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Recent experimental results have revealed a surprisingly rich structure of multiparticle azimuthal 
correlations in high energy proton–nucleus collisions. Final state collective effects can be responsible for 
many of the observed effects, but it has recently been argued that a part of these correlations are present 
already in the wavefunctions of the colliding particles. We evaluate the momentum space 2-particle 
cumulant azimuthal anisotropy coefficients vn{2}, n = 2, 3, 4 from fundamental representation Wilson 
line distributions describing the high energy nucleus. These would correspond to the flow coefficients 
in very forward proton–nucleus scattering. We find significant differences between Wilson lines from 
the MV model and from JIMWLK evolution. The magnitude and qualitative transverse momentum 
dependence of the vn{2} values suggest that the fluctuations present in the initial fields are a significant 
contribution to the observed anisotropies.

© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the most surprising results from the LHC proton–nucleus 
collision experiments has been the kind of azimuthal multiparticle 
correlation structures [1–7] (see also RHIC results from deuteron-
gold collisions [8,9]) that have, in larger collision systems, been 
attributed to hydrodynamical flow. The particle multiplicities in 
these collision systems are large enough for some collective ef-
fects to take place. Many of these structures have indeed been 
successfully described by hydrodynamical calculations [10,11]. This 
agreement requires, however, a very specific model of the geome-
try of the initial state [12]. It is also not clear whether these small 
systems are within the regime of validity of a hydrodynamical de-
scription with realistic values of the energy density, viscosity and 
system size [13].

The primary collisions leading to energy deposition in the cen-
tral rapidity region are, at the high energies reached at the LHC, 
characterized by very strong nonlinear color fields [14]. These 
fields are, to leading order in the coupling constant, boost in-
variant. This immediately leads to the presence of long range az-
imuthal correlations in particle production [15–22]. In larger colli-
sion systems, the structure of these correlations in azimuthal an-
gle and transverse momentum is strongly influenced by collective 
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behavior in the later evolution stages of the system. However, in 
smaller systems, such as proton–nucleus collisions, these collective 
effects are presumably less significant than in nucleus–nucleus col-
lisions. This raises the intriguing possibility that in proton–nucleus 
collisions also the azimuthal structure of the initial stage color 
fluctuations could be directly visible in the measurable particle 
spectrum. We will here argue that at least they need to be consid-
ered as an initial contribution for further collective effects when 
analyzing correlations in small systems.

We do not yet have a very solid quantitative understanding of 
the relative importance of initial color field and later evolution ef-
fects for generating anisotropies in particle production. A complete 
calculation of azimuthal anisotropies in this context requires com-
plicated modeling that includes the color field and nucleonic scale 
fluctuations in the nucleus [23] and in the proton [24], combined 
with a calculation of the time evolution of the initial color fields 
and eventual matching to a hydrodynamical description [25]. We 
will not attempt to carry out this whole program here, but con-
centrate in this paper only on a part of it, namely the anisotropies 
produced when a bunch of valence quark-like particles in the fun-
damental representation of the gauge group scatter off the color 
field of a large nucleus. The physical picture of particle produc-
tion (see [20,21] and more recently [26–29]) in our calculation is 
that of valence quarks from the probe deflected in a preferred 
transverse direction by a domain in the target color field. This 
generates a multiparticle correlation that probes the spatial fluc-
tuations of the target. Our calculation extends the work in [28,29]
in two significant ways. Firstly, we perform the Fourier-transform 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

http://dx.doi.org/10.1016/j.physletb.2015.04.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:tuomas.v.v.lappi@jyu.fi
http://dx.doi.org/10.1016/j.physletb.2015.04.015
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.04.015&domain=pdf


316 T. Lappi / Physics Letters B 744 (2015) 315–319
from coordinate to momentum space, in order to get an azimuthal 
harmonic coefficient corresponding to particles with a specific 
transverse momentum. Secondly, unlike [28,29], we correlate the 
particles in a given pT -bin with a reaction plane determined by all 
the produced particles using the 2-particle cumulant method.

2. Azimuthal correlations in CGC fields

In the “hybrid formalism” for particle production in the dilute-
dense limit [30–34] the quark spectrum produced in a collision is 
proportional to the Fourier-transform of the two point function of 
Wilson lines in the color field of the target

dN

d2pT
∝

∫
xT ,yT

e−pT ·(xT −yT ) 1

Nc
Tr V †

xT V yT . (1)

The Wilson lines V (xT ) in (1) are, in the Color Glass Condensate 
(CGC) description, stochastic random SU(3) matrices in the repre-
sentation of the projectile. To calculate the single inclusive cross 
section one has to average Eq. (1) by the appropriate probability 
distribution of Wilson lines.

