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Joint Local Quantization and Linear Cooperation in
Spectrum Sensing for Cognitive Radio Networks

Younes Abdi, Student Member, IEEE, and Tapani Ristaniemi, Senior Member, IEEE

Abstract—In designing cognitive radio networks (CRNs), pro-
tecting the license holders from harmful interference while
maintaining acceptable quality-of-service (QoS) levels for the
secondary users is a challenge effectively mitigated by cooperative
spectrum sensing schemes. In this paper, cooperative spectrum
sensing in CRNs is studied as a three-phase process composed
of local sensing, reporting, and decision/data fusion. Then, a
significant tradeoff in designing the reporting phase, i.e., the
effect of the number of bits used in local sensing quantization
on the overall sensing performance is identified and formulated.
In addition, a novel approach is proposed to jointly optimize
the linear soft-combining scheme at the fusion phase with the
number of quantization bits used by each sensing node at the
reporting phase. The proposed optimization is represented using
the conventional false alarm and missed detection probabilities,
in the form of a mixed-integer nonlinear programming (MINLP)
problem. The solution is developed as a branch-and-bound
procedure based on convex hull relaxation, and a low-complexity
suboptimal approach is also provided. Finally, the performance
improvement associated with the proposed joint optimization
scheme, which is due to better exploitation of spatial/user
diversities in CRNs, is demonstrated by a set of illustrative
simulation results.

Index Terms—Cognitive radio (CR), cooperative spectrum
sensing, decision fusion, quantization, non-ideal reporting chan-
nel.

I. INTRODUCTION

PROMOTING more efficient use of the radio spectrum
as a valuable resource has been of the first priority in

many scientific debates and research activities worldwide,
see e.g. [1], [2]. Consequently, Cognitive Radio (CR) as
the best implementation candidate for the emerging Dynamic
Spectrum Management procedures has been the core of most
related technical discussions and interactions among various
academic, industrial, and regulatory groups specialized in
wireless communications all over the world, see [3], [4], and
the references therein.

Conceptually, CR is an adaptive communication system
which offers the promise of intelligent radios that can learn
from and adapt to their environment [5]. As a matter of fact,
spectrum sensing is the key element in each CR system and
enables its user, commonly referred to as Secondary User
(SU), to find transmission opportunities in spectrum resources
allocated exclusively to license holders. In this context, the
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license holders are called Primary Users (PUs) and have
the exclusive right of using the spectrum. So the aim of a
CR Network (CRN) generally is to achieve radio resources
for communication within the spectrum band of the PUs
without causing any harmful interference and the spectrum
sensing capability enables CRs to detect active PUs and avoid
causing interference for them. However, due to impairments
like shadowing and multipath fading associated with typical
wireless environments, there might be some cases in which
not all the CRs are able to detect the PU signal, even though
it is present and active. This significant issue is known as the
Hidden Node Problem and is a major concern in designing
CRNs.

Conventionally, the hidden node problem is mitigated by
cooperation among spatially diverse sensing nodes, leading to
the concept of Cooperative Spectrum Sensing. As a common
design strategy, the cooperative sensing is coordinated by and
the overall sensing outcome is generated in a special node
called the Fusion Center (FC) which might be considered as
a more powerful node, like a base station or an access point.
This cooperation of the CR nodes with the FC is generally
performed as a three-phase process. In the first phase which
we call Local Sensing, each node performs spectrum sensing
individually, by using its own built-in sensing scheme. In other
words, the nodes listen to their environment to detect the PU
signal. Accordingly, the wireless channels between the PU and
the sensing nodes are referred to as Listening Channels. In the
second phase, called Reporting, the sensing nodes send their
local sensing outcomes to the FC through dedicated [6]–[8]
or non-dedicated [9], [10] Reporting Channels. Finally, in the
third phase, i.e., Fusion, the FC combines the received local
sensing outcomes by using a soft-decision (SD) [8], [11]–[16]
or hard-decision (HD) [17]–[19] method to decide the presence
or absence of the PU.

A. Assumed Architecture: Linear Fusion of Quantized Reports

The architecture assumed in this paper has two main parts,
namely, the fusion rule at the FC and the reporting links. We
have assumed that the FC performs linear combining on the
local test summaries which are reported through non-ideal
(i.e., erroneous) digital channels. The main considerations
motivating us to adopt this structure are as follows.

It has been shown in [20] that for a distributed detec-
tion problem with nonideal analogue communication channels
between the distributed nodes and FC, the globally optimal
structure is to perform the Likelihood Ratio Test (LRT) both
at individual nodes and at the fusion center. However, how
to efficiently find the optimal LRT thresholds for individual
nodes and for the fusion center is still unknown, see [8],



2

[20]. For the quantized SD case, i.e., when the reporting
is performed through nonideal digital links, a solution for
optimizing the local quantization levels jointly with the LRT
threshold at the FC may or may not exist [21]. Even if
an optimal solution exists, the threshold calculations are not
trivial, and complex optimization schemes are needed to solve
them. The complexity cost further rises as these optimizations
have to be done each time the listening or reporting channels
change. Moreover, the optimal rules are derived under strict
assumptions that may not hold in a practical scenario, resulting
in lack of robustness [22]. These difficulties are commonly
avoided by assuming a linear fusion scheme [8], [12]–[14]
which is the base for our considered architecture. In particular,
linear combining is shown in [8] to perform very closely to
the optimal LRT method but with much less computational
complexity.

Two approaches are commonly used in the literature to
model the reporting phase. In the first approach, the reporting
links are modeled as analogue, i.e., additive white Gaussian
noise (AWGN) channels [8], [12]–[14], which is the simplest
assumption leading to analytically-tractable formulations. The
alternative approach is based on assuming nonideal digital
communication links, i.e., Binary Symmetric Channels (BSC)
through which the quantized test summaries are sent to the
FC [15], [19], [22]. Digital reporting is more practically
appealing since, first, the reporting channel bandwidth is
limited in practice, and, second, in many cases, the FC is
the access point, base station (BS), or network coordinator
which performs a set of resource allocation activities besides
decision/data fusion, see e.g., the BS in the IEEE 802.22
standard. These tasks basically require establishment of a
set of digital communication links between the FC and CR
nodes, which can also be used for the reporting purposes.
When modeling the reporting facility as a digital link, the
effect of reporting channel impairments on the overall sensing
performance is captured into the system model by reporting
Bit Error Probability (BEP), as it is a convenient and widely
applicable method to model the end-to-end performance of the
system including the transmitter, the channel, and the receiver.

B. Related Work

Optimal linear combining is a non-convex problem studied
in [8] and [23], where it is broken into several subproblems
and the optimal solution is derived through a tedious iterative
process which fails to cover all possible cases. As an alterna-
tive approach, the authors in [8] have proposed a suboptimal
solution based on the so-called Modified Deflection Coefficient
(MDC) and showed that this method provides very close
results to the ones obtained by the optimal LRT method,
but with lower complexity. The MDC approach is also used
in other works like [11] and [24] to optimize the detection
performance where direct formulation of the false alarm and
missed detection probabilities leads to a non-convex problem.
In [12], a semidefinite programming approach with a divide-
and-conquer process is proposed for the linear combining
problem, but the most straightforward and complete solution
is developed in [13], which covers all the possible cases.

