
Oula Paltto

INTEGRATING A SMART CITY DATA WAREHOUSE
EFFICIENTLY WITH A CLOUD INFRASTRUCTURE

UNIVERSITY OF JYVÄSKYLÄ

DEPARTMENT OF COMPUTER SCIENCE AND INFORMATION SYSTEMS

2015

TIIVISTELMÄ

Paltto, Oula
Fiksun kaupungin tietovaraston integroiminen tehokkaasti pilvi-infrastruktuu-
riin
Jyväskylä: Jyväskylän yliopisto, 2015, 114 s.
Tietojärjestelmätiede, pro gradu -tutkielma
Ohjaajat: Tyrväinen, Pasi & Mazhelis, Oleksiy

Kankaan hanke on Jyväskylän kaupungin seuraavien vuosikymmenten tärkein
aluekehityshanke. Kankaan alue muodostaa tulevaisuudessa fiksun kaupungin,
mikä edellyttää muun muassa alueen tietovaraston toteuttamista. Ennen tieto-
varaston toteuttamista on kuitenkin tarpeen selvittää, miten fiksun kaupungin
tietovarasto voidaan integroida tehokkaasti pilvi-infrastruktuuriin ylipäänsä,
mikä oli tämän tutkimuksen päätutkimuskysymys. Tätä varten luotiin yleistet-
tävä, teoreettinen viitekehys, jonka avulla voidaan vastata esimerkiksi tähän
kysymykseen. Viitekehyksen avulla voidaan tulkita, että fiksu kaupunki vaatii
pilvi-infrastruktuurilta ainakin saatavuutta, autonomisuutta, skaalattavuutta,
suorituskykyä, yhteentoimivuutta, vikasietoisuutta, yksityisyyttä ja turvalli-
suutta sekä käyttäjien osallistamista ja kestävää kehitystä. Viitekehyksen käyt-
töä demonstroitiin valitsemalla Kankaan alueen tietovaraston tärkeimmät vaa-
timukset: suorituskyky ja skaalattavuus. Näistä vaatimuksista suorituskyky
operationalisoitiin, minkä jälkeen kahden tietovaraston ohjelmistokandidaatin,
Stardogin ja Neo4j:n, suorituskyky testattiin. Ne asennettiin Eucalyptus-pilveen
ja luotiin suorituskykytesti, joka lisäsi ja kyseli tietoa niistä. Neo4j suoriutui
suorituskykytestistä paremmin kuin Stardog. Stardogia ja Neo4j:tä vertailtiin
myös subjektiivisesti, mikä toi esille muun muassa, että Neo4j on kypsempi tuo-
te kuin Stardog mutta että molempia tietokantoja voidaan potentiaalisesti hyö-
dyntää Kankaan hankkeessa. Lopuksi viitekehystä itseään arvioitiin, mikä ker-
toi, että se toimii ohjenuorana melko hyvin, joskin sillä on myös joitakin heik-
kouksia. Se ei esimerkiksi tarjoa teknisiä tietoja. Tutkimus toteutettiin suunnit-
telutieteellisesti.

Asiasanat: pilvilaskenta, fiksu kaupunki, Eucalyptus, NoSQL, graafitietokanta,
Stardog, Neo4j.

ABSTRACT

Paltto, Oula
Integrating a smart city data warehouse efficiently with a cloud infrastructure
Jyväskylä: University of Jyväskylä, 2015, 114 pp.
Information systems science, master's thesis
Ohjaajat: Tyrväinen, Pasi & Mazhelis, Oleksiy

The Kangas project is the main urban development project of the City of Jyväs-
kylä for the next several decades. The Kangas area will form a smart city in the
future, which requires implementing, among others, the data warehouse of the
area. Before implementing the data warehouse, however, there is a need to
know how a smart city data warehouse can be efficiently integrated with a
cloud infrastructure in general, which was the main research question of this
study. To this end, a generalizable, theoretical framework was created that can
be used to answer e.g., to this question. With the help of the framework, it can
be interpreted that a smart city requires of a cloud infrastructure at least avail-
ability, autonomicity, scalability, performance, interoperability, fault tolerance,
privacy, and security, as well as user involvement and sustainability. The use of
the framework was demonstrated by choosing the most important require-
ments for the data warehouse of the Kangas area: performance and scalability.
Of these requirements, performance was operationalized, after which two can-
didates for the software of the data warehouse, Stardog and Neo4j, were tested
for it. They were installed on a Eucalyptus cloud and a benchmark was created
that inserted data into and queried it from them. Neo4j performed better than
Stardog in the benchmark. Stardog and Neo4j were compared subjectively as
well, which brought out, among others, that Neo4j is a more mature product
than Stardog, but that both databases can potentially be utilized in the Kangas
project. Finally, the framework itself was evaluated, which revealed that it func-
tions as a guiding principle quite well, although it has also some weaknesses.
E.g., it offers no specifications. The study was conducted as design science.

Keywords: cloud computing, smart city, Eucalyptus, NoSQL, graph database,
Stardog, Neo4j.

ACKNOWLEDGEMENTS

I would like to thank my supervisors, Pasi Tyrväinen and Oleksiy Mazhelis, for
their expertise, ideas, suggestions, and patience that helped me greatly in writ-
ing this thesis. It provided a great learning experience for a content manage-
ment systems enthusiastic who was almost destined to learn more about cloud
computing, databases, Linux distributions, etc.

I would also like to acknowledge Tapani Tarvainen who helped me to get
Eucalyptus working, as well as Matias Oksa who helped me to get Neo4j
SPARQL Plugin working.

Thanks go also to Neo Technology's Davig Montag and Karl Sjöborg for
providing me valuable information about Neo4j.

Many other people also helped me in one way or the other. I am much
obliged to them for their help.

Oula Paltto
Jyväskylä, Finland
February 18, 2015

FIGURES

FIGURE 1 Business models of cloud computing (Zhang et al., 2010, 10)............ 16
FIGURE 2 Cloud computing architecture (Zhang et al., 2010, 9) 20
FIGURE 3 Evolution of cloud-based storage (Boles, 2008).................................... 23
FIGURE 4 Three layered architectural requirements (Rimal et al., 2011, 6) 29
FIGURE 5 Smart city initiatives framework (Chourabi et al., 2012, 2294) 44
FIGURE 6 Fundamental components of a smart city (Nam & Pardo, 2011, 286)45
FIGURE 7 SOA-based architecture for the IoT middleware (Atzori et al., 2010,
2792)... 49
FIGURE 8 DSRM process model (Ostrowski et al., 2012, 4075)............................ 62
FIGURE 9 Main components of Eucalyptus (Eucalyptus Systems, 2014c) 67
FIGURE 10 Classes of the smart city ontology visualized by Protégé................. 74

TABLES

TABLE 1 Cloud computing requirements ... 39
TABLE 2 Cloud data management requirements... 40
TABLE 3 Integrating smart city requirements with general cloud computing
requirements... 57
TABLE 4 Integrating smart city requirements with cloud data management
requirements... 58
TABLE 5 Durations of the tests measured by the stopwatch................................ 80
TABLE 6 Properties and results of the first part of the benchmark 81
TABLE 7 Transactions of the first part of the benchmark 82
TABLE 8 Properties and results of the second part of the benchmark................ 83
TABLE 9 Transactions of the second part of the benchmark 84
TABLE 10 Properties and results of the third part of the benchmark 85
TABLE 11 Transactions of the third part of the benchmark.................................. 86
TABLE 12 Properties and results of the fourth part of the benchmark 87
TABLE 13 Transactions of the fourth part of the benchmark 87

CONTENTS

TIIVISTELMÄ ...2

ABSTRACT..3

ACKNOWLEDGEMENTS ..4

FIGURES ..5

TABLES ..5

CONTENTS ...6

1 INTRODUCTION ...8

2 CLOUD COMPUTING...11
2.1 Definition of cloud computing ..11
2.2 Essential characteristics of cloud computing...13
2.3 Cloud computing service models..14
2.4 Cloud computing deployment models...16
2.5 Cloud computing technologies..18

3 CLOUD DATA MANAGEMENT ..22
3.1 Definition of cloud data management ..22
3.2 Relational databases vs. NoSQL databases..26
3.3 Requirements for cloud data management..28

3.3.1 Important architectural requirements for cloud computing
systems...29

3.3.2 Cloud storage infrastructure requirements..................................33
3.3.3 Successful cloud data management systems' wish list34
3.3.4 Cloud database management systems' wish list35

3.4 Framework of requirements for cloud data management...................37

4 SMART CITIES AND THEIR DATA MANAGEMENT................................42
4.1 Definition of a smart city ..42
4.2 Definition of the central concepts related to a smart city46
4.3 Enabling technologies of the Internet of Things47
4.4 Requirements for smart city data management49

4.4.1 IoT Reference Architecture requirements.....................................49
4.4.2 Key system-level features that the Internet of Things needs to

support...50
4.4.3 Key requirements of a smart city software architecture.............52
4.4.4 Cloud-centric Internet of Things requirements54

4.5 Framework of requirements for integrating a smart city with a cloud
infrastructure..55

5 RESEARCH METHOD OF THE STUDY...60
5.1 Introduction of design science ...60
5.2 Research process of the study ..61
5.3 Introduction of the central concepts of the study65

5.3.1 Amazon Web Services (AWS) ..65
5.3.2 Eucalyptus cloud software..66
5.3.3 Kangas area ...68
5.3.4 Stardog, an RDF database ...69
5.3.5 Neo4j, a graph database ..70
5.3.6 Apache JMeter, a testing tool..71

5.4 Benchmark for comparing the performance of Stardog and Neo4j ...72
5.4.1 About famous database benchmarks ..72
5.4.2 Smart city ontology..73
5.4.3 Design of the benchmark ..74
5.4.4 Definition of the performance in the benchmark77

6 RESULTS AND CONCLUSIONS ...79
6.1 Results of the benchmark ...79

6.1.1 About the durations of the tests ...79
6.1.2 Create the graph ...80
6.1.3 Write queries...82
6.1.4 Read queries..84
6.1.5 Read and write queries..86
6.1.6 Summary of the results..88

6.2 Subjective comparison of Stardog and Neo4j ..88
6.3 Evaluation of the framework ...90

7 SUMMARY ..91

LITERATURE SOURCES...94

APPENDIX 1: SMART CITY ONTOLOGY...104

APPENDIX 2: APACHE JMETER TEST PLAN ...110

1 INTRODUCTION

The Kangas project is the main urban development project of the City of Jy-
väskylä for the next several decades. The Kangas area is introduced later on, but
in brief, it will form a smart city in the future, being a home to 5000 inhabitants
and offering 2000 new jobs. (Jyväskylän kaupunki, 2011.) This project requires
implementing, but first, planning for many things. One of them is the data
warehouse of the area. It was decided at the University of Jyväskylä that the
data warehouse will be built on the cloud with the help of the university's
hardware, network, and other resources, e.g., Eucalyptus cloud software. Hence,
it can be said that many concepts and technologies are combined in the Kangas
project including cloud computing, cloud data management, and smart cities.
These are briefly characterized below, being discussed in more detail later on.

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction. This cloud model is composed of five essential characteristics, three
service models, and four deployment models. (Mell & Grance, 2011.) These are
elaborated further later on, but in a nutshell, cloud computing can be seen as a
broad umbrella definition encompassing many kinds of technologies and ser-
vices. This can also be said of cloud data management that is a somewhat vague
concept, but in this thesis, it refers to the many ways of saving and managing
data on the cloud. Exemplars of these are so-called NoSQL databases.

Smart city is a fuzzy concept as well. It can be conceptualized in many dif-
ferent ways, e.g., as Caragliu, Del Bo & Nijkamp (2009) according to which a
city is smart when investments in human and social capital and traditional
(transport) and modern (ICT) communication infrastructure fuel sustainable
economic growth and a high quality of life, with a wise management of natural
resources, through participatory governance.

In practice, smart cities produce enormous amounts of data that needs to
be saved and managed somehow. As cloud computing provides at least in the-
ory infinite amount of resources, it is a good candidate for such a task. Elastic

9

Utility Computing Architecture for Linking Your Programs to Useful Systems (Euca-
lyptus) (Wolski et al., 2008) will be utilized in the Kangas project. Eucalyptus is
open source software for building AWS-compatible (Amazon Web Services)
private and hybrid clouds (Eucalyptus Systems, 2014b).

Cloud software such as Eucalyptus is naturally only a platform onto
which something can be build, e.g., the data warehouse of the Kangas area. A
data warehouse refers to a system capable of supporting decision-making, receiv-
ing data from multiple operational data sources (Connolly & Begg, 2005). In this
thesis, two candidates for the software of the data warehouse, Stardog and
Neo4j, are introduced, benchmarked against each other, and compared subjec-
tively as well.

This thesis represents design science that is fundamentally a problem-
solving paradigm that creates and evaluates IT artifacts intended to solve iden-
tified organizational problems (Hevner, March, Park & Ram, 2004). Design sci-
ence consists of two basic activities, building and evaluating. Building is the
process of constructing an artifact for a specific purpose. Evaluation is the proc-
ess of determining how well the artifact performs. (March & Smith, 1995.)

Before implementing the data warehouse of the Kangas area, there is a
need to know how a smart city data warehouse can be efficiently integrated
with a cloud infrastructure in general. This requires knowledge of the require-
ments for smart cities, especially their data management, and the requirements
for cloud computing systems, especially their data management. In the research
literature exist many such requirements, but there appears to be no generaliz-
able framework that would integrate them with each other. It was thus realized
that this kind of framework could be useful e.g., to researchers and decision-
makers. Hence, the main objective of this study is to build such an artifact and
answer with the help of it to the main research question:

 How a smart city data warehouse can be efficiently integrated with a

cloud infrastructure?
Answering to the main research question requires answering to the sub-
questions of this study as well. They form its sub-objectives:

 What is cloud computing?

 What is cloud data management?

 What are the requirements for cloud data management?

 What are smart cities?

 What are the requirements for smart city data management?
This part of the study is conducted as a literature review. The data, consisting of
scholarly papers, books, websites, etc., was found with the help of Google,
Google Scholar, Nelli portal, and the JYKDOK service of the Jyväskylä Univer-
sity Library.

The use of the framework is demonstrated by choosing the most impor-
tant requirements for the data warehouse of the Kangas area: performance and
scalability. Of these requirements, performance is operationalized, after which
Stardog and Neo4j are tested for it. They are installed on Eucalyptus and a
benchmark is built that inserts data into and queries it from the databases. The

10

benchmark compares the performance of Stardog's public SPARQL endpoint
(Clark & Parcia, 2014c) to Neo4j's Transactional Cypher HTTP endpoint (Neo
Technology, 2014f). Then, Stardog and Neo4j are compared subjectively as well,
and finally, based on all these experiences, the framework itself is evaluated.

This thesis is organized as follows. Chapter 2 is an introduction to cloud
computing. It defines cloud computing and discusses its essential characteris-
tics, service models, deployment models, and technologies. Chapter 3 covers
cloud data management. It defines cloud data management, compares rela-
tional databases to NoSQL databases, and presents requirements for cloud data
management. The chapter ends with the framework of requirements for cloud
data management. Chapter 4 deals with smart cities and their data management.
It discusses what smart cities and the Internet of Things (IoT) are, deals with
enabling technologies of the IoT, and presents requirements for smart city data
management. The chapter is crowned by the framework of requirements for
integrating a smart city with a cloud infrastructure. Chapter 5 presents the re-
search method of this study. It briefly introduces design science and then goes
through the research process of the study, the central concepts of the study, and
the benchmark for comparing the performance of Stardog and Neo4j. Chapter 6
presents the results of this benchmark and their analysis, the subjective com-
parison of Stardog and Neo4j, and the evaluation of the framework of require-
ments for integrating a smart city with a cloud infrastructure. Finally, chapter 7
summarizes the results and conclusions of the study, discussing subjects for
further study as well.

11

2 CLOUD COMPUTING

This chapter is organized as follows. First, cloud computing is defined. Then,
essential characteristics of cloud computing are presented. Next, cloud comput-
ing service and deployment models are dealt with. Finally, cloud computing
technologies are discussed.

2.1 Definition of cloud computing

With the rapid development of processing and storage technologies and the
success of the Internet, computing resources have become cheaper, more pow-
erful, and more ubiquitously available than ever before. This technological
trend has enabled the realization of a new computing model called cloud com-
puting in which resources (e.g., CPU and storage) are provided as general utili-
ties that can be leased and released by users through the Internet in an on-
demand fashion. (Zhang, Cheng & Boutaba, 2010.)

The main idea behind cloud computing is not a new one (Zhang et al.,
2010). According to Parkhill (1966, as cited in Zhang et al., 2010), John
McCarthy envisioned already in the 1960s that computing facilities will be pro-
vided to the general public like a utility. The term cloud has also been used in
various contexts, e.g., describing large asynchronous transfer mode (ATM) net-
works in the 1990s. However, after Google's CEO Eric Schmidt used the word
to describe the business model of providing services across the Internet in 2006,
the term really started to gain popularity. Since then, the term 'cloud
computing' has been used mainly as a marketing term in a variety of contexts to
represent many different ideas. (Zhang et al., 2010.)

The lack of a standard definition of cloud computing has generated not
only market hypes, but also a fair amount of skepticism and confusion. For this
reason, there has been work on standardizing the definition of cloud computing
during the past years. (Zhang et al., 2010.) According to Vaquero, Rodero-
Merino, Caceres, and Lindner (2009), cloud computing is associated with a new

12

paradigm for the provision of computing infrastructure. This paradigm shifts
the location of this infrastructure to the network to reduce the costs associated
with the management of hardware and software resources (Vaquero et al., 2009;
see also Hayes, 2008). However, the variety of technologies in the cloud makes
the overall picture confusing (Hwang, 2008, as cited in Vaquero et al., 2009),
and the hype around cloud computing further muddles the message (Geelan,
2008, as cited in Vaquero et al., 2009; Milojicic, 2008, as cited in Vaquero et al.,
2009). According to Vaquero et al. (2009), clouds did not have a clear and com-
plete definition in the literature at the time when they published their paper.
Hence, they propose their definition of clouds: Clouds are a large pool of easily
usable and accessible virtualized resources (such as hardware, development
platforms, and/or services). These resources can be dynamically reconfigured
to adjust to a variable load (scale), allowing also for an optimum resource utili-
zation. This pool of resources is typically exploited by a pay-per-use model in
which guarantees are offered by the infrastructure provider by means of cus-
tomized service-level agreements (SLAs). (Vaquero et al., 2009.)

According to Armbrust et al. (2010), cloud computing is a popular topic
for blogging and white papers and has been featured in the title of workshops,
conferences, and even magazines. However, confusion remains about exactly
what it is and when it is useful (Armbrust et al., 2010). According to Armbrust
et al. (2010), cloud computing refers to both the applications delivered as ser-
vices over the Internet and the hardware and systems software in the data cen-
ters that provide those services. According to Armbrust et al. (2010), the ser-
vices themselves have long been referred to as Software as a Service (SaaS). The
data center hardware and software is what they call a 'cloud.' They mention
that some vendors also use the terms IaaS (Infrastructure as a Service) and PaaS
(Platform as a Service) to describe their products, but Armbrust et al. (2010) es-
chew them, noting that accepted definitions for them still vary widely (2010).

There are, indeed, many definitions of cloud computing, aforementioned
being, in the author's opinion, some of the best. In this thesis, cloud computing
is defined according to National Institute of Standards and Technology's (NIST)
16th and final working definition of cloud computing that has been, according
to Brown (2011), the de facto definition of cloud computing a long time. Accord-
ing to NIST (Mell & Grance, 2011), cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction. This cloud model is composed of
five essential characteristics, three service models, and four deployment models
(Mell & Grance, 2011). These are discussed next.

13

2.2 Essential characteristics of cloud computing

According to NIST (Mell & Grance, 2011), the cloud model is composed of five
essential characteristics:

On-demand self-service. A consumer can unilaterally provision computing
capabilities, e.g., server time and network storage, as needed automatically
without requiring human interaction with each service provider. (Mell &
Grance, 2011.)

Broad network access. Capabilities are available over the network and ac-
cessed through standard mechanisms that promote use by heterogeneous thin
or thick client platforms (e.g., mobile phones, tablets, laptops, and worksta-
tions). (Mell & Grance, 2011.)

Resource pooling. The provider's computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to consumer
demand. There is a sense of location independence in that the customer gener-
ally has no control or knowledge over the exact location of the provided re-
sources, but may be able to specify location at a higher level of abstraction (e.g.,
country, state, or data center). Examples of resources include storage, process-
ing, memory, and network bandwidth. (Mell & Grance, 2011.)

Rapid elasticity. Capabilities can be elastically provisioned and released, in
some cases automatically, to scale rapidly outward and inward commensurate
with demand. To the consumer, the capabilities available for provisioning often
appear to be unlimited and can be appropriated in any quantity at any time.
(Mell & Grance, 2011.)

Measured service. Cloud systems automatically control and optimize re-
source use by leveraging a metering capability at some level of abstraction ap-
propriate to the type of service (e.g., storage, processing, bandwidth, and active
user accounts). Resource usage can be monitored, controlled, and reported,
providing transparency for both the provider and consumer of the utilized ser-
vice. (Mell & Grance, 2011.)

Zhang et al. (2010) list similar characteristics. According to them (2010),
cloud computing provides several salient features that are different from tradi-
tional service computing:

Multi-tenancy (see e.g., 'resource pooling' above). In a cloud environment,
services owned by multiple providers are co-located in a single data center. The
performance and management issues of these services are shared among service
providers and the infrastructure provider. The layered architecture of cloud
computing provides a natural division of responsibilities: the owner of each
layer only needs to focus on the specific objectives associated with this layer.
However, multi-tenancy also introduces difficulties in understanding and man-
aging the interactions among various stakeholders. (Zhang et al., 2010.)

Shared resource pooling (see e.g., 'resource pooling' above). The infrastruc-
ture provider offers a pool of computing resources that can be dynamically as-

14

signed to multiple resource consumers. Such dynamic resource assignment ca-
pability provides much flexibility to infrastructure providers for managing their
own resource usage and operating costs. (Zhang et al., 2010.)

Geo-distribution and ubiquitous network access (see e.g., 'broad network ac-
cess' and 'resource pooling' above). Clouds are generally accessible through the
Internet and use the Internet as a service delivery network. Hence, any device
with Internet connectivity, be it a mobile phone, a personal digital assistant
(PDA), or a laptop, is able to access cloud services. Additionally, to achieve high
network performance and localization, many of today's clouds consist of data
centers located at many locations around the world. A service provider can
easily leverage geo-diversity to achieve maximum service utility. (Zhang et al.,
2010.)

Service oriented (see e.g., 'on-demand self-service' and 'measured service'
above). Cloud computing adopts a service-driven operating model. Hence, it
places a strong emphasis on service management. In a cloud, each IaaS, PaaS,
and SaaS provider offers its service according to the SLA negotiated with its
customers. (Zhang et al., 2010.)

Dynamic resource provisioning (see e.g., 'rapid elasticity' above). One of the
key features of cloud computing is that computing resources can be obtained
and released on the fly. Compared to the traditional model that provisions re-
sources according to peak demand, dynamic resource provisioning allows ser-
vice providers to acquire resources based on the current demand, which can
considerably lower the operating cost. (Zhang et al., 2010.)

Self-organizing (see e.g., 'rapid elasticity' above). Since resources can be al-
located or deallocated on-demand, service providers are empowered to manage
their resource consumption according to their own needs. In addition, the
automated resource management feature yields high agility that enables service
providers to respond quickly to rapid changes in service demand, e.g., the flash
crowd effect. (Zhang et al., 2010.)

Utility-based pricing (see e.g., 'measured service' above). Cloud computing
employs a pay-per-use pricing model. The exact pricing scheme may vary from
service to service. Utility-based pricing lowers service operating cost as it
charges customers on a per-use basis. However, it also introduces complexities
in controlling the operating cost. (Zhang et al., 2010.)

2.3 Cloud computing service models

According to NIST (Mell & Grance, 2011), the cloud model is composed of three
service models:

Software as a Service (SaaS). The capability provided to the consumer is to
use the provider's applications running on a cloud infrastructure. The applica-
tions are accessible from various client devices through either a thin client inter-
face, such as a web browser (e.g., web-based e-mail) or a program interface. The
consumer does not manage or control the underlying cloud infrastructure in-

15

cluding network, servers, operating systems, storage, or even individual appli-
cation capabilities, with the possible exception of limited user-specific applica-
tion configuration settings. (Mell & Grance, 2011.)

Platform as a Service (PaaS). The capability provided to the consumer is to
deploy onto the cloud infrastructure consumer-created or acquired applications
created using programming languages, libraries, services, and tools supported
by the provider. The consumer does not manage or control the underlying
cloud infrastructure including network, servers, operating systems, or storage,
but has control over the deployed applications and possibly configuration set-
tings for the application-hosting environment. (Mell & Grance, 2011.)

Infrastructure as a Service (IaaS). The capability provided to the consumer is
to provision processing, storage, networks, and other fundamental computing
resources where the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The consumer does not
manage or control the underlying cloud infrastructure, but has control over op-
erating systems, storage, and deployed applications, and possibly limited con-
trol of select networking components, e.g., host firewalls. (Mell & Grance, 2011.)

Names of these three service models vary. E.g., Vaquero et al. (2009) dis-
cuss 'types of cloud systems' or 'scenarios where clouds are used' and their ac-
tors. According to them, many activities use software services as their business
basis. These service providers (SPs) make services accessible to the service users
through Internet-based interfaces. Clouds aim to outsource the provision of the
computing infrastructure required to host services. This infrastructure is offered
'as a service' by infrastructure providers (IPs), moving computing resources
from the SPs to the IPs, so the SPs can gain in flexibility and reduce costs. (Va-
quero et al., 2009.)

In IaaS, IPs manage a large set of computing resources, e.g., storing and
processing capacity. Through virtualization, they are able to split, assign, and
dynamically resize these resources to build ad-hoc systems as demanded by
customers, the SPs. They deploy the software stacks that run their services.
PaaS denotes that cloud systems can offer an additional abstraction level. In-
stead of supplying a virtualized infrastructure, they can provide the software
platform in which systems run on. The sizing of the hardware resources de-
manded by the execution of the services is made in a transparent manner. A
well-known example is the Google App Engine. As for SaaS, there are services
of potential interest to a wide variety of users hosted in cloud systems. This is
an alternative to locally run applications. Examples of this are the online alter-
natives of typical office applications, e.g., word processors. (Vaquero et al.,
2009.)

Zhang et al. (2010) define IaaS, PaaS, and SaaS as 'business models.' Ac-
cording to them, cloud computing employs a service-driven business model.
Hardware- and platform-level resources are provided as services on an on-
demand basis. Conceptually, every layer of the architecture can be imple-
mented as a service to the layer above, and every layer can be perceived as a
customer of the layer below, which is depicted in the figure 1. It is entirely pos-

16

sible that a PaaS provider runs its cloud on top of an IaaS provider's cloud, but
in the current practice, IaaS and PaaS providers are often parts of the same or-
ganization, e.g., Google and Salesforce. In a cloud computing environment, the
traditional role of a service provider is divided into two: infrastructure provid-
ers who manage cloud platforms and lease resources according to a usage-
based pricing model, and service providers who rent resources from one or
many infrastructure providers to serve the end-users. (Zhang et al., 2010.)

FIGURE 1 Business models of cloud computing (Zhang et al., 2010, 10)

2.4 Cloud computing deployment models

According to NIST (Mell & Grance, 2011), the cloud model is composed of four
deployment models:

Private cloud. The cloud infrastructure is provisioned for exclusive use by a
single organization comprising multiple consumers, e.g., business units. It may
be owned, managed, and operated by the organization, a third party, or some
combination of them, and it may exist on- or off-premises. (Mell & Grance, 2011.)

Community cloud. The cloud infrastructure is provisioned for exclusive use
by a specific community of consumers from organizations that have shared
concerns (e.g., mission, security requirements, policy, and compliance consid-
erations). It may be owned, managed, and operated by one or more of the or-
ganizations in the community, a third party, or some combination of them, and
it may exist on- or off-premises. (Mell & Grance, 2011.)

Public cloud. The cloud infrastructure is provisioned for open use by the
general public. It may be owned, managed, and operated by a business, aca-
demic, or government organization, or some combination of them. It exists on
the premises of the cloud provider. (Mell & Grance, 2011.)

Hybrid cloud. The cloud infrastructure is a composition of two or more dis-
tinct cloud infrastructures (private, community, or public) that remain unique
entities, but are bound together by standardized or proprietary technology that
enables data and application portability, e.g., cloud bursting for load balancing
between clouds. (Mell & Grance, 2011.)

17

Concerning the aforementioned deployment models, cloud bursting is a
technique used by hybrid clouds to provide additional resources to private
clouds on an as-needed basis. If the private cloud has the processing power to
handle its workloads, the hybrid cloud is not used. When workloads exceed the
private cloud's capacity, the hybrid cloud automatically allocates additional
resources to the private cloud. Hence, hybrid clouds offer e.g., more flexibility
than both public and private clouds. (Sakr, Liu, Batista & Alomari, 2011.)

Zhang et al. (2010) discuss different 'types of clouds', i.e., the deployment
models, in a similar fashion, each type of cloud having its own benefits and
drawbacks:

Private clouds, also known as internal clouds, offer the highest degree of
control over performance, reliability, and security. However, they are often
criticized for being similar to traditional proprietary server farms and do not
provide benefits, e.g., no up-front capital costs. (Zhang et al., 2010.)

Public clouds offer several key benefits to service providers including no
initial capital investment on an infrastructure and shifting of risks to infrastruc-
ture providers. However, public clouds lack fine-grained control over data, as
well as network and security settings, which hampers their effectiveness in
many business scenarios. (Zhang et al., 2010.)

Hybrid clouds offer more flexibility than both public and private clouds.
Specifically, they provide tighter control and security over application data
compared to public clouds, while still facilitating on-demand service expansion
and contraction. On the downside, designing a hybrid cloud requires carefully
determining the best split between public and private cloud components.
(Zhang et al., 2010.)

Zhang et al. (2010) do not mention NIST's (Mell & Grance, 2011) commu-
nity cloud, but they do present a type of cloud that NIST's definition does not
comprise, a virtual private cloud (VPC) that is an alternative solution to address-
ing the limitations of both public and private clouds. A VPC is essentially a
platform running on top of public clouds. The main difference is that a VPC
leverages virtual private network (VPN) technology that allows service provid-
ers to design their own topology and security settings, e.g., firewall rules. VPC
is essentially a more holistic design, since it virtualizes servers, applications,
and the underlying communication network as well. Additionally, for most
companies, VPC provides seamless transition from a proprietary service infra-
structure to a cloud-based infrastructure, owing to the virtualized network
layer. (Zhang et al., 2010.)

