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Variational Principle and Bifurcations in
Stability Analysis of Panels∗

Nikolay Banichuk Alexander Barsuk Tero Tuovinen
Juha Jeronen

Abstract

In this paper, the stability of a simply supported axially moving elastic panel
is considered. A complex variable technique and bifurcation theory are applied.
As a result, variational equations and a variational principle are derived. Anal-
ysis of the variational principle allows the study of qualitative properties of the
bifurcation points. Asymptotic behaviour in a small neighbourhood around an
arbitrary bifurcation point is analyzed and presented.

It is shown analytically that the eigenvalue curves in the (ω, V0) plane cross
both the ω and V0 axes perpendicularly. It is also shown that near each bifur-
cation point, the dependence ω(V0) for each mode approximately follows the
shape of a square root near the origin.

The obtained results complement existing numerical studies on the stability
of axially moving materials, especially those with finite bending rigidity. From
a rigorous mathematical viewpoint, the presence of bending rigidity is essen-
tial, because the presence of the fourth-order term in the model changes the
qualitative behaviour of the bifurcation points.

1 Introduction

The aim of our studies has been to develop mathematical models representing the
behaviour of the paper making process. Previously (see e.g., Banichuk et al. [2013b,a,
2011a,b]), we have considered many approaches for modelling moving materials
and their stability. Conclusions that have been drawn can be applied for example,
the processing of paper or steel, fabric, rubber or some other continuous material,
and looping systems such as band saws and timing belts.

Typically systems of axially moving web have been modelled as travelling flex-
ible strings, membranes, beams, and plates. Classical articles in this field are, for
example, Mote [1972], Archibald and Emslie [1958], Simpson [1973], Wang et al.

∗This research was supported by RFBR (grant 14-08-00016-a), RAS Program 12, Program of Sup-
port of Leading Scientific Schools (grant 2954.2014.1), and the Finnish Cultural Foundation.
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[2005], Parker [1998] Kong and Parker [2004], Miranker [1960] Chonan [1986], Wick-
ert and Mote [1990], Bhat et al. [1982], Perkins [1990], Wickert [1994] and Parker
[1999].

In the case of beams interacting with external media, one can read e.g. the ar-
ticle by Chang and Moretti [1991], and the articles by Banichuk and Neittaanmäki
[2008a,b,c]. The study has been extended in Banichuk et al. [2010] for a two-di-
mensional model of the web, considered as a moving plate under homogeneous
tension but without external media. The most straightforward and efficient way
to study stability is to use linear stability analysis. In a recent article by Hatami
et al. [2009], the free vibration of a moving orthotropic rectangular plate was stud-
ied at sub- and supercritical speeds, and its flutter and divergence instabilities at
supercritical speeds. The study is limited to simply supported boundary conditions
at all edges. For the solution of equations of orthotropic moving material, many
necessary fundamentals can be found in the book by Marynowski [2008b]. An ex-
tensive literature review about dynamics of axially moving continua can be found
in Marynowski and Kapitaniak [2014] or in the book by Banichuk et al. [2014]. How-
ever, in this article the effect of surrounding media have been excluded.

The dynamical properties of moving plates have been studied by Shen et al.
[1995] and by Shin et al. [2005], and the properties of a moving paper web have
been studied in the two-part article by Kulachenko et al. [2007a,b]. Critical regimes
and other problems of stability analysis have been studied e.g. by Wang [2003] and
Sygulski [2007]. Moreover, in the articles Marynowski [2002, 2004, 2008a] the dy-
namical aspects of the axially moving web are discussed extensively. In Yang and
Chen [2005], the authors considered transverse vibrations of the axially accelerat-
ing viscoelastic beam, and in Pellicano and Vestroni [2000], dynamic behavior of a
simply supported beam subjected to an axial transport of mass was studied. An
extensive literature review related to areas presented in this paper, can be found for
example in Ghayesh et al. [2013]. Note also some approaches to bifurcation prob-
lems and estimation of critical parameters presented by Nečas et al. [1987] and Neit-
taanmäki and Ruotsalainen [1985].

