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Abstract We introduce a novel approximation method for multiobjective opti-
mization problems called PAINT–SiCon. The method can construct consistent para-
metric representations of Pareto sets, especially for nonconvex problems, by inter-
polating between nondominated solutions of a given sampling both in the decision
and objective space. The proposed method is especially advantageous in computa-
tionally expensive cases, since the parametric representation of the Pareto set can
be used as an inexpensive surrogate for the original problem during the decision
making process.

Keywords Multiple criteria programming · Nonlinear programming · Piecewise
linear approximation

1 Introduction

Multiobjective optimization concerns simultaneously optimizing multiple conflict-
ing objectives (see, e.g., [1, 2]). Multiobjective optimization has its roots in eco-
nomics (see [3]). However, many effective applications can be nowadays found,
among others, in mechanics, aerospace and automotive engineering, environmental
science, medicine and even biology ([4–8]). For a typical multiobjective optimiza-
tion problem there exist multiple Pareto optimal solutions, i.e., solutions where
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none of the objectives can be improved without impairing at least one of the re-
maining objectives. However, in most cases, only one solution has to be selected for
implementation. The person, or the group, appointed for choosing such a solution
is called the decision maker. It is often assumed that the decision maker chooses
the solution through an enlightened screening of the range of the available val-
ues of the objective functions. Naturally, a better decision can be taken when the
decision maker is made aware of an as large as possible set of alternative Pareto
optimal solutions.

To this purpose, Pareto front and Pareto set approximation methods become
advantageous. Following [9], we mean by a Pareto front approximation a set in
the objective space that can be used as a surrogate for the actual Pareto front
in decision making. A Pareto set approximation is a similar approximation in the
decision space. Several approximation methods can be found in the literature (see,
among many others, [9–12]), but only few of them are effective for the application
to nonconvex problems and even fewer involve the surrogate set in the actual
decision making process (see, e.g., [13, 14]).

A subclass of the Pareto set approximation methods consists of the so-called
continuation methods, which translate mathematically the intuition of continuity
and regularity that is apparent to human eye even when visualizing also a rela-
tively small set of Pareto optimal solutions. These methods, rather than generate
an as large as possible set of Pareto optimal solutions, attempt to trace explicitly
the Pareto curves and surfaces. Continuation can be performed either locally or
globally. Local continuation consists in considering a given Pareto optimal solution
x0 and then attempt to trace a mesh of new Pareto optimal solutions in a small
neighborhood of x0. Iterating this process starting from one of the newly found so-
lutions, one can generate the local branch of the Pareto set passing through x0 (see
[11, 15–17], and the references therein). Global continuation, on the other hand, is
intended to draw consistently connections among a given set of optimal solutions,
in order to build a higher-dimensional structure, which is usually a simplicial com-
plex (see [18]), globally approximating the Pareto set. These ideas are reminiscent
of “connecting the dots” children’s games. Alternatively, a global continuation
could start from a geometrical decomposition of the feasible set (e.g., a Delau-
nay tessellation, a cubic tessellation) and next produce a linear approximation of
the portion of the Pareto set passing through each tessellation cell [12, 19, 20].
The strengths and weaknesses of these methods emerge when dealing with highly
nonlinear and nonconvex problems, where the Pareto front can be disconnected,
or composed by different local branches intersecting one another, as illustrated in
Figure 1.

By keeping these problems in mind, we have developed a new PAINT–SiCon

global continuation method. The input of the PAINT–SiCon algorithm is a sampling
of the decision space. The algorithm interpolates between the nondominated points
of the sample both in the decision and in the objective space, respecting the
domination structure of the objective space. Here, by respecting the domination
structure, we mean that the constructed set is inherently nondominated as defined
in [14]. Furthermore, the method detects connected components of the set of Pareto
optimal solutions. The advantages of the method include that it is parameter free
and especially developed to deal with nonconvex problems. Finally, the parametric
representation of the approximation is computationally inexpensive to handle and
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Fig. 1: Typical problems emerging with nonconvex objective functions: on the left, the Pareto
front is disconnected; and, on the right, the Pareto front is composed by two distinct branches,
superimposing one to the other.

can be viewed as a surrogate problem, like e.g., in [21]. Thus, the method facilitates
decision making by embedding the use of the approximation in any interactive
multiobjective optimization method.

The algorithm proposed in this paper draws ideas from two Pareto set approx-
imation algorithms, i.e., PAINT [13, 21] and SiCon [19]. The PAINT method differs
from the new PAINT–SiCon in the fact that the former works only in the objective
space, producing an interpolation of the Pareto front consistent with the dom-
inance structure (see Section 2.2 for more details). The other forebear method,
SiCon, uses a tessellation in the decision space and local optimality conditions for
tracing piece–wise linear approximation of the Pareto set and of the Pareto front
(see Section 2.3 for more details). However, both of these methods have weak-
nesses: PAINT does not consider the functional relation between the decision space
and the objective space and, thus, does not give any information about values of
the decision variables. On the other hand, SiCon produces an approximation of all
the local Pareto optimal solutions, which could possibly include some dominated
points. In addition, SiCon requires the computation of the whole Delaunay tessel-
lation of the sample points and derivative information on the objective functions
and this, for high-dimensional problems, can be computationally exhaustive. The
PAINT–SiCon algorithm proposed in this paper attempts to combine the strengths
of both algorithms while avoiding their respective shortcomings. Especially, the
new PAINT–SiCon method will be able to approximate both in the objective and
decision spaces, detect disconnectedness in the Pareto set and is computationally
less expensive than the SiCon method. In addition, the new PAINT–SiCon method
includes a new way of including the knowledge about the constraints of the prob-
lem into the construction of the approximation, which is something that neither
forebear method can do.

