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Kankaan hanke on Jyväskylän kaupungin seuraavien vuosikymmenten tärkein 
aluekehityshanke. Kankaan alue muodostaa tulevaisuudessa fiksun kaupungin, 
mikä edellyttää muun muassa alueen tietovaraston toteuttamista. Ennen tieto-
varaston toteuttamista on kuitenkin tarpeen selvittää, miten fiksun kaupungin 
tietovarasto voidaan integroida tehokkaasti pilvi-infrastruktuuriin ylipäänsä, 
mikä oli tämän tutkimuksen päätutkimuskysymys. Tätä varten luotiin yleistet-
tävä, teoreettinen viitekehys, jonka avulla voidaan vastata esimerkiksi tähän 
kysymykseen. Viitekehyksen avulla voidaan tulkita, että fiksu kaupunki vaatii 
pilvi-infrastruktuurilta ainakin saatavuutta, autonomisuutta, skaalattavuutta, 
suorituskykyä, yhteentoimivuutta, vikasietoisuutta, yksityisyyttä ja turvalli-
suutta sekä käyttäjien osallistamista ja kestävää kehitystä. Viitekehyksen käyt-
töä demonstroitiin valitsemalla Kankaan alueen tietovaraston tärkeimmät vaa-
timukset: suorituskyky ja skaalattavuus. Näistä vaatimuksista suorituskyky 
operationalisoitiin, minkä jälkeen kahden tietovaraston ohjelmistokandidaatin, 
Stardogin ja Neo4j:n, suorituskyky testattiin. Ne asennettiin Eucalyptus-pilveen 
ja luotiin suorituskykytesti, joka lisäsi ja kyseli tietoa niistä. Neo4j suoriutui 
suorituskykytestistä paremmin kuin Stardog. Stardogia ja Neo4j:tä vertailtiin 
myös subjektiivisesti, mikä toi esille muun muassa, että Neo4j on kypsempi tuo-
te kuin Stardog mutta että molempia tietokantoja voidaan potentiaalisesti hyö-
dyntää Kankaan hankkeessa. Lopuksi viitekehystä itseään arvioitiin, mikä ker-
toi, että se toimii ohjenuorana melko hyvin, joskin sillä on myös joitakin heik-
kouksia. Se ei esimerkiksi tarjoa teknisiä tietoja. Tutkimus toteutettiin suunnit-
telutieteellisesti. 
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ABSTRACT 
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Integrating a smart city data warehouse efficiently with a cloud infrastructure 
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Information systems science, master's thesis 
Ohjaajat: Tyrväinen, Pasi & Mazhelis, Oleksiy 
 
The Kangas project is the main urban development project of the City of Jyväs-
kylä for the next several decades. The Kangas area will form a smart city in the 
future, which requires implementing, among others, the data warehouse of the 
area. Before implementing the data warehouse, however, there is a need to 
know how a smart city data warehouse can be efficiently integrated with a 
cloud infrastructure in general, which was the main research question of this 
study. To this end, a generalizable, theoretical framework was created that can 
be used to answer e.g., to this question. With the help of the framework, it can 
be interpreted that a smart city requires of a cloud infrastructure at least avail-
ability, autonomicity, scalability, performance, interoperability, fault tolerance, 
privacy, and security, as well as user involvement and sustainability. The use of 
the framework was demonstrated by choosing the most important require-
ments for the data warehouse of the Kangas area: performance and scalability. 
Of these requirements, performance was operationalized, after which two can-
didates for the software of the data warehouse, Stardog and Neo4j, were tested 
for it. They were installed on a Eucalyptus cloud and a benchmark was created 
that inserted data into and queried it from them. Neo4j performed better than 
Stardog in the benchmark. Stardog and Neo4j were compared subjectively as 
well, which brought out, among others, that Neo4j is a more mature product 
than Stardog, but that both databases can potentially be utilized in the Kangas 
project. Finally, the framework itself was evaluated, which revealed that it func-
tions as a guiding principle quite well, although it has also some weaknesses. 
E.g., it offers no specifications. The study was conducted as design science. 
 
Keywords: cloud computing, smart city, Eucalyptus, NoSQL, graph database, 
Stardog, Neo4j. 
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1 INTRODUCTION 

The Kangas project is the main urban development project of the City of Jy-
väskylä for the next several decades. The Kangas area is introduced later on, but 
in brief, it will form a smart city in the future, being a home to 5000 inhabitants 
and offering 2000 new jobs. (Jyväskylän kaupunki, 2011.) This project requires 
implementing, but first, planning for many things. One of them is the data 
warehouse of the area. It was decided at the University of Jyväskylä that the 
data warehouse will be built on the cloud with the help of the university's 
hardware, network, and other resources, e.g., Eucalyptus cloud software. Hence, 
it can be said that many concepts and technologies are combined in the Kangas 
project including cloud computing, cloud data management, and smart cities. 
These are briefly characterized below, being discussed in more detail later on. 

Cloud computing is a model for enabling ubiquitous, convenient, on-
demand network access to a shared pool of configurable computing resources 
(e.g., networks, servers, storage, applications, and services) that can be rapidly 
provisioned and released with minimal management effort or service provider 
interaction. This cloud model is composed of five essential characteristics, three 
service models, and four deployment models. (Mell & Grance, 2011.) These are 
elaborated further later on, but in a nutshell, cloud computing can be seen as a 
broad umbrella definition encompassing many kinds of technologies and ser-
vices. This can also be said of cloud data management that is a somewhat vague 
concept, but in this thesis, it refers to the many ways of saving and managing 
data on the cloud. Exemplars of these are so-called NoSQL databases. 

Smart city is a fuzzy concept as well. It can be conceptualized in many dif-
ferent ways, e.g., as Caragliu, Del Bo & Nijkamp (2009) according to which a 
city is smart when investments in human and social capital and traditional 
(transport) and modern (ICT) communication infrastructure fuel sustainable 
economic growth and a high quality of life, with a wise management of natural 
resources, through participatory governance. 

In practice, smart cities produce enormous amounts of data that needs to 
be saved and managed somehow. As cloud computing provides at least in the-
ory infinite amount of resources, it is a good candidate for such a task. Elastic 
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Utility Computing Architecture for Linking Your Programs to Useful Systems (Euca-
lyptus) (Wolski et al., 2008) will be utilized in the Kangas project. Eucalyptus is 
open source software for building AWS-compatible (Amazon Web Services) 
private and hybrid clouds (Eucalyptus Systems, 2014b). 

Cloud software such as Eucalyptus is naturally only a platform onto 
which something can be build, e.g., the data warehouse of the Kangas area. A 
data warehouse refers to a system capable of supporting decision-making, receiv-
ing data from multiple operational data sources (Connolly & Begg, 2005). In this 
thesis, two candidates for the software of the data warehouse, Stardog and 
Neo4j, are introduced, benchmarked against each other, and compared subjec-
tively as well. 

This thesis represents design science that is fundamentally a problem-
solving paradigm that creates and evaluates IT artifacts intended to solve iden-
tified organizational problems (Hevner, March, Park & Ram, 2004). Design sci-
ence consists of two basic activities, building and evaluating. Building is the 
process of constructing an artifact for a specific purpose. Evaluation is the proc-
ess of determining how well the artifact performs. (March & Smith, 1995.) 

Before implementing the data warehouse of the Kangas area, there is a 
need to know how a smart city data warehouse can be efficiently integrated 
with a cloud infrastructure in general. This requires knowledge of the require-
ments for smart cities, especially their data management, and the requirements 
for cloud computing systems, especially their data management. In the research 
literature exist many such requirements, but there appears to be no generaliz-
able framework that would integrate them with each other. It was thus realized 
that this kind of framework could be useful e.g., to researchers and decision-
makers. Hence, the main objective of this study is to build such an artifact and 
answer with the help of it to the main research question: 

 How a smart city data warehouse can be efficiently integrated with a 

cloud infrastructure? 
Answering to the main research question requires answering to the sub-
questions of this study as well. They form its sub-objectives: 

 What is cloud computing? 

 What is cloud data management? 

 What are the requirements for cloud data management? 

 What are smart cities? 

 What are the requirements for smart city data management?  
This part of the study is conducted as a literature review. The data, consisting of 
scholarly papers, books, websites, etc., was found with the help of Google, 
Google Scholar, Nelli portal, and the JYKDOK service of the Jyväskylä Univer-
sity Library. 

The use of the framework is demonstrated by choosing the most impor-
tant requirements for the data warehouse of the Kangas area: performance and 
scalability. Of these requirements, performance is operationalized, after which 
Stardog and Neo4j are tested for it. They are installed on Eucalyptus and a 
benchmark is built that inserts data into and queries it from the databases. The 
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benchmark compares the performance of Stardog's public SPARQL endpoint 
(Clark & Parcia, 2014c) to Neo4j's Transactional Cypher HTTP endpoint (Neo 
Technology, 2014f). Then, Stardog and Neo4j are compared subjectively as well, 
and finally, based on all these experiences, the framework itself is evaluated. 

This thesis is organized as follows. Chapter 2 is an introduction to cloud 
computing. It defines cloud computing and discusses its essential characteris-
tics, service models, deployment models, and technologies. Chapter 3 covers 
cloud data management. It defines cloud data management, compares rela-
tional databases to NoSQL databases, and presents requirements for cloud data 
management. The chapter ends with the framework of requirements for cloud 
data management. Chapter 4 deals with smart cities and their data management. 
It discusses what smart cities and the Internet of Things (IoT) are, deals with 
enabling technologies of the IoT, and presents requirements for smart city data 
management. The chapter is crowned by the framework of requirements for 
integrating a smart city with a cloud infrastructure. Chapter 5 presents the re-
search method of this study. It briefly introduces design science and then goes 
through the research process of the study, the central concepts of the study, and 
the benchmark for comparing the performance of Stardog and Neo4j. Chapter 6 
presents the results of this benchmark and their analysis, the subjective com-
parison of Stardog and Neo4j, and the evaluation of the framework of require-
ments for integrating a smart city with a cloud infrastructure. Finally, chapter 7 
summarizes the results and conclusions of the study, discussing subjects for 
further study as well. 
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2 CLOUD COMPUTING 

This chapter is organized as follows. First, cloud computing is defined. Then, 
essential characteristics of cloud computing are presented. Next, cloud comput-
ing service and deployment models are dealt with. Finally, cloud computing 
technologies are discussed. 

2.1 Definition of cloud computing 

With the rapid development of processing and storage technologies and the 
success of the Internet, computing resources have become cheaper, more pow-
erful, and more ubiquitously available than ever before. This technological 
trend has enabled the realization of a new computing model called cloud com-
puting in which resources (e.g., CPU and storage) are provided as general utili-
ties that can be leased and released by users through the Internet in an on-
demand fashion. (Zhang, Cheng & Boutaba, 2010.) 

The main idea behind cloud computing is not a new one (Zhang et al., 
2010). According to Parkhill (1966, as cited in Zhang et al., 2010), John 
McCarthy envisioned already in the 1960s that computing facilities will be pro-
vided to the general public like a utility. The term cloud has also been used in 
various contexts, e.g., describing large asynchronous transfer mode (ATM) net-
works in the 1990s. However, after Google's CEO Eric Schmidt used the word 
to describe the business model of providing services across the Internet in 2006, 
the term really started to gain popularity. Since then, the term 'cloud 
computing' has been used mainly as a marketing term in a variety of contexts to 
represent many different ideas. (Zhang et al., 2010.) 

The lack of a standard definition of cloud computing has generated not 
only market hypes, but also a fair amount of skepticism and confusion. For this 
reason, there has been work on standardizing the definition of cloud computing 
during the past years. (Zhang et al., 2010.) According to Vaquero, Rodero-
Merino, Caceres, and Lindner (2009), cloud computing is associated with a new 
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paradigm for the provision of computing infrastructure. This paradigm shifts 
the location of this infrastructure to the network to reduce the costs associated 
with the management of hardware and software resources (Vaquero et al., 2009; 
see also Hayes, 2008). However, the variety of technologies in the cloud makes 
the overall picture confusing (Hwang, 2008, as cited in Vaquero et al., 2009), 
and the hype around cloud computing further muddles the message (Geelan, 
2008, as cited in Vaquero et al., 2009; Milojicic, 2008, as cited in Vaquero et al., 
2009). According to Vaquero et al. (2009), clouds did not have a clear and com-
plete definition in the literature at the time when they published their paper. 
Hence, they propose their definition of clouds: Clouds are a large pool of easily 
usable and accessible virtualized resources (such as hardware, development 
platforms, and/or services). These resources can be dynamically reconfigured 
to adjust to a variable load (scale), allowing also for an optimum resource utili-
zation. This pool of resources is typically exploited by a pay-per-use model in 
which guarantees are offered by the infrastructure provider by means of cus-
tomized service-level agreements (SLAs). (Vaquero et al., 2009.) 

According to Armbrust et al. (2010), cloud computing is a popular topic 
for blogging and white papers and has been featured in the title of workshops, 
conferences, and even magazines. However, confusion remains about exactly 
what it is and when it is useful (Armbrust et al., 2010). According to Armbrust 
et al. (2010), cloud computing refers to both the applications delivered as ser-
vices over the Internet and the hardware and systems software in the data cen-
ters that provide those services. According to Armbrust et al. (2010), the ser-
vices themselves have long been referred to as Software as a Service (SaaS). The 
data center hardware and software is what they call a 'cloud.' They mention 
that some vendors also use the terms IaaS (Infrastructure as a Service) and PaaS 
(Platform as a Service) to describe their products, but Armbrust et al. (2010) es-
chew them, noting that accepted definitions for them still vary widely (2010). 

There are, indeed, many definitions of cloud computing, aforementioned 
being, in the author's opinion, some of the best. In this thesis, cloud computing 
is defined according to National Institute of Standards and Technology's (NIST) 
16th and final working definition of cloud computing that has been, according 
to Brown (2011), the de facto definition of cloud computing a long time. Accord-
ing to NIST (Mell & Grance, 2011), cloud computing is a model for enabling 
ubiquitous, convenient, on-demand network access to a shared pool of config-
urable computing resources (e.g., networks, servers, storage, applications, and 
services) that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction. This cloud model is composed of 
five essential characteristics, three service models, and four deployment models 
(Mell & Grance, 2011). These are discussed next. 
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2.2 Essential characteristics of cloud computing 

According to NIST (Mell & Grance, 2011), the cloud model is composed of five 
essential characteristics: 

On-demand self-service. A consumer can unilaterally provision computing 
capabilities, e.g., server time and network storage, as needed automatically 
without requiring human interaction with each service provider. (Mell & 
Grance, 2011.) 

Broad network access. Capabilities are available over the network and ac-
cessed through standard mechanisms that promote use by heterogeneous thin 
or thick client platforms (e.g., mobile phones, tablets, laptops, and worksta-
tions). (Mell & Grance, 2011.) 

Resource pooling. The provider's computing resources are pooled to serve 
multiple consumers using a multi-tenant model, with different physical and 
virtual resources dynamically assigned and reassigned according to consumer 
demand. There is a sense of location independence in that the customer gener-
ally has no control or knowledge over the exact location of the provided re-
sources, but may be able to specify location at a higher level of abstraction (e.g., 
country, state, or data center). Examples of resources include storage, process-
ing, memory, and network bandwidth. (Mell & Grance, 2011.) 

Rapid elasticity.  Capabilities can be elastically provisioned and released, in 
some cases automatically, to scale rapidly outward and inward commensurate 
with demand. To the consumer, the capabilities available for provisioning often 
appear to be unlimited and can be appropriated in any quantity at any time. 
(Mell & Grance, 2011.) 

Measured service. Cloud systems automatically control and optimize re-
source use by leveraging a metering capability at some level of abstraction ap-
propriate to the type of service (e.g., storage, processing, bandwidth, and active 
user accounts). Resource usage can be monitored, controlled, and reported, 
providing transparency for both the provider and consumer of the utilized ser-
vice. (Mell & Grance, 2011.) 

Zhang et al. (2010) list similar characteristics. According to them (2010), 
cloud computing provides several salient features that are different from tradi-
tional service computing: 

Multi-tenancy (see e.g., 'resource pooling' above). In a cloud environment, 
services owned by multiple providers are co-located in a single data center. The 
performance and management issues of these services are shared among service 
providers and the infrastructure provider. The layered architecture of cloud 
computing provides a natural division of responsibilities: the owner of each 
layer only needs to focus on the specific objectives associated with this layer. 
However, multi-tenancy also introduces difficulties in understanding and man-
aging the interactions among various stakeholders. (Zhang et al., 2010.) 

Shared resource pooling (see e.g., 'resource pooling' above). The infrastruc-
ture provider offers a pool of computing resources that can be dynamically as-
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signed to multiple resource consumers. Such dynamic resource assignment ca-
pability provides much flexibility to infrastructure providers for managing their 
own resource usage and operating costs. (Zhang et al., 2010.) 

Geo-distribution and ubiquitous network access (see e.g., 'broad network ac-
cess' and 'resource pooling' above). Clouds are generally accessible through the 
Internet and use the Internet as a service delivery network. Hence, any device 
with Internet connectivity, be it a mobile phone, a personal digital assistant 
(PDA), or a laptop, is able to access cloud services. Additionally, to achieve high 
network performance and localization, many of today's clouds consist of data 
centers located at many locations around the world. A service provider can 
easily leverage geo-diversity to achieve maximum service utility. (Zhang et al., 
2010.) 

Service oriented (see e.g., 'on-demand self-service' and 'measured service' 
above). Cloud computing adopts a service-driven operating model. Hence, it 
places a strong emphasis on service management. In a cloud, each IaaS, PaaS, 
and SaaS provider offers its service according to the SLA negotiated with its 
customers. (Zhang et al., 2010.) 

Dynamic resource provisioning (see e.g., 'rapid elasticity' above). One of the 
key features of cloud computing is that computing resources can be obtained 
and released on the fly. Compared to the traditional model that provisions re-
sources according to peak demand, dynamic resource provisioning allows ser-
vice providers to acquire resources based on the current demand, which can 
considerably lower the operating cost. (Zhang et al., 2010.) 

Self-organizing (see e.g., 'rapid elasticity' above). Since resources can be al-
located or deallocated on-demand, service providers are empowered to manage 
their resource consumption according to their own needs. In addition, the 
automated resource management feature yields high agility that enables service 
providers to respond quickly to rapid changes in service demand, e.g., the flash 
crowd effect. (Zhang et al., 2010.) 

Utility-based pricing (see e.g., 'measured service' above). Cloud computing 
employs a pay-per-use pricing model. The exact pricing scheme may vary from 
service to service. Utility-based pricing lowers service operating cost as it 
charges customers on a per-use basis. However, it also introduces complexities 
in controlling the operating cost. (Zhang et al., 2010.) 

2.3 Cloud computing service models 

According to NIST (Mell & Grance, 2011), the cloud model is composed of three 
service models: 

Software as a Service (SaaS). The capability provided to the consumer is to 
use the provider's applications running on a cloud infrastructure. The applica-
tions are accessible from various client devices through either a thin client inter-
face, such as a web browser (e.g., web-based e-mail) or a program interface. The 
consumer does not manage or control the underlying cloud infrastructure in-
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cluding network, servers, operating systems, storage, or even individual appli-
cation capabilities, with the possible exception of limited user-specific applica-
tion configuration settings. (Mell & Grance, 2011.) 

Platform as a Service (PaaS). The capability provided to the consumer is to 
deploy onto the cloud infrastructure consumer-created or acquired applications 
created using programming languages, libraries, services, and tools supported 
by the provider. The consumer does not manage or control the underlying 
cloud infrastructure including network, servers, operating systems, or storage, 
but has control over the deployed applications and possibly configuration set-
tings for the application-hosting environment. (Mell & Grance, 2011.) 

Infrastructure as a Service (IaaS). The capability provided to the consumer is 
to provision processing, storage, networks, and other fundamental computing 
resources where the consumer is able to deploy and run arbitrary software, 
which can include operating systems and applications. The consumer does not 
manage or control the underlying cloud infrastructure, but has control over op-
erating systems, storage, and deployed applications, and possibly limited con-
trol of select networking components, e.g., host firewalls. (Mell & Grance, 2011.) 

Names of these three service models vary. E.g., Vaquero et al. (2009) dis-
cuss 'types of cloud systems' or 'scenarios where clouds are used' and their ac-
tors. According to them, many activities use software services as their business 
basis. These service providers (SPs) make services accessible to the service users 
through Internet-based interfaces. Clouds aim to outsource the provision of the 
computing infrastructure required to host services. This infrastructure is offered 
'as a service' by infrastructure providers (IPs), moving computing resources 
from the SPs to the IPs, so the SPs can gain in flexibility and reduce costs. (Va-
quero et al., 2009.) 

In IaaS, IPs manage a large set of computing resources, e.g., storing and 
processing capacity. Through virtualization, they are able to split, assign, and 
dynamically resize these resources to build ad-hoc systems as demanded by 
customers, the SPs. They deploy the software stacks that run their services. 
PaaS denotes that cloud systems can offer an additional abstraction level. In-
stead of supplying a virtualized infrastructure, they can provide the software 
platform in which systems run on. The sizing of the hardware resources de-
manded by the execution of the services is made in a transparent manner. A 
well-known example is the Google App Engine. As for SaaS, there are services 
of potential interest to a wide variety of users hosted in cloud systems. This is 
an alternative to locally run applications. Examples of this are the online alter-
natives of typical office applications, e.g., word processors. (Vaquero et al., 
2009.) 

Zhang et al. (2010) define IaaS, PaaS, and SaaS as 'business models.' Ac-
cording to them, cloud computing employs a service-driven business model. 
Hardware- and platform-level resources are provided as services on an on-
demand basis. Conceptually, every layer of the architecture can be imple-
mented as a service to the layer above, and every layer can be perceived as a 
customer of the layer below, which is depicted in the figure 1. It is entirely pos-
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sible that a PaaS provider runs its cloud on top of an IaaS provider's cloud, but 
in the current practice, IaaS and PaaS providers are often parts of the same or-
ganization, e.g., Google and Salesforce. In a cloud computing environment, the 
traditional role of a service provider is divided into two: infrastructure provid-
ers who manage cloud platforms and lease resources according to a usage-
based pricing model, and service providers who rent resources from one or 
many infrastructure providers to serve the end-users. (Zhang et al., 2010.) 

 

 
 

FIGURE 1 Business models of cloud computing (Zhang et al., 2010, 10) 

2.4 Cloud computing deployment models 

According to NIST (Mell & Grance, 2011), the cloud model is composed of four 
deployment models: 

Private cloud. The cloud infrastructure is provisioned for exclusive use by a 
single organization comprising multiple consumers, e.g., business units. It may 
be owned, managed, and operated by the organization, a third party, or some 
combination of them, and it may exist on- or off-premises. (Mell & Grance, 2011.) 

Community cloud. The cloud infrastructure is provisioned for exclusive use 
by a specific community of consumers from organizations that have shared 
concerns (e.g., mission, security requirements, policy, and compliance consid-
erations). It may be owned, managed, and operated by one or more of the or-
ganizations in the community, a third party, or some combination of them, and 
it may exist on- or off-premises. (Mell & Grance, 2011.) 

Public cloud. The cloud infrastructure is provisioned for open use by the 
general public. It may be owned, managed, and operated by a business, aca-
demic, or government organization, or some combination of them. It exists on 
the premises of the cloud provider. (Mell & Grance, 2011.) 

Hybrid cloud. The cloud infrastructure is a composition of two or more dis-
tinct cloud infrastructures (private, community, or public) that remain unique 
entities, but are bound together by standardized or proprietary technology that 
enables data and application portability, e.g., cloud bursting for load balancing 
between clouds. (Mell & Grance, 2011.) 
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Concerning the aforementioned deployment models, cloud bursting is a 
technique used by hybrid clouds to provide additional resources to private 
clouds on an as-needed basis. If the private cloud has the processing power to 
handle its workloads, the hybrid cloud is not used. When workloads exceed the 
private cloud's capacity, the hybrid cloud automatically allocates additional 
resources to the private cloud. Hence, hybrid clouds offer e.g., more flexibility 
than both public and private clouds. (Sakr, Liu, Batista & Alomari, 2011.) 

Zhang et al. (2010) discuss different 'types of clouds', i.e., the deployment 
models, in a similar fashion, each type of cloud having its own benefits and 
drawbacks: 

Private clouds, also known as internal clouds, offer the highest degree of 
control over performance, reliability, and security. However, they are often 
criticized for being similar to traditional proprietary server farms and do not 
provide benefits, e.g., no up-front capital costs. (Zhang et al., 2010.) 

Public clouds offer several key benefits to service providers including no 
initial capital investment on an infrastructure and shifting of risks to infrastruc-
ture providers. However, public clouds lack fine-grained control over data, as 
well as network and security settings, which hampers their effectiveness in 
many business scenarios. (Zhang et al., 2010.) 

Hybrid clouds offer more flexibility than both public and private clouds. 
Specifically, they provide tighter control and security over application data 
compared to public clouds, while still facilitating on-demand service expansion 
and contraction. On the downside, designing a hybrid cloud requires carefully 
determining the best split between public and private cloud components. 
(Zhang et al., 2010.) 

Zhang et al. (2010) do not mention NIST's (Mell & Grance, 2011) commu-
nity cloud, but they do present a type of cloud that NIST's definition does not 
comprise, a virtual private cloud (VPC) that is an alternative solution to address-
ing the limitations of both public and private clouds. A VPC is essentially a 
platform running on top of public clouds. The main difference is that a VPC 
leverages virtual private network (VPN) technology that allows service provid-
ers to design their own topology and security settings, e.g., firewall rules. VPC 
is essentially a more holistic design, since it virtualizes servers, applications, 
and the underlying communication network as well. Additionally, for most 
companies, VPC provides seamless transition from a proprietary service infra-
structure to a cloud-based infrastructure, owing to the virtualized network 
layer. (Zhang et al., 2010.) 

In addition, there exists at least the concept of federated cloud that refers to 
an infrastructure in which competing clouds are able to cooperate to maximize 
their benefits (Ranjan, Buyya & Parashar, 2012). Rouvinen (2013) has compared 
the terms 'community cloud' and 'federated cloud' in an explicit way in his mas-
ter's thesis. According to him, a community cloud is essentially a private cloud, 
in any case more or less closed by its nature, while a federated cloud can com-
prise both public and private clouds. 
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2.5 Cloud computing technologies 

According to Zhang et al. (2010), cloud computing is often compared to the fol-
lowing technologies, each of which shares certain aspects with cloud computing: 

Grid computing. Grid computing is a distributed computing paradigm that 
coordinates networked resources to achieve a common computational objective. 
The development of grid computing was originally driven by scientific applica-
tions that are usually computation-intensive. Cloud computing is similar to grid 
computing in that it also employs distributed resources to achieve application-
level objectives. However, cloud computing takes one step further by leverag-
ing virtualization technologies at multiple levels (hardware and application 
platform) to realize resource sharing and dynamic resource provisioning. 
(Zhang et al., 2010.) 

Utility computing. Utility computing represents the model of providing re-
sources on-demand and charging customers based on usage rather than a flat 
rate. Cloud computing can be perceived as a realization of utility computing. It 
adopts a utility-based pricing scheme entirely for economic reasons. With on-
demand resource provisioning and utility-based pricing, service providers can 
truly maximize resource utilization and minimize their operating costs. (Zhang 
et al., 2010.) 

Virtualization. Virtualization is a technology that abstracts away the details 
of physical hardware and provides virtualized resources for high-level applica-
tions. A virtualized server is commonly called a virtual machine (VM). Virtual-
ization forms the foundation of cloud computing, as it provides the capability 
of pooling computing resources from clusters of servers and dynamically as-
signing or reassigning virtual resources to applications on-demand. (Zhang et 
al., 2010.) 