In addition, there exists at least the concept of federated cloud that refers to
an infrastructure in which competing clouds are able to cooperate to maximize
their benefits (Ranjan, Buyya & Parashar, 2012). Rouvinen (2013) has compared
the terms 'community cloud' and 'federated cloud' in an explicit way in his mas-
ter's thesis. According to him, a community cloud is essentially a private cloud,
in any case more or less closed by its nature, while a federated cloud can com-
prise both public and private clouds.

18

2.5 Cloud computing technologies

According to Zhang et al. (2010), cloud computing is often compared to the fol-
lowing technologies, each of which shares certain aspects with cloud computing:

Grid computing. Grid computing is a distributed computing paradigm that
coordinates networked resources to achieve a common computational objective.
The development of grid computing was originally driven by scientific applica-
tions that are usually computation-intensive. Cloud computing is similar to grid
computing in that it also employs distributed resources to achieve application-
level objectives. However, cloud computing takes one step further by leverag-
ing virtualization technologies at multiple levels (hardware and application
platform) to realize resource sharing and dynamic resource provisioning.
(Zhang et al., 2010.)

Utility computing. Utility computing represents the model of providing re-
sources on-demand and charging customers based on usage rather than a flat
rate. Cloud computing can be perceived as a realization of utility computing. It
adopts a utility-based pricing scheme entirely for economic reasons. With on-
demand resource provisioning and utility-based pricing, service providers can
truly maximize resource utilization and minimize their operating costs. (Zhang
et al., 2010.)

Virtualization. Virtualization is a technology that abstracts away the details
of physical hardware and provides virtualized resources for high-level applica-
tions. A virtualized server is commonly called a virtual machine (VM). Virtual-
ization forms the foundation of cloud computing, as it provides the capability
of pooling computing resources from clusters of servers and dynamically as-
signing or reassigning virtual resources to applications on-demand. (Zhang et
al., 2010.)

Autonomic computing. Originally coined by IBM in 2001, autonomic com-
puting aims at building computing systems capable of self-management, i.e.,
reacting to internal and external observations without human intervention. The
goal of autonomic computing is to overcome the management complexity of
today's computer systems. Although cloud computing exhibits certain auto-
nomic features, e.g., automatic resource provisioning, its objective is to lower
resources' cost rather than to reduce system complexity. (Zhang et al., 2010.)

Zhang et al. (2010) summarize that cloud computing leverages virtualiza-
tion technology to achieve the goal of providing computing resources as a util-
ity. It shares certain aspects with grid computing and autonomic computing,
but differs from them in other aspects. Therefore, it offers unique benefits and
imposes distinctive challenges to meet its requirements. (Zhang et al., 2010.)

Wang, Tao, Kunze, Castellanos, Kramer, and Karl (2008), and later on,
Wang et al. (2010) list a number of enabling technologies contributing to cloud
computing. Next, some technologies that have not been discussed so far are
briefly presented:

19

Web services and SOA. Computing cloud services are normally exposed as
web services that follow the industry standards, e.g., Web Service Description
Language (WSDL), Simple Object Access Protocol (SOAP), and Universal De-
scription Discovery and Integration (UDDI). The services organization and or-
chestration inside clouds could be managed in a service-oriented architecture
(SOA). Furthermore, a set of cloud services could be used in a SOA application
environment, thus making them available on various distributed platforms.
They could be further accessed across the Internet. (Wang et al., 2010.)

Web 2.0. According to Wikipedia (2008, as cited in Wang et al., 2010), Web
2.0 is an emerging technology describing the innovative trends of using World
Wide Web (WWW) technology and web design that aims to enhance creativity,
information sharing, collaboration, and functionality of the web. The essential
idea behind Web 2.0 is to improve the interconnectivity and interactivity of web
applications. The new paradigm to develop and access web applications en-
ables users to access the web more easily and efficiently. Cloud computing ser-
vices are in nature web applications that render desirable computing services
on-demand. (Wang et al., 2010.)

World-wide distributed storage system. A cloud storage model should foresee
a network storage system that is backed by distributed storage providers, e.g.,
data centers, offering storage capacity for users to lease. The data storage could
be migrated, merged, and managed transparently to end-users for whatever
data formats. A cloud storage model should also foresee a distributed data sys-
tem that provides data sources accessed in a semantic way. Users could locate
data sources in a large distributed environment by the logical name instead of
physical locations. (Wang et al., 2010.)

Programming model. Users drive into the computing cloud with data and
applications. Some cloud programming models should be proposed for users to
adapt to the cloud infrastructure. For the simplicity and easy access of cloud
services, the cloud programming model should not, however, be too complex or
too innovative for end-users. (Wang et al., 2010.) The MapReduce is a pro-
gramming model and an associated implementation for processing and gener-
ating large data sets across the Google's worldwide infrastructures (Dean, 2007,
as cited in Wang et al., 2010; Dean & Ghemawat, 2008, as cited in Wang et al.,
2010). Hadoop is a framework for running applications on large clusters built of
commodity hardware (Hadoop, 2008, as cited in Wang et al., 2010). It imple-
ments the MapReduce paradigm and provides a distributed file system, the
Hadoop Distributed File System (Wang et al., 2010).

Related to these technologies, Zhang et al. (2010) present a layered model
of cloud computing, i.e., the architecture of a cloud computing environment. It
can be divided into four layers: the hardware / data center layer, the infrastruc-
ture layer, the platform layer, and the application layer. These are depicted in
the figure 2:

20

FIGURE 2 Cloud computing architecture (Zhang et al., 2010, 9)

The hardware layer. This layer is responsible for managing the physical resources
of the cloud including physical servers, routers, switches, power, and cooling
systems. The hardware layer is typically implemented in data centers. A data
center usually contains thousands of servers that are organized in racks and
interconnected through switches, routers, or other fabrics. Typical issues at
hardware layer include hardware configuration, fault-tolerance, traffic man-
agement, power, and cooling resource management. (Zhang et al., 2010.)

The infrastructure layer. Also known as the virtualization layer, the infra-
structure layer creates a pool of storage and computing resources by partition-
ing the physical resources using virtualization technologies, e.g., Xen, KVM,
and VMware. The infrastructure layer is an essential component of cloud com-
puting, since many key features, e.g., dynamic resource assignment, are only
made available through virtualization technologies. (Zhang et al., 2010.)

The platform layer. Built on top of the infrastructure layer, the platform
layer consists of operating systems and application frameworks. The purpose of
the platform layer is to minimize the burden of deploying applications directly
into VM containers. E.g., Google App Engine operates at the platform layer to
provide application programming interface (API) support for implementing
storage, database, and business logic of typical web applications. (Zhang et al.,
2010.)

The application layer. At the highest level of the hierarchy, the application
layer consists of the actual cloud applications. Different from traditional appli-
cations, cloud applications can leverage the automatic-scaling feature to achieve
better performance, availability, and lower operating costs. (Zhang et al., 2010.)

According to Zhang et al. (2010), compared to traditional service hosting
environments, e.g., dedicated server farms, the architecture of cloud computing
is more modular. Each layer is loosely coupled with the layers above and below,
allowing each layer to evolve separately. This is similar to the design of the

21

Open Systems Interconnection (OSI) model for network protocols. The architec-
tural modularity allows cloud computing to support a wide range of applica-
tion requirements, while reducing management and maintenance overhead.
(Zhang et al., 2010.)

22

3 CLOUD DATA MANAGEMENT

This chapter is organized as follows. First, cloud data management and the cen-
tral concepts related to it are defined. Then, relational databases are briefly
compared to NoSQL databases. Next, requirements for cloud data management
are discussed. Finally, a framework of requirements for cloud data management
is presented.

3.1 Definition of cloud data management

As cloud computing is a broad umbrella definition encompassing many kinds
of technologies and services, so is cloud data management as well. Before going
into what cloud data management is, it is useful to define some general con-
cepts of data management:

A database is a shared collection of logically related data, and a description
of this data, designed to meet the information needs of an organization. A data-
base management system (DBMS) is a software system that enables users to define,
create, maintain, and control access to a database. A DBMS allows users to de-
fine the structure of a database, a schema, through its data definition language
(DDL). A higher-level description of a schema is called a data model. A DBMS
allows users also to insert, update, delete, and retrieve data from a database,
usually through a data manipulation language (DML). A DML provides a gen-
eral inquiry facility to the data of a database, called a query language. The most
common query language is the Structured Query Language (SQL) that is both the
formal and de facto standard language for relational database management systems
(RDBMSs). (Connolly & Begg, 2005.) As SQL and RDBMs go hand in hand, rela-
tional databases are also called SQL or MySQL databases. Relational databases
are defined later on.

In practice, a database runs on a server. A database server refers in this the-
sis to a computer that is dedicated to running a computer program that pro-
vides database services to other computer programs or computers (Wikipedia,

23

2014a). A data warehouse refers to a system capable of supporting decision-
making, receiving data from multiple operational data sources (Connolly &
Begg, 2005). In this thesis, a data warehouse is defined as a single repository
into which users can easily insert data, from which they can easily run queries,
and from which they can also produce reports and perform analysis if needed
(cf. Connolly's & Begg's definition of the ultimate goal of data warehousing,
2005).

Cloud data management is a somewhat vague concept, but in this thesis, it
refers to the many ways of saving and managing data in the cloud. To define
the concept briefly, e.g., Wang et al. (2010), as already mentioned, write about
worldwide distributed storage system as one of the enabling technologies be-
hind cloud computing. Boles (2008) offers a technical, yet still quite clear de-
scription of cloud-based storage and its evolution, depicted in the figure 3.

FIGURE 3 Evolution of cloud-based storage (Boles, 2008)

According to Boles (2008), simply put, storage in the cloud de-couples storage
and applications, so that access to either one can be more flexible, and data
storage and applications can easily scale in response to changing user demands.
The industry has long been struggling with de-coupling applications from data

24

so that each can be more flexibly managed, moved, and scaled. Network File
System (NFS) and Common Internet File System (CIFS) were among the earliest
ways of de-coupling applications and storage so that each could be scaled and
managed more effectively. However, these protocols are complex and remain
restricted to the data center in which resources can be expensive and difficult to
scale. (Boles, 2008.)

The next evolution of de-coupling was to host application and data com-
ponents with service providers across the web. Unfortunately, this generation
of storage was often mired in the restricted scalability and complex access of
traditional remote access protocols (File Transfer Protocol, FTP, Web-based Dis-
tributed Authoring and Versioning, WebDAV) and traditional storage (file
and/or block). (Boles, 2008.) File-level storage refers to a storage technology
that is most commonly used in storage systems that are found in hard drives,
Network-Attached Storage (NAS) systems, etc. In file-level storage, the storage
disk is configured with a protocol, e.g., NFS or Server Message Block (SMB) /
CIFS, and the files are stored and accessed from it in bulk. In block-level storage,
raw volumes of storage are created, and each block can be controlled as an in-
dividual hard drive. These blocks are controlled by server-based operating sys-
tems, and each block can be individually formatted with the required file sys-
tem. (StoneFly, 2014.)

Cloud-based technology wraps traditional IT applications and infrastruc-
ture in new, simplified APIs and access semantics. APIs, or sets of application
and/or storage commands, are served up as self-contained, discoverable web
services that are accessed via Hypertext Transfer Protocol (HTTP) or other pro-
tocols and integrated into lightweight, easy to develop, distributed applications.
This allows users to put less effort into developing complex application sub-
routines, and instead better serve their businesses with combinations of already
available and reusable web services and data. In turn, the increased independ-
ence of these services allows each component to scale up and down in perform-
ance as end-user demands change. When distributed onto the enormous data
centers of one or multiple service providers, this makes the infrastructure truly
elastic. (Boles, 2008.)

Wu, Ping, Ge, Wang, and Fu (2010) mention Boles' (2008) evolution of
cloud-based storage writing about four scenarios in which clouds are used.
They are the aforementioned cloud service models SaaS, PaaS, and IaaS, but in
addition to them Wu et al. (2010) mention Storage as a Service (StaaS) that facili-
tates cloud applications to scale beyond their limited servers. StaaS allows users
to store their data at remote disks and access them anytime from any place.
However, according to Wu et al. (2010), cloud storage is amorphous today, with
neither a clearly defined set of capabilities nor any single architecture. Choices
abound, with many traditional hosted or managed service providers (MSPs)
offering block or file storage, usually alongside traditional remote access proto-
cols, or virtual or physical server hosting. Other solutions have emerged, typi-
fied by Amazon Simple Storage Service that resembles flat databases designed
to store large objects. (Wu et al., 2010.)

25

Boles' (2008) evolution of cloud-based storage is also mentioned in Kul-
karni's, Waghmare's, Palwe's, Waykule's, Bankar's, and Koli's (2012) paper.
Leaning on Storage Networking Industry Association (2009) and Curino et al.
(2010), they note that cloud storage is a service model in which data is main-
tained, managed, and backed up remotely and made available to users over a
network (typically the Internet) and that cloud storage is still amorphous (Kul-
karni et al., 2012).

Arora and Gupta (2012) define some of the central concepts related to
cloud data management. According to them, the different terms used for data
management in the cloud differ on the basis of how data is stored and managed.
Cloud storage is virtual storage that enables users to store documents and objects.
Data as Service (DaaS) allows user to store data at a remote disk available
through the Internet. It is used mainly for backup purposes and basic data
management. Cloud storage cannot work without basic data management ser-
vices, so these two terms are used interchangeably. However, Database as a Ser-
vice (DBaaS) is one step ahead. It offers complete database functionality and al-
lows users to access and store their database at remote disks anytime from any
place through the Internet. Cloud database is a database delivered to users on-
demand through the Internet from a cloud database provider's servers. While
conventional DBMSs deal with structured data that is held in databases along
with its metadata, cloud databases can be used for unstructured, semi-
structured, or structured data. (Arora & Gupta, 2012.)

According to Dewan and Hansdah (2011), there exist at least five cloud
storage types: unstructured data, structured data, message queues, block devices,
and RDBMSs. Unstructured type is similar to traditional files, but has a support
for accommodating large data set besides ensuring reliability and availability. A
good example of unstructured storage type is Amazon Simple Storage Service.
Structured types are non-relational data type. They are multi-dimensional data
structures and designed in such a way that faster look up and access is possible.
In addition, unlike relational database systems, they do not support joins and
SQL queries. (Dewan & Hansdah, 2011.) In certain contexts, they can also be
referred to as Non-SQL databases (Dewan & Hansdah, 2011), i.e., NoSQL data-
bases. An example of structured storage type is Amazon SimpleDB. Message
queues are temporary storage structures that are meant for storing messages
passed between cloud application processes. Block devices are like traditional
secondary storage media, a raw sequential order of bytes, which cloud applica-
tions can format as per their requirements of file system types. RDBMS store is
a port of traditional RDBMS in the cloud. In RDBMS type storage, cloud appli-
cations can use SQL server instances hosted in the cloud infrastructure as if they
were hosted in traditional servers. (Dewan & Hansdah, 2011.)

As for traditional databases, relational databases have been around for
many years and have become the predominant choice in storing data (Wikipe-
dia, 2014b). Next, relational databases and popular cloud databases, so-called
NoSQL databases, are introduced and compared to each other.

26

3.2 Relational databases vs. NoSQL databases

Edgar Codd, a former IBM Fellow, is generally credited with creating the rela-
tional-database model in 1970 (Leavitt, 2010). A relational database is a set of
tables (relations) containing data fitted into predefined categories (Leavitt, 2010;
see also Connolly & Begg, 2005). Each table contains one or more data catego-
ries in columns. Each row contains a unique instance of data for the categories
defined by the columns. Users can access or reassemble the data in different
ways without having to reorganize the database tables. Relational databases
work best with structured data, e.g., a set of sales figures that readily fits in
well-organized tables. This is not the case with unstructured data, e.g., that
found in word-processing documents and images. Partly in response to the
growing awareness of relational databases' limitations, vendors and users are
increasingly turning to NoSQL databases. (Leavitt, 2010.)

Defining what a NoSQL database is is not that simple. According to
Pokorny (2013), the term 'NoSQL database' was chosen for a loosely specified
class of non-relational data stores. Such databases (mostly) do not use SQL as
their query language. The term 'NoSQL' is therefore confusing and is inter-
preted in the database community rather as 'not only SQL.' (Pokorny, 2013.)
NoSQL can also be 'not relational' (Arora & Gupta, 2012) or 'postrelational'
(Pokorny, 2013). These concepts sound like something new, but according to
Leavitt (2010), non-relational databases including hierarchical, graph, and ob-
ject-oriented databases have been around since the late 1960s.

The easiest way to differentiate between relational databases and NoSQL
databases is to let the NoSQL data models speak for themselves, as the rela-
tional data model above. According to Leavitt (2010) and Pokorny (2013), there
are three popular types of NoSQL databases: key-value stores, column-oriented
databases, and document-based stores. Most simple NoSQL databases called
key-value stores (or big hash tables) contain a set of couples (key, value). A key is
in principle the same as an attribute in relational databases or a column name in
SQL databases. In other words, a database is a set of named values. A key
uniquely identifies a value (typically a string, but also a pointer to a place in
which the value is stored), and this value can be structured or completely un-
structured. In a more complex case, a NoSQL database stores combinations of
couples (key, value) collected into collections. These are column-oriented data-
bases. Some of these databases are composed of collections of couples (key,
value) or, more generally, they look like semi-structured documents or extend-
able records often equipped by indexes. New attributes (columns) can be added
to these collections. (Pokorny, 2013.) Finally, document-based stores are databases
that store and organize data as collections of documents, rather than as struc-
tured tables with uniform-sized fields for each record. With these databases,
users can add any number of fields of any length to a document. (Leavitt, 2010.)

Although relational databases have been around a long time, they are not
perfect. Leavitt (2010) discusses some of their limitations:

27

Scaling. Users can scale a relational database by running it on a more pow-
erful and expensive computer. To scale beyond a certain point though, it must
be distributed across multiple servers. However, relational databases do not
work easily in a distributed manner, because joining their tables across a dis-
tributed system is difficult. Also, relational databases are not designed to func-
tion with data partitioning, so distributing their functionality is a chore. (Leavitt,
2010.)

Complexity. With relational databases, users have to convert all data into
tables. When the data does not fit easily into a table, the database's structure can
be complex, difficult, and slow to work with. (Leavitt, 2010.)

SQL. Using SQL is convenient with structured data. However, using the
language with other types of information is difficult, because it is designed to
work with structured, relationally organized databases with fixed table infor-
mation. SQL can entail large amounts of complex code and does not work well
with modern, agile development. (Leavitt, 2010.)

Large feature set. Relational databases offer a big feature set and data integ-
rity. However, NoSQL proponents say that database users often do not need all
the features, as well as the cost and complexity they add. (Leavitt, 2010.)

NoSQL databases generally process data faster than relational databases.
This stems from the fact that relational databases are usually used by businesses
and often for transactions that require great precision, so they generally subject
all data to the same set of atomicity, consistency, isolation, durability (ACID) re-
straints. (Leavitt, 2010.) Atomicity means that an update is performed com-
pletely or not at all (all or nothing). Consistency denotes that no part of a trans-
action will be allowed to break a database's rules (the result of each transaction
is tables with legal data). Isolation refers to each application running transac-
tions independently of other applications operating concurrently (transactions
are independent). Durability indicates that completed transactions will persist
(a database survives system failures). (Leavitt, 2010; Pokorny, 2013.) A database
consistency is called in this sense strong consistency (Pokorny, 2013).

In practice, relational databases have always been fully ACID-compliant
(Pokorny, 2013). However, having to perform these restraints on every piece of
data makes relational databases slower. As for NoSQL databases, developers
usually do not have their NoSQL databases support ACID in order to increase
performance. This can cause problems when used for applications that require
great precision. NoSQL databases are also often faster, because their data mod-
els are simpler. Because NoSQL databases do not have all the technical re-
quirements that relational databases have, proponents say, most major NoSQL
systems are flexible enough to better enable developers to use the applications
in ways that meet their needs. (Leavitt, 2010.)

In contrast to ACID guarantees, NoSQL databases follow basically available,
soft state, eventually consistent (BASE) guarantees (Arora & Gupta, 2012). An ap-
plication works basically all the time (basically available), does not have to be
consistent all the time (soft state), but the storage system guarantees that if no

28

new updates are made to the object eventually (after the inconsistency window
closes), all accesses will return the last updated value (Pokorny, 2013).

Databases that do not implement ACID fully can be only eventually con-
sistent. In principle, if some consistency is given up, more availability can be
gain and scalability of the database can be greatly improved. In contrast to
ACID properties, there exists so-called CAP theorem, also called Brewer's theo-
rem. It is a triple of requirements including consistency (C), availability (A), and
partitioning tolerance (P). The CAP theorem states that for any system sharing
data it is impossible to guarantee simultaneously all of these three properties.
Particularly, in web applications based on horizontal scaling strategy, it is nec-
essary to decide between C and A. Usually DBMSs prefer C over A and P.
(Pokorny, 2013.)

As mentioned above, relational databases are not flawless. Neither are
NoSQL databases. Leavitt (2010) also discusses their disadvantages or chal-
lenges:

Overhead and complexity. Because NoSQL databases do not work with SQL,
they require manual query programming that can be fast for simple tasks but
time-consuming for others. In addition, complex query programming for the
databases can be difficult. (Leavitt, 2010.)

Reliability. Relational databases natively support ACID, while NoSQL da-
tabases do not. Hence, NoSQL databases do not natively offer the degree of re-
liability that ACID provides. If users want NoSQL databases to apply ACID
restraints to a data set, they must perform additional programming. (Leavitt,
2010.)

Consistency. Because NoSQL databases do not natively support ACID
transactions, they could also compromise consistency, unless manual support is
provided. Not providing consistency enables better performance and scalability,
but it is a problem for certain types of applications and transactions, e.g., those
involved in banking. (Leavitt, 2010.)

Unfamiliarity with the technology. Most organizations are unfamiliar with
NoSQL databases and thus may not feel knowledgeable enough to choose one
or even to determine that the approach might be better for their purposes.
(Leavitt, 2010.)

Limited ecostructure. Unlike commercial relational databases, many open
source NoSQL applications do not yet come with customer support or man-
agement tools. (Leavitt, 2010.)

3.3 Requirements for cloud data management

Next, requirements for cloud data management are discussed. The literature
sources are organized so that the more general requirements are presented first
and the more specific later on. The reason for presenting general requirements
for cloud computing systems is that a cloud data management system is always
a part of some larger cloud computing system. They cannot be separated from

29

each other. After the requirements are discussed, a framework of requirements
for cloud data management is presented.

3.3.1 Important architectural requirements for cloud computing systems

Rimal, Jukan, Katsaros, and Goeleven (2011) consider important architectural
requirements for cloud computing systems. These architectural requirements
are classified according to the requirements of cloud providers, enterprises that
use the cloud, and end-users. The three-layered classification of the architec-
tural requirements of cloud systems is depicted in the figure 4. Next, these ar-
chitectural requirements are discussed one at a time beginning from the pro-
vider requirements and ending to the user requirements.

FIGURE 4 Three layered architectural requirements (Rimal et al., 2011, 6)

The provider service delivery model. As already discussed, three service delivery
models can be considered in cloud systems: SaaS, PaaS, and IaaS. (Rimal et al.,
2011.) They all have their advantages and disadvantages, but as they have al-
ready been discussed to some detail, they are not gone into here.

30

Service-centric issues. Cloud computing as a service needs to respond to
real-world requirements of an enterprise's IT management. To fulfill the re-
quirements of an enterprise's IT management, cloud architecture needs to deal
with unified service-centric approach, e.g.,: Cloud services should be autonomic.
Cloud systems/applications should be designed to adapt dynamically to
changes in the environment with less human assistantship. Autonomic behav-
ior of services can be used to improve the quality of services, fault-tolerance,
and security. Furthermore, cloud services should be self-describing. Self-de-
scribing service interfaces can depict the contained information and functional-
ity as reusable and context-independent way. The underlying implementation
of a service can be changed simultaneously without reconfigurations when the
service contract is updated. In addition, the cost composition of distributed
applications should be low. (Rimal et al., 2011.)

Interoperability. Interoperability focuses on the creation of an agreed-upon
framework/ontology, open data formats, or open protocols/APIs that enable
easy migration and integration of applications and data between different cloud
service providers and facilitates secure information exchange across platforms.
For enterprises, it is important to provide interoperability between enterprise
clouds and cloud service providers. (Rimal et al., 2011.)

Quality of Service (QoS). In general, QoS provides the guarantee of per-
formance and availability, as well as other aspects of service quality, e.g., secu-
rity, reliability, dependability, etc. SLAs play a key facilitator role to make
agreed-upon QoS between service providers and end-users. (Rimal et al., 2011.)

Fault tolerance. Fault tolerance enables the systems to continue operating in
the event of the failure of some of their components. In general, fault tolerance
requires fault isolation to falling components, availability of reversion mode, etc.
Fault-tolerant systems are characterized in terms of outages. (Rimal et al., 2011.)

Data management, storage, and processing. Data will be replicated across
large geographic distances in which its availability and durability is paramount
for cloud service providers. If the data is stored at untrusted hosts that can cre-
ate enormous risks for data privacy. Furthermore, the cloud computing provid-
ers must ensure that the storage infrastructure is capable of providing rich
query languages that are based on simple data structures to allow for scale-up
and scale-down on-demand. In addition, the providers need to offer perform-
ance guarantees with the potential to allow the programmer some form of con-
trol over the storage procedures. (Rimal et al., 2011.)

In terms of storage technologies, there should be a shift from hard disk
drives (HDDs) to solid-state drives (SSDs) (Graefe, 2007, as cited in Rimal et al.,
2011; Lee & Kim, 2007, as cited in Rimal et al., 2011) or, since the complete re-
placement of hard disks is prohibitively expensive, the design of hybrid hard
disks, i.e., hard disks augmented with flash memories (Lim et al., 2009, as cited
in Rimal et al., 2011), as the latter provide reliable and high performance data
storage. As for energy consumption, SSDs consume less power in idle state than
HDDs. In addition, the programming model of data centers supported by the
current (2011) industry giants, i.e., MapReduce, is not a perfect fit for all tasks.

31

Towards this direction, new languages and systems must be developed to real-
ize hybrid designs among DBMSs and MapReduce-like systems. (Rimal et al.,
2011.)

Virtualization management. Virtualization refers to the abstraction of logical
resources away from their underlying physical resources in order to improve
agility and flexibility, reduce costs, and thus enhance business value (Golden,
2008, as cited in Rimal et al., 2011). Handling a number of virtualization ma-
chines on top of operating systems and evaluating, testing servers, and de-
ployment to the targets are some of the important concerns of virtualization.
Virtualization in the cloud takes many forms, e.g., server, storage, and infra-
structure virtualization. (Rimal et al., 2011.)

Scalability. Scalability deals with the ability of a software system to manage
increasing complexity when given additional resources. Scalability with large
data set operations is a requirement for cloud computing. Horizontal scalability
is what clouds provide through load balancing and application delivery solu-
tions. Distributed hash table (DHT), column-orientation, and horizontal parti-
tioning are examples of horizontal scalability. Vertical scalability is related to
resources used, much like the old mainframe model. (Rimal et al., 2011.)

Load balancing. Load balancing is an integral part of cloud computing and
elastic scalability, which can be provided by software, hardware, or virtualware.
It is the mechanism of self-regulating the workloads properly within the cloud's
entities (one or more servers, hard drives, network, and IT resources). The
cloud infrastructures and data centers need huge computing hardware, net-
work, and IT resources that are always subjected to failover when the demand
exceeds. Load balancing is often used to implement failover. (Rimal et al., 2011.)

Cloud deployment for enterprises. The cloud services are ubiquitous as a sin-
gle point of access with four types of deployment models: public, private,
community, and hybrid clouds. (Rimal et al., 2011.) They and their advantages
and disadvantages are not, however, gone into here, as they have already been
discussed earlier to some detail.

Security. Usually security is the focal concern in terms of data, infrastruc-
ture, and virtualization. In cloud computing, a data center holds the informa-
tion that would more traditionally have been stored on the end-user's computer.
This raises concerns regarding users' privacy protection, since the users do not
'own' their data. Furthermore, the move to centralized services may affect the
privacy and security of users' interactions. Security threats may happen in re-
source provisioning and during distributed execution of user applications. In
addition, new threats are likely to emerge. E.g., hackers can use the virtualized
infrastructure as a launching pad for new attacks. (Rimal et al., 2011.)

Cloudonomics. The economics of cloud computing is called cloudonomics
(Weinman, 2009, as cited in Rimal et al., 2011). The problem with cloud comput-
ing is the lack of cost-based transparency. It is actually very difficult to quantify
the cost benefits of using traditional infrastructure vs. using remote service pro-
viders, e.g., Amazon Elastic Compute Cloud. (Rimal et al., 2011.)

32

Data governance. Geographical and political issues are the key require-
ments for an enterprise cloud. When data begins to move out of organizations,
it is vulnerable to disclosure or loss. The act of moving sensitive data outside
organizational boundaries may violate national regulations for privacy. Fur-
thermore, due to the lack of interoperability among cloud platforms and the
lack of standardization efforts, cloud providers cannot guarantee that a cloud
user can move his data/programs to another cloud provider on-demand. Cloud
computing became much more appealing if protection against data lock-in
would be fully implemented. E.g., it would liberate the users from possible mo-
nopolies and guarantee the longevity of the users, since they would not be
afraid of cloud providers going out of business. (Rimal et al., 2011.)

Data migration. The issue of distributing information to web users in an ef-
ficient and cost-effective manner is a challenging problem, especially under the
increasing requirements emerging from a variety of modern applications, e.g.,
voice-over-IP and streaming media. (Rimal et al., 2011.) Content distribution
networks (CDNs), e.g., Akamai, have met these challenges by providing a scal-
able and cost-effective mechanism for accelerating the delivery of web content,
based on more or less sophisticated data migration (outsourcing) policies for
the surrogate servers of a CDN (Katsaros et al., 2009, as cited in Rimal et al.,
2011). To collectively address many goals, data replication in the cloud seems to
be the most convenient approach (Rimal et al., 2011).

Business process management (BPM). Business process management systems
provide a business structure, security, and consistent rules across business
processes, users, organization, and territory. This classical concept is enhanced
in the context of the cloud-based BPM, as cloud delivers a business operating
platform for enterprises, such as combining SaaS and BPM applications, e.g.,
customer relationship management (CRM), enterprise resource planning (ERP),
e-commerce portals, etc., which helps for the flexibility, deployability, and af-
fordability for complex enterprise applications. When the enterprises adopt
cloud-based services or business processes, the return of investment (ROI) of
overall business measurement is important. (Rimal et al., 2011.)

Third party engagement. The involvement of a third party in enterprises can
help for establishing a robust communication plan with a provider landscape,
continuity of cloud service engagements, legal implications, potential intellec-
tual property, cloud audit, reporting capabilities, etc. (Rimal et al., 2011.)