In the leading order CGC treatment that we use here, multipar-
ticle correlations can be calculated from the higher order moments 
of the Wilson line operators in Eq. (1). When the correlation is cal-
culated from the so-called “glasma graphs” [18,19,22], the target 
color field domain structure is built into the kT -dependent unin-
tegrated gluon distributions describing the colliding particles. Note 
that the intrinsic kT in these distributions results from a Fourier-
transform of the coordinate dependence of the fields. The same 
physics of color field domains appears very clearly in the hy-
brid formalism. The target nucleus is represented by a sheet of 
color magnetic and color electric fields, which have a characteris-
tic length scale 1/Q s in the transverse plane. When a small enough 
probe (comparable in size to the domain size) hits this target, the 
resulting particle production has a preferred direction given by 
the direction of the color field in the domain. Since this direction 
fluctuates from event to event, there is of course no anisotropy 
on average, but the existence of a preferred direction in individ-
ual events shows up in a global angular correlation among all of 
the produced particles, similarly to hydrodynamical flow. We are 
neglecting here “connected” or “BFKL”-like correlations [22], that 
give rise to a back-to-back peak in the two-particle correlation. 
These correlations are typical “nonflow” correlations that involve 
only a few particles, which the experimental analyses of azimuthal 
anisotropy try to exclude. We will not discuss them further here, 
see however Refs. [22,35] for more studies on these lines.

It is evident from the above discussion that we expect the cor-
relation to be very sensitive to the transverse size of the probe. In 
the case of calculating the initial condition for an ion–ion collision 
the probe is large, with the consequence that the correlation is 
washed away by the sum over many independent domains in the 
transverse plane. Thus, in contrast to the correlations generated by 
collective flow, the effect discussed here is stronger in small colli-
sion systems than in large ones.

The purpose of this paper is to analyze the azimuthal correla-
tion structure of particle production using Eq. (1) in more detail. 
In particular, we want to study its dependence on the harmonic n, 
transverse momentum, and the transverse size of the probe. The 
practical procedure used here is the following. We first divide the 
pT range accessible on the lattice into bins. We use here 50 bins, 
but we have checked that the results are independent of the size 
of the bin. We then define the Fourier coefficient of the single par-
ticle spectrum as
bn(pT ) ≡
∫

|pT |∈bin

d2pT einϕpT

∫
xT ,yT

e−ipT ·(xT −yT )

× S p(xT − bT )S p(yT − bT )
1

Nc
Tr V †

xT V yT . (2)

The transverse coordinate profile of the probe has been taken as a 
Gaussian

S p(xT − bT ) = exp

{−(xT − bT )2

2B

}
(3)

around an impact parameter bT chosen randomly in the trans-
verse plane of the target. The product of the two Gaussian profiles 
in Eq. (2) could be interpreted as the Wigner distribution for a 
quark localized in an area ∼ B in the transverse plane, Fourier-
transformed into a function of two coordinates xT and yT . We will 
present results for different values of the parameter B characteriz-
ing the size of the probe. Note that the coefficients (2) need not 
be normalized, since we will eventually divide by the angular av-
erage spectrum b0 to construct the Fourier harmonic coefficient. 
We want to calculate the angular correlations with respect to an
event plane defined by all the produced particles, which form the 
“reference” that we correlate individual particles with. This is done 
following the procedure used in the experimental analysis (see e.g. 
the 2-particle cumulant method in [4]). For this we need to calcu-
late also the reference coefficients

bn(ref) ≡
∫

d2pT einϕpT

∫
xT ,yT

e−ipT ·(xT −yT )

× S p(xT − bT )S p(yT − bT )
1

Nc
Tr V †

xT V yT (4)

integrated over all momenta.
The target Wilson lines are drawn from a completely homo-

geneous and isotropic distribution that fills the whole transverse 
lattice with periodic boundary conditions, and the probe is az-
imuthally symmetric. Thus there is no geometrical (i.e. originat-
ing in the shape of the probe or the target) origin for azimuthal 
anisotropy present in the calculation. Since the probability dis-
tribution of Wilson lines is azimuthally symmetric (although the 
individual configurations are not), the correlations among the co-
efficients bn are diagonal:

〈
b∗

n(pT )bm(qT )
〉 ∝ δm,n, (5)

where 〈〉 denotes averaging over the configurations of Wilson lines 
in the target. Note that the single particle spectrum Eq. (1) is ex-
plicitly real, configuration by configuration, leading to bn = b∗−n . 
This can be shown by taking the complex conjugate of Eq. (1) and 
exchanging the integration variables xT and yT . The two particle 
pair correlation function is now

dNpair

d�ϕ
∝

∞∑
n=−∞

〈
b∗

n(pT )bn(qT )
〉
cos(n�ϕ). (6)

From this we can identify the correlation function Fourier coeffi-
cients (using the notation of [4])

Vn�(pT ,qT ) =
〈
b∗

n(pT )bn(qT )
〉

〈
b∗

0(pT )b0(qT )
〉 , (7)

and define the 2-particle cumulant azimuthal harmonic as in [4]
as
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Fig. 1. Second harmonic coefficient v2{2} calculated with JIMWLK-evolved (left) and MV-model (right) Wilson line configurations. The thin lines represent the coefficients
v2{bp} (see Eq. (11)) calculated with respect to the event plane in the pT bin only.

