve the results of Approach 2 by
tuning its parameters prem, padj, and Nop with the irace tool (López-Ibáñez,
Dubois-Lacoste, Stützle & Birattari, 2011) and by running the approach twice
and combining two test suites, but such adjustments weakly influenced the
performance of the Approach 2. The attempt to apply branch coverage as a
secondary optimization criterion, that is, if the transition coverage value of two
test suites is equal, to prefer the one with higher branch coverage, did not
improve its performance either. However, as Table 4 suggests, Approach 2
requires significantly less time (less than one minute in more than 50% of cases)
compared to Approach 1, which takes 10–20 minutes to obtain high coverage
values (we remind that the execution times were fixed for Approach 1), not to
mention its ability to support more coverage goals.

We finally compare the sizes of test suites obtained by the two approaches,
which are shown in Table 5. Median sizes of test suites obtained by different
approaches are very close to each other, but the third quartile of the size is
larger for Approach 1. This is not surprising, since this approach produces test
suites with better coverage values on some FBs, and to achieve better coverage
one might need larger test suites.

8.3.2 Examination of generated test suites

After the results had been obtained, the generated tests were run in the Eclipse
IDE (https://eclipse.org/) with the EclEmma plugin
(http://www.eclemma.org/), which integrates Eclipse with JUnit. Uncovered
FB parts were manually examined. Based on a brief examination of the
generated test suites, several conclusions can be drawn:

 If inaccessible coverage goals mentioned in Section 6.4 are not
considered in branch coverage, then 18 out of 43 basic FBs and 4 out of 18
composite FBs are perfectly covered by the test suites generated by
Approach 1. As for Approach 2, these numbers are 16 and 4 respectively.

 In EvoSuite and JaCoCo, branch coverage assumes the coverage of each
combination of conditions in an „if‟ decision. If this condition is
weakened to just cover both „then‟ and „else‟ branches in each decision
(i.e. to have tests which trigger each of the two possible outcomes of the
whole decision, regardless of the number of conditions in it), then
additionally 6 basic FBs and 1 composite FB can be considered as
completely covered.

 Some basic FBs, especially from the PnP application, contained
algorithms which were not associated with any state and thus were
inaccessible. This can be considered as a fault of the software design, but

44

one does not need tests to understand that they are unreachable: such
methods can be detected with static code analysis, for example
performed by the Eclipse IDE.

Next, we examined tests suites produced by Approach 1 in more detail.
Since the evolutionary approach does not guarantee the optimality of solutions,
we also attempted to cover the uncovered parts in basic FBs manually. Gaps in
branch coverage for two FBs were covered by augmenting the suite generated
for the branch criterion with a test from the transition-based test suite. For
another FB, it was quite easy to modify one of the automatically generated test
suites to improve its branch coverage.

Finally, we identified one basic FB from the HPP system with several
states inaccessible due to a forgotten update of an internal variable and two
basic FBs with algorithm branches inaccessible due to faults in „if‟ decisions.
This last situation is illustrated in Fig. 13, where an evidently unsatisfiable
decision (AI.value < PRESET_H.value & AI.value >=

PRESET_H.value) prevents the execution of the branch colored in red. Other
colors denote partial coverage (yellow) and proper coverage (green). The
coloring was automatically performed by EclEmma.

FIGURE 13 An example of unreachable code due to an erroneous decision

In addition, we were able to explain the low coverage results for two
composite FBs. The first FB from the PnP system, which had got 32.1% and 5.7%
for branch and transition coverage respectively, had missing event connections
from its input interface to nested FBs, which signifies an error during its
development in FBDK. Some parts of the second FB, the only composite FB in

45

the HPP system, which had got 64.4% for both branch and transition coverage,
were inaccessible due to fixed default values of some variables. It also included
faulty basic FBs with inaccessible parts.

All software faults detected by test suites generated by Approach 1 were
also possible to detect with Approach 2, but using test suites produced by
Approach 2 typically requires more manual work, since it yields more “false
alarms”, i.e. uncovered code segments which are in fact reachable and are
usually reached by Approach 1. This, in turn, is a result of the fact that EvoSuite
outperforms the implemented evolutionary algorithm in terms of coverage,
possibly because it follows a combined approach to optimization, not only the
evolutionary one (see the end of Section 4.2).