This paper is organized as follows: First, in Section 2 we recall relevant math-
ematical background, fix the notation and give an overview of the two forebear
methods PAINT and SiCon (concentrating on details about their strengths and
weaknesses). In addition, the paper contains an electronic supplementary material,
where we review terminology related to computational and differential geometry
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that is necessary for this paper, but is not often discussed in multiobjective opti-
mization literature. In Section 3, the mathematical basis for the new PAINT–SiCon

method is established, while the technical details of the algorithm are given in Sec-
tion 4. Section 5 describes the workings of the method on two critical nonconvex
problems. Conclusions and perspectives are presented in Section 6.

2 Preliminaries

In this section, we review the relevant mathematical background from the per-
spective of this paper and give an overview of the two forebear approximation
methods PAINT and SiCon. Further background material, specifically related to
computational and differential geometry that are not often discussed in multi-
objective optimization literature, is reported in Section 1 of the Supplementary
Material (SM). In the Supplementary Material, we review the definitions that are
needed in this research and set the notation and terminology. We start with the
basic definitions of multiobjective optimization.

2.1 Multiobjective optimization

Let X ⊆ Rn and consider a vector function

f : X −→ Rk,
x 7−→ f(x) = (f1(x), . . . , fk(x)).

(1)

– A general multiobjective optimization problem (MOP) consists in optimizing
(maximizing or minimizing) jointly the scalar functions f1, . . . , fk : X −→ R:

max
x∈X

(f1(x), . . . , fk(x)) (2)

– The domain X of the functions is called the feasible set, while any point x ∈ X
is called a (feasible) solution. The functions f1, . . . , fk : X −→ R are called the
objective functions or simply the objectives. The space Rn is called the decision

space, while Rk is called the objective space. The vectors z = f(x) ∈ Rk, for any
x ∈ X, are called outcomes.

Apart from pathological cases, it is not possible to find a solution which is
optimal for all objectives taken separately. On the other hand, adopting a natural
partial ordering on the objective space Rk, it is usually possible to find infinite
maximal elements, which in this context are named Pareto optimal solutions.

– A solution x ∈ X is said to dominate another solution y ∈ X if fi(x) > fi(y) for
all i = 1, . . . , k, and fj(x) > fj(y) for at least one j ∈ {1, . . . , k}. The relation
of domination induces a partial ordering on X.

– A solution x? ∈ X is said Pareto optimal if there does not exist any solution
which dominates x?. The image f(x?) of a Pareto optimal solution x? is called
a Pareto optimal outcome.

– The set of Pareto optimal solutions is called the Pareto set (PS), while the set
of Pareto optimal outcomes is called the Pareto front (PF). Therefore PS is a
subset of the decision space Rn and of the feasible set X, while PF is a subset
of the objective space Rk.
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Fig. 2: Application of PAINT to DTLZ2 problem.

2.2 PAINT: PAreto front INTerpolation

PAINT is a continuation method operating in the objective space. The PAINT

method was proposed in [21], and it is based on the concept of an inherently
nondominated PF approximation introduced in [14] and on the mathematical the-
ory presented in [13]. PAINT defines a polyhedral complex using as nodes a given
set of Pareto optimal outcomes, in a way that, by construction, there do not ex-
ist two vectors in the whole complex one dominating the other. As a first step,
the method produces the full Delaunay tessellation based on the given Pareto
optimal outcomes, and defines a basic approximation of the PF as the set of the
given solutions. Next the method selects sequentially simplexes from the Delaunay
tessellation that can be added to the approximation of the PF without impair-
ing its inherent approximation. The resulting approximation of the PF has been
proven accurate for a number of test problems. For instance, figure 2 shows an
example of applying the PAINT method to approximate the PF of the standard
3-objective DTLZ2 problem [22]. The dots in the figure are the given input to
the PAINT method, and the triangles and the quadrilaterals are the approxima-
tion constructed by PAINT. The actual PF of the DTLZ2 problem is the part of
the ball surface that is in the positive orthand. In this case, the PAINT method
correctly traces the shape of the PF.

The main advantage of PAINT is that the approximation constructed can effec-
tively support the decision making process. The surrogate problem is a multiobjec-
tive mixed-integer linear problem, therefore is almost computationally inexpensive
and can be solved with any standard method1. Solving the approximated problem
gives a number of candidate Pareto optimal solutions that can be appraised and
compared by the decision maker. The selected approximate solutions can be used
as reference points for finding the final preferred solution for the original prob-
lem, applying for instance the achievement scalarizing problem [23]. The analysis
of the approximation can guide the experimenter for a deeper investigation of

1 For a comprehensive survey on well established multiobjective optimization algorithms see
[2] and the references therein.



