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Hannu Häkkinen



Acknowledgements

Most of the calculations performed in this study were run at Sisu supercomputer

of IT Center for Science (CSC, Center of Scientific Computing). I also thank my

advisors for professional and enthusiastic aid and support during the work.



Abstract

Self-assembled monolayers (SAMs) are systems of organic compounds adsorbed

onto metal or silicon, forming a dense cover on top of the substrate; the most

studied system of SAMs consists of alkylthiols on gold surface. In 2012, Liao et

al. [1] found out, as a side-product of their chemical lift-off lithography research,

that when the thiol cover was pulled off the gold surface, a layer of gold was

also removed from the substrate. In our study, this process was simulated using

density functional theory (DFT) within projector augmented-wave (PAW) method

to examine the dynamics at the interface of gold and the thiol cover. According

to our results, acquired using the linear combination of atomic orbitals (LCAO)

method and the PBE functional, about half of the top layer of gold is removed from

the surface by the thiols. Both planar Au(111) surface and a surface with a terrace,

Au(332), were examined and they showed similar behavior during the process. As

this kind of calculations have not been performed before, some parameter tests

including the pulling speed and the Langevin friction parameter tests were run. I

also performed some calculations considering the optimal geometries and energetics

of different alkylthiols and ensured that the LCAO method is justified in the

dynamics simulations; the results were in agreement with the literature values.

This study sheds light to the physical and chemical phenomena at the interface of

gold surface and alkylthiol monolayers and builds a base for further investigations

on the subject.
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1 Introduction

Noble and coinage metal surfaces have shown great potential as nanometer-sized

laboratories in material sciences and molecule research in biochemistry, for they

are relatively stable and easy to control. However, their stability and purity suffers

from the atmospheric molecules such as sulfur oxides and nitrogen oxides which

react with the surface and oxidize it. Although this happens slowly, they quickly

become dirty in a sense that the surface does not have the properties of interest

anymore. A widely known way to alter the physical, chemical and electronic

properties of metal surfaces is the use of self-assembled monolayers (SAM). SAMs

consist of organic molecules which, let in contact with the surface, assemble onto

it symmetrically and densely, forming a coat that thoroughly covers the surface

[1, 2, 3]. The most studied system consists of gold surface with sulfur-based SAMs

because thiols are observed to bind strongly to gold surfaces and the organic thiol

molecules are also stable and easy to prepare [4]. One of the great aspects of SAMs

is also the possibility to tailor the organic molecule in question. For example, the

length of the carbon chain can be varied in alkanethiols, and the end group of the

alkanethiol can also be changed to achieve different behaviour of the new organic

surface that forms above the SAM.

The variety of applications implementing SAMs is vast. Probably the most notice-

able impact it has had on biochemistry and biomedical sciences, for the method

offers a low-cost and easy way to mimic biological surfaces and interfaces, such

as the cell wall [5]. The SAMs therefore form a nanosized laboratory where the

interactions and phenomena of organic molecules and surfaces can be studied.

Self-assembled monolayers have also been used to cover metal systems with other

symmetries: for example, Haes and Van Duyne showed that different amino acids

assembled to silver nanotriangles have different contribution to the plasmonic fea-

tures of the system [6], and by comparing the optical spectra of the systems one can

detect and recognize different amino acids and proteins. One benefit of this recog-

nition method is that the sample size can be very small; the amount of molecules

under investigation can be measured in numbers of molecules rather than in mo-

larity. In fact, it is quite a widely used method to attach organic molecules onto
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Figure 1: The idea of chemical lift-off lithography. The two SAMs are brought in
contact to bind to each other. While separating the substrates, the thiolates of the lower
SAMs are removed together with some gold originating at the other substrate. The
figure origins at ref. [1].

nanoparticles so that the molecules form a shielding shell around the particles; the

most important effect here is the stabilizing effect of the monolayer that prevents

the nanoparticles from aggregating and decomposing in solution [7, 8]. In a similar

manner as the triangular nanosilver, the SAM-protected clusters are often used to

detect organic molecules via methods that are based on the effect of the monolayer

on the optical behaviour of the particles [9]. An example of this kind of method

was introduced by Elghanian et al. who managed to detect polynucleotides using

DNA-assembled gold nanoparticles [10]. A similar method was used by Liu and

Lu who presented a method to detect and quantify metal ions in solution [11].

Outside the detection applications, other kinds of biomedical applications exist

too. For example, Salem et al. used Au/Ni rods to transfer DNA into cells by

attaching certain protein molecules to the golden part of the rod and DNA to the

nickel part [12]. While the protein is thus accepted to enter the cell through the

cell wall, the rod is also fully transferred inside, still carrying the DNA and is thus

able to modify the genetics of the cell.

This master’s thesis is closely related to another application considering the self-

assembled monolayers, namely lithography. In 2012, Liao et al. represented a

new method to improve the convenience and fabrication rate compared to old

methods [1]. In the method, conventional lithography methods are first used to
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pattern a functionalized SAM on the stamp chip. This stamp is then placed on

top of another SAM-covered gold substrate (mostly alkanethiols were used) to

contact the functionalized SAM molecules of the stamp to the monolayer of the

lower substrate, see fig. 1. The SAM molecules react and bind to each other with

covalent bonds, and when the stamp is removed, the reacted molecules are pulled

off the surface and thus the pattern is transferred to the lower monolayer as a

negative copy. Because the stamp can be cleaned, it can be used multiple times

and thus the method is many times faster than the conventional methods such

as the electron beam lithography (EBL) where the patterning is quite slow and

energy-consuming due to the scanning time and the need of vacuum. This kind

of lithography could be used in, for example, research done by Singhvi et al., who

have utilized the older methods to create a patterned monolayer on gold surface

and to attach entire cells onto them in order to study their behaviour in fixed

positions and conditions [13].

The method of Liao et al. is called chemical lift-off lithography (CLL). While

investigating the stamp substrate after the procedure with X-ray photoelectron

spectroscopy (XPS), they noticed that there exists some gold in addition to the

organic SAM molecules, meaning that some gold is removed from the substrate

surface while removing the stamp. This thesis reports the computational ab initio

study considering the molecular dynamics at the surface of gold while the thiols

are pulled off. The aim of this work is to get theoretical understanding of the

physical and chemical phenomena that drives the observed rip-off of thiols and

gold molecules from the gold surface.
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2 Theory and computational methods

In the computational part of the work, the density functional theory (DFT) was

used with the projector-augmented wave method (PAW) for structural optimiza-

tion and molecular dynamics. The PAW method was used through the code

named Grid PAW (GPAW) [14, 15], which uses the Atomistic Simulation En-

viroment (ASE) [16]. Before going to the details of those computational methods,

some basic information about the physics and chemistry of gold and self-assembled

monolayers is given.

2.1 Chemistry of gold and thiols

As mentioned in chapter 1, there are many structures where the bond between

gold and sulfur plays the dominant role, for example SAMs, thiol-covered gold

nanoparticles and polymeric molecules where there are repeating units that con-

tain Au-S bonds. The nature of the bond in question is often discussed due to its

high stability, which is interesting while gold is known to be chemically inert in

bulk form. The binding of Au-S is not trivial, as the formalism needs to take the

relativistic effects into account to deal with the electron orbitals of gold; the rela-

tivistic effects affect the extension of the orbitals of gold and interactions between

them [17]. However, the relativity is easily implemented in the calculations, and

thus some progress has been made. For example, in ring-like structures, the sp3

hybridization of sulfur is known to bound to sp3 hybridized orbitals and the 5d

orbital of gold (sulfur atom has electron configuration of [Ne]3s23p4 and gold has

[Xe]4f145d106s1) and the oxidation state of gold is +I [18].

In the present study, however, surface structures and self-assembled monolayers

(SAMs) were investigated. A SAM is simply a close-packing cover of organic

molecules on top of metal or silicon substrate, and alkanethiols are known to form

stable monolayers on gold surfaces [19, 17]; the bond strength between alkanethiols

and gold surface has been determined to values around 1.8 eV [4, 20]. An example

of a thiolate monolayer is shown in figure 2. What currently is not so simple is

the structure and birth mechanism of the monolayers. A couple of decades ago,
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(a) (b)

Figure 2: An example of (
√

3×
√

3)R30◦ structured high-coverage self-assembled mono-
layer consisting of SC4H9 molecules on top of Au(111) surface. (a) The structure shown
from side. (b) The same structure shown from top of the surface.

the alkanethiols were suggested to bind to hollow sites of the Au(111) surface

atoms with the orientation of carbon chains to either straight up or with the

angle 59◦ from the Au plane (corresponding to sp and sp3 bonding, respectively)

with the high-coverage structure being (
√

3 ×
√

3)R30◦ [4]. Later, it was shown

computationally that energetically the most favourable site for the thiol is hollow-

bridge site with the tilt angle of S-C bond of around 50◦ [21, 22].

In 2006, however, Maksymovych et al. published results which suggest that the

thiols anchor to the a-top positions bound to gold adatoms (two thiols per adatom)

lying at the bridge sites, the unit cell having the structure c(4 × 2) [23, 19]. The

use of these RS-Au-SR units in the models fix multiple problems experienced in

determining the structure of the thiol SAMs [20]. At present, it is still unclear

how these adatom units are formed: How do the gold adatoms get there, on top of

the surface, considering pure Au(111) surface or surface with terraces as the initial

structure? In any case, it is known that as the thiol molecules H-SR are adsorbed

onto gold surface, they prefer to follow the reaction path

2 H-SR + Au(surface) → H2 + 2 RS-Au(surface), (1)

meaning that the thiol is in fact adsorbed as thiolate, releasing the hydrogen.

The other alternative would be that the H-SR is bound to gold as such via lone-
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pair electrons of sulfur, but this process is energetically less favourable compared

to the thiyl radical adsorption [17]. Thus, thiolates are used in my calculations

considering the adsorption to hollow-bridge sites of gold.