Autonomic computing. Originally coined by IBM in 2001, autonomic com-
puting aims at building computing systems capable of self-management, i.e., 
reacting to internal and external observations without human intervention. The 
goal of autonomic computing is to overcome the management complexity of 
today's computer systems. Although cloud computing exhibits certain auto-
nomic features, e.g., automatic resource provisioning, its objective is to lower 
resources' cost rather than to reduce system complexity. (Zhang et al., 2010.) 

Zhang et al. (2010) summarize that cloud computing leverages virtualiza-
tion technology to achieve the goal of providing computing resources as a util-
ity. It shares certain aspects with grid computing and autonomic computing, 
but differs from them in other aspects. Therefore, it offers unique benefits and 
imposes distinctive challenges to meet its requirements. (Zhang et al., 2010.) 

Wang, Tao, Kunze, Castellanos, Kramer, and Karl (2008), and later on, 
Wang et al. (2010) list a number of enabling technologies contributing to cloud 
computing. Next, some technologies that have not been discussed so far are 
briefly presented: 
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Web services and SOA. Computing cloud services are normally exposed as 
web services that follow the industry standards, e.g., Web Service Description 
Language (WSDL), Simple Object Access Protocol (SOAP), and Universal De-
scription Discovery and Integration (UDDI). The services organization and or-
chestration inside clouds could be managed in a service-oriented architecture 
(SOA). Furthermore, a set of cloud services could be used in a SOA application 
environment, thus making them available on various distributed platforms. 
They could be further accessed across the Internet. (Wang et al., 2010.) 

Web 2.0. According to Wikipedia (2008, as cited in Wang et al., 2010), Web 
2.0 is an emerging technology describing the innovative trends of using World 
Wide Web (WWW) technology and web design that aims to enhance creativity, 
information sharing, collaboration, and functionality of the web. The essential 
idea behind Web 2.0 is to improve the interconnectivity and interactivity of web 
applications. The new paradigm to develop and access web applications en-
ables users to access the web more easily and efficiently. Cloud computing ser-
vices are in nature web applications that render desirable computing services 
on-demand. (Wang et al., 2010.) 

World-wide distributed storage system. A cloud storage model should foresee 
a network storage system that is backed by distributed storage providers, e.g., 
data centers, offering storage capacity for users to lease. The data storage could 
be migrated, merged, and managed transparently to end-users for whatever 
data formats. A cloud storage model should also foresee a distributed data sys-
tem that provides data sources accessed in a semantic way. Users could locate 
data sources in a large distributed environment by the logical name instead of 
physical locations. (Wang et al., 2010.) 

Programming model. Users drive into the computing cloud with data and 
applications. Some cloud programming models should be proposed for users to 
adapt to the cloud infrastructure. For the simplicity and easy access of cloud 
services, the cloud programming model should not, however, be too complex or 
too innovative for end-users. (Wang et al., 2010.) The MapReduce is a pro-
gramming model and an associated implementation for processing and gener-
ating large data sets across the Google's worldwide infrastructures (Dean, 2007, 
as cited in Wang et al., 2010; Dean & Ghemawat, 2008, as cited in Wang et al., 
2010). Hadoop is a framework for running applications on large clusters built of 
commodity hardware (Hadoop, 2008, as cited in Wang et al., 2010). It imple-
ments the MapReduce paradigm and provides a distributed file system, the 
Hadoop Distributed File System (Wang et al., 2010). 

Related to these technologies, Zhang et al. (2010) present a layered model 
of cloud computing, i.e., the architecture of a cloud computing environment. It 
can be divided into four layers: the hardware / data center layer, the infrastruc-
ture layer, the platform layer, and the application layer. These are depicted in 
the figure 2:  
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FIGURE 2 Cloud computing architecture (Zhang et al., 2010, 9) 

The hardware layer. This layer is responsible for managing the physical resources 
of the cloud including physical servers, routers, switches, power, and cooling 
systems. The hardware layer is typically implemented in data centers. A data 
center usually contains thousands of servers that are organized in racks and 
interconnected through switches, routers, or other fabrics. Typical issues at 
hardware layer include hardware configuration, fault-tolerance, traffic man-
agement, power, and cooling resource management. (Zhang et al., 2010.) 

The infrastructure layer. Also known as the virtualization layer, the infra-
structure layer creates a pool of storage and computing resources by partition-
ing the physical resources using virtualization technologies, e.g., Xen, KVM, 
and VMware. The infrastructure layer is an essential component of cloud com-
puting, since many key features, e.g., dynamic resource assignment, are only 
made available through virtualization technologies. (Zhang et al., 2010.) 

The platform layer. Built on top of the infrastructure layer, the platform 
layer consists of operating systems and application frameworks. The purpose of 
the platform layer is to minimize the burden of deploying applications directly 
into VM containers. E.g., Google App Engine operates at the platform layer to 
provide application programming interface (API) support for implementing 
storage, database, and business logic of typical web applications. (Zhang et al., 
2010.) 

The application layer. At the highest level of the hierarchy, the application 
layer consists of the actual cloud applications. Different from traditional appli-
cations, cloud applications can leverage the automatic-scaling feature to achieve 
better performance, availability, and lower operating costs. (Zhang et al., 2010.) 

According to Zhang et al. (2010), compared to traditional service hosting 
environments, e.g., dedicated server farms, the architecture of cloud computing 
is more modular. Each layer is loosely coupled with the layers above and below, 
allowing each layer to evolve separately. This is similar to the design of the 
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Open Systems Interconnection (OSI) model for network protocols. The architec-
tural modularity allows cloud computing to support a wide range of applica-
tion requirements, while reducing management and maintenance overhead. 
(Zhang et al., 2010.) 
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3 CLOUD DATA MANAGEMENT 

This chapter is organized as follows. First, cloud data management and the cen-
tral concepts related to it are defined. Then, relational databases are briefly 
compared to NoSQL databases. Next, requirements for cloud data management 
are discussed. Finally, a framework of requirements for cloud data management 
is presented. 

3.1 Definition of cloud data management 

As cloud computing is a broad umbrella definition encompassing many kinds 
of technologies and services, so is cloud data management as well. Before going 
into what cloud data management is, it is useful to define some general con-
cepts of data management: 

A database is a shared collection of logically related data, and a description 
of this data, designed to meet the information needs of an organization. A data-
base management system (DBMS) is a software system that enables users to define, 
create, maintain, and control access to a database. A DBMS allows users to de-
fine the structure of a database, a schema, through its data definition language 
(DDL). A higher-level description of a schema is called a data model. A DBMS 
allows users also to insert, update, delete, and retrieve data from a database, 
usually through a data manipulation language (DML). A DML provides a gen-
eral inquiry facility to the data of a database, called a query language. The most 
common query language is the Structured Query Language (SQL) that is both the 
formal and de facto standard language for relational database management systems 
(RDBMSs). (Connolly & Begg, 2005.) As SQL and RDBMs go hand in hand, rela-
tional databases are also called SQL or MySQL databases. Relational databases 
are defined later on. 

In practice, a database runs on a server. A database server refers in this the-
sis to a computer that is dedicated to running a computer program that pro-
vides database services to other computer programs or computers (Wikipedia, 
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2014a). A data warehouse refers to a system capable of supporting decision-
making, receiving data from multiple operational data sources (Connolly & 
Begg, 2005). In this thesis, a data warehouse is defined as a single repository 
into which users can easily insert data, from which they can easily run queries, 
and from which they can also produce reports and perform analysis if needed 
(cf. Connolly's & Begg's definition of the ultimate goal of data warehousing, 
2005). 

Cloud data management is a somewhat vague concept, but in this thesis, it 
refers to the many ways of saving and managing data in the cloud. To define 
the concept briefly, e.g., Wang et al. (2010), as already mentioned, write about 
worldwide distributed storage system as one of the enabling technologies be-
hind cloud computing. Boles (2008) offers a technical, yet still quite clear de-
scription of cloud-based storage and its evolution, depicted in the figure 3. 

  

 
 

FIGURE 3 Evolution of cloud-based storage (Boles, 2008) 

According to Boles (2008), simply put, storage in the cloud de-couples storage 
and applications, so that access to either one can be more flexible, and data 
storage and applications can easily scale in response to changing user demands. 
The industry has long been struggling with de-coupling applications from data 
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so that each can be more flexibly managed, moved, and scaled. Network File 
System (NFS) and Common Internet File System (CIFS) were among the earliest 
ways of de-coupling applications and storage so that each could be scaled and 
managed more effectively. However, these protocols are complex and remain 
restricted to the data center in which resources can be expensive and difficult to 
scale. (Boles, 2008.) 

The next evolution of de-coupling was to host application and data com-
ponents with service providers across the web. Unfortunately, this generation 
of storage was often mired in the restricted scalability and complex access of 
traditional remote access protocols (File Transfer Protocol, FTP, Web-based Dis-
tributed Authoring and Versioning, WebDAV) and traditional storage (file 
and/or block). (Boles, 2008.) File-level storage refers to a storage technology 
that is most commonly used in storage systems that are found in hard drives, 
Network-Attached Storage (NAS) systems, etc. In file-level storage, the storage 
disk is configured with a protocol, e.g., NFS or Server Message Block (SMB) / 
CIFS, and the files are stored and accessed from it in bulk. In block-level storage, 
raw volumes of storage are created, and each block can be controlled as an in-
dividual hard drive. These blocks are controlled by server-based operating sys-
tems, and each block can be individually formatted with the required file sys-
tem. (StoneFly, 2014.) 

Cloud-based technology wraps traditional IT applications and infrastruc-
ture in new, simplified APIs and access semantics. APIs, or sets of application 
and/or storage commands, are served up as self-contained, discoverable web 
services that are accessed via Hypertext Transfer Protocol (HTTP) or other pro-
tocols and integrated into lightweight, easy to develop, distributed applications. 
This allows users to put less effort into developing complex application sub-
routines, and instead better serve their businesses with combinations of already 
available and reusable web services and data. In turn, the increased independ-
ence of these services allows each component to scale up and down in perform-
ance as end-user demands change. When distributed onto the enormous data 
centers of one or multiple service providers, this makes the infrastructure truly 
elastic. (Boles, 2008.) 

Wu, Ping, Ge, Wang, and Fu (2010) mention Boles' (2008) evolution of 
cloud-based storage writing about four scenarios in which clouds are used. 
They are the aforementioned cloud service models SaaS, PaaS, and IaaS, but in 
addition to them Wu et al. (2010) mention Storage as a Service (StaaS) that facili-
tates cloud applications to scale beyond their limited servers. StaaS allows users 
to store their data at remote disks and access them anytime from any place. 
However, according to Wu et al. (2010), cloud storage is amorphous today, with 
neither a clearly defined set of capabilities nor any single architecture. Choices 
abound, with many traditional hosted or managed service providers (MSPs) 
offering block or file storage, usually alongside traditional remote access proto-
cols, or virtual or physical server hosting. Other solutions have emerged, typi-
fied by Amazon Simple Storage Service that resembles flat databases designed 
to store large objects. (Wu et al., 2010.) 
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Boles' (2008) evolution of cloud-based storage is also mentioned in Kul-
karni's, Waghmare's, Palwe's, Waykule's, Bankar's, and Koli's (2012) paper. 
Leaning on Storage Networking Industry Association (2009) and Curino et al. 
(2010), they note that cloud storage is a service model in which data is main-
tained, managed, and backed up remotely and made available to users over a 
network (typically the Internet) and that cloud storage is still amorphous (Kul-
karni et al., 2012). 

Arora and Gupta (2012) define some of the central concepts related to 
cloud data management. According to them, the different terms used for data 
management in the cloud differ on the basis of how data is stored and managed. 
Cloud storage is virtual storage that enables users to store documents and objects. 
Data as Service (DaaS) allows user to store data at a remote disk available 
through the Internet. It is used mainly for backup purposes and basic data 
management. Cloud storage cannot work without basic data management ser-
vices, so these two terms are used interchangeably. However, Database as a Ser-
vice (DBaaS) is one step ahead. It offers complete database functionality and al-
lows users to access and store their database at remote disks anytime from any 
place through the Internet. Cloud database is a database delivered to users on-
demand through the Internet from a cloud database provider's servers. While 
conventional DBMSs deal with structured data that is held in databases along 
with its metadata, cloud databases can be used for unstructured, semi-
structured, or structured data. (Arora & Gupta, 2012.) 

According to Dewan and Hansdah (2011), there exist at least five cloud 
storage types: unstructured data, structured data, message queues, block devices, 
and RDBMSs. Unstructured type is similar to traditional files, but has a support 
for accommodating large data set besides ensuring reliability and availability. A 
good example of unstructured storage type is Amazon Simple Storage Service. 
Structured types are non-relational data type. They are multi-dimensional data 
structures and designed in such a way that faster look up and access is possible. 
In addition, unlike relational database systems, they do not support joins and 
SQL queries. (Dewan & Hansdah, 2011.) In certain contexts, they can also be 
referred to as Non-SQL databases (Dewan & Hansdah, 2011), i.e., NoSQL data-
bases. An example of structured storage type is Amazon SimpleDB. Message 
queues are temporary storage structures that are meant for storing messages 
passed between cloud application processes. Block devices are like traditional 
secondary storage media, a raw sequential order of bytes, which cloud applica-
tions can format as per their requirements of file system types. RDBMS store is 
a port of traditional RDBMS in the cloud. In RDBMS type storage, cloud appli-
cations can use SQL server instances hosted in the cloud infrastructure as if they 
were hosted in traditional servers. (Dewan & Hansdah, 2011.) 

As for traditional databases, relational databases have been around for 
many years and have become the predominant choice in storing data (Wikipe-
dia, 2014b). Next, relational databases and popular cloud databases, so-called 
NoSQL databases, are introduced and compared to each other. 
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3.2 Relational databases vs. NoSQL databases 

Edgar Codd, a former IBM Fellow, is generally credited with creating the rela-
tional-database model in 1970 (Leavitt, 2010). A relational database is a set of 
tables (relations) containing data fitted into predefined categories (Leavitt, 2010; 
see also Connolly & Begg, 2005). Each table contains one or more data catego-
ries in columns. Each row contains a unique instance of data for the categories 
defined by the columns. Users can access or reassemble the data in different 
ways without having to reorganize the database tables. Relational databases 
work best with structured data, e.g., a set of sales figures that readily fits in 
well-organized tables. This is not the case with unstructured data, e.g., that 
found in word-processing documents and images. Partly in response to the 
growing awareness of relational databases' limitations, vendors and users are 
increasingly turning to NoSQL databases. (Leavitt, 2010.) 

Defining what a NoSQL database is is not that simple. According to 
Pokorny (2013), the term 'NoSQL database' was chosen for a loosely specified 
class of non-relational data stores. Such databases (mostly) do not use SQL as 
their query language. The term 'NoSQL' is therefore confusing and is inter-
preted in the database community rather as 'not only SQL.' (Pokorny, 2013.) 
NoSQL can also be 'not relational' (Arora & Gupta, 2012) or 'postrelational' 
(Pokorny, 2013). These concepts sound like something new, but according to 
Leavitt (2010), non-relational databases including hierarchical, graph, and ob-
ject-oriented databases have been around since the late 1960s. 

The easiest way to differentiate between relational databases and NoSQL 
databases is to let the NoSQL data models speak for themselves, as the rela-
tional data model above. According to Leavitt (2010) and Pokorny (2013), there 
are three popular types of NoSQL databases: key-value stores, column-oriented 
databases, and document-based stores. Most simple NoSQL databases called 
key-value stores (or big hash tables) contain a set of couples (key, value). A key is 
in principle the same as an attribute in relational databases or a column name in 
SQL databases. In other words, a database is a set of named values. A key 
uniquely identifies a value (typically a string, but also a pointer to a place in 
which the value is stored), and this value can be structured or completely un-
structured. In a more complex case, a NoSQL database stores combinations of 
couples (key, value) collected into collections. These are column-oriented data-
bases. Some of these databases are composed of collections of couples (key, 
value) or, more generally, they look like semi-structured documents or extend-
able records often equipped by indexes. New attributes (columns) can be added 
to these collections. (Pokorny, 2013.) Finally, document-based stores are databases 
that store and organize data as collections of documents, rather than as struc-
tured tables with uniform-sized fields for each record. With these databases, 
users can add any number of fields of any length to a document. (Leavitt, 2010.) 

Although relational databases have been around a long time, they are not 
perfect. Leavitt (2010) discusses some of their limitations: 
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Scaling. Users can scale a relational database by running it on a more pow-
erful and expensive computer. To scale beyond a certain point though, it must 
be distributed across multiple servers. However, relational databases do not 
work easily in a distributed manner, because joining their tables across a dis-
tributed system is difficult. Also, relational databases are not designed to func-
tion with data partitioning, so distributing their functionality is a chore. (Leavitt, 
2010.) 

Complexity. With relational databases, users have to convert all data into 
tables. When the data does not fit easily into a table, the database's structure can 
be complex, difficult, and slow to work with. (Leavitt, 2010.) 

SQL. Using SQL is convenient with structured data. However, using the 
language with other types of information is difficult, because it is designed to 
work with structured, relationally organized databases with fixed table infor-
mation. SQL can entail large amounts of complex code and does not work well 
with modern, agile development. (Leavitt, 2010.) 

Large feature set. Relational databases offer a big feature set and data integ-
rity. However, NoSQL proponents say that database users often do not need all 
the features, as well as the cost and complexity they add. (Leavitt, 2010.) 

NoSQL databases generally process data faster than relational databases. 
This stems from the fact that relational databases are usually used by businesses 
and often for transactions that require great precision, so they generally subject 
all data to the same set of atomicity, consistency, isolation, durability (ACID) re-
straints. (Leavitt, 2010.) Atomicity means that an update is performed com-
pletely or not at all (all or nothing). Consistency denotes that no part of a trans-
action will be allowed to break a database's rules (the result of each transaction 
is tables with legal data). Isolation refers to each application running transac-
tions independently of other applications operating concurrently (transactions 
are independent). Durability indicates that completed transactions will persist 
(a database survives system failures). (Leavitt, 2010; Pokorny, 2013.) A database 
consistency is called in this sense strong consistency (Pokorny, 2013). 

In practice, relational databases have always been fully ACID-compliant 
(Pokorny, 2013). However, having to perform these restraints on every piece of 
data makes relational databases slower. As for NoSQL databases, developers 
usually do not have their NoSQL databases support ACID in order to increase 
performance. This can cause problems when used for applications that require 
great precision. NoSQL databases are also often faster, because their data mod-
els are simpler. Because NoSQL databases do not have all the technical re-
quirements that relational databases have, proponents say, most major NoSQL 
systems are flexible enough to better enable developers to use the applications 
in ways that meet their needs. (Leavitt, 2010.) 

In contrast to ACID guarantees, NoSQL databases follow basically available, 
soft state, eventually consistent (BASE) guarantees (Arora & Gupta, 2012). An ap-
plication works basically all the time (basically available), does not have to be 
consistent all the time (soft state), but the storage system guarantees that if no 
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new updates are made to the object eventually (after the inconsistency window 
closes), all accesses will return the last updated value (Pokorny, 2013). 

Databases that do not implement ACID fully can be only eventually con-
sistent. In principle, if some consistency is given up, more availability can be 
gain and scalability of the database can be greatly improved. In contrast to 
ACID properties, there exists so-called CAP theorem, also called Brewer's theo-
rem. It is a triple of requirements including consistency (C), availability (A), and 
partitioning tolerance (P). The CAP theorem states that for any system sharing 
data it is impossible to guarantee simultaneously all of these three properties. 
Particularly, in web applications based on horizontal scaling strategy, it is nec-
essary to decide between C and A. Usually DBMSs prefer C over A and P. 
(Pokorny, 2013.) 

As mentioned above, relational databases are not flawless. Neither are 
NoSQL databases. Leavitt (2010) also discusses their disadvantages or chal-
lenges: 

Overhead and complexity. Because NoSQL databases do not work with SQL, 
they require manual query programming that can be fast for simple tasks but 
time-consuming for others. In addition, complex query programming for the 
databases can be difficult. (Leavitt, 2010.) 

Reliability. Relational databases natively support ACID, while NoSQL da-
tabases do not. Hence, NoSQL databases do not natively offer the degree of re-
liability that ACID provides. If users want NoSQL databases to apply ACID 
restraints to a data set, they must perform additional programming. (Leavitt, 
2010.) 

Consistency. Because NoSQL databases do not natively support ACID 
transactions, they could also compromise consistency, unless manual support is 
provided. Not providing consistency enables better performance and scalability, 
but it is a problem for certain types of applications and transactions, e.g., those 
involved in banking. (Leavitt, 2010.) 

Unfamiliarity with the technology. Most organizations are unfamiliar with 
NoSQL databases and thus may not feel knowledgeable enough to choose one 
or even to determine that the approach might be better for their purposes. 
(Leavitt, 2010.) 

Limited ecostructure. Unlike commercial relational databases, many open 
source NoSQL applications do not yet come with customer support or man-
agement tools. (Leavitt, 2010.) 

3.3 Requirements for cloud data management 

Next, requirements for cloud data management are discussed. The literature 
sources are organized so that the more general requirements are presented first 
and the more specific later on. The reason for presenting general requirements 
for cloud computing systems is that a cloud data management system is always 
a part of some larger cloud computing system. They cannot be separated from 
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each other. After the requirements are discussed, a framework of requirements 
for cloud data management is presented. 

3.3.1 Important architectural requirements for cloud computing systems 

Rimal, Jukan, Katsaros, and Goeleven (2011) consider important architectural 
requirements for cloud computing systems. These architectural requirements 
are classified according to the requirements of cloud providers, enterprises that 
use the cloud, and end-users. The three-layered classification of the architec-
tural requirements of cloud systems is depicted in the figure 4. Next, these ar-
chitectural requirements are discussed one at a time beginning from the pro-
vider requirements and ending to the user requirements. 

 

 
 

FIGURE 4 Three layered architectural requirements (Rimal et al., 2011, 6) 

The provider service delivery model. As already discussed, three service delivery 
models can be considered in cloud systems: SaaS, PaaS, and IaaS. (Rimal et al., 
2011.) They all have their advantages and disadvantages, but as they have al-
ready been discussed to some detail, they are not gone into here. 
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Service-centric issues. Cloud computing as a service needs to respond to 
real-world requirements of an enterprise's IT management. To fulfill the re-
quirements of an enterprise's IT management, cloud architecture needs to deal 
with unified service-centric approach, e.g.,: Cloud services should be autonomic. 
Cloud systems/applications should be designed to adapt dynamically to 
changes in the environment with less human assistantship. Autonomic behav-
ior of services can be used to improve the quality of services, fault-tolerance, 
and security. Furthermore, cloud services should be self-describing. Self-de-
scribing service interfaces can depict the contained information and functional-
ity as reusable and context-independent way. The underlying implementation 
of a service can be changed simultaneously without reconfigurations when the 
service contract is updated. In addition, the cost composition of distributed 
applications should be low. (Rimal et al., 2011.) 

Interoperability. Interoperability focuses on the creation of an agreed-upon 
framework/ontology, open data formats, or open protocols/APIs that enable 
easy migration and integration of applications and data between different cloud 
service providers and facilitates secure information exchange across platforms. 
For enterprises, it is important to provide interoperability between enterprise 
clouds and cloud service providers. (Rimal et al., 2011.) 

Quality of Service (QoS). In general, QoS provides the guarantee of per-
formance and availability, as well as other aspects of service quality, e.g., secu-
rity, reliability, dependability, etc. SLAs play a key facilitator role to make 
agreed-upon QoS between service providers and end-users. (Rimal et al., 2011.) 

Fault tolerance. Fault tolerance enables the systems to continue operating in 
the event of the failure of some of their components. In general, fault tolerance 
requires fault isolation to falling components, availability of reversion mode, etc. 
Fault-tolerant systems are characterized in terms of outages. (Rimal et al., 2011.) 

Data management, storage, and processing. Data will be replicated across 
large geographic distances in which its availability and durability is paramount 
for cloud service providers. If the data is stored at untrusted hosts that can cre-
ate enormous risks for data privacy. Furthermore, the cloud computing provid-
ers must ensure that the storage infrastructure is capable of providing rich 
query languages that are based on simple data structures to allow for scale-up 
and scale-down on-demand. In addition, the providers need to offer perform-
ance guarantees with the potential to allow the programmer some form of con-
trol over the storage procedures. (Rimal et al., 2011.) 

In terms of storage technologies, there should be a shift from hard disk 
drives (HDDs) to solid-state drives (SSDs) (Graefe, 2007, as cited in Rimal et al., 
2011; Lee & Kim, 2007, as cited in Rimal et al., 2011) or, since the complete re-
placement of hard disks is prohibitively expensive, the design of hybrid hard 
disks, i.e., hard disks augmented with flash memories (Lim et al., 2009, as cited 
in Rimal et al., 2011), as the latter provide reliable and high performance data 
storage. As for energy consumption, SSDs consume less power in idle state than 
HDDs. In addition, the programming model of data centers supported by the 
current (2011) industry giants, i.e., MapReduce, is not a perfect fit for all tasks. 
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Towards this direction, new languages and systems must be developed to real-
ize hybrid designs among DBMSs and MapReduce-like systems. (Rimal et al., 
2011.) 

Virtualization management. Virtualization refers to the abstraction of logical 
resources away from their underlying physical resources in order to improve 
agility and flexibility, reduce costs, and thus enhance business value (Golden, 
2008, as cited in Rimal et al., 2011). Handling a number of virtualization ma-
chines on top of operating systems and evaluating, testing servers, and de-
ployment to the targets are some of the important concerns of virtualization. 
Virtualization in the cloud takes many forms, e.g., server, storage, and infra-
structure virtualization. (Rimal et al., 2011.) 

Scalability. Scalability deals with the ability of a software system to manage 
increasing complexity when given additional resources. Scalability with large 
data set operations is a requirement for cloud computing. Horizontal scalability 
is what clouds provide through load balancing and application delivery solu-
tions. Distributed hash table (DHT), column-orientation, and horizontal parti-
tioning are examples of horizontal scalability. Vertical scalability is related to 
resources used, much like the old mainframe model. (Rimal et al., 2011.) 

Load balancing. Load balancing is an integral part of cloud computing and 
elastic scalability, which can be provided by software, hardware, or virtualware. 
It is the mechanism of self-regulating the workloads properly within the cloud's 
entities (one or more servers, hard drives, network, and IT resources). The 
cloud infrastructures and data centers need huge computing hardware, net-
work, and IT resources that are always subjected to failover when the demand 
exceeds. Load balancing is often used to implement failover. (Rimal et al., 2011.) 

Cloud deployment for enterprises. The cloud services are ubiquitous as a sin-
gle point of access with four types of deployment models: public, private, 
community, and hybrid clouds. (Rimal et al., 2011.) They and their advantages 
and disadvantages are not, however, gone into here, as they have already been 
discussed earlier to some detail. 

Security. Usually security is the focal concern in terms of data, infrastruc-
ture, and virtualization. In cloud computing, a data center holds the informa-
tion that would more traditionally have been stored on the end-user's computer. 
This raises concerns regarding users' privacy protection, since the users do not 
'own' their data. Furthermore, the move to centralized services may affect the 
privacy and security of users' interactions. Security threats may happen in re-
source provisioning and during distributed execution of user applications. In 
addition, new threats are likely to emerge. E.g., hackers can use the virtualized 
infrastructure as a launching pad for new attacks. (Rimal et al., 2011.) 

Cloudonomics. The economics of cloud computing is called cloudonomics 
(Weinman, 2009, as cited in Rimal et al., 2011). The problem with cloud comput-
ing is the lack of cost-based transparency. It is actually very difficult to quantify 
the cost benefits of using traditional infrastructure vs. using remote service pro-
viders, e.g., Amazon Elastic Compute Cloud. (Rimal et al., 2011.) 
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Data governance. Geographical and political issues are the key require-
ments for an enterprise cloud. When data begins to move out of organizations, 
it is vulnerable to disclosure or loss. The act of moving sensitive data outside 
organizational boundaries may violate national regulations for privacy. Fur-
thermore, due to the lack of interoperability among cloud platforms and the 
lack of standardization efforts, cloud providers cannot guarantee that a cloud 
user can move his data/programs to another cloud provider on-demand. Cloud 
computing became much more appealing if protection against data lock-in 
would be fully implemented. E.g., it would liberate the users from possible mo-
nopolies and guarantee the longevity of the users, since they would not be 
afraid of cloud providers going out of business. (Rimal et al., 2011.) 