The focus of this article is the stability of a simply supported axially moving elas-
tic panel. We have used a complex variable technique and bifurcation theory. Our
main task has been the derivation of variational equations and a variational princi-
ple. Moreover, we have performed an analysis of the variational principle, which
allows the study of qualitative properties of the bifurcation points. Furthermore,
asymptotic behaviour around an arbitrary bifurcation point is analyzed and pre-
sented. As a result, we show analytically that the eigenvalue curves in the (ω, V0)
plane cross both the ω and V0 axes perpendicularly. It is also shown that near each
bifurcation point, the dependence ω(V0) for each mode approximately follows the
shape of a square root near the origin. Gained results complement existing numer-
ical studies on the stability of axially moving materials, and especially materials
with finite bending rigidity. From a rigorous mathematical viewpoint, the presence
of bending rigidity is essential, because the presence of the fourth-order term in the
model changes the qualitative behaviour of the bifurcation points.
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2 Basic relations and complex functions

Consider the problem of free harmonic vibrations of an elastic panel, moving axially
at a constant velocity V0. In a stationary orthogonal coordinate system, the trans-
verse vibrations are characterized by the function w = w(x, t), which is determined
by the following partial differential equation:

w,tt + 2V0w,xt + (V 2
0 − C2)w,xx +

D

ρS
w,xxxx = 0 , 0 < x < ` , C =

√
T0
ρS

. (1)

At the ends of the considered interval x ∈ [0, `], we have the simply supported
boundary conditions

w(0, t) = w(`, t) = Dw,xx(0, t) = Dw,xx(`, t) = 0 . (2)

Here x is the axial space coordinate, t time, T0 tension, ρ material density, S the area
of the panel cross section, ` the length of the free span, and D the bending rigidity
of the panel.

For harmonic vibrations at frequency ω, the transverse displacement can be rep-
resented in the form

w(x, t) = eiωtu(x) , i =
√
−1 , (3)

where u(x) is an amplitude function that satisfies the following boundary value
problem:

u,xxxx + (V 2
0 − C2)u,xx + 2iωV0u,x − ω2u = 0 , (4)

u(0) = u(1) = u,xx(0) = u,xx(1) = 0 , (5)

which is written in dimensionless variables

x = `x̃ ,
ρSω2`4

D
= ω̃2 ,

ρS`2

D
V 2
0 = Ṽ 2

0 ,
ρS`2

D
C2 = C̃2 . (6)

In what follows, the tilde will be omitted.
The amplitude function u(x) determined from the boundary value problem (4)–

(5) is a complex-valued function, i.e.

u(x) = u1(x) + iu2(x) , û(x) = u1(x)− iu2(x) , (7)

where u1(x) and u2(x) are real-valued functions and û(x) is the complex conjugate
of u(x).

In the following we present a variational formulation of the spectral problem (4)–
(5). This formulation allows us to make important conclusions about the frequencies
of free vibrations of moving elastic systems without knowing the rigorous solution
of the spectral boundary value problem. To derive the variational formulation of
(4)–(5), we multiply the differential equation by the complex conjugate (adjoint) am-
plitude function û(x) and integrate the result on the interval (0, 1). We will also take
into account the boundary conditions

u1(0) = u2(0) = u1(1) = u2(1) = 0 ,

u1,xx(0) = u2,xx(0) = u1,xx(1) = u2,xx(1) = 0 ,
(8)
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which follow from the boundary conditions (5). We obtain the functional equation

aω2 + 2bV0ω + (V 2
0 − C2)c− d = 0 , (9)

where a, b, c and d are integral functional depending on the problem (4)–(5). The
functional a is given by

a =

ˆ 1

0

uû dx =

ˆ 1

0

(
(u1)2 + (u2)2

)
dx > 0 . (10)

Using the boundary conditions (8), we can write the functional b as
ˆ 1

0

u,xû dx = i

ˆ 1

0

(
(u2),xu

1 − (u1),xu
2
)

dx = ib , (11)

where b is real-valued. The functionals c and d are obtained by integrating by parts
(once in the case of c and twice for d), and taking into account the corresponding
boundary conditions in (8). We have

c = −
ˆ 1

0

u,xxû dx =

ˆ 1

0

(
[(u1),x]2 + [(u2),x]2

)
dx > 0 , (12)

d =

ˆ 1

0

u,xxxxû dx =

ˆ 1

0

(
[(u1),xx]2 + [(u2),xx]2

)
dx > 0 . (13)

3 Variational analysis and variational principle in com-
plex variables

Let us write the variation of the functional equation (9). To do this, we take into
account the variations of the considered functionals,

δa =

ˆ 1

0

(ûδu+ uδû) dx ,

iδb =

ˆ 1

0

(ûδu,x + u,xδû) dx ,

δc =

ˆ 1

0

(u,xδû,x + û,xδu,x) dx ,

δd =

ˆ 1

0

(u,xxδû,xx + ûδu,xx) dx ,

(14)

and perform standard transformations in (9), replacing u, û and ω with u+δu, û+δû
and ω + δω, respectively. We will have the variation

2(aω + bV0)δω +

ˆ 1

0

[
−ω2u+ 2iωV0u,x + (V 2

0 − C2)u,xx + u,xxxx
]
δû dx

+

ˆ 1

0

[
−ω2û− 2iωV0û,x + (V 2

0 − C2)û,xx + û,xxxx
]
δu dx = 0 .

