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ABSTRACT 

 

In contrast to block and event-related designs for fMRI 

experiments, it becomes much more difficult to extract 

events of interest in the complex continuous stimulus for 

finding corresponding blood-oxygen-level dependent 

(BOLD) responses. Recently, in a free music listening fMRI 

experiment, acoustic features of the naturalistic music 

stimulus were first extracted, and then principal component 

analysis (PCA) was applied to select the features of interest 

acting as the stimulus sequences. For feature generation, 

kernel PCA has shown superiority over PCA since it can 

implicitly exploit nonlinear relationship among features and 

such relationship seems to exist generally. Here, we applied 

kernel PCA to select the musical features and obtained an 

interesting new musical feature in contrast to PCA features. 

With the new feature, we found similar fMRI results com-

pared with those by PCA features, indicating that kernel 

PCA assists to capture more properties of the naturalistic 

music stimulus.       

Index Terms— kernel PCA, ICA, Polynomial kernel, 

naturalistic music, fMRI 

 

1. INTRODUCTION 

 

Traditionally, fMRI experiments have been conducted in 

controlled environment where stimulus sequences or onset 

and offset times are strictly defined. Typically, stimuli are 

simplified or artificially generated to isolate features of 

interest as much as possible.  It has been questioned whether 

the results of such controlled experiments are generalisable 

to much more complex real-world experiences [1-3]. Con-

sequently, interest towards studying brain activations in real 

world experiences, involving natural continuous stimuli, is 

quickly growing [1, 2, 4, 5]. In such real-world experimental 

setups where brain responds to continuous stream of com-

plex stimulus, we need to extract the features to segregate 

neural responses to various concurrently occurring stimulus 

events, which might be difficult for certain type of stimuli. 

Moreover, conventional analysis methods that rely on block, 

or event-related experimental design are not easily applica-

ble in such naturalistic paradigm [3, 6]. Recently, several 

approaches have been reported that overcome limitations of 

traditional analysis methods. Hasson et al. [1] proposed 

pairwise inter-subject correlations and reverse correlation 

method for analyzing fMRI during free watching movie. 

From machine learning field supervised classification and 

regression algorithms were adopted for brain encoding and 

decoding models (see review in [7]). The encoding model 

maps stimulus representation to the voxel activity in select-

ed region of interest (ROI) in the brain. Usually, stimulus 

features in encoding/decoding studies consist of categorical 

constructs or individual representations of many stimuli. 

The encoding model is built upon learning the differences 

between corresponding brain responses to the different cate-

gories or stimuli. Trained model, can then predict the voxel 

activations for a new stimulus. The decoding model has an 

opposite aim - to predict the stimulus from the voxel activi-

ties.  

We employed data-driven approach based on inde-

pendent component analysis (ICA) decomposition of fMRI 

and correlating temporal courses of the obtained independ-

ent components with stimulus features. It should be noted 

that the method is different from supervised encod-

ing/decoding methods mentioned above; it does not need 

construction of stimulus categories, or to have preliminary 

assumptions on responses to define regions of interest. Ben-

efits of our approach in the analysis of data obtained from 

naturalistic experiment have been addressed in [9].  

  In spite of the availability of the growing body of re-

search on fMRI responses to natural stimuli, most of the 

studies to our knowledge are focused on visual, virtual reali-



ty settings [1, 3, 4, 10, 12] or speech [13]. However, in one 

recent study brain responses during passive music listening 

environment were explored in [2]. Authors employed inte-

grated analysis approach involving computational extraction 

and perceptual validation of stimulus features, and then 

finding corresponding activations in brain by correlating 

stimulus features with voxel time courses. The dimension-

ality of the initially extracted 25 acoustic descriptors was 

reduced using PCA to obtain compact stimulus representa-

tion expressed by six high-level features. As a linear meth-

od, PCA is blind to nonlinear inter-relationships between 

variables, should such relationships exist. This issue was 

addressed here. To assess possible nonlinear relationships 

among initial acoustic descriptors, we employed kernel PCA 

(KPCA) [14] to generate a new set of high-level features. 

Kernel PCA has been very extensively used for feature 

selection and dimension reduction in the field of machine 

learning and has shown its superiority over PCA [15-17]. 