Transferable skills. Transferable skills deals with technology dissemination,
technical supports, discussion with consulting expert groups, or offshore out-
sourcing that help for the adaptation and stability of systems/applications.
Cloud computing comes with its own set of management tasks that need to be
executed by the enterprise staff. The staff needs e.g., to monitor current comput-
ing capacity, and to increase or decrease it depending on usage. Before choosing
a cloud provider system, the enterprise should have a look at the skill set of its
existing workforce to identify those skills that are transferable to the new envi-
ronment in order to make the transition as fluent as possible, because there is a

33

wide variation in maturity of enterprise cloud software and services. (Rimal et
al., 2011.)

User consumption-based billing and metering. The individual end-user con-
sumption-based billing and metering in cloud systems is similar to the con-
sumption measurement and allocation of costs of water, gas, and electricity
consumption on a consumption unit basis. Cost management is important for
planning and controlling decisions. It helps to check the utilized resources vs.
the cost. Cost breakdown analysis, tracing the utilized activity, and adaptive
cost management are important considerations as well. (Rimal et al., 2011.)

User-centric privacy. The main consideration regarding cloud computing
for end-users is related to the storage of personal/enterprise sensitive data.
Cloud computing brings with it the fact that most of the users' creations, data
that the user would regard as his personal intellectual property, will be stored
at mega data centers around the world. (Rimal et al., 2011.) In this environment,
privacy becomes a major issue (Cavoukian, 2008, as cited in Rimal et al., 2011).

Service-level agreements (SLAs). The mutual contract between providers and
users is usually called a SLA, i.e., the ability to deliver services according to pre-
defined agreements. Many cloud providers offer SLAs, but the problem with
them is that they are rather weak on user compensations on outages. (Rimal et
al., 2011.)

Adaptability and learning. Cloud infrastructure must handle more resources,
data, services, and users. All of this makes cloud-based enterprise applica-
tion/systems more complex to control, to keep coherence between services and
resources. The biggest challenge for every user is to get acquainted with appli-
cations presented by enterprises when trying to deal with clouds. (Rimal et al.,
2011.)

User experience (UX). The notion of UX is to provide the insight into the
needs and behaviors of end-users that can help to maximize the usability, desir-
ability, and productivity of applications. UX-driven design and deployment
may be the next step in the evolution of cloud computing. (Rimal et al., 2011.)

3.3.2 Cloud storage infrastructure requirements

Wu, Zhang, Lin, and Ju (2010) discuss in their paper cloud storage infrastruc-
ture requirements. According to them, there are ten critical common denomina-
tors that must be considered to make cloud storage valuable:

Elasticity. Cloud storage must be elastic to rapidly adjust the underlying
infrastructure to changing subscriber demands and comply with SLAs. (Wu et
al., 2010.)

Automatic. Cloud storage must have the ability to be automated so that
policies can be leveraged to make underlying infrastructure changes, e.g., plac-
ing user and content management in different storage tiers and geographic loca-
tions quickly and without human intervention. (Wu et al., 2010.)

Scalability. Cloud storage needs to scale quickly and to tremendous capaci-
ties. This translates into scalability across objects, performance, users, clients,

34

and capacity with a single namespace across all storage capacity being critical
for low operating expense (OPEX) reasons. (Wu et al., 2010.)

Data Security. For private clouds, security is assumed to be tightly con-
trolled. For public clouds, data should either be stored on a partition of a shared
storage system or cloud storage providers must establish multi-tenancy policies
to allow multiple business units or separate companies to securely share the
same storage hardware. (Wu et al., 2010.)

Performance. A proven storage infrastructure providing fast, robust data
recovery is an essential element of a cloud service. (Wu et al., 2010.)

Reliability. Enterprise users also want to make sure that their data is relia-
bly backed up for disaster recovery purposes and that it meets pertinent com-
pliance guidelines. (Wu et al., 2010.)

Ease of management. The need for improved manageability in the face of
exploring storage capability and costs is a major benefit that enterprises are ex-
pecting from a cloud storage deployment. (Wu et al., 2010.)

Ease of data access. Ease of access to data in the cloud is critical in enabling
seamless integration of cloud storage into existing enterprise workflows and to
minimize the learning curve for a cloud storage adoption. (Wu et al., 2010.)

Energy efficiency. IT data centers are growing bottlenecks and approaching
ceilings on available power, cooling, and flooring space. Green storage technol-
ogy is the technology that enables energy efficiency and waste reduction in
storage solutions leading to an overall lower carbon footprint. (Wu et al., 2010.)

Latency. Not all applications are suitable for a cloud storage model. It is
important to measure and test network latency before committing to a migra-
tion. Virtual machines can introduce additional latency through the time-
sharing nature of underlying hardware, and unanticipated sharing and reallo-
cation of machines can significantly affect run times. (Wu et al., 2010.)

3.3.3 Successful cloud data management systems' wish list

Sakr et al. (2011) bring together Abouzeid's, Bajda-Pawlikowski's, Abadi's, Sil-
berschatz's, and Rasin's (2009), as well as Cooper et al.'s (2009) cloud require-
ments comprising a list of features that successful cloud data management sys-
tems should have:

Availability. They have to be always accessible even on the occasions in
which there is a network failure or a whole data center has gone offline. (Sakr et
al., 2011; see also Cooper et al., 2009.)

Scalability. They have to be able to support very large databases with very
high request rates at very low latency. They should be able to take on new ten-
ants or handle growing tenants without much effort beyond that of adding
more hardware. In particular, the system has to be able to automatically redis-
tribute data to take advantage of the new hardware. (Sakr et al., 2011; see also
Cooper et al., 2009.)

Elasticity. They have to be able to satisfy changing application require-
ments in both directions (scaling up or scaling down). Moreover, the system has

35

to be able to gracefully respond to these changing requirements and quickly
recover to its steady state. (Sakr et al., 2011; see also Cooper et al., 2009.)

Performance. On public cloud computing platforms, pricing is structured in
such a way that one pays only for what one uses, so the vendor price increases
linearly with the requisite storage, network bandwidth, and compute power.
Hence, the system performance has a direct effect on its costs. Thus, efficient
system performance is a crucial requirement to save money. (Sakr et al., 2011;
see also Abouzeid et al., 2009.)

Multitenancy. They have to be able to support many applications (tenants)
on the same hardware and software infrastructure. However, the performance
of these tenants has to be isolated from each another. Adding a new tenant
should require little or no effort beyond that of ensuring that enough system
capacity has been provisioned for the new load. (Sakr et al., 2011; see also Coo-
per et al., 2009.)

Load and tenant balancing. They have to be able to automatically move load
between servers so that most of the hardware resources are effectively utilized
and to avoid any resource overloading situations. (Sakr et al., 2011; see also
Cooper et al., 2009.)

Fault tolerance. For transactional workloads, a fault tolerant cloud data
management system needs to be able to recover from a failure without losing
any data or updates from recently committed transactions. Moreover, it needs
to successfully commit transactions and make progress on a workload even in
the face of worker node failures. For analytical workloads, a fault tolerant cloud
data management system should not need to restart a query if one of the nodes
involved in query processing fails. (Sakr et al., 2011; see also Abouzeid et al.,
2009.)

Ability to run in a heterogeneous environment. On cloud computing platforms,
there is a strong trend towards increasing the number of nodes that participate
in query execution. It is nearly impossible to get homogeneous performance
across hundreds or thousands of computing nodes. Part failures that do not
cause complete node failure, but result in degraded hardware performance be-
come more common at scale. A cloud data management system should be de-
signed to run in a heterogeneous environment and has to take appropriate
measures to prevent degrading performance due to parallel processing on dis-
tributed nodes. (Sakr et al., 2011; see also Abouzeid et al., 2009.)

Flexible query interface. They should support both SQL and non-SQL inter-
face languages, e.g., MapReduce. Moreover, they should provide mechanism
for allowing the user to write user defined functions (UDFs), and queries that
utilize these UDFs should be automatically parallelized during their processing.
(Sakr et al., 2011; see also Abouzeid et al., 2009.)

3.3.4 Cloud database management systems' wish list

According to Abadi (2009), transactional data management applications are not
well suited for cloud deployment, while the characteristics of data and work-

36

loads of typical analytical data management applications are. According to
Abadi (2009), analytic database systems are a likely segment of the DBMS mar-
ket to move into the cloud, so he explores various available software solutions
to perform the data analysis. Before dealing with them, Abadi (2009), however,
lists some desired properties and features that these solutions should ideally
have:

Efficiency. Given that cloud computing pricing is structured in a way so
that a customer pays for only what he uses, the price increases linearly with the
requisite storage, network bandwidth, and compute power. Hence, if the data
analysis software product A requires an order of magnitude more compute
units than the data analysis software product B to perform the same task, then
the product A will cost (approximately) an order of magnitude more than the B.
Efficient software has a direct effect on the bottom line. (Abadi, 2009.)

Fault tolerance. Fault tolerance in the context of analytical data workloads
is measured differently than fault tolerance in the context of transactional work-
loads. As for transactional workloads, a fault tolerant DBMS can recover from a
failure without losing any data or updates from recently committed transac-
tions, and in the context of distributed databases, can successfully commit
transactions and make progress on a workload even in the face of worker node
failure. For read-only queries in analytical workloads, there are no write trans-
actions to commit, nor updates to lose upon node failure. Hence, a fault tolerant
analytical DBMS is simply one that does not have to restart a query if one of the
nodes involved in query processing fails. Given the large amount of data that
needs to be accessed for deep analytical queries, combined with the relatively
weak compute capacity of a typical cloud compute server instance, complex
queries can involve hundreds (even thousands) of server instances and can take
hours to complete. Furthermore, clouds are typically built on top of cheap,
commodity hardware, for which failure is not uncommon. Consequently, the
probability of a failure occurring during a long-running data analysis task is
relatively high. If a query must restart each time a node fails, then long, com-
plex queries are difficult to complete. (Abadi, 2009.)

Ability to run in a heterogeneous environment. The performance of cloud
computing nodes is often not consistent, with some nodes attaining orders of
magnitude worse performance than other nodes (Abadi, 2009). There are a vari-
ety of reasons why this could occur, ranging from hardware failure causing de-
graded performance on a node (RightScale, 2008, as cited in Abadi, 2009), to an
instance being unable to access the second core on a dual-core machine (Steele,
2007, as cited in Abadi, 2009), to contention for non-virtualized resources
(Abadi, 2009). If the amount of work needed to execute a query is equally di-
vided among the cloud computing nodes, there is a danger that the time to
complete the query will be approximately equal to the time for the slowest
computing node to complete its assigned task. A node observing degraded per-
formance would thus have a disproportionate affect on total query latency. A
system designed to run in a heterogeneous environment would take appropri-
ate measures to prevent this from occurring. (Abadi, 2009.)

37

Ability to operate on encrypted data. Sensitive data may be encrypted before
being uploaded to the cloud. In order to prevent unauthorized access to the
sensitive data, any application running in the cloud should not have the ability
to directly decrypt the data before accessing it. However, shipping entire tables
or columns out of the cloud for decryption is bandwidth intensive. Hence, the
ability of the data analysis system to operate directly on encrypted data so that
a smaller amount of data needs to be ultimately shipped elsewhere to be de-
crypted could significantly improve performance. (Abadi, 2009.)

Ability to interface with business intelligence products. There are a variety of
customer-facing business intelligence tools that work with database software
and aid in the visualization, query generation, result dashboarding, and ad-
vanced data analysis. These tools are an important part of the analytical data
management picture, since business analysts are often not technically advanced
and do not feel comfortable interfacing with the database software directly.
(Abadi, 2009.)

3.4 Framework of requirements for cloud data management

The aforementioned requirements for cloud data management are depicted in
the tables 1 and 2. The requirements in the table 1 are requirements for cloud
computing in general, while the requirements in the table 2 are more closely
related to cloud data management.

In the first column are named the requirements that have been derived
from the requirements or considerations described in the literature sources. E.g.,
data storage device type and programming model are mentioned under data
management, storage, and processing in Rimal et al.'s paper (2011), but in the
framework this requirement has been divided into two requirements.

In the second column are examples and illustrations of the requirements.
The reason for this is simply to make the tables easier to read. E.g., service-
centric issues would not open up without any explanation, and it would be an
unrewarding task to go back in the text to find out what it is about. However,
the purpose of the column is only to exemplify and illustrate. It does not pro-
vide all-inclusive definitions of what different requirements are about.

In the third column are mentioned the original names of the requirements
or considerations described in the literature sources, as well as their respective
sources. As already mentioned, some requirements are derived from 'larger'
requirements or considerations.

The framework functions as a guiding principle that helps e.g., researchers
and decision-makers to map what requirements should be taken into considera-
tion when building especially cloud data management systems. The require-
ments are quite general and abstract, but in the author's opinion, they are still
important, serving as the bedrock of virtually any cloud solution. The frame-
work is likely to be useful to anyone building a technical solution on the cloud.

38

The application of the framework requires in practice technical expertise
and measurements. Evaluating e.g., cloud computing system's security requires
knowledge of the field. Evaluating e.g., cloud computing system's performance
requires not only familiarity with the subject, but probably also benchmarking
the system somehow.

39

TABLE 1 Cloud computing requirements

Cloud computing re-
quirement

Examples and illustrations Literature source

Service model Saas, Paas, IaaS (Mell & Grance, 2011). Service models (Mell & Grance,
2011), provider service delivery
model (Rimal et al., 2011), service
models (Sakr et al., 2011), service
models (Wu et al., 2010).

Deployment model Public, private, community, hybrid cloud
(Mell & Grance, 2011).

Deployment models (Mell &
Grance, 2011), cloud deployment
for enterprises (Rimal et al., 2011),
cloud deployment models (Sakr et
al., 2011).

Service-centric issues Autonomic and self-describing cloud services,
low cost composition of distributed applica-
tions (Rimal et al., 2011).

Service-centric issues (Rimal et al.,
2011).

Virtualization manage-
ment

Server, storage, infrastructure virtualization,
etc. (Rimal et al., 2011).

Virtualization management (Ri-
mal et al., 2011).

Fault tolerance Fault isolation to the falling components,
availability of reversion mode, etc. (Rimal et
al., 2011).

Fault tolerance (Rimal et al., 2011).

Privacy Data that the user would regard as his per-
sonal intellectual property will be stored at
mega data centers located around the world
(Rimal et al., 2011).

User-centric privacy (Rimal et al.,
2011).

Security A data center holds the information that
would more traditionally be stored on the
end-user's computer (Rimal et al., 2011).

Security (Rimal et al., 2011).

Formal agreements SLAs play a key facilitator role to make
agreed-upon QoS between service providers
and end-users (Rimal et al., 2011).

QoS, SLAs (Rimal et al., 2011),
QoS, SLAs (Sakr et al., 2011), SLAs
(Wu et al., 2010).

Transparent pricing The economics of cloud computing, clou-
donomics, cost management (Rimal et al.,
2011).

Cloudonomics, user consumption-
based billing and metering (Rimal
et al., 2011).

Load balancing The mechanism of self-regulating the work-
loads properly within the cloud's entities
(Rimal et al., 2011).

Load balancing (Rimal et al.,
2011).

Interoperability The creation of an agreed-upon frame-
work/ontology, open data format, or open
protocols/APIs enabling migration and inte-
gration between cloud service providers and
facilitating secure information exchange across
platforms (Rimal et al., 2011).

Interoperability (Rimal et al.,
2011).

Scalability DHT, column-orientation, and horizontal
partitioning (Rimal et al., 2011).

Scalability (Rimal et al., 2011).

Business process man-
agement (BPM)

Cloud-based BPM, cloud delivering business
operating platforms, e.g., CRM (Rimal et al.,
2011).

BPM (Rimal et al., 2011).

Third party engagement Can help in respect of e.g., continuity of cloud
service engagements and legal implications
(Rimal et al., 2011).

Third party engagement (Rimal et
al., 2011).

Transferable skills Cloud computing comes with its own set of
management tasks (Rimal et al., 2011).

Transferable skills (Rimal et al.,
2011).

Adaptability and learning Users have to get acquainted with applications
(Rimal et al., 2011).

Adaptability and learning (Rimal
et al., 2011).

User experience (UX) UX-driven design and deployment (Rimal et
al., 2011).

User experience (UX) (Rimal et al.,
2011).

40

TABLE 2 Cloud data management requirements

Cloud data management
requirement

Examples and illustrations Literature source

Data storage device type HDDs, SSDs, hybrid hard disks (Rimal et al.,
2011).

Data management, storage, and
processing (Rimal et al., 2011).

Data governance Geographical and political issues, data disclo-
sure or loss, sensitive data outside of an or-
ganization, data lock-in (Rimal et al., 2011).

Data governance (Rimal et al.,
2011).

Data migration Data replication in the cloud (Rimal et al.,
2011).

Data migration (Rimal et al.,
2011).

Programming model MapReduce is not a perfect fit for all tasks
(Rimal et al., 2011).

Data management, storage, and
processing (Rimal et al., 2011).

Automatic Underlying infrastructure changes can be
made quickly and without human interven-
tion (Wu et al., 2010).

Automatic (Wu et al., 2010).

Availability A cloud data management system has to be
always accessible (Sakr et al., 2011; see also
Cooper et al., 2009).

Availability (Sakr et al., 2011; see
also Cooper et al., 2009).

Scalability Cloud storage needs to scale quickly and to
tremendous capacities (Wu et al., 2010). A
cloud data management system has to be able
to support very large databases with very high
request rates at very low latency (Sakr et al.,
2011; see also Cooper et al., 2009).

Scalability (Wu et al., 2010),
scalability (Sakr et al., 2011; see
also Cooper et al., 2009).

Privacy The storage of personal/enterprise sensitive
data (Rimal et al., 2011).

User-centric privacy (Rimal et al.,
2011).

Security Cloud storage providers have to establish
multi-tenancy policies to allow e.g., separate
companies to securely share the same storage
hardware (Wu et al., 2010).

Data security (Wu et al., 2010).

Elasticity Cloud storage has to be elastic to rapidly
adjust the underlying infrastructure to chang-
ing subscriber demands and comply with
SLAs (Wu et al., 2010).

Elasticity (Wu et al., 2010), elastic-
ity (Sakr et al., 2011; see also
Cooper et al., 2009).

Performance A proven storage infrastructure providing
fast, robust data recovery. Important to meas-
ure and test network latency before commit-
ting to a migration. (Wu et al., 2010.)

Performance, latency (Wu et al.,
2010), performance (Sakr et al.,
2011; see also Abouzeid et al.,
2009), efficiency (Abadi, 2009).

Multitenancy A cloud data management system has to be
able to support many applications (tenants) on
the same hardware and software infrastruc-
ture (Sakr et al., 2011; see also Cooper et al.,
2009).

Multitenancy (Sakr et al., 2011; see
also Cooper et al., 2009).

Load and tenant balanc-
ing

A cloud data management system has to be
able to automatically move load between
servers and to avoid resource overloading
situations (Sakr et al., 2011; see also Cooper et
al., 2009).

Load and tenant balancing (Sakr
et al., 2011; see also Cooper et al.,
2009).

Reliability Data is reliably backed up for disaster recov-
ery purposes (Wu et al., 2010).

Reliability (Wu et al., 2010).

Fault tolerance As for transactional workloads, recovering
from a failure without losing any data or
updates from recently committed transactions
(Sakr et al., 2011; see also Abouzeid et al.,
2009).

Fault tolerance (Sakr et al., 2011;
see also Abouzeid et al., 2009),
fault tolerance (Abadi, 2009).

Ability to run in a hetero-
genous environment

A cloud data management system has to take
measures to prevent degrading performance
due to parallel processing on distributed
nodes (Sakr et al., 2011; see also Abouzeid et
al., 2009).

Ability to run in a heterogenous
environment (Sakr et al., 2011; see
also Abouzeid et al., 2009), ability
to run in a heterogenous envi-
ronment (Abadi, 2009).

Ability to operate on en-
crypted data

The ability of the data analysis system to
operate directly on encrypted data so that a
smaller amount of data needs to be ultimately
shipped elsewhere to be decrypted could

Ability to operate on encrypted
data (Abadi, 2009).

41

Cloud data management
requirement

Examples and illustrations Literature source

significantly improve performance (Abadi,
2009).

Ability to interface with
business intelligence (BI)
products

Customer-facing BI tools that work with
database software and aid in the visualization,
query generation, result dashboarding, and
advanced data analysis (Abadi, 2009).

Ability to interface with business
intelligence products (Abadi,
2009).

Flexible query interface A cloud data management system should
support both SQL and non-SQL interface
languages (Sakr et al., 2011; see also Abouzeid
et al., 2009).

Flexible query interface (Sakr et
al., 2011; see also Abouzeid et al.,
2009).

Ease of management Improved manageability in the face of explor-
ing storage capability and costs (Wu et al.,
2010).

Ease of management (Wu et al.,
2010).

Ease of data access Enabling seamless integration of cloud storage
into existing enterprise workflows and mini-
mizing the learning curve for cloud storage
adoption (Wu et al., 2010).

Ease of data access (Wu et al.,
2010).

Energy efficiency Green storage technology leads to a lower
carbon footprint (Wu et al., 2010).

Energy efficiency (Wu et al., 2010).

42

4 SMART CITIES AND THEIR DATA MANAGE-
MENT

This chapter is organized as follows. First, a smart city and the central concepts
related to it are defined, e.g., the Internet of Things (IoT). Then, the enabling
technologies of the IoT are dealt with. Next, requirements for smart city data
management are discussed. Finally, a framework of requirements for integrat-
ing a smart city with a cloud infrastructure is presented.

4.1 Definition of a smart city

According to Dirks, Gurdgiev, and Keeling (2010, as cited in Chourabi et al.,
2012), Dirks and Keeling (2009, as cited in Chourabi et al., 2012), and Dirks,
Keeling, and Dencik (2009, as cited in Chourabi et al., 2012), more than a half of
the world's population now lives in urban areas. Leaning on unfpa.org,
Chourabi et al. (2012) note that this shift from a primarily rural to a primarily
urban population is projected to continue for the next couple of decades.

Such enormous and complex congregations of people inevitably tend to
become messy and disordered places (Johnson, 2008, as cited in Chourabi et al.,
2012). Mega cities generate new kinds of problems (Chourabi et al., 2012), such
as technical, physical, and material problems, e.g., difficulty in waste manage-
ment, human health concerns, traffic congestions, and inadequate, deteriorating
and aging infrastructures (Borja, 2007, as cited in Chourabi et al., 2012; Marceau,
2008, as cited in Chourabi et al., 2012; Toppeta, 2010, as cited in Chourabi et al.,
2012; Washburn et al., 2010, as cited in Chourabi et al., 2012). Another set of
problems are more social and organizational in nature. Problems of these types
are associated with multiple and diverse stakeholders, high levels of interde-
pendence, competing objectives and values, and social and political complexity.
(Chourabi et al., 2012.) In this sense, city problems become wicked and tangled
(Dawes, Cresswell & Pardo, 2009, as cited in Chourabi et al., 2012; Rittel &

43

Webber, 1973, as cited in Chourabi et al., 2012; Weber & Khademian, 2008, as
cited in Chourabi et al., 2012).

The urgency around these challenges is triggering many cities around the
world to find smarter ways to manage them. These cities are increasingly de-
scribed with the label smart city. One way to conceptualize a smart city is as an
icon of a sustainable and livable city. (Chourabi et al., 2012.)

According to Gibson, Kozmetsky, and Smilor (1992, as cited in Schaffers et
al., 2011), the phrase 'smart city' was coined in the early 1990s to signify how
urban development was turning towards technology, innovation, and global-
ization. Chourabi et al. (2012) note that although there is an increase in the fre-
quency of the use of the phrase 'smart city', there is still not a clear and consis-
tent understanding of the concept among practitioners and academia. In 2014,
the situation seems to be quite the same. Piro, Cianci, Grieco, Boggia, and
Camarda (2014) draw on Chourabi et al.'s (2012) paper noting that despite the
term 'smart city' is very common in everyday speaking, its exact definition is
still not well-established. Getting back to Chourabi et al.'s (2012) paper, they
mention that only a limited number of studies have investigated and have be-
gun to systematically consider questions related to the new urban phenomenon
of smart cities. In their paper, they conceptualize a smart city by presenting sev-
eral working definitions of a smart city that have been put forward and adopted
in both practical and academic use, e.g.,:

A city connecting the physical infrastructure, the IT infrastructure, the so-
cial infrastructure, and the business infrastructure to leverage the collective in-
telligence of the city (Harrison et al., 2010, as cited in Chourabi et al., 2012).

A city striving to make itself 'smarter' (more efficient, sustainable, equita-
ble, and livable) (Natural Resources Defense Council, as cited in Chourabi et al.,
2012).

The use of smart computing technologies to make the critical infrastruc-
ture components and services of a city – which include city administration,
education, healthcare, public safety, real estate, transportation, and utilities –
more intelligent, interconnected, and efficient (Washburn et al., 2010, as cited in
Chourabi et al., 2012).

Drawing on the various definitions of a smart city, some of them pre-
sented above, Chourabi et al. (2012) propose a framework to understand the
concept of smart cities. The framework is depicted in the figure 5. Based on
their exploration of literature, Chourabi et al. (2012) identify eight critical fac-
tors of smart city initiatives: management and organization, technology, gov-
ernance, policy context, people and communities, economy, built infrastructure,
and natural environment. These factors form the basis of an integrative frame-
work that can be used to examine how local governments are envisioning smart
city initiatives. The framework suggests directions and agendas for smart city
research and outlines practical implications for government professionals. It is
expected that while all factors have a two-way impact in smart city initiatives
(each likely to be influenced by and is influencing other factors), at different

44

times and in different contexts, some are more influential than others.
(Chourabi et al., 2012.)

FIGURE 5 Smart city initiatives framework (Chourabi et al., 2012, 2294)

Nam and Pardo (2011) also note that the definitions of a smart city are various.
According to them, the label 'smart city' is a fuzzy concept and is used in ways
that are not always consistent. There is neither a single template of framing a
smart city nor a one-size-fits-all definition of a smart city. (Nam & Pardo, 2011.)

Nam and Pardo (2011) present similar working definitions than Chourabi
et al. (2012) above, after which they study the conceptual relatives of a smart
city: a ubiquitous city, knowledge city, smart community, etc. These can be
largely categorized into three dimensions: technology, people, and community.
However, they are mutually connected with substantial confusion in definitions
and complicated usages rather than independent of each other. E.g., in the
technology dimension, the concepts of 'digital city' and 'intelligent city' can be
found. (Nam & Pardo, 2011.) A digital city refers to a connected community
that combines a broadband communications infrastructure, a flexible, service-
oriented computing infrastructure based on open industry standards, and in-
novative services to meet the needs of governments and their employees, citi-
zens, and businesses (Yovanof & Hazapis, 2009, as cited in Nam & Pardo, 2011).
An intelligent city is usually used to characterize a city that has the ability to
support learning, technological development, and innovation procedures. In
this sense, every digital city is not necessarily intelligent, but every intelligent
city has digital components. (Nam & Pardo, 2011.)

To know what all these concepts mean is not vital. After discussing them
Nam and Pardo (2011) identify and clarify the key conceptual components of a
smart city, as well as re-categorize and simplify them into three categories of
core factors: technology (infrastructures of hardware and software), people

45

(creativity, diversity, and education), and institution (governance and policy).
This is depicted in the figure 6.

FIGURE 6 Fundamental components of a smart city (Nam & Pardo, 2011, 286)

As Nam and Pardo (2011) put it, given the connection between these factors, a
city is smart when investments in human/social capital and IT infrastructure
fuel sustainable growth and enhance a quality of life, through participatory
governance (Caragliu, Del Bo & Nijkamp, 2009, as cited in Nam & Pardo, 2011).
This is a modification of Caragliu et al.'s (2009) definition of a smart city from
their paper Smart cities in Europe (2009). Caragliu et al.'s (2009) original defini-
tion is: we believe a city to be smart when investments in human and social
capital and traditional (transport) and modern (ICT) communication infrastruc-
ture fuel sustainable economic growth and a high quality of life, with a wise
management of natural resources, through participatory governance. In a
newer paper, Caragliu, Del Bo, and Nijkamp (2011) mention that a smart city is
still, in their opinion, quite a fuzzy concept. They go through many definitions
of a smart city ending up defining it in the same way as in their previous paper.

In summary, there is no single, all-inclusive definition of a smart city, but
many definitions, the aforementioned ones being, in the author's opinion, some
of the best. In this thesis, a smart city is defined by Caragliu et al.'s (2009) defini-
tion. To understand better what smart cities are about, it is necessary to briefly
define the central concepts related to them. Next, they are discussed briefly.

46

4.2 Definition of the central concepts related to a smart city

Hernández-Muñoz et al. (2011) write that most of the current city and urban
developments are based on vertical ICT solutions leading to an unsustainable
sea of systems and market islands. However, the recent vision of the Future
Internet and its components can become building blocks to progress towards a
unified urban-scale ICT platform transforming a smart city into an open inno-
vation platform. Once major challenges of unified urban-scale ICT platforms are
identified, it is clear that the future development of smart cities will be only
achievable in conjunction with a technological leap in the underlying ICT
infrastructure. (Hernández-Muñoz et al., 2011.)

Hernández-Muñoz et al. (2011) advocate that this technological leap can
be done by considering smart cities at the forefront of the recent vision of the
Future Internet (FI). Although there is no universally accepted definition of the
FI, it can be approached as a socio-technical system comprising Internet-
accessible information and services, coupled to the physical environment and
human behavior, and supporting smart applications of societal importance
(Boniface & Surridge, as cited in Hernández-Muñoz et al., 2011).

The FI can transform a smart city into an open innovation platform sup-
porting vertical domain of business applications built upon horizontal enabling
technologies (Hernández-Muñoz et al., 2011). The most relevant basic FI pillars
(Towards a Future Internet Public Private Partnership: Usage Areas Workshop,
2010, as cited in Hernández-Muñoz et al., 2011) for a smart city environment are
the following (Hernández-Muñoz et al., 2011):

The Internet of Things (IoT). Defined as a global network infrastructure
based on standard and interoperable communication protocols where physical
and virtual 'things' are seamlessly integrated into the information network.
(Sundmaeker, Guillemin, Friess & Woelfflé, 2010, as cited in Hernández-Muñoz
et al., 2011.) The term was probably coined by Ashton in 1999 (Ashton, 2009).

The Internet of Services (IoS). Flexible, open, and standardized enablers that
facilitate the harmonization of various applications into interoperable services,
as well as the use of semantics for the understanding, combination, and proc-
essing of data and information from different service providers, sources, and
formats. (Hernández-Muñoz et al., 2011.)