2.2 Density functional theory

The density functional theory (DFT) is a widely used ab initio method to cal-

culate the ground state properties of an atomistic system. The history of the

density functional theory is said to be started in 1964 when Hohenberg and Kohn

introduced their improvements on Thomas-Fermi methods [24]. The traditional

Thomas-Fermi model proceeds by taking into account only the classical interac-

tions between electrons and presenting the kinetic energy of the electrons as the

one of uniform electron gas [25], whereas the modern DFT can handle these phe-

nomena much more accurately. In this section, I will present the most important

and essential steps and assumptions in deriving the equations needed to implement

DFT in work, but I will not derive them in details. Most of the progress here uses

the book by Parr and Yang (ref. [26]) as reference.

2.2.1 The Schrödinger equation

We begin the derivation of DFT by introducing the stationary Schrödinger equa-

tion

ĤΨ(~r1, ~r2, . . . , ~rN , s1, s2, . . . , sN) = EΨ(~r1, ~r2, . . . , ~rN , s1, s2, . . . , sN) (2)

of an atomic system with N electrons with positions ~ri and spin numbers si.

According to the equation (2), the eigenvalues of the Hamiltonian operator Ĥ are

the electronic energy states E of the system and its eigenvectors are the probability

amplitude matrices Ψ. If the wave functions Ψ are normalized, the expectation
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value of an energy measurement of the system is

E[Ψ] = 〈Ψ|Ĥ|Ψ〉

=

∫
Ψ∗ĤΨd~r1d~r2 . . . d~rNds1ds2 . . . dsN ,

(3)

where the brackets indicate that E is a functional of Ψ. This simply means that

E is a function of a function Ψ, not a function of a number.

Because an electron system certainly has a minimum energy corresponding to the

occupation of electrons on certain energy levels obeying the Pauli exclusion princi-

ple, one of the expectation values of the Hamiltonians describing the system must

be the lowest of them all. The lowest value is denoted as E0 and the relation

E0 ≤ E[Ψ] (4)

is called the variational principle; this is derived in, for example, ref. [26]. Put

simple, the density functional theory is a method to find an approximate value

for this ground state energy E0, that is, to minimize the expectation value of the

Hamiltonian as

E0 = min (〈Ψ|Ĥ|Ψ〉). (5)

In principle, going through all the possible Hamiltonians that could describe the

system (having the correct number of electrons N and the correct external poten-

tial) one would finally find the ground state and the corresponding properties, but

trying that would not be sensible due to the number of variables and the fact that

the exact form of the interaction potential is not known.

Let us look inside the Hamiltonian that describes the atomic system. In general,

it consists of two terms: the kinetic energy operator T̂ and the potential energy

operator V̂ , that is

Ĥ = T̂ + V̂ . (6)

The kinetic energy of the system consists of the kinetic energy of the nuclei and of
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the electrons. However, according to the Born-Oppenheimer approximation, the

kinetic energy of the nuclei can be separated from the electrons’ kinetic energy, for

they do not interact with each other [27]. The total kinetic energy operator

T̂ = T̂electrons (7)

is thus given solely by the kinetic energy operator for electrons, having the form

T̂electrons = −1

2

∑
i

∇2
i (8)

while atomic units are used; this is the case throughout this discussion. The po-

tential energy can also be divided into Coulombic and non-Coulombic interactions

as

V̂ = V̂nn + V̂ee + V̂0, (9)

where Vnn is the Coulombic potential between nuclei, Vee is the Coulombic potential

between electrons and V0 includes the external potential (external to electrons, eg.

Coulomb interaction between nuclei and electrons). Again, the potential energy

between two nuclei can be regarded as constant, so it can be neglected for now and

added to the total energy in the end. The Coulombic electron-electron interaction

operator in terms of the electron positions is given by

V̂ee =
N∑
i

N∑
j

1/rij (10)

where rij is the distance between the electron positions. The rest of the potential,

including the interaction between nuclei and electrons, is given by

V̂ne =
N∑
i

V̂ext(~ri), (11)

where V̂ext(~ri) is the external potential at electron position ~ri. To sum up, the

Hamiltonian for electrons in a system with N electrons and with the external
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potential Vext becomes

Ĥ = −1

2

N∑
i

∇2
i +

N∑
i

Vext(~ri) +
N∑
i

N∑
j

1/rij, (12)

where the summing indices run over all the electrons.

2.2.2 Hartree-Fock method

Following the Hartree-Fock (HF) method, the ancestor of DFT, we assume that

the wave function Ψ can be written in terms of N orthonormal spin orbitals χi

that each represent a single electron [28]. Because electrons are fermions, the

total wave function must meet the requirement of antisymmetry, that is, if two

electrons are interchanged, the wave function is multiplied by −1. That is, in

mathematics,

Ψ(χ1, χ2, . . . , χi, . . . , χj, . . . , χN) = −Ψ(χ1, χ2, . . . , χj, . . . , χi, . . . , χN). (13)

Because the Hamiltonian of equation (12) does not take into account the require-

ment for antisymmetry, the normalized Slater determinant [29]

Ψ0(~x1, ~x2, . . . , ~xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣
χ1(~x1) χ2(~x1) χ3(~x1) . . . χN(~x1)

χ1(~x2) χ2(~x2) χ3(~x2) . . . χN(~x2)

. . . . . . . . . . . . . . .

χ1(~xN) χ2(~xN) χ3(~xN) . . . χN(~xN)

∣∣∣∣∣∣∣∣∣∣
(14)

is introduced as an initial guess for the wave function Ψ; the determinant is clearly

antisymmetric by the general properties of determinants. In equation (14), the

orthonormal spin orbitals χi are functions of ~xj that consist of spatial orbitals ~φj

and the spin function sj. Therefore, this form of the wave function also includes

the Pauli principle, since the orbitals must be linearly independent (otherwise the

determinant would be equal to zero leading to no solution) so that if an orbital

χi includes the same spatial orbital ~φj as some other orbital χk, they must differ

by their spin functions. In HF method, an approximation is done where a single
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Slater determinant is assumed to be the solution of the Schrödinger equation. If

we calculate the expectation value of the Hamiltonian (eq. (12)) in the state Ψ0,

the function to be minimized in equation (5) becomes [26]

EHF =
∑
i

Hi +
1

2

∑
i,j

(Jij −Kij), (15)

where

Hi =

∫
χ∗i (~x)[−1

2
∇2 + Vext(~x)]χi(~x)d~x, (16)

Jij =

∫ ∫
χi(~x1)χ

∗
i (~x1)

1

r12
χ∗j(~x2)χj(~x2)d~x1d~x2 and (17)

Kij =

∫ ∫
χ∗i (~x1)χj(~x1)

1

r12
χi(~x2)χ

∗
j(~x2)d~x1d~x2 (18)

hold. Taking into account the orthonormality of the spin orbitals χi, the minimiz-

ing then leads to the Hartree-Fock equations [26, 27]

f̂iχi = εiχi, (19)

where εi is interpreted as the orbital energy and f̂i is defined as

f̂i = −1

2
∇2
i + V̂ext + V̂HF (i). (20)

In equation (20), the Hartree-Fock potential V̂HF is given by

V̂HF (~x1) =
∑
j

(Ĵj(~x1)− K̂j(~x1)), (21)

where

Ĵj(~x1) =

∫
|χj(~x2)|2

1

r12
d~x2 and (22)

K̂j(~x1)χi(~x1) =

∫
χ∗j(~x2)

1

r12
χi(~x2)d~x2χj(~x1). (23)
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2.2.3 Electron density and Hohenberg-Kohn theorems

To ease the calculations utilizing the Hartree-Fock method, Hohenberg and Kohn

introduced the idea, a derivative of the Thomas-Fermi method, that electron sys-

tems can be also described in terms of electron density ρ(~r) instead of the universal

positions of the electrons [24]. In general, the electron density in certain position

~r1 is intuitively defined as

ρ(~r1) = N

∫
. . .

∫
|Ψ(~x1, ~x2, . . . , ~xN)|2ds1d~x2d~x3 . . . d~xN , (24)

where ~xi = ~ri×si and where |Ψ(~x1, ~x2, . . . , ~xN)|2d~xi gives the probability of finding

an electron in differential position d~xi. Due to the conservation of electrons in the

system, it also holds that

N =

∫
ρ(~r)d~r. (25)

With these facts, Hohenberg and Kohn presented two theorems which later led to

the birth of the Kohn-Sham method and the density functional theory. The first

theorem states that the external potential is a unique functional of the electron

density distribution ρ(~r), and thus so is the ground state energy. The second

theorem is nothing more than the variational principle in terms of the electron

density. This can be put as

E[ρ] = T [ρ] + Vne[ρ] + Vee[ρ]

=

∫
ρ(~r)Vext(~r)d~r + FHK [ρ],

(26)

where

FHK [ρ] = T [ρ] + Vee[ρ] (27)

is the one functional in DFT that contains everything that is not known exactly.

Put differently, exact knowledge of FHK [ρ] would lead to the exact value for the

ground state energy of the electron system. For consistency of notation, let us add
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here that the terms in equations (26) and (27) represent the expectation values

of the corresponding operators, for example, T ≡ 〈Ψ|T̂ |Ψ〉. The total energy E is

naturally the expectation value of the Hamiltonian.

2.2.4 Kohn-Sham method

In 1965, a year after the revolutionary findings of Hohenberg and Kohn, Kohn and

Sham built a method that the modern DFT strongly leans on [30]. In the method,

the known and the unknown terms of the kinetic energy and the electron-electron

interaction are separated as

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ], (28)

where

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Vee[ρ]− J [ρ]). (29)

In equations (28) and (29), Ts is the kinetic energy of the system with no inter-

actions between the electrons and J is the classical (ie. Coulombic) interaction

between electrons. In equation (29), the first parenthesis contains the error in the

kinetic energy Ts compared to the total kinetic energy, and the second parenthesis

contains the nonclassical part of the electron-electron interaction. More details

about the exchange-correlation energy Exc are given in chapter 2.2.5.

