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ABSTRACT 
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Evolutionary approach for achieving structural coverage in testing IEC 61499 
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Software Engineering, Master‟s thesis 
Supervisors: Veijalainen, Jari; Vyatkin, Valeriy; Shalyto, Anatoly. 

The topic of this thesis is automated test generation for control software 
represented in a specific standard, the IEC 61499. This standard, which is 
largely based on the concept of function block, establishes a way to design 
distributed control systems in a visually clear way. The goal of the thesis was to 
design a test generation approach or a number of such approaches that would 
produce input test data with high coverage of the implementation of systems 
under test. Coverage is a measure which expresses the fraction of the system 
that was exercised at least ones when all tests in a test suite were run on this 
system. To reach the stated goal, evolutionary computation, a general 
optimization methodology, was employed. In this methodology, possible 
solutions of the problem (in our case, test suites) are developed during a 
simulated evolution process which involves mutating solutions (that is, altering 
them insignificantly) and combining them into new ones. 
 
Two methods of test suite generation were designed based on the mentioned 
approaches. The experimental evaluation showed that one of them produces 
test suites with high coverage but is time consuming, and another one is more 
flexible and fast, but produces test suites with lower coverage. It was also 
shown that the proposed methods are capable of identifying faults in control 
software under test, which are mainly connected with unreachable system 
segments. 

Keywords: IEC 61499, industrial automation system, function block, test 
generation, coverage criterion, testing automation, evolutionary computation. 
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Tämän opinnäytetyön teemana on testitapausten automaattinen generointi 
IEC 61499-standardin mukaisille toimintolohkoille. Kyseinen standardi 
perustuu oleellisesti äärellisiin automaatteihin, joille on määritelty 
kaksiulotteinen visuaalinen esitysmuoto ja joista voidaan toisiinsa kytkemällä 
koota yhdistettyjä toimintolohkoja. Lohkojen tilasiirtymiin liittyvän laskennan 
kuvaamiseen on standardissa tarjolla erityinen ohjelmointikieli.  Opinnäytetyön 
tarkoituksena oli yhden tai useamman menetelmän kehittäminen, jotka 
generoivat testiaineistoja em. standardin mukaisille toimintolohkojen 
ohjelmallisiille toteutuksille. Tavoitteena oli tuottaa testiaineistoja, joilla on 
mahdollisimman korkea tilasiirtymä- tai haarakattavuus. Testiaineistojen 
generointi perustuu evoluutioalgoritmeihin, jotka pyrkivät maksimoimaan em. 
kattavuudet toteutuksen suhteen.  Algoritmit muokkaavat testiaineistoa 
sukupolvi sukupolvelta paremmaksi em. kriteerien suhteen (periytyminen). 
Muokkaus perustuu yksittäisten testitapausten vähäiseen muuttamiseen 
(mutaatioihin) ja vanhojen testitapausten yhdistämiseen uusiksi testitapauksiksi 
testiaineistossa (rekombinaatio). 

 
Työssä kehitettiin kaksi testiaineistojen generointimenetelmää, joiden 
ominaisuuksia testattiin kahdella yhdistetyn toimintolohkon toteutuksella. 
Toinen näistä ohjaa pientä poimi-ja-sijoita laitekokonaisuutta ja toinen 
lämpövoimalaitoksen yksinkertaistalaborotoriomallia.  Tulokset osoittavat, että 
toinen menetelmä generoi testiaineistoja, joilla on korkea kattavuus, mutta 
laskenta-aika oli suhteellisen suuri. Toinen menetelmä on joustavampi ja laskee 
nopeammin, mutta tuotettujen testiaineistojen kattavuus onoli pienempi kuin 
edellisen.  Menetelmiä kokeiltaessa selvisi myös, että ne kykenevät löytämään 
testattavista järjestelmistä virheitä, eli saavuttamattomia tilasiirtymiä ja  
ohjelmahaaroja. 

Asiasanat: IEC 61499, teollinen automaatiojärjestelmä, toimintolohko, 
testiaineiston generointi, kattavuuskriteeri, testauksen automatisointi, 
evoluutiolaskenta. 
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1 INTRODUCTION 

Control software is an important element in modern industrial automation 
systems (Zoitl & Vyatkin, 2009), examples of which are manufacturing and 
material handling systems. It is responsible for the safety and correctness of 
their operation. This means that these systems should be properly tested or 
verified. One of the recent standards for the design of such control systems is 
IEC 61499 (IEC, 2012), which uses function blocks as building units of a software 
system. It is aimed at increasing the flexibility and adaptability of such systems 
(Zoitl etc., 2009) and is oriented towards distributed control. 

One of the ways of ensuring that control systems work correctly is testing 
(IEEE, 2013). In testing, a set of test cases, or tests for simplicity, is prepared for 
the system to be checked for errors (such sets are called test suites). Each test is a 
sequence of calls to the system (e.g. method calls for a particular class in case of 
object-oriented programming). Systems of our interest have finite interface 
specifications with events and input variables, and thus tests for them will 
consist of event submissions with corresponding variable values. Such 
submissions can also be represented as method calls. 

Unlike software verification, testing cannot guarantee the correctness of 
the system in practice (though, in theory, the problem can usually be solved by 
preparing an impractically large set of test cases that would cover all parameter 
values that would ever be used in production), but can still reveal many errors. 
In addition, test execution usually takes less time than the verification 
procedure. It is also possible to automate the procedure of test creation. A 
simple and formal measure of the quality of a test suite is coverage, which might 
be defined in a number of ways. 

In the previous studies, much work was done in the field of model-based 
testing (Broy, Jonsson, Katoen, Leucker & Pretschner, 2005, pp. 281–387). First, 
various coverage criteria were defined (Broy etc., 2005, pp. 295–297), including 
the ones which explicitly involve finite-state machines (Cormen, Leiserson, 
Rivest & Stein, 2001), entities which are widely employed in the IEC 61499 
standard. Then, test generation methods were developed which aimed at 
covering the specification-based model of the software. Conversely, the goal of 
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this Master‟s thesis is to design a method of generating tests which cover the 
implementation of IEC 61499 conformant software. Test generation for software 
implementation is also a known problem, and one of its recent successful 
solutions (Fraser & Arcuri, 2011) involves the evolutionary approach (Harman, 
2011). In this approach, possible solutions of the problem (in our case, test suites) 
are explored during a simulated evolution process, in which they are altered 
(mutated) and combined with each other. 

To the best of our knowledge, the evolutionary approach, as well as other 
implementation-based approaches, was not applied to industrial automation 
software and, in particular, to IEC 61499 control systems. This thesis addresses 
the mentioned issue and presents two test suite generation methods. The first 
method employs two third-party tools and suggest to split the problem into two 
parts: first, translate the function block under test to a source code in a general 
purpose language (e.g. Java), and second, to optimize the coverage of this 
source code. The second approach uses a similar scheme, but is much less based 
on third-party software, which makes it more flexible. The proposed methods, 
which differ in their advantages and disadvantage, are shown to be applicable 
in practice: they are able to detect real faults in control applications. 

The following research questions are considered in the thesis: 

1. Which features of the IEC 61499 standard are relevant for the test suite 
generation problem? 

2. How to represent tests and test suites for IEC 61499 applications? 
3. Which approaches that tackle the stated problem or similar problems 

already exist? Which elements of these approaches can be used in this 
thesis? 

4. Which evolutionary algorithms can be applied to solve the problem, if 
any? 

5. How to design the test generation method which will fulfill the goal of 
the thesis? 

6. How to evaluate the proposed solution? 

The rest of the thesis is organized as follows. Section 2 outlines the 
employed research methods, which will answer the research questions, namely 
the literature review and constructive research. As an overall framework, 
design science paradigm is adopted. Next, Sections 3, 4 and 5 describe the 
background of the study: the IEC 61499 standard, software testing automation 
and the field of evolutionary computation. The contribution of the thesis, 
namely two test suite generation methods, is presented in Sections 6 and 7. 
Finally, the evaluation and the comparison of the methods are performed in 
Section 8, and the results of the thesis are concluded and discussed in Section 9. 
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2 METHODS 

This section shortly describes the methodology of the research. To answer the 
research questions stated in the introduction, two research methods are used. 
The first research method is the literature review (Creswell, 2007). Three fields 
of knowledge will be reviewed: the IEC 61499 standard, existing testing 
automation techniques and evolutionary computations. Thus, research 
questions 1–4 will be answered. 

The second research method is artifact construction. Both methods are 
embedded in the design science approach (Hevner, 2004), in which a new 
artifact (in our case, a new method to generate test suites) is created and then 
evaluated to show that it solves some yet unsolved problem or it solves it more 
effectively than earlier approaches. The use of this method will help to answer 
research questions 5 and 6. 

In (Hevner, 2004), a framework is presented which addresses design 
science research in information systems. However, the applicability of this 
framework exceeds the domain of information systems. According to the 
framework, two forces guide the research: business needs and applicable knowledge. 
The latter includes such foundations and methodologies as theories, models, 
methods, data analysis techniques, measures. The research itself comprises two 
interconnected phases: the phase of development, where new constructs are 
created, and the phase of evaluation of the construct. Typically, evaluation 
follows development, but then the research process can continue with further 
development and further evaluation. When new knowledge is created in the 
process, it is added to the body of knowledge in the field. 

In our case, the necessity to ensure the quality of the control software can 
be viewed as an example of a business need. The employed knowledge will be 
reviewed in the following sections of the thesis: the IEC 61499 standard, 
concepts and approaches related to software testing and test generation, and 
the evolutionary methods. The phases of the design research which will be 
considered in the following sections are as follows: 
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1. During the phase of development, a new method of automated test 
generation for FBs will be created. This phase will be split into two sub-
phases. First, after a review of existing software, a method will be 
constructed based on third-party tools: the first tool will reduce the 
problem to the more general problem of source coverage test generation, 
and the second tool will solve this more general problem. Second, an 
approach with more novelty will be developed which will exceed the 
limitations of the first approach. 

2. During the phase of evaluation, the proposed methods will be tested on 
a number of instances, which will be selected from several systems under 
test. Such systems are obtained based on a literature review. The 
performance (i.e. obtained coverage percentage) and the execution time 
of the methods will be measured and compared between each other. 
These activities will involve empirical research, as dependent variables 
(performance, run time and test suite size) will be measured and the 
results of the measurements will be analyzed. 

