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Abstract

An extensive evaluation of beta decay properties was made across a vast mass
region of A = 100 − 134. Triplets of nuclei, consisting of an odd-odd nucleus
with a 1+ ground state and its two neighbouring even-even isobars, were taken
under examination in order to better understand the behaviour of the effective
axial-vector coupling constant gA as a function of the mass number A. The
need for such an effective value of gA in the QRPA framework has become
evident in recent years but a model for the behaviour of this effective gA over
a specific mass region is an idea little investigated. The calculations in this
master’s thesis were made in the QRPA framework, using large model spaces
and realistic Bonn-A two-body interactions.

The overall behaviour of gA over the mass region was mapped by fixing the value
of gA for each triplet separately by fitting the geometric mean of the left and
right Gamow-Teller matrix elements to an experimental value. This was done
with four different values of the pnQRPA particle-particle interaction strength,
gpp = 0.6, 0.7, 0.8, 0.9, and the resulting values of gA were plotted as a function
of A. By this method a linear model for the effective gA is proposed and put to
a test by predicting log ft values for ground state to ground state decays as well
as decays to the first excited states of the even-even nuclei. A fairly average
value of gpp = 0.7 was chosen for the predictions.

The linear model for gA performed very well in predicting the ground state to
ground state transitions, yielding a mean deviation of 0.23 from the experimental
log ft values. The decays to the first excited 2+ states of the even-even nuclei
were also decently predicted but the calculated log ft values of decays to the
quadrupole two-phonon triplet states were not as accurate. The mean deviations
from experimental values became 0.47 for decays to the 2+1 state, 0.74 to the
0+2−ph state and 0.82 to the 2+2−ph state. Still, the linear model performs much
better than any constant value of gA over this mass region.
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1 Introduction

The axial-vector coupling constant of weak interactions, gA, is a parameter of
utmost interest in the study of single and double beta decays. The value of gA is
normally determined by the partially conserved axial-vector current hypothesis
of the standard model [1]. There has recently been a consensus that instead
of the usual bare value of gA = 1.25, a quenched effective value of gA should
be used for calculating single and double beta decay matrix elements to better
adjust the microscopic theory to reproduce experimental values [2–4].

The transition strengths of beta decay to or from an odd-odd nucleus can be
calculated using a neighbouring even-even isobar as a starting point [1]. There
are various ways of finding the wave functions of the states in the odd-odd
nucleus as well as the excited states of the even-even nucleus, of which the
QRPA framework [5] has proven successful with reasonable computational effort.
Comparing these transition strengths to experimental data gives information on
the systematics of single beta decays and also opens possibilities to theoretically
probe the experimentally evasive double beta decay [6].
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Figure 1: A schematic representation of the decay processes studied in this work.
The nucleus in the middle is odd-odd, it’s neighbours on the left and right are
even-even.

A selection of medium heavy nuclei in the mass region A = 100− 134 are taken
under investigation. The nuclei are grouped into triplets where an odd-odd
nucleus with a 1+ ground state is in the "center" and two neighbouring even-
even isobars with 0+ ground states are to the "left" and "right" of the odd-odd
nucleus as is represented in Figure 1. Ground state to ground state beta decays
as well as decays to excited states of the even-even nuclei are predicted using
the QRPA framework.
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The situations of Figure 1, where the even-even nuclei on the left and right
are lower in energy than the odd-odd nucleus, are particularly of interest as this
permits the rare phenomenon of double beta decay [7]. Double beta decay is not
discussed further in this master’s thesis but the results presented here should
be interesting to apply to it’s theoretical research.

The purpose of this work is to map the behaviour of gA over a vast mass region
in order to find a suitable model for the effective value of gA. In Section 2
the required theoretical framework is discussed. In Section 3 the framework is
put to good use and based on some initial calculations a linear model for gA is
proposed and adapted for predictions of log ft values for allowed Gamow-Teller
beta decays in the mass region. Finally in Section 4 conclusions are drawn and
some final remarks are given regarding application to research of double beta
decay.
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2 Theoretical background

To effectively describe beta decay transitions between the ground state of an
odd-odd nucleus and the ground state and low-lying excited states of an even-
even nucleus, one needs to adopt a formalism capable of producing the wave
functions of both states involved in the process. The formalism used in this work
is the charge conserving quasiparticle random-phase approximation (QRPA) and
it’s charge non-conserving cousin, the proton-neutron QRPA (pnQRPA). Both
the QRPA and the pnQRPA use the BCS quasiparticle theory as a starting
point, a theory first introduced by Bardeen, Cooper and Schrieffer in [8]. The
BCS theory is discussed in more detail in [1,9]. The correlated vacuum ground
state in the QRPA framework consists of the BCS ground state of an even-even
nucleus with small corrections from 4, 8, 12, ... quasiparticle contributions.

2.1 The QRPA

The charge conserving QRPA is used to obtain wave functions and energies of
the excited states of even-even nuclei. The wave functions of basic one-phonon
excited states in the QRPA are of the form [1]

|ω〉QRPA = Q†ω |QRPA〉 . (1)

The QRPA phonon creation operator is defined as

Q†ω =
∑
a≤b

[
Xω
abA
†
ab(JM)− Y ωabÃab(JM)

]
, (2)

with the quasiparticle pair creation operator

A†ab(JM) = Nab(J)
[
a†aa
†
b

]
JM

and the time reversed pair annihilation operator

Ãab(JM) = −Nab(J) [ãaãb]JM .