Thus, the method describes a non-interactive system which is embedded in an

external potential field that in the end contains the interaction potentials. The

energy of a Kohn-Sham orbital χi is then given by the eigenvalues Ei of the equa-

tion

Eiχi = (T̂s[ρ] + Ĵ [ρ] + V̂ne[ρ] + V̂xc[ρ])χi

=
(
− 1

2
∇2 +

∫
ρ(~r′)

|~r − ~r′|
d~r′ +

∫
ρ(~r)V̂ext(~r)d~r + V̂xc[ρ]

)
χi,

(30)
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where the electron density is calculated as

ρ(~r) =
N∑
i=1

∑
s

|χi(~r, s)|2. (31)

Because the density and the wave functions are dependent on each other via equa-

tions (30) and (31), the problem must be solved iteratively. The procedure might

go for example as follows:

1. Initial guess for wave functions based on some atomic basis is substituted to

equation (31) which then gives an initial function for the density.

2. The density is substituted to equation (30) which gives the new wave func-

tions (and the orbital energies)

3. The density function is calculated again using the new wave functions.

4. The differences between the old and the new wave functions and densities

are calculated.

5. If the differences are below a given limit, the iterative calculation is ready

(ie. convergence is achieved) and can be stopped. If not, the calculation is

continued from stage 2.

This iterative procedure is called self-consisted field (SCF) cycle. After the proce-

dure, all the properties of the system can be derived from the Kohn-Sham orbitals

and the density. For example, the total energy of the system can be calculated via

equations (26) and (28).

2.2.5 Exchange-correlation functionals Vxc

In equation (30), there exists an unknown term, Vxc, that is defined as

Vxc =
δExc[ρ]

δρ(~r)
(32)

where Exc is the exchange-correlation energy that contains the non-classical inter-

action energy between electrons and the difference between the kinetic energies of
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the interacting and the non-interacting systems. The functional is usually sepa-

rated to exchange and correlation terms that are independent of each other. The

exchange energy is related to the fact that two parallel-spin electrons cannot have

the same position and, therefore, they have some kind of non-classical interaction

that can be defined as [26]

Ex[ρ↑, ρ↓] = −1

2

∫ ∫
1

r12

[
|ρ↑↑(~r1, ~r2)|2 + |ρ↓↓(~r1, ~r2)|2

]
d~r1d~r2, (33)

where

ρ↑↑(~r1, ~r2) =
∑
i

ni↑χi↑(~r1)χ
∗
i↑(~r2) and (34)

ρ↓↓(~r1, ~r2) =
∑
i

ni↓χi↓(~r1)χ
∗
i↓(~r2). (35)

The factors ni↑ and ni↓ are the occupation numbers of the Kohn-Sham orbitals χi↑

and χi↓ with the corresponding spin function ↑ or ↓, respectively. The correlation

term cannot be given a similar expression, and so it is simply defined as the

difference of the total energy and the energy resulting from the known origins:

Ec = E − (Ts + J + Vne + Ex). (36)

As one can assume from the previous discussion, the expression of Exc has been and

still remains the greatest difficulty in DFT [26]; although, many ways to describe

this functional have been developed. The first and the most simple functional

was represented already by Hohenberg and Kohn in 1964 [24], namely the local

density approximation (LDA). In LDA, the exchange-correlation contribution is

given by

ELDA
xc [ρ] =

∫
ρ(~r)εxc(ρ)d~r, (37)

where εxc is defined as the exchange-correlation energy per electron in uniform,

non-interacting electron gas. The term can be divided in the exchange and corre-
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lation parts as

εxc(ρ) = εx(ρ) + εc(ρ) (38)

of which the exhange part εx was already derived by Dirac in 1930 [31] and has

the form

εx(ρ) =
3

4

( 3

π

)1/3
(ρ(~r))1/3. (39)

The correlation part εc in the LDA approach has, in turn, a wider variety of

expressions in literature due to its troublesome complexity. By default, GPAW uses

an expression by Perdew and Wang [32]. They implemented a spin-interpolation

formula that was presented by Vosko, Wilk and Nusair in 1980 [33], which is given

in terms of the density parameter rs

rs = [3/4π(ρ↑ + ρ↓)]
1/3 (40)

and the spin polarization

ζ =
ρ↑ − ρ↓
ρ↑ + ρ↓

. (41)

The subscripts ↑ and ↓ represent antiparallel spin numbers. The correlation energy

per particle is then given by

εc(rs, ζ) = εc(rs, 0) + αc(rs)
f(ζ)

f ′′(0)
(1− ζ4) + [εc(rs, 1)− εc(rs, 0)]f(ζ)ζ4, (42)

where

f(ζ) =
(1 + ζ)4/3 + (1− ζ)4/3 − 2

24/3 − 2
. (43)

In the method of Perdew and Wang, the terms εc(rs, 0), εc(rs, 1) and αc(rs) are
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approximated by optimizing multiple parameters to minimize the function

G(rs, A, α1, β1, β2, β3, β4, p) = −2A(1 + α1rs)×

ln
[
1 + (2A(β1r

1/2
s + β2rs + β3r

3/2
s + β4r

p+1
s )−1

]
. (44)

The fact that the exchange-correlation energy here depends only on the value

of electron density in position ~r makes this approximation very coarse, which is

therefore not applicable in calculating single atoms or molecules where the elec-

tron density varies remarkably in space. For that purpose, the functionals that

make use of generalized gradient approximations (GGA) are used to achieve higher

accuracy.

The idea of GGA was also introduced already by Hohenberg and Kohn [24] as

they suggested that the residual energy functional (ie. the exchange-correlation

functional in Kohn-Sham method) can be expanded so that it, in addition to the

value of the electron density, takes into account the gradient of it. That is,

EGGA
xc [ρ] =

∫
f(ρ,∇ρ)d~r, (45)

where f is some (local) function of the density and its gradient. In my calculations,

the evaluation of f was given by Perdew, Burke and Ernzerhof [34], after whom

this PBE functional is named. In the method, the exchange-correlation energy is

again separated to exchange and correlation parts that contain the forms of εx and

εc of the LDA theory (equations (39) and (42)). The correlation part is then given

by

EGGA
C [ρ] =

∫
ρ
[
εc(rs, ζ) +H(rs, ζ, t)

]
d~r, (46)

where t is a density gradient, given as

t =
|∇ρ|

2φksρ
. (47)
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In equation (47), the spin-scaling factor φ is given by

φ(ζ) =
1

2
[(1 + ζ)2/3 + (1− ζ)2/3] (48)

and the Thomas-Fermi screening wave number ks can be written as

ks =

√
4mee2kF

πh̄2
, kF = 3

√
3π2ρ. (49)

Using the boundary conditions of slowly varying limit t→ 0, rapidly varying limit

t → ∞ and high-density limit, Perdew et al. [34] ended up with the form of H

as

H =
mee

4

h̄2
γφ3 ln

(
1 +

β

γ
t2

1 + At2

1 + At2 + A2t4

)
, (50)

where A has the form of

A =
β

γ

[
exp

(
− εch̄

2

γφ3mee4

)
− 1
]−1

. (51)

The factors β and γ are just numbers based on the boundary conditions and

natural constants therein.

The exchange part of the functional is then given as

Ex[ρ↑, ρ↓] =
1

2
(Ex[2ρ↑] + Ex[2ρ↓]), (52)

where Ex[ρs] is defined as

Ex[ρs] =

∫
ρsεx(ρs)FX(s). (53)

The factor FX(s) is called the spin-polarized enhancement factor, and considering

the boundary conditions of linear response and the Lieb-Oxford bound, it may

have the simple form of

FX(s) = 1 + κ− κ2

κ+ µs2
, (54)
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where the variable s is another density gradient

s =
|∇ρ|
2kFρ

(55)

and κ and µ are, again, dimensionless numbers, evaluated in the original publica-

tion of the method, ref. [34].

2.3 Projector-augmented wave method

In the chapter 2.2, the principles of the density functional theory were represented.

However, to implement DFT efficiently one has to determine a reasonable initial

basis for the Kohn-Sham wave functions and choose the functional to describe

the exchange and correlation effects accurately enough. Also, it happens that the

wave functions show very sharp features near the nuclei, as the electrons occupy

the lowest atomic orbitals whose mathematical representations are orthogonal [35].

Further away, in the region of molecular bonding (and smaller electron density),

the wave functions behave more smoothly. To accurately describe these rapid os-

cillations, one would have to use very fine computational grid so that the behaviour

of the orbitals would not be chaotic. Eventually, this would be very frustrating

because in most parts of the space the functions are smooth.

One way to overcome this problem is to use pseudopotentials which are embedded

into the Hamiltonian to describe the oscillating parts of the wave functions, while

the naturally smooth parts are left as they are [36].