3. This thesis and the conference paper accepted to the INDIN‟2015 
conference (Buzhinsky, Ulyantsev, Veijalainen & Vyatkin, 2015) will 
report the results into the body of knowledge in the FB testing field. 
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3 THE IEC 61499 STANDARD 

The IEC 61499 (IEC, 2012) is an open standard for distributed control and 
automation which was introduced in 2005 by The International Electrotechnical 
Commission (IEC). This standard is based on its predecessor, IEC 1131. The 
purpose of its introduction was to allow the development of distributed control 
systems, which can be allocated into many programmable logic controllers 
(PLCs), with robust, reusable modules. Nowadays, the standard is attempted to 
be used in production. An example is its application in shoe manufacturing 
(Colla, Brusaferri & Carpanzano, 2006). However, its application faces several 
challenges (Thramboulidis, 2006; Hall, Staron & Zoitl, 2007), namely, 
unfamiliarity of practitioners with the semantics of the standard and the 
inability of the standard to address the whole development process (e.g. it does 
not address requirement elicitation). Nowadays, several tools support the 
development of control systems represented in the standard. They include 
ISaGRAF (Vyatkin & Chouinard, 2008), NxtStudio (nxtControl, 2014), and FBDK 
(Vyatkin etc., 2008). 

The IEC 61499 standard suggests viewing a control application as a 
number of function blocks (FBs), either basic or composite ones, which are 
interconnected to form a network. The concept of function block will be 
explained in more detail in the following subsections. When developed, 
function blocks are usually represented in the XML format. 

3.1 Function blocks 

An FB is an entity with a defined interface which can encapsulate both behavior 
and state. Thus, FBs and their instances are close to the concepts of classes and 
objects in object-oriented programming (Rumbaugh, Blaha, Premerlani, Eddy & 
Lorensen, 1991); however, they do neither support inheritance nor 
polymorphism. There are two main types of FBs, basic and composite FBs, 
which will be described in the following subsections. 
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First, let us define an FB interface which is present in both FB types. In this 
thesis, an FB interface is an octuple (EI, VI, DI, EO, VO, DO, MI, MO) where EI is 
the set of input event types such that each event instance fired during the 
execution of the system belongs to one of these types, VI is the set of input 
variables, DI = { D1, …, D|VI| } is the set of input variable domains (domains are 
finite and directly correspond to variable types typical for general-purpose 
programming language: BOOL, INT, REAL, TIME, ARRAY, etc., and are 
described in the standard), EO is the set of output event types (their instances are 
also referred to as output actions), and VO and DO are the sets of output variables 
and their domains. 

Finally, MI and MO are Boolean (i.e. consisting of zeros and ones) matrices 
with sizes |EI|×|VI| and |EO|×|VO| respectively that define which events are 
associated with which variables. Each step of an FB execution is triggered by 
one of its input events. Multiple events cannot occur simultaneously: they will 
always be processed sequentially. An association between an input event and 
an input variable means that when the event is received, the corresponding 
input variable is updated with the value which originates from another FB (in 
particular, events and variable values may originate in service interface FBs 
which may model the plant‟s sensors). Next, output events can be generated 
and output data can be updated during FB execution steps. If an output event is 
associated with some output variable, then the new value of the output variable 
becomes available for other FBs (or for the plant‟s actuators which also can be 
modeled as service interface FBs), when the event is generated. A more precise 
definition of association is given in Section 3.3. 

A scheme of an FB is presented in Fig. 1, and an example of a concrete FB 
is shown in Fig. 2. This FB has three input event types (namely, E1, E2 and E3), 
two input variables (a Boolean variable BOOL_VAR and an integer variable 
INT_VAR), one output event (O1), and one Boolean variable OV. Furthermore, 
the input event E2 is connected with both input variables, the input event E3 is 
connected with BOOL_VAR, and the output event type O1 is connected with 
output variable OV. It is visible from the figures that FBs are typically 
represented in the “head and body” graphical notation, where event 
connections are attached to the head, and data connections are attached to the 
body. 
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FIGURE 1 A general scheme of an FB 

 
FIGURE 2 An example of a concrete FB 

3.2 Basic function blocks 

According to the standard, basic FBs are implemented using the concept of 
execution control charts (ECCs), which are also referred to as finite-state machines 
(FSMs). Formally, a basic FB is a octuple (I, V, D, S, s0, δ, λ, α) where I is the FB 
interface, V and D are the sets of internal variables and their domains (internal 
variables are separate from input and output ones), S is the set of states (only 
one state is active at each moment), s0 is the start state, 
δ : S × E × D1 × … × D|VI| → S is the transition function, which determines the 
new state when an event is received, λ : S → 2EO is the output function, which 
determines the output events for each state, and α : S → L is the algorithm 
function, which defines an algorithm (in the Structured Text language L, which is 
based on Pascal) to be executed when a state becomes active. Algorithms can 
operate with all three kinds of variables: input, output or internal ones. In 
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particular, they are the only means of updating internal variables and moving 
data between input, internal and output variables. 

All variables inside a basic FB are assumed to have default values (e.g. 
false for the type BOOL), which means that transitions with unassociated events 
and variables in guard conditions are possible. 

ECCs are graphical diagrams for basic FBs. In them, states are connected 
to each other with transitions. Transitions are usually triggered by events and 
are executed, if guard conditions are met. Such conditions are defined over the 
set of input variables VI, which is reflected in the comprehensive domain of the 
transition function δ. The choice of transitions to be executed when an event is 
received is always deterministic: situations when several transitions can execute 
are arbitrated by priorities. It is also possible that no transitions are executed 
when an event occurs. Moreover, it is possible that one input event causes 
several state changes: this is due to spontaneous transitions, which do not 
require events to be executed. If there is a spontaneous transition from the 
current state with a satisfied guard condition, then it always executes. 

FB invocation by an input event can result in a reaction: an output event 
(possibly, several events or even an infinite sequence of events), a state change 
and a change of variables. The absence of a reaction can be explained by not 
emitting any events, by the lack of event-data associations (even if the event is 
emitted, the new data is not visible outside the FB), or by an infinite loop in the 
ECC. When an ECC is idle (i.e. there are no spontaneous transitions with 
satisfied guard conditions which can be executed right now), the FB‟s state is 
fully determined by the values of its variables and the state of the ECC. 

An example of an ECC of an FB is shown in Fig. 3. This ECC is compatible 
with the interface shown in Fig. 2, and thus can form a basic FB together with it. 
The ECC has three states, two of which (S1 and S2) are associated with 
algorithms (ALG_T and ALG_F), and one of which (S1) has an output action 
(O1). Algorithms ALG_T and ALG_F alter the value of the Boolean output 
variable OV. 

 
FIGURE 3 An example of an ECC in a basic FB 
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3.3 Composite function blocks 

Inside a composite FB there is a network of FBs of other types with event and 
data connections between them. A composite FB is a quintuple (I, B, CE, CD, P) 
where I is the FB interface, B is the set of nested FBs, CE and CD are the sets of 
event and data connections, and P is the set of predefined input variable values of 
nested FBs. Each connection joins outputs and inputs (either events or variables) 
of nested FBs to each other, or, possibly, to inputs and outputs of the composite 
FB being defined. Predefined variable values are useful when no input 
connection is associated with a particular input variable of a nested FB. An 
example of a composite FB is shown in Fig. 4 (this is a screenshot made in 
NxtStudio). Its interface is visible at the left and at the right of the figure. 

 

 
FIGURE 4 An example of a composite FB 

Composite FBs are convenient abstractions, since they allow reusing 
various particular arrangements of FBs of lower levels. Moreover, there is no 
requirement to deploy all nested FBs inside a composite FB to a single device. 
Thus, composite FBs represent a unified way of representing both distributed 
and centralized control systems. 

When an event is received by a composite FB, it is propagated to the inner 
FBs it is linked to. This event triggers the execution of these FBs, which, in turn, 
can generate new events. The standard assumes that the events inside 
composite FBs are propagated in the breadth-first manner (Cormen etc., 2001). 
We now describe the semantics of event-variable associations more precisely. 
Assume that output event e1 is associated with output variable v1 in FB fb1, and 
input event e2 is associated with input variable v2 in FB fb2. If e1 is fired by fb1, 
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and then e2 is received by fb2 after some time or immediately after this (e2 is not 
obliged to originate in fb1 or even be of the same event type: it is possible for an 
FB to accept an event from one FB and read variable values prepared by 
another FB), then v2 will be updated with the value of v1 at the moment of firing 
e1. If either of the associations is missing, the update will not take place. 
However, some implementations of the standard violate the described 
principles. For instance, the implementation of the standard from FBDK 
assumes that events inside composite FBs are propagated in the depth-first 
manner (Cormen etc., 2001) and that all changes in the output variables become 
immediately available to FBs which receive their values as input ones, ignoring 
possible absences of event-variable associations. 

3.4 Service interface function blocks 

Until now, we have not considered any interaction of the system of FBs with the 
underlying devices. Service interface FBs are responsible for such activities. They 
represent low level services provided by either software or hardware of the 
devices. 

The behavior of service interface FBs is difficult to consider during 
automated test generation: to do so, one needs to have formal models of the 
devices. However, as service interface FBs typically perform I/O operations, 
they can be excluded from consideration and replaced by the inputs and 
outputs of composite FBs. This can be done in the following way. Assume that 
there is a service interface FB in the top-level FB of the system. Each its input 
and output interface element (event or variable) will be transformed to an 
output or input interface element of the top-level FB, respectively. Then the 
service interface FB will be removed. It will further be assumed that basic and 
composite FBs are the only types of FBs during the design of the test generation 
method. Service interface FBs may contain errors too, though, so leaving them 
out of scope of the thesis is one of the limitations of this study. 
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4 SOFTWARE TESTING AUTOMATION 

As mentioned in the introduction, software testing is one of the ways to ensure 
its reliability. Many types of software testing are known: unit testing, functional 
testing, integration testing, load and stress testing, and so on (IEEE, 2013). 
Manual creation of test cases can be hard, as the developer or the tester must 
manually check different paths of software execution. Thus, to reduce the cost 
of testing and to further improve the reliability of this process, test automation, 
and, in particular, automation of input data generation can be considered 
(Edvardsson, 1999). 