Data migration. The issue of distributing information to web users in an ef-
ficient and cost-effective manner is a challenging problem, especially under the 
increasing requirements emerging from a variety of modern applications, e.g., 
voice-over-IP and streaming media. (Rimal et al., 2011.) Content distribution 
networks (CDNs), e.g., Akamai, have met these challenges by providing a scal-
able and cost-effective mechanism for accelerating the delivery of web content, 
based on more or less sophisticated data migration (outsourcing) policies for 
the surrogate servers of a CDN (Katsaros et al., 2009, as cited in Rimal et al., 
2011). To collectively address many goals, data replication in the cloud seems to 
be the most convenient approach (Rimal et al., 2011). 

Business process management (BPM). Business process management systems 
provide a business structure, security, and consistent rules across business 
processes, users, organization, and territory. This classical concept is enhanced 
in the context of the cloud-based BPM, as cloud delivers a business operating 
platform for enterprises, such as combining SaaS and BPM applications, e.g., 
customer relationship management (CRM), enterprise resource planning (ERP), 
e-commerce portals, etc., which helps for the flexibility, deployability, and af-
fordability for complex enterprise applications. When the enterprises adopt 
cloud-based services or business processes, the return of investment (ROI) of 
overall business measurement is important. (Rimal et al., 2011.) 

Third party engagement. The involvement of a third party in enterprises can 
help for establishing a robust communication plan with a provider landscape, 
continuity of cloud service engagements, legal implications, potential intellec-
tual property, cloud audit, reporting capabilities, etc. (Rimal et al., 2011.) 

Transferable skills. Transferable skills deals with technology dissemination, 
technical supports, discussion with consulting expert groups, or offshore out-
sourcing that help for the adaptation and stability of systems/applications. 
Cloud computing comes with its own set of management tasks that need to be 
executed by the enterprise staff. The staff needs e.g., to monitor current comput-
ing capacity, and to increase or decrease it depending on usage. Before choosing 
a cloud provider system, the enterprise should have a look at the skill set of its 
existing workforce to identify those skills that are transferable to the new envi-
ronment in order to make the transition as fluent as possible, because there is a 
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wide variation in maturity of enterprise cloud software and services. (Rimal et 
al., 2011.) 

User consumption-based billing and metering. The individual end-user con-
sumption-based billing and metering in cloud systems is similar to the con-
sumption measurement and allocation of costs of water, gas, and electricity 
consumption on a consumption unit basis. Cost management is important for 
planning and controlling decisions. It helps to check the utilized resources vs. 
the cost. Cost breakdown analysis, tracing the utilized activity, and adaptive 
cost management are important considerations as well. (Rimal et al., 2011.) 

User-centric privacy. The main consideration regarding cloud computing 
for end-users is related to the storage of personal/enterprise sensitive data. 
Cloud computing brings with it the fact that most of the users' creations, data 
that the user would regard as his personal intellectual property, will be stored 
at mega data centers around the world. (Rimal et al., 2011.) In this environment, 
privacy becomes a major issue (Cavoukian, 2008, as cited in Rimal et al., 2011). 

Service-level agreements (SLAs). The mutual contract between providers and 
users is usually called a SLA, i.e., the ability to deliver services according to pre-
defined agreements. Many cloud providers offer SLAs, but the problem with 
them is that they are rather weak on user compensations on outages. (Rimal et 
al., 2011.) 

Adaptability and learning. Cloud infrastructure must handle more resources, 
data, services, and users. All of this makes cloud-based enterprise applica-
tion/systems more complex to control, to keep coherence between services and 
resources. The biggest challenge for every user is to get acquainted with appli-
cations presented by enterprises when trying to deal with clouds. (Rimal et al., 
2011.) 

User experience (UX). The notion of UX is to provide the insight into the 
needs and behaviors of end-users that can help to maximize the usability, desir-
ability, and productivity of applications. UX-driven design and deployment 
may be the next step in the evolution of cloud computing. (Rimal et al., 2011.) 

3.3.2 Cloud storage infrastructure requirements 

Wu, Zhang, Lin, and Ju (2010) discuss in their paper cloud storage infrastruc-
ture requirements. According to them, there are ten critical common denomina-
tors that must be considered to make cloud storage valuable: 

Elasticity. Cloud storage must be elastic to rapidly adjust the underlying 
infrastructure to changing subscriber demands and comply with SLAs. (Wu et 
al., 2010.) 

Automatic. Cloud storage must have the ability to be automated so that 
policies can be leveraged to make underlying infrastructure changes, e.g., plac-
ing user and content management in different storage tiers and geographic loca-
tions quickly and without human intervention. (Wu et al., 2010.) 

Scalability. Cloud storage needs to scale quickly and to tremendous capaci-
ties. This translates into scalability across objects, performance, users, clients, 
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and capacity with a single namespace across all storage capacity being critical 
for low operating expense (OPEX) reasons. (Wu et al., 2010.) 

Data Security. For private clouds, security is assumed to be tightly con-
trolled. For public clouds, data should either be stored on a partition of a shared 
storage system or cloud storage providers must establish multi-tenancy policies 
to allow multiple business units or separate companies to securely share the 
same storage hardware. (Wu et al., 2010.) 

Performance. A proven storage infrastructure providing fast, robust data 
recovery is an essential element of a cloud service. (Wu et al., 2010.) 

Reliability. Enterprise users also want to make sure that their data is relia-
bly backed up for disaster recovery purposes and that it meets pertinent com-
pliance guidelines. (Wu et al., 2010.) 

Ease of management. The need for improved manageability in the face of 
exploring storage capability and costs is a major benefit that enterprises are ex-
pecting from a cloud storage deployment. (Wu et al., 2010.) 

Ease of data access. Ease of access to data in the cloud is critical in enabling 
seamless integration of cloud storage into existing enterprise workflows and to 
minimize the learning curve for a cloud storage adoption. (Wu et al., 2010.) 

Energy efficiency. IT data centers are growing bottlenecks and approaching 
ceilings on available power, cooling, and flooring space. Green storage technol-
ogy is the technology that enables energy efficiency and waste reduction in 
storage solutions leading to an overall lower carbon footprint. (Wu et al., 2010.) 

Latency. Not all applications are suitable for a cloud storage model. It is 
important to measure and test network latency before committing to a migra-
tion. Virtual machines can introduce additional latency through the time-
sharing nature of underlying hardware, and unanticipated sharing and reallo-
cation of machines can significantly affect run times. (Wu et al., 2010.) 

3.3.3 Successful cloud data management systems' wish list 

Sakr et al. (2011) bring together Abouzeid's, Bajda-Pawlikowski's, Abadi's, Sil-
berschatz's, and Rasin's (2009), as well as Cooper et al.'s (2009) cloud require-
ments comprising a list of features that successful cloud data management sys-
tems should have: 

Availability. They have to be always accessible even on the occasions in 
which there is a network failure or a whole data center has gone offline. (Sakr et 
al., 2011; see also Cooper et al., 2009.) 

Scalability. They have to be able to support very large databases with very 
high request rates at very low latency. They should be able to take on new ten-
ants or handle growing tenants without much effort beyond that of adding 
more hardware. In particular, the system has to be able to automatically redis-
tribute data to take advantage of the new hardware. (Sakr et al., 2011; see also 
Cooper et al., 2009.) 

Elasticity. They have to be able to satisfy changing application require-
ments in both directions (scaling up or scaling down). Moreover, the system has 
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to be able to gracefully respond to these changing requirements and quickly 
recover to its steady state. (Sakr et al., 2011; see also Cooper et al., 2009.) 

Performance. On public cloud computing platforms, pricing is structured in 
such a way that one pays only for what one uses, so the vendor price increases 
linearly with the requisite storage, network bandwidth, and compute power. 
Hence, the system performance has a direct effect on its costs. Thus, efficient 
system performance is a crucial requirement to save money. (Sakr et al., 2011; 
see also Abouzeid et al., 2009.) 

Multitenancy. They have to be able to support many applications (tenants) 
on the same hardware and software infrastructure. However, the performance 
of these tenants has to be isolated from each another. Adding a new tenant 
should require little or no effort beyond that of ensuring that enough system 
capacity has been provisioned for the new load. (Sakr et al., 2011; see also Coo-
per et al., 2009.) 

Load and tenant balancing. They have to be able to automatically move load 
between servers so that most of the hardware resources are effectively utilized 
and to avoid any resource overloading situations. (Sakr et al., 2011; see also 
Cooper et al., 2009.) 

Fault tolerance. For transactional workloads, a fault tolerant cloud data 
management system needs to be able to recover from a failure without losing 
any data or updates from recently committed transactions. Moreover, it needs 
to successfully commit transactions and make progress on a workload even in 
the face of worker node failures. For analytical workloads, a fault tolerant cloud 
data management system should not need to restart a query if one of the nodes 
involved in query processing fails. (Sakr et al., 2011; see also Abouzeid et al., 
2009.) 

Ability to run in a heterogeneous environment. On cloud computing platforms, 
there is a strong trend towards increasing the number of nodes that participate 
in query execution. It is nearly impossible to get homogeneous performance 
across hundreds or thousands of computing nodes. Part failures that do not 
cause complete node failure, but result in degraded hardware performance be-
come more common at scale. A cloud data management system should be de-
signed to run in a heterogeneous environment and has to take appropriate 
measures to prevent degrading performance due to parallel processing on dis-
tributed nodes. (Sakr et al., 2011; see also Abouzeid et al., 2009.) 

Flexible query interface. They should support both SQL and non-SQL inter-
face languages, e.g., MapReduce. Moreover, they should provide mechanism 
for allowing the user to write user defined functions (UDFs), and queries that 
utilize these UDFs should be automatically parallelized during their processing. 
(Sakr et al., 2011; see also Abouzeid et al., 2009.) 

3.3.4 Cloud database management systems' wish list 

According to Abadi (2009), transactional data management applications are not 
well suited for cloud deployment, while the characteristics of data and work-
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loads of typical analytical data management applications are. According to 
Abadi (2009), analytic database systems are a likely segment of the DBMS mar-
ket to move into the cloud, so he explores various available software solutions 
to perform the data analysis. Before dealing with them, Abadi (2009), however, 
lists some desired properties and features that these solutions should ideally 
have: 

Efficiency. Given that cloud computing pricing is structured in a way so 
that a customer pays for only what he uses, the price increases linearly with the 
requisite storage, network bandwidth, and compute power. Hence, if the data 
analysis software product A requires an order of magnitude more compute 
units than the data analysis software product B to perform the same task, then 
the product A will cost (approximately) an order of magnitude more than the B. 
Efficient software has a direct effect on the bottom line. (Abadi, 2009.) 

Fault tolerance. Fault tolerance in the context of analytical data workloads 
is measured differently than fault tolerance in the context of transactional work-
loads. As for transactional workloads, a fault tolerant DBMS can recover from a 
failure without losing any data or updates from recently committed transac-
tions, and in the context of distributed databases, can successfully commit 
transactions and make progress on a workload even in the face of worker node 
failure. For read-only queries in analytical workloads, there are no write trans-
actions to commit, nor updates to lose upon node failure. Hence, a fault tolerant 
analytical DBMS is simply one that does not have to restart a query if one of the 
nodes involved in query processing fails. Given the large amount of data that 
needs to be accessed for deep analytical queries, combined with the relatively 
weak compute capacity of a typical cloud compute server instance, complex 
queries can involve hundreds (even thousands) of server instances and can take 
hours to complete. Furthermore, clouds are typically built on top of cheap, 
commodity hardware, for which failure is not uncommon. Consequently, the 
probability of a failure occurring during a long-running data analysis task is 
relatively high. If a query must restart each time a node fails, then long, com-
plex queries are difficult to complete. (Abadi, 2009.) 

Ability to run in a heterogeneous environment. The performance of cloud 
computing nodes is often not consistent, with some nodes attaining orders of 
magnitude worse performance than other nodes (Abadi, 2009). There are a vari-
ety of reasons why this could occur, ranging from hardware failure causing de-
graded performance on a node (RightScale, 2008, as cited in Abadi, 2009), to an 
instance being unable to access the second core on a dual-core machine (Steele, 
2007, as cited in Abadi, 2009), to contention for non-virtualized resources 
(Abadi, 2009). If the amount of work needed to execute a query is equally di-
vided among the cloud computing nodes, there is a danger that the time to 
complete the query will be approximately equal to the time for the slowest 
computing node to complete its assigned task. A node observing degraded per-
formance would thus have a disproportionate affect on total query latency. A 
system designed to run in a heterogeneous environment would take appropri-
ate measures to prevent this from occurring. (Abadi, 2009.) 
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Ability to operate on encrypted data. Sensitive data may be encrypted before 
being uploaded to the cloud. In order to prevent unauthorized access to the 
sensitive data, any application running in the cloud should not have the ability 
to directly decrypt the data before accessing it. However, shipping entire tables 
or columns out of the cloud for decryption is bandwidth intensive. Hence, the 
ability of the data analysis system to operate directly on encrypted data so that 
a smaller amount of data needs to be ultimately shipped elsewhere to be de-
crypted could significantly improve performance. (Abadi, 2009.) 

Ability to interface with business intelligence products. There are a variety of 
customer-facing business intelligence tools that work with database software 
and aid in the visualization, query generation, result dashboarding, and ad-
vanced data analysis. These tools are an important part of the analytical data 
management picture, since business analysts are often not technically advanced 
and do not feel comfortable interfacing with the database software directly. 
(Abadi, 2009.) 

3.4 Framework of requirements for cloud data management 

The aforementioned requirements for cloud data management are depicted in 
the tables 1 and 2. The requirements in the table 1 are requirements for cloud 
computing in general, while the requirements in the table 2 are more closely 
related to cloud data management. 

In the first column are named the requirements that have been derived 
from the requirements or considerations described in the literature sources. E.g., 
data storage device type and programming model are mentioned under data 
management, storage, and processing in Rimal et al.'s paper (2011), but in the 
framework this requirement has been divided into two requirements. 

In the second column are examples and illustrations of the requirements. 
The reason for this is simply to make the tables easier to read. E.g., service-
centric issues would not open up without any explanation, and it would be an 
unrewarding task to go back in the text to find out what it is about. However, 
the purpose of the column is only to exemplify and illustrate. It does not pro-
vide all-inclusive definitions of what different requirements are about. 

In the third column are mentioned the original names of the requirements 
or considerations described in the literature sources, as well as their respective 
sources. As already mentioned, some requirements are derived from 'larger' 
requirements or considerations. 

The framework functions as a guiding principle that helps e.g., researchers 
and decision-makers to map what requirements should be taken into considera-
tion when building especially cloud data management systems. The require-
ments are quite general and abstract, but in the author's opinion, they are still 
important, serving as the bedrock of virtually any cloud solution. The frame-
work is likely to be useful to anyone building a technical solution on the cloud. 
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The application of the framework requires in practice technical expertise 
and measurements. Evaluating e.g., cloud computing system's security requires 
knowledge of the field. Evaluating e.g., cloud computing system's performance 
requires not only familiarity with the subject, but probably also benchmarking 
the system somehow. 
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TABLE 1 Cloud computing requirements 

Cloud computing re-
quirement 

Examples and illustrations Literature source 

Service model Saas, Paas, IaaS (Mell & Grance, 2011). Service models (Mell & Grance, 
2011), provider service delivery 
model (Rimal et al., 2011), service 
models (Sakr et al., 2011), service 
models (Wu et al., 2010). 

Deployment model Public, private, community, hybrid cloud 
(Mell & Grance, 2011). 

Deployment models (Mell & 
Grance, 2011), cloud deployment 
for enterprises (Rimal et al., 2011), 
cloud deployment models (Sakr et 
al., 2011). 

Service-centric issues  Autonomic and self-describing cloud services, 
low cost composition of distributed applica-
tions (Rimal et al., 2011). 

Service-centric issues (Rimal et al., 
2011). 

Virtualization manage-
ment 

Server, storage, infrastructure virtualization, 
etc. (Rimal et al., 2011). 

Virtualization management (Ri-
mal et al., 2011). 

Fault tolerance Fault isolation to the falling components, 
availability of reversion mode, etc. (Rimal et 
al., 2011). 

Fault tolerance (Rimal et al., 2011). 

Privacy Data that the user would regard as his per-
sonal intellectual property will be stored at 
mega data centers located around the world 
(Rimal et al., 2011). 

User-centric privacy (Rimal et al., 
2011). 

Security A data center holds the information that 
would more traditionally be stored on the 
end-user's computer (Rimal et al., 2011). 

Security (Rimal et al., 2011). 

Formal agreements SLAs play a key facilitator role to make 
agreed-upon QoS between service providers 
and end-users (Rimal et al., 2011). 

QoS, SLAs (Rimal et al., 2011), 
QoS, SLAs (Sakr et al., 2011), SLAs 
(Wu et al., 2010). 

Transparent pricing The economics of cloud computing, clou-
donomics, cost management (Rimal et al., 
2011). 

Cloudonomics, user consumption-
based billing and metering (Rimal 
et al., 2011). 

Load balancing The mechanism of self-regulating the work-
loads properly within the cloud's entities 
(Rimal et al., 2011). 

Load balancing (Rimal et al., 
2011). 

Interoperability The creation of an agreed-upon frame-
work/ontology, open data format, or open 
protocols/APIs enabling migration and inte-
gration between cloud service providers and 
facilitating secure information exchange across 
platforms (Rimal et al., 2011). 

Interoperability (Rimal et al., 
2011). 

Scalability DHT, column-orientation, and horizontal 
partitioning (Rimal et al., 2011). 

Scalability (Rimal et al., 2011). 

Business process man-
agement (BPM) 

Cloud-based BPM, cloud delivering business 
operating platforms, e.g., CRM (Rimal et al., 
2011). 

BPM (Rimal et al., 2011). 

Third party engagement Can help in respect of e.g., continuity of cloud 
service engagements and legal implications 
(Rimal et al., 2011). 

Third party engagement (Rimal et 
al., 2011). 

Transferable skills Cloud computing comes with its own set of 
management tasks (Rimal et al., 2011). 

Transferable skills (Rimal et al., 
2011). 

Adaptability and learning Users have to get acquainted with applications 
(Rimal et al., 2011). 

Adaptability and learning (Rimal 
et al., 2011). 

User experience (UX) UX-driven design and deployment (Rimal et 
al., 2011). 

User experience (UX) (Rimal et al., 
2011). 
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TABLE 2 Cloud data management requirements 

Cloud data management 
requirement 

Examples and illustrations Literature source 

Data storage device type HDDs, SSDs, hybrid hard disks (Rimal et al., 
2011). 

Data management, storage, and 
processing (Rimal et al., 2011). 

Data governance Geographical and political issues, data disclo-
sure or loss, sensitive data outside of an or-
ganization, data lock-in (Rimal et al., 2011). 

Data governance (Rimal et al., 
2011). 

Data migration Data replication in the cloud (Rimal et al., 
2011). 

Data migration (Rimal et al., 
2011). 

Programming model MapReduce is not a perfect fit for all tasks 
(Rimal et al., 2011). 

Data management, storage, and 
processing (Rimal et al., 2011). 

Automatic Underlying infrastructure changes can be 
made quickly and without human interven-
tion (Wu et al., 2010). 

Automatic (Wu et al., 2010). 

Availability A cloud data management system has to be 
always accessible (Sakr et al., 2011; see also 
Cooper et al., 2009). 

Availability (Sakr et al., 2011; see 
also Cooper et al., 2009). 

Scalability Cloud storage needs to scale quickly and to 
tremendous capacities (Wu et al., 2010). A 
cloud data management system has to be able 
to support very large databases with very high 
request rates at very low latency (Sakr et al., 
2011; see also Cooper et al., 2009). 

Scalability (Wu et al., 2010), 
scalability (Sakr et al., 2011; see 
also Cooper et al., 2009). 

Privacy The storage of personal/enterprise sensitive 
data (Rimal et al., 2011). 

User-centric privacy (Rimal et al., 
2011). 

Security Cloud storage providers have to establish 
multi-tenancy policies to allow e.g., separate 
companies to securely share the same storage 
hardware (Wu et al., 2010). 

Data security (Wu et al., 2010). 

Elasticity Cloud storage has to be elastic to rapidly 
adjust the underlying infrastructure to chang-
ing subscriber demands and comply with 
SLAs (Wu et al., 2010). 

Elasticity (Wu et al., 2010), elastic-
ity (Sakr et al., 2011; see also 
Cooper et al., 2009). 

Performance A proven storage infrastructure providing 
fast, robust data recovery. Important to meas-
ure and test network latency before commit-
ting to a migration. (Wu et al., 2010.) 

Performance, latency (Wu et al., 
2010), performance (Sakr et al., 
2011; see also Abouzeid et al., 
2009), efficiency (Abadi, 2009). 

Multitenancy A cloud data management system has to be 
able to support many applications (tenants) on 
the same hardware and software infrastruc-
ture (Sakr et al., 2011; see also Cooper et al., 
2009). 

Multitenancy (Sakr et al., 2011; see 
also Cooper et al., 2009). 

Load and tenant balanc-
ing 

A cloud data management system has to be 
able to automatically move load between 
servers and to avoid resource overloading 
situations (Sakr et al., 2011; see also Cooper et 
al., 2009). 

Load and tenant balancing (Sakr 
et al., 2011; see also Cooper et al., 
2009). 

Reliability Data is reliably backed up for disaster recov-
ery purposes (Wu et al., 2010). 

Reliability (Wu et al., 2010). 

Fault tolerance As for transactional workloads, recovering 
from a failure without losing any data or 
updates from recently committed transactions 
(Sakr et al., 2011; see also Abouzeid et al., 
2009). 

Fault tolerance (Sakr et al., 2011; 
see also Abouzeid et al., 2009), 
fault tolerance (Abadi, 2009). 

Ability to run in a hetero-
genous environment 

A cloud data management system has to take 
measures to prevent degrading performance 
due to parallel processing on distributed 
nodes (Sakr et al., 2011; see also Abouzeid et 
al., 2009). 

Ability to run in a heterogenous 
environment (Sakr et al., 2011; see 
also Abouzeid et al., 2009), ability 
to run in a heterogenous envi-
ronment (Abadi, 2009). 

Ability to operate on en-
crypted data 

The ability of the data analysis system to 
operate directly on encrypted data so that a 
smaller amount of data needs to be ultimately 
shipped elsewhere to be decrypted could 

Ability to operate on encrypted 
data (Abadi, 2009). 
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Cloud data management 
requirement 

Examples and illustrations Literature source 

significantly improve performance (Abadi, 
2009). 

Ability to interface with 
business intelligence (BI) 
products 

Customer-facing BI tools that work with 
database software and aid in the visualization, 
query generation, result dashboarding, and 
advanced data analysis (Abadi, 2009). 

Ability to interface with business 
intelligence products (Abadi, 
2009). 

Flexible query interface A cloud data management system should 
support both SQL and non-SQL interface 
languages (Sakr et al., 2011; see also Abouzeid 
et al., 2009). 

Flexible query interface (Sakr et 
al., 2011; see also Abouzeid et al., 
2009). 

Ease of management Improved manageability in the face of explor-
ing storage capability and costs (Wu et al., 
2010). 

Ease of management (Wu et al., 
2010). 

Ease of data access Enabling seamless integration of cloud storage 
into existing enterprise workflows and mini-
mizing the learning curve for cloud storage 
adoption (Wu et al., 2010). 

Ease of data access (Wu et al., 
2010). 

Energy efficiency Green storage technology leads to a lower 
carbon footprint (Wu et al., 2010). 

Energy efficiency (Wu et al., 2010). 
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4 SMART CITIES AND THEIR DATA MANAGE-
MENT 

This chapter is organized as follows. First, a smart city and the central concepts 
related to it are defined, e.g., the Internet of Things (IoT). Then, the enabling 
technologies of the IoT are dealt with. Next, requirements for smart city data 
management are discussed. Finally, a framework of requirements for integrat-
ing a smart city with a cloud infrastructure is presented. 

4.1 Definition of a smart city 

According to Dirks, Gurdgiev, and Keeling (2010, as cited in Chourabi et al., 
2012), Dirks and Keeling (2009, as cited in Chourabi et al., 2012), and Dirks, 
Keeling, and Dencik (2009, as cited in Chourabi et al., 2012), more than a half of 
the world's population now lives in urban areas. Leaning on unfpa.org, 
Chourabi et al. (2012) note that this shift from a primarily rural to a primarily 
urban population is projected to continue for the next couple of decades. 

Such enormous and complex congregations of people inevitably tend to 
become messy and disordered places (Johnson, 2008, as cited in Chourabi et al., 
2012). Mega cities generate new kinds of problems (Chourabi et al., 2012), such 
as technical, physical, and material problems, e.g., difficulty in waste manage-
ment, human health concerns, traffic congestions, and inadequate, deteriorating 
and aging infrastructures (Borja, 2007, as cited in Chourabi et al., 2012; Marceau, 
2008, as cited in Chourabi et al., 2012; Toppeta, 2010, as cited in Chourabi et al., 
2012; Washburn et al., 2010, as cited in Chourabi et al., 2012). Another set of 
problems are more social and organizational in nature. Problems of these types 
are associated with multiple and diverse stakeholders, high levels of interde-
pendence, competing objectives and values, and social and political complexity. 
(Chourabi et al., 2012.) In this sense, city problems become wicked and tangled 
(Dawes, Cresswell & Pardo, 2009, as cited in Chourabi et al., 2012; Rittel & 
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Webber, 1973, as cited in Chourabi et al., 2012; Weber & Khademian, 2008, as 
cited in Chourabi et al., 2012). 

The urgency around these challenges is triggering many cities around the 
world to find smarter ways to manage them. These cities are increasingly de-
scribed with the label smart city. One way to conceptualize a smart city is as an 
icon of a sustainable and livable city. (Chourabi et al., 2012.) 

According to Gibson, Kozmetsky, and Smilor (1992, as cited in Schaffers et 
al., 2011), the phrase 'smart city' was coined in the early 1990s to signify how 
urban development was turning towards technology, innovation, and global-
ization. Chourabi et al. (2012) note that although there is an increase in the fre-
quency of the use of the phrase 'smart city', there is still not a clear and consis-
tent understanding of the concept among practitioners and academia. In 2014, 
the situation seems to be quite the same. Piro, Cianci, Grieco, Boggia, and 
Camarda (2014) draw on Chourabi et al.'s (2012) paper noting that despite the 
term 'smart city' is very common in everyday speaking, its exact definition is 
still not well-established. Getting back to Chourabi et al.'s (2012) paper, they 
mention that only a limited number of studies have investigated and have be-
gun to systematically consider questions related to the new urban phenomenon 
of smart cities. In their paper, they conceptualize a smart city by presenting sev-
eral working definitions of a smart city that have been put forward and adopted 
in both practical and academic use, e.g.,: 

A city connecting the physical infrastructure, the IT infrastructure, the so-
cial infrastructure, and the business infrastructure to leverage the collective in-
telligence of the city (Harrison et al., 2010, as cited in Chourabi et al., 2012). 

A city striving to make itself 'smarter' (more efficient, sustainable, equita-
ble, and livable) (Natural Resources Defense Council, as cited in Chourabi et al., 
2012). 

The use of smart computing technologies to make the critical infrastruc-
ture components and services of a city – which include city administration, 
education, healthcare, public safety, real estate, transportation, and utilities – 
more intelligent, interconnected, and efficient (Washburn et al., 2010, as cited in 
Chourabi et al., 2012). 