The method in [13] is simple to implement in the sense that
it only requires solving a polynomial equation in a single
scalar variable over a given interval depending on the system
parameters. The effect of reporting channel impairments on
the overall sensing performance has been investigated in [19],
[22], and [25], where the reporting channels are modeled as
binary symmetric channels that cause errors with a certain
BEP. Existence of a BEP wall has been demonstrated in these
works for both soft- and hard-decision combining schemes,
and it is shown that if the BEP of the reporting channel is
above the BEP wall value, the constraints on the cooperative
detection performance cannot be met at the FC, regardless
of the signal quality at the listening channels. Moreover, the
authors in [22] compare the performance of the HD- and
SD-based fusion methods and illustrate that, in general, the
SD significantly outperforms the HD scheme when nonideal
reporting channels are considered. In [26], a seesaw analogy
for distributed detection based on Rayleigh-faded quantized
reports is introduced and evaluated. The fusion rule in [26] is
based on assigning weights to the quantization levels rather
than to reporting nodes.

C. Contribution

In this paper, we jointly optimize the reporting and fusion
phases of the cooperative spectrum sensing in CRNs. In
particular and different from the previous works, we optimize
the linear soft-combining at the FC considering the effect of
reporting channel impairments in designing the quantization
scheme used at the sensing nodes. In our novel design, we
identify, formulate, and take into account a tradeoff which is
described in the following paragraph.

For a given set of radio resources dedicated to the reporting
phase in terms of transmission power and bandwidth, increas-
ing the number of quantization bits influences the overall
sensing performance in two opposite directions. Specifically,
on one side, increasing the number of quantization levels
leads to a better quantization process and consequently, lowers
the quantization errors affecting the reported local sensing
outcomes, improving the cooperation performance. On the
other side however, increasing the quantization bits raises
the BEP induced by the reporting channels and reduces the
received sensing outcomes quality at the FC, degrading the
overall sensing performance.

We derive exact as well as practical approximate relation-
ships describing the joint impact of the quantization, report-
ing, and linear fusion processes. Therefore, the spatial/user
diversities regarding the listening and reporting channels are
considered in a more comprehensive optimization approach,
promising a better overall sensing performance.

The rest of the paper is organized as follows. In Section
II, general modeling assumptions and details of the CRN
considered are introduced. In Section III, the overall structure
of the proposed joint optimization problem is presented, and its
detailed mathematical formulations are derived. In Section IV,
the MINLP problem is formally constructed, and its solution
procedures are developed. The effectiveness of the proposed
joint optimization is demonstrated through simulation results
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Fig. 1. Basic configuration of cooperative spectrum sensing including the
listening and reporting channels, PU, SUs, and FC.

in Section V, followed by concluding remarks provided in
Section VI.

II. SYSTEM MODEL

A CRN with K sensing nodes is considered. These nodes
cooperatively sense the radio spectrum to find temporal and/or
spatial vacant bands for their data communication. Fig. 1
shows the basic configuration and major elements in a CRN
exploiting cooperative spectrum sensing.

A. Local Sensing and Quantization

In our adopted model, the kth sample of the received PU
signal at the ith CR node is represented as{

xi(k) = νi(k), H0

xi(k) = his(k) + νi(k), H1
(1)

where H1 and H0 denote the hypotheses representing the
presence or absence of the PU, respectively. s(k) denotes
the signal transmitted by the PU and xi(k) is the received
signal by the ith SU. hi is the listening channel block fading
gain. Listening channel gains are assumed to be indepen-
dent circularly-symmetric Gaussian random variables. νi(k)
denotes the circularly-symmetric zero-mean AWGN at the CR
sensor receiver, i.e., νi(k) ∼ CN (0, σ2

νi). Without loss of
generality, s(k) and {νi(k)} are assumed to be independent
of each other.

CR node i, i = 1, ...,K performs spectrum sensing by
using its built-in sensor (which can be of any common types
like Energy Detection (ED), Cyclostationary Detection (CSD),
etc.) to derive a local test statistic ui, and then uses the
following quantization rule to map it on a bit sequence of
length di

ψi(ui) = qn,i if tn,i 6 ui < tn+1,i (2)

where ψi(·) denotes the quantization process at the ith SU,
qn,i, n = 1, ..., 2di is its nth quantization level, while tn,i and
tn+1,i denote the corresponding boundaries.

Let d ,
[
d1, ..., dK

]T
denote the number of quantization

bits used in all sensing nodes. As described in [22] several
quantization methods for signal detectors can be considered
here such as Maximum Output Entropy (MOE) quantization

and Minimum Average Error (MAE) quantization. Without
loss of generality, we have considered uniform and MOE
quantization schemes in this paper. We describe the uniform
quantization method in the following. For details of the MOE
quantization, see [22].

In the uniform quantization incorporated in the ith sens-
ing node, the range covered by the quantization levels is
(µi −mσi, µi +mσi), where m is determined by the Cheby-
shev inequality such that Pr {|ui − µi| ≥ mσi} ≤ 1

m2 . This
coverage range is then divided into 2di equally-spaced levels,
whose boundaries are denoted by

tn,i = µi +mσi

(
2(n− 1)

2di − 1
− 1

)
(3)

The quantization level qn,i lies in the middle of tn−1,i and
tn,i, i.e.,

qn,i = µi +mσi

(
2n− 1

2di − 1
− 1

)
. (4)

And the conditional probability of having level qn,i at the ith
quantizer output is

Pr {ψi(ui) = qn,i|Hj} =

∫ tn,i

tn−1,i

fui
(x|Hj)dx (5)

where fui
(·|Hj) denotes the probability density function (pdf)

of ui conditioned on Hj , j = 0, 1.
The generated reporting bit sequences are then transmitted

to the FC through the reporting channel in an orthogonal
manner. The effect of reporting channel impairments on the
transmitted bit sequences of the ith CR node is modeled as
a BEP denoted by Pb,i. The reporting channel is assumed
to affect each node’s transmitted reporting bit sequence in-
dependently. Moreover, errors introduced on different bits in
a transmitted reporting sequence by the reporting channel are
assumed to be independent and identically distributed (i.i.d).
Therefore, the received quantized test statistics at the FC,
yi, i = 1, ...,K are independent discrete random variables
whose probability mass functions (pmf) can be represented
(for j = 0, 1) as [22]

Pr {yi = qn,i|Hj} =

2di∑
k=1

P
Dn,k

b,i (1− Pb,i)
di−Dn,k Pr {ψi(ui) = qk,i|Hj} (6)

where Dn,k is the Hamming distance between bit sequences
corresponding to levels qn,i and qk,i.

B. Mapping and Bit Sequences

In analyzing the system behavior, it is worth considering
the BSC effect on the reported bit sequences and relate it to
the received test summary statistics. Therefore, focusing on
transmitted and received bit strings in the reporting phase, we
model the effect of the BSC using the eXclusive OR (XOR)
operator as

ri = si ⊕ ei (7)

where di-bit (scalar) random variables si, ri, and ei denote
the sent and received bit sequences and error caused by the
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BSC, respectively. If we denote the value of si associated with
the nth quantization level (i.e., qn,i) by sn,i, the following
invertible mapping describes the correspondence between the
quantization levels and the bit sequences{

Γ :
{

1, 2, ..., 2di
}
→
{

0, 1, ..., 2di − 1
}

sn,i = Γ(n)
(8)

In other words, si = Γ(n) if and only if ψi = qn,i, or
equivalently, si = n if and only if ψi = qΓ−1(n),i. Therefore,
the pmf of si can be expressed as (for n = 0, 1, ..., 2di − 1,
and j = 0, 1)

Psi|Hj
(n) , Pr {si = n|Hj} = Pr

{
ψi = qΓ−1(n),i|Hj

}
. (9)

Without loss of generality, we have assumed the same mapping
process for all CR nodes.