In particular, we are interested in functional and unit testing of control 
applications for industrial automation systems. For such systems, an especially 
important testing stage is factory acceptance testing, which is the first 
integration test of the software (Peltola, Sierla, Aarnio & Koskinen, 2013). 
Another approach significant for such systems is loop checking, which “verifies 
the I/O connectivity, control strategy and safety aspects of the control loop 
application against the specifications” (Peltola etc., 2013). Furthermore, 
interviews conducted in (Peltola etc., 2013) have also shown that coverage 
analysis and source-based test generation is one of the target areas of functional 
software testing. This area is very close to the one which will be dealt with in 
the thesis. 

Various approaches of software testing automation will be explored in this 
section. First, a broad field of model-based testing (Broy etc., 2005, pp. 281–387), 
heavily connected with the use of finite-state machines, will be reviewed. 
Second, several other approaches, including constraint based and evolutionary 
approaches (the latter will be adopted in the thesis), will be considered. The 
section will finish with a description of testing formalism which will be 
employed in the thesis. 
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4.1 Model-based testing 

The general idea of model-based testing (MBT) (Broy etc., 2005, pp. 281–291) is to 
employ formal models of software, which can be obtained from the 
requirements, to analyze the systems and to generate test suites which can 
show conformance of software to its specification. For reactive systems, on 
which we focus in this thesis, finite-state machines (FSMs) can serve as such 
models. In MBT, coverage of models is usually an important goal to achieve. 
However, the topic of the thesis deals with the test coverage of software 
implementation. Nevertheless, since FSMs are one of the key entities of the IEC 
61499 standard, many ideas from MBT might facilitate the design of a coverage 
test generation method. In this section, several approaches to coverage test suite 
generation and coverage criteria known from MBT will be reviewed. 

4.1.1 Coverage criteria 

Coverage criteria of test suites are used to assess their adequacy. Many criteria 
can be viewed either in the strict way, or in percentage values. According to 
(Broy etc., 2005, pp. 295–297), there are three types of coverage criteria: 
structural, functional and stochastic ones. Structural criteria are based on the 
structure of the software model – in our case, on the structure of FSMs: 

 State coverage requires that all the states are visited during test execution. 

 Transition coverage assumes that all the transitions of the finite-state 
specification are covered. 

 Boundary interior coverage demands all loops to be covered a certain 
number of times. 

 Path coverage, the strongest structural criterion and the hardest one to 
achieve, designates that each path in the specification is covered by at 
least one test case. 

 Round-trip coverage (Binder, 2000) requires that all transition sequences 
which begin and end in the same state (e.g. the initial one), or round-trip 
paths, are covered. More precisely, every transition and every loop on 
each round-trip path must be exercised at least once. 

Functional coverage criteria assume that some model of environment is 
available together with the specification. This model specifies several possible 
scenarios of system behavior and thus restricts test cases by them. These 
scenarios are used to obtain the expected outputs of the implementation, while 
the inputs originate from the specification. 

The final type of coverage criteria is represented by stochastic criteria. They 
are based on the probabilities of entering different parts of the specification, 
which are calculated according to the user‟s behavior. In the simplest case, 
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when all the transitions of the model are equiprobable, test case selection is 
performed randomly. 

In the context of white-box test generation approaches, another 
subdivision of coverage criteria into control flow oriented and data flow oriented is 
also considered. Control flow oriented coverage criteria are usually defined in 
terms of decisions and conditions, which are typically expressed as if-then-else 
constructs: 

 Decision coverage, or branch coverage, requires that each outcome of each 
decision in the specification is covered. For example, if there is an „if‟ 
decision, then both „then‟ and „else‟ branches must be covered by some 
test cases in the test suite (it is possible that both branches are covered in 
a single test case). 

 Condition coverage demands the coverage of both outcomes of each 
condition inside each decision. For example, if an „if‟ decision is 
represented as an „and‟ operation of some conditions A, B, and C, then 
each outcome of A, B, and C must be triggered by at least one test case in 
the same test suite. 

 Decision condition coverage requires both decision and condition coverage, 
achieved by the same test suite. 

 Finally, multiple condition coverage states that each combination of 
condition outcomes is reached. For example, if there is a composite 
decision (A and B) or (C and D) in an „if‟ or „while‟ clause, all 16 value 
combinations for A, B, C, and D should be tested. 

Data-based coverage criteria, in contrast to control flow oriented ones, are 
defined in terms of a flow graph, which represents the program (e.g. a compiled 
version of a model) as a set of linear computations (nodes of the graph) and 
decisions, which transfer control between the nodes, and in terms of paths in 
this graph. The general idea is to follow variables from the points of their 
definition to the points where they are used. In this review, we will omit 
concrete data-based criteria, as their descriptions require a large amount of 
definitions to be done beforehand. 

Another known technique is partition based testing (Gutjahr, 1999). This 
technique suggests splitting the input domain (e.g. possible values of some 
input variable) into several subdomains. Such divisions can be obtained from 
conditions, and the requirement is to have a test in a test suite that involves at 
least one input value from each of the subdomains. This makes partition based 
approaches similar to the ones which employ structural coverage criteria, which 
were reviewed before. 

4.1.2 Test case generation techniques 

According to (Broy etc., 2005, pp. 323–324), three main test generation 
approaches are known: theorem proving, symbolic execution and model 
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checking. Theorem proving deals with partitioning the software model into 
several equivalence classes, such that for each equivalence class, any test case in 
this class is assumed to check the presence of the same error, typical of this 
equivalence class. Once the equivalence classes are identified, each of them is 
viewed as a single test case. The partition is based on a formal specification of 
the software, and the number of equivalence classes can vary. In particular, it 
can depend on the size of the specification. For example, Helke, Neustupny & 
Santen (1997) transform predicates from the specification into a disjunctive 
normal form (DNF), and the number of equivalence classes is equal to the 
number of obtained disjuncts. 

The second technique is symbolic execution, which is actually a software 
verification approach. It suggests replacing the inputs of the system with 
symbols (variables and constraints over them) and thus can handle unbounded 
values. Symbolic execution is applicable for both models and code. An example 
of the application of this approach is the work in (von Styp & Yu, 2013). 

There is also a number of techniques which combine symbolic execution 
with constrain solving, including the ones that use symbolic and concrete 
execution together. A survey of such techniques can be found in (Cadar & Sen, 
2013). Symbolic methods of this kind traverse the control flow graph (CFG) of 
the program, maintaining a set of constraints which are required for the current 
path to be executed. Tests are obtained by solving these constraints. 

The final approach is model checking (Clarke, Grumberg & Peled, 1999), 
which is again a verification method. One of the types of model checking 
involves testing a model of a system against its temporal specification. In case 
of failure, model checking algorithms generate counterexamples, which explain 
why the model does not conform to the specification. To apply model checking 
for MBT, test specifications are expressed as temporal properties, and the 
problem of test generation is simply reduced to the identification of 
counterexamples for these specifications. For example, this approach is taken in 
(Enoiu, Sundmark & Pettersson, 2013). 

4.2 Other testing automation techniques 

One of the first approaches to automated test generation was the one 
introduced by DeMilli & Offutt (1991). The technique presented in the paper is 
based on the constraint satisfaction problem and mutation analysis.  The 
generated test data approximates relative adequacy, or mutation adequacy: a 
test satisfies the relative adequacy criterion, when it causes a certain number of 
incorrect programs to fail. In turn, incorrect programs are generated as 
mutations of the original program under test. Algebraic constraints are 
generated and then solved in order to ensure the failure of mutated programs. 

Edvardsson (1999) separates test data generation methods into three types. 
The first and the simplest type is random testing: it just suggests randomly 
generating input test data for the program unit under test, and, quite obviously, 
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it usually does not perform well in terms of coverage. The second approach is 
goal-oriented test data generation, which is subdivided into the chaining approach 
and the more successful assertion-oriented approach. In the former, data 
dependencies are used to solve branch predicates, and in the latter, assertions 
are inserted into the source code either manually or automatically, and then the 
test generator attempts to find any path of program execution which breaks the 
assertions. The final approach, path-oriented test data generation, is the strongest 
one. In this approach, test generator attempted to follow specific paths. 

In (Hussain & Frey, 2006), a UML-based unit test case generation method 
is presented specifically for the IEC 61499 standard. This method complements 
the whole development process also proposed in (Hussain & Frey, 2006). Both 
state and activity UML diagrams, which represent software specification on 
different levels of abstraction, are subject to test generation. Round-trip path 
coverage is attempted to be reached for state diagrams, because it can disclose 
missing event/action pairs. To do this, test cases are generated from finite 
transition trees constructed from each of the state diagrams. As for activity 
diagrams, they are assumed to represent the functionality of basic FBs. Test 
cases generated from them cover particular paths and are obtained from control 
flow graphs. To enforce the execution of such paths, certain internal variables 
are set to specific values, and certain input events are activated. 

In (Peltola etc., 2013), MBT is augmented with simplified model creation, 
which is supported by code generation from source information stored in the 
CAEX format (IEC, 2008). This format is applicable for storing various 
hierarchical objects and supports object-oriented concepts. In this case, it is used, 
for example, to store information about a control loop within the system. The 
suggested approach is applied to a system under test represented in the using 
the IEC 61131-3 notation (IEC, 2003). In this study, Conformiq Designer 
(Conformiq, 2014) is used for both creating MBT models (which contain state 
diagrams and some additional information) and test generation. The coverage 
results of the obtained tests are encouraging. 

A complex, combined approach to the test generation problem is taken in 
(Fraser & Arcuri, 2011), where a tool called EvoSuite is presented. This tool 
supports automated unit test case generation for Java source code. Generated 
test suites are compatible with the JUnit library. The approach is based on 
evolutionary search (see Section 5) and optimizes test suites with respect to 
source coverage. Other techniques employed include hybrid search, dynamic 
symbolic execution and testability transformation. In addition, test oracles, 
which assess the correctness of the program‟s behavior, are automatically 
created in the form of assertions which summarize the behavior of the program. 
The effectiveness of assertions is estimated using mutation testing, which was 
already mentioned when describing the constraint-based approach (DeMilli etc., 
1991). These assertions can be manually checked for semantic correctness by the 
developer. The successful results of EvoSuite reflect the words from 
(Edvardsson, 1999): “The most promising search methods seems to be 
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simulated annealing and genetic algorithms for their data type independence 
and iterative relaxation for its predictability.” 

4.3 Tests, test suites and coverage criteria for the considered 
problem 

In this subsection, some theory about tests, which will be used in the thesis, is 
explained, and the problem which will be dealt with in it is stated. To define a 
test, we first fix an FB. Assume that it has events E1, …, En and input variables 
V1, …, Vm with domains D1, …, Dm, where domains represent possible values of 
particular data types. Next, Boolean values Wij signify whether the event Ei is 
associated with the variable Vj. In addition, consider an element ⊥ , which does 
not belong to any of Dj, j = 1..m. This element stands for “no value” and is used 
when an event is not associated with an input variable. 