The amplitudes Xω
ab and Y ωab are components of the eigenvectors of a non-

Hermitian eigenvalue problem, the matrix form of the so called QRPA equa-
tions [1]. These equations can be derived by the equations-of-motion method
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first introduced by Rowe in [10]:[
A B
−B∗ −A∗

][
Xω

Yω

]
= Eω

[
Xω

Yω

]
. (3)

The elements of matrices A and B in equation (3) can be explicitly written as [1]

Aab,cd(J) = (Ea + Eb)δacδbd

+Gpp(uaubucud + vavbvcvd) 〈a b ; J |V |c d ; J〉

+GphNabNcd
[
(uavbucvd + vaubvcud) 〈a b−1 ; J |VRES |c d−1 ; J〉

−(−1)jc+jd+J(uavbvcud + vaubucvd) 〈a b−1 ; J |VRES |d c−1 ; J〉
]
, (4)

Bab,cd(J) = −Gpp(uaubvcvd + vavbucud) 〈a b ; J |V |c d ; J〉

+GphNabNcd
[
(uavbvcud + vaubucvd) 〈a b−1 ; J |VRES |c d−1 ; J〉

−(−1)jc+jd+J(uavbucvd + vaubvcud) 〈a b−1 ; J |VRES |d c−1 ; J〉
]
, (5)

where ui and vi (i = a, b, c, d) are the BCS occupation amplitudes and the
normalization factors

Nab(J) =


1, for a 6= b

1√
2
, for a = b , J = even

0, otherwise

.

The particle-hole and particle particle interaction parameters Gph and Gpp

are discussed in Section 2.3. The matrix A contains contributions from the
quasiparticle mean field and the two-quasiparticle-two-quasihole part of the nu-
clear Hamiltonian. The matrix B contains contributions only from the four-
quasiparticle part of the Hamiltonian [1].

The X and Y amplitudes satisfy the orthonormality and completeness relations
[1] ∑

a≤b

(
XkJπ∗
ab Xk′Jπ

ab − Y kJ
π∗

ab Y k
′Jπ

ab

)
= δkk′ ,

∑
k

(
XkJπ

ab XkJπ∗
cd − Y kJ

π

ab Y kJ
π∗

cd

)
= δacδbd , a ≤ b , c ≤ d ,

∑
k

(
XkJπ

ab Y kJ
π∗

cd − Y kJ
π∗

ab XkJπ

cd

)
= 0 , a ≤ b , c ≤ d .
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The non-Hermitian nature of the QRPA matrix equation (3) gives rise to both
positive and negative energy solutions [1]. If a triplet Eω, Xω, Yω is a solution
for the matrix equation, then also

Eω′ = −Eω, Xω
′

= Yω∗, Yω
′

= Xω∗

is a solution. Investigating the squared norm of the negative energy solution
gives

||ω−〉|2 = 〈ω−|ω−〉 =
∑
ab

(∣∣Xω−
ab

∣∣2 − ∣∣Y ω−ab ∣∣2)
=
∑
ab

(∣∣Y ω+

ab

∣∣2 − ∣∣Xω+

ab

∣∣2) = − ||ω+〉|2 = −1 , (6)

which is a contradiction as a squared norm cannot be negative. As the positive
energy solutions already constitute a complete set of eigenstates, the negative
energy solutions are discarded as unphysical.

One can use the wave function of a one-phonon state to build a collection of
excited two-phonon states with twice the energy of the one-phonon state [1, 6].
The general form of a normalized two-phonon state is [1]

|ωω′ ; J M〉 =
1√

1 + δωω′

[
Q†ωQ

†
ω′

]
JM
|QRPA〉 . (7)

As the QRPA prediction for the first 2+ state is often the most accurate, the
scope of this work is focused on the triplet of Jπ = 0+, 2+, 4+ states formed
of the lowest quadrupole phonon state. The wave functions of these states are,
from equation (7)

|Jπ2−phM〉 =
1√
2

[
Q†(2+1 )Q†(2+1 )

]
JM
|QRPA〉 . (8)

The existence of such degenerate or, in reality, nearly degenerate two-phonon
multiplets is backed by experimental evidence, for example in [11]. A good
example of a quadrupole two-phonon triplet is visible in the low energy spectrum
of 122Te in Figure 2

2.2 The pnQRPA

The charge-changing proton-neutron variant of the QRPA follows quite straight-
forwardly from the results of the previous subsection by converting the investi-
gated particles into protons and neutrons. As the regular QRPA permitted the
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Figure 2: The experimental low energy spectrum of 122Te [12]. The energies are
in keV. The quadrupole two-phonon triplet lies around 1200 keV: approximately
twice the energy of the lowest 2+ state.

examination of excited states in even-even nuclei, the pnQRPA is a formalism
which describes states of odd-odd nuclei with respect to the even-even QRPA
ground state. One can, with no substantial hazard, assume that the QRPA and
pnQRPA vacuums coincide in the quasiboson approximation used to describe
the β− and β+/EC decays [13]. Then, the basic excitations in the pnQRPA can
be written as

|ω〉pnQRPA =
∑
pn

[
Xω
pnA

†
pn(JM)− Y ωpnÃpn(JM)

]
|QRPA〉 . (9)

The pnQRPA equations are formally exactly the same as the QRPA equations
(3): [

A B
−B∗ −A∗

][
Xω

Yω

]
= Eω

[
Xω

Yω

]
. (10)

The matrices A and B differ from the ones of the regular QRPA, as the last
terms of equations (4) and (5) are zero because of charge conservation. The
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resulting matrix elements are

Apn,p′n′(J) = (Ep + En)δpp′δnn′

+gpp(upunup′un′ + vpvnvp′vn′) 〈p n ; J |V |p′ n′ ; J〉

+gph(upvnup′vn′ + vpunvp′un′) 〈p n−1 ; J |VRES |p′ n′−1 ; J〉 , (11)

Bpn,p′n′(J) = −gpp(upunvp′vn′ + vpvnup′un′) 〈p n ; J |V |p′ n′ ; J〉

+gph(upvnvp′un′ + vpunup′vn′) 〈p n−1 ; J |VRES |p′ n′−1 ; J〉 , (12)

and the orthonormality and completeness relations take the form∑
pn

(
XkJπ∗
pn Xk′Jπ

pn − Y kJ
π∗

pn Y k
′Jπ

pn

)
= δkk′ ,

∑
k

(
XkJπ

pn XkJπ∗
p′n′ − Y kJ

π

pn Y kJ
π∗

p′n′

)
= δpp′δnn′ ,

∑
k

(
XkJπ

pn Y kJ
π∗

p′n′ − Y kJ
π∗

pn XkJπ

p′n′

)
= 0 .