(15)
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For u(x) and û(x), which are solutions of the spectral boundary value problem (4)–
(5) and its complex conjugate, the integral expressions in (15) are identically zero.
Taking this into account, we are left with

2(aω + bV0) δω = 0 . (16)

Thus, if aω + bV0 6= 0 for the spectral problem (4)–(5), then the frequency variation
for free vibrations δω is zero. That is,

aω + bV0 6= 0 , δω = 0 . (17)

Solving (9) for ω, we arrive at the variational representation for harmonic vibrations,
corresponding to each of the two solution branches of equation (9):

ω±(V0) =
1

a

(
−bV0 ±

√
(b2 − ac)V 2

0 + acC2 + ad

)
→ extr

u(x),û(x)
. (18)

4 Analysis of extremum conditions and bifurcation anal-
ysis

From (16), the other possibility is

aω + bV0 = 0 (19)

and δω free. To perform analysis for this case, we consider equation (9) as an implicit
function F (ω, V0):

F (ω, V0) = 0 , F (ω, V0) = aω2 + 2bV0ω + (V 2
0 − C2)c− d . (20)

Again, we can solve (9) for ω, obtaining the following two solution branches:

ω±(V0) =
1

a

(
−bV0 ±

√
(b2 − ac)V 2

0 + acC2 + ad

)
(21)

Let (ω∗, V ∗0 ) denote the bifurcation point, i.e. the values of ω and V0 at which the
solution of (20) branches. At the bifurcation point, the conditions of the implicit
function theorem must be violated, i.e. we will have

F (ω, V0) = 0 ,
∂F (ω, V0)

∂ω
= 0 . (22)

Using (20), these conditions become

aω2 + 2bV0ω + (V 2
0 − C2)c− d = 0 , aω + bV0 = 0 . (23)

As a result, we find the following representation for bifurcation values of the fre-
quency and panel velocity:

ω∗ = − b
a
V ∗0 , (ac− b2)(V ∗0 )2 = acC2 + ad . (24)
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Alternatively, these values can be obtained from the condition ω+(V0) = ω−(V0) and
the representation (21) for ω±(V0). Note also that if some solutions have b = 0,
the corresponding bifurcation points are distributed along the V0 axis in the (V0, ω)
plane, i.e.

ω∗ = 0 , (V ∗0 )2 = C2 +
d

c
(for solutions with b = 0) . (25)

Let us differentiate ω(V0) with respect to the parameter V0. To do this, in (20) we
replace V0, u and ω with V0 + δV0, u+ δu and ω+ δω, respectively. Using the standard
transformations (as was done in (16)) we obtain

2(aω + bV0) δω + 2(bω + cV0) δV0 = 0 . (26)

Consequently,
dω

dV0
= − bω + cV0

aω + bV0
. (27)

In particular, it follows from (27) that for all bifurcation points (ω∗, V ∗0 ) we have the
limit

lim
V0→V ∗

0

dω±(V0)

dV0
= ±∞ . (28)

In the case V0 = 0, we have b = 0, and find that

dω±(V0 =0)

dV0
= 0 . (29)

It follows from (28)–(29) that the curves ω±(V0) cross the ω and V0 axes at right an-
gles; see Figure 1.

5 Nonlinear analysis of asymptotic behaviour of the
frequencies in the vicinity of bifurcation points

Let (ω∗1, V
∗
01) , (ω

∗
2, V

∗
02) , . . . be solutions of the system of nonlinear equations (20).

Consider the behaviour of the functions ωi(V0) (i = 1, 2, . . . ), determined in a small
neighbourhood of the bifurcation point (ω∗k, V

∗
0k), in implicit form, by the equation

F (ω, V0) = 0. For brevity, we will omit the indices of the functions ωi(V0) and the
bifurcation points (ω∗k, V

∗
0k).