In my studies, the Projector-augmented wave method (PAW) was used to eliminate

for example the sharp-feature problem. In PAW, the Kohn-Sham wave functions

(χi in equation (30)) are manipulated so that inside an atom-specific radius rc,

centered at a nucleus, the wave function is described to behave smoothly, and

outside this augmentation sphere they act normally [35].
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2.3.1 Wave function transform

In PAW, an operator T̂ is defined that maps an auxiliary wave function χ̃i into

the original Hilbert space as

|χi〉 = T̂ |χ̃i〉. (56)

The Schrödinger equation for the auxiliary wave functions is thus described as

T̂ †ĤT̂ |χ̃i〉 = EiT̂ †T̂ |χ̃i〉. (57)

To define the operation done by T̂ , we first expand the Kohn-Sham orbitals and

the auxiliary ones as

|χ̃i〉 =
∑
q

|φ̃q〉〈pq|χ̃i〉 and (58)

|χi〉 = T̂ |χ̃i〉 =
∑
q

|φq〉〈pq|χ̃i〉, (59)

where the partial waves φq and φ̃q form bases of the Hilbert spaces each. The

Kohn-Sham orbitals |φ〉 are initially determined from the Kohn-Sham equations

(equations (30) and (31)) and the auxiliary partial waves |φ̃〉 are built so that they

meet the required smoothness inside the augmentation sphere and are equal to |φ〉
outside of it [35]. Because we want to modify the wave function only inside the

augmentation sphere, we restrict the expansions (equations (58) and (59)) to the

area where |~r − ~Ra| < rc (~r is the position vector, ~Ra is the position vector of

the atom core in question and rc is the radius of the augmentation sphere). The

functions |pq〉 that appear in the expansion coefficients are called smooth projector

functions and they are defined as

〈pq| =
∑
j

({〈fl|φ̃m〉})−1qj 〈fj|, (60)

where the wave bracket notation indicates a matrix containing all the combinations

of 〈fl|φ̃m〉. The functions |fj〉 are a complete set of linearly independent functions
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that are to be chosen for the calculation. By the requirement of linearity of the

transform operator T̂ and requiring no overlap between different augmentation

spheres, the operator T̂ is finally written as [35]

T̂ = 1 +
∑
i

(|φk〉 − |φ̃k〉)〈pk|. (61)

Now, the auxiliary wave functions |φ̃〉 can be calculated via the Schrödinger equa-

tion (57) and the Kohn-Sham wave functions are derived from those as

|χi〉 = |χ̃i〉+
∑
k

(|φk〉 − |φ̃k〉)〈pk|χ̃i〉 (62)

which is just the result of the operation T̂ |χ̃i〉 (equations (56) and (61)).

2.3.2 The frozen core

As the chemical bonding occurs only by the interactions of valence electrons with

the surrounding atoms and the valence electrons are relatively far from the atom

nucleus, it is reasonable to make an approximation that the inner states are not

altered very much in bonding compared to a free atom. This approximation can

also be done in PAW: The core states that distribute only (or mostly) inside the

augmentation spheres are left as they are while calculating the wave functions,

that is, only the valence states are included in the expansions (equations (58) and

(59)) of the wave functions. This approximation greatly reduces the need for com-

putational resources as some of the states are left outside of the calculation.

2.3.3 Calculating measurable quantities in PAW

In the self-consistent field (SCF) cycle represented in the end of chapter 2.2.4, the

wave functions are used to calculate the electron density, and therefore the density

should be described in the terms of the auxiliary waves of the PAW method, too.

By using equation (61) and canceling terms due to the properties of the waves

inside and outside the augmentation region, one ends up with the description of a
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general local operator in terms of the partial waves [35]:

˜̂
A = T̂ †ÂT̂ (63)

= A+
∑
m,n

|pm〉(〈φm|Â|φn〉 − 〈φ̃m|A|φ̃n〉)〈pn|. (64)

When calculating expectation values for nonlocal operators, one has to add a term

∆
˜̂
A to

˜̂
A that takes into account the nonlocality. According to Blöchl,

∆
˜̂
A =

∑
m

|pm〉(〈φm| − 〈φ̃m|)A(1−
∑
n

|φ̃n〉〈pn|)+

(1−
∑
n

|pn〉〈φ̃n|)A(|φm〉 − |φ̃m〉)〈pm|. (65)

By calculating the expectation value of the density operator |~r〉〈~r| (which is a local

operator) using equation (63), one arrives at

n(~r) =
∑
i

fi〈χi|~r〉〈~r|χi〉 (66)

= ñ(~r) + no(~r)− ño(~r), (67)

where fi is the occupation number of the state χi and where [35]

ñ(~r) =
∑
i

fi〈χ̃i|~r〉〈~r|χ̃i〉, (68)

no(~r) =
∑
i,(m,n)

fi〈χ̃i|pm〉〈φm|~r〉〈~r|φn〉〈pn|χ̃i〉, (69)

and

ño(~r) =
∑
i,(m,n)

fi〈χ̃i|pm〉〈φ̃m|~r〉〈~r|φ̃n〉〈pn|χ̃i〉. (70)

The acquired density can then be used in the SCF-cycle. After convergence, one

would like to calculate the total energy of the system. According to equations (26)
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and (28), the total energy is calculated via

E[ρ] = Ts[ρ] + J [ρ] + Vne[ρ] + Exc[ρ], (71)

where the terms represent the expectation values of the corresponding operators.

Now that the classical kinetic energy Ts and the exchange-correlation energy Exc

are (semi-)local operators (Exc in the case of LDA and GGA), their expectation

values are given directly by equation (63). In contrast, the potential energy terms

J and Vne are clearly nonlocal operators and thus the nonlocal contribution of

equation (65) has to be added to their local value. The corresponding equations

are quite monstrous and can be read from, for example, the original PAW paper

by Blöchl [35].

2.3.4 Linear combinations of atomic orbitals in PAW

In my molecular dynamics simulations, I used the linear combination of atomic

orbitals (LCAO) method. When implementing the LCAO method in PAW, the

wave functions defined in equation (56) are described as linear combinations of

pre-defined atomic orbitals Φµ(~r) [37], that is

χ̃i(~r) =
∑
µ

cµiΦµ(~r) (72)

with the coefficients cµi that are to be determined to find the solution to the

eigenvalue problem of the Hamiltonian. Thus, the problem becomes to find the

coefficients cµi instead of directly seeking for the real-space wave functions. To

construct the eigenvalue equation which is used to solve the coefficients, we define

the overlap operator S as

S = T̂ †T̂ = 1 +
∑
aij

|pai 〉∆Saij〈pai |, (73)

where

∆Saij = 〈φai |φaj 〉 − 〈φ̃ai |φ̃aj 〉. (74)
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The matrix elements of the overlap integral are then described as [37]

Sµν = 〈Φµ|S|Φν〉

= 〈Φµ|Φν〉+
∑
aij

〈pai |Φµ〉∗∆Saij〈paj |Φν〉. (75)

Re-writing the Schrödinger equation (57) gives now∑
µ

cµi
ˆ̃H|Φµ〉 =

∑
µ

cµiŜ|Φµ〉, (76)

where the Hamiltonian ˆ̃H is defined as

ˆ̃H ≡ T̂ †ĤT̂ . (77)

Using equation (61) for the transform operator T̂ we get

ˆ̃H = −1

2
∇2 + Ṽ +

∑
aij

|pai 〉∆Ha
ij〈paj |, (78)

where Ṽ is the potential energy of the system in terms of PAW method [37]. The

matrix elements of the atomic Hamiltonians ∆Ha
ij can be regarded as

∆Ha
ij =

∂E

∂Da
ji

, (79)

that is, the derivative of the total energy with respect to the atomic density matrix

elements

Da
ij =

∑
µν

〈pai |Φµ〉ρµν〈paj |Φν〉, (80)

where the density matrix ρµν is defined as

ρµν =
∑
i

cµific
∗
νn. (81)
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The matrix elements of the total Hamiltonian ˆ̃H are then given by

H̃µν ≡
∂E

∂ρµν

= Tµν + Vµν +
∑
aij

〈pai |Φµ〉∆Ha
ij〈paj |Φν〉

(82)

with the matrix elements of the kinetic energy T and the potential energy

Tµν = 〈Φµ| −
1

2
∇2|Φν〉 and (83)

Vµν =

∫
Φ∗µ(~r)Ṽ (~r)Φν(~r)d~r. (84)

Combining the equations (75), (76) and (82) we finally get the Schödinger equation

for the LCAO method, ∑
ν

Hµνcνi =
∑
ν

SµνcνiEi, (85)

which gives the coefficients cνi that determine the Kohn-Sham wave functions in

equation (72). Using the approximation that the wave functions can be written

as linear combinations of atomic orbitals reduces the computational needs but, at

the same time, some accuracy is sacrificed.

2.3.5 Basis sets

In LCAO, the wave functions were represented as linear combinations of the atomic

orbitals, as described by the equation (72). The atomic orbitals must then be pre-

calculated, and in PAW, it is done similarly as in the SIESTA method [38].

The atomic orbitals are written as products of the radial function ϕnl(r) and a

spherical harmonic Ylm(~r), that is,

Φnlm(~r) = ϕnl(r)Ylm(~r). (86)

While the spherical harmonics are generally well-known, the problem in determin-

ing the basis wave functions for each quantum number combination nlm is reduced
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to seeking the radial functions ϕnl(r). In the tight-binding method, introduced by

Sankey and Niklewski (ref. [39]) and used in my calculations, the radial functions

are set to zero beyond a certain, orbital-specific radius in order to reduce the num-

ber of calculation points. The first approximation for the radial function is then

given by the (general) radial Schrödinger equation

(
− 1

2r

d2

dr2
+
l(l + 1)

2r2
+ Vl(r)

)
ϕnl(r) = εlϕnl(r), (87)

fulfilling the requirement ϕnl(rc) = 0 where rc is the tight-binding cutoff radius.

Vl(r) is the pseudopotential affecting the electrons and in my calculations its shape

is given in reference [40].

Naturally, greater accuracy is achieved with increasing the amount of basis func-

tions. In my calculations, this is obtained using the double-ζ basis set, where the

basis is literally doubled so that the second-ζ basis wave functions have the same

shape for the its tail (where r → rc) as the first wave functions (eq. (87)) and a

simple polynomial form of

ϕ2ζ
nl(r) = rl(al − blr2) (88)

between the nucleus and the pre-defined split radius rs [38]. In equation (88),

the parameters al and bl are chosen so that the function and its derivative are

continuous at rs.