46

9 DISCUSSION AND CONCLUSIONS

In the beginning of the thesis we have reviewed several fields which are
important for the design of the coverage test generation method for software
systems represented in the IEC 61499 standard. First, the knowledge about the
standard has been obtained, which has helped to understand the nature of the
systems under test better. Second, various coverage criteria and approaches for
test automation have been investigated. Evolutionary computation, which is
one of such methods, has also been examined in a separate section. The
obtained knowledge has allowed us to answer several research questions of the
thesis, to formally state the problem of the constructive research, and to apply
the reviewed concepts in it.

The rest of the thesis, starting from Section 6, has answered the remaining
research questions, which concern the development and the evaluation of new
artifacts. Two methods which generate input test data for IEC 61499 function
blocks and try to maximize test suite coverage have been proposed in the thesis.
The first one is based on third-party tools, while the second one is implemented
independently of them. The obtained results and their manual examination
suggest that the proposed methods are applicable in practice. In particular, they
have helped to identify several faults is the systems under test, which made
some of their parts unreachable. The methods, however, differ in the quality of
obtained test suites (the first one is superior), in execution time, and in the set of
supported coverage goals (the second one is superior). Thus, the choice of the
method to apply depends on whether quality or time is more important.

The inferiority of the method which employed the implementation of
evolution independent from the one of EvoSuite in terms of coverage of
generated test suites might be due to complex techniques used in EvoSuite and
mentioned in Section 4.2, while the manual approach is based on evolutionary
computation only. It is also possible to combine both approaches: use the
translation of FBs into Java which is not based on FBDK, and apply EvoSuite on
the obtained Java code. Such combined approach would be similar to the one
totally based on third-party tools, but would support FB execution semantics

47

different to the one assumed in FBDK. The implementation and evaluation of
the combined approach, however, are out of scope of this thesis.

The performed study has several limitations, which might be overcome in
future research. The first limitation is connected with the nature of evolutionary
algorithms, which do not always generate perfect solutions. To resolve it, it is
possible to replace the evolutionary search with one of symbolic constraint-
based approaches (Cadar & Sen, 2013). Next, we have not cared about output
data assertions which can be added to generated test suites. For example,
correct outputs for a defined sequence of inputs might be available, if there
exists a detailed model of the application. Besides, some outputs might be
forbidden by assertions if they signify software fallacies. Furthermore, the used
systems under test do not truly represent the complexity of industrial
automation software, as they were designed to control relatively simple devices.
Nevertheless, they contain various interactions between FBs. Finally, it is
sometimes possible that the behavior of the code obtained from an FB is not
equivalent to the one of this FB, when it is run in the tool where it has been
developed. For the first presented test generation method, this can happen
when the FB was created not in FBDK. This issue has been partly resolved in the
second method, which can use different FB execution order, though.

Our final claim concerns the connection of the proposed approaches with
MBT. MBT suggests test generation based on the formal model of the
requirements for the software, which are prepared independently of the
implementation. In contrast, the proposed methods use the implementation, not
the requirements, as input data. Hence, they do not fit in the domain of MBT,
although this field was very useful in the thesis due to the definitions of
coverage criteria.

48

REFERENCES

Binder, R. (2000). Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Professional.

Boussaïd, I., Lepagnot, J. & Siarry, P. (2013). A survey on optimization
metaheuristics. Information Sciences, vol. 237, pp. 82–117. Elsevier.

Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M. & Pretschner, A. (eds.). (2005).
Model-Based Testing of Reactive Systems; Advanced Lectures. Lecture Notes in
Computer Science, vol. 3472. Berlin-Heidelberg: Springer Verlag.

Buzhinsky, I., Ulyantsev, V., Veijalainen, J. & Vyatkin, V. (2015). Evolutionary
Approach to Coverage Testing of IEC 61499 Function Block Applications.
13th IEEE International Conference on Industrial Informatics (INDIN’15),
Cambridge, UK. IEEE. In press.

Cadar C. & Sen K. (2013). Symbolic execution for software testing: three
decades later. Communications of the ACM, vol. 56, no. 2, pp. 82–90. ACM.