2.3 Interaction parameters

Both the QRPA and pnQRPA have two important characteristic interaction pa-
rameters. These are the particle-hole and particle-particle interaction strengths,
which appear in the particle-hole and particle-particle parts of the elements of
matrices A and B (equations (4) and (5) in the QRPA, equations (11) and (12)
in the pnQRPA). In the QRPA, these parameters are written as uppercase Gph
and Gpp, in the pnQRPA as lowercase gph and gpp. This shall be the convention
used in this work.

In QRPA, Gpp has little effect on the first excited states [13] and the common
value of Gpp = 1.00 has been adapted for the examined nuclei. The first excited
state of an even-even nucleus is most often a 2+ state, which is of a particle-hole
nature. Therefore, the value of Gph has a significant effect on the energy of the
first excited 2+ state of the even-even nucleus. The value of Gph was fixed for
each nucleus separately by fitting the energy of the first 2+ state to experimental
data.

In pnQRPA, the particle-hole parameter gph has a large effect on the energy
location of the Gamow-Teller giant resonance (GTGR). gpp has more to do with
the Gamow Teller beta decay transition amplitudes [14]. The value of gph was
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fitted for each nucleus separately to approximately match the GTGR location
to the empirical formula [1]:

∆EGT = ∆EC + ∆EZ+1,N−1

=

[
1.444

(
Z +

1

2

)
A−

1
3 − 30.0(N − Z − 2)A−1 + 5.57

]
MeV,

(13)

where ∆Ec is the Coulomb energy and ∆EZ+1,N−1 is the energy difference
between the GTGR state and the 0+ isobaric analogue state of the odd-odd
nucleus.

The particle-particle interaction parameter gpp is often used to fit the log ft

value of the transition from the first 1+ state of the odd-odd nucleus to the
ground state of the even-even nucleus [13, 15]. In this work, to better examine
the systematics of Gamow-Teller beta decay, an array of constant values of
gpp = 0.6, 0.7, 0.8, 0.9 is assigned. By fitting the so called geometric means
of the beta decay matrix elements, the behaviour of the axial-vector coupling
constant gA is expressed as a function of the mass number A for each value of
gpp. This gives rise to an opportunity to find a systematic behaviour of gA for
a given value of gpp.

2.4 Single particle bases and pairing parameters

Ground-state to ground state beta decays were studied using a different method
in the author’s earlier work [16]. The single particle bases and pairing param-
eters used here are exactly the same and the following discussion from [16] is
also valid for the present work.

Up to A = 108 a valence space consisting of 11 states, the entire 1p-0f-0g and
2s-1d-0h shells, was used. For A = 110 and onwards also the 2p and 1f shells
were included and the valence space was expanded to 15 states. The valence
spaces are visualized in Figure 3. The single particle bases are built by using a
Coulomb-corrected Woods-Saxon potential and solving the radial Schrödinger
equation [17]. The Woods-Saxon parameters used were the ones given by Bohr
and Mottelson in [18]. The bases of 100Mo, 100Ru, 114Pd and 114Cd are given
in Tables 1 and 2.

For the two-body part of the interactions, the renormalized Bonn-A G-matrix
[9, 15] has been used and the neutron and proton pairing strength parameters
Appair and A

n
pair were fitted such that the lowest quasiparticle energies from the
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Figure 3: A schematic figure of the orbitals used to form the bases for nuclei
with A < 110 and A ≥ 110.

BCS calculation matches the pairing gaps:

Epqp(lowest) = ∆p, and Enqp(lowest) = ∆n,

where the pairing gaps can be calculated by the three-point formula [19]

∆p(A,Z) =
1

4
(−1)Z+1 [Sp(A+ 1, Z + 1)− 2Sp(A,Z) + Sp(A− 1, Z − 1)] ,

∆n(A,Z) =
1

4
(−1)A−Z+1 [Sn(A+ 1, Z)− 2Sn(A,Z) + Sn(A− 1, Z)] , (14)

where Si is the proton or neutron separation energy.
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Table 1: The single particle bases of 100Ru and 100Mo for protons and neutrons
respectively. The energies are in MeV.

nlj (p) Ep(
100Mo) Ep(

100Ru) nlj(n) En(100Mo) En(100Ru)

0f7/2 -16.067 -14.368 0f7/2 -19.311 -20.422
0f5/2 -11.537 -9.888 0f5/2 -15.547 -16.590
1p3/2 -11.203 -9.561 1p3/2 -15.361 -16.394
1p1/2 -9.473 -7.826 1p1/2 -13.919 -14.917
0g9/2 -8.311 -6.696 0g9/2 -11.581 -12.623
1d5/2 -2.811 -1.396 1d5/2 -7.295 -8.195
0g7/2 -1.474 0.121 0g7/2 -5.913 -6.833
2s1/2 -0.588 0.795 2s1/2 -5.591 -6.386
0h11/2 -0.106 1.414 1d3/2 -4.814 -5.621
1d3/2 0.202 1.601 0h11/2 -3.501 -4.458
0h9/2 9.102 10.400 0h9/2 3.952 3.236