An input tuple is a tuple (Ei, α1, …, αm), where αj, j = 1..m is either from Dj, if 
Wij, or is ⊥  otherwise. Thus, an input tuple only contains the values of the 
variables a particular event is associated with. Input tuples can be fed to the FB 
and thus trigger its single execution step. Also note that since multiple events 
cannot arrive simultaneously, there is only one event in the tuple. 

A test case, or test for short, is a finite sequence of input tuples. Note that 
outputs are not included into tests, because they are not significant for defining 
coverage criteria and maximizing them. A test can describe a series of FB 
execution steps, one step per input tuple, between which the FB persists its state. 
It is also assumed that before test execution the FB is in its initial state: all ECCs 
are in their start states, and all the variables are initialized with their default 
values. An example of a test for an FB with the interface from Fig. 2 is shown in 
Table 1. 

TABLE 1 An example of a test with length 4 

Tuple index Ei α1 (BOOL_VAR) α1 (INT_VAR) 

1 E3 true ⊥ 
2 E1 ⊥ ⊥ 
3 E2 false –100 
4 E2 false 42 
    

Finally, a test suite is a finite set of tests. The purpose of considering test 
suites as objects subject to optimization is that many tests can be required to 
achieve full coverage of a software system. 

We are now ready to define some coverage measures of basis FBs, which 
are based on the measures reviewed previously: 

 Transition coverage is the share of all transitions inside the ECC of the FB 
which are executed at least once when all the tests are executed. 
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 n-transition coverage is the share of executed n-tuples of consequent 
transitions of the ECC. For example, for n = 2 this means the share of all 
transition pairs. 

 Branch coverage is the branch coverage of the source code (see section 
4.1.1) which represents the FB. In this case, it is assumed that the source 
is obtained from the FB using some deterministic transformation. 

As for coverage measures for composite FBs, they might be calculated as 
integrated measures of the inner basic FBs. One might count either instances or 
instance types inside a composite FB (we will further consider the coverage of 
instance types). In addition, one can also measure the number of visited event 
and data connections. 

At this point, we are ready to answer three of the six research questions 
stated in the introduction. First, we have identified that the features of the 
IEC 61499 standard which are relevant for test suite generation are the 
interfaces of FB and the internal finite-state structure of basic FBs (this answers 
research question 1). The interface of an FB, or, more precisely, its input 
interface, which consists of input events and variables, defines the form of the 
test elements – input tuples. In turn, ECCs inside basic FBs can be employed to 
define coverage criteria, such as transition coverage. Second, research question 
2 about the representation of tests and test suites for IEC 61499 applications has 
just been answered in this subsection. Next, in Section 4.2 we have reviewed 
several existing test data generation techniques and, in particular, the 
evolutionary approach taken in (Fraser & Arcuri, 2011). This approach will be 
considered in more detail in Section 5. Thus, we have answered research 
question 3 and will answer research question 4 in the next section. 

Based on the formalism presented in this subsection and on the 
knowledge reviewed previously, the problem of the research can be defined: 
design a method which generates test suites and maximizes one of the coverage 
criteria for a given FB (either basic or composite). Further we will use transition 
coverage, n-transition coverage and branch coverage as coverage criteria. 
Among them, transition coverage is the one widely used in MBT, and it 
employs a specific feature of our problem – finite-state structure of basic FBs. N-
transition coverage is not so popular, but it is an example of a more complex 
coverage measure. Eventually, branch coverage is widely applied in software 
engineering and, unlike other considered coverage criteria, requires that all 
parts of algorithms inside basic FBs are covered. To design the test generation 
method, we will take the evolutionary approach. 
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5 EVOLUTIONARY COMPUTATION 

In this section, the concept of evolutionary computation will be presented. 
Several simple (e.g. the random mutation hill climber (Mitchell, Holland & 
Forrest, 1994)) and more complex (e.g. the genetic algorithm (Koza, 1992)) 
algorithms will be presented. The presented algorithms might be used within 
the test generation methods which will be proposed in the thesis. 

Evolutionary and genetic algorithms are general optimization methods 
which are applicable for various discrete and continuous problems. Problems, 
for which evolutionary algorithms are applied, are usually not solvable in 
polynomial time by precise algorithms (unless P equals NP). Such problems 
include, for example, the travelling salesperson problem (Larrañaga, Kuijpers, 
Murga, Inza & Dizdarevic, 1999) and the job shop problem (Della Croce, Tadei 
& Volta, 1995). Evolutionary algorithms usually do not guarantee that an 
optimal solution of the considered problem will be found in a reasonable time. 
Still, they are effective in practice. 

The basic idea of evolutionary computation is as follows. Evolutionary 
algorithms use some particular representations of possible solutions (also called 
individuals) and usually reach new solutions by making small adjustments to 
initial ones (these changes are called mutations) or by combining different 
solutions (this operation is known as crossover). A quality measure, fitness 
function, which maps individuals into the real axis, guides the evolutionary 
search (we further assume that the aim is to maximize the fitness function), so 
that the worse individuals are discarded, and the best ones are retained. This 
procedure is known as selection, and its exact implementation (e.g. how to 
discard individuals, how many individuals to discard) varies among different 
evolutionary algorithms. 

Many concrete techniques exist that employ evolutionary ideas. In the 
following subsections, basic evolutionary operators (mutation, crossover, and 
selection) and several concrete evolutionary methods will be reviewed. 
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5.1 Evolutionary operators 

Throughout the review of the evolutionary operators, we will consider two 
optimization problems. The first one, the OneMax problem (Schaffer & 
Eshelman, 1991), is very simple and well-known in the literature. In this 
problem, a certain bit string of length n should be guessed, which corresponds 
to the maximal value of the fitness function. For simplicity, it is often assumed 
that this string is formed of n ones. In this case, the fitness function of a bit 
string is equal to the number of ones in this string, and the goal is to identify the 
n-one string being guided by fitness function values. No prior knowledge of the 
target string is assumed. The second considered problem is the problem stated 
in this research: find a test suite with a high value of a chosen coverage criterion. 
The selected coverage criterion is used as the fitness function. 

5.1.1 Mutation 

The idea of the mutation operator is to apply a small change to an individual. 
This operator receives an individual and, assuming the availability of some 
source of randomness, produces a new individual. The following mutations are 
typically used for the OneMax problem: 

 Flip a bit on a random position. 

 For each position, flip a bit at this position with the probability 1/n. 

As for the coverage test generation problem, possible mutations are: 

 Select a random test in the test suite, select a random position in it, 
randomly replace an event at this position, and randomly generate input 
data for this event. 

 Select a random test in the test suite, select a random input data value, 
and randomly generate a new value. 

 Select a random test in the test suite, select a random input data value, 
and adjust this value (e.g. for integer variables, either add or subtract a 
small number). 

5.1.2 Crossover 

The crossover operator uses two individuals to generate one or two new 
individuals. Similarly to the mutation operator, it needs to access some source 
of randomness. For OneMax and for string optimization problems in general, 
several typical crossover operators are known: 

 The single-point crossover operator selects a random position and 
exchanges the portions of the strings after this position. 
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 The two-point crossover operator selects two random positions and 
exchanges the portions of the strings between them. 

 The uniform crossover operator exchanges strings on each position 
independently with some probability (often ½). 

The described crossover operators are illustrated in Fig. 5, where the 
exchanged parts of bit strings before and after the transformations are shown in 
blue. 

 

 

 

 
FIGURE 5 Examples of three crossover operators: single-point (top), two-point (middle), 
and uniform (bottom) 

Similar ideas can be applied for the test suite optimization problem, where 
an individual is a test suite. Possible ideas of crossover between test suites 
include: 

 Exchange two different test suites on the test basis according to one of 
the three crossover types. 

 Select two random tests from both test suites and exchange them on the 
event basis according to one of the three crossover types. 

5.1.3 Selection 

The selection operator is typically applied in algorithms which operate with 
many individuals in each time, like the genetic algorithm, which will be 
reviewed further. In this case, the problem is to retain a certain number of 
individuals while discarding the others. Possible options for the selection 
operator include: 

 Sort the individuals according to their fitness values and select the 
required number of best ones. This technique is the simplest one. 

 Tournament selection: for each individual to choose, select several random 
individuals (often 2) and then select the best one among them. 

 Roulette selection: align the individuals on the [0, 1] segment with the 
lengths proportional to their fitness values, and then select the required 
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number of individuals by uniformly drawing points from the segment. 
This process is illustrated in Fig. 6. 
 

 
FIGURE 6 The [0, 1] segment, the random choice of point on which determines the selected 
individual (x, y, or z) in roulette selection 

5.2 Evolutionary algorithms 

Several evolutionary algorithms will be presented in this subsection. We will 
start from the trivial random mutation hill climber, and continue with the 
genetic algorithm (GA) and multi-objective optimization. A more thorough 
survey of evolutionary algorithms and metaheuristics (algorithms from a more 
general class of optimization techniques) can be found in (Boussaïd, Lepagnot 
& Siarry, 2013). 

5.2.1 Random mutation hill climber 

The random mutation hill climber (RMHC) (Mitchell etc., 1994) is a simple 
evolutionary algorithm. It stores only one individual, the current solution, in 
memory. First, an initial solution x is randomly generated (e.g. a random bit 
string in case of OneMax). Then, until the stopping criterion is reached, the 
following actions are iterated: a new solution y is generated as a mutation of x, 
and, if the fitness value f(y) ≥ f(x), then x is replaced by y. The following 
stopping criteria are often used: 

 A certain number of iterations are executed. 

 A certain fitness value is reached. 

 There has been no fitness improvement during a certain number of 
iteration (so-called stagnation). 

5.2.2 Genetic algorithm 

The genetic algorithm (Koza, 1992), or simply GA, is an algorithm which stores 
multiple individuals (circa 100) at the same time. This pool of individuals is 
called a generation. Initially, the generation is comprised of randomly generated 
individuals. After that, on each iteration some individuals are subject to 
crossover and mutation, and then a new generation of the same size is selected 
from both the old and the new individuals. The scheme of a single iteration is 
shown in Fig. 7. 
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FIGURE 7 The general scheme of an iteration of the genetic algorithm 

Many variations of the GA exist. They include, for example, the island GA, 
where there are several generations on several computational devices with 
subtle migration between them, and the steady-state GA, where each iteration is 
performed on just two individuals. 