Therefore, it is worth examining whether KPCA can assist 

to find better stimulus features from the extracted acoustic 

descriptors for analyzing fMRI data during real-world expe-

riences. 

Usually, one objective in fMRI studies is to find natu-

ralistic stimulus-related brain activations that are consistent-

ly present across different participants’ responses. In our 

paradigm, the objective translates in finding similar ICA 

components (spatial maps) among subjects such that the 

time courses of these components are significantly correlat-

ed with the time courses of stimulus features. This was the 

main evaluation criterion for comparing KPCA and PCA 

performances in search of better stimulus representation. 

 

2. DATA DESCRIPTION 

 

The dataset analyzed in this study consists of fMRI scans of 

eleven healthy musicians (mean age: 23.2; SD: 3.7; 5 fe-

males), who listened to a 512 second-long piece of modern 

tango Adios Nonino by Astor Piazzolla. The fMRI meas-

urements were made in 3T scanner at sampling frequency of 

0.5 Hz. Obtained fMRI scans went through conventional 

preprocessing routine. Detailed description of preprocessing 

steps can be found in [2].  

The preprocessed fMRI data were first band-pass fil-

tered with FFT-based digital filter. The pass-band set be-

tween 0.008 and 0.1 Hz [9]. Lower limit of the pass-band 

was in accordance to the filter applied during the prepro-

cessing, while higher limit was set to match the frequency 

range where most of the power of acoustic features was 

contained. Overall, 231 fMRI scans corresponding to stimu-

lus between 21 to 480 seconds were used for analysis.  

Next, PCA and model order selection method SORTE 

[18] was applied to further remove noise and estimate num-

ber of sources. Selected PCA components of each partici-

pant were decomposed using independent component analy-

sis (ICA). FastICA [19] was employed as part of the 

ICASSO [20] software package, which addresses the stabil-

ity of ICA decomposition.  For each subject 94 independent 

components (ICs) were obtained. From the temporal courses 

of all the ICs, those significantly correlated (p < 0.01) with 

musical features were selected for further analysis. Signifi-

cance thresholds for correlations were set for each feature 

via Monte Carlo simulation [2].  

From the set of selected components we rejected those 

with normalized kurtosis less than 5 to avoid artifacts. As a 

result, for each stimulus feature a set of significantly corre-

lated spatial maps from each subject were obtained. Finally, 

six sets of spatial maps corresponding to each feature were 

clustered separately to find common activations among 

different subjects. We employed diffusion map first to re-

duce dimensions and then clustered data using simple spec-

tral clustering. Detailed description of this method is pro-

vided in [21]. Two clusters are usually produced where 

similar activation maps (common map) from different sub-

jects formed one dense cluster, whereas dissimilar maps 

formed sparse cluster. The features were considered as in-

teresting if the common map in associated dense cluster 

included contribution from more than five (half of all) par-

ticipants.    

Described analysis scheme was employed twice - with 

PCA and KPCA descriptors, and therefore two large sets of 

BOLD responses corresponding to each feature set was 

obtained. 

 

3. STIMULUS FEATURE EXTRACTION AND 

SELECTION  

 

3.1 Acoustic feature preprocessing 

 

The feature extraction procedure follows already well estab-

lished window-based extraction scheme employed in music 

information retrieval [11, 22].  Overall, 25 features repre-

senting timbral, tonal, and rhythmic information were ex-

tracted from the stimulus. The features were extracted from 

the overlapping windows of two different lengths. The 

shorter window length of 25 ms with 50% overlap was se-

lected for so called low-level features capturing timbral 

characteristics of the sound. These features usually are of 

high temporal resolution and reflect fast changes in music. 

The longer 3s windows with 67% overlap was employed for 

features that depict higher level concepts in music, such as 

tonality and rhythm. Hereafter we will refer these two sub-

sets as short-term and long-term features based on the win-

dow length employed for their extraction. For the features 

and their descriptions, the reader is referred to [2]. 

The features were centered and normalized with re-

spect to their standard deviation, after which long term fea-

tures were up-sampled to match the sampling rate of short-

term features. Next, all features were convolved with double 

gamma HRF (hemodynamic response function) to consider 

the hemodynamic lag. Following the convolution, 21 to 480 

seconds were extracted from feature time courses to syn-

chronize with fMRI scans. The final step of the prepro-



cessing was the high-pass filtering with cutoff frequency at 

0.008 Hz, in accordance with the low cutoff of band-pass 

filter applied on fMRI voxel series. 