Fig. 2. Third harmonic coefficient v3{2} calculated with JIMWLK-evolved (left) and MV-model (right) Wilson line configurations. The thin lines represent the coefficients
v3{bp} (see Eq. (11)) calculated with respect to the event plane in the pT bin only.
vn{2} = Vn�(pT , ref)√
Vn�(ref, ref)

(8)

=

〈
b∗

n(pT )bn(ref)
〉

〈
b∗

0(pT )b0(ref)
〉

√ 〈
b∗

n(ref)bn(ref)
〉

〈
b∗

0(ref)b0(ref)
〉
. (9)

A nice interpretation of Eq. (9) can be obtained by writing it as a 
product of three terms,

vn{2} = vn{bp} Rn(pT , ref)

R0(pT , ref)
. (10)

Here we denote by

vn{bp}2 =
〈
b∗

n(pT )bn(pT )
〉

〈
b∗

0(pT )b0(pT )
〉 (11)

the flow coefficient for particles in the pT bin with respect to the 
event plane of that pT bin (“bp” stands for “bin plane”). This is the 
equivalent (although here in momentum, not position space) of the 
quantity calculated in [28]. Note also that the ALICE analysis [1]
correlates particles within a pT bin when determining the flow 
coefficient, similarly to the vn{bp} defined here. The “bin plane” 
flow coefficient is then corrected by two “correlation coefficients”. 
The first one is the correlation coefficient between the reference 
reaction plane and the pT -bin reaction plane:

Rn(pT , ref) ≡
〈
b∗

n(pT )bn(ref)
〉

√〈b∗
n(pT )bn(pT )〉 〈b∗

n(ref)bn(ref)〉 ≤ 1, (12)

where the inequality follows from the Schwartz inequality. The in-
terpretation of this correction is clear: for a fixed anisotropy with 
respect to the pT -bin reaction plane, a decorrelation of the pT -bin 
reaction plane from the reference reaction plane decreases the flow 
coefficient vn{2}. The other correlation coefficient factor in (10)

R0(pT , ref) ≡
〈
b∗

0(pT )b0(ref)
〉

√〈
b∗

0(pT )b0(pT )
〉 〈

b∗
0(ref)b0(ref)

〉 ≤ 1 (13)
is related to the multiplicity and appears in the denominator, in-
creasing vn{2}. This can be understood as follows: with larger fluc-
tuations in the pT -bin multiplicity that are independent of the ref-
erence multiplicity, a fixed correlation between bn(pT ) and bn(ref)
implies a larger correlation between pT -bin and reference reaction 
planes. In other words, since bn ∼ vnb0, for a given correlation be-
tween (ref and pT ) bn ’s, the smaller the correlation between b0’s, 
the larger must the correlation between vn ’s be.

We take the Wilson lines V (xT ) appearing in Eq. (1) either from 
the McLerran–Venugopalan [36–38] (MV) model or resulting from 
JIMWLK evolution of the distribution of Wilson lines. Both are dis-
cretized on a 10242 transverse lattice. For the MV model we use 
a (fundamental representation) saturation scale of Q sa = 0.119, 
where a is the lattice spacing. The JIMWLK calculation starts with 
an MV model at Q sa = 0.0220 and, after y = 10 units of evolution 
in rapidity (with running coupling) ends up with Q sa = 0.117. The 
MV model Wilson lines are constructed following the procedure 
described in more detail in [39] and the running coupling JIMWLK 
evolution performed using the algorithm of [40]. The parameter 
values used here are exactly the same as for the 10242-lattice 
in [41]. Note that we are only averaging two-point functions of the 
coefficients bn , not ratios ∼ bn/b0. This makes the averaging pro-
cedure numerically quite stable and is physically the correct thing 
to do, since the pair correlation function Eq. (6) is the correct in-
clusive observable to be obtained via the target average [42,17].