2.3.6 Finite difference method

I ran the molecular dynamics calculations using the LCAO method in PAW, but

some energetics calculations were performed using a method called finite difference

method (FD), which is considered more accurate in energy calculations compared

to the LCAO method [37]. In the finite difference method, the wave functions are

calculated in the real-space grid so that the integrals over the space are changed

to sums over the evenly-spaced grid points of the calculation box [14]. To enhance

the results further, PAW method uses the double grid technique where an inter-

polation operator is used to interpolate the grid to even finer grid that consists of
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2–5 times more points than the coarse grid [14]. Some local functions, including

the smoothened frozen core electron density, the projector functions and the core

potential (that makes the core states smooth but does not affect total energy [35])

are interpolated to the fine grid and are used to calculate the wave functions and

energies in the coarse grid.

Because also the FD method requires an initial guess for the wave functions and

electron density, in GPAW the first step of the SCF-cycle is calculated via LCAO

method, after which the cycle is proceeded with FD.

2.4 Optimization: BFGS line search method

In chapter 2.2.4, the Kohn-Sham method was introduced with which the energies

of the system with fixed atom positions are calculated. However, usually the initial

positions of the atoms are not in the most stable state, but by moving the atoms

one can minimize the potential energy of the system, that is one can optimize the

structure. In our calculations this was done for some alkylthiols and thiol-gold

structures to determine their stable states and the corresponding energies using

Broyden–Fletcher–Goldfarb–Shanno (BFGS) line search method.

The BFGS algorithm is a general nonlinear optimization method for multiple vari-

ables [41], and in our case it is used to calculate the new positions of the nuclei

after each SCF-cycle to get closer to the minimum potential energy of the system.

Initially, the algorithm is given a convergence criterion for the maximum force in

the system. After the first SCF-cycle, the forces are calculated for each atom.

If the maximum force is greater than the set criterion, the atoms will be moved.

First, the search direction p is calculated as

p = −HF, (89)

where H is a Hessian matrix, which at this point is a unit matrix, and F is the

force matrix. The search step length matrix α is then determined via the line
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search method where the Wolfe conditions

E(x+ αp) ≤ E(x) + c1α[F (x)]Tp and (90)

[F (x+ αp)]Tp ≥ c2[F (x)]Tp (91)

must meet [41]. In equations (90) and (91), E is the energy of the system, x is the

position matrix of the system and c1 and c2 are optimization parameters which

have 0 < c1 < c2 < 1. In my calculations, they were set c1 = 0.23 and c2 = 0.46

(these are the default parameters in GPAW). After α is determined, the atoms

are moved as x← x+ αp, the new force matrix is calculated based on these atom

positions (using the DFT machinery) and the procedure is replayed. Also, the

Hessian matrix is recalculated for the next cycle via equation

H̃ = (I − syT

yT s
)H(I − ysT

yT s
) +

ssT

yT s
, (92)

where I is a unit matrix and s and y have s = x̃−x and y = F̃−F . The quantities

with tilde denote the new value of a quantity.

When the cycle stops, ie. when the maximum force for an atom is smaller than the

criterion value, the system is in relaxed state. The method does not necessarily

find the global minimum for the energy of the structure but the inital positions of

the atoms affect a lot to the final positions while using this method.

2.5 Molecular dynamics: Langevin thermostat

While BFGS line search method was implemented to relax structures to investi-

gate their stable states and energies, the molecular dynamics simulations require

a different approach to simulate the movement of atoms considering their thermal

movement. There are many ways to simulate those quantities, and in my cal-

culations I used the Langevin dynamics. In that method, every atom is given a

random contribution to the force exerted to them, in addition to a certain friction

coefficient that corresponds to damping of the atomic vibrations. The target is to

set the system temperature to a certain value (that is calculated from the average
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kinetic energy of the system), and so the method tries to simulate the chaotic

behaviour of a heated atomistic system. The Langevin equation is basically the

Newton’s second law of the general form [42]

M
d2X(t)

dt2
= −∇E(X(t))− γM dX(t)

dt
+R(t), (93)

where M is the mass matrix that contains the masses of the atoms in the system,

X(t) is the position matrix of the nuclei as a function of time, γ is a pre-defined

friction (or damping) factor and R(t) is the random force matrix. The distibution

of the random force R is related to the friction γ and the target temperature T

as

〈R(t)R(t′)†〉 = 2γkBTMδ(t− t′). (94)

Also, for the stationarity of the system, we require that 〈R(t)〉 = 0.

In the DFT calculations, after the SCF-cycle has ended and the wave functions and

the density corresponding to the present atom positions are found, the equation

(93) is used to calculate the change of position for each atom. In the calculations,

the Langevin equation (eq. (93)) has the form

F = Ma = −F0 − γp0 +R, (95)

where a is the acceleration matrix of the atoms and F0 and p0 are the initial forces

and momenta of atoms. The new positions of the atoms, Xnew, are then calculated

via the Taylor series of the position as

Xnew = X0 + ∆t
dX(t)

dt
+

1

2
(∆t)2

d2X(t)

dt2
+

1

6
(∆t)3

d3X(t)

dt3
+ . . . (96)

where the derivatives dX(t)
dt

and d2X(t)
dt2

have

dX(t)

dt
=
p0
M

and (97)

d2X(t)

dt2
=

F

M
. (98)

That is, the momentum has its old one at this stage, but the force on an atom is
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taken as the newly calculated one. After the new positions are determined, the

new momentum is also given by the Taylor series

pnew = p0 + ∆t
dp0
dt

+
1

2
(∆t)2

d2p0
dt2

+ . . . (99)

After the positions, momenta and forces are calculated, a new SCF-calculation is

set up and run. This procedure is then continued as long as it is necessary to

simulate the phenomenon under investigation.
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3 Results and discussion

In the calculations, the PBE functional was used throughout the work. The struc-

ture optimization was performed using the BFGS line search method, and Langevin

dynamics algorithm was used in the molecular dynamics (MD) calculations. In the

GPAW parameters, grid point spacing was 0.2 Å and Fermi width of 0.05 eV was

used to smooth the orbital occupations. In all the calculations, there was 6–8 Å

of vacuum between the unit cell boundaries and the nearest atom to let the wave

functions behave naturally outside the molecules.

3.1 Energetic examination of thiols and gold structures

Before diving into the world of molecular dynamics simulations, let us make sure

that my methods and systems under investigation are justified by determining the

performance of the LCAO method, the energetics of the chemical reactions and

the stability of the SAM structures. In this section, the energy differences in the

reactions of the form

A + B → C + D (100)

are calculated as

∆E = [E(C) + E(D)]− [E(A) + E(B)] (101)

whereA, B, C andD are chemical compounds and E(A) etc. are the corresponding

energies. The energies are always the outputs of GPAW calculations, that is the

energy difference between the structure and a non spin-polarized hydrogen atom;

thus, their absolute values do not have much to analyze, but their differences are

relevant as in equation (101). They usually have negative values, indicating that

energy is released in the molecule-forming reaction and the structure is finally

more stable than the initial state, ie. free atoms.
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Figure 3: Molecular structures of different alkylthiols that were studied. The structures
in the figure are the relaxed states from my optimization calculations.

3.1.1 Energetics of alkanethiols

Knowing that the finite difference method generally gives more accurate results

than the LCAO approach, I ensured that the LCAO is usable in the molecular

dynamics calculations because it is computationally more efficient than the FD

method. I optimized the geometries of some simple alkylthiols (fig. 3) to compare

the results between FD and LCAO calculations. In addition to alkanethiols, two

more complex compounds were also investigated, namely H-S-carborane and Au-

S-carborane. The carborane cluster consists of ten boron atoms and two carbon

atoms that form an icosahedral cage (with a little distorted shape because of

unsymmetric vertices) which can appear in meta- and para-isomers, depending

on the mutual positions of the carbon atoms. In this study, the carborane had

para-isomeric symmetry as shown in figure 3. The results including some specific

bond lengths and bond angles are represented in tables 1 and 2, respectively.

First of all, the results show that my calculations match quite well with the liter-

ature values, the error being at most 2 percents (LCAO calculation of Au-S bond

length in Au-SCH3 molecule compared to the PBE value of Grönbeck [44]). While

comparing the accuracy of FD and LCAO methods by relating them to the liter-

ature values, one can not, in fact, say if one performs better than the other. They

have mutual difference both in bond lengths and angles but neither deviates signif-

icantly from the literature values, although my finite-difference results are closer

to Grönbeck’s computational values (ref. [44]). The biggest difference between
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Table 1: Calculated bond lengths L in Ångstroms for simple alkanethiols together with
literature values (when available). My results were calculated using both finite-difference
method and LCAO method. The literature value for length of S-Au bonds in parenthesis
that reappears in every gold compound is given in reference [43] for general alkyl group
R in Au-SR molecules.

Molecule Bond LFD [Å] LLCAO [Å] LLiterature [Å]

H-SCH3
S-C 1.824 1.823 1.819 [43]
S-H 1.354 1.370 1.35 [44], 1.34 [43]

Au-SCH3
S-C 1.821 1.820 1.82 [44]

S-Au 2.248 2.287 2.24 [44] (2.293 [43])

H-SC4H9
S-C 1.836 1.833 -
S-H 1.353 1.369 -

Au-SC4H9
S-C 1.837 1.834 -

S-Au 2.249 2.284 (2.293 [43])

H-SC8H17
S-C 1.835 1.837 -
S-H 1.352 1.369 -

Au-SC8H17
S-C 1.840 1.838 -

S-Au 2.247 2.281 (2.293 [43])

H-SC11H23
S-C 1.834 1.836 -
S-H 1.353 1.371 -

Au-SC11H23
S-C 1.839 1.836 -

S-Au 2.244 2.284 (2.293 [43])

H-S-carborane
S-C 1.805 1.808 -
S-H 1.352 1.370 -

Au-S-carborane
S-C 1.807 1.809 -

S-Au 2.252 2.286 (2.293 [43])

the results are in the cases of complexes that contain gold; the LCAO calculations

produce systematically larger bond lengths between sulfur and gold and smaller

Au-S-C bond angles. The difference can be accounted to the different ways of the

methods to handle the wave functions that determine bonds between atoms, and

it may cause different phenomena in the molecular dynamics simulations as these

methods are repeated there thousands of times during a dynamics simulation. Due

to my limited resources, however, only LCAO method was used in the simulations

to perform faster calculations compared to the finite-difference method.