Clarke, E.M., Grumberg, O. & Peled, D. (1999). Model checking. Cambridge: MIT
press.

Colla, M., Brusaferri, A. & Carpanzano, E. (2006). Applying the IEC-61499
model to the shoe manufacturing sector. 11th IEEE Conference on Emerging
Technologies and Factory Automation, ETFA'06, pp. 1301–1308. IEEE.

Conformiq – Automated Test Design. (2014). Retrieved 14.12.2014 from
http://www.conformiq.com/

Cormen, T.H., Leiserson, C.E., Rivest, R.L & Stein, C. (2001). Introduction to
algorithms. Vol. 2. Cambridge: MIT press.

Creswell, J. (2007) Review of the Literature, Chapter 2 of Research Design:
Qualitative, Quantitative, and Mixed Method Approaches. Thousand Oaks:
Sage Publications.

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Vol. 16.
John Wiley & Sons.

Della Croce, F., Tadei, R. & Volta, G. (1995). A genetic algorithm for the job shop
problem. Computers & Operations Research, vol. 22, no. 1, pp. 15–24. Elsevier.

49

DeMilli, R.A. & Offutt, A.J. (1991). Constraint-based automatic test data
generation. IEEE Transactions on Software Engineering, vol. 17, no. 9,
pp. 900–910.

Edvardsson, J. (1999). A survey on automatic test data generation. 2nd
Conference on Computer Science and Engineering, pp. 21–28. Linkoping.
ECSEL.

Enoiu, E.P., Sundmark, D. & Pettersson, P. (2013). Model-based test suite
generation for function block diagrams using the UPPAAL model checker.
6th International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 158–167. IEEE.

Fraser, G. & Arcuri, A. (2011). Evosuite: automatic test suite generation for
object-oriented software. Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. New
York, NY, USA, pp. 416–419. ACM.

Gutjahr, W. (1999). Partition testing versus random testing: The influence of
uncertainty. IEEE Transactions on Software Engineering, vol. 25, no. 5,
pp. 661–674. IEEE.

Hall, K.H., Staron, R.J. & Zoitl, A. (2007). Challenges to industry adoption of the
IEC 61499 standard on event-based function blocks. 5th IEEE International
Conference on Industrial Informatics (INDIN’07), Vienna, Austria, vol. 2,
pp. 823–828. IEEE.

Harman, M. (2011). Software Engineering Meets Evolutionary Computation.
Computer, vol. 44, no. 11, pp. 31–39. IEEE.

Helke, S., Neustupny, T. & Santen, T. (1997). Automating test case generation
from Z specifications with Isabelle. Jonathan P. Bowen, Michael G.
Hinchey, and David Till (eds.), Proceedings of the 10th International
Conference of Z Users: The Z Formal Specification Notation (ZUM 1997).
Lecture Notes in Computer Science, vol. 1212, pp. 52–71. Springer Berlin
Heidelberg.

Hevner, A.R., March, S.T., Park, J. & Ram, S. (2004). Design science in
information systems research. MIS Quarterly, vol. 28, no. 1, pp. 75–105.
Minneapolis, MN, USA. MISRC.

Hussain, T. & Frey, G. (2006). UML-based development process for IEC 61499
with automatic test-case generation. IEEE Conference on Emerging
Technologies and Factory Automation (ETFA’06), Prague, Czech Republic,
pp. 1277–1284. IEEE.

IEEE. (2013). P29119-1-FDIS, Apr 2013 – IEEE Approved Draft Standard for
Software and Systems Engineering – Software Testing – Part 1: Concepts and
Definitions. IEEE.

International Electrotechnical Commission. (2003). International Standard
IEC 61131-3: Programmable controllers – Part 3: Programming languages.
Second ed. Geneva: International Electrotechnical Commission.

International Electrotechnical Commission. (2008). International Standard IEC
62424, Specification for Representation of process control engineering requests in
P&IDs. Geneva: International Electrotechnical Commission.

50

International Electrotechnical Commission. (2012). International Standard
IEC 61499-1: Function blocks – Part 1: Architecture. Second ed. Geneva:
International Electrotechnical Commission.

Koza, J.R. (1992). Genetic programming: on the programming of computers by means
of natural selection. Vol. 1. Cambridge: MIT press.

Larranaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I. & Dizdarevic, S. (1999).
Genetic algorithms for the travelling salesman problem: A review of
representations and operators. Artificial Intelligence Review, vol. 13, no. 2,
pp. 129–170. Springer.

López-Ibáñez, M., Dubois-Lacoste, J., Stützle T. & Birattari, M. (2011). The irace
package, Iterated Race for Automatic Algorithm Configuration. Technical
Report TR/IRIDIA/2011-004, IRIDIA, Université libre de Bruxelles,
Belgium.

Mitchell, M., Holland, J.H. & Forrest, S. (1994). When will a genetic algorithm
outperform hill climbing? Advances in Neural Information Processing Systems,
vol. 6, pp. 51–58. Morgan Kaufmann, San Mateo, CA.

nxtControl – nxtSTUDIO. (2014). Retrieved 14.12.2014 from
http://www.nxtcontrol.com/en/engineering/

Patil, S., Vyatkin, V. & Sorouri, M. (2012). Formal verification of intelligent
mechatronic systems with decentralized control logic. 17th IEEE Conference
on Emerging Technologies & Factory Automation (ETFA’12), Krakow, Poland,
pp. 1–7. IEEE.

Peltola, J., Sierla, S., Aarnio, P. & Koskinen, K. (2013). Industrial evaluation of
functional Model-Based Testing for process control applications using
CAEX. 18th IEEE Conference on Emerging Technologies & Factory Automation
(ETFA’13), Cagliary, Italy, pp. 1–8. IEEE.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W.E. (1991).
Object-oriented modeling and design, vol. 199, no. 1. Englewood Cliffs, NJ:
Prentice-hall.

Schaffer, J.D. & Eshelman, L.J. (1991). On crossover as an evolutionary viable
strategy. 4th International Conference on Genetic Algorithms, pp. 61–68. San
Mateo, CA, Morgan Kaufmann.

Srinivas, N. & Deb K. (1994). Muiltiobjective optimization using nondominated
sorting in genetic algorithms. Evolutionary computation, vol. 2, no. 3,
pp. 221–248.

Thramboulidis, K. (2006). IEC 61499 in factory automation. Advances in
Computer, Information, and Systems Sciences, and Engineering, pp. 115–124.
Springer Netherlands.

von Styp, S. & Yu, L. (2013). Symbolic Model-Based Testing for Industrial
Automation Software. Hardware and Software: Verification and Testing,
pp. 78–94). Springer International Publishing.

Vyatkin, V. & Chouinard, J. (2008). On Comparisons of the ISaGRAF
implementation of IEC 61499 with FBDK and other implementations. 6th
IEEE International Conference on Industrial Informatics (INDIN’08), Daejeon,
Korea, pp. 289–294.

51

Zhou, A., Qu, B. Y., Li, H., Zhao, S. Z., Suganthan, P. N. & Zhang, Q. (2011).
Multiobjective evolutionary algorithms: A survey of the state of the art.
Swarm and Evolutionary Computation, vol. 1, no. 1, pp. 32–49. Elsevier.

Zoitl, A. & Vyatkin, V. (2009). IEC 61499 Architecture for Distributed
Automation: the „Glass Half Full‟ View. IEEE Industrial Electronics
Magazine, vol. 3, no. 4, pp. 7–23. IEEE.

52

APPENDIX 1 EXAMPLE OF JAVA CODE PREPARED
FOR EVOSUITE EXECUTION

In this appendix, the code generated from the composite FB my_sensor2
from the PnP system is presented. The interface of the FB and the network of
FBs inside are shown in Fig. 14 (the screenshots were made in FBDK).