The Internet of People (IoP). Envisaged as people becoming part of ubiqui-
tous, intelligent networks having the potential to seamlessly connect, interact,
and exchange information about themselves, their social context, and environ-
ment. (Hernández-Muñoz et al., 2011.)

It is important to highlight the bidirectional relationship between the FI
and smart cities. In the one direction, the FI can offer solutions to many chal-
lenges that smart cities face. On the other direction, smart cities can provide an
excellent experimental environment for the development, experimentation, and
testing of common FI service enablers required to achieve 'smartness' in a vari-

47

ety of application domains. (Hernández-Muñoz et al., 2011; Future Internet As-
sembly, 2009, as cited in Hernández-Muñoz et al., 2011.)

Of all these definitions, the IoT is the most important, smart cities being
one of the application fields and market sectors in which IoT solutions can pro-
vide competitive advantages over current solutions and which can play a lead-
ing role in the adoption of IoT technologies. The other application fields and
market sectors of the IoT are environmental monitoring, smart business / in-
ventory and product management, smart homes / smart building management,
health-care, and security and surveillance. (Miorandi, Sicari, De Pellegrini &
Chlamtac, 2012.)

As Sundmaeker et al.'s (2010, as cited in Hernández-Muñoz et al., 2011)
definition of the IoT is somewhat abstract, it is useful to complete it with the
definition that Miorandi et al. (2012) present in their paper: the term IoT is
broadly used to refer to the resulting global network interconnecting smart ob-
jects by means of extended Internet technologies, the set of supporting tech-
nologies necessary to realize such a vision, and the ensemble of applications
and services leveraging such technologies to open new business and market
opportunities (Atzori, Iera & Morabito, 2010, as cited in Miorandi et al., 2012;
ITU, 2005, as cited in Miorandi et al., 2012). Smart objects refer to the embedding
of electronics into everyday physical objects, making them 'smart' and letting
them seamlessly integrate within the global resulting cyberphysical infrastruc-
ture. From a conceptual standpoint, the IoT builds on three pillars, related to
the ability of smart objects to be identifiable (anything identifies itself), to com-
municate (anything communicates), and to interact (anything interacts) – either
among themselves, building networks of interconnected objects, or with end-
users or other entities in the network. (Miorandi et al., 2012.)

As smart cities are one of the IoT's application fields and markets sectors,
some of the enabling technologies of the IoT are next briefly discussed.

4.3 Enabling technologies of the Internet of Things

Actualization of the IoT concept into the real world is possible through the inte-
gration of several enabling technologies (Atzori et al., 2010). Atzori et al. (2010)
discuss in their paper the most relevant ones:

Identification, sensing, and communication technologies. 'Anytime, anywhere,
any media' has been a long time the vision pushing forward the advances in
communication technologies (Atzori et al., 2010). In this context, wireless tech-
nologies have played a key role, and today the ratio between radios and hu-
mans is nearing the 1 to 1 value (Srivastava, 2006, as cited in Atzori et al., 2010).
In this context, key components of the IoT will be Radio Frequency IDentifcation
(RFID) systems (Finkenzeller, 2003, as cited in Atzori et al., 2010) that are com-
posed of one or more reader(s) and several RFID tags. Tags are characterized by
a unique identifier and are applied to objects, even persons or animals. Readers
trigger the tag transmission by generating an appropriate signal that represents

48

a query for the possible presence of tags in the surrounding area and for the
reception of their IDs. Accordingly, RFID systems can be used to monitor ob-
jects in real-time, without the need of being in line-of-sight. This allows for
mapping the real world into the virtual world. (Atzori et al., 2010.)

Sensor networks will also play a crucial role in the IoT. In fact, they can co-
operate with RFID systems to better track the status of things, i.e., their location,
temperature, movements, etc. As such, they can augment the awareness of a
certain environment and thus act as a further bridge between physical and digi-
tal world. Sensor networks consist of a certain number of sensing nodes com-
municating in a wireless multi-hop fashion. Usually nodes report the results of
their sensing to a small number of special nodes called sinks. (Atzori et al., 2010.)

Middleware. The middleware is a software layer or a set of sub-layers in-
terposed between the technological and the application levels. Its feature of hid-
ing the details of different technologies is fundamental to exempt the pro-
grammer from issues that are not directly pertinent to his focus, which is the
development of the specific application enabled by the IoT infrastructures. The
middleware is gaining more and more importance in the last years due to its
major role in simplifying the development of new services and the integration
of legacy technologies into new ones. This exempts the programmer from the
exact knowledge of the variegate set of technologies adopted by the lower lay-
ers. As it is happening in other contexts, the middleware architectures proposed
in the last years for the IoT often follow the SOA approach. The advantages of
the SOA approach are recognized in most studies on middleware solutions for
the IoT. (Atzori et al., 2010.)

The SOA-based architecture for the IoT middleware is depicted in the fig-
ure 7. Applications are on top of the architecture, exporting all the system's func-
tionalities to the final user. This layer is not considered to be a part of the mid-
dleware, but it exploits all the functionalities of the middleware layer. Service
composition layer is a common layer on top of a SOA-based middleware archi-
tecture. It provides the functionalities for the composition of single services of-
fered by networked objects to build specific applications. On this layer there is
no notion of devices, and the only visible assets are services. Service management
layer provides the main functions that are expected to be available for each ob-
ject and that allow for their management in the IoT scenario. A basic set of ser-
vices encompasses object dynamic discovery, status monitoring, and service
configuration. The IoT relies on a vast and heterogeneous set of objects, each
one providing specific functions accessible through its own dialect, and there is
thus a need for an object abstraction layer capable of harmonizing the access to
the different devices with a common language and procedure. (Atzori et al.,
2010.)

Trust, privacy, and security management. The deployment of automatic
communication of objects in our lives represents a danger for our future. E.g.,
RFID tags in personal devices, clothes, and groceries could unknowingly be
triggered to reply with their IDs and other information. The middleware has to
include functions related to the management of trust, privacy, and security of

49

all the exchanged data. The related functions may be either built on one specific
layer of the previous ones or distributed through the entire stack, from the ob-
ject abstraction to the service composition, in a manner that does not affect sys-
tem performance or introduce excessive overheads. (Atzori et al., 2010.)

FIGURE 7 SOA-based architecture for the IoT middleware (Atzori et al., 2010, 2792)

4.4 Requirements for smart city data management

Next, requirements for smart city data management are discussed. As dealing
with the requirements for cloud data management, the literature sources are
organized here as well so that the more general requirements are presented first
and the more specific later on. Finally, a framework to which all the central re-
quirements for integrating a smart city with a cloud infrastructure are gathered
is presented.

4.4.1 IoT Reference Architecture requirements

The IoT Reference Architecture (RA) is, among other things, designed as a ref-
erence for the generation of compliant IoT concrete architectures that are tai-
lored to one's specific needs. The IoT RA is kept rather abstract in order to en-
able many, potentially different IoT architectures. The architecture consists of
so-called views of different system aspects that can be conceptionally isolated
and so-called perspectives that are about architectural decisions that often ad-
dress concerns that are common to more than one view or even all of them.

50

These concerns are often related to non-functional or quality properties. (Inter-
net of Things Architecture, 2013.) As a matter of fact, both views and perspec-
tives are very abstract, but as perspectives address more general concerns, they
are discussed below.

According to Internet of Things Architecture (2013), the perspectives that
are the most important for IoT-systems based on the stakeholder requirements
are evolution and interoperability, performance and scalability, availability and
resilience, and trust, security and privacy:

Evolution and interoperability. The ability of the system to be flexible in the
face of the inevitable change that all systems experience after deployment, bal-
anced against the costs of providing such flexibility. This perspective addresses
the fact that requirements change and software evolves sometimes rapidly and
need to interoperate not only with today's technologies, but also needs to be
prepared to interoperate with later technologies. (Internet of Things Architec-
ture, 2013.)

Performance and scalability. The ability of the system to predictably execute
within its mandated performance profile and to handle increased processing
volumes in the future if required. Both are, compared to traditional information
systems, even harder to cope with in a highly distributed scenario as the IoT.
(Internet of Things Architecture, 2013.)

Availability and resilience. The ability of the system to be fully or partly op-
erational as and when required and to effectively handle failures that could af-
fect system availability. When dealing with distributed IoT systems in which a
lot of things can go wrong, the ability of a system to stay operational and to ef-
fectively handle failures that could affect a system's availability is crucial.
(Internet of Things Architecture, 2013.)

Trust, security, and privacy. They are interrelated, and often the evaluation
or the improvement of one of these qualities is necessarily related to the others.
Trust is a complex quality related to the extent to which a subject expects (sub-
jectively) an IoT system to be dependable regarding all the aspects of its func-
tional behavior. Security stands for the ability of the system to enforce the in-
tended confidentiality, integrity, and service access policies, and to detect and
recover from a failure in these security mechanisms. Privacy is about the ability
of the system to ensure that the collection of personally identifying information
be minimized and that collected data should be used locally wherever possible.
(Internet of Things Architecture, 2013.)

4.4.2 Key system-level features that the Internet of Things needs to support

Miorandi et al. (2012) discuss in their paper the IoT's vision and concept, after
which they preliminarily identify key system-level features that the IoT needs
to support:

Devices heterogeneity. The IoT will be characterized by a large heterogeneity
in terms of devices taking part in the system, and they are expected to present
very different capabilities from the computational and communication stand-

51

points. The management of such a high level of heterogeneity shall be sup-
ported at both architectural and protocol levels. In particular, this may question
the 'thin waist' approach at the basis of IP networking. (Miorandi et al., 2012.)

Scalability. As everyday objects get connected to a global information in-
frastructure, scalability issues arise at different levels including naming and
addressing (due to the sheer size of the resulting system), data communication
and networking (due to the high level of interconnection among a large number
of entities), information and knowledge management (due to the possibility of
building a digital counterpart to any entity and/or phenomena in the physical
realm), and service provisioning and management (due to the massive number
of services / service execution options that could be available and the need to
handle heterogeneous resources). (Miorandi et al., 2012.)

Ubiquitous data exchange through proximity wireless technologies. In the IoT, a
prominent role will be played by wireless communications technologies that
will enable smart objects to become networked. (Miorandi et al., 2012.) The
ubiquitous adoption of the wireless medium for exchanging data may pose is-
sues in terms of spectrum availability, pushing towards the adoption of cogni-
tive/dynamic radio systems (Haykin, 2005, as cited in Miorandi et al., 2012).

Energy-optimized solutions. For a variety of IoT entities, minimizing the en-
ergy spent for communication/computing purposes will be a primary con-
straint. While techniques related to energy harvesting (by means of e.g.,
piezoelectric materials or micro solar panels) will relieve devices from the
constraints imposed by battery operations, energy will always be a scarce re-
source to be handled with care. Thereby the need to devise solutions that tend
to optimize energy usage (even at the expense of performance) will become
more and more attractive. (Miorandi et al., 2012.)

Localization and tracking capabilities. As entities in the IoT can be identified
and are provided with short-range wireless communications capabilities, it be-
comes possible to track the location (and the movement) of smart objects in the
physical realm. This is particularly important for an application in logistics and
product life-cycle management that are already extensively adopting RFID
technologies. (Miorandi et al., 2012.)

Self-organization capabilities. The complexity and dynamics that many IoT
scenarios will likely present calls for distributing intelligence in the system,
making smart objects (or a subset thereof) able to autonomously react to a wide
range of different situations in order to minimize human intervention. (Mio-
randi et al., 2012.) Following users' requests, nodes in the IoT will organize
themselves autonomously into transient ad hoc networks, providing the basic
means for sharing data and for performing coordinated tasks (Chlamtac, Conti
& Liu, 2003, as cited in Miorandi et al., 2012). This includes the ability to per-
form device and service discovery without requiring an external trigger, to
build overlays, and to adaptively tune protocols' behavior to adapt to the cur-
rent context (Dobson et al., 2006, as cited in Miorandi et al., 2012).

Semantic interoperability and data management. The IoT will be much about
exchanging and analyzing massive amounts of data. In order to turn them into

52

useful information and to ensure interoperability among different applications,
it is necessary to provide data with adequate and standardized formats, models,
and semantic description of their content (metadata), using well-defined lan-
guages and formats. This will enable IoT applications to support automated
reasoning, a key feature for enabling the successful adoption of such a technol-
ogy on a wide scale. (Miorandi et al., 2012.)

Embedded security and privacy-preserving mechanisms. Due to the tight en-
tanglement with the physical realm, IoT technology should be secure and pri-
vacy-preserving by design. This means that security should be considered a key
system-level property, and be taken into account in the design of architectures
and methods for IoT solutions. This is expected to represent a key requirement
for ensuring the acceptance by users and the wide adoption of the technology.
(Miorandi et al., 2012.)

4.4.3 Key requirements of a smart city software architecture

Da Silva et al. (2013) deal with several smart city software architectures noting
that although the literature contains several works about the subject, a reference
architecture that permeates the entire operation of a smart city has not been
minimally designed yet. However, by studying different architectures, Da Silva
et al. (2013) were able to present a number of key requirements that have to be
met when implementing a smart city software architecture:

Objects interoperability. One of the most discussed and studied require-
ments is interoperability of objects in which the object is an abstraction of a sen-
sor, actuator, or any device, able to perform some sort of computation. In fact,
this is a critical requirement to the consolidation of any platform that uses a
range of objects with different technical specifications and communication pro-
tocols. (Da Silva et al., 2013.) The vast majority of architectures that Da Silva et
al. (2013) studied explicitly designate a module or layer to meet this require-
ment.

Sustainability. Due to the high coverage of all smart city areas, architec-
tures have to include, since their conception, sustainable policies. These policies
are related to environmental, economic, and social aspects of each domain. (Da
Silva et al., 2013.)

Real-time monitoring. Another important feature inherent to the smart cit-
ies' context is continuous real-time monitoring. The real-time monitoring is the
most valuable instrument to provide relevant information that will be used to
predict phenomena. An example is the monitoring of the water level during the
rainy seasons. In this situation, from an effective monitoring measures can be
taken to mitigate potential inconvenience to citizens, e.g., floods and disease
transmission. (Da Silva et al., 2013.)

Historical data. In the smart cities' context, all the components that compose
each area of a city are constantly being modified, either by natural factors or
human activities. Hence, all data picked up has the potential to become relevant,
as long as it is somehow associated to other data. Therefore, it is substantial that

53

the architectures include efficient storage and retrieval mechanisms for such
data. (Da Silva et al., 2013.)

Mobility. Mobility is another key requirement that has to be explored in
smart cities. Mobility means any mobile technology to capture information
about the environment or act over the same. Mobility is a key ally for the im-
plementation of real-time monitoring. (Da Silva et al., 2013.) When considering
that four billion people already have smart phones (Hall, 2012, as cited in Da
Silva et al., 2013), it is natural to associate mobility to the use of these devices,
but other devices can also be successfully used, e.g., ZigBee and RFID (Da Silva
et al., 2013).

Availability. To allow this data capture, the centralizing infrastructure has
to be highly available. Hence, if a cloud computing infrastructure is used, flow
control mechanisms, collision, and redundancy must be inherent to the solution.
Although, the system has to continue obtaining and storing data, even acting
autonomously, independently of the state of the infrastructure. (Da Silva et al.,
2013.)

Privacy. All these issues of data delivery are of paramount importance to
any architecture. However, one should establish privacy policies explaining
what data will be captured and what will be done with these. Certainly the con-
solidation of these policies is a challenge that can prevent citizens, institutions,
and the government to provide certain critical data. Due to the high relevance
of this requirement, it is not permissible for an architecture not to satisfy it. (Da
Silva et al., 2013.)

Distributed sensing and processing. It is through the sensing that a computer
vision of the urban environment is obtained. The greater the number of sensors
and the more dispersed they are, the higher the scope covered by the architec-
ture. The heterogeneity of sensors influences the richness of detail and the
amount of data that can be extracted from each scenario being monitored, being
possible to obtain more accurate results. Situations that require preventive or
corrective measures to be instantly taken demand processing in real-time, with
a response time fast enough to provide bases for actions that must be per-
formed as soon as the situation is identified, suggest the need for distributed
processing, exploiting the capacity of an existing infrastructure. (Da Silva et al.,
2013.)

Service composition and integrated urban management. In a systemic view, ur-
ban environments are essentially a set of complex systems available to meet the
needs of their citizens. Architectures that are willing to give support to these
systems should consider them as complementary in the search for an effective
urban management rather than treating them isolated. Services developed to
treat each system must be interoperable so that other services can reuse, group,
or create a composition using them, exploring important aspects in the correla-
tion between different systems, or even create a holistic and contextualized
view of the city in which the architecture was implemented. (Da Silva et al.,
2013.)

54

Social aspects. A smart city architecture cannot be based uniquely on tech-
nology. The main purpose in designing a smart city is to increase the quality of
life of its citizens. People need to be involved and benefit from the process, oth-
erwise the entire investment will be in vain. A smart city is also made of a
change in the behavior of its citizens, and they have to feel included as a fun-
damental part in its deployment, feel encouraged to be a part of the solution.
For this purpose, it can be created ways to stimulate and/or reward this interest.
(Da Silva et al., 2013.)

Flexibility/extensibility. Changes, adaptations, and extensions should be
foreseen in the architecture. Besides adding new services, new types of sensors,
different data types, and urban contexts and hardware, independent operation
should be addressed by the architecture, allowing it to be adaptable to different
realities. (Da Silva et al., 2013.)

4.4.4 Cloud-centric Internet of Things requirements

Gubbi, Buyya, Marusic, and Palaniswami (2013) discuss a cloud-centric IoT, a
conceptual IoT framework that integrates wireless sensor networks with appli-
cations, cloud computing being in the center of things providing scalable stor-
age, computation time, and other tools to build new businesses. They mention
that for the realization of a complete IoT vision, efficient, secure, scalable, and
market-oriented computing and storage resourcing is essential.

As for the aforementioned cloud-centric IoT framework, Gubbi et al. (2013)
note that developing IoT applications using low-level cloud programming
models and interfaces, e.g., thread and MapReduce models, is complex. To
overcome this, there is a need for an IoT application-specific framework for the
rapid creation of applications and their deployment on cloud infrastructures
(Gubbi et al., 2013). This is achieved by mapping the proposed framework to
cloud APIs offered by platforms such as Aneka (Gubbi et al., 2013), a .NET-
based application development PaaS that can utilize storage and compute re-
sources of both public and private clouds (Wei, Sukumar, Vecchiola, Ka-
runamoorthy & Buyya, 2011, as cited in Gubbi et al., 2013). It offers a runtime
environment and a set of APIs that enable developers to build customized ap-
plications by using multiple programming models, e.g., task programming,
thread programming, and MapReduce programming (Gubbi et al., 2013).

The new IoT application-specific framework should be able to provide
support for reading data streams either from sensors directly or fetch the data
from databases, easy expression of data analysis logic as functions/operators
that process data streams in a transparent and scalable manner on cloud infra-
structures, and if any events of interest are detected, outcomes should be passed
to output streams that are connected to a visualization program. Using such a
framework, the developer of IoT applications will be able to harness the power
of cloud computing without knowing low-level details of creating reliable and
scale applications. (Gubbi et al., 2013.)

55

4.5 Framework of requirements for integrating a smart city with a
cloud infrastructure

The framework of requirements for integrating a smart city with a cloud infra-
structure is depicted in the tables 3 and 4. The requirements in the table 3 are
again requirements for cloud computing in general, while the requirements in
the table 4 are more closely related to cloud data management.

In the first column are again named the cloud requirements that have been
derived from the requirements or considerations described in the literature
sources. However, the cloud requirements that could not be explicitly con-
nected to the smart city requirements are not presented in the tables. In the sec-
ond column are again examples and illustrations of the cloud requirements. In
the third column are once again mentioned the original names of the cloud re-
quirements or considerations described in the literature sources, as well as their
respective sources. As have been noted previously, some requirements are de-
rived from 'larger' requirements or considerations.

Next, in the fourth column are named the requirements for integrating a
smart city with a cloud infrastructure. As the cloud requirements, also these
requirements have been derived from the requirements or considerations de-
scribed in the literature sources. E.g., fault tolerance is discussed under avail-
ability and resilience in the IoT RA (Internet of Things Architecture, 2013).

In the fifth column, there are examples and illustrations of the smart city
requirements. Again, the reason for this is to make the tables easier to read. Fi-
nally, in the sixth column are mentioned the original names of the smart city
requirements or considerations described in the literature sources, as well as
their respective sources. This is again because some smart city requirements
have been derived from 'larger' requirements or considerations.

The framework functions as a guiding principle that helps e.g., researchers
and decision-makers to map, among other things, what a smart city data ware-
house requires of cloud data management systems in general. An efficient inte-
gration of a smart city data warehouse with a cloud infrastructure means that
requirements for smart city data management match, more or less, require-
ments for, or characteristics of, cloud data management. With the help of the
framework, it can also be decided what are the most important requirements
for some individual case. As the requirements are quite general and abstract,
the application of the framework requires in practice technical expertise and
measurements.

As it can be seen from the framework, the connection between smart cities
and cloud computing is loose in some cases, which means that there are some-
what similar requirements both for cloud computing and smart cities, but their
focus is different. E.g., under service-centric issues there is a need for a cloud
computing system to be autonomic (Rimal et al., 2011). In regard to a smart city,
there is also a need for autonomicity under self-organization capabilities. How-
ever, this does not refer to an autonomic cloud computing system, but to the

56

ability of smart objects to autonomously react to different situations (Miorandi
et al., 2012).

As for cloud computing, the ability to run in a heterogeneous environment
refers to the fact that it is nearly impossible to get homogeneous performance
across hundreds or thousands of computing nodes, but performance should not
be degraded due to e.g., failures (Sakr et al., 2011; see also Abouzeid et al., 2009).
In regard to smart cities, there is also a large heterogeneity, but in terms of de-
vices that are expected to present very different capabilities from the computa-
tional and communication standpoints (Miorandi et al., 2012). There are many
kinds of mobile devices with localization and tracking capabilities that imple-
ment real-time monitoring, as well as distributed sensing and processing virtu-
ally all the time (Miorandi et al., 2012; Da Silva et al., 2013).

There is a need for interoperability both in cloud computing and smart
city solutions. As for cloud computing, interoperability refers to the migration
and integration of applications and data between different cloud systems (Ri-
mal et al., 2011). In regard to smart cities, the most similar requirement is evolu-
tion and interoperability that refers to the fact that requirements change and
software evolves sometimes rapidly and needs to interoperate not only with
today's technologies, but possibly also with later technologies (Internet of
Things Architecture, 2013).

All in all, interoperability seems to be very vital requirement in smart cit-
ies. There is a need for interoperability between proximity wireless technologies.
There is also a need for semantic interoperability and data management that
requires, among other things, providing data with adequate and standardized
formats, models, and metadata (Miorandi et al., 2012). Objects, abstractions of
sensors, actuators, or any devices, need to be interoperable. Service composition
and integrated urban management refers, among other things, to the fact that
services must be interoperable so that other services can reuse, group, or create
a composition using them. Then again, flexibility/extensibility refers to evolu-
tion. Changes, adaptations, and extensions should be foreseen in the architec-
ture. (Da Silva et al., 2013.)

In a number of requirements the connection is firmer. There is clearly a
need for fault tolerance, privacy, (data) security, scalability, user involvement,
availability, performance, and sustainability both in cloud computing solutions
and smart cities. Of these requirements, especially performance and scalability
are crucial requirements in regard to cloud data management. The IoT will be
much about exchanging and analyzing massive amounts of data (Miorandi et
al., 2012), so a cloud data management system has to be able to support e.g.,
very large databases with very high request rates at very low latency (Sakr et al.,
2011; see also Cooper et al., 2009).

In summary, it can be interpreted that a smart city requires of a cloud in-
frastructure at least availability, autonomicity, scalability, performance, inter-
operability, and fault tolerance, as well as privacy and security. Of the 'softer'
non-technical requirements user involvement and sustainability cannot be left
aside.

57

TABLE 3 Integrating smart city requirements with general cloud computing requirements

Cloud comput-
ing require-
ment

Examples and illus-
trations

Literature
source

Smart city
requirement

Examples and illus-
trations

Literature
source

Service-centric
issues

Autonomic, self-describiting,
low cost composition of
distributed applications
(Rimal et al., 2011).

Service-centric issues
(Rimal et al., 2011).

Autonomicity Distributing intelligence in
the system, making smart
objects able to autonomously
react to a wide range of

different situations in order
to minimize human interven-
tion (Miorandi et al., 2012).

Self-organization
capabilities (Mio-
randi et al., 2012).

Fault tolerance Fault isolation to the falling
components, availability of
reversion mode, etc. (Rimal et

al., 2011).

Fault tolerance
(Rimal et al., 2011).

Fault tolerance The ability of a system to
effectively handle failures
that could affect system's

availability (Internet of
Things Architecture, 2013).

Availability and
resilience (Internet of
Things Architecture,

2013).

Privacy Data that the user would
regard as his personal
intellectual property will be
stored at mega data centers

located around the world
(Rimal et al., 2011).

User-centric privacy
(Rimal et al., 2011).

Privacy Privacy is an ability of the
system to ensure that the
collection of personally
identifying information be

minimized and that collected
data should be used locally
wherever possible (Internet
of Things Architecture, 2013).

Trust, security, and
privacy (Internet of
Things Architecture,
2013), embedded

security and privacy-
preserving mecha-
nisms (Miorandi et
al., 2012).

Security A data center holds the
information that would more

traditionally be stored on the
end-user's computer (Rimal
et al., 2011).

Security (Rimal et al.,
2011).

Security Security is an ability of the
system to enforce the in-

tended confidentiality,
integrity, and service access
policies, and to detect and
recover from failure in these
security mechanisms (Inter-
net of Things Architecture,
2013).

Trust, security, and
privacy (Internet of

Things Architecture,
2013), embedded
security and privacy-
preserving mecha-
nisms (Miorandi et
al., 2012), security
(Gubbi et al., 2013).

Interoperability The creation of an agreed-
upon framework/ontology,
open data format, or open
protocols/APIs enabling
migration and integration
between cloud service
providers and facilitating

secure information exchange
across platforms (Rimal et al.,
2011).

Interoperability
(Rimal et al., 2011).

Evolution and
interoperability

Requirements change and
software evolves sometimes
rapidly and needs to interop-
erate not only with today's
technologies, but possibly
also with later technologies
(Internet of Things Architec-

ture, 2013).

Evolution and
interoperability
(Internet of Things
Architecture, 2013),
ubiquitous data
exchange through
proximity wireless

technologies, seman-
tic interoperability
and data manage-
ment (Miorandi et
al., 2012), objects
interoperability,
service composition

and integrated urban
management,
flexibility/extensibil-
ity (Da Silva et al.,
2013).

Scalability DHT, column-orientation,
and horizontal partitioning

(Rimal et al., 2011).

Scalability (Rimal et
al., 2011).

Scalability The ability of the system to
handle increased processing

volumes in the future if
required (Internet of Things
Architecture, 2013).

Performance and
scalability (Internet

of Things Architec-
ture, 2013), scalabil-
ity (Gubbi et al.,
2013).

User experience
(UX)

UX-driven design and
deployment (Rimal et al.,

2011).

User experience (UX)
(Rimal et al., 2011).

User involve-
ment

The main purpose in design-
ing a smart city is to increase

the quality of life of its
citizens. People need to be
involved and benefit from the
process. (Da Silva et al.,
2013.)

Social aspects (Da
Silva et al., 2013).

58

TABLE 4 Integrating smart city requirements with cloud data management requirements

Cloud data
management
requirement

Examples and
illustrations

Literature
source

Smart city
requirement

Examples and
illustrations

Literature source

Data storage
device type

HDDs, SSDs, hybrid hard
disks (Rimal et al., 2011).

Data management,
storage, and process-
ing (Rimal et al.,
2011).

Sustainability Minimizing IoT entities'
energy spent for communica-
tion/computing purposes
(Miorandi et al., 2012).

Energy-optimized
solutions (Miorandi et
al., 2012), sustainabil-
ity (Da Silva et al.,

2013).

Programming
model

MapReduce is not a perfect
fit for all tasks (Rimal et al.,
2011).

Data management,
storage, and process-
ing (Rimal et al.,
2011).

IoT application-
specific frame-
work

Developing IoT applications
using low-level cloud
programming models and
interfaces, e.g., Thread and
MapReduce, is complex. To

overcome this, there is a need
for an IoT application-
specific framework for rapid
creation of applications and
their deployment on cloud
infrastructures. (Gubbi et al.,
2013.)

IoT application-
specific framework
(Gubbi et al., 2013).

Automatic Underlying infrastructure
changes can be made quickly
and without human
intervention (Wu et al., 2010).

Automatic (Wu et
al., 2010).

Autonomicity Distributing intelligence in
the system, making smart
objects able to autonomously
react to a wide range of
different situations in order
to minimize human interven-

tion (Miorandi et al., 2012).

Self-organization
capabilities (Miorandi
et al., 2012).

Availability Cloud data management
system has to be always
accessible (Sakr et al., 2011;
see also Cooper et al., 2009).

Availability (Sakr et
al., 2011; see also
Cooper et al., 2009).

Availability The ability of the system to
stay operational (Internet of
Things Architecture, 2013).

Availability and
resilience (Internet of
Things Architecture,
2013), availability (Da
Silva et al., 2013).

Scalability Cloud storage needs to scale
quickly and to tremendous
capacities (Wu et al., 2010).
Cloud data management
system has to be able to
support very large databases
with very high request rates

at very low latency (Sakr et
al., 2011; see also Cooper et
al., 2009).

Scalability (Wu et al.,
2010), scalability
(Sakr et al., 2011; see
also Cooper et al.,
2009).

Scalability The ability of the system to
handle increased processing
volumes in the future if
required (Internet of Things
Architecture, 2013). Scalabil-
ity issues at different levels
(Miorandi et al., 2012).

Performance and
scalability (Internet of
Things Architecture,
2013), scalability
(Miorandi et al., 2012),
historical data (Da
Silva et al., 2013).

Privacy The storage of person-
al/enterprise sensitive data
(Rimal et al., 2011).

User-centric privacy
(Rimal et al., 2011).

Privacy Privacy is an ability of the
system to ensure that the
collection of personally

identifying information be
minimized and that collected
data should be used locally
wherever possible (Internet
of Things Architecture, 2013).

Trust, security, and
privacy (Internet of
Things Architecture,

2013), embedded
security and privacy-
preserving mecha-
nisms (Miorandi et al.,
2012), privacy (Da
Silva et al., 2013).

Data security Cloud storage providers
have to establish multi-
tenancy policies to allow e.g.,
separate companies to
securely share the same
storage hardware (Wu et al.,
2010).

Data security (Wu et
al., 2010).

Security Security is an ability of the
system to enforce the
intended confidentiality,
integrity, and service access
policies, and to detect and
recover from failure in these
security mechanisms (Inter-
net of Things Architecture,

2013).