Table 2: The single particle bases of 114Pd and 114Cd for protons and neutrons
respectively. The energies are in MeV.

nlj (p) Ep(
114Pd) Ep(

114Cd) nlj(n) En(114Pd) En(114Cd)

0f7/2 -18.224 -16.661 0f7/2 -20.115 -21.105
0f5/2 -14.180 -12.650 0f5/2 -16.845 -17.785
1p3/2 -13.413 -11.882 1p3/2 -16.309 -17.238
1p1/2 -11.835 -10.326 1p1/2 -15.029 -15.933
0g9/2 -10.845 -9.349 0g9/2 -12.814 -13.748
1d5/2 -5.255 -3.827 1d5/2 -8.535 -9.361
0g7/2 -4.647 -3.212 0g7/2 -7.814 -8.659
0h11/2 -2.970 -1.565 2s1/2 -6.777 -7.524
2s1/2 -2.759 -1.505 1d3/2 -6.252 -7.010
1d3/2 -2.313 -1.008 0h11/2 -5.137 -6.004
1f7/2 2.659 3.909 1f7/2 -1.208 -1.864
2p3/2 4.675 5.681 2p3/2 -0.429 -0.835
0h9/2 5.577 6.877 2p1/2 0.082 -0.138
2p1/2 5.894 6.875 1f5/2 1.394 0.952
1f5/2 6.616 7.681 0h9/2 1.651 0.946

2.5 Allowed beta decay in the QRPA framework

With the QRPA and pnQRPA equations solved by, for example, numerical
methods, one can obtain theoretical beta decay matrix elements describing beta
decay or electron capture to or from states of the even-even reference nucleus [1].
In this work, the focus is set only on allowed Gamow-Teller beta decays, that is,
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processes with an angular momentum change of ∆J = 1 and no change in parity.
The equations to calculate ground state to ground state decays are presented in
this chapter as well as the means to calculate decays from an odd-odd nucleus
to excited states of an even-even nucleus.

2.5.1 General theory of allowed beta decay

A− 1

ν̄e

e−
p

n

β−

mother

daughter

A− 1

νe

e+
n

p

β+

mother

daughter

A− 1
νe

e−

n

p

EC

mother

daughter

Figure 4: The Feynman diagrams of β−, β+ and EC decays in the impulse
approximation: only one nucleon is considered to be affected by the weak decay
process whereas the remaining A− 1 nucleons remain unaffected [1].

In a single beta decay, there are always some resultant particles produced apart
from the mother and daughter nuclei. The same holds true for an electron
capture (EC) transition, except that an electron is captured instead of produced.
The Feynman diagrams of these decay types are presented in Figure 4. The
"extra" particles involved in the processes are the electron or the positron and
the neutrino or the antineutrino depending on the type of the transition.

To be defined as "allowed", the change in the angular momentum in the tran-
sition from the mother to daughter nucleus must result only from the spins of
the involved leptons [20]. For example, in a β− decay the resultant electron
and antineutrino cannot carry any orbital angular momentum. With each of
the leptons involved having a spin of s = 1

2 , the change in angular momentum
can only result from the spins being parallel S = 1 or antiparallel S = 0. As
the leptons carry no orbital angular momentum, the parities of the initial and
final states must also be identical. This leads to the selection rules for allowed
β/EC decay [20]

∆J = 0, 1 , ∆π = no . (15)

The transitions with no angular momentum change are called Fermi
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decays [21] and those with ∆J = 1 are called Gamow-Teller decays [22]. This
work concentrates solely on Gamow-Teller transitions. The Fermi decay does
not contribute to the beta transitions of interest in the thesis.

The half-life of a Gamow-Teller beta decay can be calculated from [1]

t1/2 =
κ

f0BGT
, (16)

where κ = 6147 s, f0 is a phase space integral containing the lepton kinematics
and BGT is the reduced Gamow-Teller transition probability

BGT =
g2A

2Ji + 1
|MGT |2 . (17)

The quantityMGT is the Gamow-Teller transition amplitude described in the
next subsections for different kinds of Gamow-Teller decays. These nuclear
matrix elements can, in a general form, be written as [1]

MGT = (ξf Jf ||σ||ξi Ji) =
∑
ab

M(ab)(ξf Jf ||[c†ac̃b]1||ξi Ji) , (18)

where the operator σ is the Pauli spin operator and the reduced single particle
matrix element reads

MGT (pn) =
√

2δnpnnδlpln ĵpĵn(−1)lp+jp+
3
2

{
1
2

1
2 1

jn jp lp

}
. (19)

The regular particle creation and annihilation operators of equation (18) are
related to the quasiparticle picture by the Bogoliubov-Valatin transformation
[23,24]:

a†α = uac
†
α + vac̃α ,

ãα = uac̃α − vac†α . (20)

The common quantity, the "log ft" value, is taken as the basis of evaluating the
theoretical calculations in this work. The log ft value is defined as [1]

log ft = log10(f0t1/2[s]) = log10

(
κ

gA
2Ji+1 |MGT |2

)
. (21)

The experimental log ft values of a vast number of nuclei are well measured
making it a convenient tool in comparing theoretical calculations to experiment.
Moreover, the log ft value depends on nuclear structure exclusively, which makes
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it a good test for the competence of a theory.