Drawing on the various definitions of a smart city, some of them pre-
sented above, Chourabi et al. (2012) propose a framework to understand the 
concept of smart cities. The framework is depicted in the figure 5. Based on 
their exploration of literature, Chourabi et al. (2012) identify eight critical fac-
tors of smart city initiatives: management and organization, technology, gov-
ernance, policy context, people and communities, economy, built infrastructure, 
and natural environment. These factors form the basis of an integrative frame-
work that can be used to examine how local governments are envisioning smart 
city initiatives. The framework suggests directions and agendas for smart city 
research and outlines practical implications for government professionals. It is 
expected that while all factors have a two-way impact in smart city initiatives 
(each likely to be influenced by and is influencing other factors), at different 
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times and in different contexts, some are more influential than others. 
(Chourabi et al., 2012.) 

 

 
 

FIGURE 5 Smart city initiatives framework (Chourabi et al., 2012, 2294) 

Nam and Pardo (2011) also note that the definitions of a smart city are various. 
According to them, the label 'smart city' is a fuzzy concept and is used in ways 
that are not always consistent. There is neither a single template of framing a 
smart city nor a one-size-fits-all definition of a smart city. (Nam & Pardo, 2011.) 

Nam and Pardo (2011) present similar working definitions than Chourabi 
et al. (2012) above, after which they study the conceptual relatives of a smart 
city: a ubiquitous city, knowledge city, smart community, etc. These can be 
largely categorized into three dimensions: technology, people, and community. 
However, they are mutually connected with substantial confusion in definitions 
and complicated usages rather than independent of each other. E.g., in the 
technology dimension, the concepts of 'digital city' and 'intelligent city' can be 
found. (Nam & Pardo, 2011.) A digital city refers to a connected community 
that combines a broadband communications infrastructure, a flexible, service-
oriented computing infrastructure based on open industry standards, and in-
novative services to meet the needs of governments and their employees, citi-
zens, and businesses (Yovanof & Hazapis, 2009, as cited in Nam & Pardo, 2011). 
An intelligent city is usually used to characterize a city that has the ability to 
support learning, technological development, and innovation procedures. In 
this sense, every digital city is not necessarily intelligent, but every intelligent 
city has digital components. (Nam & Pardo, 2011.) 

To know what all these concepts mean is not vital. After discussing them 
Nam and Pardo (2011) identify and clarify the key conceptual components of a 
smart city, as well as re-categorize and simplify them into three categories of 
core factors: technology (infrastructures of hardware and software), people 
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(creativity, diversity, and education), and institution (governance and policy). 
This is depicted in the figure 6. 

 

 
 

FIGURE 6 Fundamental components of a smart city (Nam & Pardo, 2011, 286) 

As Nam and Pardo (2011) put it, given the connection between these factors, a 
city is smart when investments in human/social capital and IT infrastructure 
fuel sustainable growth and enhance a quality of life, through participatory 
governance (Caragliu, Del Bo & Nijkamp, 2009, as cited in Nam & Pardo, 2011). 
This is a modification of Caragliu et al.'s (2009) definition of a smart city from 
their paper Smart cities in Europe (2009). Caragliu et al.'s (2009) original defini-
tion is: we believe a city to be smart when investments in human and social 
capital and traditional (transport) and modern (ICT) communication infrastruc-
ture fuel sustainable economic growth and a high quality of life, with a wise 
management of natural resources, through participatory governance. In a 
newer paper, Caragliu, Del Bo, and Nijkamp (2011) mention that a smart city is 
still, in their opinion, quite a fuzzy concept. They go through many definitions 
of a smart city ending up defining it in the same way as in their previous paper. 

In summary, there is no single, all-inclusive definition of a smart city, but 
many definitions, the aforementioned ones being, in the author's opinion, some 
of the best. In this thesis, a smart city is defined by Caragliu et al.'s (2009) defini-
tion. To understand better what smart cities are about, it is necessary to briefly 
define the central concepts related to them. Next, they are discussed briefly. 
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4.2 Definition of the central concepts related to a smart city 

Hernández-Muñoz et al. (2011) write that most of the current city and urban 
developments are based on vertical ICT solutions leading to an unsustainable 
sea of systems and market islands. However, the recent vision of the Future 
Internet and its components can become building blocks to progress towards a 
unified urban-scale ICT platform transforming a smart city into an open inno-
vation platform. Once major challenges of unified urban-scale ICT platforms are 
identified, it is clear that the future development of smart cities will be only 
achievable in conjunction with a technological leap in the underlying ICT 
infrastructure. (Hernández-Muñoz et al., 2011.) 

Hernández-Muñoz et al. (2011) advocate that this technological leap can 
be done by considering smart cities at the forefront of the recent vision of the 
Future Internet (FI). Although there is no universally accepted definition of the 
FI, it can be approached as a socio-technical system comprising Internet-
accessible information and services, coupled to the physical environment and 
human behavior, and supporting smart applications of societal importance 
(Boniface & Surridge, as cited in Hernández-Muñoz et al., 2011). 

The FI can transform a smart city into an open innovation platform sup-
porting vertical domain of business applications built upon horizontal enabling 
technologies (Hernández-Muñoz et al., 2011). The most relevant basic FI pillars 
(Towards a Future Internet Public Private Partnership: Usage Areas Workshop, 
2010, as cited in Hernández-Muñoz et al., 2011) for a smart city environment are 
the following (Hernández-Muñoz et al., 2011): 

The Internet of Things (IoT). Defined as a global network infrastructure 
based on standard and interoperable communication protocols where physical 
and virtual 'things' are seamlessly integrated into the information network. 
(Sundmaeker, Guillemin, Friess & Woelfflé, 2010, as cited in Hernández-Muñoz 
et al., 2011.) The term was probably coined by Ashton in 1999 (Ashton, 2009). 

The Internet of Services (IoS). Flexible, open, and standardized enablers that 
facilitate the harmonization of various applications into interoperable services, 
as well as the use of semantics for the understanding, combination, and proc-
essing of data and information from different service providers, sources, and 
formats. (Hernández-Muñoz et al., 2011.) 

The Internet of People (IoP). Envisaged as people becoming part of ubiqui-
tous, intelligent networks having the potential to seamlessly connect, interact, 
and exchange information about themselves, their social context, and environ-
ment. (Hernández-Muñoz et al., 2011.) 

It is important to highlight the bidirectional relationship between the FI 
and smart cities. In the one direction, the FI can offer solutions to many chal-
lenges that smart cities face. On the other direction, smart cities can provide an 
excellent experimental environment for the development, experimentation, and 
testing of common FI service enablers required to achieve 'smartness' in a vari-
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ety of application domains. (Hernández-Muñoz et al., 2011; Future Internet As-
sembly, 2009, as cited in Hernández-Muñoz et al., 2011.) 

Of all these definitions, the IoT is the most important, smart cities being 
one of the application fields and market sectors in which IoT solutions can pro-
vide competitive advantages over current solutions and which can play a lead-
ing role in the adoption of IoT technologies. The other application fields and 
market sectors of the IoT are environmental monitoring, smart business / in-
ventory and product management, smart homes / smart building management, 
health-care, and security and surveillance. (Miorandi, Sicari, De Pellegrini & 
Chlamtac, 2012.) 

As Sundmaeker et al.'s (2010, as cited in Hernández-Muñoz et al., 2011) 
definition of the IoT is somewhat abstract, it is useful to complete it with the 
definition that Miorandi et al. (2012) present in their paper: the term IoT is 
broadly used to refer to the resulting global network interconnecting smart ob-
jects by means of extended Internet technologies, the set of supporting tech-
nologies necessary to realize such a vision, and the ensemble of applications 
and services leveraging such technologies to open new business and market 
opportunities (Atzori, Iera & Morabito, 2010, as cited in Miorandi et al., 2012; 
ITU, 2005, as cited in Miorandi et al., 2012). Smart objects refer to the embedding 
of electronics into everyday physical objects, making them 'smart' and letting 
them seamlessly integrate within the global resulting cyberphysical infrastruc-
ture. From a conceptual standpoint, the IoT builds on three pillars, related to 
the ability of smart objects to be identifiable (anything identifies itself), to com-
municate (anything communicates), and to interact (anything interacts) – either 
among themselves, building networks of interconnected objects, or with end-
users or other entities in the network. (Miorandi et al., 2012.) 

As smart cities are one of the IoT's application fields and markets sectors, 
some of the enabling technologies of the IoT are next briefly discussed. 

4.3 Enabling technologies of the Internet of Things 

Actualization of the IoT concept into the real world is possible through the inte-
gration of several enabling technologies (Atzori et al., 2010). Atzori et al. (2010) 
discuss in their paper the most relevant ones: 

Identification, sensing, and communication technologies. 'Anytime, anywhere, 
any media' has been a long time the vision pushing forward the advances in 
communication technologies (Atzori et al., 2010). In this context, wireless tech-
nologies have played a key role, and today the ratio between radios and hu-
mans is nearing the 1 to 1 value (Srivastava, 2006, as cited in Atzori et al., 2010). 
In this context, key components of the IoT will be Radio Frequency IDentifcation 
(RFID) systems (Finkenzeller, 2003, as cited in Atzori et al., 2010) that are com-
posed of one or more reader(s) and several RFID tags. Tags are characterized by 
a unique identifier and are applied to objects, even persons or animals. Readers 
trigger the tag transmission by generating an appropriate signal that represents 
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a query for the possible presence of tags in the surrounding area and for the 
reception of their IDs. Accordingly, RFID systems can be used to monitor ob-
jects in real-time, without the need of being in line-of-sight. This allows for 
mapping the real world into the virtual world. (Atzori et al., 2010.) 

Sensor networks will also play a crucial role in the IoT. In fact, they can co-
operate with RFID systems to better track the status of things, i.e., their location, 
temperature, movements, etc. As such, they can augment the awareness of a 
certain environment and thus act as a further bridge between physical and digi-
tal world. Sensor networks consist of a certain number of sensing nodes com-
municating in a wireless multi-hop fashion. Usually nodes report the results of 
their sensing to a small number of special nodes called sinks. (Atzori et al., 2010.) 

Middleware. The middleware is a software layer or a set of sub-layers in-
terposed between the technological and the application levels. Its feature of hid-
ing the details of different technologies is fundamental to exempt the pro-
grammer from issues that are not directly pertinent to his focus, which is the 
development of the specific application enabled by the IoT infrastructures. The 
middleware is gaining more and more importance in the last years due to its 
major role in simplifying the development of new services and the integration 
of legacy technologies into new ones. This exempts the programmer from the 
exact knowledge of the variegate set of technologies adopted by the lower lay-
ers. As it is happening in other contexts, the middleware architectures proposed 
in the last years for the IoT often follow the SOA approach. The advantages of 
the SOA approach are recognized in most studies on middleware solutions for 
the IoT. (Atzori et al., 2010.) 

The SOA-based architecture for the IoT middleware is depicted in the fig-
ure 7. Applications are on top of the architecture, exporting all the system's func-
tionalities to the final user. This layer is not considered to be a part of the mid-
dleware, but it exploits all the functionalities of the middleware layer. Service 
composition layer is a common layer on top of a SOA-based middleware archi-
tecture. It provides the functionalities for the composition of single services of-
fered by networked objects to build specific applications. On this layer there is 
no notion of devices, and the only visible assets are services. Service management 
layer provides the main functions that are expected to be available for each ob-
ject and that allow for their management in the IoT scenario. A basic set of ser-
vices encompasses object dynamic discovery, status monitoring, and service 
configuration. The IoT relies on a vast and heterogeneous set of objects, each 
one providing specific functions accessible through its own dialect, and there is 
thus a need for an object abstraction layer capable of harmonizing the access to 
the different devices with a common language and procedure. (Atzori et al., 
2010.) 

Trust, privacy, and security management. The deployment of automatic 
communication of objects in our lives represents a danger for our future. E.g., 
RFID tags in personal devices, clothes, and groceries could unknowingly be 
triggered to reply with their IDs and other information. The middleware has to 
include functions related to the management of trust, privacy, and security of 
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all the exchanged data. The related functions may be either built on one specific 
layer of the previous ones or distributed through the entire stack, from the ob-
ject abstraction to the service composition, in a manner that does not affect sys-
tem performance or introduce excessive overheads. (Atzori et al., 2010.) 

 

 
 

FIGURE 7 SOA-based architecture for the IoT middleware (Atzori et al., 2010, 2792) 

4.4 Requirements for smart city data management 

Next, requirements for smart city data management are discussed. As dealing 
with the requirements for cloud data management, the literature sources are 
organized here as well so that the more general requirements are presented first 
and the more specific later on. Finally, a framework to which all the central re-
quirements for integrating a smart city with a cloud infrastructure are gathered 
is presented. 

4.4.1 IoT Reference Architecture requirements 

The IoT Reference Architecture (RA) is, among other things, designed as a ref-
erence for the generation of compliant IoT concrete architectures that are tai-
lored to one's specific needs. The IoT RA is kept rather abstract in order to en-
able many, potentially different IoT architectures. The architecture consists of 
so-called views of different system aspects that can be conceptionally isolated 
and so-called perspectives that are about architectural decisions that often ad-
dress concerns that are common to more than one view or even all of them. 
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These concerns are often related to non-functional or quality properties. (Inter-
net of Things Architecture, 2013.) As a matter of fact, both views and perspec-
tives are very abstract, but as perspectives address more general concerns, they 
are discussed below. 

According to Internet of Things Architecture (2013), the perspectives that 
are the most important for IoT-systems based on the stakeholder requirements 
are evolution and interoperability, performance and scalability, availability and 
resilience, and trust, security and privacy: 

Evolution and interoperability. The ability of the system to be flexible in the 
face of the inevitable change that all systems experience after deployment, bal-
anced against the costs of providing such flexibility. This perspective addresses 
the fact that requirements change and software evolves sometimes rapidly and 
need to interoperate not only with today's technologies, but also needs to be 
prepared to interoperate with later technologies. (Internet of Things Architec-
ture, 2013.) 

Performance and scalability. The ability of the system to predictably execute 
within its mandated performance profile and to handle increased processing 
volumes in the future if required. Both are, compared to traditional information 
systems, even harder to cope with in a highly distributed scenario as the IoT. 
(Internet of Things Architecture, 2013.) 

Availability and resilience. The ability of the system to be fully or partly op-
erational as and when required and to effectively handle failures that could af-
fect system availability. When dealing with distributed IoT systems in which a 
lot of things can go wrong, the ability of a system to stay operational and to ef-
fectively handle failures that could affect a system's availability is crucial. 
(Internet of Things Architecture, 2013.) 

Trust, security, and privacy. They are interrelated, and often the evaluation 
or the improvement of one of these qualities is necessarily related to the others. 
Trust is a complex quality related to the extent to which a subject expects (sub-
jectively) an IoT system to be dependable regarding all the aspects of its func-
tional behavior. Security stands for the ability of the system to enforce the in-
tended confidentiality, integrity, and service access policies, and to detect and 
recover from a failure in these security mechanisms. Privacy is about the ability 
of the system to ensure that the collection of personally identifying information 
be minimized and that collected data should be used locally wherever possible. 
(Internet of Things Architecture, 2013.) 

4.4.2 Key system-level features that the Internet of Things needs to support 

Miorandi et al. (2012) discuss in their paper the IoT's vision and concept, after 
which they preliminarily identify key system-level features that the IoT needs 
to support: 

Devices heterogeneity. The IoT will be characterized by a large heterogeneity 
in terms of devices taking part in the system, and they are expected to present 
very different capabilities from the computational and communication stand-
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points. The management of such a high level of heterogeneity shall be sup-
ported at both architectural and protocol levels. In particular, this may question 
the 'thin waist' approach at the basis of IP networking. (Miorandi et al., 2012.) 

Scalability. As everyday objects get connected to a global information in-
frastructure, scalability issues arise at different levels including naming and 
addressing (due to the sheer size of the resulting system), data communication 
and networking (due to the high level of interconnection among a large number 
of entities), information and knowledge management (due to the possibility of 
building a digital counterpart to any entity and/or phenomena in the physical 
realm), and service provisioning and management (due to the massive number 
of services / service execution options that could be available and the need to 
handle heterogeneous resources). (Miorandi et al., 2012.) 

Ubiquitous data exchange through proximity wireless technologies. In the IoT, a 
prominent role will be played by wireless communications technologies that 
will enable smart objects to become networked. (Miorandi et al., 2012.) The 
ubiquitous adoption of the wireless medium for exchanging data may pose is-
sues in terms of spectrum availability, pushing towards the adoption of cogni-
tive/dynamic radio systems (Haykin, 2005, as cited in Miorandi et al., 2012).  

Energy-optimized solutions. For a variety of IoT entities, minimizing the en-
ergy spent for communication/computing purposes will be a primary con-
straint. While techniques related to energy harvesting (by means of e.g., 
piezoelectric materials or micro solar panels) will relieve devices from the 
constraints imposed by battery operations, energy will always be a scarce re-
source to be handled with care. Thereby the need to devise solutions that tend 
to optimize energy usage (even at the expense of performance) will become 
more and more attractive. (Miorandi et al., 2012.) 

Localization and tracking capabilities. As entities in the IoT can be identified 
and are provided with short-range wireless communications capabilities, it be-
comes possible to track the location (and the movement) of smart objects in the 
physical realm. This is particularly important for an application in logistics and 
product life-cycle management that are already extensively adopting RFID 
technologies. (Miorandi et al., 2012.) 

Self-organization capabilities. The complexity and dynamics that many IoT 
scenarios will likely present calls for distributing intelligence in the system, 
making smart objects (or a subset thereof) able to autonomously react to a wide 
range of different situations in order to minimize human intervention. (Mio-
randi et al., 2012.) Following users' requests, nodes in the IoT will organize 
themselves autonomously into transient ad hoc networks, providing the basic 
means for sharing data and for performing coordinated tasks (Chlamtac, Conti 
& Liu, 2003, as cited in Miorandi et al., 2012). This includes the ability to per-
form device and service discovery without requiring an external trigger, to 
build overlays, and to adaptively tune protocols' behavior to adapt to the cur-
rent context (Dobson et al., 2006, as cited in Miorandi et al., 2012). 

Semantic interoperability and data management. The IoT will be much about 
exchanging and analyzing massive amounts of data. In order to turn them into 
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useful information and to ensure interoperability among different applications, 
it is necessary to provide data with adequate and standardized formats, models, 
and semantic description of their content (metadata), using well-defined lan-
guages and formats. This will enable IoT applications to support automated 
reasoning, a key feature for enabling the successful adoption of such a technol-
ogy on a wide scale. (Miorandi et al., 2012.) 

Embedded security and privacy-preserving mechanisms. Due to the tight en-
tanglement with the physical realm, IoT technology should be secure and pri-
vacy-preserving by design. This means that security should be considered a key 
system-level property, and be taken into account in the design of architectures 
and methods for IoT solutions. This is expected to represent a key requirement 
for ensuring the acceptance by users and the wide adoption of the technology. 
(Miorandi et al., 2012.) 

4.4.3 Key requirements of a smart city software architecture 

Da Silva et al. (2013) deal with several smart city software architectures noting 
that although the literature contains several works about the subject, a reference 
architecture that permeates the entire operation of a smart city has not been 
minimally designed yet. However, by studying different architectures, Da Silva 
et al. (2013) were able to present a number of key requirements that have to be 
met when implementing a smart city software architecture: 

Objects interoperability. One of the most discussed and studied require-
ments is interoperability of objects in which the object is an abstraction of a sen-
sor, actuator, or any device, able to perform some sort of computation. In fact, 
this is a critical requirement to the consolidation of any platform that uses a 
range of objects with different technical specifications and communication pro-
tocols. (Da Silva et al., 2013.) The vast majority of architectures that Da Silva et 
al. (2013) studied explicitly designate a module or layer to meet this require-
ment. 

Sustainability. Due to the high coverage of all smart city areas, architec-
tures have to include, since their conception, sustainable policies. These policies 
are related to environmental, economic, and social aspects of each domain. (Da 
Silva et al., 2013.) 

Real-time monitoring. Another important feature inherent to the smart cit-
ies' context is continuous real-time monitoring. The real-time monitoring is the 
most valuable instrument to provide relevant information that will be used to 
predict phenomena. An example is the monitoring of the water level during the 
rainy seasons. In this situation, from an effective monitoring measures can be 
taken to mitigate potential inconvenience to citizens, e.g., floods and disease 
transmission. (Da Silva et al., 2013.) 

Historical data. In the smart cities' context, all the components that compose 
each area of a city are constantly being modified, either by natural factors or 
human activities. Hence, all data picked up has the potential to become relevant, 
as long as it is somehow associated to other data. Therefore, it is substantial that 
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the architectures include efficient storage and retrieval mechanisms for such 
data. (Da Silva et al., 2013.) 

Mobility. Mobility is another key requirement that has to be explored in 
smart cities. Mobility means any mobile technology to capture information 
about the environment or act over the same. Mobility is a key ally for the im-
plementation of real-time monitoring. (Da Silva et al., 2013.) When considering 
that four billion people already have smart phones (Hall, 2012, as cited in Da 
Silva et al., 2013), it is natural to associate mobility to the use of these devices, 
but other devices can also be successfully used, e.g., ZigBee and RFID (Da Silva 
et al., 2013). 

Availability. To allow this data capture, the centralizing infrastructure has 
to be highly available. Hence, if a cloud computing infrastructure is used, flow 
control mechanisms, collision, and redundancy must be inherent to the solution. 
Although, the system has to continue obtaining and storing data, even acting 
autonomously, independently of the state of the infrastructure. (Da Silva et al., 
2013.) 

Privacy. All these issues of data delivery are of paramount importance to 
any architecture. However, one should establish privacy policies explaining 
what data will be captured and what will be done with these. Certainly the con-
solidation of these policies is a challenge that can prevent citizens, institutions, 
and the government to provide certain critical data. Due to the high relevance 
of this requirement, it is not permissible for an architecture not to satisfy it. (Da 
Silva et al., 2013.) 

Distributed sensing and processing. It is through the sensing that a computer 
vision of the urban environment is obtained. The greater the number of sensors 
and the more dispersed they are, the higher the scope covered by the architec-
ture. The heterogeneity of sensors influences the richness of detail and the 
amount of data that can be extracted from each scenario being monitored, being 
possible to obtain more accurate results. Situations that require preventive or 
corrective measures to be instantly taken demand processing in real-time, with 
a response time fast enough to provide bases for actions that must be per-
formed as soon as the situation is identified, suggest the need for distributed 
processing, exploiting the capacity of an existing infrastructure. (Da Silva et al., 
2013.) 

Service composition and integrated urban management. In a systemic view, ur-
ban environments are essentially a set of complex systems available to meet the 
needs of their citizens. Architectures that are willing to give support to these 
systems should consider them as complementary in the search for an effective 
urban management rather than treating them isolated. Services developed to 
treat each system must be interoperable so that other services can reuse, group, 
or create a composition using them, exploring important aspects in the correla-
tion between different systems, or even create a holistic and contextualized 
view of the city in which the architecture was implemented. (Da Silva et al., 
2013.) 
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Social aspects. A smart city architecture cannot be based uniquely on tech-
nology. The main purpose in designing a smart city is to increase the quality of 
life of its citizens. People need to be involved and benefit from the process, oth-
erwise the entire investment will be in vain. A smart city is also made of a 
change in the behavior of its citizens, and they have to feel included as a fun-
damental part in its deployment, feel encouraged to be a part of the solution. 
For this purpose, it can be created ways to stimulate and/or reward this interest. 
(Da Silva et al., 2013.) 

Flexibility/extensibility. Changes, adaptations, and extensions should be 
foreseen in the architecture. Besides adding new services, new types of sensors, 
different data types, and urban contexts and hardware, independent operation 
should be addressed by the architecture, allowing it to be adaptable to different 
realities. (Da Silva et al., 2013.) 

4.4.4 Cloud-centric Internet of Things requirements 

Gubbi, Buyya, Marusic, and Palaniswami (2013) discuss a cloud-centric IoT, a 
conceptual IoT framework that integrates wireless sensor networks with appli-
cations, cloud computing being in the center of things providing scalable stor-
age, computation time, and other tools to build new businesses. They mention 
that for the realization of a complete IoT vision, efficient, secure, scalable, and 
market-oriented computing and storage resourcing is essential. 

As for the aforementioned cloud-centric IoT framework, Gubbi et al. (2013) 
note that developing IoT applications using low-level cloud programming 
models and interfaces, e.g., thread and MapReduce models, is complex. To 
overcome this, there is a need for an IoT application-specific framework for the 
rapid creation of applications and their deployment on cloud infrastructures 
(Gubbi et al., 2013). This is achieved by mapping the proposed framework to 
cloud APIs offered by platforms such as Aneka (Gubbi et al., 2013), a .NET-
based application development PaaS that can utilize storage and compute re-
sources of both public and private clouds (Wei, Sukumar, Vecchiola, Ka-
runamoorthy & Buyya, 2011, as cited in Gubbi et al., 2013). It offers a runtime 
environment and a set of APIs that enable developers to build customized ap-
plications by using multiple programming models, e.g., task programming, 
thread programming, and MapReduce programming (Gubbi et al., 2013). 

The new IoT application-specific framework should be able to provide 
support for reading data streams either from sensors directly or fetch the data 
from databases, easy expression of data analysis logic as functions/operators 
that process data streams in a transparent and scalable manner on cloud infra-
structures, and if any events of interest are detected, outcomes should be passed 
to output streams that are connected to a visualization program. Using such a 
framework, the developer of IoT applications will be able to harness the power 
of cloud computing without knowing low-level details of creating reliable and 
scale applications. (Gubbi et al., 2013.) 
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4.5 Framework of requirements for integrating a smart city with a 
cloud infrastructure 

The framework of requirements for integrating a smart city with a cloud infra-
structure is depicted in the tables 3 and 4. The requirements in the table 3 are 
again requirements for cloud computing in general, while the requirements in 
the table 4 are more closely related to cloud data management. 

In the first column are again named the cloud requirements that have been 
derived from the requirements or considerations described in the literature 
sources. However, the cloud requirements that could not be explicitly con-
nected to the smart city requirements are not presented in the tables. In the sec-
ond column are again examples and illustrations of the cloud requirements. In 
the third column are once again mentioned the original names of the cloud re-
quirements or considerations described in the literature sources, as well as their 
respective sources. As have been noted previously, some requirements are de-
rived from 'larger' requirements or considerations. 

Next, in the fourth column are named the requirements for integrating a 
smart city with a cloud infrastructure. As the cloud requirements, also these 
requirements have been derived from the requirements or considerations de-
scribed in the literature sources. E.g., fault tolerance is discussed under avail-
ability and resilience in the IoT RA (Internet of Things Architecture, 2013). 

In the fifth column, there are examples and illustrations of the smart city 
requirements. Again, the reason for this is to make the tables easier to read. Fi-
nally, in the sixth column are mentioned the original names of the smart city 
requirements or considerations described in the literature sources, as well as 
their respective sources. This is again because some smart city requirements 
have been derived from 'larger' requirements or considerations. 

The framework functions as a guiding principle that helps e.g., researchers 
and decision-makers to map, among other things, what a smart city data ware-
house requires of cloud data management systems in general. An efficient inte-
gration of a smart city data warehouse with a cloud infrastructure means that 
requirements for smart city data management match, more or less, require-
ments for, or characteristics of, cloud data management. With the help of the 
framework, it can also be decided what are the most important requirements 
for some individual case. As the requirements are quite general and abstract, 
the application of the framework requires in practice technical expertise and 
measurements. 

As it can be seen from the framework, the connection between smart cities 
and cloud computing is loose in some cases, which means that there are some-
what similar requirements both for cloud computing and smart cities, but their 
focus is different. E.g., under service-centric issues there is a need for a cloud 
computing system to be autonomic (Rimal et al., 2011). In regard to a smart city, 
there is also a need for autonomicity under self-organization capabilities. How-
ever, this does not refer to an autonomic cloud computing system, but to the 
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ability of smart objects to autonomously react to different situations (Miorandi 
et al., 2012). 