Optimizing the structures also gives the energies of the molecules. By calculating
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Table 2: Calculated bond angles θ in degrees for simple alkanethiols together with
literature values (when available). My results were calculated using both finite-difference
method and LCAO method, and the PBE functional was used in both cases.

Molecule Angle θFD [◦] θLCAO [◦] θliterature [◦]

H-SCH3
H-S-C 96.5 96.3 96.5 [43]
S-H-H 109.6 109.9 109.8 [43]

Au-SCH3 Au-S-C 103.8 102.7 -
H-SC4H9 S-C-C 109.3 109.8 -
Au-SC4H9 Au-S-C 106.5 102.9 -
H-SC8H17 S-C-C 108.6 108.9 -
Au-SC8H17 Au-S-C 107.1 103.9 -
H-SC11H23 S-C-C 109.9 109.7 -
Au-SC11H23 Au-S-C 106.3 103.3 -
Au-S-carborane Au-S-C 106.5 103.9 -

the energy change in the reaction

·SR + Au → AuSR, (102)

where R stands for the alkyl group, one can estimate the sulfur-gold bond stability.

The energy values for different alkylthiols are shown in table 3. Firstly, the results

show that the system state is (naturally) more stable in the right side of the

reaction than in the left side, because the reaction energy change is negative. My

results showed binding energies for Au-SR bond of about 3.0 eV and 2.3 eV for

FD and LCAO calculations, respectively, while other GGA studies within DFT

suggest the binding energy of 2.5 eV per molecule [45, 46]. Thus, based on my

results, one can not say if one of the approaches, FD or LCAO, performs more

accurately than the other.

Another thing that can be read from both the energy results and the geometry

results, presented in this chapter, is that the length of the alkane chain does

not seem to affect much to the properties of the S-Au bond. Also, the bond in

question in the S-carborane structures seems to function in very similar way as in

the alkane structures. This result suggests that while calculating the properties

of structures consisting of thiols on top of gold surface, the alkyl chain does not

affect the bonding between the sulfur end and the gold surface. However, the
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Table 3: Calculated energy changes ∆E in electron volts in reactions of equation (102)
where thiol radicals with different alkyl groups are bound to a gold atom. Both results
of finite-difference (FD) and LCAO calculations are shown.

Molecule ∆EFD [eV] ∆ELCAO [eV]
SCH3 -3.05 -2.28
SC4H9 -3.05 -2.30
SC8H17 -3.03 -2.29
SC11H23 -3.01 -2.30
S-carborane -2.97 -2.28

alkyl composition probably affects the dynamics of the thiols during the removal

(as the thiols interact with each other), but this effect is not investigated in this

study.

3.1.2 Energetics of gold surface

The lattice constant of gold (fcc lattice) was optimized by calculating the energy

of bulk gold with different lattice constants and checking which number gave the

lowest energy; that energy and lattice constant correspond to the most stable

structure. While the calculations were performed for periodic structures, it was

necessary to calculate the quantities only for a unit cell of the structure. Namely,

due to Bloch’s theorem, the wave functions in infinite periodic structures can be

written as ψ~k(~r) = ei
~k·~ru(~r) where u(~r) fulfils the same periodicity as the atomic

structure [47]. This approach, however, requires the use of fine enough k-point grid,

and for that purpose, I calculated the energy of a periodic structure (that was later

used in nearly all calculations) as a function of k-point grid. The shape of the unit

cell was 3x4 atoms in x and y directions, respectively, while the number of atoms

in z-direction can be chosen arbitrarily for the k-point convergence calculations,

because the lattice was chosen to be periodic only in x and y directions; the number

of atoms in z-direction was chosen to be 1. The results of the k-point examination

are shown in figure 4, which shows that the energy is converged enough for our

needs at 4 or 5 k-points per direction. In the energy calculations presented in this

study, both 4x4x1 and 5x5x1 k-point grids were used.
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Figure 4: The total energy of Au unit cell, shown also in the figure, as a function of k-
points in x and y directions. The unit cell consisted of 3x4x1 gold atoms in close-packed
hexagonal lattice, periodic in the directions of the plane ie. in x and y directions.

All the results for gold lattices are collected in table 4. The calculation for the

lattice constant gave 4.18 Å with 3x4 atoms unit cell and 5x5 k-point grid, while

the experimental values for the lattice constant vary from 4.06 to 4.08 Å[48, 47].

The error is an acknowledged feature of the PBE functional, which often overes-

timates the lattice parameter compared to the experimental value [49]. Namely,

other PBE studies have also received too large values, such as 4.154 Å[49] and 4.17

Å[44], meaning that my result is typical for the method in use. This calculation

also gave the cohesion energy of gold, which is the average energy per atom needed

to separate an infinite lattice to free atoms. The calculations gave the result of 3.21

eV per atom with 4x4x1 Monkhorst-Pack k-point grid and 3.19 eV per atom with

5x5x1 k-point grid using the finite difference method. The experimental value is

3.80 eV per atom [47], so my PBE calculations seem to underestimate the cohesion

energy for gold. This is also a known result for PBE methods, as Jensen et al.

reported of energy of 2.9 eV per atom [50] and Ferrighi et al. of energy of 3.02

eV per atom [51]. I also calculated the cohesion energy using the LCAO method,

which gave 2.80 eV per atom, suggesting even poorer performance of the LCAO

method in the energy calculations compared to the FD method.

In addition to bulk energies, the surface energy of Au(111) was calculated. The

surface energy is the energy needed per atom to form a new surface from infinite
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Table 4: Calculated quantities for gold lattice together with literature values. My results
were calculated via finite-difference method and PBE functional.

Quantity My result Literature (PBE) Literature (experimental)

Lattice constant [Å] 4.18 4.154 [49], 4.17 [44] 4.06 [48], 4.08 [47]
Cohesion energy [eV/atom] 3.2 2.9 [50], 3.02 [51] 3.80 [47]
Surface energy [J/m2] 0.78 0.74 [52] 1.50 [53]

lattice. The equation

Esurf = 0.5× (Eu −N × Ec)/n (103)

was used, where Eu is the energy of the surface unit cell withN atoms and n surface

atoms (periodic in the two directions of the plane) and Ec is the cohesion energy

of gold. The result of calculations with 4x4x1 Monkhorst-Pack k-point lattice was

0.366 eV per surface atom or 0.775 J/m2 in terms of the unit cell area, while another

PBE study gave 0.35 eV per atom or 0.74 J/m2 [52]. The experimental value for the

surface energy is 1.50 J/m2 [53], so the computational and experimental results

do not match very well. It is noted, however, that the quantity is difficult to

determine experimentally and the possibility of error is significant [52]. It is clear,

however, that my results match with the other computational studies.

3.1.3 Energetics of alkanethiols on Au(111)

To make sure that the molecular dynamics simulations of thiols on gold surface are

justified, I examined the energetics of some simple structures of that kind.

Adsorption energies were calculated for two kinds of processes: for a process where

a single thiol is adsorbed on bridge site of the Au(111) surface, and for a process

where an RS-Au-SR unit is formed on top of Au(111). However, different initial

structures of thiols were considered, but only clean Au(111) surfaces were dealt

with, ie. surfaces with no defects. The reactions and the corresponding changes

in potential energy are presented in table 5.

The adsorption and binding energies are similar to the literature values, and the

slight differences are assumed to be due to the computational methods. Namely,
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Table 5: Calculated energy changes per thiol in the adsorption reactions together with
literature values when available. The notation Au(s) indicates the gold surface Au(111)
on which the thiols are adsorbed. The energy differences ∆E are calculated as the
difference between the total potential energies of the right hand side and the left hand
side of the equation. The finite-difference method was used in my calculations.

Reaction equation ∆E [eV] ∆Eliterature [eV]

2 H-SCH3 + Au(s) → H2 + 2 H3CS-Au(s) −0.14 -

·SCH3 + Au(s) → H3CS-Au(s) −2.00 -1.95 [54, 55]

2 H-SCH3 + Au(s) + Au → H2 + H3CS-Au-SCH3-Au(s) −0.63 -0.67 [51]

2 H-SC4H9 + Au(s) + Au → H2 + H9C4S-Au-SC4H9-Au(s) −0.71 -0.71 [51]

2 H-SC8H17 + Au(s) → H2 + 2 H17C8S-Au(s) −0.14 -0.19 [56]

·SC8H17 + Au(s) → H17C8S-Au(s) −2.00 -

it was noticed during the calculations that even the grid point division affects the

energies unexpectedly much. Thus, in systems of this size scale, the error in, for

example, dissociative adsorption energy of H-SC8H17 is not significant. The results

show also that the binding energy of methanethiol and octanethiol are practically

the same, meaning that the length of the alkane chain seems not to affect the Au-S

bond strength of the thiol on Au(111) surface.

It is also notable that the binding energies of the thiols are of the order of 2

electron volts, while the energy to remove a gold atom from the surface has been

determined to be between 0.7–1.0 eV ([57, 58, 59, 60, 61]). As was also seen from

the alkanethiol calculations, the gold-sulfur bond in Au-SR molecule is larger than

the surface energy. Therefore, one could expect that when pulling the thiol off

from the surface, the bond that eventually breaks is not the bond between sulfur

and gold but the bond between gold atoms. This conclusion is not strong, however,

as the energy calculations do not give information about the binding mechanisms

and the dynamics of the system, but only considers the initial and final states.