6 M. Hartikainen, A. Lovison

-0.5 0.0 0.5
x1

-1.5

-1.0

-0.5

0.0

x2

0.5 1.0 1.5 2.0
f1

0.5

1.0

1.5

2.0

f2

ø ø

-0.5 0.0 0.5
x1

-1.5

-1.0

-0.5

0.0

x2

ø

ø

0.8 1.0 1.2 1.4 1.6 1.8 2.0
f1

0.8

1.0

1.2

1.4

1.6

1.8

2.0

f2

(a) (b)

Fig. 3: (a)Application of the PAINT method to a nonconvex problem. Objective functions are
evaluated on a regular grid of points (blue points) and the nondominated set can be extracted
(red points). According to the dominance relations PAINT defines connections (i.e., simplexes
with those points as vertices) between nondominated outcomes (left panel). These connections
can be mapped backwards in the decision space (right panel). Some of these line segments
(gray lines) connect solutions which are too far apart, likely belonging to distinct components
of the PS. (b) Application of SiCon to the nonconvex two-dimensional problem L&H2×2 (see
Section 5). In the left panel, the decision space is shown while the right panel represents the
objective space. The red curve is the local PS. Red and orange curves constitute the Pareto
critical set.

the problem, involving the computation of brand new Pareto optimal solutions in
particularly interesting regions of the PF. Successively the PAINT method can be
applied to the augmented set of solutions.2

Unfortunately, as already noted in [21], the functional relation between decision
variables and the objective values is not involved in the construction of the approx-
imation. Therefore, the behavior of the approximation structure in the decision
space can be unpredictable in the presence of nonconvexity. Figure 3(a) illustrates
how this can lead the PAINT method to fail to recognize disconnectedness in the
PS. The right-side panel in the figure 3(a) shows the outcomes given a sample of
points in the objective space (the dots), where the nondominated ones have been
given a red color. The red and gray line segments represent the PF approxima-
tion constructed by PAINT. However, visualizing the corresponding connecting
segments in the decision space, it is clear that some of them (the grey lines) are
unreasonable, because their extrema are too far apart. Indeed, such connections have

to cross cells which nodes are dominated. Based only on dominance relations in the
objectives space, PAINT method has produced a unique connected component for
the PS, while clearly the true PS of the problem has three separate components.

Furthermore, although the problem in Figure 3 is an unconstrained problem,
there still appears disconnectedness in the PS that PAINT cannot detect. Even
more severe issues may emerge if the multiobjective optimization problem is con-
strained as the PAINT method does not deal with constraints when defining the
approximation. We will show in the next section how PAINT–SiCon can cope with
constrained problems with disconnected PSs.

2 Further technical details on the PAINT algorithm are given in section 2 of the Supplemen-
tary Material (SM).
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Fig. 4: Application of SiCon on the nonconvex three-dimensional problem L&H3×3 (see Section
5). (Right panel: decision space. Left panel: objective space). The surfaces are an approximation
of the set of local Pareto optima.

2.3 SiCon: Singular Continuation

Singular Continuation [19, 20], referred to as SiCon, is a method setting forth
from the characterization of Pareto optimality based on first and second order
derivatives of the objective functions given by S. Smale in [24] (see also [25, 26])
and further using piece–wise linear approximations of implicitly defined manifolds
(see, e.g., [27]). According to the SiCon method, linearized algebraic equations
of the PS are determined for all the simplexes of a Delaunay tessellation of the
feasible set based on a given sample of points. The solution of these equations is
a polygon or a polyhedron representing a linear approximation of the part of the
PS contained in the tessellation simplex. Taking the union of the simplexes gives
a global approximation of the set of local Pareto optimal solutions. The outcome
is a quadratically precise approximation of the PS, and the functional relation
between PS and PF guarantees that the approximation is topologically consistent.

The method can approximate both the Pareto critical set3 or the set of local Pareto

optima. This can be a drawback, because there is the possibility that some globally

dominated solutions to be included in the PS. Furthermore, the method is quite
computationally intensive, requiring a full tessellation of the feasible set and the
computation of first and second derivatives. Figures 3(b) and 4 report the workings
of the SiCon algorithm on two smooth problems, where the nonlinearities and
nonconvexities are responsible for the presence of multiple connected components
for the PS.

3 The Pareto critical set is the set of points satisfying the first order necessary conditions
for optimality (see [24])
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x1

x2

x3

Fig. 5: The triangle with vertices x1, x2 and x3 (drawn in blue) is in the Delaunay tessellation
of the sample points (in black) but it is not in the Delaunay tessellation constrained to the
set (in gray), because the center of its only circumcircle (drawn in red) is not contained in the
set. The Delaunay tessellation constrained to the set (in green) clearly traces the structure of
the original set.

3 The Mathematical Basis of PAINT–SiCon Method

The new method we propose here is an extension of the PAINT method aimed at
reproducing the results of SiCon, while not being so computationally expensive, not
requiring derivative information and also handling the constraints of the problem.
The main issue about PAINT, which hinders consistent representations of the PS
in the nonconvex case, is the missing connection between the decision space and
the objective space.