FIGURE 14 The interface (left) and the FB network (right) of the composite FB
my_sensor2.

package fb.rt.pnp;

import fb.rt.* ;

import fb.rt.net.* ;

import fb.datatype.* ;

public class my_sensor2__Composite {

 private final my_sensor2 instance = new my_sensor2();

 public void event_INIT(int In1_, int zone1_0, int

zone1_1, int In2_, int zone2_0, int zone2_1) {

53

 instance.In1.value = Math.abs(In1_);

 ((UINT) instance.zone1.value[0]).value =

Math.abs(zone1_0);

 ((UINT) instance.zone1.value[1]).value =

Math.abs(zone1_1);

 instance.In2.value = Math.abs(In2_);

 ((UINT) instance.zone2.value[0]).value =

Math.abs(zone2_0);

 ((UINT) instance.zone2.value[1]).value =

Math.abs(zone2_1);

 instance.INIT.serviceEvent(instance);

 }

 public void event_REQ(int In1_, int zone1_0, int

zone1_1, int In2_, int zone2_0, int zone2_1) {

 instance.In1.value = Math.abs(In1_);

 ((UINT) instance.zone1.value[0]).value =

Math.abs(zone1_0);

 ((UINT) instance.zone1.value[1]).value =

Math.abs(zone1_1);

 instance.In2.value = Math.abs(In2_);

 ((UINT) instance.zone2.value[0]).value =

Math.abs(zone2_0);

 ((UINT) instance.zone2.value[1]).value =

Math.abs(zone2_1);

 instance.REQ.serviceEvent(instance);

 }

 private class my_sensor2 extends FBInstance {

 public UINT In1 = new UINT();

 public ARRAY zone1 = new ARRAY(new UINT(),2);

 public UINT In2 = new UINT();

 public ARRAY zone2 = new ARRAY(new UINT(),2);

 public BOOL QO = new BOOL();

 public EventOutput INIT = new EventOutput();

 public EventOutput REQ = new EventOutput();

 public EventOutput INITO = new EventOutput();

 public EventOutput CNF = new EventOutput();

 protected my_sensor S1 = new my_sensor() ;

 protected my_sensor S2 = new my_sensor() ;

 protected AND and = new AND() ;

 public my_sensor2() {

 super ();

 INIT.connectTo(S1.INIT);

 S1.INITO.connectTo(S2.INIT);

 REQ.connectTo(S1.REQ);

 S2.INITO.connectTo(and.INIT);

 S1.CNF.connectTo(and.REQ);

 S2.CNF.connectTo(and.REQ);

54

 and.INITO.connectTo(INITO);

 and.CNF.connectTo(CNF);

 REQ.connectTo(S2.REQ);

 S1.connectIVNoException("POS",In1);

 S1.connectIVNoException("ZONE",zone1);

 S2.connectIVNoException("POS",In2);

 S2.connectIVNoException("ZONE",zone2);

and.connectIVNoException("Q1",S1.ovNamedNoException("VALUE"

));

and.connectIVNoException("Q2",S2.ovNamedNoException("VALUE"

));

 QO = (BOOL) and.ovNamedNoException("Q0");

 }

 }

 private class my_sensor extends FBInstance {

 public UINT POS = new UINT();

 public ARRAY ZONE = new ARRAY(new UINT(),2);

 public BOOL VALUE = new BOOL();

 public EventServer INIT = new EventInput(this);

 public EventServer REQ = new EventInput(this);

 public EventOutput INITO = new EventOutput();

 public EventOutput CNF = new EventOutput();

 public ANY ovNamed(String s) throws

FBRManagementException {

 if ("VALUE".equals(s)) return VALUE;

 return super .ovNamed(s);

 }

 public void connectIV(String ivName, ANY newIV)

 throws FBRManagementException {

 if ("POS".equals(ivName)) connect_POS((UINT)

newIV);

 else if ("ZONE".equals(ivName))

connect_ZONE((ARRAY) newIV);

 else super .connectIV(ivName, newIV);

 }

 public void connect_POS(UINT newIV) {

 POS = newIV;

 }

 public void connect_ZONE(ARRAY newIV) {

 ZONE = newIV;

 }

 private static final int index_START = 0;

55

 private void state_START() {

 eccState = index_START;

 }

 private static final int index_INIT = 1;

 private void state_INIT() {

 eccState = index_INIT;

 alg_INIT();

 INITO.serviceEvent(this);

 state_START();

 transition_my_sensor_0();

 }

 private static final int index_REQ = 2;

 private void state_REQ() {

 eccState = index_REQ;

 alg_REQ();

 CNF.serviceEvent(this);

 state_START();

 transition_my_sensor_1();

 }

 public my_sensor() {

 super ();

 }

 public void serviceEvent(EventServer e) {

 if (e == INIT) service_INIT();

 else if (e == REQ) service_REQ();