2.5.2 Transitions to and from the even-even ground state

For the allowed Gamow-Teller beta transition amplitudes from the pnQRPA
vacuum to a pnQRPA excited state, one has the form [1]:

(
ω||β−GT ||QRPA

)
= δJ1

√
3
∑
pn

MGT (pn)
(
upvnX

ω
pn + vpunY

ω
pn

)
, (22)

(
ω||β+

GT ||QRPA
)

= −δJ1
√

3
∑
pn

MGT (pn)
(
vpunX

ω
pn + upvnY

ω
pn

)
. (23)

In equations (22) and (23) the reduced single-particle matrix element is as in
equation (19)

The direction of the transition can be switched in equations (22) and (23) to
make the Gamow-Teller transition amplitude from a pnQRPA excited state to
the pnQRPA vacuum:

(
QRPA||β−GT ||ω

)
= δJ1

√
3
∑
pn

MGT (pn)
(
vpunX

ω
pn + upvnY

ω
pn

)
, (24)

(
QRPA||β+

GT ||ω
)

= −δJ1
√

3
∑
pn

MGT (pn)
(
upvnX

ω
pn + vpunY

ω
pn

)
. (25)

2.5.3 Transitions between a QRPA and a pnQRPA state

Let the initial state be a pnQRPA state

|ωi〉 =
∑
pini

[
Xω
piniA

†
pini(JiMi)− Y ωpiniÃpini(JiMi)

]
|QRPA〉 ,

and the final state a QRPA one-phonon state

|ωf 〉 =
∑
af≤bf

[
Xω
af bf

A†af bf (JfMf )− Y ωaf bf Ãaf bf (JfMf )
]
|QRPA〉 .

For Gamow-Teller transitions from a pnQRPA state to a QRPA state, one can
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derive a result for the reduced transition amplitude [1]:

(
ωf ||β∓GT ||ωi

)
=
∑
pini
pf≤p′f

[
X
ωf∗
pfp′f

Xωi
piniM

(∓)
GT

(
pi ni ; Ji → pf p

′
f ; Jf

)
− Y ωf∗pfp′f

Y ωipiniM
(±)
GT

(
pi ni ; Ji → pf p

′
f ; Jf

) ]
+
∑
pini
nf≤n′f

[
X
ωf∗
nfn′f

Xωi
piniM

(∓)
GT

(
pi ni ; Ji → nf n

′
f ; Jf

)
− Y ωf∗nfn′f

Y ωipiniM
(±)
GT

(
pi ni ; Ji → nf n

′
f ; Jf

) ]
. (26)

The two-quasiparticle transition amplitudes of equation (26) are expressed as

M(∓)
GT

(
pi ni ; Ji → pf p

′
f ; Jf

)
=
√

3ĴiĴfNpfp′f (Jf )

×

[
δpip′f (−1)jpf+jni+1

{
Ji Jf 1

jpf jni jp′f

}
B(∓)GT (pfni)MGT (pfni)

+δpipf (−1)jpf+jni+Jf+1

{
Ji Jf 1

jp′f jni jpf

}
B(∓)GT (p′fni)MGT (p′fni)

]
,

M(±)
GT

(
pi ni ; Ji → nf n

′
f ; Jf

)
=
√

3ĴiĴfNnfn′f (Jf )

×

[
δnin′f (−1)jpi+jni+Ji+1

{
Ji Jf 1

jnf jpi jni

}
B(∓)GT (pinf )MGT (pinf )

+δninf (−1)
jpi+jn′f

+Ji+Jf+1

{
Ji Jf 1

jn′f jpi jnf

}
B(∓)GT (pin

′
f )MGT (pin

′
f )

]
,

where B∓GT contains the occupation factors

B(−)GT (if) = uiuf particle type

B(+)
GT (if) = vivf hole type ,

and the single particle matrix elementsMGT (if) are as in equation (19).

Should the final state be a two-quadrupole-phonon state of equation (8), then

14



the reduced transition amplitude for a beta minus transition takes the form [13]

MGT (−)
JF ,1

(u, v) = (J+
f ||β

−
GT ||1

+)

= −40
1√
2

√
3(2Jf + 1)

×
∑
pnp′n′

M(pn)

[
upvnXpp′(2

+, 1)Xnn′(2
+, 1)Xp′n′(1

+, 1)

+ vpunYpp′(2
+, 1)Ynn′(2

+, 1)Yp′n′(1
+, 1)

]
jp jp′ 2

jn jn′ 2

1 1 Jf

 . (27)

The corresponding beta plus or EC amplitude follows from equation (27) by

MGT (+)
JF Ji

(u, v) = (J+
f ||β

+
GT ||1

+) = −MGT (−)
JF Ji

(v, u) . (28)

It should be noted that in (27) the amplitudes Xaa′ and Yaa′ differ from the X
and Y amplitudes of (2) as discussed in [13].
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3 Calculations and discussion

To test the formalism of Section 2 and to gain insights on the behaviour of
the effective value of the axial-vector coupling constant gA, a series of QRPA
calculations is performed systematically through the mass region A = 100−134.
The beta decay properties of ground state to ground state decays are analyzed
first through the concept of a geometric mean of the left and right Gamow-Teller
matrix elements. Through this examination, a linear gA model is proposed and
the ground state to ground state decay log ft values are calculated within this
model using a reasonably average value of gpp = 0.7.

The linear gA model is then tested further and the analysis is extended to
decays to the first excited 2+ states and the 0+ and 2+ collective quadrupole
two-phonon states of the even-even nuclei. Theoretical predictions of log ft

values are made for every process with experimental data available.