As for cloud computing, the ability to run in a heterogeneous environment 
refers to the fact that it is nearly impossible to get homogeneous performance 
across hundreds or thousands of computing nodes, but performance should not 
be degraded due to e.g., failures (Sakr et al., 2011; see also Abouzeid et al., 2009). 
In regard to smart cities, there is also a large heterogeneity, but in terms of de-
vices that are expected to present very different capabilities from the computa-
tional and communication standpoints (Miorandi et al., 2012). There are many 
kinds of mobile devices with localization and tracking capabilities that imple-
ment real-time monitoring, as well as distributed sensing and processing virtu-
ally all the time (Miorandi et al., 2012; Da Silva et al., 2013). 

There is a need for interoperability both in cloud computing and smart 
city solutions. As for cloud computing, interoperability refers to the migration 
and integration of applications and data between different cloud systems (Ri-
mal et al., 2011). In regard to smart cities, the most similar requirement is evolu-
tion and interoperability that refers to the fact that requirements change and 
software evolves sometimes rapidly and needs to interoperate not only with 
today's technologies, but possibly also with later technologies (Internet of 
Things Architecture, 2013). 

All in all, interoperability seems to be very vital requirement in smart cit-
ies. There is a need for interoperability between proximity wireless technologies. 
There is also a need for semantic interoperability and data management that 
requires, among other things, providing data with adequate and standardized 
formats, models, and metadata (Miorandi et al., 2012). Objects, abstractions of 
sensors, actuators, or any devices, need to be interoperable. Service composition 
and integrated urban management refers, among other things, to the fact that 
services must be interoperable so that other services can reuse, group, or create 
a composition using them. Then again, flexibility/extensibility refers to evolu-
tion. Changes, adaptations, and extensions should be foreseen in the architec-
ture. (Da Silva et al., 2013.) 

In a number of requirements the connection is firmer. There is clearly a 
need for fault tolerance, privacy, (data) security, scalability, user involvement, 
availability, performance, and sustainability both in cloud computing solutions 
and smart cities. Of these requirements, especially performance and scalability 
are crucial requirements in regard to cloud data management. The IoT will be 
much about exchanging and analyzing massive amounts of data (Miorandi et 
al., 2012), so a cloud data management system has to be able to support e.g., 
very large databases with very high request rates at very low latency (Sakr et al., 
2011; see also Cooper et al., 2009). 

In summary, it can be interpreted that a smart city requires of a cloud in-
frastructure at least availability, autonomicity, scalability, performance, inter-
operability, and fault tolerance, as well as privacy and security. Of the 'softer' 
non-technical requirements user involvement and sustainability cannot be left 
aside. 
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TABLE 3 Integrating smart city requirements with general cloud computing requirements 

Cloud comput-
ing require-
ment 

Examples and illus-
trations 

Literature 
source 

Smart city 
requirement 

Examples and illus-
trations 

Literature 
source 

Service-centric 
issues  

Autonomic, self-describiting, 
low cost composition of 
distributed applications 
(Rimal et al., 2011). 

Service-centric issues 
(Rimal et al., 2011). 

Autonomicity Distributing intelligence in 
the system, making smart 
objects able to autonomously 
react to a wide range of 

different situations in order 
to minimize human interven-
tion (Miorandi et al., 2012). 

Self-organization 
capabilities (Mio-
randi et al., 2012). 

Fault tolerance Fault isolation to the falling 
components, availability of 
reversion mode, etc. (Rimal et 

al., 2011). 

Fault tolerance 
(Rimal et al., 2011). 

Fault tolerance The ability of a system to 
effectively handle failures 
that could affect system's 

availability (Internet of 
Things Architecture, 2013). 

Availability and 
resilience (Internet of 
Things Architecture, 

2013). 

Privacy Data that the user would 
regard as his personal 
intellectual property will be 
stored at mega data centers 

located around the world 
(Rimal et al., 2011). 

User-centric privacy 
(Rimal et al., 2011). 

Privacy  Privacy is an ability of the 
system to ensure that the 
collection of personally 
identifying information be 

minimized and that collected 
data should be used locally 
wherever possible (Internet 
of Things Architecture, 2013). 

Trust, security, and 
privacy (Internet of 
Things Architecture, 
2013), embedded 

security and privacy-
preserving mecha-
nisms (Miorandi et 
al., 2012). 

Security A data center holds the 
information that would more 

traditionally be stored on the 
end-user's computer (Rimal 
et al., 2011). 

Security (Rimal et al., 
2011). 

Security Security is an ability of the 
system to enforce the in-

tended confidentiality, 
integrity, and service access 
policies, and to detect and 
recover from failure in these 
security mechanisms (Inter-
net of Things Architecture, 
2013). 

Trust, security, and 
privacy (Internet of 

Things Architecture, 
2013), embedded 
security and privacy-
preserving mecha-
nisms (Miorandi et 
al., 2012), security 
(Gubbi et al., 2013). 

Interoperability The creation of an agreed-
upon framework/ontology, 
open data format, or open 
protocols/APIs enabling 
migration and integration 
between cloud service 
providers and facilitating 

secure information exchange 
across platforms (Rimal et al., 
2011). 

Interoperability 
(Rimal et al., 2011). 

Evolution and 
interoperability 

Requirements change and 
software evolves sometimes 
rapidly and needs to interop-
erate not only with today's 
technologies, but possibly 
also with later technologies 
(Internet of Things Architec-

ture, 2013). 

Evolution and 
interoperability 
(Internet of Things 
Architecture, 2013), 
ubiquitous data 
exchange through 
proximity wireless 

technologies, seman-
tic interoperability 
and data manage-
ment (Miorandi et 
al., 2012), objects 
interoperability, 
service composition 

and integrated urban 
management, 
flexibility/extensibil-
ity (Da Silva et al., 
2013). 

Scalability DHT, column-orientation, 
and horizontal partitioning 

(Rimal et al., 2011). 

Scalability (Rimal et 
al., 2011). 

Scalability The ability of the system to 
handle increased processing 

volumes in the future if 
required (Internet of Things 
Architecture, 2013). 

Performance and 
scalability (Internet 

of Things Architec-
ture, 2013), scalabil-
ity (Gubbi et al., 
2013). 

User experience 
(UX) 

UX-driven design and 
deployment (Rimal et al., 

2011). 

User experience (UX) 
(Rimal et al., 2011). 

User involve-
ment 

The main purpose in design-
ing a smart city is to increase 

the quality of life of its 
citizens. People need to be 
involved and benefit from the 
process. (Da Silva et al., 
2013.) 

Social aspects (Da 
Silva et al., 2013). 
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TABLE 4 Integrating smart city requirements with cloud data management requirements 

Cloud data 
management 
requirement 

Examples and 
illustrations 

Literature 
source 

Smart city 
requirement 

Examples and 
illustrations 

Literature source 

Data storage 
device type 

HDDs, SSDs, hybrid hard 
disks (Rimal et al., 2011). 

Data management, 
storage, and process-
ing (Rimal et al., 
2011). 

Sustainability Minimizing IoT entities' 
energy spent for communica-
tion/computing purposes 
(Miorandi et al., 2012). 

Energy-optimized 
solutions (Miorandi et 
al., 2012), sustainabil-
ity (Da Silva et al., 

2013). 

Programming 
model 

MapReduce is not a perfect 
fit for all tasks (Rimal et al., 
2011). 

Data management, 
storage, and process-
ing (Rimal et al., 
2011). 

IoT application-
specific frame-
work 

Developing IoT applications 
using low-level cloud 
programming models and 
interfaces, e.g., Thread and 
MapReduce, is complex. To 

overcome this, there is a need 
for an IoT application-
specific framework for rapid 
creation of applications and 
their deployment on cloud 
infrastructures. (Gubbi et al., 
2013.) 

IoT application-
specific framework 
(Gubbi et al., 2013). 

Automatic Underlying infrastructure 
changes can be made quickly 
and without human 
intervention (Wu et al., 2010). 

Automatic (Wu et 
al., 2010). 

Autonomicity Distributing intelligence in 
the system, making smart 
objects able to autonomously 
react to a wide range of 
different situations in order 
to minimize human interven-

tion (Miorandi et al., 2012). 

Self-organization 
capabilities (Miorandi 
et al., 2012). 

Availability Cloud data management 
system has to be always 
accessible (Sakr et al., 2011; 
see also Cooper et al., 2009). 

Availability (Sakr et 
al., 2011; see also 
Cooper et al., 2009). 

Availability The ability of the system to 
stay operational (Internet of 
Things Architecture, 2013). 

Availability and 
resilience (Internet of 
Things Architecture, 
2013), availability (Da 
Silva et al., 2013). 

Scalability Cloud storage needs to scale 
quickly and to tremendous 
capacities (Wu et al., 2010). 
Cloud data management 
system has to be able to 
support very large databases 
with very high request rates 

at very low latency (Sakr et 
al., 2011; see also Cooper et 
al., 2009). 

Scalability (Wu et al., 
2010), scalability 
(Sakr et al., 2011; see 
also Cooper et al., 
2009). 

Scalability The ability of the system to 
handle increased processing 
volumes in the future if 
required (Internet of Things 
Architecture, 2013). Scalabil-
ity issues at different levels 
(Miorandi et al., 2012). 

Performance and 
scalability (Internet of 
Things Architecture, 
2013), scalability 
(Miorandi et al., 2012), 
historical data (Da 
Silva et al., 2013). 

Privacy The storage of person-
al/enterprise sensitive data 
(Rimal et al., 2011). 

User-centric privacy 
(Rimal et al., 2011). 

Privacy Privacy is an ability of the 
system to ensure that the 
collection of personally 

identifying information be 
minimized and that collected 
data should be used locally 
wherever possible (Internet 
of Things Architecture, 2013). 

Trust, security, and 
privacy (Internet of 
Things Architecture, 

2013), embedded 
security and privacy-
preserving mecha-
nisms (Miorandi et al., 
2012), privacy (Da 
Silva et al., 2013). 

Data security Cloud storage providers 
have to establish multi-
tenancy policies to allow e.g., 
separate companies to 
securely share the same 
storage hardware (Wu et al., 
2010). 

Data security (Wu et 
al., 2010). 

Security Security is an ability of the 
system to enforce the 
intended confidentiality, 
integrity, and service access 
policies, and to detect and 
recover from failure in these 
security mechanisms (Inter-
net of Things Architecture, 

2013). 

Trust, security, and 
privacy (Internet of 
Things Architecture, 
2013), embedded 
security and privacy-
preserving mecha-
nisms (Miorandi et al., 
2012), security (Gubbi 

et al., 2013). 

Performance A proven storage infrastruc-
ture providing fast, robust 
data recovery. Important to 
measure and test network 
latency before committing to 

a migration. (Wu et al., 2010.) 
Efficient system performance 
is a crucial requirement to 
save money (Sakr et al., 2011; 
see also Abouzeid et al., 
2009). 

Performance, latency 
(Wu et al., 2010), 
performance (Sakr et 
al., 2011; see also 
Abouzeid et al., 

2009), efficiency 
(Abadi, 2009).  

Performance The ability of the system to 
predictably execute within its 
mandated performance 
profile (Internet of Things 
Architecture, 2013). 

Performance and 
scalability (Internet of 
Things Architecture, 
2013), efficiency 
(Gubbi et al., 2013). 

Fault tolerance As for transactional work-
loads, recovering from a 
failure without losing any 
data or updates from 
recently committed transac-
tions (Sakr et al., 2011; see 
also Abouzeid et al., 2009). A 
fault tolerant analytical 

DBMS is one that does not 
have to restart a query if one 
of the nodes involved in 
query processing fails 
(Abadi, 2009). 

Fault tolerance (Sakr 
et al., 2011; see also 
Abouzeid et al., 
2009), fault tolerance 
(Abadi, 2009). 

Fault tolerance The ability of a system to 
effectively handle failures 
that could affect system's 
availability (Internet of 
Things Architecture, 2013). 

Availability and 
resilience (Internet of 
Things Architecture, 
2013). 
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Cloud data 
management 
requirement 

Examples and 
illustrations 

Literature 
source 

Smart city 
requirement 

Examples and 
illustrations 

Literature source 

Ability to run in 
a heterogenous 
environment 

A cloud data management 
system has to take measures 
to prevent degrading 
performance due to parallel 

processing on distributed 
nodes (Sakr et al., 2011; see 
also Abouzeid et al., 2009). 

Ability to run in a 
heterogenous 
environment (Sakr et 
al., 2011; see also 

Abouzeid et al., 
2009), ability to run 
in a heterogenous 
environment (Abadi, 
2009). 

Devices hetero-
geneity 

The IoT will be characterized 
by a large heterogeneity in 
terms of devices, which are 
expected to present very 

different capabilities from 
the computational and 
communication standpoints 
(Miorandi et al., 2012). 

Devices heterogeneity, 
localization and 
tracking capabilities 
(Miorandi et al., 2012), 

mobility, real-time 
monitoring, distrib-
uted sensing and 
processing (Da Silva et 
al., 2013). 

Energy effi-
ciency 

Green storage technology 

leads to a lower carbon 
footprint (Wu et al., 2010). 

Energy efficiency 

(Wu et al., 2010). 
Sustainability Minimizing IoT entities' 

energy spent for communica-
tion/computing purposes 
(Miorandi et al., 2012). 

Energy-optimized 

solutions (Miorandi et 
al., 2012), sustainabil-
ity (Da Silva et al., 
2013). 
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5 RESEARCH METHOD OF THE STUDY 

This chapter is organized as follows. First, design science is briefly introduced. 
Then, the research process of the study is presented. Next, the central concepts 
of the study are dealt with. Finally, the research method of the study is explored. 

5.1 Introduction of design science 

There are many ways to look at design science. Gregor (2006; see also Gregor & 
Jones, 2007) examines the structural nature of theory in the discipline of infor-
mation systems (IS) in which she finds five types of theory: analysis (what is), 
explanation (what is, how, why, when, and where), prediction (what is and 
what will be), explanation and prediction (what is, how, why, when, where, 
and what will be), and design and action (how to do something). The distin-
guishing attribute of theories for design and action is, as already mentioned, 
that they focus on 'how to do something.' They give explicit prescriptions on 
how to design and develop an artifact, whether it is a technological product or a 
managerial intervention. (Gregor & Jones, 2007.) 

The term artifact is used to describe something that is artificial or con-
structed by humans, as opposed to something that occurs naturally (Gregor & 
Jones, 2007; see also Simon, 1996). According to March and Smith (1995), IT arti-
facts are of four types: constructs or concepts (form the vocabulary of a domain), 
models (a set of propositions or statements expressing the relationships among 
constructs), methods (a set of steps (an algorithm or guideline) used to perform a 
task), and instantiations (a realization of an artifact in its environment). 

According to Hevner et al. (2004), two paradigms characterize much of the 
research in the discipline of IS: behavioral science and design science. The behav-
ioral science paradigm has its roots in natural science research methods. It seeks 
to develop and justify theories, i.e., principles and laws, which explain or pre-
dict organizational and human phenomena surrounding the analysis, design, 
implementation, management, and use of information systems. (Hevner et al., 
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2004.) Design science has its roots in engineering and the sciences of the artificial 
(Hevner et al., 2004; see also Simon, 1996). It is fundamentally a problem-
solving paradigm. It creates and evaluates IT artifacts intended to solve identi-
fied organizational problems. Such artifacts are represented in a structured 
form that may vary from software, formal logic, and rigorous mathematics to 
informal natural language descriptions. In brief, the goal of behavioral science 
research is truth, while the goal of design science research is utility. (Hevner et 
al., 2004.) 

One other way to see what design science is about is to look at Järvinen 
and Järvinen's taxonomy of research methods in which design research belongs 
to the research approaches studying reality – not stressing what is reality, but 
stressing the utility of innovations (Järvinen, 2012). Järvinen (2012) also notes 
that research is normally divided to basic and applied research. The purpose of 
the basic research is to find out what is a part of reality. The knowledge of the 
basic research, the basic laws of the explanatory sciences, are applied to the ap-
plied research that e.g., design science represents. (Järvinen, 2012.) 

According to Kaplan (1964, as cited in March & Smith, 1995), natural sci-
ence is often viewed as consisting of two activities, discovery and justification. 
Discovery is the process of generating or proposing scientific claims, e.g., theo-
ries and laws. Justification includes activities by which such claims are tested 
for validity. Design science consists of two basic activities, building and evalu-
ating, which parallel the discovery-justification pair from natural science. Build-
ing is the process of constructing an artifact for a specific purpose. Evaluation is 
the process of determining how well the artifact performs. It requires the devel-
opment of metrics and the measurement of artifacts according to those metrics. 
(March & Smith, 1995.) 

5.2 Research process of the study 

Peffers, Tuunanen, Rothenberger, and Chatterjee (2007) present in their paper 
the design science research methodology (DSRM) that comprises, among other 
things, a nominal process model for doing design science research. A simplified 
version of this process model, from Ostrowski's, Helfert's, and Xie's (2012) pa-
per, is depicted in the figure 8. The process model itself is the same in both of 
these papers. From Ostrowski et al.'s (2012) model is only omitted the fact that 
in reality, a research process may begin at almost any step of the process (Pef-
fers et al., 2007). This study was, however, somewhat straightforward, so there 
is no need to discuss this matter any further. 

Peffers et al.'s (2007) DSRM process model includes six steps: problem 
identification and motivation, definition of the objectives for a solution, design 
and development, demonstration, evaluation, and communication. Next, these 
steps and their implementation in this study are presented. 
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FIGURE 8 DSRM process model (Ostrowski et al., 2012, 4075) 

1. Problem identification and motivation. Define the specific research problem and 
justify the value of a solution. Since the problem definition will be used to de-
velop an artifact that can effectively provide a solution, it may be useful to at-
omize the problem conceptually so that the solution can capture its complexity. 
Justifying the value of a solution accomplishes two things: it motivates the re-
searcher and the audience of the research to pursue the solution and to accept 
the results and it helps to understand the reasoning associated with the re-
searcher's understanding of the problem. Resources required for this activity 
include knowledge of the state of the problem and the importance of its solu-
tion. (Peffers et al., 2007.) 

The Kangas project is the main urban development project of the City of 
Jyväskylä for the next several decades (Jyväskylän kaupunki, 2011). The Kangas 
area is introduced later on, but in brief, it will form a smart city in the future. 
This project requires implementing, but first, planning for many things. One of 
them is the data warehouse of the area. It was decided at the University of Jy-
väskylä that the data warehouse will be built on the cloud with the help of the 
university's hardware, network, and other resources, e.g., Eucalyptus cloud 
software that is introduced later on. The two candidates for the software of the 
data warehouse, Stardog and Neo4j, are also introduced later on. 

Before implementing the data warehouse, there is, however, a need to 
know how a smart city data warehouse can be efficiently integrated with a 
cloud infrastructure in general. This requires knowledge of the requirements for 
smart cities, especially their data management, and the requirements for cloud 
computing systems, especially their data management. In the research literature 
exist many requirements for smart cities and their data management, as well as 
cloud computing systems and their data management, but before this study, 
there appeared to be no generalizable framework that would have integrated 
these requirements with each other. Hence, it was realized that this kind of 
framework could be useful e.g., to researchers and decision-makers. 

2. Definition of the objectives for a solution. Infer the objectives of a solution 
from the problem definition and knowledge of what is possible and feasible. 
The objectives can be quantitative, e.g., terms in which a desirable solution 
would be better than current ones, or qualitative, e.g., a description of how a 
new artifact is expected to support solutions to problems not hitherto addressed. 
The objectives should be inferred rationally from the problem specification. Re-
sources required for this include knowledge of the state of problems and 
current solutions, if any, and their efficacy. (Peffers et al., 2007.) 
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The main objective of this study has been to build the aforementioned 
framework and answer with the help of it to the main research question: how a 
smart city data warehouse can be efficiently integrated with a cloud infrastruc-
ture? As already mentioned, there appeared to be no such framework in exis-
tence before this study. Answering to the main research question has also re-
quired answering to the sub-questions of this study: What is cloud computing? 
What is cloud data management? What are the requirements for cloud data 
management? What are smart cities? What are the requirements for smart city 
data management? Getting answers to these questions has formed the sub-
objectives of this study. 

3. Design and development. Create the artifact. Such artifacts are potentially 
constructs, models, methods, or instantiations (each defined broadly) (Hevner, 
March & Park, 2004, as cited in Peffers et al., 2007) or 'new properties of techni-
cal, social, and/or informational resources' (Järvinen, 2007, as cited in Peffers et 
al., 2007). Conceptually, a design research artifact can be any designed object in 
which a research contribution is embedded in the design. This activity includes 
determining the artifact's desired functionality and its architecture and then 
creating the actual artifact. Resources required moving from objectives to de-
sign and development include knowledge of theory that can be brought to bear 
in a solution. (Peffers et al., 2007.) 

In this activity, the artifact, i.e., the aforementioned framework, was cre-
ated by conducting a somewhat extensive literature review. The literature re-
view was conducted in practice so that in the course of it the requirements for 
smart cities, especially their data management, and the requirements for cloud 
computing systems, especially their data management, were looked for in many 
scholarly papers and other publications. Then, the most relevant of these re-
quirements were integrated with each other to form the framework that func-
tions as a guiding principle, being able to answer to many questions, e.g., the 
main research question. The framework and its operating principle have been 
presented earlier. 

4. Demonstration. Demonstrate the use of the artifact to solve one or more 
instances of the problem. This could involve its use in experimentation, simula-
tion, case study, proof, or other appropriate activity. Resources required for the 
demonstration include effective knowledge of how to use the artifact to solve 
the problem. (Peffers et al., 2007.) 

The use of the artifact, i.e., the aforementioned framework, was demon-
strated by solving one instance of the problem that is in this case the Kangas 
project. In practice, the framework was examined by the author and supervisors 
of this thesis, and together they chose the most important requirements for the 
data warehouse of the Kangas area: performance and scalability. In the next 
step, they are operationalized, after which two candidates for the software of 
the data warehouse, Stardog and Neo4j, are tested for them. The selection of 
Stardog and Neo4j was made solely by the author who had several reasons for 
their selection: their data models are suitable for smart cities, their installation 
and usage is possible for a person who is not a database expert and who has at 
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most intermediate level of knowledge of various Linux distributions, their 
documentations are of high quality, they have out-of-the-box distributed data-
base management system (DDBMS) functionalities, and their licenses do not 
prohibit benchmarking them against other database products and publishing 
such benchmarking results. Many other promising databases could not be util-
ized e.g., due to these reasons. The top candidates were AllegroGraph, Virtuoso, 
OWLIM, 4store, Bigdata, Apache Jena, Sesame, OrientDB, and MongoDB. 

5. Evaluation. Observe and measure how well the artifact supports a solu-
tion to the problem. This activity involves comparing the objectives of a solu-
tion to actual observed results from use of the artifact in the demonstration. It 
requires knowledge of relevant metrics and analysis techniques. Depending on 
the nature of the problem venue and the artifact, evaluation could take many 
forms, such as quantifiable measures of system performance, e.g., response time 
or availability. Conceptually, such evaluation could include any appropriate 
empirical evidence or logical proof. At the end of this activity the researchers 
can decide whether to iterate back to step three to try to improve the effective-
ness of the artifact or to continue on to communication and leave further im-
provement to subsequent projects. The nature of the research venue may dictate 
whether such iteration is feasible or not. (Peffers et al., 2007.) 

In this step, the artifact, i.e., the aforementioned framework, is evaluated 
by benchmarking the performance of two candidates for the software of the 
data warehouse, Stardog and Neo4j, and comparing them subjectively. The 
original plan was to benchmark also scalability of the chosen databases (see 
previous step), but this proved to be too difficult. Such an attempt would have 
required setting up distributed databases and putting heavy load on them. 
Since attempts to get Stardog Cluster's beta version (Stardog's DDBMS func-
tionality) working were not successful and the author lacks computing re-
sources to create heavy load, the plan for benchmarking scalability of Stardog 
and Neo4j was abandoned. However, their performance is benchmarked by 
conducting several performance tests, after which the results of these tests are 
analyzed to decide which database performs better in this case. Then, Stardog 
and Neo4j are compared subjectively as well, and finally, based on all these ex-
periences, the framework itself is evaluated. Its further improvement is left for 
future researchers. 

6. Communication. Communicate the problem and its importance, the arti-
fact, its utility and novelty, the rigor of its design, and its effectiveness to re-
searchers and other relevant audiences, e.g., practicing professionals when ap-
propriate. Communication requires knowledge of the disciplinary culture. (Pef-
fers et al., 2007.) 

The results of this study, the most important of them being the aforemen-
tioned framework and its evaluation, as well as the comparison of Stardog and 
Neo4j, are published as a master's thesis by the author and the University of 
Jyväskylä. The results are available both in electronic and paper form. 
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5.3 Introduction of the central concepts of the study 

Next, the central concepts of the study are introduced. First, Amazon Web Ser-
vices and Eucalyptus cloud software are presented. Then, the Kangas area of 
the City of Jyväskylä is introduced. Next, two candidates for the software of the 
data warehouse, Stardog and Neo4j, are dealt with. Finally, a performance test-
ing tool, Apache JMeter, is presented. 

5.3.1 Amazon Web Services (AWS) 

Amazon Web Services (AWS) began offering IT infrastructure services to busi-
nesses in the form of web services, now commonly known as cloud computing, 
in 2006. Today, AWS provides a highly reliable, scalable, and low-cost infra-
structure platform in the cloud that powers hundreds of thousands of busi-
nesses in 190 countries around the world. (Amazon Web Services, 2014a.) AWS 
offers currently dozens of services, with more being added each year (Amazon 
Web Services, 2014b). It is not possible to describe all of them here, but as far as 
the author knows, the most famous of these services are Amazon Elastic Com-
pute Cloud and Amazon Simple Storage Service. Next, they are briefly intro-
duced alongside Amazon EC2 Instance Store and Amazon Elastic Block Store 
that are central to Amazon Elastic Compute Cloud. 

Amazon Elastic Compute Cloud (Amazon EC2) provides scalable computing 
capacity in the AWS cloud. A customer can use Amazon EC2 to launch as many 
or as few virtual servers as he needs, configure security and networking, and 
manage storage. Amazon EC2 provides many features, e.g., virtual computing 
environments (instances), preconfigured templates for instances (Amazon Ma-
chine Images, AMIs) including the operating system and additional software, 
various configurations of CPU, memory, storage, and networking capacity for 
instances (instance types), storage volumes for temporary data (instance store 
volumes), persistent storage volumes (Amazon Elastic Block Store volumes), 
and multiple physical locations (regions and availability zones) for resources. 
(Amazon Web Services, 2014c.) An example of an instance type that could be 
transformed into an instance later on is m3.medium with one vCPU (Intel Xeon 
E5-2670 v2 Ivy Bridge), 3.75 GiBs of RAM, and 4 GBs of SSD-based instance 
storage (Amazon Web Services, 2014d). 

Amazon EC2 Instance Store provides temporary block-level storage for use 
with an instance. The size of an instance store ranges from 900 MiBs to up to 48 
TiBs and varies by instance type. An instance store consists of one or more in-
stance store volumes. When a customer launches an instance store-backed AMI, 
each instance store volume available to the instance is automatically mapped. 
Otherwise, volumes have to be formatted and mounted on the running instance 
before they can be used. Instance store volumes are usable only from a single 
instance during its lifetime. Data on instance store volumes is lost e.g., when 
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terminating an instance. Hence, instance store volumes are ideal for temporary 
storage of information that changes frequently. (Amazon Web Services, 2014e.) 

Amazon Elastic Block Store (Amazon EBS) also provides block-level storage 
volumes for use with Amazon EC2 instances. However, unlike instance store 
volumes, Amazon EBS volumes that are attached to an Amazon EC2 instance 
are exposed as storage volumes that persist independently from the life of the 
instance. A customer can create Amazon EBS storage volumes from 1 GiBs to 1 
TiBs in size and mount them as devices on his Amazon EC2 instances. Amazon 
EBS volumes behave like raw, unformatted block devices. A customer can cre-
ate a file system on top of these volumes or use them in any other way he 
would use a block device, e.g., a hard drive. Multiple volumes can be mounted 
on the same instance. Amazon EBS is recommended when data changes fre-
quently and requires long-term persistence. (Amazon Web Services, 2014f.) 