Moreover, it was seen from the binding energies of the SC8H17 thiol on different
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Table 6: Binding energies of SC8H17 adsorbed at different positions of Au(111) surface.
The values are calculated according to the last equation of table 5.

Position Binding energy [eV]
Bridge -1.88
FCC -1.91
A-top -1.60
Bridge-HCP -2.00

sites on Au(111) (table 6) that although the position between the bridge and hcp

sites is the most stable one, the the binding energy at the a-top site (1.60 eV) is

also larger than the surface energy of gold. Thus, while detaching thiols from the

gold surface, the bond-breaking process should not be dependent on the adsorption

site of the thiol.

3.2 Molecular dynamics

In all the molecular dynamics calculations, the system was first heated to 300 K

using the Langevin dynamics with no constrains in the system. As the thiols

were started to pull apart from gold, the dynamics were also continued using

the Langevin dynamics. There are also methods available in which the system’s

kinetic energy is conserved such as Verlet’s method [62], but now as the kinetic

energy of the system is manipulated, it is better to use the Langevin method that

describes the energetics of the dynamics in more realistic manner; the system can

be considered to lie in heat bath of 300 K. Moreover, in the MD calculations,

the mass of hydrogen atoms was increased to 2 atomic units, corresponding to

deuterium; this was done for the efficiency of calculations, because the 2 fs time

step that was used was too large for hydrogen atoms. Otherwise they could have

run away from the system while having too great velocity given by the Langevin

dynamics. This was assumed not to affect the dynamics of sulfur and gold that

was the main point of interest in this study. The LCAO method was used in all

molecular dynamics calculations.
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Figure 5: The initial structure of the test system which is investigated in chapter 3.2.1.
The numbers denote the indices of the bonds between gold atoms in the chain.

3.2.1 Parameter tests in simple model system Au5SC6H13

To investigate the effect of different computational parameters, I built a simple

system which contained five gold atoms and a hexanethiol attached to the gold

(figure 5). The tested parameters consisted of the Langevin friction parameter,

pulling speed and the simulated temperature, which is also an input parameter to

the Langevin thermostat calculator. The point of interest was that which bond

breaks in the gold chain as the thiol is pulled off the system. In the test simulations,

I constrained one of the gold atoms and pulled the thiol at constant velocity, that is,

constrained the momentum of the furthest carbon atom of the thiol. The results

in table 7 show the bonds which are broken in the simulations with different

parameters. However, no correlation between any parameter and the broken bond

can be read from these results; there is no systematic change in the broken bond

index as moving either to higher pulling speeds or to higher friction parameters.

The doubling of the temperature results in the detaching of only one gold atom,

but this amount of data is not sufficient to say anything with certainty. After all,

the use of room temperature in the simulations is justified as the objective is to

mimic the environment in the chemical lift-off lithography experiment [1].

To get a better view of the likelihood of the bond breaking, I examined two of the

processes more carefully. In the figure 6 there is a plot of all the bond lengths in

the gold atom chain of the test system (figure 5) as functions of the pulled distance.

The lines show quite similar and reasonable features, but to better investigate the
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Table 7: The bonds that were broken in the pulling simulation test, where the thiol was
pulled apart from a gold chain of 5 atoms. The quantites have v for pulling velocity, T
for temperature and γ for the Langevin friction parameter. The bond indeces correspond
to the bonds in figure 5. In the case of ”3,1” bond index the pulling velocity was so high
that the chain was broken in two places, at bonds 3 and 1.

v [Å/ps] T [K] γ [fs−1] Broken bond index
0.1 300 0.004 3
0.5 300 0.001 3

0.004 3
0.010 1
0.020 3
0.040 1

1.0 300 0.004 3
0.020 2

2.5 300 0.004 1,3
0.020 3

0.5 600 0.004 1
0.040 1

oscillation of the atoms, the standard deviations of the oscillations were calculated

for two ranges: the whole oscillation part before the bond breaking (up to 5.8

Å pulling distance) and the part near the bond breaking (from 4.3 Å to 5.8 Å).

The results are in table 8. Firstly, the oscillations seem to be more intense in

the calculations with the smaller friction parameter, which was expected as the

amount of friction tells how much the movement is being disturbed. Secondly, the

oscillations near the bond breaking are smaller than the overall oscillation, which

can be explained by the shape of the chain: when the chain is nearly straight near

the bond breaking, the atoms are more constrained and not so free to oscillate. It is

also seen that the bond 3 has systematically the largest deviations, indicating more

intense oscillation, and the bond 1 has the next largest deviation at least in the

near-breaking oscillations. The bonds 1 and 3 are also the most abundant in table

7, suggesting that there is some correlation between the freedom of movement and

the likelihood of the bond breaking. However, the bond 3 oscillates more than bond

1 in the 0.040 fs−1 friction parameter calculation, but still the bond 1 is broken,

implying that the oscillation does not tell the whole truth. Namely, it has to be
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(a) (b)

Figure 6: The bond lengths in the pulling processes of the Au5SC6H13 test system. (a)
The four upper lines correspond to a calculation with pulling speed 0.5 Å/fs and friction
parameter of 0.004 fs−1 and the lower four to the same system with friction parameter
0.040 fs−1. The x-axis tells how much the terminal carbon of the thiol molecule has been
moved. The lines having the same friction parameter have been offset 1 Å from each
other and the 0.004 fs−1 friction parameter lines have been offset 2.5 Å above the higher
friction parameter lines for clarity. The rising ends of the third and fifth lines indicate
the broken bonds and their end features have been cut off in the figure for clarity. (b)
The initial structure of the calculations.

noted that the oscillation and bond breaking are both probably consequence of

some other feature of the system (most probably the shape of the wave functions),

meaning that the oscillation itself does not determine the bond that breaks.

Going even further with this test system, I also calculated the energies and forces

at different steps of the pulling process, and did this by forcing the bond breakage

at different parts of the chain. The thiol and the gold atoms that were wanted

to stay with the thiol were moved 0.2 Å at a time, and the system was relaxed

after moving the atoms. The terminal carbon atom was also constrained together
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Table 8: The standard deviations in oscillations shown in figure 6. The column δL0.0,5.8

gives the standard deviations of the whole oscillation parts before the bond breaking
(up to 5.8 Å deviation) and the column δL4.3,5.8 gives the part near the bond breaking
(from 4.3 Å to 5.8 Å). Also, the broken bonds in different calculations are marked in
the table.

Friction parameter Bond index δL0.0,5.8 [Å] δL4.3,5.8 [Å]
0.004 1 0.141 0.097

2 0.140 0.079
3 0.151 0.105 (broken bond)
4 0.082 0.079

0.040 1 0.129 0.091 (broken bond)
2 0.129 0.090
3 0.129 0.101
4 0.076 0.073

with the one gold atom to prevent the system from recombining, and the distance

between the atoms whose bond was wanted to break was constrained (after moving

the atoms) in order to break exactly that bond.

The resulting energies and forces in relaxed states as functions of the pulled dis-

tances are plotted in the figure 7 (the forces were calculated after removing the

constraints from the system). From figure 7a it can be seen that the energy of

the system satures to a certain energy as the thiol is pulled far enough from the

gold system, but the energies are different for different systems. This tells that the

chain is easiest to separate by breaking the bond number 3 (in notation of figure

5), which has the lowest saturation energy; 0.1 eV above it there lies the energy

of the process where only one atom is detached from the chain. The other options

are less likely, which was also seen in the parameter tests, table 7: mostly bonds

with indeces 1 and 3 were broken. It is notable that the order of the energy lines is

the same over the whole pulled-distance range, indicating that the whole process

favours breaking the bond 3. This is also seen in the force figure (fig. 7b) where,

for all the systems, there are peaks somewhere between 0.4 Å and 0.8 Å in pulling

distance, where the bond breaking essentially occurs. The maxima of these peaks

can be considered as threshold forces that has to be exerted to the atom for the

bond to break. It can be seen that the order of the thresholds for different bonds

correspond perfectly to the order shown by the energy lines.
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(a) (b) (c)

Figure 7: Energy and forces of the Au5SC6H13 system versus the pulled distance of the
thiol. Each plotted line corresponds to a single simulation where a certain Au-Au bond
of the model system is broken. The labels of the plot lines correspond to the broken
bond indices. (a) The energies are the total energies of the systems. (b) The forces
are calculated for the last gold atom that is detached from the rest of the gold and
transferred to the thiol-gold complex. (c) The initial structure of the calculations.

My calculations have thus shown in three different ways that the thiol-pulling

process for the test system results most likely in the bond breaking at bond 3.

The result is not quite intuitive, as one would expect that two gold atoms would

be more likely to break from the chain than three atoms, but apparently the

electronic wave functions behave in such a way that the third bond is the least

stable. Kruger et al. [63] also performed calculations were they pulled a single

thiol off from Au(221) surface, and they also ended up with removal of three gold

atoms with the ethylthiol. Thus, my results fit well to their findings. Also, while

the energy difference between the bond breaking at indices 1 and 3 was small,

the pulling result in more complex systems (such as the ones respresented in the

next chapter) may not be predictable, as there can be factors in the complex

structure that disturb the pulling process. Already the average kinetic energy of

the particles is about 0.04 eV in the temperature of 300 K, meaning that there is

also some unpredictability in the result of the pulling process, mostly related to

the interactions between gold atoms.
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(a) (b) (c) (d)

Figure 8: The critical stages when pulling the low-coverage thiols off from the Au(111)
surface. There is only the unit cell shown in the figure which was set periodic in the
directions of the surface.

3.2.2 Removing thiols from gold surface

Let us move on to the simulation systems with thiols adsorbed onto gold surface

and then pulled off. First, low-coverage simulations were calculated, where only

one thiol is attached to the unit cell of 3x4x3 gold atoms forming a Au(111) surface

and then pulled off. The friction parameter here was 0.04 fs−1. The most critical

stages of the simulation are shown in figure 8, and it is seen that a gold atom

bound to the sulfur is lifted off, leaving a vacancy to the (111)-surface. This was

expected, based on the energy calculations in chapter 3.1. It can be seen that

another gold atom is also nearly pulled off, but the interaction between that atom

and the eventually-pulled-off atom is too weak overcome the force exerted by the

surface to the other atom. Generally, the result is surprising in a sense that you

can reconstruct surface made of gold, the most inert noble metal, by removing a

simple thiol from it.