Given the BEP Pb,i, each bit in the random variable ei
follows the Bernoulli distribution. Consequently, the pmf of
ei is derived as (for n = 0, 1, ..., 2di − 1)

Pei(n) = P
wH(n)
b,i (1− Pb,i)di−wH(n) (10)

where wH(n) denotes the Hamming weight of the binary
representation of n.

In order to derive the pmf of ri, we use the fact that the
assumed reporting channel contamination does not depend on
the reported bit sequence si, nor the behavior of the PU.
Therefore,

Pri|Hj
(n) =

2di−1∑
k=0

Pr {ri = n|ei = k|Hj}Pr {ei = k}

=

2di−1∑
k=0

Pr {si = n⊕ k|ei = k|Hj}Pr {ei = k}

=

2di−1∑
k=0

Psi|Hj
(n⊕ k)P

wH(k)
b,i (1− Pb,i)di−wH(k)

.

(11)

C. Reporting Channel Error

Assuming a general M-ary modulation for the reporting
channel, the reporting BEP can be expressed as

Pb,i = cMQ

(√
c′Mγr,i

)
(12)

where Q(x) ,
∫∞
x

exp(−t2/2)dt/
√

2π is the Q-function, cM
and c′M are two constants determined by the modulation type
and γr,i is the reporting link signal-to-noise ratio (SNR). The
reporting SNR depends on the number of bits used in the
reporting bit sequence di as

γr,i =
|hr,i|2Er

N0dilog2M
(13)

where hr,i, Er, and N0 denote the reporting channel gain,
reporting signal energy, and noise power spectral density,
respectively. Therefore, the reporting BEP is a continuous
function of di

Pb,i = cMQ

√c′′M
di

 (14)

where c′′M =
c′M |hr,i|2Er

N0log2M
.

D. Linear Combining

Linear combining is performed at the FC, meaning that the
global test statistic yc is constructed as a weighted sum of the
received quantized levels, i.e.,

yc =

K∑
i=1

wiyi = wTy (15)

where w , [w1, ..., wK ]
T and y , [y1, ..., yK ]

T .
Finally, yc is compared against a predefined threshold ξ to

decide the presence or absence of the PU, i.e.,{
H1, yc ≥ ξ
H0, yc < ξ

(16)

The detector performance is commonly measured using two
probabilities, namely the probability of false alarm Pfa =
Pr {yc ≥ ξ|H0} and the probability of missed detection Pmd =
Pr {yc < ξ|H1}. Both false alarm and missed detection prob-
abilities depend on the probability distribution of the global
test statistic yc, which can be derived as a convolution of the
pmfs of K independent random variables {yi}Ki=1, i.e.,

p(yc) = p(y1/w1) ∗ ... ∗ p(yK/wK) (17)

where p(·) and ∗ stand for pmf and convolution, respectively.

III. PROBLEM FORMULATION

Our problem is to jointly optimize the reporting and fusion
phases. Specifically, the goal is to jointly optimize w and
d to achieve the best cooperative sensing performance. We
determine the weighting vector w at the FC and d used by
the sensing nodes through jointly considering the effects of
both the listening and reporting channels while taking into
account the significant tradeoff explained earlier in specifying
the optimal number of quantization bits.

A. Problem Structure

We formulate our proposed optimization based on minimiz-
ing the missed detection probability subject to an upper bound
on the false alarm probability

min
w,d

Pmd (P1)

s.t. Pfa ≤ α

where α is the given upper limit on the false alarm probability.
According to the Central Limit Theorem (CLT), if K is

large enough, we can assume a Gaussian distribution for yc.
In Appendix I, we have shown that Lyapunov’s CLT condition
[27] holds for yis. Consequently, the false alarm and missed
detection probabilities can be expressed in closed form as

Pfa = Q

(
ξ −µµµTH0

w√
wTΣH0

w

)
(18)

Pmd = 1−Q

(
ξ −µµµTH1

w√
wTΣH1

w

)
(19)
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where (for j = 1, 2) µµµHj
, E [y|Hj ] and ΣHj

,
E
[
yyT |Hj

]
= diag(σ2

y1|Hj
, ..., σ2

yK |Hj
). We have found

through numerical evaluations that Gaussian distribution fits
well for K ≥ 5.

Now, if we eliminate ξ in Eqs. (18) and (19) by considering
a target false alarm probability Pfa = α, (P1) is converted to

max
w,d

Q

(
Q−1(α)

√
wTΣH0

w − aTw√
wTΣH1

w

)
(P2)

where Q−1(·) is the functional inverse of the Q-function, a ,
[a1, ..., aK ]

T , µµµH1
− µµµH0

and, for i = 1, ...,K, we have
ai , E [yi|H1] − E [yi|H0]. ai and σ2

yi|Hj
are related to the

number of quantization bits di through the total probability
theorem as

ai =

2di∑
n=1

qn,i

2di∑
k=1

P
Dn,k

b,i (1− Pb,i)
di−Dn,k

× [Pr(ψi = qk,i|H1)− Pr(ψi = qk,i|H0)]

(20)

σ2
yi|Hj

=

2di∑
n=1

q2
n,i

2di∑
k=1

P
Dn,k

b,i (1− Pb,i)
di−Dn,kPr(ψi = qk,i|Hj)− 2di∑

n=1

qn,i

2di∑
k=1

P
Dn,k

b,i (1− Pb,i)
di−Dn,kPr(ψi = qk,i|Hj)

2

.

(21)
It is worth noting that the Hamming distance Dn,k in

(20) and (21) is a complicated term which depends on the
number of quantization bits di, as well as on the mapping
process Γ between the quantization levels and the reported bit
sequences. We use two approaches to derive explicit formulas
describing the effect of di on the desired test statistics at
the FC. In the first approach, two simplifying but practical
assumptions considering the mapping process and reporting
BSC are used to derive approximate relationships. In the
second approach, the quantization and mapping processes
are considered separately, and exact formulas for the desired
statistics are derived in general case. These approaches follow
as the next two subsections.

B. Gray Coding and Reliable Reporting

We first assume that Gray coding is used to map the
reporting bit sequences to their corresponding quantization
levels. In other words, we assume that the bit sequences
representing the adjacent quantization levels, differ only in
one bit. Secondly, we assume a reliable reporting channel, i.e.,
small Pb,is. Consequently, we neglect the cases in which more
than one bit in a sequence arrive erroneously at the FC. Then,
we use the following lemma which relates the bit sequences
with one-bit distance in a Gray-encoded mapping mechanism.

Lemma 1) Let sn,i, n = 1, ..., 2di denote the di-bit Gray-
coded bit string corresponding to qn,i. By flipping the leth bit
in sn,i, it turns into sk,i where k can be derived as a function
of n and le as

k(n, le) = n+ 2le − 2mod(n− 1, 2le)− 1 (22)

Proof : Please refer to Appendix II. �
Hence, we know that if qn,i (whose bit string is sn,i) is sent

by the ith CR node and the reporting channel changes only
the leth element of the reported bit sequence, then qk(n,le),i

will be received at the FC. In addition, by setting le = 0, (22)
yields k = n, i.e., no change in the code index. So we can
consider le = 0 for the error-free bit sequences which arrive
at the FC. Lemma 1 and the aforementioned assumptions lead
to the following simplified forms of ai and σ2

yi|Hj

ai ≈
2di∑
n=1

qn,i

di∑
le=0

P
1−δle,0

b,i (1− Pb,i)
di+δle,0−1

×
[
Pr(ψi = qk(n,le),i|H1)− Pr(ψi = qk(n,le),i|H0)

]
(23)

where δle,0 equals 1 when le = 0 and 0 otherwise. σ2
yi|Hj

has
been expressed on top of the following page.