5.2.3 Multi-objective optimization 

Multi-objective optimization (Deb, 2001) is different from the classical 
evolutionary methods in the way that it aims to optimize several criteria 
simultaneously. This approach might be reasonable for the problem of coverage 
test generation, because it would allow considering several coverage criteria in 
one run. The size of the test suite might be also considered as an additional 
criterion to minimize, because, among two test suites with the same coverage, 
the smaller one is often more beneficial. 

Let f1, … , fn be the criteria to maximize. A solution x is dominated by a 
solution y, if fi(y) ≥ fi(x) for all i, and fi(y) > fi(x) for at least one i. If neither x 
dominates y nor y dominates x, then these individuals are incomparable. Multi-
objective algorithms, like NSGA-II (Srinivas & Deb, 1994), often involve an 
approximation of the so-called Pareto frontier, which is the inclusion maximal set 
of solutions not dominated by each other. The quality of the approximation, 
which can be measured as the difference between the hypervolumes (Deb, 2001, 
p. 332) of the optimal frontier and the found one, is usually improved during 
the algorithm‟s execution. Multi-objective evolutionary algorithms are actively 
developed presently. A survey of recent multi-objective algorithms in this field 
can be found in (Zhou, Qu, Li, Zhao, Suganthan & Zhang, 2011). 
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6 APPROACH BASED ON THIRD-PARTY TOOLS 

Now, having finished reviewing the literature and answering research 
questions 1–3 (in the end of Section 4) and 4 (in Section 5), we are finally ready 
to start to construct test generation methods. One of them will be presented in 
this section, another one in Section 7, and Section 8 will deal with their 
evaluation. Thus, the remaining research questions 5 and 6 will be resolved. 

The first proposed coverage test suite generation approach combines FB 
transformation to Java source code and the evolutionary search of test suites 
which maximize the coverage of the obtained Java code. The approach employs 
two third-party tools: FBDK (http://www.holobloc.com/doc/fbdk/) and 
EvoSuite (Fraser & Arcuri, 2011) and supports the optimization of branch and 
transition coverage. The approach is summarized in Fig. 8. The input of the test 
generation method is an .fbt XML file which describes the FB under test. Such 
files can be created using development environments such as FBDK or 
NxtStudio (nxtControl, 2014). If this FB is composite, XML descriptions of the 
nested FBs should also be available. The method comprises three stages, which 
are described below. The first two stages of the method were implemented in 
Java, and a bash script was written for the third stage. After describing the 
stages of the method, we discuss its limitations. 

 

 
FIGURE 8 The scheme of the approach based on third-party tools 
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6.1 The first stage 

A third-party tool, FBDK, transforms the .fbt description of the FB under test to 
a Java source file consisting of a single Java class. For a basic FB, it creates a Java 
class with state, event and variable declarations, event processing methods and 
methods for its algorithms. A class for a composite FB declares its nested FBs 
and creates connections between them in its constructor. This transformation is 
automated and is implemented as a call to a Java library supplied with FBDK. 

6.2 The second stage 

On the second stage, the obtained source code is transformed to prepare it for 
evolutionary test generation, which will be done by another tool. It is important 
that these transformations must not alter the behavior of the FB. First, a new 
Java class is created which includes the FBDK-generated class as a nested one. 
For composite FBs, all their dependencies are also included as nested classes. 
Nested classes are marked as private to suppress the generation of tests which 
call their methods. Next, for each input event of the FB under test a public 
method is created in the outer class mentioned above. Thus, only such event 
methods are accessible from the outside. Each generated event method accepts 
the variables associated with the input event as arguments, updates variable 
values of the proper instance of a nested FBDK-generated class and executes a 
corresponding event method on this instance. 

Additionally, for each transition in each nested FB class, an empty private 
method is added to the outer class. This method is executed along with the 
execution of the code corresponding to the transition and, due to its emptiness, 
does not change the behavior of FBs. The purpose of these methods is to allow 
test generation which optimizes transition coverage (see the next stage): if all 
these methods are covered, then all transitions are covered, and vice versa. 
When branch coverage is selected to be optimized instead, such methods are 
not generated. 

An example of code obtained from FBDK and transformed according to 
the rules described in this subsection, including additional dummy methods for 
transitions, is shown in Appendix 1. This code represents a composite FB 
my_sensor2 from the PnP system, which will be described in Section 8.1. The 
interface and the FB network of this FB are presented in the beginning of the 
appendix. 
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6.3 The third stage 

On the third stage, the modified source code is fed to EvoSuite, a tool which 
generates tests for Java programs using branch coverage as the fitness function. 
It implements several evolutionary algorithms, among which the default 
steady-state GA is chosen. Depending on the coverage criterion employed, 
EvoSuite is configured to either generate tests to cover the whole class (in case of 
branch coverage), or to cover only the transition methods created in the end of 
the previous stage (in case of transition coverage). The search is performed for a 
fixed time span. The result of EvoSuite execution is a JUnit test suite. As only 
event methods were left public in the previous stage of the approach, such test 
suites are comprised of sequences of their executions supplied with input 
variable values. Here is the example of a test from Table 1 as it would appear in 
the body of a single JUnit test: 

 
    @Test 

    public  void test_0() { 

        ExampleFB fb = new ExampleFB(); 

        fb.service_E3(true ); 

        fb.service_E1(); 

        fb.service_E2(false , -100); 

        fb.service_E2(false , 42); 

    } 

 

In this case, the JUnit test suite consisting of this single test case is an 
ordinary Java class with the single method test_0() inside. An example of an 
entire test suite for a composite FB is presented in Appendix 2. It comprises of 
two tests. This test suite was generated by EvoSuite, in response to the FB 
description from Appendix 1. 

6.4 Limitations of the approach 

The main limitation of the approach is the small number of supported coverage 
goals. It natively supports branch coverage, since this is the coverage measure 
optimized by EvoSuite. The method also supports transition coverage, which is 
implemented by method stub insertion into the Java code, so that the coverage 
of all these method is equivalent to the coverage of all transitions of all ECCs 
inside the FB under test. One might also implement state coverage in a similar 
way. Nonetheless, there are coverage measures which cannot be implemented 
by method insertion. 

An example of such a measure is n-transition coverage for n > 1: in this 
case the objects subject to coverage are tuples of consequent transitions, and the 
coverage of each tuple requires the execution of several code segments in a 
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particular order. Hence, the method insertion trick is not applicable. Other 
examples of coverage criteria not supported by the approach are boundary 
interior coverage and path coverage. A possible way of addressing such 
coverage measures is to consider the order of executed code segments at 
runtime. However, the use of FBDK to translate FBs into Java does not allow this 
solution. In the next section, the facilitation of the translation implemented 
specifically for this thesis will allow us to handle such coverage criteria as n-
transition coverage. 

Another limitation, in case of branch coverage, is the presence of code 
branches which are always covered or are impossible to cover at all due to the 
technical artifacts of the FB translation to Java. An example of a code segment 
which is covered in every test is the constructor of the FB class. Next, consider 
the following example of a branch of FBDK-generated code which is impossible 
to cover: 

 

    public  void service_INIT() { 

        if  ((eccState == index_START)) { 

            state_INIT(); 

            transition_OR_2(); 

        } 

    } 

 
This method determines the right transition to execute in case of the 

incoming event INIT. If we assume that the START state is only one in the ECC, 
then the condition eccState == index_START always holds, and thus the 
implicit „else‟ branch of the conditional operator is always missed. This fact 
does not imply the fault in the FB, but the branch coverage of the FBDK-
generated code of this FB will never become 100%. 

Finally, while translating FBs into Java, FBDK assumes nested FBs of a 
composite FB are executed in the depth-first search order, while the IEC 61499 
standard specifies the breadth-first search traversal. This means that the 
execution of composite FBs in FBDK-generated code is not truly equivalent to 
the behavior specified by the standard. Imagine a composite FB fb, such that 
several basic FBs fb1, …, fbn inside emit different events e1, …, en when they are 
executed, and these events are connected to the event outputs of fb. Then, 
depending on the execution order of fb1, …, fbn, fb will generate output events 
e1, …, en in different order. As for the execution of basic FBs, such problems do 
not arise, and the Java code simply presents the behavior of an ECC explicitly.  

Moreover, if the developer of FBs uses FBDK, then the problem does not 
arise even for composite FBs, because the behavior shown by FBDK is exactly 
the one demonstrated by the FBDK-generated Java code, and the 
transformations described in Section 6.2 do not alter its behavior. However, if 
one applies a different development tool (e.g. NxtStudio), it is recommended to 
check whether the generated tests are executed in the same way by the 
development tool and the Java code. One of the reasons for tools with different 
implementations of the standard to exist is that the IEC 61499 standard is 
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imprecise in some aspects, including the semantics of FB execution. Thus, one 
cannot speak about the equivalence of the behavior of a code to the behavior of 
the corresponding FB without specifying the concrete implementation of the 
standard. 
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7 APPROACH BASED ON INTERNAL TEST 
REPRESENTATION 

The second test generation approach, which is presented in this section, is 
aimed to overcome some of the limitations of the approach based on third-party 
tools and to get better execution times by facilitating the domain knowledge. 
The scheme of the approach is presented in Fig. 9. The first stage of the method 
involves the translation of FBs into Java similar to the one performed by FBDK. 
However, it is more flexible and allows processing visited FB parts (e.g. 
transitions and states) at runtime, which widens the set of supported coverage 
criteria (see Section 6.4). The second stage of the method constitutes running a 
simple evolutionary algorithm, the random mutation hill climber (RMHC) 
mentioned in Section 5.2.1, to find a proper test suite for the given coverage 
criterion. In the remainder of this section we describe both stages of the method. 

 

 
FIGURE 9 The scheme of the approach based on internal test representation 

7.1 Function block translation into Java 

In this subsection, instead of providing the complete description of the 
implemented FB translation to Java, which is mostly technical, we focus on 
several features of the translations which are important in the context of this 
thesis. These features are listed below. 
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 The translation explicitly schedules the execution of basic FBs inside a 
composite FB. The units subject to scheduling are only basic FBs: all 
boundaries of composite FBs, except the ones of the FB under test, are 
removed for simplicity. That is, if FB fb2 was nested inside fb1, and fb3 was 
nested inside fb2, then fb2 will be removed and fb3 will be directly nested 
inside fb1. If there was a connection entering fb2 and further going to fb3, 
then after the boundary removal it will directly go to fb3. The similar 
property holds for connection originating in fb3 and escaping fb2. 