A couple of similar calculations were also run for an RS-Au-SR unit on the surface

by pulling the carbon end of the other thiol. Calculations with no vacancies and

with one and two vacancies per unit cell were run, but in all those simulations no

extra gold was pulled off but only the RS-Au-SR unit was removed as a whole. This

kind of system is assumed to form for simple thiols while the SAM is fabricated
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(a) (b)

(c) (d)

Figure 9: Calculated systems with high-coverage of thiols on Au(111) and Au(332)
surfaces. The dashed lines indicate the boundaries of the unit cells. (a) Pure Au(111)
surface with full coverage of butanethiols SC4H9. There are three unit cells shown. (b)
Pure Au(332) surface with full coverage of hexanethiols SC6H13. There are three unit
cells shown. (c) and (d) Same as figures a and b, respectively, but shown from the top of
the surface and with 2x2 unit cells. The alkane chains have been removed to illustrate
the initial positions of the sulfur atoms on the surface.

[20], and recalling that Liao et al. reported that a single layer of gold was removed

in the SAM pulling process [1], this result does not fit to those observations and

assumptions of the RS-Au-SR unit structure observations.

Getting further, what if there were more than one thiol on the surface and they

all got ripped off at the same time, leaving multiple vacancies on the surface and

thus greatly reducing the surface energy? I calculated that kind of simulations

for two kinds of systems with two different Langevin friction parameters. In these

simulations, k-point grid of 2x2x1 was used for 3x4x3 Au(111) surface unit cell

and only gamma k-points for the Au(332) surface unit cell, shown in figure 9. The
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Figure 10: Some steps of pulling high-coverage thiol monolayers from Au(111) with
Langevin friction parameter 0.04 fs−1. There are four time steps at which the structure
is shown from different points of view, and the process is going forwards to the right. In
each subfigure, there are 2x2 unit cells side by side.

error of the coarser k-point grids is not assumed to be significant in this qualitative

examination. The pulling velocity was 0.5 Å per picosecond, and the simulated

temperature was 300 K. Two different Langevin friction parameters were used

(0.04 fs−1 and 0.002 fs−1), resulting in remarkably different phenomena during the

pulling processes, as shall be seen.

Let us first look at the process for full coverage (2
√

3×
√

3 adsorption structure) of

butylthiols on Au(111) surface. The critical stages of calculation with the friction

parameter 0.04 fs−1 are shown in figure 10. The simulation shows a very interesting
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phenomenon, where the top layer of gold is reconstructed to the shape of a wall

on top of the other gold layers as the thiol cover is lifted. This wall is eventually

detached from the thiols and left on the surface, while one gold atom is left with

the thiols, forming a RS-Au-SR unit when separated from the surface. The two

other thiols in the unit cell formed a dithiol unit and, in the end, pulled no gold

along.

The friction parameter was then decreased to 0.002 fs−1 and the simulation was

repeated. The results of this calculation are shown in figure 11. There is also some

minor wall-forming in this case but not so clearly as in the simulation with higher

friction parameter. What is notable here, however, is that remarkably more gold

Figure 11: Some steps of pulling high-coverage thiol monolayers from Au(111) with
Langevin friction parameter 0.002 fs−1. There are four time steps at which the structure
is shown from different points of view, and the process is going forwards to the right.
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is detached from the surface. Actually, half of the top gold layer is removed with

the thiols in the lifting process. This suggests that the friction parameter has an

unexpectedly large effect in the dynamics of gold (it is the gold-gold bonds that

seem to behave differently in these two simulations).

Indeed, the same phenomenon is observed when calculating the dynamics in the

case of Au(332) surface, from which a dense cover of SC6H13 thiols was pulled

off. The process with friction parameter 0.04 fs−1 is shown in figure 12 and the

one with parameter 0.002 fs−1 in figure 13. In both cases, a gold chain is formed

between the pulled thiols and the gold surface and the chain is broken at some

point. But in the big picture, it happens again that smaller friction parameter

Figure 12: Some steps of pulling high-coverage thiol monolayers from Au(332) with
Langevin friction parameter 0.02 fs−1. There are four time steps at which the structure
is shown from different points of view, and the process is going forwards to the right.
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leads to bigger yield in pulled-off gold atoms, as 3 gold atoms per unit cell are

pulled off with the larger parameter and 6 atoms per unit cell with the smaller

parameter.

What is also seen from all these high-coverage simulations is that RS-Au-SR units

between two thiols are quickly formed when the pulling process is started, and in

the case of the higher friction parameter, some thiols bind to each other forming

dithiols. The problem with the pulling processes with large friction parameter

seems to be that these units have weaker tendency to pull more gold with them-

selves. Probably, the large friction parameter slows down the gold atoms too much,

so that they have no time to react to the more rapid movement of the lighter atoms

such as sulfur. Thus, it can be deduced that the smaller friction parameter gives

Figure 13: Some steps of pulling high-coverage thiol monolayers from Au(332) with
Langevin friction parameter 0.004 fs−1. There are four time steps at which the structure
is shown from different points of view, and the process is going forwards to the right.
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(a) (b)

Figure 14: The patterns of removed thiols and gold in the final frames of the
0.002 fs−1 friction parameter simulations. Figure (a) corresponds to the process
represented in figure 11 and figure (b) corresponds to figure 13. The dashed lines
are borders of the computational unit cells, so there are 3x3 unit cells in these
figures.

more realistic results, as Liao et al. [1] observed that a single layer of gold is

removed at the pulling process.

Let us then look at the outcome of these pulling processes. Namely, the resulting

thiol-gold structures of the 0.002 fs−1 friction parameter calculations show interest-

ing chain-like patterns, shown in figure 14, where there are -S-Au-S-Au- structures

and also tetrahedral, 4-atom gold clusters in the chains. I also ran some simula-

tions where these structures were let to evolve in time, but no significant change

in the structure was observed. Therefore, the structures are quite stable already

after the bonds to the surface have broken. However, the problem in analysing

this pattern and its meaning is that the computational unit cells are quite small

in a sense that the chains have no opportunity to show any superstructures or

statistical probabilities in the gold-pyramid formation, for example. Still, it is

interesting that both the simulations, for Au(111) and Au(332), result in nearly

similar thiol-gold structures with the formation of the gold pyramids.
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4 Conclusions

The goal of this study was to get closer to understanding the phenomena of pro-

cesses where alkylthiol monolayers are removed from gold surfaces. Molecular

dynamics simulations within density functional theory (DFT) were performed to

investigate what happens at the interface of gold surface and thiols adsorbed onto

it. Also, energetics calculations were run in order to get a clue of the nature of

the gold-sulfur bond. The results of the energetics calculations were reasonable

compared to each other and fit well to the literature values.

The main result of this study was that in the simulations of high-coverage thiol

monolayers on Au(111) and Au(332) surfaces, using small enough Langevin friction

parameter leads to removal of about half of the top layer of the gold surface. The

experiment of Liao et al. [1] suggests that ”a single atomic layer is removed during

the lift-off process”. According to the numbers in the publication, the depth of the

gold layer is changed 4 ± 3 Å during the lift-off, while the theoretical depth of a

Au(111) layer is about 2.4 Å. Thus, it might be that the gold layer was not removed

as a whole, or perhaps three layers were removed. Maybe gold was removed locally

from some area and somewhere there were lots of adatoms; this is difficult to say

without knowing the exact experimental setup, that is, if this study is comparable

to their results. In any case, my calculations showed that gold surface can be

reconstructed by lifting the thiol monolayer off the surface.

A lot remains to be calculated. For example, in my calculations only single thiols

at the bridge sites of gold surface were investigated using the assumably more re-

alistic Langevin friction parameter, while the more realistic system would perhaps

contain vacancies and RS-Au-SR units. The thiolates with different alkyl chain,

for example the carborane molecule, could also lead to different electron wave

function behavior at the sulfur end. Moreover, the Bader charge analysis would

also be fruitful in the binding analysis, as Xue et al. have only recently found that

the strength of the gold-thiolate interaction could be increased by oxidizing the

gold surface [64].

Also, it would be fruitful to repeat at least some of my calculations with more
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accurate methods, for example by replacing the LCAO method with FD method

in the dynamics calculations. The next step towards more accurate simulations

would be to increase the k-point density. In addition, enlarging the unit cell would

lead to larger variety of alternative phenomena in the simulations that could show

the likelihood of different physical phenomena in the system, and therefore it could

lead to more realistic simulations. Also the dispersive (van der Waals) forces were

not taken into account in my calculations; they could affect the interaction between

the thiolates in the SAM structures in such a way that the disulfur units would

not form so easily. Moreover, in real systems, there are no such thing as pure

Au(111) or Au(332) surface, but there are always some defects and differently

formed structures in surfaces. This becomes a problem in all kinds of simulating

as the number of ways to build the system to be simulated increases so that all the

issues can not be processed. Also, while the system has some internal randomness,

such as the uncertainty principle in real systems and the Langevin temperature in

my calculations, one can never achieve a one-and-only result for systems this big.

If the calculations were computationally less demanding, one could run the same

calculation a few times and make statistics of the results and that way describe

the different possibilities in the process. However, as in all computational science,

more accurate methods need more computational resources which are always the

limiting factor; otherwise everything would have already been calculated.

Anyhow, the objective of this study is fulfilled, as some basic information of the

computational parameters needed for the simulated phenomenon was acquired.

Also, the phenomena that were observed builds base for the theoretical research

of the SAM lift-off process.
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