C. Bit-by-Bit Considerations

Now we proceed with the second approach to derive exact
relations for the desired statistics in general case. We relate
the bit-sequence interpretations to our detector optimization
by considering a general mapping process. For simplicity, first
assume a linear mapping scheme, i.e.,

sn,i = n− 1, n = 1, ..., 2di . (25)

Extension to the general case will be considered later. Using
uniform quantization (4) at the CR nodes, the quantization
levels correspond to the bit sequences according to

qn,i = µi +mσi

(
2sn,i + 1

2di − 1
− 1

)
. (26)

This correspondence can be expressed in terms of random
variables ψi and si as

ψi = µi +mσi

(
2si + 1

2di − 1
− 1

)
. (27)

Thus, at the FC, the relation between the received bit se-
quences and quantization levels is

yi = µi +mσi

(
2ri + 1

2di − 1
− 1

)
(28)

which indicates that we can derive the desired statistics, i.e.,
ai and σ2

yi|Hj
, in terms of the received code statistics as

ai =
2mσi

2di − 1
(E[ri|H1]− E[ri|H0]) (29)

σ2
yi|Hj

=

(
2mσi

2di − 1

)2

σ2
ri|Hj

. (30)

These moments are calculated using (11) as (for j = 0, 1)

E[ri|Hj ] =

2di−1∑
n=0

nPri|Hj
(n) (31)

σ2
ri|Hj

=

2di−1∑
n=0

n2Pri|Hj
(n)−

2di−1∑
n=0

nPri|Hj
(n)

2

. (32)
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σ2
yi|Hj

≈
2di∑
n=1

q2
n,i

di∑
le=0

P
1−δle,0

b,i (1− Pb,i)
di+δle,0−1Pr(ψi = qk,i|Hj)

−

 2di∑
n=1

qn,i

di∑
le=0

P
1−δle,0

b,i (1− Pb,i)
di+δle,0−1Pr(ψi = qk,i|Hj)

2

(24)

To clearly recognize the role of di in the derived statistics,
we now focus on the pmf of the received bit sequences, i.e.,
Pri|Hj

(n). More specifically, we reconsider (11) from a bit-
by-bit perspective to deal with the XOR operator and the
Hamming weight wH(·) by using the following lemma.

Lemma 2) For two di-bit integers n, and k, if wH(k) = ne,
and ne 6= 0 then

n⊕ k = g(n, k1, k2, ..., kne
) (33)

where

g(n, k1, k2, ..., kne
) , n+ [2u(0.5− bk1(n))− 1] 2k1−1

+ [2u(0.5− bk2(n))− 1] 2k2−1 + ...

+
[
2u(0.5− bkne

(n))− 1
]

2kne−1

(34)
where ki, i = 1, ..., ne denotes the location of ith 1 in k,
bj(n), j = 1, ..., di denotes the value of jth bit in n and u(·)
is the step function, which equals to 1 when its argument is
positive and 0 otherwise.

Proof : The proof is given in Appendix III. �
Now we can eliminate the XOR operator and Hamming

weights in (11) and rewrite it as (35) (see the top of the next
page), where ne acts as the number of errors introduced by the
BSC in the reported bit sequences and g represents the index
of bit sequences with ne-bit distance from the nth sequence.

In addition, Lemma 2 enables us to approximate our de-
sired statistics by limiting the maximum number of errors
considered. Specifically, by adopting Ne, 1 ≤ Ne ≤ di as
the upper limit of the first summation in (35), we derive
an approximation whose accuracy can be controlled by Ne.
For instance, if we have a reliable reporting channel, we can
neglect the cases with more than one-bit error by using the
following approximation, which is derived by restricting the
first summation in (35) to ne = 1

Pri|Hj
(n) ≈ (1− Pb,i)di Psi|Hj

(n)

+ Pb,i (1− Pb,i)di−1
di∑

k1=1

Psi|Hj
(g(n, k1)).

(36)

By relaxing the linear mapping and uniform quantization as-
sumptions, the developed analysis structure remains the same.
However, there will no longer be linear relationships (29), and
(30) between the statistics of the received bit sequences ri,
and their corresponding quantization levels yi. Nevertheless,
the moments of yi are obtained in terms of the received bit-
sequence pmfs as (for j = 0, 1)

E[yλi |Hj ] =

2di∑
n=1

qλn,iPri|Hj
(Γ(n)) , λ = 1, 2, ... (37)

and the desired statistics are obtained accordingly. Hence,
through analyzing the received bit sequences, we can derive
the desired test statistics ai and σ2

yi|Hj
in terms of the number

of quantization bits di in general case.

IV. JOINT REPORTING-FUSION OPTIMIZATION

So far, we have thoroughly investigated the statistics gov-
erning our joint reporting-fusion optimization and derived ana-
lytical formulations describing the effect of local test summary
quantization on the overall cooperative sensing performance.
Now, we are ready to consider the joint optimization problem.
Recall that we are dealing with (P2), which aims at joint
optimization of w and d.

For a given d, (P2) can be solved for optimal weighting
vector w̃ through considering the Lagrange dual problem and
Karush-Kuhn-Tucker (KKT) conditions [13] which yield

w̃ = Σ
−1/2
H0

[
Q−1(α)IK + ζA

]−1
c (38)

where A , ΣH1
Σ−1
H0

and c , Σ
−1/2
H0

a. ζ is the single root
of the polynomial equation∥∥∥[Q−1(α)IK + ζA

]−1
c
∥∥∥ = 1 (39)

and satisfies

Q−1(α)IK + ζA � 0 (40)

where 0 stands for the null matrix and � represents the
element-wise inequality. Note that (39) and (40) specify a
unique ζ as a function of d.

Now, using (38), (39), and (40), we remove w from (P2)
and convert it to an optimization in d and ζ. In addition, since
the number of quantization levels cannot be infinite in practice,
we limit d to lie between a minimum dmin and a maximum
value dmax. Moreover, as the q-function is strictly decreasing
with respect to its argument, we remove it from (P2) and turn
the problem into a minimization, i.e.,

min
d,ζ

ϕ(d, ζ) (P3)

s.t.


∥∥∥[Q−1(α)IK + ζA

]−1
c
∥∥∥ = 1

Q−1(α)IK + ζA � 0

dmin � d � dmax

where

ϕ(d, ζ) ,
Q−1(α)

√
w̃TΣH0

w̃ − aT w̃√
w̃TΣH1

w̃
. (41)

The cost function in (P3) is a nonlinear function of ai,
σ2
yi|H0

, σ2
yi|H1

(for i = 1, ...,K). As we have already studied,
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Pri|Hj
(n) = (1− Pb,i)di Psi|Hj

(n)+

di∑
ne=1

Pne

b,i (1− Pb,i)di−ne

di∑
k1=1

di∑
k2=1
k2 6=k1

...

di∑
kne=1

kne 6=k1,...,kne−1

Psi|Hj
(g(n, k1, k2, ..., kne

)) (35)

TABLE I
JOINT REPORTING-FUSION OPTIMIZATION AS A BRANCH-AND-BOUND

PROCEDURE

1. Define set L of subproblems;
2. L← {(P3)} ; BU ← +∞; ϕε ← ∅;

3. Solve (LP) for d̃1 and denote its minimum cost function by B(1)
L ;

4. while L 6= ∅
5. Choose PK ∈ L with the minimum B

(K)
L ;

6. L← L\ {PK} ;

7. BL ← B
(K)
L ;

8. Find a feasible solution ϕ̃ for (P3) via local search around d̃K ;
9. B

(K)
U ← ϕ̃;

10. if B(K)
U < BU

11. ϕε ← B
(K)
U ;

12. BU ← B
(K)
U ;

13. if BL ≥ (1− ε)BU
14. output ϕε;
15. else
16. Remove from L all PK′ with B(K′)

L ≥ (1− ε)BU ;
17. end if
18. end if
19. Choose a branching variable di and a branching point dbranch;
20. Create subproblems PK+ and PK−;
21. Solve linear relaxations of PK+ and PK− for d̃K+ and d̃K−

and denote their optimal cost functions by B(K+)
L and B(K−)

L ;
22. if B(K+)

L ≤ (1− ε)BU
23. L← L ∪ {PK+};
24. end if
25. if B(K−)

L ≤ (1− ε)BU
26. L← L ∪ {PK−};
27. end if
28. end while
29. output ϕε;

and derived these parameters in terms of the number of
quantization bits (i.e., di), we can clearly see that the cost
function in (P3) is highly sophisticated and nonlinear. Since
d represents the number of quantization levels used in the CR
nodes, (P3) is a MINLP problem, which is NP hard in general
[28]. We develop a Branch-and-Bound (BnB) algorithm to
solve this MINLP.