Amazon Simple Storage Service (Amazon S3) is a data storage infrastructure 
that consists of buckets and objects (Amazon Web Services, 2014g, 2014h). A 
bucket is a container for objects stored in Amazon S3. Every object is contained 
in a bucket. Buckets organize the Amazon S3 namespace at the highest level, 
identify the account responsible for storage and data transfer charges, play a 
role in access control, etc. Objects are the fundamental entities stored in Amazon 
S3. They consist of object data and metadata. Every object in Amazon S3 can be 
uniquely addressed through the combination of the web service endpoint, 
bucket name, key, and optionally, a version. E.g., in the URL http://doc.s3.ama-
zonaws.com/2006-03-01/AmazonS3.wsdl 'doc' is the name of the bucket and '2006-
03-01/AmazonS3.wsdl' is the key. Each object can contain up to 5 TBs of data, 
but there are no boundaries to how many objects and how much data can be 
stored in each bucket. (Amazon Web Services, 2014h.) 

The Amazon S3 architecture is designed to be programming language-
neutral, using REpresentational State Transfer (REST) and SOAP interfaces to 
store and retrieve objects. A customer can choose the geographical region in 
which Amazon S3 stores the buckets he creates. (Amazon Web Services, 2014h.) 
Regions refer to the fact that Amazon EC2 is hosted in multiple locations world-
wide. Each region is a separate geographic area and has multiple, isolated loca-
tions known as availability zones. Each region is completely independent, and as 
already mentioned, each availability zone is isolated, however, they are con-
nected in a region through low-latency links. The isolated regions achieve the 
greatest possible fault tolerance and stability. (Amazon Web Services, 2014i.) 
Certain region might be chosen for different reasons, e.g., to optimize latency, 
minimize costs, or address regulatory requirements (Amazon Web Services, 
2014h). 

5.3.2 Eucalyptus cloud software 

Elastic Utility Computing Architecture for Linking Your Programs to Useful Systems 
(Eucalyptus) (Wolski et al., 2008) began as a research project in the Computer 
Science Department at the University of California, Santa Barbara, originating 
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from the Virtual Grid Application Development Software (VGrADS) project 
(2003–2008) (Eucalyptus Systems, 2014a; VGrADS, 2009). The Eucalyptus pro-
ject began to commercialize as an open source company in 2009 (Eucalyptus 
Systems, 2014a). Today, Eucalyptus is open source software for building AWS-
compatible private and hybrid clouds. It leverages a customer's existing IT in-
frastructure to create a self-service private cloud behind his firewall. IaaS is en-
abled with the private cloud by abstracting the available heterogeneous com-
pute, network, and storage resources. Eucalyptus claims to be the only solution 
that can transform a customer's IT infrastructure into a private cloud that works 
like AWS. Eucalyptus is compatible with AWS APIs, e.g., EC2, EBS, and S3. 
(Eucalyptus Systems, 2014b.) 

Eucalyptus' services are many, and it is thus impossible to describe all of 
them here. However, Eucalyptus' main components can be introduced. Euca-
lyptus is made up of six distinct components that can be distributed in various 
cloud computing architectures. The six components are grouped into three 
separate levels, as depicted in the figure 9 below. (Eucalyptus Systems, 2014c.) 
 

 
 
FIGURE 9 Main components of Eucalyptus (Eucalyptus Systems, 2014c) 

The Cloud Controller (CLC) is a Java program that offers EC2-compatible SOAP 
and Query interfaces, as well as a web interface to the outside world, for distri-
bution within the cloud architecture. In addition to handling incoming requests, 
the CLC acts as the administrative interface for cloud management and per-
forms high-level resource scheduling and system accounting. The CLC accepts 
user API requests from command-line interfaces, e.g., euca2ools, or GUI-based 
tools (graphical user interface), e.g., the Eucalyptus Management Console, and 
manages the underlying compute, storage, and network resources. In brief, the 
CLC handles high-level authentication, accounting, reporting, and quota man-
agement. Only one CLC can exist per cloud. (Eucalyptus Systems, 2014d.) 
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Scalable Object Storage (SOS) is the Eucalyptus service equivalent to Ama-
zon S3. The SOS is a pluggable service that allows infrastructure administrators 
the flexibility to implement scale-out storage on top of commodity resources 
using open source and commercial solutions that implement the S3 interface. 
Eucalyptus provides a basic storage implementation, Walrus, which may suit 
evaluation and smaller cloud deployments. For large-scale and increased per-
formance, users are encouraged to connect the SOS to dedicated storage solu-
tions, e.g., RiakCS. (Eucalyptus Systems, 2014d.) 

A cluster is equivalent to an AWS availability zone, and a single Eucalyp-
tus cloud can have multiple clusters. The Cluster Controller (CC) is written in C 
and acts as the front end for a cluster within a Eucalyptus cloud and communi-
cates with the Storage Controller and Node Controller. The CC manages in-
stance execution and SLAs per cluster. (Eucalyptus Systems, 2014e.) 

The Storage Controller (SC) is written in Java and is the Eucalyptus equiva-
lent to Amazon EBS. The SC communicates with the CC and Node Controller 
within the distributed cloud architecture and manages Eucalyptus block vol-
umes and snapshots to the instances within its specific cluster. If an instance 
requires writing persistent data to memory outside of the cluster, it would need 
to write to the backend storage that is available to any instance in any cluster. 
The SC interfaces with storage systems including local, NFS, Internet Small 
Computer System Interface (iSCSI), and Storage Area Network (SAN). (Euca-
lyptus Systems, 2014e.) 

The VMware Broker is an optional component that provides an AWS-
compatible interface for VMware environments and physically runs on the CC 
within the distributed cloud computing architecture. The VMware Broker over-
lays existing ESX/ESXi hosts and transforms Eucalyptus Machine Images (EMIs) 
to VMware virtual disks. The VMware Broker mediates interactions between 
the CC and VMware and can connect directly to either ESX/ESXi hosts or to 
vCenter Server. (Eucalyptus Systems, 2014e.) 

Finally, the Node Controller (NC) is a part of the node level of the cloud 
computing architecture. It is written in C and hosts the virtual machine in-
stances and manages the virtual network endpoints. The NC downloads and 
caches images from the SOS, as well as creates and caches instances. (Eucalyp-
tus Systems, 2014f.) 

5.3.3 Kangas area 

The Kangas area has been a place for new ideas, businesses, and innovations a 
long time. Already in the middle of the 1800s it was filled with water mills, and 
later on, there were all kinds of businesses wanting to get their share of the river 
Tourujoki. The Kangas paper mill was one of the first Finnish paper mills, 
opening in 1874. The paper mill was finally closed in 2010, and the area of 27 
hectares became the property of the City of Jyväskylä in 2011. (Jyväskylän kau-
punki, 2011.) 



69 

According to the City of Jyväskylä (Jyväskylän kaupunki, 2011), the main 
development themes of the Kangas area are based on the city's strategies, a 
need for new housing areas, and ideas put forward by citizens. These dreams 
and ideas were transformed into the desired user experience and the more gen-
eral qualitative targets into concepts to enhance the everyday usability of Kan-
gas in the future (Jyväskylän kaupunki, 2011). 

The concepts can be crystallized into four words: heart, feet, sustainable, 
and green. Heart refers to the heart of the area, the old paper mill that will be a 
hot spot offering many kinds of services, e.g., grocery stores, restaurants, cafés, 
shops, a gym and day spa services, arts and crafts, and flea markets. Feet are 
about an attractive pedestrian and cycling environment, 'people first, parking 
underground.' Sustainable stands for sustainable development including a dense 
urban structure, an ecological way of life, and a carbon neutral city. Finally, 
green denotes recreation, water and green areas, from nature preservation areas 
to parks, balconies, and rooftops. (Jyväskylän kaupunki, 2011.) 

As already mentioned, the Kangas project is the main urban development 
project of the City of Jyväskylä for the next several decades. In the future, the 
Kangas area will be a home to 5000 inhabitants and 2000 new jobs. (Jyväskylän 
kaupunki, 2011.) 

5.3.4 Stardog, an RDF database 

Stardog is a graph database provided by Clark & Parcia and implemented in 
Java. To be precise, Stardog is a resource description framework (RDF) database. 
(Clark & Parcia, 2014a.) According to solid IT's (2014) DB-Engines Ranking of 
November 2014, Stardog is the sixth most popular RDF store. In addition to the 
RDF data model, Stardog supports SPARQL 1.1 query language, HTTP and 
SNARL protocols for remote access and control, ACID, Web Ontology Lan-
guage (OWL) 2, rules for inference and data analytics, Java, JavaScript, Ruby, 
Python, .Net, Groovy, Spring, Clojure, etc. (Clark & Parcia, 2014a, 2014b). 

As already mentioned, Stardog's data model is based on RDF. RDF is a 
framework for expressing information about resources that can be anything, e.g., 
documents, people, physical objects, and abstract concepts. In practice, RDF 
consists of statements about resources. Statements are called triples, because they 
comprise three elements: a subject, object, and predicate. The subject and object 
represent some two resources that are related, while the predicate represents the 
nature of their relationship. The relationship is phrased in a directional way, 
from a subject to an object, and is called a property. International Resource Identifi-
ers (IRIs) identify resources. Literals are basic values that are not IRIs. (W3C, 
2014a.) SPARQL 1.1 is a set of specifications that provide languages and proto-
cols to query and manipulate RDF graph content on the web or in an RDF store 
(W3C, 2013), e.g.,: 
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PREFIX sm: <http://www.jkl.fi#> 
INSERT DATA 

{ sm:Sensor1 sm:IsLocated sm:Place1 ; 
                       sm:SensorType "Temperature sensor" } 

 

The aforementioned SPARQL query would create two triples to a RDF database, 
e.g., Stardog. 'Temperature sensor' is a literal, while the other resources are 
identified by IRIs, being thus unique: 
 
<http://www.jkl.fi#Sensor1> <http://www.jkl.fi#IsLocated> <http://www.jkl.fi#Place1> 
<http://www.jkl.fi#Sensor1> <http://www.jkl.fi#SensorType> Temperature sensor 

 

There are three Stardog editions available: Community, Developer, and Enter-
prise. Community is provided free of charge with some limitations, e.g., 10 da-
tabases, 25 MBs triples per a database, etc. (Clark & Parcia, 2014b.) Developer is 
a 30-day trial edition of the full Enterprise that offers e.g., no data limits, sup-
port by phone or e-mail (Clark & Parcia, 2014b), and Stardog Cluster (Stardog's 
DDBMS functionality). In this thesis, Stardog Community was utilized. 

5.3.5 Neo4j, a graph database 

Neo4j is an open-source NoSQL graph database sponsored by Neo Technology 
and implemented in Java and Scala. With development beginning in 2003, 
Neo4j has been publicly available since 2007. (Neo Technology, 2014a.) Accord-
ing to solid IT's (2014) DB-Engines Ranking of November 2014, Neo4j is the 
world's most popular graph DBMS. Neo4j's data model is so-called property 
graph. Putting it simply, the property graph data model is a multigraph data struc-
ture in which graph elements, vertices and edges, can have properties/attributes 
(Ciglan, Averbuch & Hluchy, 2012). Neo4j's graphs can be accessed remotely 
via Cypher HTTP API, either directly or through one of the many available lan-
guage drivers. As Stardog, Neo4j supports ACID as well. (Neo Technology, 
2014a.) 

As for the property graph data model, vertices can also be called nodes and 
edges relationships, such as in Neo4j's case. The records in Neo4j's databases are 
called nodes that are connected through typed, directed relationships. Nodes 
and relationships can also have named attributes referred to as properties. Fur-
thermore, nodes can have labels that organize them into groups. (Neo Technol-
ogy, 2014b.) In addition, so-called identifiers can be used to refer to parts of a 
pattern or a query (Neo Technology, 2014c). Cypher is Neo4j's declarative graph 
query language that allows for expressive and efficient querying and updating 
of the graph store (Neo Technology, 2014d), e.g.,: 
 
CREATE (a:Sensor {SensorType: 'Temperature sensor'})-[:ISLOCATED]->(b:Place {PlaceID:1}) 

 

The aforementioned Cypher query creates a node labeled as 'Sensor' that has a 
property 'SensorType', its value being 'Temperature sensor'. The query also 
generates a node labeled as 'Place' that has a property 'PlaceID', its value being 
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'1'. Furthermore, the query creates a directed relationship between these two 
nodes, 'ISLOCATED'. The letters 'a' and 'b' are the identifiers of the two nodes. 
They could be something else as well, e.g., 'x' and 'y'. 

There are four Neo4j subscriptions available: Community, Personal, 
Startup, and Enterprise. Community subscription is provided free of charge, as 
well as Personal subscription that can be utilized if certain criteria are met. 
Startup and Enterprise subscriptions are commercial subscriptions. They and 
Personal subscription include many features that Community subscription does 
not, e.g., commercial e-mail and phone support, high-performance cache, and 
clustering. (Neo Technology, 2014e.) In this thesis, Community subscription 
was utilized. 

5.3.6 Apache JMeter, a testing tool 

Apache JMeter is a Java-based open source desktop application that is designed 
to load test functional behavior and measure performance (Apache Software 
Foundation, 2014a). As International Software Testing Qualifications Board 
(ISTQB, 2014) puts it, load testing is a type of performance testing conducted to 
evaluate the behavior of a component or system with increasing load, e.g., 
numbers of parallel users and/or numbers of transactions, to determine what 
load can be handled by the component or system. Apache JMeter can be used to 
test performance both on static and dynamic resources (files, web dynamic lan-
guages, e.g., PHP, Java, and ASP.NET, Java objects, databases and queries, FTP 
servers, etc.) (Apache Software Foundation, 2014a). 

Using Apache JMeter is simple, but it is useful to introduce some of its 
central concepts. To begin with, a test plan describes a series of steps that 
Apache JMeter executes when it is run. A test plan consists of one or more of 
the following elements: thread groups, logic controllers, sample generating con-
trollers, listeners, timers, assertions, and configuration elements. (Apache Soft-
ware Foundation, 2014b.) Thread groups simulate connections to a server appli-
cation. The controls for a thread group allow e.g., to set the number of threads 
and the number of times to execute the test. Under a thread group, there can be 
two kinds of controllers: samplers and logical controllers. Samplers tell Apache 
JMeter to send requests to a server and wait for a response. Logic controllers let 
customize the logic that Apache JMeter uses to decide when to send requests. 
They can change the order of requests coming from their child elements, mod-
ify the requests themselves, cause Apache JMeter to repeat requests, etc. Listen-
ers provide access to the information that Apache JMeter gathers about the test 
cases while it runs. By default, an Apache JMeter thread sends requests without 
pausing between each request, however, a delay can be specified by adding one 
of the available timers to a thread group. Assertions, as their name suggests, al-
low asserting facts about responses received from the server being tested, i.e., it 
can be tested that an application is returning the expected results. Configuration 
elements work closely with samplers. In general, they do not send requests, but 
they can add to or modify requests. (Apache Software Foundation, 2014c.) In 
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addition, a user can, among other things, write functions and variables (Apache 
Software Foundation, 2014c) that can e.g., modify messages that are sent to a 
server application. 

Apache JMeter is higly extensible. Many custom plugins are developed for 
it (jmeter-plugins.org, 2014a), and its results can be uploaded e.g., to BlazeMeter 
and Loadosophia.org. E.g., Loadosophia.org is a service for storing and analyz-
ing performance tests (Loadosophia.org, 2014). It was utilized in this study as 
well. 

5.4 Benchmark for comparing the performance of Stardog and 
Neo4j 

Next, famous database benchmarks are briefly introduced, after which the 
benchmark of this thesis is validated and presented. Alongside it is presented 
the smart city ontology that served as an advice on creating Stardog's and 
Neo4j's schemas. 

5.4.1 About famous database benchmarks 

Over the years, various database benchmarks have been developed as a tool for 
comparing the performance of DBMSs and are frequently referred to in aca-
demic, technical, and commercial literature (Connolly & Begg, 2005). In this the-
sis, a benchmark refers to a test that serves as a basis for evaluation or compari-
son, e.g., of computer system performance (Merriam-Webster, 2014). 

Perhaps the earliest DBMS benchmark was the Wisconsin benchmark that 
was developed to allow comparison of particular DBMS features (Bitton et al., 
1983, as cited in Connolly & Begg, 2005). The Transaction Processing Council 
(TPC) was founded in 1988 (Connolly & Begg, 2005). Its benchmarks are also 
famous. E.g., TPC-C is based on an order entry application and TPC-H for ad 
hoc, decision-support environments in which users do not know which queries 
will be executed (Connolly & Begg, 2005). Graph databases, however, aim at 
different types of queries, and thus these widespread benchmarks are not ade-
quate for evaluating their performance (Dominguez-Sal, Martinez-Bazan, 
Muntes-Mulero, Baleta & Larriba-Pey, 2011). 

Object oriented databases share some similarities with graph databases 

(Dominguez-Sal et al., 2011). For object-oriented database management systems 
(OODBMSs), there are, among others, the Object Operations Version 1 (OO1) 
and OO7 benchmarks. OO1 was designed to reproduce operations that are 
common in the advanced engineering applications. In 1993, the University of 
Wisconsin released the OO7 benchmark, based on a more comprehensive set of 
tests and a more complex database. (Connolly & Begg, 2005.) 

When discussing graph databases, it has to be borne in mind that they can 
be roughly divided in two: RDF and non-RDF databases, Stardog being an ex-
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emplar of the former and Neo4j for the latter. As for RDF databases, there are 
many benchmarks available. W3C's (2014b) webpage lists the most well-known. 
E.g., Berlin SPARQL Benchmark (BSBM) is used for measuring the performance 
of storage systems that expose SPARQL endpoints. The benchmark suite is built 
around an e-commerce use case. (Bizer & Schultz, 2012.) Other famous RDF da-
tabase benchmarks are Lehigh University Benchmark (LUBM), University On-
tology Benchmark (UOBM), SP2Bench SPARQL Performance Benchmark, and 
DBpedia SPARQL Benchmark, but they are not gone into here (W3C, 2014b; see 
also Bizer & Schultz, 2008). There are many others as well. 

In non-RDF databases' case, there are at least a few notable benchmarks. 
Ciglan et al. (2012) write that the lack of standards in the domain of graph data-
bases makes it difficult to compare systems. However, one option that they 
themselves utilized is Blueprints that is a property graph model interface with 
provided implementations and a part of Tinkerpop, an open source graph com-
puting framework (Tinkerpop, 2014). To the author's knowledge, with the help 
of Tinkerpop property graphs and even RDF graphs can be benchmarked 
against each other. This is also possible, as far as the author knows, with HPC 
Scalable Graph Analysis Benchmark (HPC-SGAB) (Dominguez-Sal et al., 2011; 
see also Graphanalysis.org, 2014) and Linked Data Benchmark Council's (LDBC) 
new benchmark, the Social Network Benchmark (SNB) (LDBC, 2014). Currently, 
SNB is unfinished (LDBC, 2014). 

As applying the aforementioned benchmarks, e.g., Tinkerpop, to this case 
would have required a lot of technical expertise and as they did not seem to be 
suitable for this case, the author decided to create his own benchmark. Next, it 
is discussed in detail. 

5.4.2 Smart city ontology 

The smart city ontology whose classes are depicted in the figure 10 is an output 
of the author's imagination, supervisors' ideas and suggestions, and several on-
tologies and similar structures (e.g., Calabrese & Ratti, 2006; Calabrese, Colonna, 
Lovisolo, Parata & Ratti, 2011; Lertlakkhanakul, Choi & Kim, 2008; Wang, De, 
Cassar, & Moessner, 2013) that have served as examples to it. The OWL ontol-
ogy was modeled with the help of Protégé, a free, Java-based open-source on-
tology editor and framework for building intelligent systems (Stanford Center 
for Biomedical Informatics Research, 2014). 

Before describing the ontology, a short introduction of OWL 2 is in order. 
OWL 2 ontologies consist of entities: classes represent sets of individuals, 
datatypes are sets of literals, e.g., strings or integers, object properties and data 
properties can be used to represent relationships in the domain, annotation prop-
erties can be used to associate non-logical information with ontologies, axioms, 
and entities, and named individuals can be used to represent actual objects from 
the domain. They are all uniquely identified by IRIs. OWL 2 also provides for 
anonymous individuals, i.e., individuals that are analogous to blank nodes in RDF 
and that are accessible only from within the ontology they are used in. Finally, 
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OWL 2 provides for literals that consist of a string called a lexical form and a 
datatype specifying how to interpret this string. (W3C, 2012.) 

 

 
 

FIGURE 10 Classes of the smart city ontology visualized by Protégé 

As it can be seen from the ontology, it consists of a class Thing and its multiple 
subclasses: Place, Sensor, Camera, Person, Phone, SensorObservation, and Cam-
eraObservation. They can all have individuals, e.g., a 'Sensor' can be 'Sensor1'. 
Here, the namespace of the ontology, the ontology IRI, comes into picture. In 
this case, it is http://www.jkl.fi, the domain of the City of Jyväskylä. Hence, e.g., 
the class 'Sensor' is identified with the IRI 'http://www.jkl.fi#Sensor' and its 
individual 'Sensor1' with the IRI 'http://www.jkl.fi#Sensor1'. To describe the 
ontology briefly otherwise, its entities have the following object properties: Sen-
sors and cameras are located in places and observe and film observations. In 
addition, persons possess phones, but neither persons nor phones are located in 
any place. This depicts a real-life situation in which entities of a database are 
not all connected to each other for one reason or another. Entities also have their 
data properties, e.g., 'Sensor1' is a 'Temperature sensor' that is its 'SensorType' 
(string). The ontology is described in its entirety in the appendix 1. 

The ontology is on purpose flat and simple so that it could be easily trans-
formed into two schemas, those of Stardog's and Neo4j's. Real-life (smart city) 
ontologies are naturally wider and more complicated in many cases. 

5.4.3 Design of the benchmark 

As the ontology, also the benchmark is an output of the author's imagination, 
supervisors' ideas and suggestions, and several benchmarks (e.g., Vicknair et al., 
2010; Jouili & Vansteenberghe, 2013) that have served as examples to it. 

The benchmark was conducted on a DELL Inspiron 620 desktop computer 
(processor: Intel Core i3-2100 3.10 GHz, RAM: 4 GBs with a swap file of 4 GBs, 
operating system: Ubuntu 14.04 LTS 64-bit, Java: OpenJDK 1.7.0_65, default set-
tings). Stardog and Neo4j were installed on Eucalyptus v.3.3.2 (instance type: 
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m2.2xlarge, virtual cores: 2, RAM: 4096 MBs, operating system: CentOS 6.4 (Fi-
nal), Java: Java SE Development Kit 1.7.0_67, default settings). For each of the 
databases, the latest available versions were used: Stardog Community 2.2.2 
and Neo4j Community 2.1.5. Eucalyptus ran on the university's hardware ap-
proximately 1.3 kilometers from the client computer that ran the benchmark. 
The network connection was a 100 Mbps LAN-based (local area network) Inter-
net connection (Koskinen, 2012) that could not be affected. 

The benchmark compared the performance of Stardog's public SPARQL 
endpoint (Clark & Parcia, 2014c) to Neo4j's Transactional Cypher HTTP end-
point (Neo Technology, 2014f) that are, in the author's opinion, the closest 
equivalents to each other. Furthermore, they are supported ways to insert data 
into and query it from the databases. Stardog and Neo4j were put to the test 
with their out-of-the-box features. The only changes were changing of their de-
fault ports to 8080, disabling Stardog's security to enable Stardog's usage as a 
public SPARQL endpoint (Clark & Parcia, 2014c), and configuring Neo4j to en-
able access from any host (Neo Technology, 2014h). The data that were inserted 
into the databases were not validated against any schemas. The aforementioned 
OWL ontology served only as an advice on creating Stardog's and Neo4j's 
schemas. It was not inserted into Stardog's databases at any point. 

The data were inserted into the databases and queried from them with the 
help of Apache JMeter that acted as the 'client side' of a 'client/server' applica-
tion (Halili, 2008). Hence, the performance was measured on the client side. 
Apache JMeter 2.12 was run in GUI mode, the only listener being Loadoso-
phia.org Uploader 1.2.0 (jmeter-plugins.org, 2014b). 

The benchmark was run twice on the morning of November 20, 2014. 
Stardog was put to the test first and then Neo4j. The databases were empty at 
the beginning of each run. Before each run, the GUIs of the databases, Stardog 
Web Console (Clark & Parcia, 2014d) and Neo4j Web Interface (Neo Technology, 
2014g), were accessed to confirm that everything was in order. Furthermore, 
after each test, Loadosophia.org was visited to confirm that the results were 
successfully uploaded to Loadosophia.org. In addition, after the first run of the 
benchmark, the databases were deleted and new databases were created. In 
Stardog, this can be done via its GUI, while Neo4j has to be stopped before 
making changes to its databases. Hence, Neo4j was stopped after the first run, 
its database was deleted, and Neo4j was started again, which automatically cre-
ated a new database. Then, Neo4j's GUI was accessed to confirm that every-
thing was in order. 

The benchmark comprised four tests that are briefly described below and 
in more detail in the appendix 2. Each database ran each test twice, so alto-
gether 16 tests were run. 

To begin with, the initial graph was created: First, 1000 anonymous places 
were created symbolizing 1000 homes and public spaces in the Kangas area. 
Then, 1000 temperature sensors, one for each place, were created. The sensors 
were imagined to measure outdoor temperature of the aforementioned places, 
being located outside of their windows, such as normal thermometers. Next, 
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250 video cameras for the first 250 places were created, one for each place. It 
was imagined that the cameras are located in or in the near vicinity of the places. 
As the sensor data, also the video data could be used e.g., for scientific purposes. 
Then, 1000 people were created, and finally, 1000 telephones, one for each per-
son. The persons and their telephones were not attached to other nodes on pur-
pose. It was imagined that this will be done later on in the future. 

After the initial graph was created, it was populated by more data. The 
following situation simulated roughly one hour of smart city activities: 1000 
temperature sensors observed 2000 temperature observations. It was imagined 
that each sensor observes outdoor temperature every half an hour and inserts 
its data into the database at the same time. In parallel, 250 video cameras filmed 
7500 camera observations. It was imagined that one camera films all the time, 
inserting the metadata of its video data into the database every two minutes. At 
the same time, the actual video files are sent to someplace else, i.e., inserted into 
some other database that is more suitable for saving multimedia than Stardog 
and Neo4j. 

As there were now some meaningful data in the database, it was queried. 
The following situation simulated roughly ten days of smart city activities:        
1000 people queried their personal information, each once. It was imagined 
here that perhaps 10 % of the residents want to see their personal information in 
a day, e.g., to update it. In parallel, the average temperature of all the sensor 
observations was calculated 1000 times, which simulates scientific calculations 
on data. 

Finally, data was inserted into the database and queried from it at the 
same time. The following situation did not simulate any real-life smart city 
situation: 1000 people queried their personal information, each once. In parallel, 
1000 people updated their personal information, each once. A very long charac-
ter string was added to each person's information, symbolizing detailed infor-
mation of some kind, e.g., a self-description and other social media data. 

The aforementioned figures might look small compared e.g., to the City of 
London that produces at least 1160000 observations in an hour (Boyle, Yates & 
Yeatman, 2013). There reside about 9000000 people in London (CIA, 2014). The 
Kangas area will be a home to 5000 people in the future (Jyväskylän kaupunki, 
2011). On the basis of a simple calculation, (1160000 / 9000000) * 5000, they 
could produce about 644 observations in an hour. Hence, the chosen figures are 
reasonable. 