As a first step, we consider the structure (i.e., the simplicial complex) emerging
from the PAINT method in the objective space and then backwards propagate it
on the decision space, i.e., considering a simplex having two outcomes f(x1) and
f(x2) of nondominated sample points x1, x2 ∈ F (where F ⊂ X is a finite sam-
ple set) as vertices one may define new simplex in the decision space having the
sample points x1 and x2 as vertices. Similar back-propagation can be performed
with simplexes of any dimension. Back-propagating a simplex is, thus, defined for
the rest of the paper as forming the simplex, the vertices of which are the inverse
images of the vertices of the original simplex. In this way, we can guarantee that
the approximation in the decision space complies with the domination structure.
However, as observed above, some of these connections can be unreasonable, there-
fore we need a compelling criterion for removing the invalid simplexes. We propose
a criterion based on a Delaunay tessellation of the decision space. We will show
that with a dense enough sampling of the feasible set, a subset of the Delaunay
tessellation restricted to the feasible set X can be used to extract the connected
components of the PS. Then, only the simplexes that are defined by sample points
in a single connected component are validated. The criterion can be generalized
for constrained problems, by using restricted Delaunay tessellations to the feasible
set X ⊆ Rn [28, 29]). The simplexes of a restricted tessellation have always the
circumcenter inside the restricting subset. Figure 5 illustrates the difference of the
Delaunay tessellation constrained to a set and the normal Delaunay tessellation.

We start with some definitions and, then, we build such tessellations charac-
terizing the connected components of PS.
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Definition 1 [Simplicial Covering] Consider a simplicial complex C. Given any
X ′ ⊂ X, consider the union of the simplexes in C intersecting X ′:

C ∩X ′ :=
⋃{

S ∈ C : S ∩X ′ 6= ∅
}
.

We refer to C ∩X ′ as the simplicial covering of X ′ (based on the simplicial complex
C).

Definition 2 [Simplicial Patch] Consider a simplicial complex C and a set X ′ ⊆ X.
The connected components of C ∩X ′ are referred to as the simplicial patches of the
parts of X ′ (based on the simplicial complex C).

By examining the simplicial covering of the Pareto critical set in Figure 3(b), i.e.,
the green triangles, one clearly notices that the simplicial patches can separate the
different connected components of the PS. This is clearly a valuable feature that
should be investigated more deeply. Can we say that this is true in general, or at
least for a generic family of functions? More precisely we state:

Definition 3 [faithful simplicial covering] For a simplicial complex C, a simplicial
covering C ∩X ′ of a set X ′ ⊆ X is called faithful if every simplicial patch contains
exactly one connected component of X ′.

Therefore a faithful simplicial covering of a set X ′ is able to separate its connected
components. At this point we want to prove that under suitable hypothesis on the
objective functions, a simplicial covering based on the set of nondominated points
is a faithful simplicial covering for PS. In order to do that we need to assume some
regularity on the functions in study.

Definition 4 We say that the vector function f : X −→ Rk is sufficiently regular if

1. the function f is C∞,
2. the PS is a stratified set of dimension k − 1 4 and
3. there exists ε > 0 such that two distinct connected components of the PS are

at least ε apart each one from the other.

Remark 1 The stratification of the global Pareto set PS, stated in point 2. of Definition

4, can be false in degenerate cases but we conjecture that in generic cases is true. The

genericity of the stratification property has been proved for the local PS [26, 30, 31] but

a proof for for the global PS is still missing. Also a viable analytic criterion for checking

this property is not available, yet. This issue has been discussed in [20, 24–26, 32].

In addition, we are going to assume that the input points in the decision and ob-
jective spaces are in general position. Thus, all the polytopes are in fact simplexes.
This can be done, because if this is not the case, then the points can be perturbed
infinitesimally to guarantee general position, as is shown in [33].

Proposition 1 If f : X −→ Rk is sufficiently regular there exists a faithful simplicial

covering of PS.

4 A stratified set can be thought as a differentiable manifold with boundary, where the bound-
ary is a collection of differentiable manifolds of lower dimension, and the same holds for the
boundary of those manifolds. See the SM for more details.
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Proof If ε > 0 is the minimum distance between two connected components of
PS, then a simplicial covering where all the simplexes are strictly smaller than
ε
2 separates the connected components of PS. Indeed, consider such a simplicial
covering and two points p, q ∈ PS belonging to adjacent simplexes, i.e., to simplexes
having at least a common node. Then, if the diameters of the simplexes are all
smaller than ε

2 , we have that |p− q| < 2 ε2 = ε. Therefore p and q cannot belong
to different connected components of PS. As a result, any two points belonging
to distinct connected components cannot belong to adjacent simplexes, and the
covering of the PS is faithful. ut

Since the PS is not known, we need now some recipe for defining such cover-
ings for an a priori not precisely known set X ′. In particular we want to know if
the simplicial covering of an approximation of X ′ covers faithfully the unknown
approximated set X ′. For that we define the following:

Definition 5 Given a set X ′ ⊆ X and a finite set of points Λ =
{
x1, . . . , xa

}
, we

say that Λ is a δ–approximation of X ′ if

max

(
max
x∈X′

min
y∈Λ

d(x, y),max
y∈Λ

min
x∈X′

d(x, y)

)
=: dH(X ′, Λ) 6 δ, (3)

i.e., dH(X ′, Λ) is the Hausdorff distance between the sets X ′ and Λ.

With the above definition we can give sufficient conditions for a simplicial covering
to be faithful. This is given by the following theorem.

Theorem 1 Let X ′ ⊆ X and let δ > 0 be the minimum Hausdorff distance between

two connected components of X ′. Let Λ be a sample of points where the maximum

diameter of an empty ball is δ′ > 0, and let D be a Delaunay tessellation based on Λ.