Trust, security, and
privacy (Internet of
Things Architecture,
2013), embedded
security and privacy-
preserving mecha-
nisms (Miorandi et al.,
2012), security (Gubbi

et al., 2013).

Performance A proven storage infrastruc-
ture providing fast, robust
data recovery. Important to
measure and test network
latency before committing to

a migration. (Wu et al., 2010.)
Efficient system performance
is a crucial requirement to
save money (Sakr et al., 2011;
see also Abouzeid et al.,
2009).

Performance, latency
(Wu et al., 2010),
performance (Sakr et
al., 2011; see also
Abouzeid et al.,

2009), efficiency
(Abadi, 2009).

Performance The ability of the system to
predictably execute within its
mandated performance
profile (Internet of Things
Architecture, 2013).

Performance and
scalability (Internet of
Things Architecture,
2013), efficiency
(Gubbi et al., 2013).

Fault tolerance As for transactional work-
loads, recovering from a
failure without losing any
data or updates from
recently committed transac-
tions (Sakr et al., 2011; see
also Abouzeid et al., 2009). A
fault tolerant analytical

DBMS is one that does not
have to restart a query if one
of the nodes involved in
query processing fails
(Abadi, 2009).

Fault tolerance (Sakr
et al., 2011; see also
Abouzeid et al.,
2009), fault tolerance
(Abadi, 2009).

Fault tolerance The ability of a system to
effectively handle failures
that could affect system's
availability (Internet of
Things Architecture, 2013).

Availability and
resilience (Internet of
Things Architecture,
2013).

59

Cloud data
management
requirement

Examples and
illustrations

Literature
source

Smart city
requirement

Examples and
illustrations

Literature source

Ability to run in
a heterogenous
environment

A cloud data management
system has to take measures
to prevent degrading
performance due to parallel

processing on distributed
nodes (Sakr et al., 2011; see
also Abouzeid et al., 2009).

Ability to run in a
heterogenous
environment (Sakr et
al., 2011; see also

Abouzeid et al.,
2009), ability to run
in a heterogenous
environment (Abadi,
2009).

Devices hetero-
geneity

The IoT will be characterized
by a large heterogeneity in
terms of devices, which are
expected to present very

different capabilities from
the computational and
communication standpoints
(Miorandi et al., 2012).

Devices heterogeneity,
localization and
tracking capabilities
(Miorandi et al., 2012),

mobility, real-time
monitoring, distrib-
uted sensing and
processing (Da Silva et
al., 2013).

Energy effi-
ciency

Green storage technology

leads to a lower carbon
footprint (Wu et al., 2010).

Energy efficiency

(Wu et al., 2010).
Sustainability Minimizing IoT entities'

energy spent for communica-
tion/computing purposes
(Miorandi et al., 2012).

Energy-optimized

solutions (Miorandi et
al., 2012), sustainabil-
ity (Da Silva et al.,
2013).

60

5 RESEARCH METHOD OF THE STUDY

This chapter is organized as follows. First, design science is briefly introduced.
Then, the research process of the study is presented. Next, the central concepts
of the study are dealt with. Finally, the research method of the study is explored.

5.1 Introduction of design science

There are many ways to look at design science. Gregor (2006; see also Gregor &
Jones, 2007) examines the structural nature of theory in the discipline of infor-
mation systems (IS) in which she finds five types of theory: analysis (what is),
explanation (what is, how, why, when, and where), prediction (what is and
what will be), explanation and prediction (what is, how, why, when, where,
and what will be), and design and action (how to do something). The distin-
guishing attribute of theories for design and action is, as already mentioned,
that they focus on 'how to do something.' They give explicit prescriptions on
how to design and develop an artifact, whether it is a technological product or a
managerial intervention. (Gregor & Jones, 2007.)

The term artifact is used to describe something that is artificial or con-
structed by humans, as opposed to something that occurs naturally (Gregor &
Jones, 2007; see also Simon, 1996). According to March and Smith (1995), IT arti-
facts are of four types: constructs or concepts (form the vocabulary of a domain),
models (a set of propositions or statements expressing the relationships among
constructs), methods (a set of steps (an algorithm or guideline) used to perform a
task), and instantiations (a realization of an artifact in its environment).

According to Hevner et al. (2004), two paradigms characterize much of the
research in the discipline of IS: behavioral science and design science. The behav-
ioral science paradigm has its roots in natural science research methods. It seeks
to develop and justify theories, i.e., principles and laws, which explain or pre-
dict organizational and human phenomena surrounding the analysis, design,
implementation, management, and use of information systems. (Hevner et al.,

61

2004.) Design science has its roots in engineering and the sciences of the artificial
(Hevner et al., 2004; see also Simon, 1996). It is fundamentally a problem-
solving paradigm. It creates and evaluates IT artifacts intended to solve identi-
fied organizational problems. Such artifacts are represented in a structured
form that may vary from software, formal logic, and rigorous mathematics to
informal natural language descriptions. In brief, the goal of behavioral science
research is truth, while the goal of design science research is utility. (Hevner et
al., 2004.)

One other way to see what design science is about is to look at Järvinen
and Järvinen's taxonomy of research methods in which design research belongs
to the research approaches studying reality – not stressing what is reality, but
stressing the utility of innovations (Järvinen, 2012). Järvinen (2012) also notes
that research is normally divided to basic and applied research. The purpose of
the basic research is to find out what is a part of reality. The knowledge of the
basic research, the basic laws of the explanatory sciences, are applied to the ap-
plied research that e.g., design science represents. (Järvinen, 2012.)

According to Kaplan (1964, as cited in March & Smith, 1995), natural sci-
ence is often viewed as consisting of two activities, discovery and justification.
Discovery is the process of generating or proposing scientific claims, e.g., theo-
ries and laws. Justification includes activities by which such claims are tested
for validity. Design science consists of two basic activities, building and evalu-
ating, which parallel the discovery-justification pair from natural science. Build-
ing is the process of constructing an artifact for a specific purpose. Evaluation is
the process of determining how well the artifact performs. It requires the devel-
opment of metrics and the measurement of artifacts according to those metrics.
(March & Smith, 1995.)

5.2 Research process of the study

Peffers, Tuunanen, Rothenberger, and Chatterjee (2007) present in their paper
the design science research methodology (DSRM) that comprises, among other
things, a nominal process model for doing design science research. A simplified
version of this process model, from Ostrowski's, Helfert's, and Xie's (2012) pa-
per, is depicted in the figure 8. The process model itself is the same in both of
these papers. From Ostrowski et al.'s (2012) model is only omitted the fact that
in reality, a research process may begin at almost any step of the process (Pef-
fers et al., 2007). This study was, however, somewhat straightforward, so there
is no need to discuss this matter any further.

Peffers et al.'s (2007) DSRM process model includes six steps: problem
identification and motivation, definition of the objectives for a solution, design
and development, demonstration, evaluation, and communication. Next, these
steps and their implementation in this study are presented.

62

FIGURE 8 DSRM process model (Ostrowski et al., 2012, 4075)

1. Problem identification and motivation. Define the specific research problem and
justify the value of a solution. Since the problem definition will be used to de-
velop an artifact that can effectively provide a solution, it may be useful to at-
omize the problem conceptually so that the solution can capture its complexity.
Justifying the value of a solution accomplishes two things: it motivates the re-
searcher and the audience of the research to pursue the solution and to accept
the results and it helps to understand the reasoning associated with the re-
searcher's understanding of the problem. Resources required for this activity
include knowledge of the state of the problem and the importance of its solu-
tion. (Peffers et al., 2007.)

The Kangas project is the main urban development project of the City of
Jyväskylä for the next several decades (Jyväskylän kaupunki, 2011). The Kangas
area is introduced later on, but in brief, it will form a smart city in the future.
This project requires implementing, but first, planning for many things. One of
them is the data warehouse of the area. It was decided at the University of Jy-
väskylä that the data warehouse will be built on the cloud with the help of the
university's hardware, network, and other resources, e.g., Eucalyptus cloud
software that is introduced later on. The two candidates for the software of the
data warehouse, Stardog and Neo4j, are also introduced later on.

Before implementing the data warehouse, there is, however, a need to
know how a smart city data warehouse can be efficiently integrated with a
cloud infrastructure in general. This requires knowledge of the requirements for
smart cities, especially their data management, and the requirements for cloud
computing systems, especially their data management. In the research literature
exist many requirements for smart cities and their data management, as well as
cloud computing systems and their data management, but before this study,
there appeared to be no generalizable framework that would have integrated
these requirements with each other. Hence, it was realized that this kind of
framework could be useful e.g., to researchers and decision-makers.

2. Definition of the objectives for a solution. Infer the objectives of a solution
from the problem definition and knowledge of what is possible and feasible.
The objectives can be quantitative, e.g., terms in which a desirable solution
would be better than current ones, or qualitative, e.g., a description of how a
new artifact is expected to support solutions to problems not hitherto addressed.
The objectives should be inferred rationally from the problem specification. Re-
sources required for this include knowledge of the state of problems and
current solutions, if any, and their efficacy. (Peffers et al., 2007.)

63

The main objective of this study has been to build the aforementioned
framework and answer with the help of it to the main research question: how a
smart city data warehouse can be efficiently integrated with a cloud infrastruc-
ture? As already mentioned, there appeared to be no such framework in exis-
tence before this study. Answering to the main research question has also re-
quired answering to the sub-questions of this study: What is cloud computing?
What is cloud data management? What are the requirements for cloud data
management? What are smart cities? What are the requirements for smart city
data management? Getting answers to these questions has formed the sub-
objectives of this study.

3. Design and development. Create the artifact. Such artifacts are potentially
constructs, models, methods, or instantiations (each defined broadly) (Hevner,
March & Park, 2004, as cited in Peffers et al., 2007) or 'new properties of techni-
cal, social, and/or informational resources' (Järvinen, 2007, as cited in Peffers et
al., 2007). Conceptually, a design research artifact can be any designed object in
which a research contribution is embedded in the design. This activity includes
determining the artifact's desired functionality and its architecture and then
creating the actual artifact. Resources required moving from objectives to de-
sign and development include knowledge of theory that can be brought to bear
in a solution. (Peffers et al., 2007.)

In this activity, the artifact, i.e., the aforementioned framework, was cre-
ated by conducting a somewhat extensive literature review. The literature re-
view was conducted in practice so that in the course of it the requirements for
smart cities, especially their data management, and the requirements for cloud
computing systems, especially their data management, were looked for in many
scholarly papers and other publications. Then, the most relevant of these re-
quirements were integrated with each other to form the framework that func-
tions as a guiding principle, being able to answer to many questions, e.g., the
main research question. The framework and its operating principle have been
presented earlier.

4. Demonstration. Demonstrate the use of the artifact to solve one or more
instances of the problem. This could involve its use in experimentation, simula-
tion, case study, proof, or other appropriate activity. Resources required for the
demonstration include effective knowledge of how to use the artifact to solve
the problem. (Peffers et al., 2007.)

The use of the artifact, i.e., the aforementioned framework, was demon-
strated by solving one instance of the problem that is in this case the Kangas
project. In practice, the framework was examined by the author and supervisors
of this thesis, and together they chose the most important requirements for the
data warehouse of the Kangas area: performance and scalability. In the next
step, they are operationalized, after which two candidates for the software of
the data warehouse, Stardog and Neo4j, are tested for them. The selection of
Stardog and Neo4j was made solely by the author who had several reasons for
their selection: their data models are suitable for smart cities, their installation
and usage is possible for a person who is not a database expert and who has at

64

most intermediate level of knowledge of various Linux distributions, their
documentations are of high quality, they have out-of-the-box distributed data-
base management system (DDBMS) functionalities, and their licenses do not
prohibit benchmarking them against other database products and publishing
such benchmarking results. Many other promising databases could not be util-
ized e.g., due to these reasons. The top candidates were AllegroGraph, Virtuoso,
OWLIM, 4store, Bigdata, Apache Jena, Sesame, OrientDB, and MongoDB.

5. Evaluation. Observe and measure how well the artifact supports a solu-
tion to the problem. This activity involves comparing the objectives of a solu-
tion to actual observed results from use of the artifact in the demonstration. It
requires knowledge of relevant metrics and analysis techniques. Depending on
the nature of the problem venue and the artifact, evaluation could take many
forms, such as quantifiable measures of system performance, e.g., response time
or availability. Conceptually, such evaluation could include any appropriate
empirical evidence or logical proof. At the end of this activity the researchers
can decide whether to iterate back to step three to try to improve the effective-
ness of the artifact or to continue on to communication and leave further im-
provement to subsequent projects. The nature of the research venue may dictate
whether such iteration is feasible or not. (Peffers et al., 2007.)

In this step, the artifact, i.e., the aforementioned framework, is evaluated
by benchmarking the performance of two candidates for the software of the
data warehouse, Stardog and Neo4j, and comparing them subjectively. The
original plan was to benchmark also scalability of the chosen databases (see
previous step), but this proved to be too difficult. Such an attempt would have
required setting up distributed databases and putting heavy load on them.
Since attempts to get Stardog Cluster's beta version (Stardog's DDBMS func-
tionality) working were not successful and the author lacks computing re-
sources to create heavy load, the plan for benchmarking scalability of Stardog
and Neo4j was abandoned. However, their performance is benchmarked by
conducting several performance tests, after which the results of these tests are
analyzed to decide which database performs better in this case. Then, Stardog
and Neo4j are compared subjectively as well, and finally, based on all these ex-
periences, the framework itself is evaluated. Its further improvement is left for
future researchers.

6. Communication. Communicate the problem and its importance, the arti-
fact, its utility and novelty, the rigor of its design, and its effectiveness to re-
searchers and other relevant audiences, e.g., practicing professionals when ap-
propriate. Communication requires knowledge of the disciplinary culture. (Pef-
fers et al., 2007.)

The results of this study, the most important of them being the aforemen-
tioned framework and its evaluation, as well as the comparison of Stardog and
Neo4j, are published as a master's thesis by the author and the University of
Jyväskylä. The results are available both in electronic and paper form.

65

5.3 Introduction of the central concepts of the study

Next, the central concepts of the study are introduced. First, Amazon Web Ser-
vices and Eucalyptus cloud software are presented. Then, the Kangas area of
the City of Jyväskylä is introduced. Next, two candidates for the software of the
data warehouse, Stardog and Neo4j, are dealt with. Finally, a performance test-
ing tool, Apache JMeter, is presented.

5.3.1 Amazon Web Services (AWS)

Amazon Web Services (AWS) began offering IT infrastructure services to busi-
nesses in the form of web services, now commonly known as cloud computing,
in 2006. Today, AWS provides a highly reliable, scalable, and low-cost infra-
structure platform in the cloud that powers hundreds of thousands of busi-
nesses in 190 countries around the world. (Amazon Web Services, 2014a.) AWS
offers currently dozens of services, with more being added each year (Amazon
Web Services, 2014b). It is not possible to describe all of them here, but as far as
the author knows, the most famous of these services are Amazon Elastic Com-
pute Cloud and Amazon Simple Storage Service. Next, they are briefly intro-
duced alongside Amazon EC2 Instance Store and Amazon Elastic Block Store
that are central to Amazon Elastic Compute Cloud.

Amazon Elastic Compute Cloud (Amazon EC2) provides scalable computing
capacity in the AWS cloud. A customer can use Amazon EC2 to launch as many
or as few virtual servers as he needs, configure security and networking, and
manage storage. Amazon EC2 provides many features, e.g., virtual computing
environments (instances), preconfigured templates for instances (Amazon Ma-
chine Images, AMIs) including the operating system and additional software,
various configurations of CPU, memory, storage, and networking capacity for
instances (instance types), storage volumes for temporary data (instance store
volumes), persistent storage volumes (Amazon Elastic Block Store volumes),
and multiple physical locations (regions and availability zones) for resources.
(Amazon Web Services, 2014c.) An example of an instance type that could be
transformed into an instance later on is m3.medium with one vCPU (Intel Xeon
E5-2670 v2 Ivy Bridge), 3.75 GiBs of RAM, and 4 GBs of SSD-based instance
storage (Amazon Web Services, 2014d).

Amazon EC2 Instance Store provides temporary block-level storage for use
with an instance. The size of an instance store ranges from 900 MiBs to up to 48
TiBs and varies by instance type. An instance store consists of one or more in-
stance store volumes. When a customer launches an instance store-backed AMI,
each instance store volume available to the instance is automatically mapped.
Otherwise, volumes have to be formatted and mounted on the running instance
before they can be used. Instance store volumes are usable only from a single
instance during its lifetime. Data on instance store volumes is lost e.g., when

66

terminating an instance. Hence, instance store volumes are ideal for temporary
storage of information that changes frequently. (Amazon Web Services, 2014e.)

Amazon Elastic Block Store (Amazon EBS) also provides block-level storage
volumes for use with Amazon EC2 instances. However, unlike instance store
volumes, Amazon EBS volumes that are attached to an Amazon EC2 instance
are exposed as storage volumes that persist independently from the life of the
instance. A customer can create Amazon EBS storage volumes from 1 GiBs to 1
TiBs in size and mount them as devices on his Amazon EC2 instances. Amazon
EBS volumes behave like raw, unformatted block devices. A customer can cre-
ate a file system on top of these volumes or use them in any other way he
would use a block device, e.g., a hard drive. Multiple volumes can be mounted
on the same instance. Amazon EBS is recommended when data changes fre-
quently and requires long-term persistence. (Amazon Web Services, 2014f.)

Amazon Simple Storage Service (Amazon S3) is a data storage infrastructure
that consists of buckets and objects (Amazon Web Services, 2014g, 2014h). A
bucket is a container for objects stored in Amazon S3. Every object is contained
in a bucket. Buckets organize the Amazon S3 namespace at the highest level,
identify the account responsible for storage and data transfer charges, play a
role in access control, etc. Objects are the fundamental entities stored in Amazon
S3. They consist of object data and metadata. Every object in Amazon S3 can be
uniquely addressed through the combination of the web service endpoint,
bucket name, key, and optionally, a version. E.g., in the URL http://doc.s3.ama-
zonaws.com/2006-03-01/AmazonS3.wsdl 'doc' is the name of the bucket and '2006-
03-01/AmazonS3.wsdl' is the key. Each object can contain up to 5 TBs of data,
but there are no boundaries to how many objects and how much data can be
stored in each bucket. (Amazon Web Services, 2014h.)

The Amazon S3 architecture is designed to be programming language-
neutral, using REpresentational State Transfer (REST) and SOAP interfaces to
store and retrieve objects. A customer can choose the geographical region in
which Amazon S3 stores the buckets he creates. (Amazon Web Services, 2014h.)
Regions refer to the fact that Amazon EC2 is hosted in multiple locations world-
wide. Each region is a separate geographic area and has multiple, isolated loca-
tions known as availability zones. Each region is completely independent, and as
already mentioned, each availability zone is isolated, however, they are con-
nected in a region through low-latency links. The isolated regions achieve the
greatest possible fault tolerance and stability. (Amazon Web Services, 2014i.)
Certain region might be chosen for different reasons, e.g., to optimize latency,
minimize costs, or address regulatory requirements (Amazon Web Services,
2014h).

5.3.2 Eucalyptus cloud software

Elastic Utility Computing Architecture for Linking Your Programs to Useful Systems
(Eucalyptus) (Wolski et al., 2008) began as a research project in the Computer
Science Department at the University of California, Santa Barbara, originating

67

from the Virtual Grid Application Development Software (VGrADS) project
(2003–2008) (Eucalyptus Systems, 2014a; VGrADS, 2009). The Eucalyptus pro-
ject began to commercialize as an open source company in 2009 (Eucalyptus
Systems, 2014a). Today, Eucalyptus is open source software for building AWS-
compatible private and hybrid clouds. It leverages a customer's existing IT in-
frastructure to create a self-service private cloud behind his firewall. IaaS is en-
abled with the private cloud by abstracting the available heterogeneous com-
pute, network, and storage resources. Eucalyptus claims to be the only solution
that can transform a customer's IT infrastructure into a private cloud that works
like AWS. Eucalyptus is compatible with AWS APIs, e.g., EC2, EBS, and S3.
(Eucalyptus Systems, 2014b.)

Eucalyptus' services are many, and it is thus impossible to describe all of
them here. However, Eucalyptus' main components can be introduced. Euca-
lyptus is made up of six distinct components that can be distributed in various
cloud computing architectures. The six components are grouped into three
separate levels, as depicted in the figure 9 below. (Eucalyptus Systems, 2014c.)

FIGURE 9 Main components of Eucalyptus (Eucalyptus Systems, 2014c)

The Cloud Controller (CLC) is a Java program that offers EC2-compatible SOAP
and Query interfaces, as well as a web interface to the outside world, for distri-
bution within the cloud architecture. In addition to handling incoming requests,
the CLC acts as the administrative interface for cloud management and per-
forms high-level resource scheduling and system accounting. The CLC accepts
user API requests from command-line interfaces, e.g., euca2ools, or GUI-based
tools (graphical user interface), e.g., the Eucalyptus Management Console, and
manages the underlying compute, storage, and network resources. In brief, the
CLC handles high-level authentication, accounting, reporting, and quota man-
agement. Only one CLC can exist per cloud. (Eucalyptus Systems, 2014d.)

68

Scalable Object Storage (SOS) is the Eucalyptus service equivalent to Ama-
zon S3. The SOS is a pluggable service that allows infrastructure administrators
the flexibility to implement scale-out storage on top of commodity resources
using open source and commercial solutions that implement the S3 interface.
Eucalyptus provides a basic storage implementation, Walrus, which may suit
evaluation and smaller cloud deployments. For large-scale and increased per-
formance, users are encouraged to connect the SOS to dedicated storage solu-
tions, e.g., RiakCS. (Eucalyptus Systems, 2014d.)

A cluster is equivalent to an AWS availability zone, and a single Eucalyp-
tus cloud can have multiple clusters. The Cluster Controller (CC) is written in C
and acts as the front end for a cluster within a Eucalyptus cloud and communi-
cates with the Storage Controller and Node Controller. The CC manages in-
stance execution and SLAs per cluster. (Eucalyptus Systems, 2014e.)

The Storage Controller (SC) is written in Java and is the Eucalyptus equiva-
lent to Amazon EBS. The SC communicates with the CC and Node Controller
within the distributed cloud architecture and manages Eucalyptus block vol-
umes and snapshots to the instances within its specific cluster. If an instance
requires writing persistent data to memory outside of the cluster, it would need
to write to the backend storage that is available to any instance in any cluster.
The SC interfaces with storage systems including local, NFS, Internet Small
Computer System Interface (iSCSI), and Storage Area Network (SAN). (Euca-
lyptus Systems, 2014e.)

The VMware Broker is an optional component that provides an AWS-
compatible interface for VMware environments and physically runs on the CC
within the distributed cloud computing architecture. The VMware Broker over-
lays existing ESX/ESXi hosts and transforms Eucalyptus Machine Images (EMIs)
to VMware virtual disks. The VMware Broker mediates interactions between
the CC and VMware and can connect directly to either ESX/ESXi hosts or to
vCenter Server. (Eucalyptus Systems, 2014e.)

Finally, the Node Controller (NC) is a part of the node level of the cloud
computing architecture. It is written in C and hosts the virtual machine in-
stances and manages the virtual network endpoints. The NC downloads and
caches images from the SOS, as well as creates and caches instances. (Eucalyp-
tus Systems, 2014f.)

5.3.3 Kangas area

The Kangas area has been a place for new ideas, businesses, and innovations a
long time. Already in the middle of the 1800s it was filled with water mills, and
later on, there were all kinds of businesses wanting to get their share of the river
Tourujoki. The Kangas paper mill was one of the first Finnish paper mills,
opening in 1874. The paper mill was finally closed in 2010, and the area of 27
hectares became the property of the City of Jyväskylä in 2011. (Jyväskylän kau-
punki, 2011.)

69

According to the City of Jyväskylä (Jyväskylän kaupunki, 2011), the main
development themes of the Kangas area are based on the city's strategies, a
need for new housing areas, and ideas put forward by citizens. These dreams
and ideas were transformed into the desired user experience and the more gen-
eral qualitative targets into concepts to enhance the everyday usability of Kan-
gas in the future (Jyväskylän kaupunki, 2011).

The concepts can be crystallized into four words: heart, feet, sustainable,
and green. Heart refers to the heart of the area, the old paper mill that will be a
hot spot offering many kinds of services, e.g., grocery stores, restaurants, cafés,
shops, a gym and day spa services, arts and crafts, and flea markets. Feet are
about an attractive pedestrian and cycling environment, 'people first, parking
underground.' Sustainable stands for sustainable development including a dense
urban structure, an ecological way of life, and a carbon neutral city. Finally,
green denotes recreation, water and green areas, from nature preservation areas
to parks, balconies, and rooftops. (Jyväskylän kaupunki, 2011.)

As already mentioned, the Kangas project is the main urban development
project of the City of Jyväskylä for the next several decades. In the future, the
Kangas area will be a home to 5000 inhabitants and 2000 new jobs. (Jyväskylän
kaupunki, 2011.)

5.3.4 Stardog, an RDF database

Stardog is a graph database provided by Clark & Parcia and implemented in
Java. To be precise, Stardog is a resource description framework (RDF) database.
(Clark & Parcia, 2014a.) According to solid IT's (2014) DB-Engines Ranking of
November 2014, Stardog is the sixth most popular RDF store. In addition to the
RDF data model, Stardog supports SPARQL 1.1 query language, HTTP and
SNARL protocols for remote access and control, ACID, Web Ontology Lan-
guage (OWL) 2, rules for inference and data analytics, Java, JavaScript, Ruby,
Python, .Net, Groovy, Spring, Clojure, etc. (Clark & Parcia, 2014a, 2014b).

As already mentioned, Stardog's data model is based on RDF. RDF is a
framework for expressing information about resources that can be anything, e.g.,
documents, people, physical objects, and abstract concepts. In practice, RDF
consists of statements about resources. Statements are called triples, because they
comprise three elements: a subject, object, and predicate. The subject and object
represent some two resources that are related, while the predicate represents the
nature of their relationship. The relationship is phrased in a directional way,
from a subject to an object, and is called a property. International Resource Identifi-
ers (IRIs) identify resources. Literals are basic values that are not IRIs. (W3C,
2014a.) SPARQL 1.1 is a set of specifications that provide languages and proto-
cols to query and manipulate RDF graph content on the web or in an RDF store
(W3C, 2013), e.g.,:

70

PREFIX sm: <http://www.jkl.fi#>
INSERT DATA

{ sm:Sensor1 sm:IsLocated sm:Place1 ;
 sm:SensorType "Temperature sensor" }

The aforementioned SPARQL query would create two triples to a RDF database,
e.g., Stardog. 'Temperature sensor' is a literal, while the other resources are
identified by IRIs, being thus unique:

<http://www.jkl.fi#Sensor1> <http://www.jkl.fi#IsLocated> <http://www.jkl.fi#Place1>
<http://www.jkl.fi#Sensor1> <http://www.jkl.fi#SensorType> Temperature sensor

There are three Stardog editions available: Community, Developer, and Enter-
prise. Community is provided free of charge with some limitations, e.g., 10 da-
tabases, 25 MBs triples per a database, etc. (Clark & Parcia, 2014b.) Developer is
a 30-day trial edition of the full Enterprise that offers e.g., no data limits, sup-
port by phone or e-mail (Clark & Parcia, 2014b), and Stardog Cluster (Stardog's
DDBMS functionality). In this thesis, Stardog Community was utilized.

5.3.5 Neo4j, a graph database

Neo4j is an open-source NoSQL graph database sponsored by Neo Technology
and implemented in Java and Scala. With development beginning in 2003,
Neo4j has been publicly available since 2007. (Neo Technology, 2014a.) Accord-
ing to solid IT's (2014) DB-Engines Ranking of November 2014, Neo4j is the
world's most popular graph DBMS. Neo4j's data model is so-called property
graph. Putting it simply, the property graph data model is a multigraph data struc-
ture in which graph elements, vertices and edges, can have properties/attributes
(Ciglan, Averbuch & Hluchy, 2012). Neo4j's graphs can be accessed remotely
via Cypher HTTP API, either directly or through one of the many available lan-
guage drivers. As Stardog, Neo4j supports ACID as well. (Neo Technology,
2014a.)

As for the property graph data model, vertices can also be called nodes and
edges relationships, such as in Neo4j's case. The records in Neo4j's databases are
called nodes that are connected through typed, directed relationships. Nodes
and relationships can also have named attributes referred to as properties. Fur-
thermore, nodes can have labels that organize them into groups. (Neo Technol-
ogy, 2014b.) In addition, so-called identifiers can be used to refer to parts of a
pattern or a query (Neo Technology, 2014c). Cypher is Neo4j's declarative graph
query language that allows for expressive and efficient querying and updating
of the graph store (Neo Technology, 2014d), e.g.,:

CREATE (a:Sensor {SensorType: 'Temperature sensor'})-[:ISLOCATED]->(b:Place {PlaceID:1})

The aforementioned Cypher query creates a node labeled as 'Sensor' that has a
property 'SensorType', its value being 'Temperature sensor'. The query also
generates a node labeled as 'Place' that has a property 'PlaceID', its value being

71

'1'. Furthermore, the query creates a directed relationship between these two
nodes, 'ISLOCATED'. The letters 'a' and 'b' are the identifiers of the two nodes.
They could be something else as well, e.g., 'x' and 'y'.

There are four Neo4j subscriptions available: Community, Personal,
Startup, and Enterprise. Community subscription is provided free of charge, as
well as Personal subscription that can be utilized if certain criteria are met.
Startup and Enterprise subscriptions are commercial subscriptions. They and
Personal subscription include many features that Community subscription does
not, e.g., commercial e-mail and phone support, high-performance cache, and
clustering. (Neo Technology, 2014e.) In this thesis, Community subscription
was utilized.

5.3.6 Apache JMeter, a testing tool

Apache JMeter is a Java-based open source desktop application that is designed
to load test functional behavior and measure performance (Apache Software
Foundation, 2014a). As International Software Testing Qualifications Board
(ISTQB, 2014) puts it, load testing is a type of performance testing conducted to
evaluate the behavior of a component or system with increasing load, e.g.,
numbers of parallel users and/or numbers of transactions, to determine what
load can be handled by the component or system. Apache JMeter can be used to
test performance both on static and dynamic resources (files, web dynamic lan-
guages, e.g., PHP, Java, and ASP.NET, Java objects, databases and queries, FTP
servers, etc.) (Apache Software Foundation, 2014a).