A. The Branch-and-Bound Algorithm

Our optimization problem is a nonlinear program further
constrained by integrality restrictions. Clearly, the optimal
value of cost function in a continuous linear relaxation of (P3)
will always be a lower bound on the optimal value of our cost
function. Moreover, in any minimization, any feasible point
always specifies an upper bound on the optimal cost function
value. The idea of the BnB is to utilize these observations
to subdivide MINLP’s feasible region into more-manageable
subdivisions and then, if required, to further partition the sub-
divisions. These subdivisions make a so-called enumeration
tree whose branches can be pruned in a systematic search for
the global optimum.

Table I shows the pseudocode of our BnB algorithm. As-
suming ϕ∗ as the global minimum of the cost function in (P3),
this algorithm provides a (1 − ε) optimal solution ϕε, which
means ϕε is close enough to ϕ∗ such that ϕ∗ ≥ (1− ε)ϕε.

In this algorithm, a lower bound for the cost function is first
derived through solving a linear relaxation of (P3) denoted
by (LP) (see line 3 in Table I). Construction of the linear
relaxation is described later. Then, a local search is performed
around the solution of the linear program to obtain a feasible
point for (P3) and an upper bound for the global minimum
(line 8). Note that any feasible solution of (P3) gives an
upper bound on the minimum of ϕ. This process, i.e., finding
the lower and upper bounds for the cost function, is called
bounding. The algorithm terminates if the derived upper and
lower bounds are within the ε-vicinity of each other (lines 13,
14). Otherwise, it continues with the so-called branching step,
which refers to dividing the feasible region of the problem into
two narrower subsets (lines 19, 20).

In this algorithm, maximum relaxation error is considered
as metric for choosing the branching variable. That is, the
variable di with maximum relaxation error is selected for the
branching process. The relaxation error for the variable di is
defined as

∣∣∣dls
i − d

lp
i

∣∣∣, where dls
i and dlp

i denote the value of di
obtained by the local search and by solving the linear program,
respectively. The branching point is dbranch =

⌊
dlp
i

⌋
, i.e., the

problems PK− and PK+ are constructed through imposing the
constraints di ≤

⌊
dlp
i

⌋
and di ≥

⌈
dlp
i

⌉
on PK , respectively.

Through an iterative branching procedure, subsets are fur-
ther divided into smaller ones, and the enumeration tree is
built. This tree structure allows the algorithm to remove some
branches and search for the solution in a very effective way.
Moreover, narrowing down the subsets of the optimization
variables leads to tighter linear relaxations (i.e., increases
BL) and provides the next local search processes with a
closer starting point to the optimal solution (i.e., reduces BU ).
Hence, the gap between BL and BU is reduced as the process
continues. More specifically, at each iteration, the global lower
bound BL is updated to contain the minimum of the lower
bounds of all subsets (lines 5, 7). The global upper bound BU
is also updated at each iteration (lines 10, 12), and the branches
with a lower bound greater than (1 − ε)BU are pruned (line
16). This procedure is continued until the difference between
the global lower and upper bounds satisfy the accuracy ε (lines
13, 14). Clearly, we may lose the global optimum by pruning
the branches. However, if the global optimum is in a pruned
branch with the lower bound B

(K)
L , then ϕ∗ ≥ B

(K)
L , and

consequently, ϕ∗ ≥ (1 − ε)BU . Therefore, the current best
feasible solution with objective value BU is already an (1−ε)
optimal solution, and we can still guarantee (1−ε) optimality.
Indeed, this guarantee is the key feature of the BnB algorithm
which makes it very effective in solving the MINLPs.
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TABLE II
DECOMPOSITION OF (P3) INTO SMALL BLOCKS AND SIMPLE CONSTRAINTS USED IN CONVEX HULL RELAXATION

Elements of X(j)
Hk

, ZHk
, and z for j = 1, ..., 7, and k = 0, 1.

X
(1)
i,n = mσi

(
2(n−1)
Zi,1

− 1
)

, X(2)
i,n|Hk

= Q
(
X

(1)
i,n/σi|Hk

)
, X(3)

i,n|Hk
= X

(2)
i,n|Hk

−X(2)
i,n+1|Hk

, X(4)
i,n|Hk

=
∑di
k1=1X

(3)
i,g(n,k1)|Hk

,

X
(5)
i,n|Hk

= Zi,5X
(4)
i,n|Hk

, X(6)
i,n|Hk

= Zi,2|Hk
X

(3)
i,n|Hk

, X(7)
i,n|Hk

= X
(5)
i,n|Hk

+X
(6)
i,n|Hk

.

Zi,1 = 2di − 1, Zi,2 = cMQ
(√

c′′M/di
)

, Zi,3 = 1− diZi,2, Zi,4 = Zi,2 + Zi,3, Zi,5 = Zi,2Zi,4, Zi,6|Hk
=
∑2di−1
n=0 nX

(7)
i,n|Hk

,

Zi,7 = Zi,6|H1
− Zi,6|H0

, Zi,8 = 2mσi
Zi,1

Zi,7, Zi,9|Hk
=
(
Zi,6|Hk

)2, Zi,10|Hk
=
∑2di−1
n=0 n2X

(7)
i,n|Hk

, Zi,11|Hk
= Zi,10|Hk

− Zi,9|Hk
,

Zi,12|Hk
= ζZi,11|Hk

, Zi,13 = Q−1(α)Zi,11|H0
+ Zi,12|H1

, Zi,14 = Z2
i,8, Zi,15 =

Zi,14

Zi,13
, Zi,16|Hk

= Zi,14Zi,11|Hk
, Zi,17 = Z2

i,13,

Zi,18|Hk
=

Zi,16|Hk
Zi,17

, Zi,19|Hk
=

Zi,16|Hk
Zi,17

.

z1 = Q−1(α)−
∑K
i=1 Zi,15, z2 =

∑K
i=1 Zi,18, z3 =

√
z2, z4 =

∑K
i=1 Zi,19|H0

− 1, z5 = z1/z3.

It has been shown that under very general conditions, a BnB
solution procedure always converges [29], [30]. Moreover,
although the worst-case complexity of such a procedure is
exponential, the actual running time could be fast when all
partition variables are integers (e.g., the problem considered
in this paper).

B. Convex Hull Relaxation

To derive a linear relaxation of our joint optimization
problem, we reconfigure (P3) by introducing a number of
auxiliary variables along with some additional constraints. In
this process, the cost and constraints in (P3) are decomposed
into a set of small easy-to-handle functions. We refer to these
small functions as blocks. These blocks build a set of simple
constraints which, as a whole, represent (P3). Finally, the
derived constraint functions are replaced by appropriate linear
inequalities.