As the ontology, the benchmark is on purpose simplified to keep it more 
manageable. In reality, e.g., sensors and cameras do not necessarily insert their 
data straight into a database. E.g., in SmartSantander repeaters and gateways 
gather the information that is sensed by sensors (Krčo et al., 2013). However, 
the author deemed more fruitful to simulate many concurrent users than a few 
gateways. 
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5.4.4 Definition of the performance in the benchmark 

The concept of 'performance' has been mentioned several times in this thesis, 
e.g., in the framework of requirements for integrating a smart city with a cloud 
infrastructure. As for the performance of databases, however, there appears to 
be no practical definition available. Hence, the concepts of 'performance' are 
briefly discussed below, after which the performance in the benchmark of this 
thesis is defined. 

According to Menascé (2002), QoS is a combination of several qualities or 
properties of a service, e.g., response time and throughput. Response time can be 
defined as the interval between a user's request and the system's response, but 
this is a simplistic definition, since the requests and the responses are not in-
stantaneous, e.g., the system takes time outputting the response. There are (at 
least) two possible definitions of the response time: it can be defined as either 
the interval between the end of a request submission and the beginning of the 
corresponding response from the system or as the interval between the end of a 
request submission and the end of the corresponding response from the system. 
(Jain, 1991.) The former definition is also known as latency, although it has to be 
emphasized that there are many definitions of latency as well. The response 
time of a system generally increases, as the load on the system increases (Jain, 
1991). QoS takes into account not only the average response time, but also the 
percentile (e.g., 95th percentile) of the response time (Menascé, 2002). 

Throughput is defined as the rate (requests per unit of time) at which the 
requests can be serviced by the system. E.g., for transaction processing systems, 
the throughput is measured in transactions per second (TPS). The throughput 
of a system generally increases, as the load on the system initially increases. 
After a certain load, the throughput stops increasing. In most cases, it may even 
begin decreasing. (Jain, 1991.) 

In Apache JMeter, response time is called elapsed time. Apache JMeter 
measures the elapsed time from just before sending the request to just after the 
last response has been received. Apache JMeter does not include the time 
needed to render the response, nor does Apache JMeter process any client code, 
e.g., JavaScript. Apache JMeter measures the latency from just before sending 
the request to just after the first response has been received. Hence, the time 
includes all the processing needed to assemble the request, as well as assem-
bling the first part of the response that in general will be longer than one byte. 
The throughput is calculated as requests / unit of time. The time is calculated 
from the start of the first sample to the end of the last sample. This includes any 
intervals between samples, as it is supposed to represent the load on the server. 
The formula is: throughput = number of requests / total time. (Apache Soft-
ware Foundation, 2014d.) In Loadosophia.org, the throughput is measured in 
terms of TPS. In Apache JMeter, a transaction means an operation that a user 
wants Apache JMeter to perform, e.g., get a webpage, login to a webpage, insert 
data into a database, etc. (jmeter-plugins.org, 2014c). 
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Performance is measured in the benchmark of this thesis in terms of re-
sponse time and throughput (TPS). The smaller the response time and the lar-
ger the throughput (TPS), the better the performance of the database. The most 
important performance indicators of the benchmark are the 90th percentiles of 
different response times and different throughputs (TPS). 
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6 RESULTS AND CONCLUSIONS 

This chapter is organized as follows. First, the results of the benchmark are pre-
sented and analyzed. Then, Stardog and Neo4j are compared subjectively. Fi-
nally, the framework of requirements for integrating a smart city with a cloud 
infrastructure is evaluated. 

6.1 Results of the benchmark 

Next, the durations of the tests are briefly discussed. Then, the results of the 
benchmark are presented and analyzed one part at a time. The figures '1' and '2' 
in the tables 6–13 refer to the first and second run of each test, while the letters 
'a', 'b', 'c', and 'd' refer to the actual tests. E.g., 'Neo4j, 1a' means the first run of 
the first test by Neo4j, 'Stardog, 2b' the second run of the second test by Stardog, 
etc. 

6.1.1 About the durations of the tests 

A stopwatch was used to measure the durations of the tests during some of the 
last rehearsals of the benchmark. They were identical with the final benchmark. 
The most accurate of these measurements are described in the table 5. The 
stopwatch was not used during the final benchmark, as it was assumed that 
Apache JMeter would measure the durations of the tests correctly. Unfortu-
nately, this did not happen in all the tests, which is discussed further below. 

As for the durations of all the tests, it is in order to stress that they varied 
somewhat every time the tests were run. In the final benchmark, the client and 
servers were not running anything else than Apache JMeter and Stardog or 
Neo4j, so the variation might be a consequence of network traffic that changed 
throughout the day. Another reason might be some unknown software that the 
author was not aware of that ran on the background consuming resources. 
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TABLE 5 Durations of the tests measured by the stopwatch 

Part of the benchmark Stardog Neo4j 
1. Create the graph 15 min 14 s 3 min 46 s 

2. Write queries 35 min 12 s 7 min 41 s 

3. Read queries 8 s 9 s 

4. Read and write queries 3 min 26 s 1 min 37 s 

6.1.2 Create the graph 

The first part of the benchmark is described in the tables 6 and 7. During a sin-
gle test, the initial graph was created by one virtual user. According to 
Loadosophia.org, the tests ran in Stardog's case on average 15 minutes (min) 25 
seconds (s), the first test being 43 s faster than the second one, and in Neo4j's 
case on average 3 min 37 s, the second test being 4 s faster than the first one. The 
stopwatch gave roughly the same figures as Loadosophia.org according to 
which all the tests were valid for comparison. 

During a single test, altogether 4250 transactions were processed. The 
HTTP code '2xx' indicates that there were no errors during the tests. The other 
figures, the minimum response time, average response time, maximum re-
sponse time, 90th percentile of the response time, and average throughput indi-
cate clearly that Neo4j performed better than Stardog in the first part of the 
benchmark. 
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TABLE 6 Properties and results of the first part of the benchmark 

Properties Stardog, 1a Stardog, 2a Average 
Started at 20.11.2014 7.44.57 20.11.2014 8.57.55 - 

Test duration 0:15:03 0:15:46 0:15:25 

Transactions count 4250 4250 4250 

HTTP codes presence 2xx 2xx - 

Minimum response time, ms 53 46 49.5 

Average response time, ms 211 218 214.5 

Maximum response time, ms 525 619 572 

90th percentile of the response time, ms 290 300 295 

Average throughput (TPS) 4.70653 4.4926 4.599565 

Average virtual users 1 1 1 

Maximum virtual users 1 1 1 

Properties Neo4j, 1a Neo4j, 2a Average 

Started at 20.11.2014 10.22.35 20.11.2014 11.10.58 - 

Test duration 0:03:39 0:03:35 0:03:37 

Transactions count 4250 4250 4250 

HTTP codes presence 2xx 2xx - 

Minimum response time, ms 33 29 31 

Average response time, ms 50 49 49.5 

Maximum response time, ms 374 443 408.5 

90th percentile of the response time, ms 88 89 88.5 

Average throughput (TPS) 19.4064 19.7674 19.5869 

Average virtual users 1 1 1 

Maximum virtual users 1 1 1 

 
This can also be seen from the table 7 in which are listed the transaction groups 
and their average response times in milliseconds (ms). The sizes of the mes-
sages that created the initial graph were roughly the same, so it is not surprising 
that their response times were also roughly of the same size. What is significant, 
however, is that Neo4j's average response times were roughly four times better 
than Stardog's. 
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TABLE 7 Transactions of the first part of the benchmark 

Transaction group Count Fraction Stardog, 1a Stardog, 2a Average 
Create a camera 250 5.9 % 224.012 234.86 229.436 

Create a person 1000 23.5 % 219.295 227.686 223.4905 

Create a phone 1000 23.5 % 226.081 236.168 231.1245 

Create a place 1000 23.5 % 189.448 204.158 196.803 

Create a sensor 1000 23.5 % 211.415 219.296 215.3555 

Transaction group Count Fraction Neo4j, 1a Neo4j, 2a Average 

Create a camera 250 5.9 % 51.748 51.668 51.708 

Create a person 1000 23.5 % 49.068 48.614 48.841 

Create a phone 1000 23.5 % 52.213 51.111 51.662 

Create a place 1000 23.5 % 51.809 49.961 50.885 

Create a sensor 1000 23.5 % 51.297 52.074 51.6855 

 
The differences in the 90th percentiles of the response times are also remarkable. 
A percentile indicates a value below which a given percentage of observations 
in a group of observations fall (Wikipedia, 2014c). The 90th percentile of a re-
sponse time denotes that 90 % of transactions were processed below some value 
that is in this case ms. Hence, if the averages of the 90th percentiles of the re-
sponse times are to be trusted, Neo4j performed roughly three times better than 
Stardog. Furthermore, according to the averages of the average throughputs, 
Neo4j was roughly four times faster than Stardog. 

6.1.3 Write queries 

The second part of the benchmark is described in the tables 8 and 9. During a 
single test, the initial graph was populated by more data by hundreds of paral-
lel virtual users, the maximum being 1250. According to Loadosophia.org, Star-
dog ran the test on average 33 min 39 s, the first test being 1 min 47 s faster than 
the second one, while Neo4j completed the test on average in 7 min 20 s, the 
second test being 7 seconds faster than the first one. As for Stardog's results, 
Loadosophia.org complained about the duration difference, while Neo4j's re-
sults were in order. The stopwatch gave roughly the same durations. 

During a single test, altogether 9500 transactions were processed. There 
were no errors during these tests either. What is notable is that the minimum 
response times are straight away many times larger than in the first part of the 
benchmark, which is an indication of the fact that these tests created heavier 
load than the first ones. Stardog's average minimum response time is slightly 
better than Neo4j's, although the difference is so small that it could easily be 
explained by network traffic especially, because Neo4j's tests were ran later on 
during the morning when there might have been more traffic on the network. 
The average and maximum response times, however, are dreadfully larger than 
in the first part of the benchmark, which could be explained at least by the fact 
that there were many parallel users inserting data into the databases, so more 
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transactions were put on the line. In any case, if the averages of these figures are 
to be trusted, Stardog processed a transaction on average in approximately 92.7 
s, while Neo4j in approximately 19.5 s. The maximum amount of time it took for 
Stardog to process a transaction was approximately 261.5 s, while Neo4j proc-
essed a transaction at worst in approximately 60.8 s. 

 
TABLE 8 Properties and results of the second part of the benchmark 

Properties Stardog, 1b Stardog, 2b Average 

Started at 20.11.2014 8.03.52 20.11.2014 9.24.40 - 

Test duration 0:32:46 0:34:33 0:33:39 

Transactions count 9500 9500 9500 

HTTP codes presence 2xx 2xx - 

Minimum response time, ms 178 356 267 

Average response time, ms 85006 100358 92682 

Maximum response time, ms 252031 270885 261458 

90th percentile of the response time, ms 245793 264948 255370.5 

Average throughput (TPS) 4.83215 4.58273 4.70744 

Average virtual users 308.006 311.532 309.769 

Maximum virtual users 1250 1250 1250 

Properties Neo4j, 1b Neo4j, 2b Average 

Started at 20.11.2014 10.37.54 20.11.2014 11.21.31 - 

Test duration 0:07:24 0:07:17 0:07:20 

Transactions count 9500 9500 9500 

HTTP codes presence 2xx 2xx - 

Minimum response time, ms 319 329 324 

Average response time, ms 19638 19457 19547.5 

Maximum response time, ms 60974 60533 60753.5 

90th percentile of the response time, ms 57172 57882 57527 

Average throughput (TPS) 21.3964 21.7391 21.56775 

Average virtual users 312.8 311.929 312.3645 

Maximum virtual users 1250 1250 1250 

 
The average response times of the transaction groups are also interesting. Dur-
ing a single test, both sensor and camera observations were created in parallel. 
In theory, the two thread groups that created these observations should have 
started exactly at the same time, but during all the rehearsals the thread group 
that created the sensor observations always seemed to start first, as it was lo-
cated in the test plan before the other thread group that created the camera ob-
servations. This second thread group always seemed to start after the test had 
run perhaps 10–20 s. Then, the thread groups ran in parallel until all the sensor 
observations were created, after which only the camera observations were being 
created. What can be seen from the table 9 is that it took substantially more time 
to create the sensor observations. The reason for this is probably that the per-
formance of the first thread group suffered when the second one started run-
ning. At this time, the load was the heaviest, as both observations were being 
created at the same time. 
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TABLE 9 Transactions of the second part of the benchmark 

Transaction group Count Fraction Stardog, 1b Stardog, 2b Average 
Create a camera observation 7500 78.9 % 65909.4855 69207.0129 67558.2492 

Create a sensor observation 2000 21.1 % 180853.176 197005.767 188929.472 

Transaction group Count Fraction Neo4j, 1b Neo4j, 2b Average 

Create a camera observation 7500 78.9 % 14784.1891 14620.1492 14702.1692 

Create a sensor observation 2000 21.1 % 43207.145 42716.2775 42961.7113 

 
The differences in the averages of the 90th percentiles of the response times are 
again significant. According to them, Neo4j performed almost 4.5 times better 
than Stardog. Despite the load, the average throughputs remained quite the 
same, rising only slightly. If their averages are to be trusted, Neo4j was over 4.5 
times faster than Stardog. 

6.1.4 Read queries 

The third part of the benchmark is described in the tables 10 and 11. During a 
single test, data were queried from the databases on average by hundreds of 
parallel virtual users, at most 1861.5. Stardog got through the tests in 2 s, while 
Neo4j in 1 s. During a single test, altogether 2000 transactions were processed. 
There were no errors. As for Stardog's results, Loadosophia.org complained 
about the VU (virtual user) difference, while Neo4j's tests were again in order. 

In regard to the durations of the tests, something probably went wrong, as 
the results are contradictory. Stardog could not have processed all the transac-
tions in 2 s if there were on average only 104.7 and at most 186 parallel users 
reading the database. As for Neo4j, the figures are more realistic, however, at 
least the durations of the tests are distorted. Neo4j could not have processed all 
the transactions in 1 s if the average response time was on average 3.02 s and 
the maximum response time on average 5.12 s. Hence, the tests lasted very 
probably more than 2 s in reality. As it can be seen from the table 5, according 
to the stopwatch, Stardog ran its test in 8 s and Neo4j in 9 s. The difference of 1 s 
could easily be explained by the inaccuracy of the measuring method. However, 
assuming that the tests had run 8 s, the throughput would have been approxi-
mately 2000 / 8 = 250 TPS. If they had run 9 s, the throughput would have been 
approximately 2000 / 9 ≈ 222.2 TPS. 
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TABLE 10 Properties and results of the third part of the benchmark 

Properties Stardog, 1c Stardog, 2c Average 
Started at 20.11.2014 8.43.46 20.11.2014 10.06.17 - 

Test duration 0:00:02 0:00:02 0:00:02 

Transactions count 2000 2000 2000 

HTTP codes presence 2xx 2xx - 

Minimum response time, ms 3 3 3 

Average response time, ms 60 66 63 

Maximum response time, ms 190 202 196 

90th percentile of the response time, ms 125 148 136.5 

Average throughput (TPS) 1000 1000 1000 

Average virtual users 97.3333 112 104.66665 

Maximum virtual users 174 198 186 

Properties Neo4j, 1c Neo4j, 2c Average 

Started at 20.11.2014 10.50.26 20.11.2014 11.35.07 - 

Test duration 0:00:01 0:00:01 0:00:01 

Transactions count 2000 2000 2000 

HTTP codes presence 2xx 2xx - 

Minimum response time, ms 303 173 238 

Average response time, ms 3250 2785 3017.5 

Maximum response time, ms 5063 5173 5118 

90th percentile of the response time, ms 4931 4634 4782.5 

Average throughput (TPS) 2000 2000 2000 

Average virtual users 1624 1570.5 1597.25 

Maximum virtual users 1866 1857 1861.5 

 
The average response times of the transaction groups are interesting if they are 
to be trusted at all. Making calculations on data and returning the results might 
have been by and large as fast as querying other information, although it has to 
be borne in mind that the results of the calculation in question did not change at 
all. The thread group that queried the people's personal information was lo-
cated in the test plan before the other thread group that counted the average 
temperature of all the sensor observations. Hence, the first thread group proba-
bly started first and ran a moment alone, after which the second thread group 
started running, during which time the load was the heaviest. The first thread 
group probably finished its work first. It is hard to say if its performance suf-
fered when the second thread group started running. 
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TABLE 11 Transactions of the third part of the benchmark 

Transaction group Count Fraction Stardog, 1c Stardog, 2c Average 
Count the average temperature 1000 50 % 60.617 53.065 56.841 

Show my personal information 1 1000 50 % 69.243 84.684 76.9635 

Transaction group Count Fraction Neo4j, 1c Neo4j, 2c Average 

Count the average temperature 1000 50 % 3453.28 3022.264 3237.772 

Show my personal information 1 1000 50 % 3013.303 2565.132 2789.2175 

 
All in all, it is dubious to compare Stardog's and Neo4j's results to each other in 
this case. According to the averages of the 90th percentiles of the response times, 
Stardog would have performed roughly 35 times better than Neo4j, while ac-
cording to the averages of the average throughputs, Neo4j would have per-
formed twice as good as Stardog. The latter figures are probably more realistic 
than the former, but either way, based on the available results, it is impossible 
to say which database performed better in these tests. The author is inclined to 
believe that Stardog and Neo4j ran their tests in 8–9 s, so their throughputs 
would have been the aforementioned ones. 

6.1.5 Read and write queries 

The fourth part of the benchmark is described in the tables 12 and 13. During a 
single test, data were inserted into and queried from the databases at the same 
time on average by hundreds, or as Loadosophia.org claims, thousands of par-
allel virtual users, at most 1799. According to Loadosophia.org, all the tests ran 
2 s. In these tests, Loadosophia.org complained about the VU difference both in 
Stardog's and Neo4j's case. 

Loadosophia.org's results are again somewhat distorted. At least the dura-
tions of the tests are questionable, which can be seen by comparing them to the 
figures of the table 5. Hence, also the average throughputs are dubious. Exclud-
ing the durations of the tests and average throughputs, the author is, however, 
inclined to believe Loadosophia.org's results. 

According to the minimum response times, Stardog seems to have proc-
essed some individual transactions faster than Neo4j, but this could easily be a 
consequence of e.g., changing network traffic. However, the average and 
maximum response times speak in the favor of Neo4j. Both are roughly twice as 
good as Stardog's. Stardog processed a transaction on average in approximately 
75.2 s, while Neo4j in approximately 36.2 s. The maximum amount of time it 
took for Stardog to process a transaction was approximately 204.3 s, while 
Neo4j processed a transaction at worst in approximately 88.5 s. 
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TABLE 12 Properties and results of the fourth part of the benchmark 

Properties Stardog, 1d Stardog, 2d Average 
Started at 20.11.2014 8.46.31 20.11.2014 10.09.21 - 

Test duration 0:00:02 0:00:02 0:00:02 

Transactions count 2000 2000 2000 

HTTP codes presence 2xx 2xx - 

Minimum response time, ms 3 3 3 

Average response time, ms 70819 79675 75247 

Maximum response time, ms 194614 213886 204250 

90th percentile of the response time, ms 155861 172625 164243 

Average throughput (TPS) 1000 1000 1000 

Average virtual users 1024 1190.33 1107.165 

Maximum virtual users 1641 1765 1703 

Properties Neo4j, 1d Neo4j, 2d Average 

Started at 20.11.2014 10.53.53 20.11.2014 11.41.01 - 

Test duration 0:00:02 0:00:02 0:00:02 

Transactions count 2000 2000 2000 

HTTP codes presence 2xx 2xx - 

Minimum response time, ms 5 6 5.5 

Average response time, ms 36542 35784 36163 

Maximum response time, ms 88412 88610 88511 

90th percentile of the response time, ms 73667 70962 72314.5 

Average throughput (TPS) 1000 1000 1000 

Average virtual users 1187.33 1249 1218.165 

Maximum virtual users 1813 1785 1799 

 
The fact that Neo4j's average response times are roughly twice as good as Star-
dog's can be seen from the table 13 as well. In these tests, the first thread group 
queried the people's personal information, while the second one altered them. 
The sizes of the messages that the first thread group sent were very different 
than those of the second thread group. The first thread group ran probably a 
moment alone, after which the second one started running, during which time 
the load was the heaviest. The first thread group probably came out first. Based 
on the figures, inserting data into the databases seems to have taken in Star-
dog's case roughly twice as much time as querying it. In Neo4j's case, the 
equivalent figure is approximately 1.54. 

 
TABLE 13 Transactions of the fourth part of the benchmark 

Transaction group Count Fraction Stardog, 1d Stardog, 2d Average 

Show my personal information 2 1000 50 % 47706.897 56724.83 52215.8635 

Update my personal information 1000 50 % 97180.578 106867.513 102024.046 

Transaction group Count Fraction Neo4j, 1d Neo4j, 2d Average 
Show my personal information 2 1000 50 % 29261.35 27711.71 28486.53 

Update my personal information 1000 50 % 43900.032 43996.26 43948.146 

 



88 

The differences in the averages of the 90th percentiles of the response times are 
once again notable. Neo4j processed transactions over twice as fast as Stardog. 
As for the averages of the average throughputs, Stardog ties with Neo4j if one 
looks at Loadosophia.org's results, but as already mentioned, the durations of 
the tests, and thus the average throughputs are probably distorted, which is 
easy to see looking at e.g., the average and maximum response times. However, 
if the times measured by the stopwatch are taken into account, Stardog might 
have processed 2000 / 206 s ≈ 9.71 TPS and Neo4j 2000 / 97 s ≈ 20.62 TPS. 
Hence, Neo4j might have been roughly twice as fast as Stardog. 

6.1.6 Summary of the results 

In summary, based on all the aforementioned figures and their interpretation, 
Neo4j seemed to perform better than Stardog in the benchmark. In the first part 
of the benchmark in which the initial graph was created by one virtual user, 
Neo4j performed 3–4 times better than Stardog measured by the averages of the 
90th percentiles of the response times and the averages of the average through-
puts. In the second part of the benchmark, the graph was populated by more 
data by hundreds of parallel virtual users. Here, Neo4j performed roughly 4.5 
times better than Stardog if the averages of the 90th percentiles of the response 
times and the averages of the average throughputs are to be trusted. In the third 
part of the benchmark, the databases were queried by hundreds of parallel vir-
tual users. Unfortunately, the results that Loadosophia.org gave are somewhat 
distorted, but taking into account the durations of the tests measured by the 
stopwatch, Neo4j and Stardog performed roughly speaking equally well in the 
tests. Finally, in the fourth part of the benchmark, data were inserted into and 
queried from the databases at the same time. The results that Loadosophia.org 
provided are again somewhat distorted, but if the averages of the 90th percen-
tiles of the response times are to be trusted, Neo4j performed twice as good as 
Stardog. Same conclusion can be reached by taking into account the durations 
of the tests measured by the stopwatch. 

6.2 Subjective comparison of Stardog and Neo4j 

Stardog and Neo4j are both great databases, which is in a nutshell the reason 
why they were chosen to be compared to each other in this thesis. The other 
reasons have been already mentioned in the previous chapter, but be it under-
lined that both databases are easy to install and use, they have a good array of 
out-of-the-box features, their data models and query languages are logical and 
easy to learn, and that of the two products, Neo4j seems to be more mature. 
Next, some of the features of Stardog and Neo4j are discussed in more detail 
and compared to each other as far as this is possible based on their brief ex-
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periment. The author emphasizes that he was not familiar with Stardog and 
Neo4j before making this thesis. 

To begin with, both Stardog's and Neo4j's GUIs are very intuitive. Neo4j 
Web Interface is perhaps slightly more simplistic than Stardog Console. E.g., 
there are no security settings in Neo4j Web Interface, while in Stardog Console 
users, roles, and permissions can be managed. Then again, in Neo4j Web Inter-
face it is possible to visualize the graph, while in Stardog Console there is no 
such option. This feature came in handy when checking out relationships of 
data. All things considered, both GUIs have their advantages and disadvan-
tages, so it is impossible to say which one is better. In practice, they are tools 
among others. Some changes have to be made to Stardog's and Neo4j's configu-
ration files, which requires shutting down and restarting the servers. 

In regard to the data models and query languages, the author found 
Neo4j's property graph and Cypher slightly easier to learn and use than RDF 
and SPARQL despite the fact that he was familiar with RDF prior to writing this 
thesis. Of these concepts, RDF is the oldest and most mature. SPARQL has been 
around many years as well, but then again, so has Neo4j with its technologies. 
In the author's knowledge, all these concepts have been evolving to this day 
and still continue to do so. Comparing them otherwise is difficult. It cannot be 
said that RDF and SPARQL are superior to property graph and Cypher or vice 
versa. Both data models and query languages have their pros and cons. What is 
the 'best' depends on the situation. 

Both data models are in any case suitable for smart cities. The author is of 
the opinion that Stardog or Neo4j could be a linchpin of the Kangas area's data 
warehouse. Both products could be used for saving structured data, e.g., sensor 
readings, and unstructured data, e.g., people's personal information. However, 
as far as the author knows, neither Stardog nor Neo4j are suitable for saving 
multimedia. They do not seem to comprise such data types that e.g., image, au-
dio, and video files could be saved to them. Hence, if Stardog or Neo4j were 
used in the Kangas project, multimedia would have to be saved to some other 
system, saving only its metadata to Stardog or Neo4j. Multimedia could be 
saved e.g., in Neo4j's case to some high write performance key-value store, as 
Hunger (2014) suggests. E.g., a video camera could send video files to such a 
system. Simultaneously, it could send complete, fine-grained metadata of these 
files to Neo4j. 

Otherwise it can be said that Neo4j seems to be in many respects more ma-
ture product than Stardog. Neo4j's documentation seems to be wider and of 
higher quality than Stardog's. There seems to be a larger community, and thus 
more support behind Neo4j than Stardog. Yet another sign of product maturity 
is that Neo4j has offered DDBMS functionality some time, while Stardog Clus-
ter is in beta version at the moment. In addition, Neo4j seems to be very ex-
tendable. E.g., Neo4j SPARQL Plugin enables inserting RDF data into a data-
base and querying it (Neo Technology, 2013). Unfortunately, it seems to offer 
no more functionalities at the moment. Moreover, it is probably not the best 
option performance-wise (Hunger, 2014). Then again, also Stardog appears to 



90 

be very extendable. As Neo4j, it seems to be a very versatile product supporting 
many approaches and technologies. 

6.3 Evaluation of the framework 

The main objective of this study has been to build the framework of require-
ments for integrating a smart city with a cloud infrastructure and answer with 
the help of it to the main research question: how a smart city data warehouse 
can be efficiently integrated with a cloud infrastructure? An efficient integration 
of a smart city data warehouse with a cloud infrastructure means that require-
ments for smart city data management match, more or less, requirements for, or 
characteristics of, cloud data management. With the help of the framework, it 
can also be decided what are the most important requirements for some indi-
vidual case. 

All in all, the framework is a guiding principle and functions as it, in the 
author's opinion, quite well. The framework has several strengths: It gathers 
together many cloud computing, cloud data management, and smart city re-
quirements that are relevant in themselves. Paying attention to them is impor-
tant when building especially smart city data management systems. It is natu-
rally impossible to invest in every requirement, but with the help of the frame-
work, it can be decided what are the most important requirements for some 
individual case. E.g., in this study the most important requirement ended up to 
be performance. 