 

3.2 PCA-based musical features 

 

PCA is a widely used method to reduce dimensionality [23]. 

It is an orthogonal transformation of the centered matrix 

        , where   is the number of dimensions and   is the 

number of samples. This is achieved by eigen-

decomposition of the covariance matrix: 

                                                 
where   is a covariance matrix: 

  
 

 
                                                  

Eigenvectors          of     represent the directions to 

largest variances sorted in decreasing order and eigenvalues  

  are variances across eigen-directions. The common heuris-

tic to reduce dimensions is to select the first   eigenvectors 

explaining most of the variance (usually 95%) in the data. 

Finally, data are projected onto the principal components to 

get its representation in the principal component space: 

                                               
This scheme was used for reducing dimensions of 25 

preprocessed features. Initially nine principal components 

were selected explaining 95% of variance in the data. The 

principal component axes were rotated using varimax rota-

tion [2]. Perceptual labels of principal components were 

applied based on loadings from raw features. The perceptual 

labels were validated through the experiment where 21 

musicians rated the excerpts of the stimuli in which the 

labels were exhibited in varying degrees. Finally, a set of six 

features including Activity, Fullness, Brightness, Timbral 

Complexity, Key Clarity and Pulse Clarity were selected for 

further analysis. First four of the six features characterize 

polyphonic timbre of music. Key Clarity represents tonal 

clarity, and Pulse Clarity is an estimate of clarity of per-

ceived pulse [2]. 

 

3.3 Kernel PCA features 

 

Kernel PCA is a nonlinear extension of PCA for nonlinear 

data distributions where mapping into linear subspace is not 

useful [14, 24]. To introduce kernel PCA, let us consider the 

data matrix consisting of   column vectors with   dimen-

sions:         , The basic way to do nonlinear extension of 

PCA is to introduce nonlinear mapping to a (generally) 

higher dimensional feature space  : 

                                       

Then calculate covariance using inner product            

in  , and apply linear PCA as described above. Usually, 

this will quickly blow up computational complexity with 

increasing dimensionality of the data. With the ‘kernel trick’ 

it is possible to avoid mapping     and calculating covari-

ance by introducing a kernel matrix        , which replac-

es the inner product in feature space. It can be shown that 

finding eigenvectors of covariance matrix in   reduces to 

solving following eigenvalue problem:  

                                                 

where                    is a Gram matrix that 

is used for centering the kernel matrix [14, 24],   is the 

number of samples,   and   are eigenvalues and eigenvec-

tors respectively. As in PCA we select the first   vectors in 

  to reduce dimensions. The projections of points in the 

feature space      onto the eigenvecors are given by: 

                                             
A polynomial kernel of third degree was selected in 

this study: 

            

where          is the kernel matrix and          ma-

trix of features. For simplicity we set the slope parameter   

to 1. To select  , we tested the method on several sample 

values from wide range. Thus, the final form of our poly-

nomial kernel was:           . We selected the first 

14 eigenvectors explaining 95% of variance in the data to 

reduce dimensions. Hence, 14 new features were obtained. 

 

4. MUSICAL FEATURES AND FMRI DATA 

ANALYSIS 

 

Overall, 14 kernel PC scores were generated from the initial 

set of 25 features. We explored similarities between kernel 

and linear PCA features by finding Pearson correlations 

between their temporal courses. For the simplicity, we will 

refer to kernel PC scores as 'new features' and linear PC 

scores as 'old features' hereafter. Several new features 

showed moderate to moderately high correlations with old 

features, while some features were very weakly correlated 

with linear PC scores (Fig. 1). Therefore, polynomial kernel 

was able to find new stimulus features that are moderately 

or not at all correlated with the old ones. 

Another interesting fact was that few combinations of 

the old features were submerged into first few KPCA fea-

tures (e.g. Fullness, Brightness, and Activity are represented 

with different weights in the first KPCA feature). It can be 

explained by existence of inter-correlations between men-

tioned PCA features, introduced by varimax rotation applied 

on principal components (see section 3.2). For example, 

absolute value of the correlation between Fullness and Ac-

tivity is 0.92.  