We have decomposed our cost and constraint functions into
a set of blocks represented in Table II. Through combination
of these blocks, it can be easily verified that the following
optimization problem is equivalent to (P3)

min
v
z5 (P4)

s.t.


Constraints in Table II
z4 = 0

Zi,13 > 0, for i = 1, ...,K

vmin � v � vmax

where v contains the old optimization variables, namely, d
and ζ, as well as the new ones defined in Table II, i.e.,

v , [X
(1)
H0
, ...,X

(7)
H0
,X

(1)
H1
, ...,X

(7)
H1
,ZH0 ,ZH1 , z,d

T , ζ]T (42)

in which row vectors X
(j)
Hk

and ZHk
, j = 1, ..., 7, k = 0, 1,

denote the vectorized forms of X
(j)
Hk

and ZHk
respectively,

i.e., X(j)
Hk
, vec

(
X

(j)
Hk

)
and ZHk

, vec (ZHk
). The elements

of X
(j)
Hk

, ZHk
, and z represent the blocks defined in Table II.

These elements are denoted as1[
X

(j)
Hk

]
i,n
, X(j)

i,n|Hk
(43)

[ZHk
]i,j , Zi,j|Hk

(44)

z , [z1, ..., z5] . (45)

The vectors vmin and vmax denote the lower and upper bounds
on the elements of v, respectively. These bounds are directly
obtained by applying dmin � d � dmax on the blocks.

It is worth noting that any element vi in v can be represented
as a function of other elements, i.e., for vi ∈ [vi,min, vi,max], we
have vi = ϑi(v). ϑi is either a convex (or concave) function
or it represents a product (or ratio) of two elements in v, i.e.,
ϑi(v) = vkvj .

If ϑi is convex, we linearize it by partitioning each interval
[vl,min, vl,max] into Nlin − 1 subintevals, 1 ≤ l ≤ |v|. This
partitioning is realized by considering Nlin points as vl,min =
v̂l,1 ≤ v̂l,2 ≤ ... ≤ v̂l,Nlin = vl,max. In this way, we make a
grid over the space vmin � v � vmax. Now for any subspace
within this grid v̂k � v � v̂k+1, k ∈ {1, ..., Nlin}, we have
the following linear lower bound for vi

vi ≥ ϑi(ṽ) +∇ϑi(ṽ)T (v − ṽ) (46)

where ṽ can be any point such that v̂k � ṽ � v̂k+1, and
v̂k ,

[
v̂1,k, ..., v̂|v|,k

]
. The number of points Nlin can be used

to control the precision of the partitioning process.
For vi ∈ [vi,min, vi,max], the upper bound in our linearization

is denoted by the following relation,

vi ≤ ϑi(vmin) +
ϑi(vmax)− ϑi(vmin)

vk,max − vk,min
(vk − vk,min) (47)

where vk can be any element in v such that ∂ϑi/∂vk 6= 0, and
vk,min, and vk,max denote the minimum and maximum values
of vk, respectively. Similar bounds can be obtained for the
concave functions.

For the blocks which represent the product of two elements,
i.e., ϑi(v) = vkvj , the tightest linear constraints are denoted

1We have dropped Hk from the element representations whenever there is
no difference between the element values for H0 and H1.
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by [31], [32]

vi ≥ vj,minvk + vk,minvj − vj,minvk,min (48)
vi ≥ vj,maxvk + vk,maxvj − vj,maxvk,max (49)
vi ≤ vj,minvk + vk,maxvj − vj,minvk,max (50)
vi ≤ vj,maxvk + vk,minvj − vj,maxvk,min. (51)

Applying (46)-(51) on the functions defined in Table II, we
derive a linear relaxation of (P4) whose solution provides a
tight lower bound on the minimum value of our cost function
in (P3). This linear program can be expressed as

min
v
z5 (LP)

s.t.


Linear constraints (46)-(51)
z4 = 0

Zi,13 > 0, for i = 1, ...,K

vmin � v � vmax

which is solved in polynomial time.

C. Low-complexity Suboptimal Solution

As mentioned earlier, a commonly used suboptimal ap-
proach for the design of linear cooperation is based on maxi-
mizing the MDC. The MDC provides a good measure of the
detection capability, as it characterizes the system performance
as the variance-normalized distance between the centers of two
conditional pdfs of the global test summary yc. Therefore,
we propose an alternative approach for the discussed joint
reporting-fusion optimization based on the MDC, which leads
to nearly optimal performance with much less effort. The
MDC is defined as

∆2
m ,

(E [yc|H1]− E [yc|H0])
2

Var {yc|H1}
. (52)

Replacing yc with its weighted sum definition, we have

∆2
m =

(
aTw

)2
wTΣH1

w
. (53)

Using the MDC approach, we aim at finding w and d such
that

max
w,d

∆2
m (P5)

s.t.

{
‖w‖ = 1

dmin � d � dmax

The constraint on the weight vector norm is necessary here to
derive a unique solution since the MDC does not depend on
‖w‖.

In order to derive an analytical solution for (P5), we first
eliminate w as follows. Through the linear transformation [8]

w′ = Σ
1/2
H1

w (54)

the MDC is converted to

∆2
m =

w′TΣ
−T/2
H1

aaTΣ
−1/2
H1

w′

w′Tw′
≤
∥∥∥Σ−T/2H1

a
∥∥∥2

(55)

and the equality is achieved when w′ = Σ
−T/2
H1

a. Therefore,
the optimal w which maximizes the MDC is derived as
function of d as

wmdc =
Σ
−1/2
H1

w′∥∥∥Σ−1/2
H1

w′
∥∥∥ . (56)

Replacing w with its MDC-optimal value wmdc, the MDC can
be rewritten as a function of d

∆2
m = aTΣ−1

H1
a =

K∑
i=1

a2
i

σ2
yi|H1

. (57)

Therefore, (P5) is converted to the following system of opti-
mization problems

for i = 1, ...,K, max
di

a2
i

σ2
yi|H1

(P6)

s.t. di,min ≤ di ≤ di,max

We are now dealing with K one-dimensional problems and it
is clear that the computational complexity of solving this set
of optimizations linearly increases with the number of sensing
nodes K.

V. NUMERICAL RESULTS

Two typical distributed detection scenarios have been con-
sidered to illustrate the effectiveness of the proposed opti-
mization scheme. In the first scenario, the ED and uniform
quantization have been adopted as local sensing and test
summary quantization methods at the CR nodes, respectively.
As the second scenario, CSD and MOE quantization have
been considered. Although not presented here, we also tested
other combinations such as CSD with uniform quantization
and ED with MOE quantization and obtained similar results,
which are expected since our proposed optimization does not
depend on any specific local sensing or quantization scheme.
In all simulations, there are K = 5 cooperating nodes which
transmit their sensing outcomes over the reporting channels
using the Binary Phase Shift Keying (BPSK) modulation.
The PU signal is modeled as a Direct-Sequence (DS) spread-
spectrum BPSK signal by using Walsh-Hadamard code with
the length of 16, i.e., the processing gain of 16 is considered in
all simulation results. The maximum number of quantization
bits in each node is 7.

In ED, the energy of the received PU signal is measured
using N signal samples, i.e.,

ui =

N∑
k=1

|xi(k)|2 (58)

and in CSD the test summary is formed as an estimation of
the PU signal autocorrelation function as

ui =
1

N − τ

N−τ∑
k=1

x(k + τ)x∗(k)e−j2πfk (59)

where f is the cycle frequency, and τ is the lag used in
calculating the autocorrelation.
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Fig. 2. Cumulative probability distribution of yc under hypotheses H0

(the two leftmost curves) and H1 (the two rightmost curves). Solid curves
correspond to the analytic Gaussian approximations. Marked curves are
obtained by Monte-Carlo simulation.