 }

 public void service_INIT() {

 if ((eccState == index_START)) {

 state_INIT();

 transition_my_sensor_2();

 }

 }

 public void service_REQ() {

 if ((eccState == index_START)) {

 state_REQ();

 transition_my_sensor_3();

 }

 }

 public void alg_INIT() {

 VALUE.value = false ;

56

 }

 public void alg_REQ() {

 if ((POS.value >= ((UINT) ZONE.value[0]).value)

& (POS.value <= ((UINT) ZONE.value[1]).value)) {

 VALUE.value = true ;

 } else {

 VALUE.value = false ;

 }

 }

 }

 private void transition_my_sensor_0() {

 }

 private void transition_my_sensor_1() {

 }

 private void transition_my_sensor_2() {

 }

 private void transition_my_sensor_3() {

 }

 private class AND extends FBInstance {

 public BOOL Q1 = new BOOL();

 public BOOL Q2 = new BOOL();

 public BOOL Q0 = new BOOL();

 public EventServer INIT = new EventInput(this);

 public EventServer REQ = new EventInput(this);

 public EventOutput INITO = new EventOutput();

 public EventOutput CNF = new EventOutput();

 public ANY ovNamed(String s) throws

FBRManagementException {

 if ("Q0".equals(s)) return Q0;

 return super .ovNamed(s);

 }

 public void connectIV(String ivName, ANY newIV)

 throws FBRManagementException {

 if ("Q1".equals(ivName)) connect_Q1((BOOL)

newIV);

 else if ("Q2".equals(ivName)) connect_Q2((BOOL)

newIV);

 else super .connectIV(ivName, newIV);

 }

 public void connect_Q1(BOOL newIV) {

57

 Q1 = newIV;

 }

 public void connect_Q2(BOOL newIV) {

 Q2 = newIV;

 }

 private static final int index_START = 0;

 private void state_START() {

 eccState = index_START;

 }

 private static final int index_INIT = 1;

 private void state_INIT() {

 eccState = index_INIT;

 alg_INIT();

 INITO.serviceEvent(this);

 state_START();

 transition_AND_0();

 }

 private static final int index_REQ = 2;

 private void state_REQ() {

 eccState = index_REQ;

 alg_REQ();

 CNF.serviceEvent(this);

 state_START();

 transition_AND_1();

 }

 public AND() {

 super ();

 }

 public void serviceEvent(EventServer e) {

 if (e == INIT) service_INIT();

 else if (e == REQ) service_REQ();

 }

 public void service_INIT() {

 if ((eccState == index_START)) {

 state_INIT();

 transition_AND_2();

 }

 }

 public void service_REQ() {

58

 if ((eccState == index_START)) {

 state_REQ();

 transition_AND_3();

 }

 }

 public void alg_INIT() {

 Q0.value = Q1.value & Q2.value;

 }

 public void alg_REQ() {

 Q0.value = Q1.value & Q2.value;

 }

 }

 private void transition_AND_0() {

 }

 private void transition_AND_1() {

 }

 private void transition_AND_2() {

 }

 private void transition_AND_3() {

 }

}

59

APPENDIX 2 EXAMPLE OF A TEST SUITE PRODUCED
BY EVOSUITE

package fb.rt.pnp;

import static org.junit.Assert.* ;

import org.junit.Test;

import fb.rt.pnp.my_sensor2__Composite;

import org.evosuite.runtime.EvoRunner;

import org.evosuite.runtime.EvoRunnerParameters;

import org.evosuite.runtime.EvoSuiteFile;

import org.junit.runner.RunWith;

public class my_sensor2__Composite_ESTest {

 //Test case number: 0

 @Test

 public void test0() throws Throwable {

 my_sensor2__Composite my_sensor2__Composite0 = new

my_sensor2__Composite();

 my_sensor2__Composite0.event_REQ((-2823), (-2823), (-

2823), 1462, (-2823), (-1026));

 }

 //Test case number: 1

 @Test

 public void test1() throws Throwable {

 my_sensor2__Composite my_sensor2__Composite0 = new

my_sensor2__Composite();

 my_sensor2__Composite0.event_INIT(1462, (-2823), (-

2823), 1462, (-1026), (-2823));

 }

}