Let F ⊆ Λ be the points at a distance smaller than δ′ from a point of X ′. Then F is a

δ′–approximation of X ′ and the subset of simplexes of D having all vertices in F is a

simplicial covering of X ′. If δ′ < δ
2 , then the simplicial covering is also faithful for X ′.

Proof The proof can be divided in the following steps:

1. The maximum diameter of the Delaunay tessellation cells is smaller or equal
than δ′.

2. F is actually a δ′–approximation of X ′. Indeed it is clear that for each point
s ∈ X ′ there exists a point v in Λ, and therefore in F , at a distance smaller that
δ′ from s. Assume by absurdum that for a point s ∈ X ′ there is no point of Λ
in a ball of radius δ′. The existence of a ball with radius δ′ not intersecting Λ

is in contradiction with the hypothesis on Λ.
3. If a simplex τ in the tessellation intersects X, then its vertices are in X ′. Indeed

every point in τ is within a δ′ distance from each of its vertices. Therefore, C,
i.e., the set of simplexes with all vertices in X ′, is a simplicial covering of X.

4. Consider two points from two distinct connected components in X, s and q.
Their respective distance is larger than δ. If there exists two adjacent simplexes,
one containing s and one containing q, there should exist at least a common
vertex v for two simplexes, with v ∈ X ′. But for the triangle inequality it should
be

0 < δ < d(s, q) 6 d(s, v) + d(v, q) 6 δ′ + δ′, (4)

which cannot hold if δ > 2δ′. Therefore C is a faithful simplicial covering of X.
ut
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On the basis of Theorem 1, we claim that the connected components of the PS of a
generic objective vector function can be distinguished consistently by a simplicial
covering based on the nondominated set of a sufficiently fine approximation.

Theorem 2 Let G be a grid of points in X with maximum diameter of an empty ball

equal to δ, and let F be the subset of nondominated points. If for every Pareto optimal
solution there is a nondominated point in F at a distance smaller than δ > 0,
and the minimum separation distance among two connected components of PS is larger

than 5δ, then the set of Delaunay simplexes having at least a node in F is a faithful

simplicial covering of PS.

Proof Although, we assume that every point in PS can be approximated by a
nondominated point in the sample G, i.e., by a point in F , we cannot say that all
points of G in a δ–neighborhood of PS are nondominated. In practice this is what
one observes, e.g., Figure 7. So F is not a δ–approximation of PS, however, in our
hypothesis, we have that every point in PS is contained in a simplex with at least
a vertex in F . Therefore, if the connected components of PS are distant at least
4δ, we have that the simplicial covering C composed by the simplexes having at
least one vertex in F is faithful for PS.

Indeed, simplicial covering C must be contained in a tubular neighborhood of
PS of radius 2δ5. Indeed, C is composed by simplexes intersecting PS and some
of the empty simplexes sharing at least one vertex with a nonempty simplex.
If the sizes of those simplexes is smaller than δ, the farthest point from PS is
at a distance smaller than 2δ. Therefore, the tubular neighborhoods of distinct
connected components cannot intersect, and the covering is faithful. ut

Remark 2 Thus, by building a Delaunay tessellation of the decision space and se-
lecting the simplexes having at least a nondominated vertex, we have a correct
representation of the connected components of the PS. Therefore, we could con-
sider the simplexes defined by the PAINT method and validate only those contained
in the simplicial patches of the covering. However, this strategy requires the full
computation of the Delaunay tessellation, which is likely to be exhaustive in the in-
teresting cases. Thus, we propose to detect the connected components by defining
a graph which nodes are the nondominated points and which line segments (also
called links and 1-dimensional polytopes, in this context) are Delaunay polytopes.
This structure is considerably less expensive than the construction of the full tes-
sellation. At this point, if one validates only the Delaunay polytopes among the
PAINT simplexes, practical experience suggests that a great number of valid sim-
plexes would be rejected. We propose then to accept all PAINT simplexes whose
extrema belong to the same connected components. This is illustrated more in
detail in the next section.

4 The PAINT–SiCon Method

The input of the PAINT–SiCon algorithm is a sampling Λ of the feasible set X
and, if the sampling is fine enough and the functions are sufficiently regular, the

5 A tubular neighborhood of a set S ⊂ X with radius r > 0 is defined as TS,r :=
{x ∈ X : d(x, S) < r}
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algorithm outputs a PS approximation which is a simplicial complex and sepa-
rates the connected components. We start by evaluating the objective functions
on a given set of points, then we extract the nondominated set and build the ap-
proximation of the PS according to the PAINT method. We then back-propagate
the approximation in to the decision space and validate the back-propagated sim-
plexes by checking whether the vertices of the link are in the set of vertices of
the same simplicial patch based on the Delaunay complex restricted to the fea-
sible set S. The method described above is computationally less expensive than
the SiCon method, but the computational burden is still not entirely negligible, if
we require to compute the full Delaunay tessellation in the decision space. This
difficulty can be overcome by checking the Delaunay condition only for the links
we are interested. This choice considerably simplifies the procedure and makes
the method efficient and appealing. Algorithm 1 describes the functionality of the
PAINT method in more detail. Algorithm 2 partitions the Delaunay tessellation

Algorithm 1 PAINT–SiCon method

1: Consider as input a sample of points in the decision space Λ :=
{
x1, . . . , xr

}
⊆ X.