Using Apache JMeter is simple, but it is useful to introduce some of its
central concepts. To begin with, a test plan describes a series of steps that
Apache JMeter executes when it is run. A test plan consists of one or more of
the following elements: thread groups, logic controllers, sample generating con-
trollers, listeners, timers, assertions, and configuration elements. (Apache Soft-
ware Foundation, 2014b.) Thread groups simulate connections to a server appli-
cation. The controls for a thread group allow e.g., to set the number of threads
and the number of times to execute the test. Under a thread group, there can be
two kinds of controllers: samplers and logical controllers. Samplers tell Apache
JMeter to send requests to a server and wait for a response. Logic controllers let
customize the logic that Apache JMeter uses to decide when to send requests.
They can change the order of requests coming from their child elements, mod-
ify the requests themselves, cause Apache JMeter to repeat requests, etc. Listen-
ers provide access to the information that Apache JMeter gathers about the test
cases while it runs. By default, an Apache JMeter thread sends requests without
pausing between each request, however, a delay can be specified by adding one
of the available timers to a thread group. Assertions, as their name suggests, al-
low asserting facts about responses received from the server being tested, i.e., it
can be tested that an application is returning the expected results. Configuration
elements work closely with samplers. In general, they do not send requests, but
they can add to or modify requests. (Apache Software Foundation, 2014c.) In

72

addition, a user can, among other things, write functions and variables (Apache
Software Foundation, 2014c) that can e.g., modify messages that are sent to a
server application.

Apache JMeter is higly extensible. Many custom plugins are developed for
it (jmeter-plugins.org, 2014a), and its results can be uploaded e.g., to BlazeMeter
and Loadosophia.org. E.g., Loadosophia.org is a service for storing and analyz-
ing performance tests (Loadosophia.org, 2014). It was utilized in this study as
well.

5.4 Benchmark for comparing the performance of Stardog and
Neo4j

Next, famous database benchmarks are briefly introduced, after which the
benchmark of this thesis is validated and presented. Alongside it is presented
the smart city ontology that served as an advice on creating Stardog's and
Neo4j's schemas.

5.4.1 About famous database benchmarks

Over the years, various database benchmarks have been developed as a tool for
comparing the performance of DBMSs and are frequently referred to in aca-
demic, technical, and commercial literature (Connolly & Begg, 2005). In this the-
sis, a benchmark refers to a test that serves as a basis for evaluation or compari-
son, e.g., of computer system performance (Merriam-Webster, 2014).

Perhaps the earliest DBMS benchmark was the Wisconsin benchmark that
was developed to allow comparison of particular DBMS features (Bitton et al.,
1983, as cited in Connolly & Begg, 2005). The Transaction Processing Council
(TPC) was founded in 1988 (Connolly & Begg, 2005). Its benchmarks are also
famous. E.g., TPC-C is based on an order entry application and TPC-H for ad
hoc, decision-support environments in which users do not know which queries
will be executed (Connolly & Begg, 2005). Graph databases, however, aim at
different types of queries, and thus these widespread benchmarks are not ade-
quate for evaluating their performance (Dominguez-Sal, Martinez-Bazan,
Muntes-Mulero, Baleta & Larriba-Pey, 2011).

Object oriented databases share some similarities with graph databases

(Dominguez-Sal et al., 2011). For object-oriented database management systems
(OODBMSs), there are, among others, the Object Operations Version 1 (OO1)
and OO7 benchmarks. OO1 was designed to reproduce operations that are
common in the advanced engineering applications. In 1993, the University of
Wisconsin released the OO7 benchmark, based on a more comprehensive set of
tests and a more complex database. (Connolly & Begg, 2005.)

When discussing graph databases, it has to be borne in mind that they can
be roughly divided in two: RDF and non-RDF databases, Stardog being an ex-

73

emplar of the former and Neo4j for the latter. As for RDF databases, there are
many benchmarks available. W3C's (2014b) webpage lists the most well-known.
E.g., Berlin SPARQL Benchmark (BSBM) is used for measuring the performance
of storage systems that expose SPARQL endpoints. The benchmark suite is built
around an e-commerce use case. (Bizer & Schultz, 2012.) Other famous RDF da-
tabase benchmarks are Lehigh University Benchmark (LUBM), University On-
tology Benchmark (UOBM), SP2Bench SPARQL Performance Benchmark, and
DBpedia SPARQL Benchmark, but they are not gone into here (W3C, 2014b; see
also Bizer & Schultz, 2008). There are many others as well.

In non-RDF databases' case, there are at least a few notable benchmarks.
Ciglan et al. (2012) write that the lack of standards in the domain of graph data-
bases makes it difficult to compare systems. However, one option that they
themselves utilized is Blueprints that is a property graph model interface with
provided implementations and a part of Tinkerpop, an open source graph com-
puting framework (Tinkerpop, 2014). To the author's knowledge, with the help
of Tinkerpop property graphs and even RDF graphs can be benchmarked
against each other. This is also possible, as far as the author knows, with HPC
Scalable Graph Analysis Benchmark (HPC-SGAB) (Dominguez-Sal et al., 2011;
see also Graphanalysis.org, 2014) and Linked Data Benchmark Council's (LDBC)
new benchmark, the Social Network Benchmark (SNB) (LDBC, 2014). Currently,
SNB is unfinished (LDBC, 2014).

As applying the aforementioned benchmarks, e.g., Tinkerpop, to this case
would have required a lot of technical expertise and as they did not seem to be
suitable for this case, the author decided to create his own benchmark. Next, it
is discussed in detail.

5.4.2 Smart city ontology

The smart city ontology whose classes are depicted in the figure 10 is an output
of the author's imagination, supervisors' ideas and suggestions, and several on-
tologies and similar structures (e.g., Calabrese & Ratti, 2006; Calabrese, Colonna,
Lovisolo, Parata & Ratti, 2011; Lertlakkhanakul, Choi & Kim, 2008; Wang, De,
Cassar, & Moessner, 2013) that have served as examples to it. The OWL ontol-
ogy was modeled with the help of Protégé, a free, Java-based open-source on-
tology editor and framework for building intelligent systems (Stanford Center
for Biomedical Informatics Research, 2014).

Before describing the ontology, a short introduction of OWL 2 is in order.
OWL 2 ontologies consist of entities: classes represent sets of individuals,
datatypes are sets of literals, e.g., strings or integers, object properties and data
properties can be used to represent relationships in the domain, annotation prop-
erties can be used to associate non-logical information with ontologies, axioms,
and entities, and named individuals can be used to represent actual objects from
the domain. They are all uniquely identified by IRIs. OWL 2 also provides for
anonymous individuals, i.e., individuals that are analogous to blank nodes in RDF
and that are accessible only from within the ontology they are used in. Finally,

74

OWL 2 provides for literals that consist of a string called a lexical form and a
datatype specifying how to interpret this string. (W3C, 2012.)

FIGURE 10 Classes of the smart city ontology visualized by Protégé

As it can be seen from the ontology, it consists of a class Thing and its multiple
subclasses: Place, Sensor, Camera, Person, Phone, SensorObservation, and Cam-
eraObservation. They can all have individuals, e.g., a 'Sensor' can be 'Sensor1'.
Here, the namespace of the ontology, the ontology IRI, comes into picture. In
this case, it is http://www.jkl.fi, the domain of the City of Jyväskylä. Hence, e.g.,
the class 'Sensor' is identified with the IRI 'http://www.jkl.fi#Sensor' and its
individual 'Sensor1' with the IRI 'http://www.jkl.fi#Sensor1'. To describe the
ontology briefly otherwise, its entities have the following object properties: Sen-
sors and cameras are located in places and observe and film observations. In
addition, persons possess phones, but neither persons nor phones are located in
any place. This depicts a real-life situation in which entities of a database are
not all connected to each other for one reason or another. Entities also have their
data properties, e.g., 'Sensor1' is a 'Temperature sensor' that is its 'SensorType'
(string). The ontology is described in its entirety in the appendix 1.

The ontology is on purpose flat and simple so that it could be easily trans-
formed into two schemas, those of Stardog's and Neo4j's. Real-life (smart city)
ontologies are naturally wider and more complicated in many cases.

5.4.3 Design of the benchmark

As the ontology, also the benchmark is an output of the author's imagination,
supervisors' ideas and suggestions, and several benchmarks (e.g., Vicknair et al.,
2010; Jouili & Vansteenberghe, 2013) that have served as examples to it.

The benchmark was conducted on a DELL Inspiron 620 desktop computer
(processor: Intel Core i3-2100 3.10 GHz, RAM: 4 GBs with a swap file of 4 GBs,
operating system: Ubuntu 14.04 LTS 64-bit, Java: OpenJDK 1.7.0_65, default set-
tings). Stardog and Neo4j were installed on Eucalyptus v.3.3.2 (instance type:

75

m2.2xlarge, virtual cores: 2, RAM: 4096 MBs, operating system: CentOS 6.4 (Fi-
nal), Java: Java SE Development Kit 1.7.0_67, default settings). For each of the
databases, the latest available versions were used: Stardog Community 2.2.2
and Neo4j Community 2.1.5. Eucalyptus ran on the university's hardware ap-
proximately 1.3 kilometers from the client computer that ran the benchmark.
The network connection was a 100 Mbps LAN-based (local area network) Inter-
net connection (Koskinen, 2012) that could not be affected.

The benchmark compared the performance of Stardog's public SPARQL
endpoint (Clark & Parcia, 2014c) to Neo4j's Transactional Cypher HTTP end-
point (Neo Technology, 2014f) that are, in the author's opinion, the closest
equivalents to each other. Furthermore, they are supported ways to insert data
into and query it from the databases. Stardog and Neo4j were put to the test
with their out-of-the-box features. The only changes were changing of their de-
fault ports to 8080, disabling Stardog's security to enable Stardog's usage as a
public SPARQL endpoint (Clark & Parcia, 2014c), and configuring Neo4j to en-
able access from any host (Neo Technology, 2014h). The data that were inserted
into the databases were not validated against any schemas. The aforementioned
OWL ontology served only as an advice on creating Stardog's and Neo4j's
schemas. It was not inserted into Stardog's databases at any point.

The data were inserted into the databases and queried from them with the
help of Apache JMeter that acted as the 'client side' of a 'client/server' applica-
tion (Halili, 2008). Hence, the performance was measured on the client side.
Apache JMeter 2.12 was run in GUI mode, the only listener being Loadoso-
phia.org Uploader 1.2.0 (jmeter-plugins.org, 2014b).

The benchmark was run twice on the morning of November 20, 2014.
Stardog was put to the test first and then Neo4j. The databases were empty at
the beginning of each run. Before each run, the GUIs of the databases, Stardog
Web Console (Clark & Parcia, 2014d) and Neo4j Web Interface (Neo Technology,
2014g), were accessed to confirm that everything was in order. Furthermore,
after each test, Loadosophia.org was visited to confirm that the results were
successfully uploaded to Loadosophia.org. In addition, after the first run of the
benchmark, the databases were deleted and new databases were created. In
Stardog, this can be done via its GUI, while Neo4j has to be stopped before
making changes to its databases. Hence, Neo4j was stopped after the first run,
its database was deleted, and Neo4j was started again, which automatically cre-
ated a new database. Then, Neo4j's GUI was accessed to confirm that every-
thing was in order.

The benchmark comprised four tests that are briefly described below and
in more detail in the appendix 2. Each database ran each test twice, so alto-
gether 16 tests were run.

To begin with, the initial graph was created: First, 1000 anonymous places
were created symbolizing 1000 homes and public spaces in the Kangas area.
Then, 1000 temperature sensors, one for each place, were created. The sensors
were imagined to measure outdoor temperature of the aforementioned places,
being located outside of their windows, such as normal thermometers. Next,

76

250 video cameras for the first 250 places were created, one for each place. It
was imagined that the cameras are located in or in the near vicinity of the places.
As the sensor data, also the video data could be used e.g., for scientific purposes.
Then, 1000 people were created, and finally, 1000 telephones, one for each per-
son. The persons and their telephones were not attached to other nodes on pur-
pose. It was imagined that this will be done later on in the future.

After the initial graph was created, it was populated by more data. The
following situation simulated roughly one hour of smart city activities: 1000
temperature sensors observed 2000 temperature observations. It was imagined
that each sensor observes outdoor temperature every half an hour and inserts
its data into the database at the same time. In parallel, 250 video cameras filmed
7500 camera observations. It was imagined that one camera films all the time,
inserting the metadata of its video data into the database every two minutes. At
the same time, the actual video files are sent to someplace else, i.e., inserted into
some other database that is more suitable for saving multimedia than Stardog
and Neo4j.

As there were now some meaningful data in the database, it was queried.
The following situation simulated roughly ten days of smart city activities:
1000 people queried their personal information, each once. It was imagined
here that perhaps 10 % of the residents want to see their personal information in
a day, e.g., to update it. In parallel, the average temperature of all the sensor
observations was calculated 1000 times, which simulates scientific calculations
on data.

Finally, data was inserted into the database and queried from it at the
same time. The following situation did not simulate any real-life smart city
situation: 1000 people queried their personal information, each once. In parallel,
1000 people updated their personal information, each once. A very long charac-
ter string was added to each person's information, symbolizing detailed infor-
mation of some kind, e.g., a self-description and other social media data.

The aforementioned figures might look small compared e.g., to the City of
London that produces at least 1160000 observations in an hour (Boyle, Yates &
Yeatman, 2013). There reside about 9000000 people in London (CIA, 2014). The
Kangas area will be a home to 5000 people in the future (Jyväskylän kaupunki,
2011). On the basis of a simple calculation, (1160000 / 9000000) * 5000, they
could produce about 644 observations in an hour. Hence, the chosen figures are
reasonable.

As the ontology, the benchmark is on purpose simplified to keep it more
manageable. In reality, e.g., sensors and cameras do not necessarily insert their
data straight into a database. E.g., in SmartSantander repeaters and gateways
gather the information that is sensed by sensors (Krčo et al., 2013). However,
the author deemed more fruitful to simulate many concurrent users than a few
gateways.

77

5.4.4 Definition of the performance in the benchmark

The concept of 'performance' has been mentioned several times in this thesis,
e.g., in the framework of requirements for integrating a smart city with a cloud
infrastructure. As for the performance of databases, however, there appears to
be no practical definition available. Hence, the concepts of 'performance' are
briefly discussed below, after which the performance in the benchmark of this
thesis is defined.

According to Menascé (2002), QoS is a combination of several qualities or
properties of a service, e.g., response time and throughput. Response time can be
defined as the interval between a user's request and the system's response, but
this is a simplistic definition, since the requests and the responses are not in-
stantaneous, e.g., the system takes time outputting the response. There are (at
least) two possible definitions of the response time: it can be defined as either
the interval between the end of a request submission and the beginning of the
corresponding response from the system or as the interval between the end of a
request submission and the end of the corresponding response from the system.
(Jain, 1991.) The former definition is also known as latency, although it has to be
emphasized that there are many definitions of latency as well. The response
time of a system generally increases, as the load on the system increases (Jain,
1991). QoS takes into account not only the average response time, but also the
percentile (e.g., 95th percentile) of the response time (Menascé, 2002).

Throughput is defined as the rate (requests per unit of time) at which the
requests can be serviced by the system. E.g., for transaction processing systems,
the throughput is measured in transactions per second (TPS). The throughput
of a system generally increases, as the load on the system initially increases.
After a certain load, the throughput stops increasing. In most cases, it may even
begin decreasing. (Jain, 1991.)

In Apache JMeter, response time is called elapsed time. Apache JMeter
measures the elapsed time from just before sending the request to just after the
last response has been received. Apache JMeter does not include the time
needed to render the response, nor does Apache JMeter process any client code,
e.g., JavaScript. Apache JMeter measures the latency from just before sending
the request to just after the first response has been received. Hence, the time
includes all the processing needed to assemble the request, as well as assem-
bling the first part of the response that in general will be longer than one byte.
The throughput is calculated as requests / unit of time. The time is calculated
from the start of the first sample to the end of the last sample. This includes any
intervals between samples, as it is supposed to represent the load on the server.
The formula is: throughput = number of requests / total time. (Apache Soft-
ware Foundation, 2014d.) In Loadosophia.org, the throughput is measured in
terms of TPS. In Apache JMeter, a transaction means an operation that a user
wants Apache JMeter to perform, e.g., get a webpage, login to a webpage, insert
data into a database, etc. (jmeter-plugins.org, 2014c).

78

Performance is measured in the benchmark of this thesis in terms of re-
sponse time and throughput (TPS). The smaller the response time and the lar-
ger the throughput (TPS), the better the performance of the database. The most
important performance indicators of the benchmark are the 90th percentiles of
different response times and different throughputs (TPS).

79

6 RESULTS AND CONCLUSIONS

This chapter is organized as follows. First, the results of the benchmark are pre-
sented and analyzed. Then, Stardog and Neo4j are compared subjectively. Fi-
nally, the framework of requirements for integrating a smart city with a cloud
infrastructure is evaluated.

6.1 Results of the benchmark

Next, the durations of the tests are briefly discussed. Then, the results of the
benchmark are presented and analyzed one part at a time. The figures '1' and '2'
in the tables 6–13 refer to the first and second run of each test, while the letters
'a', 'b', 'c', and 'd' refer to the actual tests. E.g., 'Neo4j, 1a' means the first run of
the first test by Neo4j, 'Stardog, 2b' the second run of the second test by Stardog,
etc.

6.1.1 About the durations of the tests

A stopwatch was used to measure the durations of the tests during some of the
last rehearsals of the benchmark. They were identical with the final benchmark.
The most accurate of these measurements are described in the table 5. The
stopwatch was not used during the final benchmark, as it was assumed that
Apache JMeter would measure the durations of the tests correctly. Unfortu-
nately, this did not happen in all the tests, which is discussed further below.

As for the durations of all the tests, it is in order to stress that they varied
somewhat every time the tests were run. In the final benchmark, the client and
servers were not running anything else than Apache JMeter and Stardog or
Neo4j, so the variation might be a consequence of network traffic that changed
throughout the day. Another reason might be some unknown software that the
author was not aware of that ran on the background consuming resources.

80

TABLE 5 Durations of the tests measured by the stopwatch

Part of the benchmark Stardog Neo4j
1. Create the graph 15 min 14 s 3 min 46 s

2. Write queries 35 min 12 s 7 min 41 s

3. Read queries 8 s 9 s

4. Read and write queries 3 min 26 s 1 min 37 s

6.1.2 Create the graph

The first part of the benchmark is described in the tables 6 and 7. During a sin-
gle test, the initial graph was created by one virtual user. According to
Loadosophia.org, the tests ran in Stardog's case on average 15 minutes (min) 25
seconds (s), the first test being 43 s faster than the second one, and in Neo4j's
case on average 3 min 37 s, the second test being 4 s faster than the first one. The
stopwatch gave roughly the same figures as Loadosophia.org according to
which all the tests were valid for comparison.

During a single test, altogether 4250 transactions were processed. The
HTTP code '2xx' indicates that there were no errors during the tests. The other
figures, the minimum response time, average response time, maximum re-
sponse time, 90th percentile of the response time, and average throughput indi-
cate clearly that Neo4j performed better than Stardog in the first part of the
benchmark.

81

TABLE 6 Properties and results of the first part of the benchmark

Properties Stardog, 1a Stardog, 2a Average
Started at 20.11.2014 7.44.57 20.11.2014 8.57.55 -

Test duration 0:15:03 0:15:46 0:15:25

Transactions count 4250 4250 4250

HTTP codes presence 2xx 2xx -

Minimum response time, ms 53 46 49.5

Average response time, ms 211 218 214.5

Maximum response time, ms 525 619 572

90th percentile of the response time, ms 290 300 295

Average throughput (TPS) 4.70653 4.4926 4.599565

Average virtual users 1 1 1

Maximum virtual users 1 1 1

Properties Neo4j, 1a Neo4j, 2a Average

Started at 20.11.2014 10.22.35 20.11.2014 11.10.58 -

Test duration 0:03:39 0:03:35 0:03:37

Transactions count 4250 4250 4250

HTTP codes presence 2xx 2xx -

Minimum response time, ms 33 29 31

Average response time, ms 50 49 49.5

Maximum response time, ms 374 443 408.5

90th percentile of the response time, ms 88 89 88.5

Average throughput (TPS) 19.4064 19.7674 19.5869

Average virtual users 1 1 1

Maximum virtual users 1 1 1

This can also be seen from the table 7 in which are listed the transaction groups
and their average response times in milliseconds (ms). The sizes of the mes-
sages that created the initial graph were roughly the same, so it is not surprising
that their response times were also roughly of the same size. What is significant,
however, is that Neo4j's average response times were roughly four times better
than Stardog's.

82

TABLE 7 Transactions of the first part of the benchmark

Transaction group Count Fraction Stardog, 1a Stardog, 2a Average
Create a camera 250 5.9 % 224.012 234.86 229.436

Create a person 1000 23.5 % 219.295 227.686 223.4905

Create a phone 1000 23.5 % 226.081 236.168 231.1245

Create a place 1000 23.5 % 189.448 204.158 196.803

Create a sensor 1000 23.5 % 211.415 219.296 215.3555

Transaction group Count Fraction Neo4j, 1a Neo4j, 2a Average

Create a camera 250 5.9 % 51.748 51.668 51.708

Create a person 1000 23.5 % 49.068 48.614 48.841

Create a phone 1000 23.5 % 52.213 51.111 51.662

Create a place 1000 23.5 % 51.809 49.961 50.885

Create a sensor 1000 23.5 % 51.297 52.074 51.6855

The differences in the 90th percentiles of the response times are also remarkable.
A percentile indicates a value below which a given percentage of observations
in a group of observations fall (Wikipedia, 2014c). The 90th percentile of a re-
sponse time denotes that 90 % of transactions were processed below some value
that is in this case ms. Hence, if the averages of the 90th percentiles of the re-
sponse times are to be trusted, Neo4j performed roughly three times better than
Stardog. Furthermore, according to the averages of the average throughputs,
Neo4j was roughly four times faster than Stardog.

6.1.3 Write queries

The second part of the benchmark is described in the tables 8 and 9. During a
single test, the initial graph was populated by more data by hundreds of paral-
lel virtual users, the maximum being 1250. According to Loadosophia.org, Star-
dog ran the test on average 33 min 39 s, the first test being 1 min 47 s faster than
the second one, while Neo4j completed the test on average in 7 min 20 s, the
second test being 7 seconds faster than the first one. As for Stardog's results,
Loadosophia.org complained about the duration difference, while Neo4j's re-
sults were in order. The stopwatch gave roughly the same durations.

During a single test, altogether 9500 transactions were processed. There
were no errors during these tests either. What is notable is that the minimum
response times are straight away many times larger than in the first part of the
benchmark, which is an indication of the fact that these tests created heavier
load than the first ones. Stardog's average minimum response time is slightly
better than Neo4j's, although the difference is so small that it could easily be
explained by network traffic especially, because Neo4j's tests were ran later on
during the morning when there might have been more traffic on the network.
The average and maximum response times, however, are dreadfully larger than
in the first part of the benchmark, which could be explained at least by the fact
that there were many parallel users inserting data into the databases, so more

83

transactions were put on the line. In any case, if the averages of these figures are
to be trusted, Stardog processed a transaction on average in approximately 92.7
s, while Neo4j in approximately 19.5 s. The maximum amount of time it took for
Stardog to process a transaction was approximately 261.5 s, while Neo4j proc-
essed a transaction at worst in approximately 60.8 s.

TABLE 8 Properties and results of the second part of the benchmark

Properties Stardog, 1b Stardog, 2b Average

Started at 20.11.2014 8.03.52 20.11.2014 9.24.40 -

Test duration 0:32:46 0:34:33 0:33:39

Transactions count 9500 9500 9500

HTTP codes presence 2xx 2xx -

Minimum response time, ms 178 356 267

Average response time, ms 85006 100358 92682

Maximum response time, ms 252031 270885 261458

90th percentile of the response time, ms 245793 264948 255370.5

Average throughput (TPS) 4.83215 4.58273 4.70744

Average virtual users 308.006 311.532 309.769

Maximum virtual users 1250 1250 1250

Properties Neo4j, 1b Neo4j, 2b Average

Started at 20.11.2014 10.37.54 20.11.2014 11.21.31 -

Test duration 0:07:24 0:07:17 0:07:20

Transactions count 9500 9500 9500

HTTP codes presence 2xx 2xx -

Minimum response time, ms 319 329 324

Average response time, ms 19638 19457 19547.5

Maximum response time, ms 60974 60533 60753.5

90th percentile of the response time, ms 57172 57882 57527

Average throughput (TPS) 21.3964 21.7391 21.56775

Average virtual users 312.8 311.929 312.3645

Maximum virtual users 1250 1250 1250

The average response times of the transaction groups are also interesting. Dur-
ing a single test, both sensor and camera observations were created in parallel.
In theory, the two thread groups that created these observations should have
started exactly at the same time, but during all the rehearsals the thread group
that created the sensor observations always seemed to start first, as it was lo-
cated in the test plan before the other thread group that created the camera ob-
servations. This second thread group always seemed to start after the test had
run perhaps 10–20 s. Then, the thread groups ran in parallel until all the sensor
observations were created, after which only the camera observations were being
created. What can be seen from the table 9 is that it took substantially more time
to create the sensor observations. The reason for this is probably that the per-
formance of the first thread group suffered when the second one started run-
ning. At this time, the load was the heaviest, as both observations were being
created at the same time.

84

TABLE 9 Transactions of the second part of the benchmark

Transaction group Count Fraction Stardog, 1b Stardog, 2b Average
Create a camera observation 7500 78.9 % 65909.4855 69207.0129 67558.2492

Create a sensor observation 2000 21.1 % 180853.176 197005.767 188929.472

Transaction group Count Fraction Neo4j, 1b Neo4j, 2b Average

Create a camera observation 7500 78.9 % 14784.1891 14620.1492 14702.1692

Create a sensor observation 2000 21.1 % 43207.145 42716.2775 42961.7113

The differences in the averages of the 90th percentiles of the response times are
again significant. According to them, Neo4j performed almost 4.5 times better
than Stardog. Despite the load, the average throughputs remained quite the
same, rising only slightly. If their averages are to be trusted, Neo4j was over 4.5
times faster than Stardog.

6.1.4 Read queries

The third part of the benchmark is described in the tables 10 and 11. During a
single test, data were queried from the databases on average by hundreds of
parallel virtual users, at most 1861.5. Stardog got through the tests in 2 s, while
Neo4j in 1 s. During a single test, altogether 2000 transactions were processed.
There were no errors. As for Stardog's results, Loadosophia.org complained
about the VU (virtual user) difference, while Neo4j's tests were again in order.

In regard to the durations of the tests, something probably went wrong, as
the results are contradictory. Stardog could not have processed all the transac-
tions in 2 s if there were on average only 104.7 and at most 186 parallel users
reading the database. As for Neo4j, the figures are more realistic, however, at
least the durations of the tests are distorted. Neo4j could not have processed all
the transactions in 1 s if the average response time was on average 3.02 s and
the maximum response time on average 5.12 s. Hence, the tests lasted very
probably more than 2 s in reality. As it can be seen from the table 5, according
to the stopwatch, Stardog ran its test in 8 s and Neo4j in 9 s. The difference of 1 s
could easily be explained by the inaccuracy of the measuring method. However,
assuming that the tests had run 8 s, the throughput would have been approxi-
mately 2000 / 8 = 250 TPS. If they had run 9 s, the throughput would have been
approximately 2000 / 9 ≈ 222.2 TPS.

85

TABLE 10 Properties and results of the third part of the benchmark

Properties Stardog, 1c Stardog, 2c Average
Started at 20.11.2014 8.43.46 20.11.2014 10.06.17 -

Test duration 0:00:02 0:00:02 0:00:02

Transactions count 2000 2000 2000

HTTP codes presence 2xx 2xx -

Minimum response time, ms 3 3 3

Average response time, ms 60 66 63

Maximum response time, ms 190 202 196

90th percentile of the response time, ms 125 148 136.5

Average throughput (TPS) 1000 1000 1000

Average virtual users 97.3333 112 104.66665

Maximum virtual users 174 198 186

Properties Neo4j, 1c Neo4j, 2c Average

Started at 20.11.2014 10.50.26 20.11.2014 11.35.07 -

Test duration 0:00:01 0:00:01 0:00:01

Transactions count 2000 2000 2000

HTTP codes presence 2xx 2xx -

Minimum response time, ms 303 173 238

Average response time, ms 3250 2785 3017.5

Maximum response time, ms 5063 5173 5118

90th percentile of the response time, ms 4931 4634 4782.5

Average throughput (TPS) 2000 2000 2000

Average virtual users 1624 1570.5 1597.25

Maximum virtual users 1866 1857 1861.5

The average response times of the transaction groups are interesting if they are
to be trusted at all. Making calculations on data and returning the results might
have been by and large as fast as querying other information, although it has to
be borne in mind that the results of the calculation in question did not change at
all. The thread group that queried the people's personal information was lo-
cated in the test plan before the other thread group that counted the average
temperature of all the sensor observations. Hence, the first thread group proba-
bly started first and ran a moment alone, after which the second thread group
started running, during which time the load was the heaviest. The first thread
group probably finished its work first. It is hard to say if its performance suf-
fered when the second thread group started running.

86

TABLE 11 Transactions of the third part of the benchmark

Transaction group Count Fraction Stardog, 1c Stardog, 2c Average
Count the average temperature 1000 50 % 60.617 53.065 56.841

Show my personal information 1 1000 50 % 69.243 84.684 76.9635

Transaction group Count Fraction Neo4j, 1c Neo4j, 2c Average

Count the average temperature 1000 50 % 3453.28 3022.264 3237.772

Show my personal information 1 1000 50 % 3013.303 2565.132 2789.2175

All in all, it is dubious to compare Stardog's and Neo4j's results to each other in
this case. According to the averages of the 90th percentiles of the response times,
Stardog would have performed roughly 35 times better than Neo4j, while ac-
cording to the averages of the average throughputs, Neo4j would have per-
formed twice as good as Stardog. The latter figures are probably more realistic
than the former, but either way, based on the available results, it is impossible
to say which database performed better in these tests. The author is inclined to
believe that Stardog and Neo4j ran their tests in 8–9 s, so their throughputs
would have been the aforementioned ones.

6.1.5 Read and write queries

The fourth part of the benchmark is described in the tables 12 and 13. During a
single test, data were inserted into and queried from the databases at the same
time on average by hundreds, or as Loadosophia.org claims, thousands of par-
allel virtual users, at most 1799. According to Loadosophia.org, all the tests ran
2 s. In these tests, Loadosophia.org complained about the VU difference both in
Stardog's and Neo4j's case.

Loadosophia.org's results are again somewhat distorted. At least the dura-
tions of the tests are questionable, which can be seen by comparing them to the
figures of the table 5. Hence, also the average throughputs are dubious. Exclud-
ing the durations of the tests and average throughputs, the author is, however,
inclined to believe Loadosophia.org's results.

According to the minimum response times, Stardog seems to have proc-
essed some individual transactions faster than Neo4j, but this could easily be a
consequence of e.g., changing network traffic. However, the average and
maximum response times speak in the favor of Neo4j. Both are roughly twice as
good as Stardog's. Stardog processed a transaction on average in approximately
75.2 s, while Neo4j in approximately 36.2 s. The maximum amount of time it
took for Stardog to process a transaction was approximately 204.3 s, while
Neo4j processed a transaction at worst in approximately 88.5 s.