3.1 Ground state to ground state decays and the linear gA

model

One possible way to examine the beta decay matrix elements is by taking the
geometric mean Mm

GT of the left and right matrix elements Ml
GT and Mr

GT .
This geometric mean seems to be only weakly dependent on the value of gpp [25]
and thus allows a very sophisticated approach to studying the overall behaviour
of gA. One can calculate the experimental geometric means of the NMEs (mul-
tiplied by gA) from

gAMm
GT (exp.) = gA

√
|Ml

GT (exp.)Mr
GT (exp.)|

=

√√√√
κ

√
(2J li + 1)(Jri + 1)

10log ftl(exp.) × 10log ftr(exp.)
. (29)

This quantity is actually independent of the value of gA taken for theoretical
calculations, which permits gA to be left as a free parameter to fit calculations
to experimental data. The geometric mean is taken as a base of analysis in this
work. The calculated experimental geometric means for the investigated mass
region are presented in Table 3.
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Table 3: Experimental geometric means of the NMEs. The experimental log ft
values are extracted from [12], except 1) is extrapolated from systematics of
similar neighbouring decays and 2) is from [26]

Process log ftexp

A Z Z Z+1 Z + 2 left right gAMGT (l) gAMGT (r) gAM
m
GT

100 40 Zr(0+) → Nb(1+) → Mo(0+) 4.65 5.1 0.371 0.382 0.377
100 42 Mo(0+) ← Tc(1+) → Ru(0+) 4.4 4.59 0.857 0.688 0.768
102 42 Mo(0+) → Tc(1+) → Ru(0+) 4.21 4.778 0.616 0.554 0.584
104 44 Ru(0+) ← Rh(1+) → Pd(0+) 4.32 4.55 0.939 0.721 0.823
106 44 Ru(0+) → Rh(1+) → Pd(0+) 4.31 5.168 0.548 0.354 0.441
106 46 Pd(0+) ← Ag(1+) → Cd(0+) 4.92 4.41) 0.471 0.857 0.635
108 44 Ru(0+) → Rh(1+) → Pd(0+) 4.22) 5.5 0.623 0.241 0.388
108 46 Pd(0+) ← Ag(1+) → Cd(0+) 4.70 4.425 0.607 0.833 0.711
110 46 Pd(0+) ← Ag(1+) → Cd(0+) 4.09 4.6596 1.224 0.635 0.882
112 48 Cd(0+) ← In(1+) → Sn(0+) 4.70 4.12 0.607 1.183 0.847
114 46 Pd(0+) → Ag(1+) → Cd(0+) 4.199 5.1 0.623 0.383 0.488
114 48 Cd(0+) ← In(1+) → Sn(0+) 4.89 4.4701 0.487 0.790 0.621
116 48 Cd(0+) ← In(1+) → Sn(0+) 4.47 4.662 0.790 0.634 0.708
118 48 Cd(0+) → In(1+) → Sn(0+) 3.91 4.79 0.870 0.547 0.690
118 50 Sn(0+) ← Sb(1+) ← Te(0+) 4.525 5.0 0.742 0.248 0.429
120 48 Cd(0+) → In(1+) → Sn(0+) 4.1 5.023 0.699 0.418 0.541
122 48 Cd(0+) → In(1+) → Sn(0+) 3.95 5.11 0.830 0.378 0.561
122 52 Te(0+) ← I(1+) ← Xe(0+) 4.95 5.191 0.455 0.199 0.301
124 54 Xe(0+) ← Cs(1+) ← Ba(0+) 5.10 5.2 0.383 0.197 0.275
126 54 Xe(0+) ← Cs(1+) ← Ba(0+) 5.066 5.36 0.398 0.164 0.255
128 52 Te(0+) ← I(1+) → Xe(0+) 5.049 6.061 0.406 0.127 0.227
128 54 Xe(0+) ← Cs(1+) ← Ba(0+) 4.847 5.28 0.512 0.180 0.303
130 54 Xe(0+) ← Cs(1+) → Ba(0+) 5.073 5.36 0.395 0.284 0.335
134 56 Ba(0+) ← La(1+) ← Ce(0+) 4.883 5.23 0.491 0.190 0.306

The formalism of Section 2 was first used to examine the ground state to ground
state decays in the investigated mass region. Four rounds of pnQRPA calcula-
tions were performed using typical values of gpp = 0.6, 0.7, 0.8, 0.9 in order to
analyze the left and right branches of Gamow-Teller beta decay from each odd-
odd nucleus. With these values one does not have to worry about the breaking
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of the pnQRPA as gpp ≤ 1 has been deemed safe over this mass region in [16].
From the solved wave functions of the first 1+ states of the odd-odd nuclei, the
transition amplitudes were calculated using equations (24) and (25). Theoreti-
cal geometric means of these matrix elements were then calculated for each gpp
and fitted to the experimental values by altering the value of gA. The calculated
matrix elements and geometric means for gpp = 0.7 are given in Table 4 and
visualized in Figure 5. Resulting values of gA for each value of gpp are presented
in Figure 6 as a function of the mass number A.

In Figure 5 one can see a decreasing behaviour of the NMEs as a function of
A. At first, around A = 100 − 112 there is some alternation between the left
and right matrix elements being larger than the other, but at A = 112 onwards
the right matrix elements are always smaller than the left ones and eventually
become only about a fifth of the magnitude of the left matrix elements. The
experimental log ft values in the left branch are generally smaller than the log ft

values in the right branch so this is in good agreement with experimentally
observed behaviour.

100 110 120 130
0

0.5

1

1.5

2

A

M
G
T

Ml
GT

Mr
GT

Mm
GT

Figure 5: Theoretical beta decay matrix elements as a function of the mass
number A. The computations were done with gpp = 0.7. The effect of gA has
not yet been taken into account.
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Table 4: Theoretical geometric means of the NMEs with gpp = 0.7. The values
of gA were fixed for each process by fitting the theoretical geometric mean to
the experimental value.

Process gAM
m
GT

A Z Z Z+1 Z + 2 gA M th.
GT (l) M th.

GT (r) exp. th.