The number of PU signal samples N used in ED is 20 and
the Chebyshev probability for the uniform quantization cov-
erage interval has been set to 95%. When CSD is considered,
the cyclic autocorrelation function is estimated in each node
using N = 100 samples of the PU signal and the estimated
autocorrelation corresponds to f = 1/Tc and τ = 0. Tc is the
chip period of the PU signal. For the ED, the local listening
channel SNR levels at sensor inputs are {0, -2.7, -3.1, -1.4,
-6.9} in dB, and the reporting channel SNRs are {10, 13,
12, 14, 11} in dB. For the CSD, {5, 2.3, 1.9, 3.6, -1.9} in dB
are the listening channel SNR levels and the reporting channel
SNRs are {11, 14, 13, 12, 11} in dB. Each point on the CROC
curves has been derived by averaging over 10,000 realizations.
The averaging has been performed on the noise for a fixed set
of channel gains and noise variances as in [8], [13].

Fig. 2 shows why Gaussian approximation works well for
the global test statistic in (17). It depicts the cumulative
distribution function (CDF) of the global test summary yc
when ED is used as the local sensing method at K = 5 sensing
nodes, assuming both hypotheses H1 and H0. It can be seen
by comparing the simulation and asymptotic results that yc
behaves very similarly to a normal random variable while the
PU is either present or absent.

Figs. 3, and 4 depict the results derived as Complementary
Receiver Operational Characteristics (CROC) curves for both
energy and cyclostationary detectors. Specifically, for each
detector three cases have been considered as

Case#1: Depicts the performance of uniform linear combin-
ing at the fusion center and maximum number of
quantization bits at the sensing nodes,

Case#2: Depicts the performance of optimal linear combin-
ing at the fusion center and maximum number of
quantization bits at the sensing nodes,

Case#3: Depicts the performance of the proposed joint
optimization, i.e., optimal linear combining at the
fusion center and optimal number of quantization bits
at the sensing nodes.
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Fig. 3. CROC curves for the energy detection using 20 samples of the
PU signal and uniform quantization with Chebyshev probability of 95%. The
listening channel SNR levels at sensor inputs are {0, -2.7, -3.1, -1.4, -6.9} in
dB. The reporting channel SNR levels are {10, 13, 12, 14, 11} in dB. The
results are obtained using 10,000 realizations.
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Fig. 4. CROC curves for the cyclostationary detection using 100 samples of
the PU signal and MOE quantization. The local SNR levels at sensor inputs
are {5, 2.3, 1.9, 3.6, -1.9} in dB. The reporting channel SNR levels are {11,
14, 13, 12, 11} in dB. The results are obtained using 10,000 realizations.

It is worth noting that in both figures Case#1, Case#2, and
Case#3 represent the detector design without any optimiza-
tion, only with optimal weighting, and with joint reporting-
fusion optimization, respectively. The plots clearly illustrate
the effectiveness of our proposed detector in terms of lower
false alarm and missed detection probabilities which are shown
as CROC curves closer to the origin. Moreover, it can be
observed that the achieved optimization results from both the
Gaussian approximation and MDC are in close agreement
with each other. As another point, we see that performance
improvement due to the proposed optimization is higher when
ED is used as the local sensing method. This observation is
reasonable since ED is known to be more sensitive to the
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Fig. 5. SNR gains obtained by the proposed joint reporting-fusion opti-
mization scheme vs. the average reporting SNR level experienced by K = 5
sensing nodes (SNR0) and with reporting SNR deviation of ∆ = 1 (dB).

PU signal SNR than the cyclostationary detection. In fact, the
linear combining scheme at the FC is a technique to exploit
spatial diversity among different sensing nodes to increase
the effective SNR level experienced by the detector. For a
comparison between ED and CSD performances, see [33].
Note also that we have adopted the parameter values to have
almost equal performances in both detectors before applying
the proposed optimization. More specifically, by comparing
the curves labeled Case#2 in Figs. 2 and 3, we see almost-
equal performances. In fact, we have set the parameters in
a way that both detectors meet Pfa = 0.1, and Pmd = 0.1
(both curves nearly pass the point (0.1, 0.1)). In other words,
although the SNR levels and sensing times are different, we
have evaluated the achieved performance gain by using nearly-
equal detectors.

In order to evaluate the performance gain achieved by the
proposed joint optimization method, we define the listening
channel SNR gain as follows

SNR gain (dB) = SNRmaxq (dB)− SNRoptq (dB) (60)

where SNRmaxq is the minimum SNR required at the SUs to
meet Pfa = α and Pmd = β when they use the maximum num-
ber of quantization levels with optimal weighting and SNRoptq
is the minimum SNR required at the SUs when they use
optimal number of quantization levels and optimal weighting
vector derived through the proposed joint optimization scheme.

Fig. 5 depicts the SNR gain at the listening channels vs.
the average SNR at the reporting channels. It represents the
case in which K = 5 sensing nodes experience different SNRs
on their listening and reporting channels. The corresponding
SNRs for both the reporting and listening channels of K = 5
sensing nodes are [SNR0 + 2∆ SNR0 + ∆ SNR0 SNR0 −
∆ SNR0 − 2∆], where SNR0 is the average SNR over the
5 channels and ∆ = 1 (dB). The target false alarm and
missed detection probabilities are both set to 5%. As shown
in Fig. 5, the proposed joint optimization leads to a significant
performance gain, especially at low SNR regimes experienced

TABLE III
OPTIMAL NUMBER OF QUANTIZATION LEVELS FOR DIFFERENT

LISTENING, AND REPORTING SNRS

SNRr ↓, SNRl → -15 dB -10 dB 0 dB
0 dB 15 15 4
5 dB 30 15 4
15 dB 31 16 4

TABLE IV
OPTIMAL FUSION WEIGHTS, AND OPTIMAL NUMBER OF QUANTIZATION

LEVELS FOR NODES OPERATING IN DIFFERENT LISTENING-CHANNEL, AND
REPORTING-CHANNEL CONDITIONS

SNRl (dB) -15 -10 0
SNRr (dB) 15 5 0
Opt. Weights 0.0037 0.0171 0.9998
Opt. No. of Levels 31 16 4

at the reporting channels. This superior performance of the
proposed design at low SNRs stems from the fact that, the
local sensing quantization is also considered when optimiz-
ing the linear combining at the FC. Hence, the effect of
reporting channel impairments is reduced and, consequently,
the proposed detector experiences the reporting channel BEP
wall (see [19] and [22]) at lower SNR values, compared to
the design which only optimizes the linear fusion. In other
words, by decreasing the reporting channel SNR levels, at
a certain point, the detector with the maximum number of
quantization levels can not meet the target false alarm and
missed detection probabilities, no matter how high the SNR
levels at the listening channels are. But the proposed detector
still reaches the desired performance for a moderate average
SNR level at the listening channels. This observation demon-
strates the importance of the proposed method, especially
when the sensing nodes face stringent energy consumption
constraints due to e.g., limited battery life time or green
communication considerations, which force the designer to
reduce the transmission power used for the reporting phase.