87

TABLE 12 Properties and results of the fourth part of the benchmark

Properties Stardog, 1d Stardog, 2d Average
Started at 20.11.2014 8.46.31 20.11.2014 10.09.21 -

Test duration 0:00:02 0:00:02 0:00:02

Transactions count 2000 2000 2000

HTTP codes presence 2xx 2xx -

Minimum response time, ms 3 3 3

Average response time, ms 70819 79675 75247

Maximum response time, ms 194614 213886 204250

90th percentile of the response time, ms 155861 172625 164243

Average throughput (TPS) 1000 1000 1000

Average virtual users 1024 1190.33 1107.165

Maximum virtual users 1641 1765 1703

Properties Neo4j, 1d Neo4j, 2d Average

Started at 20.11.2014 10.53.53 20.11.2014 11.41.01 -

Test duration 0:00:02 0:00:02 0:00:02

Transactions count 2000 2000 2000

HTTP codes presence 2xx 2xx -

Minimum response time, ms 5 6 5.5

Average response time, ms 36542 35784 36163

Maximum response time, ms 88412 88610 88511

90th percentile of the response time, ms 73667 70962 72314.5

Average throughput (TPS) 1000 1000 1000

Average virtual users 1187.33 1249 1218.165

Maximum virtual users 1813 1785 1799

The fact that Neo4j's average response times are roughly twice as good as Star-
dog's can be seen from the table 13 as well. In these tests, the first thread group
queried the people's personal information, while the second one altered them.
The sizes of the messages that the first thread group sent were very different
than those of the second thread group. The first thread group ran probably a
moment alone, after which the second one started running, during which time
the load was the heaviest. The first thread group probably came out first. Based
on the figures, inserting data into the databases seems to have taken in Star-
dog's case roughly twice as much time as querying it. In Neo4j's case, the
equivalent figure is approximately 1.54.

TABLE 13 Transactions of the fourth part of the benchmark

Transaction group Count Fraction Stardog, 1d Stardog, 2d Average

Show my personal information 2 1000 50 % 47706.897 56724.83 52215.8635

Update my personal information 1000 50 % 97180.578 106867.513 102024.046

Transaction group Count Fraction Neo4j, 1d Neo4j, 2d Average
Show my personal information 2 1000 50 % 29261.35 27711.71 28486.53

Update my personal information 1000 50 % 43900.032 43996.26 43948.146

88

The differences in the averages of the 90th percentiles of the response times are
once again notable. Neo4j processed transactions over twice as fast as Stardog.
As for the averages of the average throughputs, Stardog ties with Neo4j if one
looks at Loadosophia.org's results, but as already mentioned, the durations of
the tests, and thus the average throughputs are probably distorted, which is
easy to see looking at e.g., the average and maximum response times. However,
if the times measured by the stopwatch are taken into account, Stardog might
have processed 2000 / 206 s ≈ 9.71 TPS and Neo4j 2000 / 97 s ≈ 20.62 TPS.
Hence, Neo4j might have been roughly twice as fast as Stardog.

6.1.6 Summary of the results

In summary, based on all the aforementioned figures and their interpretation,
Neo4j seemed to perform better than Stardog in the benchmark. In the first part
of the benchmark in which the initial graph was created by one virtual user,
Neo4j performed 3–4 times better than Stardog measured by the averages of the
90th percentiles of the response times and the averages of the average through-
puts. In the second part of the benchmark, the graph was populated by more
data by hundreds of parallel virtual users. Here, Neo4j performed roughly 4.5
times better than Stardog if the averages of the 90th percentiles of the response
times and the averages of the average throughputs are to be trusted. In the third
part of the benchmark, the databases were queried by hundreds of parallel vir-
tual users. Unfortunately, the results that Loadosophia.org gave are somewhat
distorted, but taking into account the durations of the tests measured by the
stopwatch, Neo4j and Stardog performed roughly speaking equally well in the
tests. Finally, in the fourth part of the benchmark, data were inserted into and
queried from the databases at the same time. The results that Loadosophia.org
provided are again somewhat distorted, but if the averages of the 90th percen-
tiles of the response times are to be trusted, Neo4j performed twice as good as
Stardog. Same conclusion can be reached by taking into account the durations
of the tests measured by the stopwatch.

6.2 Subjective comparison of Stardog and Neo4j

Stardog and Neo4j are both great databases, which is in a nutshell the reason
why they were chosen to be compared to each other in this thesis. The other
reasons have been already mentioned in the previous chapter, but be it under-
lined that both databases are easy to install and use, they have a good array of
out-of-the-box features, their data models and query languages are logical and
easy to learn, and that of the two products, Neo4j seems to be more mature.
Next, some of the features of Stardog and Neo4j are discussed in more detail
and compared to each other as far as this is possible based on their brief ex-

89

periment. The author emphasizes that he was not familiar with Stardog and
Neo4j before making this thesis.

To begin with, both Stardog's and Neo4j's GUIs are very intuitive. Neo4j
Web Interface is perhaps slightly more simplistic than Stardog Console. E.g.,
there are no security settings in Neo4j Web Interface, while in Stardog Console
users, roles, and permissions can be managed. Then again, in Neo4j Web Inter-
face it is possible to visualize the graph, while in Stardog Console there is no
such option. This feature came in handy when checking out relationships of
data. All things considered, both GUIs have their advantages and disadvan-
tages, so it is impossible to say which one is better. In practice, they are tools
among others. Some changes have to be made to Stardog's and Neo4j's configu-
ration files, which requires shutting down and restarting the servers.

In regard to the data models and query languages, the author found
Neo4j's property graph and Cypher slightly easier to learn and use than RDF
and SPARQL despite the fact that he was familiar with RDF prior to writing this
thesis. Of these concepts, RDF is the oldest and most mature. SPARQL has been
around many years as well, but then again, so has Neo4j with its technologies.
In the author's knowledge, all these concepts have been evolving to this day
and still continue to do so. Comparing them otherwise is difficult. It cannot be
said that RDF and SPARQL are superior to property graph and Cypher or vice
versa. Both data models and query languages have their pros and cons. What is
the 'best' depends on the situation.

Both data models are in any case suitable for smart cities. The author is of
the opinion that Stardog or Neo4j could be a linchpin of the Kangas area's data
warehouse. Both products could be used for saving structured data, e.g., sensor
readings, and unstructured data, e.g., people's personal information. However,
as far as the author knows, neither Stardog nor Neo4j are suitable for saving
multimedia. They do not seem to comprise such data types that e.g., image, au-
dio, and video files could be saved to them. Hence, if Stardog or Neo4j were
used in the Kangas project, multimedia would have to be saved to some other
system, saving only its metadata to Stardog or Neo4j. Multimedia could be
saved e.g., in Neo4j's case to some high write performance key-value store, as
Hunger (2014) suggests. E.g., a video camera could send video files to such a
system. Simultaneously, it could send complete, fine-grained metadata of these
files to Neo4j.

Otherwise it can be said that Neo4j seems to be in many respects more ma-
ture product than Stardog. Neo4j's documentation seems to be wider and of
higher quality than Stardog's. There seems to be a larger community, and thus
more support behind Neo4j than Stardog. Yet another sign of product maturity
is that Neo4j has offered DDBMS functionality some time, while Stardog Clus-
ter is in beta version at the moment. In addition, Neo4j seems to be very ex-
tendable. E.g., Neo4j SPARQL Plugin enables inserting RDF data into a data-
base and querying it (Neo Technology, 2013). Unfortunately, it seems to offer
no more functionalities at the moment. Moreover, it is probably not the best
option performance-wise (Hunger, 2014). Then again, also Stardog appears to

90

be very extendable. As Neo4j, it seems to be a very versatile product supporting
many approaches and technologies.

6.3 Evaluation of the framework

The main objective of this study has been to build the framework of require-
ments for integrating a smart city with a cloud infrastructure and answer with
the help of it to the main research question: how a smart city data warehouse
can be efficiently integrated with a cloud infrastructure? An efficient integration
of a smart city data warehouse with a cloud infrastructure means that require-
ments for smart city data management match, more or less, requirements for, or
characteristics of, cloud data management. With the help of the framework, it
can also be decided what are the most important requirements for some indi-
vidual case.

All in all, the framework is a guiding principle and functions as it, in the
author's opinion, quite well. The framework has several strengths: It gathers
together many cloud computing, cloud data management, and smart city re-
quirements that are relevant in themselves. Paying attention to them is impor-
tant when building especially smart city data management systems. It is natu-
rally impossible to invest in every requirement, but with the help of the frame-
work, it can be decided what are the most important requirements for some
individual case. E.g., in this study the most important requirement ended up to
be performance.

The framework has also some weaknesses: The connection between some
requirements is so loose that it can be argued if it is worthwhile to present their
connection. The requirements are quite general and abstract, so the application
of the framework requires in practice technical expertise and measurements.
E.g., to say something about performance and scalabity of some particular sys-
tem, there is a need for experts on these issues. Furthermore, performance and
scalability probably have to be operationalized and the system tested for them.
The biggest weakness of the framework might be that it does not offer any base-
line for technical comparison. One might measure e.g., performance in terms of
response time and throughput, but the framework cannot answer if the meas-
ured performance is good or bad, i.e., it does not provide specifications. Unfor-
tunately, the author could not find any usable and generalizable specifications
of this kind in the literature. If the author found some specifications, they were
so application-specific that they could not be generalized in any way. Assuming
that some kind of generalizable specifications could be found somewhere, the
framework would greatly benefit from them, as they would make its require-
ments more concrete than verbal examples and illustrations.

91

7 SUMMARY

The Kangas project is the main urban development project of the City of Jyväs-
kylä for the next several decades. In brief, the Kangas area will form a smart city
in the future, being a home to 5000 inhabitants and offering 2000 new jobs. This
project requires implementing, but first, planning for many things. One of them
is the data warehouse of the area. It was decided at the University of Jyväskylä
that the data warehouse will be built on the cloud with the help of the univer-
sity's hardware, network, and other resources, e.g., Eucalyptus cloud software.

Before implementing the data warehouse of the Kangas area, there is a
need to know how a smart city data warehouse can be efficiently integrated
with a cloud infrastructure in general. This requires knowledge of the require-
ments for smart cities, especially their data management, and the requirements
for cloud computing systems, especially their data management. In the research
literature exist many such requirements, but before this study, there appeared
to be no framework that would have integrated them with each other. It was
thus realized that this kind of framework could be useful e.g., to researchers
and decision-makers. Hence, the main objective of this study has been to build
such a framework and answer with the help of it to the main research question:
how a smart city data warehouse can be efficiently integrated with a cloud
infrastructure?

This thesis represents design science that is fundamentally a problem-
solving paradigm that creates and evaluates IT artifacts intended to solve iden-
tified organizational problems. Design science consists of two basic activities,
building and evaluating. Building is the process of constructing an artifact for a
specific purpose. Evaluation is the process of determining how well the artifact
performs. The aforementioned framework, i.e., the framework of requirements
for integrating a smart city with a cloud infrastructure, is the artifact of this
study.

The framework functions as a guiding principle that helps e.g., researchers
and decision-makers to map, among other things, what a smart city data ware-
house requires of cloud data management systems in general. An efficient inte-
gration of a smart city data warehouse with a cloud infrastructure means that

92

requirements for smart city data management match, more or less, require-
ments for, or characteristics of, cloud data management. With the help of the
framework, it can also be decided what are the most important requirements
for some individual case.

As it can be seen from the framework, the connection between smart cities
and cloud computing is loose in some cases, but in a number of requirements
the connection is firmer. With the help of the framework, it can be interpreted
that a smart city requires of a cloud infrastructure at least availability,
autonomicity, scalability, performance, interoperability, and fault tolerance, as
well as privacy and security. Of the 'softer' non-technical requirements user in-
volvement and sustainability cannot be left aside.

The framework functions as a guiding principle quite well. The evaluation
of the framework revealed that it has several strengths: It gathers together
many cloud computing, cloud data management, and smart city data manage-
ment requirements that are relevant in themselves. With the help of the frame-
work, it can also be decided what are the most important requirements for some
individual case. The framework has also some weaknesses: Its requirements are
quite general and abstract, so the application of the framework requires in prac-
tice technical expertise and measurements. The biggest weakness of the frame-
work might be that it does not offer any baseline for technical comparison, i.e.,
specifications of its requirements. Assuming that some kind of generalizable
specifications could be found somewhere, the framework would greatly benefit
from them, as they would make its requirements more concrete than mere ver-
bal examples and illustrations. Hence, improving the framework e.g., in this
way provides a subject for further study.

The use of the framework was demonstrated by choosing the most impor-
tant requirements for the data warehouse of the Kangas project: performance
and scalability. Of these requirements, performance was operationalized, after
which Stardog and Neo4j were tested for it. They were installed on a Eucalyp-
tus cloud and a benchmark was built that inserted data and queried it from the
databases with the help of Apache JMeter, a performance testing tool. The
benchmark compared the performance of Stardog's public SPARQL endpoint to
Neo4j's Transactional Cypher HTTP endpoint. The most important performance
indicators of the benchmark were the 90th percentiles of different response times
and different throughputs (TPS).

Neo4j performed better than Stardog in the benchmark. In the first part of
the benchmark in which the initial graph was created by one virtual user, Neo4j
performed 3–4 times better than Stardog measured by the averages of the 90th
percentiles of the response times and the averages of the average throughputs.
In the second part of the benchmark, the graph was populated by more data by
hundreds of parallel virtual users. Here, Neo4j performed roughly 4.5 times
better than Stardog if the averages of the 90th percentiles of the response times
and the averages of the average throughputs are to be trusted. In the third part
of the benchmark, the databases were queried by hundreds of parallel virtual
users. Unfortunately, the results that Loadosophia.org gave are somewhat dis-

93

torted, but taking into account the durations of the tests measured by the stop-
watch, Neo4j and Stardog performed roughly speaking equally well in the tests.
Finally, in the fourth part of the benchmark, data were inserted into and que-
ried from the databases at the same time. The results that Loadosophia.org pro-
vided are again somewhat distorted, but if the averages of the 90th percentiles of
the response times are to be trusted, Neo4j performed twice as good as Stardog.
Same conclusion can be reached by taking into account the durations of the
tests measured by the stopwatch.

The benchmark has naturally its limitations. First of all, it only compared
the performance of Stardog's public SPARQL endpoint to Neo4j's Transactional
Cypher HTTP endpoint. It has to be stressed, however, that there are also other
ways to access Stardog and Neo4j, and they are possibly faster than the afore-
mentioned endpoints. Furthermore, the benchmark only compared Stardog
Community to Neo4j Community, i.e., the free-of-charge editions of Stardog
and Neo4j. Both databases offer also their enterprise editions that are meant for
heavier use. Benchmarking or studying their possibilities otherwise provides
another subject for further study. If one is interested to see e.g., how much Star-
dog and Neo4j can take with their DDBMS functionalities enabled, the bench-
mark of this thesis can easily be extended. In addition, the settings and mes-
sages of the benchmark can always be questioned especially, because some of
its results were distorted for one reason or the other: The client computer
should have had enough memory, but it still could have run out of memory.
Apache JMeter and/or Loadosophia.org Uploader could have malfunctioned.
Some element(s) of the test plan could have caused the problem. The author
could have made a mistake, etc.

In regard to the elements of the test plan, everything possible was made to
ensure that they were as similar and error-free as possible. The tests were run
many times, after which it was checked out that the created graphs were similar
and error-free. All the test plan elements were saved to only one file that com-
prised the whole test plan, which made comparing the elements to each other as
easy as possible. It also made running the tests very straightforward. There was
only a need to activate certain elements and deactivate some others, as well as
change some minor settings.

Stardog and Neo4j were compared subjectively as well. In summary, both
databases are easy to install and use, they have a good array of out-of-the-box
features, their data models and query languages are logical and easy to learn,
and of the two products, Neo4j seems to be more mature. Both Stardog's and
Neo4j's data models are suitable for smart cities. As such, Stardog or Neo4j
could be a linchpin of the Kangas area's data warehouse. Both products could
be used for saving structured and unstructured data, however, they probably
are not suitable for saving multimedia. Hence, if Stardog or Neo4j were used in
the Kangas project, multimedia would have to be saved to some other system,
saving only its metadata to Stardog or Neo4j. Whether this is feasible and mean-
ingful is also worthwhile to study.

94

LITERATURE SOURCES

Abadi, D. J. (2009). Data Management in the Cloud: Limitations and
Opportunities. IEEE Data Engineering Bulletin, 32(1), 3–12. Retrieved
October 4, 2014, from http://cs-
www.cs.yale.edu/homes/dna/papers/abadi-cloud-ieee09.pdf

Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A. & Rasin, A.
(2009). HadoopDB: An Architectural Hybrid of MapReduce and DBMS
Technologies for Analytical Workloads. Proceedings of the VLDB
Endowment, 2(1), 922–933. doi:10.14778/1687627.1687731

Amazon Web Services (2014a). About AWS. Retrieved November 10, 2014, from
http://aws.amazon.com/about-aws

Amazon Web Services (2014b, September 18). Getting Started with AWS -
Getting Started with AWS. Retrieved November 10, 2014, from
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/gsg-
aws-intro.html

Amazon Web Services (2014c, November 7). What Is Amazon EC2? - Amazon
Elastic Compute Cloud. Retrieved November 10, 2014, from
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.htm
l

Amazon Web Services (2014d). AWS | Amazon EC2 | Instance Types.
Retrieved November 10, 2014, from
http://aws.amazon.com/ec2/instance-types

Amazon Web Services (2014e, November 7). Amazon EC2 Instance Store -
Amazon Elastic Compute Cloud. Retrieved November 10, 2014, from
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStora
ge.html

Amazon Web Services (2014f, November 7). Amazon Elastic Block Store
(Amazon EBS) - Amazon Elastic Compute Cloud. Retrieved November 10,
2014, from
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.
html

Amazon Web Services (2014g, November 8). What Is Amazon S3? - Amazon
Simple Storage Service. Retrieved November 10, 2014, from
http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html

Amazon Web Services (2014h, November 8). Introduction to Amazon S3 -
Amazon Simple Storage Service. Retrieved November 10, 2014, from
http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html

Amazon Web Services (2014i, November 7). Regions and Availability Zones -
Amazon Elastic Compute Cloud. Retrieved November 10, 2014, from
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-
regions-availability-zones.html

Apache Software Foundation (2014a, November 2). Apache JMeter - Apache
JMeter™. Retrieved November 12, 2014, from http://jmeter.apache.org

95

Apache Software Foundation (2014b, November 2). Apache JMeter - User's
Manual: Building a Test Plan. Retrieved November 12, 2014, from
http://jmeter.apache.org/usermanual/build-test-plan.html

Apache Software Foundation (2014c, November 2). Apache JMeter - User's
Manual: Elements of a Test Plan. Retrieved November 12, 2014, from
http://jmeter.apache.org/usermanual/test_plan.html

Apache Software Foundation (2014d, November 2). Apache JMeter - User's
Manual: Glossary. Retrieved November 13, 2014, from
http://jmeter.apache.org/usermanual/glossary.html

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I. & Zaharia, M. (2010). A View of
Cloud Computing. Communications of the ACM, 53(4), 50–58.
doi:10.1145/1721654.1721672

Arora, I. & Gupta, A. (2012). Cloud Databases: A Paradigm Shift in Databases.
IJCSI International Journal of Computer Science Issues, 9(4), 77–83. Retrieved
May 1, 2014, from http://www.ijcsi.org/papers/IJCSI-9-4-3-77-83.pdf

Ashton, K. (2009, June 22). That 'Internet of Things' Thing - RFID Journal.
Retrieved November 3, 2014, from
http://www.rfidjournal.com/articles/view?4986

Atzori, L., Iera, A. & Morabito, G. (2010). The Internet of Things: A survey.
Computer Networks, 54(15), 2787–2805. doi:10.1016/j.comnet.2010.05.010

Bizer, C. & Schultz, A. (2008). Benchmarking the Performance of Storage
Systems that expose SPARQL Endpoints. In Proceedings of the 4th
International Workshop on Scalable Semantic Web knowledge Base Systems
(SSWS 2008), Karlsruhe, Germany, October, 2008. Retrieved October 1,
2014, from
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.161.7773

Bizer, C. & Schultz, A. (2012, March 23). Berlin SPARQL Benchmark. Retrieved
November 13, 2014, from http://wifo5-03.informatik.uni-
mannheim.de/bizer/berlinsparqlbenchmark/spec/index.html

Boles, J. (2008, November 7). What is cloud-based storage?, part 1 - Infostor.
Retrieved April 30, 2014, from
http://www.infostor.com/index/articles/display/4979101322/articles/i
nfostor/top-news/what-is_cloud-based.html

Boyle, D. E., Yates, D. C. & Yeatman, E. M. (2013). Urban Sensor Data Streams:
London 2013. IEEE Internet Computing, 17(6), 12–20.
doi:10.1109/MIC.2013.85

Brown, E. (2011, October 25). Final Version of NIST Cloud Computing
Definition Published. Retrieved April 30, 2014, from
http://www.nist.gov/itl/csd/cloud-102511.cfm

Calabrese, F. & Ratti, C. (2006). Real Time Rome. Networks and Communication
studies, 20(3–4), 247–258. Retrieved October 3, 2014, from
http://senseable.mit.edu/papers/pdf/2006_Calabrese_Ratti_Rome_IGU-
GISC.pdf

Calabrese, F., Colonna, M., Lovisolo, P., Parata, D. & Ratti, C. (2011). Real-Time
Urban Monitoring Using Cell Phones: A Case Study in Rome. IEEE

96

Transactions on Intelligent Transportation Systems, 12(1), 141–151.
doi:10.1109/TITS.2010.2074196

Caragliu, A., Del Bo, C. & Nijkamp, P. (2009). Smart cities in Europe (Serie
Research Memoranda 0048). VU University Amsterdam, Faculty of
Economics, Business Administration and Econometrics. Retrieved May 2,
2014, from http://ideas.repec.org/p/dgr/vuarem/2009-48.html

Caragliu, A., Del Bo, C. & Nijkamp, P. (2011). Smart Cities in Europe. Journal of
Urban Technology, 18(2), 65–82. doi:10.1080/10630732.2011.601117

Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mellouli, S., Nahon, K.,
Pardo, T. A. & Scholl, H. J. (2012). Understanding Smart Cities: An
Integrative Framework. In 2012 45th Hawaii International Conference on
System Science (HICSS-45) (2289–2297), Maui, HI, January 4–7, 2012.
doi:10.1109/HICSS.2012.615

CIA (2014, September 8). The World Factbook. Retrieved November 13, 2014,
from https://www.cia.gov/library/publications/the-world-
factbook/geos/uk.html

Ciglan, M., Averbuch, A. & Hluchy, L. (2012). Benchmarking traversal
operations over graph databases. In 2012 IEEE 28th International Conference
on Data Engineering Workshops (ICDEW) (186–189), Arlington, VA, April 1–
5, 2012. doi:10.1109/ICDEW.2012.47

Clark & Parcia (2014a, October 15). Stardog 2.2.2 Docs: Stardog Docs. Retrieved
November 12, 2014, from http://docs.stardog.com

Clark & Parcia (2014b, October 15). Stardog: The Enterprise Graph Database.
Retrieved November 12, 2014, from http://stardog.com

Clark & Parcia (2014c, October 15). Stardog 2.2.2 Docs: FAQ. Retrieved
November 13, 2014, from http://docs.stardog.com/faq

Clark & Parcia (2014d, October 15). Stardog 2.2.2 Docs: Web Console. Retrieved
November 13, 2014, from http://docs.stardog.com/console

Connolly, T. M. & Begg, C. E. (2005). Database Systems: A practical Approach to
Design, Implementation, and Management (4th ed.). Harlow, UK: Addison-
Wesley.

Cooper, B. F., Baldeschwieler, E., Fonseca, R., Kistler, J. J., Narayan, P. P. S.,
Neerdaels, C., Negrin, T., Ramakrishnan, R., Silberstein, A., Srivastava, U.
& Stata, R. (2009). Building a Cloud for Yahoo! IEEE Data Engineering
Bulletin, 32(1), 36–43. Retrieved November 7, 2014, from
http://sites.computer.org/debull/A09mar/cooper1.pdf

Da Silva, W. M., Alvaro, A., Tomas, G. H. R. P., Afonso, R. A., Dias, K. L. &
Garcia, V. C. (2013). Smart Cities Software Architectures: A Survey. In
Shin, S. Y. & Maldonado, J. C. (eds.), Proceedings of the 28th Annual ACM
Symposium on Applied Computing (SAC '13) (1722–1727), Coimbra, Portugal,
March 18–22, 2013. doi:10.1145/2480362.2480688

Dewan, H. & Hansdah, R. C. (2011). A Survey of Cloud Storage Facilities. In 7th
World Congress on Services (IEEE SERVICES 2011) (224–231), Washington,
DC, July 4–9, 2011. doi:10.1109/SERVICES.2011.43

97

Dominguez-Sal, D., Martinez-Bazan, N., Muntes-Mulero, V., Baleta, P. &
Larriba-Pey, J. L. (2011). A Discussion on the Design of Graph Database
Benchmarks. In Nambiar, R. & Poess, M. (eds.), Performance Evaluation,
Measurement and Characterization of Complex Systems: Second TPC Technology
Conference, TPCTC 2010, Singapore, September 13–17, 2010. Revised Selected
Papers (25–40). Berlin, Germany: Springer. doi:10.1007/978-3-642-18206-
8_3

Eucalyptus Systems (2014a). Story of Eucalyptus Cloud Software | AWS Cloud
Integration | Eucalyptus. Retrieved November 10, 2014, from
https://www.eucalyptus.com/about/story

Eucalyptus Systems (2014b). Eucalyptus Datasheet. Retrieved November 10,
2014, from https://www.eucalyptus.com/sites/all/files/ds-eucalyptus-
iaas.en.pdf

Eucalyptus Systems (2014c). Distributed Cloud Computing Architecture and
Components | Eucalyptus. Retrieved November 10, 2014, from
https://www.eucalyptus.com/eucalyptus-cloud/iaas/architecture

Eucalyptus Systems (2014d). Eucalyptus Architecture: Cloud Level |
Eucalyptus. Retrieved November 10, 2014, from
https://www.eucalyptus.com/eucalyptus-
cloud/iaas/architecture/cloud-level

Eucalyptus Systems (2014e). Eucalyptus Architecture: Cluster Level |
Eucalyptus. Retrieved November 10, 2014, from
https://www.eucalyptus.com/eucalyptus-
cloud/iaas/architecture/cluster-level

Eucalyptus Systems (2014f). Eucalyptus Architecture: Node Level | Eucalyptus.
Retrieved November 10, 2014, from
https://www.eucalyptus.com/eucalyptus-cloud/iaas/architecture/node-
level

Graphanalysis.org (2014, October 14). GraphAnalysis.org: High Performance
Computing for solving large-scale graph problems. Retrieved November
13, 2014, from http://www.graphanalysis.org

Gregor, S. & Jones, D. (2007). The Anatomy of a Design Theory. Journal of the
Association for Information Systems, 8(5), 312–335.
http://aisel.aisnet.org/jais/vol8/iss5/1

Gregor, S. (2006). The Nature of Theory in Information Systems. MIS Quarterly,
30(3), 611–642. Retrieved September 26, 2014, from
http://www.jstor.org/stable/25148742

Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. (2013). Internet of Things
(IoT): A vision, architectural elements, and future directions. Future
Generation Computer Systems, 29(7), 1645–1660.
doi:10.1016/j.future.2013.01.010

Halili, E. H. (2008). Apache JMeter: A practical beginner's guide to automated testing
and performance measurement for your websites. Birmingham, UK: Packt
Publishing. Retrieved November 13, 2014, from
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nle
bk&db=nlabk&AN=333399

98

Hayes, B. (2008). Cloud Computing. Communications of the ACM, 51(7), 9–11.
doi:10.1145/1364782.1364786

Hernández-Muñoz, J. M., Vercher, J. B., Muñoz, L., Galache, J. A., Presser, M.,
Hernández Gómez, L. A. & Pettersson, J. (2011). Smart Cities at the
Forefront of the Future Internet. In Domingue, J., Galis, A., Gavras, A.,
Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li,
M.–S., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S.,
Avessta, S. & Nilsson, M. (eds.), The Future Internet: Future Internet
Assembly 2011: Achievements and Technological Promises (447–462). Berlin,
Germany: Springer. doi:10.1007/978-3-642-20898-0_32

Hevner, A. R., March, S. T., Park, J. & Ram, S. (2004). Design Science in
Information Systems Research. MIS Quarterly, 28(1), 75–105. Retrieved
September 26, 2014, from http://www.jstor.org/stable/25148625

Hunger (2014, July 30 – August 1). Problems with Neo4j's SPARQL Plugin, etc.
[Msgs 2, 4]. Messages posted to
https://groups.google.com/forum/#!topic/neo4j/o9JL3YZKov8

Internet of Things Architecture (2013). Internet of Things – Architecture IoT-A:
Deliverable D1.5 – Final architectural reference model for the IoT v3.0.
Retrieved May 2, 2014, from http://www.iot-a.eu/public/public-
documents/d1.5/at_download/file

ISTQB (2014). Glossary: Standard Glossary of Terms used in Software Testing
Version 2.4. Retrieved November 12, 2014, from
http://www.istqb.org/downloads/finish/20/145.html

Jain, R. (1991). The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. New York, NY:
Wiley.