To study the behaviour of the function F (ω, V0), we expand it in series around
the bifurcation point (ω∗, V ∗0 ). We have

F (ω, V0) = F (ω∗, V ∗0 ) +
∂F (ω∗, V ∗0 )

∂ω
(ω − ω∗) +

∂F (ω∗, V ∗0 )

∂V0
(V0 − V ∗0 )+

1

2

∂2F (ω∗, V ∗0 )

∂ω2
(ω − ω∗)2 + . . . (30)
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Figure 1: Behaviour of the natural frequencies ω as a function of the panel axial
velocity V0. Numerical solution using finite elements.
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Taking into account that at each bifurcation point (ω∗, V ∗0 ), relation (22) holds, we
have that the first two terms in (30) vanish, obtaining

F (ω, V0) =
∂F (ω∗, V ∗0 )

∂V0
(V0 − V ∗0 ) +

1

2

∂2F (ω∗, V ∗0 )

∂ω2
(ω − ω∗)2 + . . . (31)

Observe that all terms that have been omitted in (30) have a higher order of small-
ness. The expression (31) thus contains all leading-order terms, and describes com-
pletely general behaviour of F (ω, V0) in a small neighbourhood of a given bifurca-
tion point (ω∗, V ∗0 ). This is the general case; the special cases where one or both of
∂F (ω∗, V ∗0 )/∂V0 and ∂2F (ω∗, V ∗0 )/∂ω2 are zero must be studied separately.

Without loss of generality, we may represent the function ω = ω(V0) in the small
neighbourhood of the bifurcation point (ω∗, V ∗0 ) as a power series:

ω(V0) = ω∗ + α1(V0 − V ∗0 )ε1 + α2(V0 − V ∗0 )ε2 + . . . , where 0 < ε1 < ε2 < . . . (32)

The values of the constants α1, α2, . . . and ε1, ε2, . . . are determined with the help
of the condition F (ω, V0) = 0. After substitution of (32) into (31), the equation
F (ω, V0) = 0 reduces to the corresponding equation

Ψ(V − V ∗0 ) = 0 , (33)

where Ψ is a function of one variable.
In order for (33) to hold, the coefficient of each power of (V −V ∗0 ) in the expression

of Ψ must be equal to zero. This requirement allows us to determine the values of
α1, α2, . . . and ε1, ε2, . . . in the power series (32). In the following, for simplicity we
consider only the determination of α1 and ε1, i.e. we approximate ω(V0) as

ω(V0) ≈ ω∗ + α1(V0 − V ∗0 )ε1 . (34)

After substitution of (34) into (31), we obtain

Ψ(V0 − V ∗0 ) =
∂F (ω∗, V ∗0 )

∂V0
(V0 − V ∗0 ) +

α2
1

2

∂F (ω∗, V ∗0 )

∂ω2
(V0 − V ∗0 )2ε1 + · · · ≡ 0 . (35)

The expression (35) contains the leading-order terms; all omitted terms are of a
higher order of smallness.

We will analyze the case where

∂F (ω∗, V ∗0 )

∂V0
6= 0 ,

∂2F (ω∗, V ∗0 )

∂ω2
6= 0 . (36)

A separate analysis is needed if one or both values in (36) are zero.
Consider now the cases 2ε1 < 1, 2ε1 = 1 and 2ε1 > 1, which together cover

all possibilities for ε1. If 2ε1 < 1, then the first term in (35) is of a higher order
of smallness with respect to the second term, and consequently in order for (35) to
hold, ∂2F (ω∗, V ∗0 )/∂ω2 must be zero, which contradicts the second condition in (36).
Similarly, if 2ε1 > 1, then in order for (35) to hold, ∂F (ω∗, V ∗0 )/∂V 2

0 must be zero,
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which contradicts the first condition in (36). As a result, the only possible value is
2ε1 = 1, which transforms (35) into

Ψ(V0 − V ∗0 ) =

[
∂F (ω∗, V ∗0 )

∂V0
+
α2
1

2

∂F (ω∗, V ∗0 )

∂ω2

]
(V0 − V ∗0 ) + · · · ≡ 0 . (37)

The value of α1 is found from the condition that the coefficient of (V − V ∗0 ) is zero.
We have

α2
1 = −2

∂F (ω∗, V ∗0 )/∂V0
∂2F (ω∗, V ∗0 )/∂ω2

. (38)

Because the functionals (10)–(13) are all real-valued, and thus F (ω, V0) is real-valued,
it follows from (38) that α2

1 is real-valued, and thus α1 is either purely real or purely
imaginary.