 It is possible to execute FBs both in the breadth-first and in the depth-
first search order. The first strategy is specified by the IEC 61499 
standard, and is used, for example, in the NxtStudio development 
environment, and the second one is assumed in FBDK. More generally, if 
one has an FB development tool with a particular implementation of the 
standard (which possibly violates the standard in some minor ways, like 
FBDK does), it is easy to modify the proposed approach to generate the 
code with the behavior representing the mentioned implementation. 

 For a basic FB, the translation creates a class with state and variable 
declarations, algorithm methods and event processing methods, which 
accept relevant variable values as parameters. Thus, the translation is 
visually similar to the one performed by FBDK. To simplify the 
translation of algorithms, their code is still generated by FBDK. Classes 
for composite FBs embody all the classes for basic FBs they depend on as 
nested ones. 

 While executing a transition, a special method is called which accepts the 
information about the transition (its source, destination and guard 
condition). This method, which is implemented outside the 
automatically generated code, calls a processing routing specific for the 
selected coverage criterion. For instance, for transition coverage this 
routine counts the number of unique executed transitions, and for branch 
coverage it does nothing, because this criterion depends only on covered 
pieces of code. 

7.2 Implementation of the evolutionary algorithm 

There are many options among evolutionary algorithms to choose from. The 
number of these options is far beyond the number of algorithms reviewed in 
Section 5.2. For simplicity, the random mutation hill climber was implemented. 
Implementations of algorithms which use generations with more than one 
individual (e.g. the genetic algorithm) were not considered due to the fact that it 
is always possible to construct a solution which is not worse than a given set of 
solutions. To do this, it is sufficient to merge all the tests from the solutions: this 
will ensure that the obtained composite test suite will cover all system parts 
covered by the initial test cases. It is also possible to minimize the composite 
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test suite (i.e. remove the tests which can be removed without the loss of 
coverage) to improve its sizes (smaller test suites are usually preferred to larger 
ones because they take less time to execute and are easier to comprehend). Thus, 
one individual in the generation is sufficient. 

The evolution starts with a single test composed of a single randomly 
generated input tuple, and stops if the fitness value has not improved during 
the last 1000 mutations. Below we describe our implementation of fitness 
functions and our choice of the mutation operator. 

7.2.1 Fitness functions 

The employed fitness functions naturally correspond to chosen coverage 
criteria: branch, transition and 2-transition coverage. They additionally take into 
account the size of the test suite: for two test suites with identical coverage 
values, the shorter one is preferred. 

The branch coverage fitness value is computed by the means of the JaCoCo 
Java code coverage library (http://www.eclemma.org/jacoco/). Before each 
fitness evaluation, it processes the .class Java byte code corresponding to the FB 
under test to insert information used in determining the branch coverage value. 
Unlike branch coverage, the evaluation of transition and 2-transition coverage is 
much simpler: the information about unique executed transitions and transition 
pairs is maintained during test execution as described in the end of Section 7.1. 
In this case, the special transition processing method calls a routing which 
updates the set of unique executed transitions or transition pairs. 

Finally, each evaluated test suite is executed with the help of reflection, the 
feature of Java which permits the execution of methods when their names and 
parameters and unknown at compile time, but known at run time. An 
alternative, but much slower solution would be to compile each test suite before 
fitness function evaluation. 

7.2.2 Mutation operator 

The mutation operator is parameterized by three numbers: prem – the probability 
to try reducing the test suite, padj – the probability to try adjusting the test suite 
by adding or modifying input tuples, and Nop, the maximum number of 
operations which can be performed during mutation. The last parameter 
controls the strength of the mutation. In our study, we use prem = 0.3, padj = 0.4 
and Nop = 3. The detailed description of the mutation of a test suite is listed 
below. 

 Removal mutation. With the probability of prem either a random test or a 
random input tuple in a random test (each option with the probability of 
½) is attempted to be removed from the test suite. In this case the new 
individual will be accepted by the hill climber, if its coverage value has 
not been decreased as a result of mutation. This mutation is aimed to 
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reduce the size of the test suite, which is naturally increased during the 
evolution. 

 Copy mutation. If the removal mutation was not applied, with the 
probability if padj select a random test, copy it and perform a random 
number of adjustments of the test, which is uniformly distributed 
between 1 and Nop. Each adjustment is either a replacement of a random 
input tuple in the test by a randomly generated one, or an insertion of a 
new random generated input tuple into a random position within the 
test (each option with the probability of ½). For this mutation, it is crucial 
that the test is copied prior to the adjustment since this ensures than 
none of the coverage goals passed by the old test suite will be missed by 
the new one. However, the disadvantage of such mutations is the fast 
increase of the test suite size, which should be compensated by removal 
mutations. 

 Creation mutation. If other mutations were not applied, generate a new 
test and insert it into the test suite. The length of the new test is 
uniformly distributed between 1 and Nop. 
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8 EXPERIMENTAL EVALUATION 

This section describes the conducted experimental evaluation of the proposed 
test generation approaches applied to two sets of FBs and the obtained results. 
The first, obvious objective of the experimental evaluation is to evaluate the 
proposed test generation methods – in terms of achieved coverage values, 
execution time and size of the generated test suites. An additional objective is to 
compare both approaches. 

8.1 Systems under test 

We employ two software systems which are designed to control simple plants 
in the laboratory environment. The first system or, more precisely, a set of 
similar systems, is the control application for the pick-and-place (PnP) 
manipulator which was earlier used in (Patil, Vyatkin & Sorouri, 2012) to 
evaluate an approach to a different problem. The system consists of 31 basic 
and 17 composite FBs implemented in FBDK. 

One of the hardware implementations of this device is shown in Fig. 10 as 
a screenshot made in FBDK (this tool can be used not only to develop FBs, but 
also to model the interaction of the control system with the model of the 
hardware). This screenshot shows two horizontal and one vertical cylinders 
connected one to another. This system of cylinders should pick objects from 
three plates and place them into the bin to the left of the plates. The screenshot 
from FBDK in Fig. 11 shows the FB network of the FB PnpCylinders, which 
models the connections between the cylinders. 
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FIGURE 10 The scheme of one of the implementations of the pick-and-place manipulator 

 
FIGURE 11 The FB network corresponding to the model of three connected cylinders 
shown in Fig. 10 

The second system is the application which regulates a heat production 
plant (HPP) shown in Fig. 12. In (Peltola etc., 2013), an IEC 61131 application is 
mentioned, and the system we work with is the result of the redesign of this 
application to comply with the IEC 61499 standard. The NxtStudio software 
(nxtControl, 2014) was used for the redesign. FBs designed in NxtStudio can be 
processed with FBDK after minor adjustments. This version of the system, 
however, is not very modular and has only one composite FB, which represents 
the entire application. Twelve other FBs are basic. 
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FIGURE 12 Heat production plant 

The number of input events among the FBs from the described control 
systems ranges from 1 to 7 with the median value of 2. The number of input 
variables among these FBs is generally higher: it ranges from 0 to 34 with the 
median value of 6. Basic FBs have between 2 and 15 states and between 2 and 21 
transitions with median values of 3 and 4, respectively. Finally, the length of 
FBs, counted as the number of lines of resulting Java code, ranges from 92 to 
4725 with the median value of 320. Large source size (i.e. more than 1000 lines 
of code) are typical for composite FBs, since the code for FBs on which the 
composite FB depends is included into the code of the composite FB. 

8.2 Experiment setup 

We separately evaluated the approach based on third-party tools (it is described 
in Section 6, below it will be referred to it as Approach 1) and the approach 
based on internal test representation (it was described in Section 7 and will be 
called Approach 2). The computation was performed on a PC with a 2.2 GHz 
Intel Core i7-2670QM CPU. For each FB, each considered coverage measure, a 
single run of each approach was performed. Branch and transition coverage 
were aimed to be maximized for both methods. Additional experiments for 2-
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transition coverage were performed only with Approach 2, since Approach 1 
does not support this coverage criterion. 

We used different stopping criterions for different approaches. For 
Approach 1, a fixed time span was given for EvoSuite to find the solution. Note 
that the execution time of FB translation by FBDK and the time of the 
adjustment of the obtained code were not considered since they lasted less than 
a second. Ten minutes were available for EvoSuite to generate tests for basic FBs, 
and twenty minutes for composite ones. The time given to find a test suite for 
composite FBs was larger since the size of Java code generated for them was 
also larger. As for Approach 2, due to its manual implementation it was 
possible to use a better stopping criterion based on stagnation: the run was 
stopped after the fitness value did not improve during 1000 last evaluations. 
Finally, both approaches stopped if they obtained 100% coverage. 

Each test suite found by each approach was additionally minimized after 
the runs. For Approach 1, this operation employed the built-in feature of 
EvoSuite, and for Approach 2, a greedy procedure was used: input tuples were 
removed from the test suite until no tuple could be removed without the 
decrease of the coverage value. 