Järvinen, P. (2012). On research methods (4th ed.). Tampere, Finland: Opinpajan
kirja.

jmeter-plugins.org (2014a). JMeter Plugins :: JMeter-Plugins.org. Retrieved
November 12, 2014, from http://jmeter-plugins.org

jmeter-plugins.org (2014b). Documentation :: JMeter-Plugins.org. Retrieved
November 13, 2014, from http://jmeter-
plugins.org/wiki/LoadosophiaUploader

jmeter-plugins.org (2014c). Documentation :: JMeter-Plugins.org. Retrieved
November 13, 2014, from http://jmeter-
plugins.org/wiki/TransactionsPerSecond

Jouili, S. & Vansteenberghe, V. (2013). An empirical comparison of graph
databases. In 2013 International Conference on Social Computing (SocialCom)
(708–715), Alexandria, VA, September 8–14, 2013.
doi:10.1109/SocialCom.2013.106

Jyväskylän kaupunki (2011). Jyväskylän Kangas Kangas in english. Retrieved
November 11, 2014, from
http://www3.jkl.fi/blogit/kangasjyvaskyla/?page_id=489

99

Koskinen, J. (2012). Network Guide: Central Finland Student Housing
Foundation. Retrieved November 13, 2014, from
http://www.koas.fi/index.php/download_file/view/460/337

Krčo, S., Fernandes, J., Sanchez, L., Natti, M., Theodoridis, E., Vučković, D.,
Casanueva, J., Galache, J. A., Gutiérrez, V., Santana, J. R. & Sotres, P.
(2013). SmartSantander – a smart city experimental platform.
Electrotechnical Review, 79, 268–272. Retrieved November 13, 2014, from
http://www.ltfe.org/wp-content/uploads/2012/11/SmartSantander-
VITEL12-v4.pdf

Kulkarni, G., Waghmare, R., Palwe, R., Waykule, V., Bankar, H. & Koli, K.
(2012). Cloud storage architecture. In 7th International Conference on
Telecommunication Systems, Services, and Applications (TSSA 2012) (76–81),
Bali, Indonesia, October 30–31, 2012. doi:10.1109/TSSA.2012.6366026

LDBC (2014). Social Network Benchmark | LDBCouncil. Retrieved November
13, 2014, from http://ldbcouncil.org/developer/snb

Leavitt, N. (2010). Will NoSQL Databases Live Up to Their Promise? Computer,
43(2), 12–14. doi:10.1109/MC.2010.58

Lertlakkhanakul, J., Choi, J. W. & Kim, M. Y. (2008). Building data model and
simulation platform for spatial interaction management in smart home.
Automation in Construction, 17(8), 948–957. doi:10.1016/j.autcon.2008.03.004

Loadosophia.org (2014). Loadosophia.org. Retrieved October 3, 2014, from
http://loadosophia.org

March, S. T. & Smith, G. F. (1995). Design and natural science research on
information technology. Decision Support Systems, 15(4), 251–266.
doi:10.1016/0167-9236(94)00041-2

Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing:
Recommendations of the National Institute of Standards and Technology (Special
Publication 800-145). Gaithersburg, MD: NIST. Retrieved April 30, 2014,
from http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Menascé, D. A. (2002). QoS Issues in Web Services. IEEE Internet Computing, 6(6),
72–75. doi:10.1109/MIC.2002.1067740

Merriam-Webster (2014). Benchmark - Definition and More from the Free
Merriam-Webster Dictionary. Retrieved November 13, 2014, from
http://www.merriam-webster.com/dictionary/benchmark

Miorandi, D., Sicari, S., De Pellegrini, F. & Chlamtac, I. (2012). Internet of things:
Vision, applications and research challenges. Ad Hoc Networks, 10(7), 1497–
1516. doi:10.1016/j.adhoc.2012.02.016

Nam, T. & Pardo, T. A. (2011). Conceptualizing Smart City with Dimensions of
Technology, People, and Institutions. In Bertot, J., Nahon, K., Chun, S. A.,
Luna-Reyes, L. & Atluri, V. (eds.), Proceedings of the 12th Annual
International Digital Government Research Conference: Digital Government
Innovation in Challenging Times (dg.o '11) (282–291), College Park, MD, June
12–15, 2011. doi:10.1145/2037556.2037602

Neo Technology (2013, June 20). Neo4j Sparql Plugin v0.2-SNAPSHOT.
Retrieved December 14, 2014, from http://neo4j-contrib.github.io/sparql-
plugin

100

Neo Technology (2014a). What is a Graph Database? - Neo4j Graph Database.
Retrieved November 12, 2014, from http://neo4j.com/developer/graph-
database

Neo Technology (2014b). Online Training: Getting Started with Neo4j - Neo4j
Graph Database. Retrieved November 12, 2014, from
http://neo4j.com/graphacademy/online-course

Neo Technology (2014c, November 10). 8.5. Identifiers - - The Neo4j Manual
v2.1.5. Retrieved November 12, 2014, from
http://neo4j.com/docs/stable/cypher-identifiers.html

Neo Technology (2014d, November 10). 7.1. What is Cypher? - - The Neo4j
Manual v2.1.5. Retrieved November 12, 2014, from
http://neo4j.com/docs/stable/cypher-introduction.html

Neo Technology (2014e). Subscriptions - Neo4j Graph Database. Retrieved
November 12, 2014, from http://neo4j.com/subscriptions

Neo Technology (2014f, November 13). 19.1. Transactional Cypher HTTP
endpoint - - The Neo4j Manual v2.1.5. Retrieved November 13, 2014, from
http://neo4j.com/docs/milestone/rest-api-transactional.html

Neo Technology (2014g, November 13). Chapter 27. Web Interface - - The Neo4j
Manual v2.1.5. Retrieved November 13, 2014, from
http://neo4j.com/docs/stable/tools-webadmin.html

Neo Technology (2014h, December 5). 25.1. Securing access to the Neo4j Server -
- The Neo4j Manual v2.1.6. Retrieved December 11, 2014, from
http://neo4j.com/docs/stable/security-server.html

Ostrowski, Ł., Helfert, M. & Xie, S. (2012). A Conceptual Framework to
Construct an Artefact for Meta-Abstract Design Knowledge in Design
Science Research. In 2012 45th Hawaii International Conference on System
Science (HICSS-45) (4074–4081), Maui, HI, January 4–7, 2012.
doi:10.1109/HICSS.2012.51

Peffers, K., Tuunanen, T., Rothenberger, M. A. & Chatterjee, S. (2007). A Design
Science Research Methodology for Information Systems Research. Journal
of Management Information Systems, 24(3), 45–77. doi:10.2753/MIS0742-
1222240302

Piro, G., Cianci, I., Grieco, L. A., Boggia, G. & Camarda, P. (2014). Information
centric services in Smart Cities. Journal of Systems and Software, 88, 169–188.
doi:10.1016/j.jss.2013.10.029

Pokorny, J. (2013). NoSQL databases: a step to database scalability in web
environment. International Journal of Web Information Systems, 9(1), 69–82.
doi:10.1108/17440081311316398

Ranjan, R., Buyya, R. & Parashar, M. (2012). Special section on autonomic cloud
computing: technologies, services, and applications. Concurrency and
Computation: Practice and Experience, 24(9), 935–937. doi:10.1002/cpe.1865

Rimal, B. P., Jukan, A., Katsaros, D. & Goeleven, Y. (2011). Architectural
Requirements for Cloud Computing Systems: An Enterprise Cloud
Approach. Journal of Grid Computing, 9(1), 3–26. doi:10.1007/s10723-010-
9171-y

101

Rouvinen, J. (2013). Peeking inside the cloud. Master's thesis in information
technology. University of Jyväskylä. Retrieved April 30, 2014, from
http://urn.fi/URN:NBN:fi:jyu-201306282050

Sakr, S., Liu, A., Batista, D. M. & Alomari, M. (2011). A Survey of Large Scale
Data Management Approaches in Cloud Environments. IEEE
Communications Surveys & Tutorials, 13(3), 311–336.
doi:10.1109/SURV.2011.032211.00087

Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M. & Oliveira, A.
(2011). Smart Cities and the Future Internet: Towards Cooperation
Frameworks for Open Innovation. In Domingue, J., Galis, A., Gavras, A.,
Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li,
M.–S., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S.,
Avessta, S. & Nilsson, M. (eds.), The Future Internet: Future Internet
Assembly 2011: Achievements and Technological Promises (431–446). Berlin,
Germany: Springer. doi:10.1007/978-3-642-20898-0_31

Simon, H. A. (1996). The Sciences of the Artificial (3rd ed.). Cambridge, MA,
London, UK: MIT Press. Retrieved September 26, 2014, from
http://courses.washington.edu/thesisd/documents/Kun_Herbert%20Si
mon_Sciences_of_the_Artificial.pdf

solid IT (2014). DB-Engines Ranking - popularity ranking of database
management systems. Retrieved November 12, 2014, from http://db-
engines.com/en/ranking

Stanford Center for Biomedical Informatics Research (2014). protégé. Retrieved
November 13, 2014, from http://protege.stanford.edu

StoneFly (2014). What is File Level Storage vs. Block Level Storage? : Education :
Resource Center : StoneFly's iSCSI.com. Retrieved May 1, 2014, from
http://www.iscsi.com/resources/File-Level-Storage-vs-Block-Level-
Storage.asp

TinkerPop (2014, November 8). TinkerPop. Retrieved November 13, 2014, from
http://www.tinkerpop.com

Vaquero, L. M., Rodero-Merino, L., Caceres, J. & Lindner, M. (2009). A Break in
the Clouds: Towards a Cloud Definition. ACM SIGCOMM Computer
Communication Review, 39(1), 50–55. doi:10.1145/1496091.1496100

VGrADS (2009, September 30). The VGrADS Project — VGrADS at Rice
University. Retrieved November 10, 2014, from http://vgrads.rice.edu

Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y. & Wilkins, D. (2010). A
Comparison of a Graph Database and a Relational Database: A Data
Provenance Perspective. In Cunningham, H. C., Ruth, P. & Kraft, N. A.
(eds.), Proceedings of the 48th Annual Southeast Regional Conference (ACM SE
'10), Oxford, MS, April 15–17, 2010. doi:10.1145/1900008.1900067

W3C (2012, December 11). OWL 2 Web Ontology Language Structural
Specification and Functional-Style Syntax (Second Edition). Retrieved
November 13, 2014, from http://www.w3.org/TR/2012/REC-owl2-
syntax-20121211

102

W3C (2013, March 21). SPARQL 1.1 Overview. Retrieved November 12, 2014,
from http://www.w3.org/TR/sparql11-overview

W3C (2014a, June 24). RDF 1.1 Primer. Retrieved November 12, 2014, from
http://www.w3.org/TR/rdf11-primer

W3C (2014b, October 17). RdfStoreBenchmarking - W3C Wiki. Retrieved
November 13, 2014, from
http://www.w3.org/wiki/RdfStoreBenchmarking

Wang, L., Laszewski, G. V., Younge, A., He, X., Kunze, M., Tao, J. & Fu, C.
(2010). Cloud Computing: a Perspective Study. New Generation Computing,
28(2), 137–146. doi:10.1007/s00354-008-0081-5

Wang, L., Tao, J., Kunze, M., Castellanos, A. C., Kramer, D. & Karl, W. (2008).
Scientific Cloud Computing: Early Definition and Experience. In 10th IEEE
International Conference on High Performance Computing and Communications
(HPCC '08) (825–830), Dalian, China, September 25–27, 2008.
doi:10.1109/HPCC.2008.38

Wang, W., De, S., Cassar, G. & Moessner, K. (2013). Knowledge Representation
in the Internet of Things: Semantic Modelling and its Applications.
Automatika – Journal for Control, Measurement, Electronics, Computing and
Communications, 54(4), 388–400. doi:10.7305/automatika.54-4.414

Wikipedia (2014a, October 6). Database server - Wikipedia, the free
encyclopedia. Retrieved November 2, 2014, from
http://en.wikipedia.org/wiki/Database_server

Wikipedia (2014b, September 30). Relational database - Wikipedia, the free
encyclopedia. Retrieved November 2, 2014, from
http://en.wikipedia.org/wiki/Relational_database

Wikipedia (2014c, December 15). Percentile - Wikipedia, the free encyclopedia.
Retrieved January 19, 2015, from http://en.wikipedia.org/wiki/Percentile

Wolski, R., Grzegorczyk, C., Nurmi, D., Obertelli, G., Rajagopalan, S., Soman, S.,
Youseff, L. & Zagorodnov, D. (2008). EUCALYPTUS: An Elastic Utility
Computing Architecture for Linking Your Programs to Useful Systems.
Retrieved September 30, 2014, from
http://cdn.oreillystatic.com/en/assets/1/event/7/EUCALYPTUS%20-
%20Elastic%20Utility%20Computing%20Architecture%20for%20Linking%
20Your%20Programs%20To%20Useful%20Systems%20Presentation.ppt

Wu, J., Ping, L., Ge, X., Wang, Y. & Fu, J. (2010). Cloud Storage as the
Infrastructure of Cloud Computing. In 2010 International Conference on
Intelligent Computing and Cognitive Informatics (ICICCI 2010) (380–383),
Kuala Lumpur, Malaysia, June 22–23, 2010. doi:10.1109/ICICCI.2010.119

Wu, J., Zhang, J., Lin, Z. & Ju, J. (2010). Recent Advances in Cloud Storage. In
Zou, Y., Yu, F., Jia, Z. & Li, Z. (eds.), Proceedings of the Third International
Symposium on Computer Science and Computational Technology (ISCSCT '10)
(151–154), Jiaozuo, China, August 14–15, 2010. Retrieved May 1, 2014,
from
http://www.academypublisher.com/proc/iscsct10/papers/iscsct10p151.
pdf

103

Zhang, Q., Cheng, L. & Boutaba, R. (2010). Cloud computing: state-of-the-art
and research challenges. Journal of Internet Services and Applications, 1(1), 7–
18. doi:10.1007/s13174-010-0007-6

104

APPENDIX 1: SMART CITY ONTOLOGY

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [
 <!ENTITY www "http://www.jkl.fi#" >

 <!ENTITY owl "http://www.w3.org/2002/07/owl#" >
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >
]>

<rdf:RDF xmlns="http://www.jkl.fi#"
 xml:base="http://www.jkl.fi"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:www="http://www.jkl.fi#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

 <owl:Ontology rdf:about="http://www.jkl.fi"/>

 <!--

//

/////////////////
 //

 // Object Properties
 //

//

/////////////////
 -->

 <!-- http://www.jkl.fi#Films -->

 <owl:ObjectProperty rdf:about="&www;Films">

 <rdfs:domain rdf:resource="&www;Camera"/>
 <rdfs:range rdf:resource="&www;CameraObservation"/>

 </owl:ObjectProperty>

105

 <!-- http://www.jkl.fi#IsLocated -->

 <owl:ObjectProperty rdf:about="&www;IsLocated">
 <rdfs:domain rdf:resource="&www;Camera"/>

 <rdfs:range rdf:resource="&www;Place"/>

 <rdfs:domain rdf:resource="&www;Sensor"/>
 </owl:ObjectProperty>

 <!-- http://www.jkl.fi#Observes -->

 <owl:ObjectProperty rdf:about="&www;Observes">

 <rdfs:domain rdf:resource="&www;Sensor"/>

 <rdfs:range rdf:resource="&www;SensorObservation"/>
 </owl:ObjectProperty>

 <!-- http://www.jkl.fi#Possesses -->

 <owl:ObjectProperty rdf:about="&www;Possesses">

 <rdfs:domain rdf:resource="&www;Person"/>

 <rdfs:range rdf:resource="&www;Phone"/>
 </owl:ObjectProperty>

 <!--

//

/////////////////

 //
 // Data properties

 //

//
/////////////////

 -->

 <!-- http://www.jkl.fi#CameraObservationData -->

 <owl:DatatypeProperty rdf:about="&www;CameraObservationData">
 <rdfs:domain rdf:resource="&www;Camera"/>

 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>

106

 <!-- http://www.jkl.fi#CameraObservationTime -->

 <owl:DatatypeProperty rdf:about="&www;CameraObservationTime">
 <rdfs:domain rdf:resource="&www;CameraObservation"/>

 <rdfs:range rdf:resource="&xsd;dateTime"/>

 </owl:DatatypeProperty>

 <!-- http://www.jkl.fi#CameraType -->

 <owl:DatatypeProperty rdf:about="&www;CameraType">
 <rdfs:domain rdf:resource="&www;Camera"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.jkl.fi#PersonAge -->

 <owl:DatatypeProperty rdf:about="&www;PersonAge">
 <rdfs:domain rdf:resource="&www;Person"/>

 <rdfs:range rdf:resource="&xsd;integer"/>

 </owl:DatatypeProperty>

 <!-- http://www.jkl.fi#PersonDescription -->

 <owl:DatatypeProperty rdf:about="&www;PersonDescription">
 <rdfs:domain rdf:resource="&www;Person"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.jkl.fi#PersonName -->

 <owl:DatatypeProperty rdf:about="&www;PersonName">
 <rdfs:domain rdf:resource="&www;Person"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

107

 <!-- http://www.jkl.fi#PersonSex -->

 <owl:DatatypeProperty rdf:about="&www;PersonSex">
 <rdfs:domain rdf:resource="&www;Person"/>

 <rdfs:range>

 <rdfs:Datatype>
 <owl:oneOf>

 <rdf:Description>
 <rdf:type rdf:resource="&rdf;List"/>

 <rdf:first>Female</rdf:first>
 <rdf:rest>

 <rdf:Description>
 <rdf:type rdf:resource="&rdf;List"/>

 <rdf:first>Male</rdf:first>

 <rdf:rest rdf:resource="&rdf;nil"/>
 </rdf:Description>

 </rdf:rest>
 </rdf:Description>

 </owl:oneOf>
 </rdfs:Datatype>

 </rdfs:range>
 </owl:DatatypeProperty>

 <!-- http://www.jkl.fi#PhoneNumber -->

 <owl:DatatypeProperty rdf:about="&www;PhoneNumber">
 <rdfs:domain rdf:resource="&www;Phone"/>

 <rdfs:range rdf:resource="&xsd;integer"/>
 </owl:DatatypeProperty>

 <!-- http://www.jkl.fi#PhoneType -->

 <owl:DatatypeProperty rdf:about="&www;PhoneType">
 <rdfs:domain rdf:resource="&www;Phone"/>

 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>

 <!-- http://www.jkl.fi#PlaceAddress -->

 <owl:DatatypeProperty rdf:about="&www;PlaceAddress">
 <rdfs:domain rdf:resource="&www;Place"/>

 <rdfs:range rdf:resource="&xsd;string"/>
 </owl:DatatypeProperty>

108

 <!-- http://www.jkl.fi#PlaceDescription -->

 <owl:DatatypeProperty rdf:about="&www;PlaceDescription">
 <rdfs:domain rdf:resource="&www;Place"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!-- http://www.jkl.fi#SensorObservationTemperature -->

 <owl:DatatypeProperty rdf:about="&www;SensorObservationTemperature">
 <rdfs:domain rdf:resource="&www;SensorObservation"/>

 <rdfs:range rdf:resource="&xsd;decimal"/>

 </owl:DatatypeProperty>

 <!-- http://www.jkl.fi#SensorObservationTime -->

 <owl:DatatypeProperty rdf:about="&www;SensorObservationTime">
 <rdfs:domain rdf:resource="&www;Sensor"/>

 <rdfs:range rdf:resource="&xsd;dateTime"/>

 </owl:DatatypeProperty>

 <!-- http://www.jkl.fi#SensorType -->

 <owl:DatatypeProperty rdf:about="&www;SensorType">
 <rdfs:domain rdf:resource="&www;Sensor"/>

 <rdfs:range rdf:resource="&xsd;string"/>

 </owl:DatatypeProperty>

 <!--

//
/////////////////

 //

 // Classes
 //

//

/////////////////
 -->

 <!-- http://www.jkl.fi#Camera -->

 <owl:Class rdf:about="&www;Camera"/>

109

 <!-- http://www.jkl.fi#CameraObservation -->

 <owl:Class rdf:about="&www;CameraObservation"/>

 <!-- http://www.jkl.fi#Person -->

 <owl:Class rdf:about="&www;Person"/>

 <!-- http://www.jkl.fi#Phone -->

 <owl:Class rdf:about="&www;Phone"/>

 <!-- http://www.jkl.fi#Place -->

 <owl:Class rdf:about="&www;Place"/>

 <!-- http://www.jkl.fi#Sensor -->

 <owl:Class rdf:about="&www;Sensor"/>

 <!-- http://www.jkl.fi#SensorObservation -->

 <owl:Class rdf:about="&www;SensorObservation"/>
</rdf:RDF>

<!-- Generated by the OWL API (version 3.5.0) http://owlapi.sourceforge.net -->

110

APPENDIX 2: APACHE JMETER TEST PLAN

Test plan / element Test plan / element name Settings

Test plan Test plan Run thread groups consecutively (i.e., run groups one at a time): yes (during the first part of the test when the

initial graph is created), no (otherwise)

Loadosophia.org uploader Loadosophia.org uploader Initiate active test: yes, upload to project: Stardog/Neo4j, test title: 1a–1d, 2a–2d

HTTP header manager HTTP header manager (Stardog) Content-Type: application/sparql-update (write queries), Accept: application/sparql-results+json, Content-

Type: application/sparql-query (read queries)

HTTP request defaults HTTP request defaults (Stardog) Web server IP: 130.234.208.101, port number: 8080, implementation: Java, path: /db/update (write queries),

/db/query (read queries)

HTTP header manager HTTP header manager (Neo4j) Accept: application/json; charset=UTF-8, Content-Type: application/json

HTTP request defaults HTTP request defaults (Neo4j) Web server IP: 130.234.208.102, port number: 8080, implementation: Java, path:

/db/data/transaction/commit

General settings

Element Element name Settings

Thread group Create places (Stardog/Neo4j) Number of threads (users): 1, ramp-up period (in seconds): 1, loop count: 1000

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID1

Function RandomString Generates a random string

HTTP request Create a place Method: POST

Description of the body data

The query creates 1000 places that have IDs, names (PlaceDescription), and addresses.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Place${ID1} sm:PlaceDescription "Place ${ID1}" ;

 sm:PlaceAddress "${__RandomString(30,abcdefghijklmnopqrstuvwxyz1234567890,)}" }

Body data (Neo4j)

{

 "statements" : [

 {

 "statement" : "CREATE (a:Place {props})",

 "parameters" : {

 "props" : {

 "PlaceID" : ${ID1},

 "PlaceDescription" : "Place ${ID1}",

 "PlaceAddress" : "${__RandomString(30,abcdefghijklmnopqrstuvwxyz1234567890,)}"

 }

 }

 }

]

}

Element Element name Settings

Thread group Create sensors (Stardog/Neo4j) Number of threads (users): 1, ramp-up period (in seconds): 1, loop count: 1000

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID2

HTTP request Create a sensor Method: POST

Description of the body data

The query creates 1000 temperature sensors that have IDs and that are located in the aforementioned 1000 places.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Sensor${ID2} sm:IsLocated sm:Place${ID2} ;

 sm:SensorType "Temperature sensor" }

Body data (Neo4j)

{

 "statements" : [

 {

 "statement" : "MATCH (a:Place {PlaceID: {PlaceID}}) CREATE (b:Sensor {props})-[:ISLOCATED]->(a)",

 "parameters" : {

 "PlaceID" : ${ID2},

 "props" : {

 "SensorID" : ${ID2},

 "SensorType" : "Temperature sensor"

 }

 }

 }

]

}

1. Create the graph

111

Element Element name Settings

Thread group Create cameras (Stardog/Neo4j) Number of threads (users): 1, ramp-up period (in seconds): 1, loop count: 250

Counter Counter Start: 1, increment: 1, maximum: 250, reference name: ID3

HTTP request Create a camera Method: POST

Description of the body data

The query creates 250 video cameras that have IDs and that are located in the 250 first places of the aforementioned 1000 places.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Camera${ID3} sm:IsLocated sm:Place${ID3} ;

 sm:CameraType "Video camera" }

Body data (Neo4j)

{

 "statements" : [

 {

 "statement" : "MATCH (a:Place {PlaceID: {PlaceID}}) CREATE (b:Camera {props})-[:ISLOCATED]->(a)",

 "parameters" : {

 "PlaceID" : ${ID3},

 "props" : {

 "CameraID" : ${ID3},

 "CameraType" : "Video camera"

 }

 }

 }

]

}

Element Element name Settings

Thread group Create persons (Stardog/Neo4j) Number of threads (users): 1, ramp-up period (in seconds): 1, loop count: 1000

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID4

Function RandomString Generates a random string

Function Random Generates a random number

Function chooseRandom Chooses a single random value from a list of arguments

HTTP request Create a person Method: POST

Description of the body data

The query creates 1000 people that have IDs, names, ages, and sexes.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Person${ID4} sm:PersonName "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}" ;

 sm:PersonAge ${__Random(1,65,)} ;

 sm:PersonSex "${__chooseRandom(Male,Female,Random)}" }

Body data (Neo4j)

{

 "statements" : [

 {

 "statement" : "CREATE (a:Person {props})",

 "parameters" : {

 "props" : {

 "PersonID" : ${ID4},

 "PersonName" : "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}",

 "PersonAge" : ${__Random(1,65,)},

 "PersonSex" : "${__chooseRandom(Male,Female,Random)}"

 }

 }

 }

]

}

Element Element name Settings

Thread group Create phones (Stardog/Neo4j) Number of threads (users): 1, ramp-up period (in seconds): 1, loop count: 1000

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID5

Counter Counter Start: 1234567890, increment: 1, reference name: NUMBER

Function RandomString Generates a random string

HTTP request Create a phone Method: POST

Description of the body data

The query creates 1000 phones that have IDs, numbers, and types, and that the aforementioned persons possess.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Person${ID5} sm:Possesses sm:Phone${ID5} } ;

INSERT DATA

{ sm:Phone${ID5} sm:PhoneNumber ${NUMBER} ;

 sm:PhoneType "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}" }

Body data (Neo4j)

{

 "statements" : [

 {

 "statement" : "MATCH (a:Person {PersonID: {PersonID}}) CREATE (a)-[:POSSESSES]->(b:Phone {props})",

 "parameters" : {

 "PersonID" : ${ID5},

 "props" : {

 "PhoneID" : ${ID5},

 "PhoneNumber" : ${NUMBER},

 "PhoneType" : "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}"

 }

 }

 }

]

}

112

Element Element name Settings

Thread group Create sensor observations (Stardog/Neo4j) Number of threads (users): 1000, ramp-up period (in seconds): 1, loop count: 2

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID6

Counter Counter Start: 1, increment: 1, maximum: 2000, reference name: ID7

Counter Counter Start: 201410251200, increment: 1, reference name: TIME1

Function chooseRandom Chooses a single random value from a list of arguments

HTTP request Create a sensor observation Method: POST

Description of the body data

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Sensor${ID6} sm:Observes sm:SensorObservation${ID7} } ;

INSERT DATA

{ sm:SensorObservation${ID7} sm:SensorObservationTime ${TIME1} ;

 sm:SensorObservationTemperature ${__chooseRandom(13,14,15,Random)} }

Body data (Neo4j)

{

 "statements" : [

 {

 "statement" : "MATCH (a:Sensor {SensorID: {SensorID}}) CREATE (a)-[:OBSERVES]->(c:SensorObservation {props})",

 "parameters" : {

 "SensorID" : ${ID6},

 "props" : {

 "SensorObservationID" : ${ID7},

 "SensorObservationTime" : ${TIME1},

 "SensorObservationTemperature" : ${__chooseRandom(13,14,15,Random)}

 }

 }

 }

]

}

Element Element name Settings

Thread group Create camera observations (Stardog/Neo4j) Number of threads (users): 250, ramp-up period (in seconds): 1, loop count: 30

Counter Counter Start: 1, increment: 1, maximum: 250, reference name: ID8

Counter Counter Start: 1, increment: 1, maximum: 7500, reference name: ID9

Counter Counter Start: 201410251200, increment: 1, reference name: TIME2

Function RandomString Generates a random string

HTTP request Create a camera observation Method: POST

Description of the body data

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Camera${ID8} sm:Films sm:CameraObservation${ID9} } ;

INSERT DATA

{ sm:CameraObservation${ID9} sm:CameraObservationTime ${TIME2} ;

 sm:CameraObservationData "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}" }

Body data (Neo4j)

{

 "statements": [

 {

 "statement" : "MATCH (a:Camera {CameraID: {CameraID}}) CREATE (a)-[:FILMS]->(c:CameraObservation {props})",

 "parameters" : {

 "CameraID" : ${ID8},

 "props" : {

 "CameraObservationID" : ${ID9},

 "CameraObservationTime" : ${TIME2},

 "CameraObservationData" : "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}"

 }

 }

 }

]

}

2. Write queries

The query creates 2000 sensor observations that the aforementioned 1000 sensors observe. The sensor observations have IDs, and they are created on October 25, 2014, 12 p.m. and beyond

(SensorObservationTime). They also have some values, i.e., temperatures

The query creates 7500 camera observations that the aforementioned 250 cameras film. The camera observations have IDs, and they are created on October 25, 2014, 12 p.m. and beyond

(CameraObservationTime). They also have some values, i.e., hyperlinks to so

113

Element Element name Settings

Thread group Show my personal information 1 (Stardog/Neo4j) Number of threads (users): 1000, ramp-up period (in seconds): 1, loop count: 1

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID10

HTTP request Show my personal information 1 Method: POST

Description of the body data

The query reads the personal information of the aforementioned 1000 people.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

SELECT *

WHERE { sm:Person${ID10} ?b ?c }

Body data (Neo4j)

{

 "statements" : [

 {

 "statement" : "MATCH (a:Person {PersonID: {PersonID}}) RETURN a",

 "parameters" : {

 "PersonID" : ${ID10}

 }

 }

]

}

Element Element name Settings

Thread group Count the average temperature (Stardog/Neo4j) Number of threads (users): 1000, ramp-up period (in seconds): 1, loop count: 1

HTTP request Count the average temperature Method: POST

Description of the body data

The query counts the average temperature of all the sensor observations 1000 times.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

SELECT (AVG(?b) AS ?Average)

WHERE

{ ?a sm:SensorObservationTemperature ?b }

Body data (Neo4j)

{

 "statements" : [

 {

 "statement" : "MATCH (a:SensorObservation) RETURN avg(a.SensorObservationTemperature)"

 }

]

}

3. Read queries

114

4. Read and write queries

Element Element name Settings

Thread group Show my personal information 2 (Stardog/Neo4j) Number of threads (users): 1000, ramp-up period (in seconds): 1, loop count: 1

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID11

HTTP request Show my personal information 2 Method: POST

Description of the body data

The query reads the personal information of the aforementioned 1000 people.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

SELECT *

WHERE { sm:Person${ID11} ?b ?c }

Body data (Neo4j)

{

 "statements" : [

 {

 "statement" : "MATCH (a:Person {PersonID: {PersonID}}) RETURN a",

 "parameters" : {

 "PersonID" : ${ID11}

 }

 }

]

}

Element Element name Settings

Thread group Update my personal information (Stardog/Neo4j) Number of threads (users): 1000, ramp-up period (in seconds): 1, loop count: 1

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID12

Counter Counter Start: 1, increment: 1, reference name: ID13

* Character string 10000 characters long comprising the same numbers and characters than RandomString functions above

HTTP request Update my personal information Method: POST

Description of the body data

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Person${ID12} sm:Description "${ID13}*" }

Body data (Neo4j)

{

 "statements" : [

 {

 "statement" : "MATCH (a:Person {PersonID: {PersonID}}) SET a.PersonDescription = {PersonDescription}",

 "parameters" : {

 "PersonID" : ${ID12},

 "PersonDescription" : "${ID13}*"

 }

 }

]

}

The query updates the personal information of the aforementioned 1000 people. The query adds a new property to each person's information (Description, PersonDescription) that is randomized a

little by the counter ID13.