Thus we find the asymptotic dependence ω(V0) in the small neighbourhood of
the bifurcation point as

ω(V0) ≈ ω∗ ± α1

√
V0 − V ∗0 , |V0 − V ∗0 | � 1 . (39)

From (39) it follows that in the small neighbourhood around each bifurcation point
(ω∗, V ∗0 ), the frequency of harmonic vibrations ω obtains complex values. If the co-
efficient α1 is real, then the frequency becomes complex for V0 < V ∗0 ; otherwise (α1

imaginary) the frequency becomes complex for V0 > V ∗0 .
The appearance of complex frequencies and their complex conjugates means that

according to the model considered, the displacement will grow exponentially, which
corresponds to instability in the Lyapunov sense. Thus, the considered elastic sys-
tem exhibits elastic instability at the bifurcation points, and from a mathematical
point of view, the bifurcation points correspond to static (divergence, buckling,
ω∗ = 0) and dynamic (flutter, ω∗ 6= 0) kinds of instability in the Bolotin classifi-
cation. Both kinds of instabilities are caught by the present analysis, because in both
cases (ω∗ = 0 and ω∗ 6= 0) we have instability in the Lyapunov sense.

6 Example

As an example, consider the harmonic vibrations of an elastic panel (plate undergo-
ing cylindrical deformation) moving in the axial direction at a constant velocity V0,
and with zero axial tension (C = 0). In this case, some of the bifurcation points lie
on the V0 axis (ω = 0), corresponding to static instabilities (divergence). For this set
of points, the bifurcation values of the velocities are

V ∗0k = kπ , k = 1, 2, 3, . . . (static instabilities)

and the dependences ωk(V0) in the small neighbourhood of the points (0, V ∗0k) are
given by

ωk(V0) ≈ ±α1k

√
V0 − kπ + . . . , |V0 − kπ| � 1 , k = 1, 2, . . . (40)
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where we have used ε1 = 1/2. Taking into account that α2
11 < 0, the first branch

ω1(V0) is complex for V0 > π, and consequently we will have instability for V0 =
V ∗01 = π. It can be shown that the values α2

1k are positive for all k ≥ 2, and conse-
quently each branch ωk(V0) takes complex values at V0 < kπ.

The results of asymptotic analysis of ωk(V0) agree with the numerical solution
presented in Figure 1, which was obtained by solving the spectral boundary value
problem (4)–(5) as an eigenvalue problem for (ω, u(x)) using finite elements of the
Hermite type. For this picture, we present the bifurcation values for critical points
outside the axis V0(ω=0), denoted by two lower indices:

(V ∗021 = 6.45 , ω∗21 = ±10.58)

(V ∗031 = 10.23 , ω∗31 = ±32.01)

7 Conclusion

In this paper, the stability of an axially moving elastic panel was considered. The
panel was travelling at constant velocity between a system of rollers. Small trans-
verse elastic displacements of the panel were described by a fourth-order differential
equation that included the centrifugal and Coriolis effects (induced by the axial mo-
tion), axial tension, and bending resistance. The same formulation directly applies
also to the small out-of-plane elastic displacements of an axially travelling beam.

To study the stability of the system, a complex variable technique and bifurcation
theory were applied. As a result, variational equations and a variational principle
were derived. Analysis of the variational principle allowed the study of qualitative
properties of the bifurcation points. Asymptotic behaviour in a small neighbour-
hood around an arbitrary bifurcation point was analyzed and presented. The bi-
furcation points were found by determining conditions where the conditions of the
implicit function theorem (which concerns the uniqueness of a local explicit repre-
sentation of an implicit function) are violated.

It was shown analytically that the eigenvalue curves in the (ω, V0) plane cross
both the ω and V0 axes perpendicularly. It was also shown that near each bifurcation
point, the dependence ωk(V0), for each mode k, approximately follows the shape of
a square root function (considered near the origin). From this analysis it was also
seen that, as expected for this class of systems, the eigenvalues appear in conjugate
pairs.

The obtained results complement existing numerical studies on the stability of
axially moving materials, especially those with finite bending rigidity. From a rigor-
ous mathematical viewpoint, the presence of bending rigidity is essential, because
the presence of the fourth-order term in the model changes the qualitative behaviour
of the bifurcation points.
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