8.3 Results 

The results of the experiments are outlined in Tables 2–5, where basic statistics 
is shown for all groups of experiments. Coverage value statistics is shown for 
both approaches in Tables 2 and 3: 

TABLE 2 Coverage value statistics for Approach 1 

FB type, coverage 
criterion 

Min First quartile Median Third quartile Max 

Basic, branch 54.1% 86.4% 91.7% 94.4% 98.7% 
Composite, branch 32.0% 77.0% 83.0% 89.7% 94.3% 
Basic, transition 55.6% 100.0% 100.0% 100.0% 100.0% 
Composite, transition 5.7% 92.0% 100.0% 100.0% 100.0% 

TABLE 3 Coverage value statistics for Approach 2 

FB type, coverage 
criterion 

Min First quartile Median Third quartile Max 

Basic, branch 42.9% 71.4% 82.7% 93.0% 98.8% 
Composite, branch 7.7% 56.6% 66.7% 86.6% 91.2% 
Basic, transition 55.6% 100.0% 100.0% 100.0% 100.0% 
Composite, transition 5.7% 70.0% 92.2% 100.0% 100.0% 
Basic, 2-transition 41.2% 100.0% 100.0% 100.0% 100.0% 
Composite, 2-transition 0.4% 64.6% 86.4% 99.7% 100.0% 

 



42 

Meaningful execution time statistics is available only for Approach 2, since 
for Approach 1 had a priori determined execution times (10 minutes for basic 
FBs, 20 minutes for composite FBs). It is provided in Table 4: 

TABLE 4 Execution time statistics for Approach 2, time is shown in seconds 

FB type, coverage 
criterion 

Min First quartile Median Third quartile Max 

Basic, branch 2.4 3.3 4.8 7.7 17.4 
Composite, branch 3.2 18.2 38.0 65.0 298.9 
Basic, transition 0.0 0.0 0.1 0.3 2.5 
Composite, transition 0.0 1.2 5.4 15.2 160.6 
Basic, 2-transition 0.0 0.1 0.2 1.1 29.4 
Composite, 2-transition 0.0 3.9 37.8 185.4 1646.9 

 
We additionally provide statistics of test suites for both FB types and both 

approaches, which is available in Table 5: 

TABLE 5 Test suite size statistics for both approaches, size is shown in the number of 
methods called (i.e. input tuples from the evolutionary algorithm‟s point of view) 

FB type, approach Min First quartile Median Third quartile Max 

Basic, Approach 1 1 4 12 27 77 
Basic, Approach 2 1 4 11 17.5 52 
Composite, Approach 1 1 8 32 64 95 
Composite, Approach 2 1 5 39 47.75 89 

8.3.1 Results overview 

We start analyzing the results with the overview of the data presented in the 
tables. First of all, coverage values are better for basic FBs independently of 
coverage criteria, and this can be explained by the size difference and the fact 
that perfect coverage is not always required for composite FBs, unless they 
represent entire software systems. 

Next, transition coverage was generally easier to achieve than the branch 
one. Perfect (100%) result was achieved with Approach 1 for more than 75% of 
the basic FBs (in fact, for 42 out of 43) and for more than 50% (11 out of 18) 
composite FBs. This can be explained by the fact that achieving transition 
coverage is an easier goal: there is no need to cover all execution paths of ECC 
algorithms. As for Approach 2, its results are worse, but still encouraging. 
Approach 2 is also capable of optimizing 2-transition coverage, unlike 
Approach 1, and the values of 2-transition coverage are quite close to the ones 
of transition coverage for Approach 2. 

Following that, branch coverage values are generally lower than the 
transition coverage ones, and again, they are better for Approach 1. However, 
as mentioned in Section 6.4, the presence of always covered and unreachable 
goals does not allow to properly compare branch coverage values of both 
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methods. Thus, we manually examined the tests generated by the approaches 
and confirmed the superiority of the Approach 1 on branch coverage. Detailed 
comments on this examination will be given further. 

As we see, Approach 1 outperforms Approach 2 in terms of obtained 
coverage values. We additionally tried to improve the results of Approach 2 by 
tuning its parameters prem, padj, and Nop with the irace tool (López-Ibáñez, 
Dubois-Lacoste, Stützle & Birattari, 2011) and by running the approach twice 
and combining two test suites, but such adjustments weakly influenced the 
performance of the Approach 2. The attempt to apply branch coverage as a 
secondary optimization criterion, that is, if the transition coverage value of two 
test suites is equal, to prefer the one with higher branch coverage, did not 
improve its performance either. However, as Table 4 suggests, Approach 2 
requires significantly less time (less than one minute in more than 50% of cases) 
compared to Approach 1, which takes 10–20 minutes to obtain high coverage 
values (we remind that the execution times were fixed for Approach 1), not to 
mention its ability to support more coverage goals. 

We finally compare the sizes of test suites obtained by the two approaches, 
which are shown in Table 5. Median sizes of test suites obtained by different 
approaches are very close to each other, but the third quartile of the size is 
larger for Approach 1. This is not surprising, since this approach produces test 
suites with better coverage values on some FBs, and to achieve better coverage 
one might need larger test suites. 

8.3.2 Examination of generated test suites 

After the results had been obtained, the generated tests were run in the Eclipse 
IDE (https://eclipse.org/) with the EclEmma plugin 
(http://www.eclemma.org/), which integrates Eclipse with JUnit. Uncovered 
FB parts were manually examined. Based on a brief examination of the 
generated test suites, several conclusions can be drawn: 

 If inaccessible coverage goals mentioned in Section 6.4 are not 
considered in branch coverage, then 18 out of 43 basic FBs and 4 out of 18 
composite FBs are perfectly covered by the test suites generated by 
Approach 1. As for Approach 2, these numbers are 16 and 4 respectively. 

 In EvoSuite and JaCoCo, branch coverage assumes the coverage of each 
combination of conditions in an „if‟ decision. If this condition is 
weakened to just cover both „then‟ and „else‟ branches in each decision 
(i.e. to have tests which trigger each of the two possible outcomes of the 
whole decision, regardless of the number of conditions in it), then 
additionally 6 basic FBs and 1 composite FB can be considered as 
completely covered. 

 Some basic FBs, especially from the PnP application, contained 
algorithms which were not associated with any state and thus were 
inaccessible. This can be considered as a fault of the software design, but 



44 

one does not need tests to understand that they are unreachable: such 
methods can be detected with static code analysis, for example 
performed by the Eclipse IDE. 

Next, we examined tests suites produced by Approach 1 in more detail. 
Since the evolutionary approach does not guarantee the optimality of solutions, 
we also attempted to cover the uncovered parts in basic FBs manually. Gaps in 
branch coverage for two FBs were covered by augmenting the suite generated 
for the branch criterion with a test from the transition-based test suite. For 
another FB, it was quite easy to modify one of the automatically generated test 
suites to improve its branch coverage. 

Finally, we identified one basic FB from the HPP system with several 
states inaccessible due to a forgotten update of an internal variable and two 
basic FBs with algorithm branches inaccessible due to faults in „if‟ decisions. 
This last situation is illustrated in Fig. 13, where an evidently unsatisfiable 
decision (AI.value < PRESET_H.value & AI.value >= 

PRESET_H.value) prevents the execution of the branch colored in red. Other 
colors denote partial coverage (yellow) and proper coverage (green). The 
coloring was automatically performed by EclEmma. 

 

 
FIGURE 13 An example of unreachable code due to an erroneous decision 

In addition, we were able to explain the low coverage results for two 
composite FBs. The first FB from the PnP system, which had got 32.1% and 5.7% 
for branch and transition coverage respectively, had missing event connections 
from its input interface to nested FBs, which signifies an error during its 
development in FBDK. Some parts of the second FB, the only composite FB in 
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the HPP system, which had got 64.4% for both branch and transition coverage, 
were inaccessible due to fixed default values of some variables. It also included 
faulty basic FBs with inaccessible parts. 

All software faults detected by test suites generated by Approach 1 were 
also possible to detect with Approach 2, but using test suites produced by 
Approach 2 typically requires more manual work, since it yields more “false 
alarms”, i.e. uncovered code segments which are in fact reachable and are 
usually reached by Approach 1. This, in turn, is a result of the fact that EvoSuite 
outperforms the implemented evolutionary algorithm in terms of coverage, 
possibly because it follows a combined approach to optimization, not only the 
evolutionary one (see the end of Section 4.2). 
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9 DISCUSSION AND CONCLUSIONS 

In the beginning of the thesis we have reviewed several fields which are 
important for the design of the coverage test generation method for software 
systems represented in the IEC 61499 standard. First, the knowledge about the 
standard has been obtained, which has helped to understand the nature of the 
systems under test better. Second, various coverage criteria and approaches for 
test automation have been investigated. Evolutionary computation, which is 
one of such methods, has also been examined in a separate section. The 
obtained knowledge has allowed us to answer several research questions of the 
thesis, to formally state the problem of the constructive research, and to apply 
the reviewed concepts in it. 

The rest of the thesis, starting from Section 6, has answered the remaining 
research questions, which concern the development and the evaluation of new 
artifacts. Two methods which generate input test data for IEC 61499 function 
blocks and try to maximize test suite coverage have been proposed in the thesis. 
The first one is based on third-party tools, while the second one is implemented 
independently of them. The obtained results and their manual examination 
suggest that the proposed methods are applicable in practice. In particular, they 
have helped to identify several faults is the systems under test, which made 
some of their parts unreachable. The methods, however, differ in the quality of 
obtained test suites (the first one is superior), in execution time, and in the set of 
supported coverage goals (the second one is superior). Thus, the choice of the 
method to apply depends on whether quality or time is more important. 

The inferiority of the method which employed the implementation of 
evolution independent from the one of EvoSuite in terms of coverage of 
generated test suites might be due to complex techniques used in EvoSuite and 
mentioned in Section 4.2, while the manual approach is based on evolutionary 
computation only. It is also possible to combine both approaches: use the 
translation of FBs into Java which is not based on FBDK, and apply EvoSuite on 
the obtained Java code. Such combined approach would be similar to the one 
totally based on third-party tools, but would support FB execution semantics 
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different to the one assumed in FBDK. The implementation and evaluation of 
the combined approach, however, are out of scope of this thesis. 

The performed study has several limitations, which might be overcome in 
future research. The first limitation is connected with the nature of evolutionary 
algorithms, which do not always generate perfect solutions. To resolve it, it is 
possible to replace the evolutionary search with one of symbolic constraint-
based approaches (Cadar & Sen, 2013). Next, we have not cared about output 
data assertions which can be added to generated test suites. For example, 
correct outputs for a defined sequence of inputs might be available, if there 
exists a detailed model of the application. Besides, some outputs might be 
forbidden by assertions if they signify software fallacies. Furthermore, the used 
systems under test do not truly represent the complexity of industrial 
automation software, as they were designed to control relatively simple devices. 
Nevertheless, they contain various interactions between FBs. Finally, it is 
sometimes possible that the behavior of the code obtained from an FB is not 
equivalent to the one of this FB, when it is run in the tool where it has been 
developed. For the first presented test generation method, this can happen 
when the FB was created not in FBDK. This issue has been partly resolved in the 
second method, which can use different FB execution order, though. 

Our final claim concerns the connection of the proposed approaches with 
MBT. MBT suggests test generation based on the formal model of the 
requirements for the software, which are prepared independently of the 
implementation. In contrast, the proposed methods use the implementation, not 
the requirements, as input data. Hence, they do not fit in the domain of MBT, 
although this field was very useful in the thesis due to the definitions of 
coverage criteria. 
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APPENDIX 1 EXAMPLE OF JAVA CODE PREPARED 
FOR EVOSUITE EXECUTION 

In this appendix, the code generated from the composite FB my_sensor2 
from the PnP system is presented. The interface of the FB and the network of 
FBs inside are shown in Fig. 14 (the screenshots were made in FBDK). 