2: Evaluate objective functions f = (f1, . . . , fk) on the starting sample:

yi = f(xi), i = 1, . . . , r

3: Extract the nondominated set
{
x̄1, . . . , x̄m

}
⊆
{
x1, . . . , xr

}
. Denote the nondominated

outcomes given by these solutions by
{
ȳ1, . . . , ȳm

}
.

4: Build the PAINT structure in the objective space:

Ay ⊇
{
ȳ1, . . . , ȳm

}
5: Back-propagate the structure Ay in the decision space:

Ax := f−1(Ay),

i.e.,
conv(ȳi, ȳj) ∈ Ay ⇒ conv(x̄i, x̄j) ∈ Ax

and similarly for higher order simplexes.
6: Divide the nondominated points into connected components C1, . . . , Cm w.r.t. the Delau-

nay tessellation by calling Algorithm 2 with the nondominated points as input.
7: Validate Ax: discard any simplex in Ax if its vertices are not in a single connected compo-

nent i.e., a simplex conv(x1, . . . , xa) is discarded if there does not exist a component Ci,
i ∈ {1, . . . ,m} of nondominated points such that {x1, . . . , xa} ⊂ Ci.

8: Output the PS approximation {S ∈ Ax : S is a validated simplex constructed with
PAINT}.

defined on the nondominated set F into connected components. A straightforward
way to do step 1. of Algorithm 2 is to construct the Delaunay tessellation of the
complete sample set Λ restricted to the feasible set S and then considering only the
1-dimensional simplexes. After this, one can check whether both of the end points
are nondominated points and, if so, include the simplex in D1,Λ

X . However, this
approach is computationally expensive, as only the complexity of computing the
restricted Delaunay tessellation in the decision space is exponential in the number
of dimensions.



PAINT–SiCon 13

Algorithm 2 Separating the Connected components of the PS
1: Consider as input the nondominated points given by Algorithm 1.

2: Set D1,Λ
X as such 1-dimensional Delaunay simplexes (based on the sampling Λ) restricted

to X that both of the end points x1, x2 ∈ Λ are nondominated in Λ i.e.,

conv(x1, x2) ∈ D1,Λ
X ⇔

{
conv(x1, x2) is a Delaunay in Λ restricted to X, and

f(x1), f(x2) are nondominated in Λ.

and set componentnumber = 0

3: while D1,Λ
X 6= ∅ do

4: Set componentnumber = componentnumber + 1.

5: Select 1-dimensional simplex conv(x1, x2) ∈ D1,Λ
X and set Ccomponentnumber = {x1, x2}

and set D1,Λ
X = D1,Λ

X \ {conv(x1, x2)}.
6: for all p ∈ Ccomponentnumber do

7: for all conv(x, y) ∈ D1,Λ
X do

8: if p ∈ V then
9: Set {

Ccomponentnumber = Ccomponentnumber ∪ {x1, x2} and

D1,Λ
X = D1,Λ

X \ {conv(x, y)}.

10: end if
11: end for
12: end for
13: end while
14: for all x ∈ Λ \ (∪iCi) do
15: Set componentnumber = componentnumber + 1 and Ccomponentnumber = {x}.
16: end for
17: Output the components C1, . . . , Ccomponentnumber.

We have, however, developed a new optimization-based approach to finding
the 1-dimensional Delaunay simplexes, which are needed for Algorithm 2. By
definition, a simplex conv(x1, x2) belongs to the restricted Delaunay tessellation
[28] if and only if there exists an open ball B(x, r) such that the center x ∈ X,
B(x, r)∩Λ = {x1, x2} and B(x, r)∩Λ = ∅. Since the feasible set is often described
in multiobjective optimization problems by mathematical constraints, a natural
way of checking whether the simplex is in this Delaunay tesselation is by solving
the optimization problem

max t
s.t. ‖x1 − x‖ = ‖x2 − x‖

‖y − x‖ > ‖x1 − x‖+ t for all y ∈ Λ \ {x1, x2}
x ∈ X and t ∈ R.

(5)

If the optimal value of the problem (5) is greater than zero, then the simplex
defined by these points is Delaunay; otherwise, it is not Delaunay. The problem
can be written as

max t

s.t.
∑
i=1,...,n((x2i )

2 − 2x2i x
i) =

∑
i=1,...,n((x1i )

2 − 2x1i x
i)∑

i=1,...,n((yi)
2 − 2yix

i) >
∑
i=1,...,n((x1i )

2 − 2x1i x
i) + t

for all y ∈ Λ \ {x1, x2}
x ∈ X and t ∈ R,

(6)
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which is linear if the constraints setting X are linear. Thus, one needs to solve
a(a − 1) (where a is the number of nondominated points in the sample F ) times
problem (6) for finding out the restricted Delaunay 1-dimensional simplexes of
nondominated points in the sample. If the constraints are linear, the optimization
problems can be solved with interior point methods in polynomial time [34]. Even
if the case of nonlinear constraints, this approach still saves the computational
cost of checking the Delaunay property.

After the above, the algorithm starts with a random simplex in the collec-
tion D′X and first sets that the vertices of this 1-dimensional simplex are in this
component. Then, the algorithm starts inspecting which sample points are con-
nectable (using the 1-dimensional simplexes in D′X) from each of the sample points
already in the sample. The whole component has been found, when there are no
other sample points that are connected to sample points in the component with
1-dimensional simplexes in D′. Finally, the algorithm sets the nondominated sam-
ple points that are not connected to any other sample points as components that
have merely one sample point.