100 40 Zr(0+) → Nb(1+) → Mo(0+) 0.30 1.664 0.922 0.377 0.372
100 42 Mo(0+) ← Tc(1+) → Ru(0+) 0.54 1.236 1.645 0.768 0.770
102 42 Mo(0+) → Tc(1+) → Ru(0+) 0.41 1.534 1.305 0.584 0.580
104 44 Ru(0+) ← Rh(1+) → Pd(0+) 0.56 1.322 1.632 0.823 0.823
106 44 Ru(0+) → Rh(1+) → Pd(0+) 0.33 1.540 1.194 0.441 0.447
106 46 Pd(0+) ← Ag(1+) → Cd(0+) 0.43 1.045 2.045 0.635 0.629
108 44 Ru(0+) → Rh(1+) → Pd(0+) 0.32 1.680 0.8502 0.388 0.382
108 46 Pd(0+) ← Ag(1+) → Cd(0+) 0.50 1.251 1.643 0.711 0.717
110 46 Pd(0+) ← Ag(1+) → Cd(0+) 0.70 1.373 1.155 0.882 0.882
112 48 Cd(0+) ← In(1+) → Sn(0+) 0.68 0.993 1.557 0.847 0.846
114 46 Pd(0+) → Ag(1+) → Cd(0+) 0.56 1.345 0.5676 0.488 0.489
114 48 Cd(0+) ← In(1+) → Sn(0+) 0.58 1.021 1.106 0.621 0.616
116 48 Cd(0+) ← In(1+) → Sn(0+) 0.86 0.989 0.692 0.708 0.711
118 48 Cd(0+) → In(1+) → Sn(0+) 0.88 0.942 0.653 0.690 0.690
118 50 Sn(0+) ← Sb(1+) ← Te(0+) 0.77 1.013 0.309 0.429 0.430
120 48 Cd(0+) → In(1+) → Sn(0+) 0.74 0.886 0.600 0.541 0.540
122 48 Cd(0+) → In(1+) → Sn(0+) 0.78 0.889 0.576 0.561 0.558
122 52 Te(0+) ← I(1+) ← Xe(0+) 0.50 1.026 0.353 0.301 0.301
124 54 Xe(0+) ← Cs(1+) ← Ba(0+) 0.39 0.988 0.500 0.275 0.274
126 54 Xe(0+) ← Cs(1+) ← Ba(0+) 0.44 0.956 0.355 0.255 0.256
128 52 Te(0+) ← I(1+) → Xe(0+) 0.68 0.918 0.120 0.227 0.226
128 54 Xe(0+) ← Cs(1+) ← Ba(0+) 0.63 0.942 0.246 0.303 0.304
130 54 Xe(0+) ← Cs(1+) → Ba(0+) 0.81 0.910 0.186 0.335 0.333
134 56 Ba(0+) ← La(1+) ← Ce(0+) 0.76 0.877 0.184 0.306 0.305

In figure 6 one can immediately see that, with respect to increase in gpp, gA
becomes more unstable with increasing A. The value of gpp = 0.9 is thus
discarded as only a small variation in gA is desired. It is also evident, given a
reasonable interval of gpp values, that the geometric mean does not depend very
much on the value of gpp as expected. This can be seen in Figure 6 as the data
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Figure 6: Values of gA as a function of the mass number A. The data points
were produced by fitting the theoretical geometric means to the experimental
values of Table 3.

points representing different values of gpp for separate nuclei are very tightly
packed close to each other. In other words, it does not take a significant change
in gA to compensate for a relatively large change in gpp.

Interestingly enough, the calculations replicate the experimental geometric means
of the NMEs for gpp = 0.6, 0.7, 0.8 only for values of gA < 1 . This is solid
evidence that an effective gA is needed when working with this mass region. Not
only are the values in general smaller than the bare value of gA = 1.25 but in
some cases an effective value as low as gA = 0.3 is required.

The zigzag behaviour of Figure 6 might rise from the filling of orbitals in the
simple shell model. At A = 100, 108, 122 there are two different possible beta
decay processes which result in notably different effective values of gA. The
process giving the smaller gA in these three cases appears to include a nucleus
with all proton or neutron orbitals filled. However, in the A = 106 processes the
order is reversed. In the A = 100 and A = 122 processes both of the even-even
nuclei involved have their protons or neutrons at full orbitals in the process
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yielding the smaller gA. This could explain the large difference in gA within a
single mass number.

Decays to or from a nucleus with full proton or neutron orbitals results a higher
transition amplitude than the neighbouring processes between the isotopes of
the same element. For example, in the β− decay of 106Pd to 106Cd the neutron
number of the Cd nucleus is 58, closing the 0g7/2 shell. This results to a large
right matrix element of Mth

GT (r) = 2.045, much larger than of the Pd to Cd
process at A = 108 withMth

GT (r) = 1.680 or at A = 110 withMth
GT (r) = 1.155.

There seems to be something in the involved systematics which gives more
strength to decays to or from a nucleus with closed shells. How the filling of
orbitals affects the gA behaviour of Figure 6 is difficult to say as nearly every
examined triplet involves one nucleus with a filled neutron orbital. The average
effect appears to be quite random.

In Figure 6 one can see an interesting rising behaviour in gA as a function
of A. There seem to be two mass regions in which gA behaves, on average,
linearly with a positive slope. By making an approximation of the equations of
the two lines and combining them, a function governing the entire mass range
A = 100− 134 can be constructed. The function constructed along the dashed
lines of Figure 6 reads as

gA =

0.02A− 1.6, forA ∈ [100, 120]

1
60A−

43
30 , forA ∈ [122, 134]

. (30)

By using this function to generate values of gA and adopting a reasonably av-
erage value of gpp = 0.7, the Gamow-Teller matrix elements were calculated for
ground state to ground state decays. The resulting left and right log ft values
are presented in Table 5. The agreement with experiment is decent at the very
least. The decays which are not quite along the line of equation (30) in Fig-
ure 6 expectedly produce somewhat less accurate predictions, for example the
A = 124 triplet. The use of this linear gA is still feasible as the overall accuracy
of the predictions is very good for such a simple model.
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Table 5: Calculated log ft values for ground state to ground state decays com-
pared with experiment. The computations were performed with a linear gA
obtained from equation (30) and gpp = 0.7. The experimental data is extracted
from [12], except 1) is extrapolated from systematics of similar neighbouring
decays and 2) from [26].