 

 
FIGURE 14 The interface (left) and the FB network (right) of the composite FB 
my_sensor2. 

package  fb.rt.pnp; 

 

import  fb.rt.* ; 

import  fb.rt.net.* ; 

import  fb.datatype.* ; 

 

public  class  my_sensor2__Composite { 

    private  final  my_sensor2 instance = new my_sensor2(); 

 

    public  void  event_INIT(int  In1_, int  zone1_0, int  

zone1_1, int  In2_, int  zone2_0, int  zone2_1) { 
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        instance.In1.value = Math.abs(In1_); 

        ((UINT) instance.zone1.value[0]).value = 

Math.abs(zone1_0); 

        ((UINT) instance.zone1.value[1]).value = 

Math.abs(zone1_1); 

        instance.In2.value = Math.abs(In2_); 

        ((UINT) instance.zone2.value[0]).value = 

Math.abs(zone2_0); 

        ((UINT) instance.zone2.value[1]).value = 

Math.abs(zone2_1); 

        instance.INIT.serviceEvent(instance);  

    } 

 

    public  void  event_REQ(int  In1_, int  zone1_0, int  

zone1_1, int  In2_, int  zone2_0, int  zone2_1) { 

        instance.In1.value = Math.abs(In1_); 

        ((UINT) instance.zone1.value[0]).value = 

Math.abs(zone1_0); 

        ((UINT) instance.zone1.value[1]).value = 

Math.abs(zone1_1); 

        instance.In2.value = Math.abs(In2_); 

        ((UINT) instance.zone2.value[0]).value = 

Math.abs(zone2_0); 

        ((UINT) instance.zone2.value[1]).value = 

Math.abs(zone2_1); 

        instance.REQ.serviceEvent(instance);  

    } 

 

    private  class  my_sensor2 extends  FBInstance { 

        public  UINT In1 = new UINT(); 

        public  ARRAY zone1 = new ARRAY(new UINT(),2); 

        public  UINT In2 = new UINT(); 

        public  ARRAY zone2 = new ARRAY(new UINT(),2); 

        public  BOOL QO = new BOOL(); 

        public  EventOutput INIT = new EventOutput(); 

        public  EventOutput REQ = new EventOutput(); 

        public  EventOutput INITO = new EventOutput(); 

        public  EventOutput CNF = new EventOutput(); 

        protected  my_sensor S1 = new my_sensor() ; 

        protected  my_sensor S2 = new my_sensor() ; 

        protected  AND and = new AND() ; 

 

        public  my_sensor2() { 

            super (); 

            INIT.connectTo(S1.INIT); 

            S1.INITO.connectTo(S2.INIT); 

            REQ.connectTo(S1.REQ); 

            S2.INITO.connectTo(and.INIT); 

            S1.CNF.connectTo(and.REQ); 

            S2.CNF.connectTo(and.REQ); 
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            and.INITO.connectTo(INITO); 

            and.CNF.connectTo(CNF); 

            REQ.connectTo(S2.REQ); 

            S1.connectIVNoException("POS",In1); 

            S1.connectIVNoException("ZONE",zone1); 

            S2.connectIVNoException("POS",In2); 

            S2.connectIVNoException("ZONE",zone2); 

            

and.connectIVNoException("Q1",S1.ovNamedNoException("VALUE"

)); 

            

and.connectIVNoException("Q2",S2.ovNamedNoException("VALUE"

)); 

            QO = (BOOL) and.ovNamedNoException("Q0"); 

        } 

    } 

 

    private  class  my_sensor extends  FBInstance { 

        public  UINT POS = new UINT(); 

        public  ARRAY ZONE = new ARRAY(new UINT(),2); 

        public  BOOL VALUE = new BOOL(); 

        public  EventServer INIT = new EventInput(this ); 

        public  EventServer REQ = new EventInput(this ); 

        public  EventOutput INITO = new EventOutput(); 

        public  EventOutput CNF = new EventOutput(); 

 

        public  ANY ovNamed(String  s) throws  

FBRManagementException { 

            if  ("VALUE".equals(s)) return  VALUE; 

            return  super .ovNamed(s); 

        } 

 

        public  void  connectIV(String  ivName, ANY newIV) 

            throws  FBRManagementException { 

            if  ("POS".equals(ivName)) connect_POS((UINT) 

newIV); 

            else  if  ("ZONE".equals(ivName)) 

connect_ZONE((ARRAY) newIV); 

            else  super .connectIV(ivName, newIV); 

        } 

 

        public  void  connect_POS(UINT newIV) { 

            POS = newIV; 

        } 

 

        public  void  connect_ZONE(ARRAY newIV) { 

            ZONE = newIV; 

        } 

 

        private  static  final  int  index_START = 0; 
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        private  void  state_START() { 

            eccState = index_START; 

        } 

 

        private  static  final  int  index_INIT = 1; 

 

        private  void  state_INIT() { 

            eccState = index_INIT; 

            alg_INIT(); 

            INITO.serviceEvent(this ); 

            state_START(); 

            transition_my_sensor_0(); 

        } 

 

        private  static  final  int  index_REQ = 2; 

 

        private  void  state_REQ() { 

            eccState = index_REQ; 

            alg_REQ(); 

            CNF.serviceEvent(this ); 

            state_START(); 

            transition_my_sensor_1(); 

        } 

 

        public  my_sensor() { 

            super (); 

        } 

 

        public  void  serviceEvent(EventServer e) { 

            if  (e == INIT) service_INIT(); 

            else  if  (e == REQ) service_REQ(); 

        } 

 

        public  void  service_INIT() { 

            if  ((eccState == index_START)) { 

                state_INIT(); 

                transition_my_sensor_2();  

            } 

        } 

 

        public  void  service_REQ() { 

            if  ((eccState == index_START)) { 

                state_REQ(); 

                transition_my_sensor_3();  

            } 

        } 

 

        public  void  alg_INIT() { 

            VALUE.value = false ; 
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        } 

 

        public  void  alg_REQ() { 

            if  ((POS.value >= ((UINT) ZONE.value[0]).value) 

& (POS.value <= ((UINT) ZONE.value[1]).value)) { 

                VALUE.value = true ; 

            } else  { 

                VALUE.value = false ; 

            } 

 

        } 

    } 

 

    private  void  transition_my_sensor_0() { 

    } 

 

    private  void  transition_my_sensor_1() { 

    } 

 

    private  void  transition_my_sensor_2() { 

    } 

 

    private  void  transition_my_sensor_3() { 

    } 

 

    private  class  AND extends  FBInstance { 

        public  BOOL Q1 = new BOOL(); 

        public  BOOL Q2 = new BOOL(); 

        public  BOOL Q0 = new BOOL(); 

        public  EventServer INIT = new EventInput(this ); 

        public  EventServer REQ = new EventInput(this ); 

        public  EventOutput INITO = new EventOutput(); 

        public  EventOutput CNF = new EventOutput(); 

 

        public  ANY ovNamed(String  s) throws  

FBRManagementException { 

            if  ("Q0".equals(s)) return  Q0; 

            return  super .ovNamed(s); 

        } 

 

        public  void  connectIV(String  ivName, ANY newIV) 

            throws  FBRManagementException { 

            if  ("Q1".equals(ivName)) connect_Q1((BOOL) 

newIV); 

            else  if  ("Q2".equals(ivName)) connect_Q2((BOOL) 

newIV); 

            else  super .connectIV(ivName, newIV); 

        } 

 

        public  void  connect_Q1(BOOL newIV) { 
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            Q1 = newIV; 

        } 

 

        public  void  connect_Q2(BOOL newIV) { 

            Q2 = newIV; 

        } 

 

        private  static  final  int  index_START = 0; 

 

        private  void  state_START() { 

            eccState = index_START; 

        } 

 

        private  static  final  int  index_INIT = 1; 

 

        private  void  state_INIT() { 

            eccState = index_INIT; 

            alg_INIT(); 

            INITO.serviceEvent(this ); 

            state_START(); 

            transition_AND_0(); 

        } 

 

        private  static  final  int  index_REQ = 2; 

 

        private  void  state_REQ() { 

            eccState = index_REQ; 

            alg_REQ(); 

            CNF.serviceEvent(this ); 

            state_START(); 

            transition_AND_1(); 

        } 

 

        public  AND() { 

            super (); 

        } 

 

        public  void  serviceEvent(EventServer e) { 

            if  (e == INIT) service_INIT(); 

            else  if  (e == REQ) service_REQ(); 

        } 

 

        public  void  service_INIT() { 

            if  ((eccState == index_START)) { 

                state_INIT(); 

                transition_AND_2();  

            } 

        } 

 

        public  void  service_REQ() { 
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            if  ((eccState == index_START)) { 

                state_REQ(); 

                transition_AND_3();  

            } 

        } 

 

        public  void  alg_INIT() { 

            Q0.value = Q1.value & Q2.value; 

        } 

 

        public  void  alg_REQ() { 

            Q0.value = Q1.value & Q2.value; 

        } 

    } 

 

    private  void  transition_AND_0() { 

    } 

 

    private  void  transition_AND_1() { 

    } 

 

    private  void  transition_AND_2() { 

    } 

 

    private  void  transition_AND_3() { 

    } 

} 
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APPENDIX 2 EXAMPLE OF A TEST SUITE PRODUCED 
BY EVOSUITE 

package  fb.rt.pnp; 

 

import  static org.junit.Assert.* ; 

import  org.junit.Test; 

import  fb.rt.pnp.my_sensor2__Composite; 

import  org.evosuite.runtime.EvoRunner; 

import  org.evosuite.runtime.EvoRunnerParameters; 

import  org.evosuite.runtime.EvoSuiteFile; 

import  org.junit.runner.RunWith; 

 

public  class  my_sensor2__Composite_ESTest { 

  //Test case number: 0 

  @Test 

  public  void  test0()  throws  Throwable   { 

      my_sensor2__Composite my_sensor2__Composite0 = new 

my_sensor2__Composite(); 

      my_sensor2__Composite0.event_REQ((-2823), (-2823), (-

2823), 1462, (-2823), (-1026)); 

  } 

 

  //Test case number: 1 

  @Test 

  public  void  test1()  throws  Throwable   { 

      my_sensor2__Composite my_sensor2__Composite0 = new 

my_sensor2__Composite(); 

      my_sensor2__Composite0.event_INIT(1462, (-2823), (-

2823), 1462, (-1026), (-2823)); 

  } 

} 

 