3. Results and discussion

The numerical evaluations of the first four anisotropy coeffi-
cients are shown in Figs. 1, 2 and 3. The results are presented in 
scaling units, as vn plotted against pT /Q s for different size probes, 
i.e. different 

√
B Q s. Also shown are the “bin plane” coefficients 

vn{bp}, defined by Eq. (11). To set the scale of the parameters in 
physical units we note that the fundamental representation satu-
ration scale around midrapidity at the LHC should be [43] around 
Q s ∼ 1 GeV and the typical size of a proton in hard particle pro-
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Fig. 3. Fourth harmonic coefficient v4{2} calculated with JIMWLK-evolved (left) and MV-model (right) Wilson line configurations. The thin lines represent the coefficients
v4{bp} (see Eq. (11)) calculated with respect to the event plane in the pT bin only.
duction at small x around B ≈ 4 GeV−2 [44]. Thus a realistic probe 
size for LHC pA collisions would very roughly be 

√
B Q s ≈ 2.

The first immediate observation from the numerical results is 
that the color field fluctuations indeed generate anisotropies that 
are large, of the order of the experimentally measured anisotropy 
coefficients. It seems therefore plausible that the color field fluctu-
ations do play a sizeable role in the observed anisotropy in small 
systems, and must be taken into account together with the flow 
contribution. Also the momentum distribution has the same struc-
ture as the observed transverse momentum dependence of the 
flow, first rising until ∼ Q s and then decreasing. The “bin plane” 
coefficients vn{bp} do not decrease nearly as fast at high mo-
mentum, from which one can deduce that the decrease of the 
anisotropy coefficients at large pT follows from the decorrelation 
of the event plane in the pT bin from the reference. This explains 
why this decrease was not seen in [28], where this decorrelation 
was not taken into account. The MV model has a gluon spectrum 
that is more sharply peaked around Q s, i.e. a narrower distribution 
of different size color field domains. This shows up in significantly 
larger values for the vn coefficients. The main effect of JIWMLK 
evolution is to add more small color field domains (larger pT glu-
ons), which decrease the anisotropy of the particle spectrum.

There is, however, an important caveat concerning any direct 
comparison of these results to experimental values. Namely, we 
were considering, in Eq. (1), only incoming quarks. For antiquarks 
one must replace the Wilson line by its Hermitian conjugate, 
which changes the sign of bn for odd n. Away from the very for-
ward valence region in the probe, there are an approximately equal 
amount of quarks and antiquarks present, with contributions to v3
that therefore cancel. Gluons do not have nonzero odd harmonics 
in this mechanism, because the adjoint representation is real and 
thus odd bn ’s vanish. Any odd harmonic surviving in the final state 
around midrapidity must therefore have an origin that is different 
from the one discussed here.

The other word of caution in interpreting these results is re-
lated to the dependence on the size of the probe, parametrized 
here by the width of the Gaussian 

√
B . As anticipated, the mag-

nitude of the correlation, and its dependence on the transverse 
momentum, depends strongly on the size of the interaction region. 
Although one can quite well estimate this, it depends on nonper-
turbative physics in the proton and cannot ultimately be controlled 
in a weak coupling calculation.

Results for azimuthal correlations in a full Classical Yang–Mills 
(CYM) simulation have also been presented recently by Schenke, 
Schlichting and Venugopalan [45,46]. Their calculation includes ef-
fects of both color field and nucleonic fluctuations in the probe 
proton and the target nucleus. The probe and target geometries 
also have a significant effect through the CYM pre-equilibrium ver-
sion of the usual hydrodynamical mechanism that converts spatial 
anisotropy to momentum space, leading to also odd harmonics. 
These geometrical effects have not been included in our work, 
which should therefore not be compared directly with experimen-
tal data. Our focus here has been, instead, on quantifying the 
generic observation that fluctuating color fields result in azimuthal 
anisotropies in multiparticle correlations, even in the absence of 
anisotropies in the impact parameter dependence.

As a conclusion, we have here studied the momentum space 
azimuthal anisotropy structure of the “color glass” gluon fields in 
a high energy nucleus, as they are seen by a small probe consist-
ing of valence-like quarks. We also quantified here the effect of 
correlating the particles with the event plane determined by all 
the produced particles, using the two-particle cumulant method at 
the parton level. In our calculation also high pT -particles exhibit 
strong azimuthal correlations, but with respect to an event plane 
that becomes decorrelated from the lower pT bulk. Clear experi-
mental indications of this decorrelation have not been reported in 
the pT range studied so far (see e.g. [4]). The quantitative results 
strongly depend on the details of the pT -distribution of gluons in 
the CGC wavefunction and on the transverse size of the probe. 
However, all the results show large contributions to the harmon-
ics from these purely initial state effects. For odd harmonics they 
largely cancel between quarks and antiquarks, but for even har-
monics these are sizeable effects that need to be considered when 
interpreting the experimental results from proton–nucleus colli-
sions.
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