Figure 6 shows the Delaunay 1-dimensional simplexes of of nondominated
points (the labeled points) for an arbitrarily defined sample set. In this exam-
ple, the collection D′X would thus contain 1-dimensional simplexes conv(x5, x14),
conv(x14, x4), conv(x4, x5), conv(x16, x25) and so on. Thus, the first component
would by the first 1-dimensional simplex contain points x5, x14. In addition, be-
cause the third 1-dimensional simplex contains x5, the point x15 would also be in
this component. No other points would be in the first component, because only the
second 1-dimensional simplex contains the point x14, but the sample point x15 is
already in the component. Thus, the first component Component1 = {x5, x14, x15}.
In a similar way, this algorithm concludes that Component2 = {x16, x24, x25} and
Component3 = {x31, x30, x38, x37}.

Once the PAINT–SiCon approximation A has been constructed, it can be rep-
resented with almost the same surrogate problem as the PAINT surrogate. Let
each simplex S ∈ A be represented as a row Ai in a matrix A so that S =
conv(xAi,1 , . . . , xAi,b), where xi are solutions in the sample X ′ and b ∈ N is an
integer. With this matrix, the PAINT–SiCon surrogate problem can be written as

max (z1, . . . , zk)

s.t.
∑a
j=1

∑b
l=1 λj,l = 1∑b

l=1 λj,l 6 yj , for all j = 1, . . . , a∑b
j=1 yj = 1

λ ∈ [0, 1]a×b

y ∈ {0, 1}a,
zi =

∑a
j=1

∑b
l=1 λj,lfi(x

Al,j ) for all i = 1, . . . , k and

x =
∑a
j=1

∑b
l=1 λj,lx

Al,j .

(7)

In the above problem also the Pareto optimal solutions x are approximated and
not only the Pareto optimal outcomes z. Thus, the decision maker does not have
to find the corresponding solution to the actual problem to get information about
the values of the decision variables. In addition, because the PAINT–SiCon method
validates the polytopes in the decision space, the feasible values of the variable
x in Problem (7) does not contain values that are far away from the connected
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Fig. 6: (a) The valid unrestricted Delaunay 1-dimensional simplexes of nondominated points
(the labeled points) in a 2-dimensional decision space are marked with blue color. The circum-
scribing circle (and its center) of simplex conv(x14, x24), where the difference of the distance
to sample points x14 and x24 and the distance to other sample points is the biggest is drawn
in red color. The fact that there are sample points inside this circle shows that the simplex
conv(x14, x24) is not Delaunay. On the other hand, the circumscribing circle for the Delaunay
simplex conv(x37, x30) drawn in green does not contain any sample points and this shows that
the simplex is indeed Delaunay. (b) The valid Delaunay simplexes of nondominated points (the
labeled points) in a 3-dimensional decision space are marked with blue color. In this example,
there are 2 components; the sample points in one component are marked with green color and
those of the other component are marked with red color.

components of the PS, and, because of continuity, the values of the objective
functions are accurately approximated by the linearly approximated values given
by the PAINT–SiCon surrogate problem.

5 Examples

In this section, examples of applying the PAINT–SiCon method are shown. Our
test problems are the two-objective L&H2×2 with two-dimensional decision space
and the three-objective L&H3×3 with three-dimensional decision space that have
both been developed by A. Lovison. In both problems there is a PS composed by
two distinct connected components, which give rise to two local PFs intersecting
each other. For testing the algorithm, we have implemented it using the Octave
[35] scripting language. For the sake of clarity, we give the explicit construction of
these problems, which could be useful in order to construct problems with similar
features. Basically we combine smooth bump functions, defined as Gaussians, and
operate projections and rotations for orienting the fronts in the desired directions.
L&H2×2 is defined by summing two Gaussians, one centered in (0, 0), the other in
(0,−1.5), the first bump with a larger amplitude, the second appreciably higher
and sharper. The graph of the sum is projected on the (x, z) plane, such that the
axes of the bumps are projected one above the other. Finally the plane is rotated
by 45 degrees such that the axes of the gaussians become oriented as the vector
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(1, 1). More formally:
max L&H2×2(x, y),
s.t. −0.75 6 x 6 0.75,

−2.5 6 y 6 0.12,

where

gau(p, p0, σ) :=

√
2π

σ
exp

(
−|p− p0|

2

σ2

)
, (8)

pL = (0., 0.)>, pH = (0.,−1.5)>, (9)

bumps(p) := 0.2× gau(p, pL), 0.65) + 1.5× gau(p, pH , 2.8), (10)

L&H2×2(x, y) :=

{
f1(x, y) :=

√
2
2 x+

√
2
2 bumps((x, y)>),

f2(x, y) := −
√
2
2 x+

√
2
2 bumps((x, y)>).

(11)

This function is smooth (is C∞), and from the construction it is clear that the PS is

composed by three smooth curved intervals (i.e., k−1 submanifolds with boundary, with

k = 2).6 Then the function is sufficiently regular. As claimed in Theorems 1 and 2 a

sufficiently fine grid will produce faithful simplicial coverings.