As described in section 2, the fMRI data were ana-

lyzed for two cases, involving six old and 14 new feature 

sets as stimulus sequences. The features for which we failed 

to find significantly correlated (associated) ICs from more 

than half of the participants were eliminated from further 

analysis. After the elimination, four old (Fullness, Bright-

ness, Timbral Complexity, and Activity) and three new 

features (features 2, 3, and 12) were left for further analysis. 

Next, we were interested in finding common spatial activa-

tion maps among ICs associated with each of the selected 

features from each set. To this end, we applied diffusion 

maps and spectral clustering [21]. 



For the old features, two common spatial maps were 

revealed by spectral clustering of the associated components 

for Brightness and Activity. Both common maps showed 

large bilaterally activated areas predominantly within audi-

tory cortices. For Brightness, the common map was obtained 

from ten subjects and for Activity - from seven subjects. For 

the remaining two features common maps were not ob-

served [9].  

The common map was also found for one new feature  

KPCA #3. The common map showed the same activity 

patterns as found by PCA-based musical features, but was 

observed in eight subjects' ICs. Furthermore, the set of ICs 

showing common activation maps were subset of the ones 

selected by PCA features. In other words, there is an inter-

section between the sets of ICs corresponding to each of the 

feature set, while the two musical features by PCA and 

kernel PCA are not very similar. The temporal courses of 

KPCA #3, Brightness, and Activity are depicted in Fig.2.  

The common map consisting of averaged eight components 

from eight subjects is shown in Fig. 3.   

We also tested Gaussian kernel for KPCA. For kernel 

parameters outside certain range, for which we could select 

reasonable amount of eigenvectors, generated features were 

highly correlated with old features in somewhat similar 

pattern as in Fig. 1. However, we did not find the common 

map for those features. Due to the space limitation, we do 

not report results of Gaussian kernel in this paper. 

 

5. DISCUSSION 

 

We employed kernel PCA with third degree polynomial  

kernel that would enable us to exploit possible nonlinear 

relationships among initial set of descriptors. The set of 

generated KPCA features were employed in our individual 

ICA-based framework to analyse real fMRI dataset from 

free listening experiment. We found similar brain responses 

as with previously used PCA stimulus sequences and the 

same fMRI data. It should be noted that the analysis frame-

work presented in this study was tested and shown to be 

producing results in agreement with previous findings from 

the same dataset, obtained from other established models 

[9].    

  Two interesting facts were observed for generated 

features. First, one of the three selected KPCA features, 

KPCA #3, was highly correlated with the temporal courses 

of spatial maps from majority of subjects. Considering only 

moderate-level correlations between this new feature and 

Brightness (Fig.1), both showing significant correlation with 

the same brain responses is an interesting finding. It indi-

cates PCA features as a representation of the auditory stimu-

lus are not the unique solution, and the mapping between 

initial descriptors and stimulus representation can be nonlin-

ear. 

Second, two KPCA features exhibited contributions 

from several PCA features. Such aggregation seems to be 

useful as it enables compact representation and, considering 

the existing inter-correlations between the old features, 

reduces redundancies. 

From the perspective of finding stimulus-related con-

sistent brain responses, both sets of features produced com-

parable results. Both PCA and KPCA found the same com-

mon activations.  

To summarize, considering similar results from mod-

erately correlated kernel and linear PCA features within our 

analysis method, exploring nonlinear inter-relationships 

among stimulus features seems to be the promising direction 

towards finding stimulus representation for fMRI during 

real-world experiences. Not finding common map for most 

of the features in both sets might also point to some limita-

tions of our analysis method. Indeed, issues with our method 

and group ICA-based methods for analysing fMRI in natu-

ralistic settings are discussed in [9]. To overcome possible 

limitations introduced by model selection, as well as to 

validate our results, we plan to compare generated features 

within different analysis method. 

 

Fig. 1. Correlation coefficients (absolute value) between KPCA and 

PCA features. 

 

Fig. 2. Temporal courses of Brightness, Activity and KPCA#3. 

 

 

Fig. 3. Common spatial map based on the new feature, KPCA#3. 
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