A set of significant observations is obtained by evaluating
the derived quantization levels for different listening-channel
and reporting-channel SNRs (Table III). In particular, we
observe that, when the sensing nodes experience high SNR
levels at the listening channel, the proposed optimization
scheme reduces the number of quantization levels as much as
possible. This clearly means that, when the PU signal is strong,
only a small precision in quantizing the sensing outcomes is
enough to have the desired detection performance. Therefore,
the optimizer takes the advantage of this effect by reducing
the number of quantization levels to decrease the reporting
channel contaminations on the reported sensing outcomes.
Moreover, as long as the listening channel SNR is high, the
optimal number of quantization levels remains low for low-
, medium-, and high-level reporting SNRs. This means, for
the high listening-channel SNR, that the optimal number of
levels is not sensitive to the reporting channel SNR levels. In
other words, when the local detection processes are reliable,
the overall system performance is not affected significantly
by the reporting channel degradations. However, we observe a
different behavior when the listening-channel SNR is low, i.e.,
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when cooperation in sensing is highly necessary. Specifically,
since the local sensing has to be performed on weak PU signals
in this case, the uncertainty in determining whether the PU is
active or not is quite high. The optimizer tries to compensate
for this uncertainty (or not to contribute to this uncertainty)
by increasing the precision of the local quantization process at
the expense of suffering a higher degradation at the reporting
phase. Recall that increasing the number of levels improves
the quality of local quantization but increases the BEP of the
reporting channel as well. As an important conclusion, the
proposed joint optimization approach enables the system to
trade the reporting channel quality for the local sensing quality
in order to achieve the best overall detection performance.
These observations are illustrated in Table III, which shows
the optimal number of quantization levels for various listening
and reporting SNRs.

Table IV shows typical values of the obtained optimal
weighting and quantization vectors for sensing nodes operating
in different listening- and reporting-channel conditions.

VI. CONCLUSION

In this paper, after a structured study of major phases in
a centralized cooperative sensing scheme, the effect of the
number of bits used in local sensing quantization on the overall
sensing performance in a CRN with cooperative sensing has
been introduced and a joint optimization approach has been
proposed to optimize the linear soft-combining scheme at the
fusion phase with the number of quantization bits used by each
sensing node at the reporting phase. The presented analytical
expressions followed by simulation results demonstrate that,
through joint consideration of the reporting and fusion phases
in a cooperative sensing scheme, considerable performance
gains can be obtained. This better performance stems from
better exploitation of spatial/user diversities in CRNs. The
proposed joint optimization scheme leads to more powerful
distributed detection performance, especially when the sensing
nodes have to work at low SNR regimes.

APPENDIX I
PROOF OF LYAPUNOV’S CLT CONDITION FOR THE

RECEIVED QUANTIZED TEST SUMMARIES

Proof : For simplicity, we consider the uniform quantization
here. Other quantization schemes can be treated similarly. For
any δ > 0, we have (for either H0 or H1)

E
[
|yi − ȳi|2+δ

]
≤ (2mσi)

2+δ ≤ (2mσmax)
2+δ (61)

where ȳi denotes the mean of yi, and σmax denotes the
maximum standard deviation of the sensing outcomes. We also
have

s2
K ,

K∑
i=1

σ2
yi ≥ Kσ

2
yi,min (62)

where σ2
yi,min denotes the minimum variance of the received

test summaries. Using the above inequalities, we can set an
upper bound on the ratio in Lyapunov’s condition, i.e.,

1

s2+δ
K

K∑
i=1

E
[
|yi − ȳi|2+δ

]
≤ K (2mσi,max)

K1+δ/2σ2
yi,min

. (63)

Finally, since σi 6= 0 requires that σ2
yi,min 6= 0, the above upper

bound approaches zero as K →∞, hence,

lim
K→∞

1

s2+δ
K

K∑
i=1

E
[
|yi − ȳi|2+δ

]
= 0. (64)

�

APPENDIX II
PROOF OF LEMMA 1

Proof : The Gray code structure is depicted in Fig. 6, where
a four-bit Gray code is decomposed by four lines L1, L2,
L3, and L4 into four blocks g1, g2, g3, and g4. The vector
gk, k = 1, ..., 4, denotes the k-bit Gray code in this format.
Although only four bits are considered here, by repeating this
structure we can construct Gray codes with arbitrary number
of bits. According to this structure, we can see that gk+1 is
generated by vertically concatenating gk with mk, i.e., for
k ≥ 1,

gk+1 =

[
gk
mk

]
(65)

where mk is generated by mirroring gk with respect to Lk and
then flipping its (k + 1)th bit into 1. Therefore, considering
only the first k bits, gk and mk are symmetric with respect
to Lk. The leftmost column in Fig. 6 contains the index of
codewords in this structure. For n = 1, ..., 2k, we denote the
nth elements of gk and mk by gk(n) and mk(n), respectively.

Because of the aforementioned symmetry, for le ≥ 1 and
n = 1, ..., 2le , change in the code index due to flipping the
leth bit in gle(n) and mle(n) are the same. In other words, if
flipping the leth bit in gle(n) converts it to gle(n1) and flipping
the same bit in mle(n) turns it into mle(n2), then n1 = n2.
That is, the change in the element index of gle (i.e., n1 − n)
and mle are equal when the leth bit is flipped in both gle and
mle . Moreover, since gle+1 is composed of gle and mle , the
same rule applies for gle+1. Consequently, when flipping the
leth bit, the same jumping rule holds for all gn, n ≥ le. Thus,
in order to find how the code index is changed when flipping
the leth bit, we only need to consider gle .

To maintain simplicity, we only focus on le = 3, but the
general case is proved by considering the the Gray code struc-
ture’s symmetry which stems from the explained mirroring
process. Recall that by considering g3 and le = 3, we find the
jumping rule when the 3rd bit is flipped in a complete Gray
code with arbitrary number of bits. Focusing on g3 in Fig. 6,
we see that flipping the 3rd bit is equivalent to two successive
processes: i) increasing the code index by 2le (which is 8 in
this case), ii) mirroring the new codeword with respect to L3.
These two processes are shown by arrows on g3(3) in Fig.
6 as an example. g3(3) is first converted to m3(3) and then
mirrored against L3 to give g3(6).

According to the presented structure, mirroring a codeword
with index n ≥ 2le with respect to Lle is equivalent to decrease
n by 2mod(n − 1, 2le) + 1. Therefore, the two mentioned
processes on the code index can be indicated by the following
relationship

k(n, le) = n+ 2le − 2mod(n− 1, 2le)− 1 (66)
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g1
g2 

g3 

Index 
  

Four-bit  
Gray code 

 
 

1  0 0 0 0  
2  0 0 0 1 L1

3  0 0 1 1  
4  0 0 1 0 L2

5  0 1 1 0  
6  0 1 1 1  
7  0 1 0 1  
8  0 1 0 0 L3

9  1 1 0 0  
10  1 1 0 1  
11  1 1 1 1  
12  1 1 1 0  
13  1 0 1 0  
14  1 0 1 1  
15  1 0 0 1  
16  1 0 0 0 L4

m1 

m2 

m3 

g4 

Fig. 6. Four-bit Gray code structure. The least significant bits are the
rightmost ones.

where k denotes the new index and n denotes the old index.
�

APPENDIX III
PROOF OF LEMMA 2

Proof : If k only contains a single 1 in its binary format
(i.e., ne = 1), then k = 2k1−1 and the XOR operation leads
to

n⊕ k =

{
n+ 2k1−1, bk1(n) = 0
n− 2k1−1, bk1(n) = 1

(67)

The right-hand side of this equation can be expressed in closed
form by using the step function as

n⊕ k = n+ [2u(0.5− bk1(n))− 1] 2k1−1 (68)

For ne ≥ 1, we have

k = 2k1−1 ⊕ 2k2−1 ⊕ ...⊕ 2kne−1 (69)

Hence, (34) is obtained by successively applying (68) on the
first, second, ..., and neth bit in k. �
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