The L&H3×3 problem is a generalization to three dimensions of the previous
one. The PS of this problem also consists of two connected components, which for
three objectives is a 2 dimensional stratified set [24, 25, 36]. This problem can be
formulated as

max L&H3×3(x, y, z),
s.t. −0.5 6 x 6 0.5,

−1.5 6 y 6 0.5,
−0.5 6 z 6 0.5,

where

gau(p, p0, σ) :=

√
2π

σ
exp

(
−|p− p0|

2

σ2

)
, (12)

pL = (0, 0.15, 0)>, pH = (0,−1.1, 0)>, (13)

bumps(p) := 0.075× gau(p, pL), 0.3) + 1.× gau(p, pH , 3.). (14)

Let us consider the rotation of the space around the vector ω of an angle θ:

ρ(p) := Rot(p, ω, θ), ω :=

(
−
√

2

2
,

√
2

2
, 0

)>
, θ = arctan(

√
2), (15)

notice that this rotation brings the vector (0, 0, 1)> on the vector (1,1,1)>√
3

. Finally

we set:
L&H3×3(x, y, z) := ρ ((x, z,bumps(x, y, z))) . (16)

Also L&H3×3 is smooth and its PS is formed by two smooth 2–dimensional submani-

folds, whose boundary is composed by smooth curved intervals.7 Therefore the function

is sufficiently smooth and according to Theorems 1 and 2 a fine grid will separate

consistently the components.

6 See also Figure 3 (b)).
7 See also Figure 4.
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Fig. 7: Application of PAINT–SiCon on the L&H2×2 problem.(Top-Left): a sample of points
with the corresponding objectives values. The red points denote the nondominated set. (Top-
Right): the gray lines represent the output of PAINT. (Bottom-Left): red lines represent the
structure validated via PAINT–SiCon. (Bottom-Right): output of PAINT–SiCon (red lines) com-
pared with the output of SiCon (black lines).

Figure 7 demonstrates the application of the PAINT–SiCon method to approx-
imating the PS of the L&H2×2 problem. The top panel in the figure shows the
input data with the nondominated solutions and outcomes highlighted. The sec-
ond panel from the top shows the PAINT simplexes and the simplexes propagate
into the decision space. In the second panel from the bottom, the simplexes that
have been validated are highlighted. Finally, the bottom figure compares the re-
sults of the PAINT–SiCon algorithm (red zigzag pattern) and the SiCon algorithm
(black lines). It can be seen that the results are qualitatively similar, but we notice
that PAINT–SiCon did not made use of derivative information and did not require
the computation of the full Delaunay tessellation of the decision space. Figure 8
illustrates the application of the PAINT–SiCon method to the L&H3×3 problem.
The top panels in Figure 8 show the back-propagated PAINT simplexes (on the
left) and the PAINT simplexes in the objective space (on the right). The bottom
panels in the figure show the PAINT simplexes that have been validated both in
the decision space (on the left) and in the objective space (on the right). For this
problem also, the PAINT–SiCon method has correctly approximated the shape of
the PF i.e., the approximation also consists of two connected components.

Surrogate problem (7) for this multiobjective optimization problem have pa-
rameter a = 13 describing the simplexes and b = 2 describing the maximal number
of vertices in a simplex8. The matrix A characterizes the simplexes in a way de-
scribed in Section 2.2 e.g., when the first simplex has as its vertices solutions x17

and x18 then the first line of the matrix A is [17, 18]. Problem (7) is a mixed-integer
linear multiobjective optimization problem and it can now be used as a surrogate

8 Note that, all the simplexes are now line segments.
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Fig. 8: Application of PAINT–SiCon on the L&H3×3 problem. (Top): output of the PAINT
method. (Bottom): selection of the consistent simplexes according to the PAINT–SiCon method.
For comparison with the SiCon method, see figure 4.

of the original problem in e.g., interactive decision making or any a posteriori
multiobjective optimization method.

6 Conclusions and Topics of Further Research

In this paper, we have introduced the PAINT–SiCon PS approximation method that
is an extension of the PAINT method using the ideas of the SiCon method. The
method produces consistent parametric representations of the PS and the PF based
on a sampling in the feasible set. These parametric representations can be used as a
computationally inexpensive surrogate for the original multiobjective optimization
problem. The method has been especially developed for nonconvex problems and
can detect separate connected components of the PF unlike the PAINTmethod.
In addition, the PAINT–SiCon method is computationally less expensive than the
SiCon method.

As a topic of further research, great interest is in the definition of refinement
strategies. The question remains if one can utilize the PS approximation con-
structed by the PAINT–SiCon method to produce new Pareto optimal solutions
without building explicitly the Delaunay tessellation of the feasible set. Clearly,
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the points near the PS approximation are natural candidates for improving the
approximation. Producing well distributed candidate points in the neighborhoods
of the PAINT–SiCon structure, leading to more and more accurate approximations
of the PS is still an open problem. Another open question is how to prevent get-
ting stagnated in the neighborhoods of the first approximation detected, possibly
missing a global branch of Pareto optimal points located in a still unexplored re-
gion of the feasible set. Clearly this question is a multiobjective version of the
exploration–exploitation dilemma of global optimization.

Finally, when the method is used on real world applications, checking the
smoothness conditions on such functions is usually impracticable. However, as
noticed above, these conditions are not restrictive and we can expect that they
are generally met, at least after an arbitrarily small perturbation.
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