The framework has also some weaknesses: The connection between some 
requirements is so loose that it can be argued if it is worthwhile to present their 
connection. The requirements are quite general and abstract, so the application 
of the framework requires in practice technical expertise and measurements. 
E.g., to say something about performance and scalabity of some particular sys-
tem, there is a need for experts on these issues. Furthermore, performance and 
scalability probably have to be operationalized and the system tested for them. 
The biggest weakness of the framework might be that it does not offer any base-
line for technical comparison. One might measure e.g., performance in terms of 
response time and throughput, but the framework cannot answer if the meas-
ured performance is good or bad, i.e., it does not provide specifications. Unfor-
tunately, the author could not find any usable and generalizable specifications 
of this kind in the literature. If the author found some specifications, they were 
so application-specific that they could not be generalized in any way. Assuming 
that some kind of generalizable specifications could be found somewhere, the 
framework would greatly benefit from them, as they would make its require-
ments more concrete than verbal examples and illustrations. 
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7 SUMMARY 

The Kangas project is the main urban development project of the City of Jyväs-
kylä for the next several decades. In brief, the Kangas area will form a smart city 
in the future, being a home to 5000 inhabitants and offering 2000 new jobs. This 
project requires implementing, but first, planning for many things. One of them 
is the data warehouse of the area. It was decided at the University of Jyväskylä 
that the data warehouse will be built on the cloud with the help of the univer-
sity's hardware, network, and other resources, e.g., Eucalyptus cloud software. 

Before implementing the data warehouse of the Kangas area, there is a 
need to know how a smart city data warehouse can be efficiently integrated 
with a cloud infrastructure in general. This requires knowledge of the require-
ments for smart cities, especially their data management, and the requirements 
for cloud computing systems, especially their data management. In the research 
literature exist many such requirements, but before this study, there appeared 
to be no framework that would have integrated them with each other. It was 
thus realized that this kind of framework could be useful e.g., to researchers 
and decision-makers. Hence, the main objective of this study has been to build 
such a framework and answer with the help of it to the main research question: 
how a smart city data warehouse can be efficiently integrated with a cloud 
infrastructure? 

This thesis represents design science that is fundamentally a problem-
solving paradigm that creates and evaluates IT artifacts intended to solve iden-
tified organizational problems. Design science consists of two basic activities, 
building and evaluating. Building is the process of constructing an artifact for a 
specific purpose. Evaluation is the process of determining how well the artifact 
performs. The aforementioned framework, i.e., the framework of requirements 
for integrating a smart city with a cloud infrastructure, is the artifact of this 
study. 

The framework functions as a guiding principle that helps e.g., researchers 
and decision-makers to map, among other things, what a smart city data ware-
house requires of cloud data management systems in general. An efficient inte-
gration of a smart city data warehouse with a cloud infrastructure means that 



92 

requirements for smart city data management match, more or less, require-
ments for, or characteristics of, cloud data management. With the help of the 
framework, it can also be decided what are the most important requirements 
for some individual case. 

As it can be seen from the framework, the connection between smart cities 
and cloud computing is loose in some cases, but in a number of requirements 
the connection is firmer. With the help of the framework, it can be interpreted 
that a smart city requires of a cloud infrastructure at least availability, 
autonomicity, scalability, performance, interoperability, and fault tolerance, as 
well as privacy and security. Of the 'softer' non-technical requirements user in-
volvement and sustainability cannot be left aside. 

The framework functions as a guiding principle quite well. The evaluation 
of the framework revealed that it has several strengths: It gathers together 
many cloud computing, cloud data management, and smart city data manage-
ment requirements that are relevant in themselves. With the help of the frame-
work, it can also be decided what are the most important requirements for some 
individual case. The framework has also some weaknesses: Its requirements are 
quite general and abstract, so the application of the framework requires in prac-
tice technical expertise and measurements. The biggest weakness of the frame-
work might be that it does not offer any baseline for technical comparison, i.e., 
specifications of its requirements. Assuming that some kind of generalizable 
specifications could be found somewhere, the framework would greatly benefit 
from them, as they would make its requirements more concrete than mere ver-
bal examples and illustrations. Hence, improving the framework e.g., in this 
way provides a subject for further study. 

The use of the framework was demonstrated by choosing the most impor-
tant requirements for the data warehouse of the Kangas project: performance 
and scalability. Of these requirements, performance was operationalized, after 
which Stardog and Neo4j were tested for it. They were installed on a Eucalyp-
tus cloud and a benchmark was built that inserted data and queried it from the 
databases with the help of Apache JMeter, a performance testing tool. The 
benchmark compared the performance of Stardog's public SPARQL endpoint to 
Neo4j's Transactional Cypher HTTP endpoint. The most important performance 
indicators of the benchmark were the 90th percentiles of different response times 
and different throughputs (TPS). 

Neo4j performed better than Stardog in the benchmark. In the first part of 
the benchmark in which the initial graph was created by one virtual user, Neo4j 
performed 3–4 times better than Stardog measured by the averages of the 90th 
percentiles of the response times and the averages of the average throughputs. 
In the second part of the benchmark, the graph was populated by more data by 
hundreds of parallel virtual users. Here, Neo4j performed roughly 4.5 times 
better than Stardog if the averages of the 90th percentiles of the response times 
and the averages of the average throughputs are to be trusted. In the third part 
of the benchmark, the databases were queried by hundreds of parallel virtual 
users. Unfortunately, the results that Loadosophia.org gave are somewhat dis-
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torted, but taking into account the durations of the tests measured by the stop-
watch, Neo4j and Stardog performed roughly speaking equally well in the tests. 
Finally, in the fourth part of the benchmark, data were inserted into and que-
ried from the databases at the same time. The results that Loadosophia.org pro-
vided are again somewhat distorted, but if the averages of the 90th percentiles of 
the response times are to be trusted, Neo4j performed twice as good as Stardog. 
Same conclusion can be reached by taking into account the durations of the 
tests measured by the stopwatch. 

The benchmark has naturally its limitations. First of all, it only compared 
the performance of Stardog's public SPARQL endpoint to Neo4j's Transactional 
Cypher HTTP endpoint. It has to be stressed, however, that there are also other 
ways to access Stardog and Neo4j, and they are possibly faster than the afore-
mentioned endpoints. Furthermore, the benchmark only compared Stardog 
Community to Neo4j Community, i.e., the free-of-charge editions of Stardog 
and Neo4j. Both databases offer also their enterprise editions that are meant for 
heavier use. Benchmarking or studying their possibilities otherwise provides 
another subject for further study. If one is interested to see e.g., how much Star-
dog and Neo4j can take with their DDBMS functionalities enabled, the bench-
mark of this thesis can easily be extended. In addition, the settings and mes-
sages of the benchmark can always be questioned especially, because some of 
its results were distorted for one reason or the other: The client computer 
should have had enough memory, but it still could have run out of memory. 
Apache JMeter and/or Loadosophia.org Uploader could have malfunctioned. 
Some element(s) of the test plan could have caused the problem. The author 
could have made a mistake, etc. 

In regard to the elements of the test plan, everything possible was made to 
ensure that they were as similar and error-free as possible. The tests were run 
many times, after which it was checked out that the created graphs were similar 
and error-free. All the test plan elements were saved to only one file that com-
prised the whole test plan, which made comparing the elements to each other as 
easy as possible. It also made running the tests very straightforward. There was 
only a need to activate certain elements and deactivate some others, as well as 
change some minor settings. 

Stardog and Neo4j were compared subjectively as well. In summary, both 
databases are easy to install and use, they have a good array of out-of-the-box 
features, their data models and query languages are logical and easy to learn, 
and of the two products, Neo4j seems to be more mature. Both Stardog's and 
Neo4j's data models are suitable for smart cities. As such, Stardog or Neo4j 
could be a linchpin of the Kangas area's data warehouse. Both products could 
be used for saving structured and unstructured data, however, they probably 
are not suitable for saving multimedia. Hence, if Stardog or Neo4j were used in 
the Kangas project, multimedia would have to be saved to some other system, 
saving only its metadata to Stardog or Neo4j. Whether this is feasible and mean-
ingful is also worthwhile to study. 
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APPENDIX 1: SMART CITY ONTOLOGY 

<?xml version="1.0"?> 

 
 

<!DOCTYPE rdf:RDF [ 
    <!ENTITY www "http://www.jkl.fi#" > 

    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 
    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 

    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 

    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 
]> 

 
 

<rdf:RDF xmlns="http://www.jkl.fi#" 
     xml:base="http://www.jkl.fi" 

     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
     xmlns:owl="http://www.w3.org/2002/07/owl#" 

     xmlns:www="http://www.jkl.fi#" 

     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 
     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"> 

    <owl:Ontology rdf:about="http://www.jkl.fi"/> 
     

 
 

    <!--  
    

//////////////////////////////////////////////////////////////////////

///////////////// 
    // 

    // Object Properties 
    // 

    
//////////////////////////////////////////////////////////////////////

///////////////// 
     --> 

 

     
 

 
    <!-- http://www.jkl.fi#Films --> 

 
    <owl:ObjectProperty rdf:about="&www;Films"> 

        <rdfs:domain rdf:resource="&www;Camera"/> 
        <rdfs:range rdf:resource="&www;CameraObservation"/> 

    </owl:ObjectProperty> 
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    <!-- http://www.jkl.fi#IsLocated --> 
 

    <owl:ObjectProperty rdf:about="&www;IsLocated"> 
        <rdfs:domain rdf:resource="&www;Camera"/> 

        <rdfs:range rdf:resource="&www;Place"/> 

        <rdfs:domain rdf:resource="&www;Sensor"/> 
    </owl:ObjectProperty> 

     
 

 
    <!-- http://www.jkl.fi#Observes --> 

 
    <owl:ObjectProperty rdf:about="&www;Observes"> 

        <rdfs:domain rdf:resource="&www;Sensor"/> 

        <rdfs:range rdf:resource="&www;SensorObservation"/> 
    </owl:ObjectProperty> 

     
 

 
    <!-- http://www.jkl.fi#Possesses --> 

 
    <owl:ObjectProperty rdf:about="&www;Possesses"> 

        <rdfs:domain rdf:resource="&www;Person"/> 

        <rdfs:range rdf:resource="&www;Phone"/> 
    </owl:ObjectProperty> 

     
 

 
    <!--  

    
//////////////////////////////////////////////////////////////////////

///////////////// 

    // 
    // Data properties 

    // 
    

//////////////////////////////////////////////////////////////////////
///////////////// 

     --> 
 

     

 
 

    <!-- http://www.jkl.fi#CameraObservationData --> 
 

    <owl:DatatypeProperty rdf:about="&www;CameraObservationData"> 
        <rdfs:domain rdf:resource="&www;Camera"/> 

        <rdfs:range rdf:resource="&xsd;string"/> 
    </owl:DatatypeProperty> 
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    <!-- http://www.jkl.fi#CameraObservationTime --> 
 

    <owl:DatatypeProperty rdf:about="&www;CameraObservationTime"> 
        <rdfs:domain rdf:resource="&www;CameraObservation"/> 

        <rdfs:range rdf:resource="&xsd;dateTime"/> 

    </owl:DatatypeProperty> 
     

 
 

    <!-- http://www.jkl.fi#CameraType --> 
 

    <owl:DatatypeProperty rdf:about="&www;CameraType"> 
        <rdfs:domain rdf:resource="&www;Camera"/> 

        <rdfs:range rdf:resource="&xsd;string"/> 

    </owl:DatatypeProperty> 
     

 
 

    <!-- http://www.jkl.fi#PersonAge --> 
 

    <owl:DatatypeProperty rdf:about="&www;PersonAge"> 
        <rdfs:domain rdf:resource="&www;Person"/> 

        <rdfs:range rdf:resource="&xsd;integer"/> 

    </owl:DatatypeProperty> 
     

 
 

    <!-- http://www.jkl.fi#PersonDescription --> 
 

    <owl:DatatypeProperty rdf:about="&www;PersonDescription"> 
        <rdfs:domain rdf:resource="&www;Person"/> 

        <rdfs:range rdf:resource="&xsd;string"/> 

    </owl:DatatypeProperty> 
     

 
 

    <!-- http://www.jkl.fi#PersonName --> 
 

    <owl:DatatypeProperty rdf:about="&www;PersonName"> 
        <rdfs:domain rdf:resource="&www;Person"/> 

        <rdfs:range rdf:resource="&xsd;string"/> 

    </owl:DatatypeProperty> 
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    <!-- http://www.jkl.fi#PersonSex --> 
 

    <owl:DatatypeProperty rdf:about="&www;PersonSex"> 
        <rdfs:domain rdf:resource="&www;Person"/> 

        <rdfs:range> 

            <rdfs:Datatype> 
                <owl:oneOf> 

                    <rdf:Description> 
                        <rdf:type rdf:resource="&rdf;List"/> 

                        <rdf:first>Female</rdf:first> 
                        <rdf:rest> 

                            <rdf:Description> 
                                <rdf:type rdf:resource="&rdf;List"/> 

                                <rdf:first>Male</rdf:first> 

                                <rdf:rest rdf:resource="&rdf;nil"/> 
                            </rdf:Description> 

                        </rdf:rest> 
                    </rdf:Description> 

                </owl:oneOf> 
            </rdfs:Datatype> 

        </rdfs:range> 
    </owl:DatatypeProperty> 

     

 
 

    <!-- http://www.jkl.fi#PhoneNumber --> 
 

    <owl:DatatypeProperty rdf:about="&www;PhoneNumber"> 
        <rdfs:domain rdf:resource="&www;Phone"/> 

        <rdfs:range rdf:resource="&xsd;integer"/> 
    </owl:DatatypeProperty> 

     

 
 

    <!-- http://www.jkl.fi#PhoneType --> 
 

    <owl:DatatypeProperty rdf:about="&www;PhoneType"> 
        <rdfs:domain rdf:resource="&www;Phone"/> 

        <rdfs:range rdf:resource="&xsd;string"/> 
    </owl:DatatypeProperty> 

     

 
 

    <!-- http://www.jkl.fi#PlaceAddress --> 
 

    <owl:DatatypeProperty rdf:about="&www;PlaceAddress"> 
        <rdfs:domain rdf:resource="&www;Place"/> 

        <rdfs:range rdf:resource="&xsd;string"/> 
    </owl:DatatypeProperty> 

     

 

 
 

 



108 

    <!-- http://www.jkl.fi#PlaceDescription --> 
 

    <owl:DatatypeProperty rdf:about="&www;PlaceDescription"> 
        <rdfs:domain rdf:resource="&www;Place"/> 

        <rdfs:range rdf:resource="&xsd;string"/> 

    </owl:DatatypeProperty> 
     

 
 

    <!-- http://www.jkl.fi#SensorObservationTemperature --> 
 

    <owl:DatatypeProperty rdf:about="&www;SensorObservationTemperature"> 
        <rdfs:domain rdf:resource="&www;SensorObservation"/> 

        <rdfs:range rdf:resource="&xsd;decimal"/> 

    </owl:DatatypeProperty> 
     

 
 

    <!-- http://www.jkl.fi#SensorObservationTime --> 
 

    <owl:DatatypeProperty rdf:about="&www;SensorObservationTime"> 
        <rdfs:domain rdf:resource="&www;Sensor"/> 

        <rdfs:range rdf:resource="&xsd;dateTime"/> 

    </owl:DatatypeProperty> 
     

 
 

    <!-- http://www.jkl.fi#SensorType --> 
 

    <owl:DatatypeProperty rdf:about="&www;SensorType"> 
        <rdfs:domain rdf:resource="&www;Sensor"/> 

        <rdfs:range rdf:resource="&xsd;string"/> 

    </owl:DatatypeProperty> 
     

 
 

    <!--  
    

//////////////////////////////////////////////////////////////////////
///////////////// 

    // 

    // Classes 
    // 

    
//////////////////////////////////////////////////////////////////////

///////////////// 
     --> 

 
     

 

 
    <!-- http://www.jkl.fi#Camera --> 

 
    <owl:Class rdf:about="&www;Camera"/> 
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    <!-- http://www.jkl.fi#CameraObservation --> 
 

    <owl:Class rdf:about="&www;CameraObservation"/> 

     
 

 
    <!-- http://www.jkl.fi#Person --> 

 
    <owl:Class rdf:about="&www;Person"/> 

     
 

 

    <!-- http://www.jkl.fi#Phone --> 
 

    <owl:Class rdf:about="&www;Phone"/> 
     

 
 

    <!-- http://www.jkl.fi#Place --> 
 

    <owl:Class rdf:about="&www;Place"/> 

     
 

 
    <!-- http://www.jkl.fi#Sensor --> 

 
    <owl:Class rdf:about="&www;Sensor"/> 

     
 

 

    <!-- http://www.jkl.fi#SensorObservation --> 
 

    <owl:Class rdf:about="&www;SensorObservation"/> 
</rdf:RDF> 

 
 

 
<!-- Generated by the OWL API (version 3.5.0) http://owlapi.sourceforge.net --> 
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APPENDIX 2: APACHE JMETER TEST PLAN 

Test plan / element Test plan / element name Settings

Test plan Test plan Run thread groups consecutively (i.e., run groups one at a time): yes (during the first part of the test when the 

initial graph is created), no (otherwise)

Loadosophia.org uploader Loadosophia.org uploader Initiate active test: yes, upload to project: Stardog/Neo4j, test title: 1a–1d, 2a–2d

HTTP header manager HTTP header manager (Stardog) Content-Type: application/sparql-update (write queries), Accept: application/sparql-results+json, Content-

Type: application/sparql-query (read queries)

HTTP request defaults HTTP request defaults (Stardog) Web server IP: 130.234.208.101, port number: 8080, implementation: Java, path: /db/update (write queries), 

/db/query (read queries)

HTTP header manager HTTP header manager (Neo4j) Accept: application/json; charset=UTF-8, Content-Type: application/json

HTTP request defaults HTTP request defaults (Neo4j) Web server IP: 130.234.208.102, port number: 8080, implementation: Java, path: 

/db/data/transaction/commit

General settings

 

Element Element name Settings

Thread group Create places (Stardog/Neo4j) Number of threads (users): 1, ramp-up period (in seconds): 1, loop count: 1000

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID1

Function RandomString Generates a random string

HTTP request Create a place Method: POST

Description of the body data

The query creates 1000 places that have IDs, names (PlaceDescription), and addresses.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Place${ID1} sm:PlaceDescription "Place ${ID1}" ;

                             sm:PlaceAddress "${__RandomString(30,abcdefghijklmnopqrstuvwxyz1234567890,)}" }

Body data (Neo4j)

{

    "statements" : [

        {

            "statement" : "CREATE (a:Place {props})",

            "parameters" : {

                "props" : {

                    "PlaceID" : ${ID1},

                    "PlaceDescription" : "Place ${ID1}",

                    "PlaceAddress" : "${__RandomString(30,abcdefghijklmnopqrstuvwxyz1234567890,)}"

                }

            }

        }

    ]

}

Element Element name Settings

Thread group Create sensors (Stardog/Neo4j) Number of threads (users): 1, ramp-up period (in seconds): 1, loop count: 1000

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID2

HTTP request Create a sensor Method: POST

Description of the body data

The query creates 1000 temperature sensors that have IDs and that are located in the aforementioned 1000 places.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Sensor${ID2} sm:IsLocated sm:Place${ID2} ;

                               sm:SensorType "Temperature sensor" }

Body data (Neo4j)

{

    "statements" : [

        {

            "statement" : "MATCH (a:Place {PlaceID: {PlaceID}}) CREATE (b:Sensor {props})-[:ISLOCATED]->(a)",

            "parameters" : {

                "PlaceID" : ${ID2},

                "props" : {

                    "SensorID" : ${ID2},

                    "SensorType" : "Temperature sensor"

                }

            }

        }

    ]

}

1. Create the graph
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Element Element name Settings

Thread group Create cameras (Stardog/Neo4j) Number of threads (users): 1, ramp-up period (in seconds): 1, loop count: 250

Counter Counter Start: 1, increment: 1, maximum: 250, reference name: ID3

HTTP request Create a camera Method: POST

Description of the body data

The query creates 250 video cameras that have IDs and that are located in the 250 first places of the aforementioned 1000 places.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Camera${ID3} sm:IsLocated sm:Place${ID3} ;

                                 sm:CameraType "Video camera" }

Body data (Neo4j)

{

    "statements" : [

        {

            "statement" : "MATCH (a:Place {PlaceID: {PlaceID}}) CREATE (b:Camera {props})-[:ISLOCATED]->(a)",

            "parameters" : {

                "PlaceID" : ${ID3},

                "props" : {

                    "CameraID" : ${ID3},

                    "CameraType" : "Video camera"

                }

            }

        }

    ]

}

Element Element name Settings

Thread group Create persons (Stardog/Neo4j) Number of threads (users): 1, ramp-up period (in seconds): 1, loop count: 1000

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID4

Function RandomString Generates a random string

Function Random Generates a random number

Function chooseRandom Chooses a single random value from a list of arguments

HTTP request Create a person Method: POST

Description of the body data

The query creates 1000 people that have IDs, names, ages, and sexes.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Person${ID4} sm:PersonName "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}" ;

                               sm:PersonAge ${__Random(1,65,)} ;

                               sm:PersonSex "${__chooseRandom(Male,Female,Random)}" }

Body data (Neo4j)

{

    "statements" : [

        {

            "statement" : "CREATE (a:Person {props})",

            "parameters" : {

                "props" : {

                    "PersonID" : ${ID4},

                    "PersonName" : "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}",

                    "PersonAge" : ${__Random(1,65,)},

                    "PersonSex" : "${__chooseRandom(Male,Female,Random)}"

                }

            }

        }

    ]

}

Element Element name Settings

Thread group Create phones (Stardog/Neo4j) Number of threads (users): 1, ramp-up period (in seconds): 1, loop count: 1000

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID5

Counter Counter Start: 1234567890, increment: 1, reference name: NUMBER

Function RandomString Generates a random string

HTTP request Create a phone Method: POST

Description of the body data

The query creates 1000 phones that have IDs, numbers, and types, and that the aforementioned persons possess.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Person${ID5} sm:Possesses sm:Phone${ID5} } ;

INSERT DATA

{ sm:Phone${ID5} sm:PhoneNumber ${NUMBER} ;

                              sm:PhoneType "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}" }

Body data (Neo4j)

{

    "statements" : [

        {

            "statement" : "MATCH (a:Person {PersonID: {PersonID}}) CREATE (a)-[:POSSESSES]->(b:Phone {props})",

            "parameters" : {

                "PersonID" : ${ID5},

                "props" : {

                    "PhoneID" : ${ID5},

                    "PhoneNumber" : ${NUMBER},

                    "PhoneType" : "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}"

                }

            }

        }

    ]

}
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Element Element name Settings

Thread group Create sensor observations (Stardog/Neo4j) Number of threads (users): 1000, ramp-up period (in seconds): 1, loop count: 2

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID6

Counter Counter Start: 1, increment: 1, maximum: 2000, reference name: ID7

Counter Counter Start: 201410251200, increment: 1, reference name: TIME1

Function chooseRandom Chooses a single random value from a list of arguments

HTTP request Create a sensor observation Method: POST

Description of the body data

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Sensor${ID6} sm:Observes sm:SensorObservation${ID7} } ;

INSERT DATA

{ sm:SensorObservation${ID7} sm:SensorObservationTime ${TIME1} ;

                                                   sm:SensorObservationTemperature ${__chooseRandom(13,14,15,Random)} }

Body data (Neo4j)

{

    "statements" : [

        {

            "statement" : "MATCH (a:Sensor {SensorID: {SensorID}}) CREATE (a)-[:OBSERVES]->(c:SensorObservation {props})",

            "parameters" : {

                "SensorID" : ${ID6},

                "props" : {

                    "SensorObservationID" : ${ID7},

                    "SensorObservationTime" : ${TIME1},

                    "SensorObservationTemperature" : ${__chooseRandom(13,14,15,Random)}

                }

            }

        }

    ]

}

Element Element name Settings

Thread group Create camera observations (Stardog/Neo4j) Number of threads (users): 250, ramp-up period (in seconds): 1, loop count: 30

Counter Counter Start: 1, increment: 1, maximum: 250, reference name: ID8

Counter Counter Start: 1, increment: 1, maximum: 7500, reference name: ID9

Counter Counter Start: 201410251200, increment: 1, reference name: TIME2

Function RandomString Generates a random string

HTTP request Create a camera observation Method: POST

Description of the body data

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Camera${ID8} sm:Films sm:CameraObservation${ID9} } ;

INSERT DATA

{ sm:CameraObservation${ID9} sm:CameraObservationTime ${TIME2} ;

  sm:CameraObservationData "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}" }

Body data (Neo4j)

{

    "statements": [

        {

            "statement" : "MATCH (a:Camera {CameraID: {CameraID}}) CREATE (a)-[:FILMS]->(c:CameraObservation {props})",

            "parameters" : {

                "CameraID" : ${ID8},

                "props" : {

                    "CameraObservationID" : ${ID9},

                    "CameraObservationTime" : ${TIME2},

                    "CameraObservationData" : "${__RandomString(20,abcdefghijklmnopqrstuvwxyz1234567890,)}"

                }

            }

        }

    ]

}

2. Write queries

The query creates 2000 sensor observations that the aforementioned 1000 sensors observe. The sensor observations have IDs, and they are created on October 25, 2014, 12 p.m. and beyond 

(SensorObservationTime). They also have some values, i.e., temperatures

The query creates 7500 camera observations that the aforementioned 250 cameras film. The camera observations have IDs, and they are created on October 25, 2014, 12 p.m. and beyond 

(CameraObservationTime). They also have some values, i.e., hyperlinks to so
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Element Element name Settings

Thread group Show my personal information 1 (Stardog/Neo4j) Number of threads (users): 1000, ramp-up period (in seconds): 1, loop count: 1

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID10

HTTP request Show my personal information 1 Method: POST

Description of the body data

The query reads the personal information of the aforementioned 1000 people.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

SELECT *

WHERE { sm:Person${ID10} ?b ?c }

Body data (Neo4j)

{

    "statements" : [

        {

            "statement" : "MATCH (a:Person {PersonID: {PersonID}}) RETURN a",

            "parameters" : {

                "PersonID" : ${ID10}

            }

        }

    ]

}

Element Element name Settings

Thread group Count the average temperature (Stardog/Neo4j) Number of threads (users): 1000, ramp-up period (in seconds): 1, loop count: 1

HTTP request Count the average temperature Method: POST

Description of the body data

The query counts the average temperature of all the sensor observations 1000 times.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

SELECT (AVG(?b) AS ?Average)

WHERE

{ ?a sm:SensorObservationTemperature ?b }

Body data (Neo4j)

{

    "statements" : [

        {

            "statement" : "MATCH (a:SensorObservation) RETURN avg(a.SensorObservationTemperature)"

        }

    ]

}

3. Read queries
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4. Read and write queries

Element Element name Settings

Thread group Show my personal information 2 (Stardog/Neo4j) Number of threads (users): 1000, ramp-up period (in seconds): 1, loop count: 1

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID11

HTTP request Show my personal information 2 Method: POST

Description of the body data

The query reads the personal information of the aforementioned 1000 people.

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

SELECT *

WHERE { sm:Person${ID11} ?b ?c }

Body data (Neo4j)

{

    "statements" : [

        {

            "statement" : "MATCH (a:Person {PersonID: {PersonID}}) RETURN a",

            "parameters" : {

                "PersonID" : ${ID11}

            }

        }

    ]

}

Element Element name Settings

Thread group Update my personal information (Stardog/Neo4j) Number of threads (users): 1000, ramp-up period (in seconds): 1, loop count: 1

Counter Counter Start: 1, increment: 1, maximum: 1000, reference name: ID12

Counter Counter Start: 1, increment: 1, reference name: ID13

* Character string 10000 characters long comprising the same numbers and characters than RandomString functions above

HTTP request Update my personal information Method: POST

Description of the body data

Body data (Stardog)

PREFIX sm: <http://www.jkl.fi#>

INSERT DATA

{ sm:Person${ID12} sm:Description "${ID13}*" }

Body data (Neo4j)

{

    "statements" : [

        {

            "statement" : "MATCH (a:Person {PersonID: {PersonID}}) SET a.PersonDescription = {PersonDescription}",

            "parameters" : {

                "PersonID" : ${ID12},

                "PersonDescription" : "${ID13}*"

            }

        }

    ]

}

The query updates the personal information of the aforementioned 1000 people. The query adds a new property to each person's information (Description, PersonDescription) that is randomized a 

little by the counter ID13.

 