Process log ftexp log ftth

A Z Z Z+1 Z + 2 gA left right left right

100 40 Zr(0+) → Nb(1+) → Mo(0+) 0.40 4.65 5.1 4.14 5.13
100 42 Mo(0+) ← Tc(1+) → Ru(0+) 0.40 4.4 4.59 4.88 4.63
102 42 Mo(0+) → Tc(1+) → Ru(0+) 0.44 4.21 4.778 4.13 4.75
104 44 Ru(0+) ← Rh(1+) → Pd(0+) 0.48 4.32 4.55 4.66 4.48
106 44 Ru(0+) → Rh(1+) → Pd(0+) 0.52 4.31 5.168 3.98 4.68
106 46 Pd(0+) ← Ag(1+) → Cd(0+) 0.52 4.92 4.41) 4.80 4.21
108 44 Ru(0+) → Rh(1+) → Pd(0+) 0.56 4.22) 5.5 3.84 4.91
108 46 Pd(0+) ← Ag(1+) → Cd(0+) 0.56 4.70 4.425 4.57 4.34
110 46 Pd(0+) ← Ag(1+) → Cd(0+) 0.60 4.09 4.6596 4.43 4.58
112 48 Cd(0+) ← In(1+) → Sn(0+) 0.64 4.70 4.12 4.67 4.27
114 46 Pd(0+) → Ag(1+) → Cd(0+) 0.68 4.119 5.1 3.87 5.09
114 48 Cd(0+) ← In(1+) → Sn(0+) 0.68 4.89 4.4701 4.58 4.51
116 48 Cd(0+) ← In(1+) → Sn(0+) 0.72 4.47 4.662 4.56 4.87
118 48 Cd(0+) → In(1+) → Sn(0+) 0.76 3.91 4.79 4.08 4.87
118 50 Sn(0+) ← Sb(1+) ← Te(0+) 0.76 4.525 5.0 4.49 5.05
120 48 Cd(0+) → In(1+) → Sn(0+) 0.80 4.1 5.023 4.08 4.90
122 48 Cd(0+) → In(1+) → Sn(0+) 0.60 3.95 5.11 4.33 5.19
122 52 Te(0+) ← I(1+) ← Xe(0+) 0.60 4.95 5.191 4.69 5.12
124 54 Xe(0+) ← Cs(1+) ← Ba(0+) 0.63 5.10 5.2 4.68 4.79
126 54 Xe(0+) ← Cs(1+) ← Ba(0+) 0.67 5.066 5.36 4.65 5.04
128 52 Te(0+) ← I(1+) → Xe(0+) 0.70 5.049 6.061 4.65 6.42
128 54 Xe(0+) ← Cs(1+) ← Ba(0+) 0.70 4.847 5.28 4.63 5.32
130 54 Xe(0+) ← Cs(1+) → Ba(0+) 0.73 5.073 5.36 4.62 6.00
134 56 Ba(0+) ← La(1+) ← Ce(0+) 0.80 4.883 5.23 4.57 5.45

The semi-magic isotopes of Sn have, in earlier work, brought some trouble in
calculating the ground state to ground state decays with constant gA values
[16]. The BCS quasiparticle theory does not function well at closed shells and
some problems are often expected in these calculations. However, every process
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involving a tin isotope is actually predicted very well by the linear gA model.

The accuracy of the predictions of Table 5 were evaluated by taking the mean
deviation from the experimental log ft values. The mean deviation is calculated
from

∆m =
1

#D

∑
D

| log ftth − log ftexp| , (31)

where the summation is over all of the investigated processes. The calculated
mean deviations result to ∆m = 0.27, 0.18, 0.23 for the left branch, right branch
and all decays respectively. The mean deviation from experiment is rather small
overall, even smaller if examining only the right branch of decays. Thus, the
predictions given by the linear gA model can be deemed reliable for ground state
to ground state decays.

One might be able to enhance some of the results of Table 5 by altering the
value of gpp for different mass numbers. However, the comfortability of using a
constant value would be lost. Moreover, the larger deviations often happen in
processes where both the left and right theoretical log ft values are too small.
In these situations, only the left or the right branch could be fit to experimen-
tal data by gpp, but never both. These processes are easily recognized to be
deviations from the linear model of gA instead.

3.2 Decays to excited states

The examination of the linear gA model was then expanded to decays from
the 1+ ground state of the odd-odd nuclei to the first excited 2+ state of the
even-even nuclei and to the 0+ and 2+ two-phonon states constructed from the
wave function of the first 2+ state. The wave function of the first 2+ state was
computed by the QRPA formalism and the required transition amplitudes were
determined by using the equations in Section 2.5.3.

All processes in the investigated mass region with experimental data available
for decays to these excited states have been included and the results of the cal-
culations are presented in Table 6 and visualized in Figures 7, 8 and 9. The
predictions of log ft values for decays beyond ground states are generally more
tricky. The QRPA and pnQRPA calculations are often accurate for only the
lowest-lying states and even then the wave function of the obtained state might
connect to some other state with the same angular momentum and parity, per-
haps at a higher energy.
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Still, the accuracy of the prediction is quite passable, especially for decays to
the first 2+ state, the energy of which was fitted to an experimental value. The
calculated log ft values for decays to the two-phonon 2+ state are systematically
too large compared to the experimental values. For these states there seems to
be some mechanism that the present formalism does not account for. The
computed log ft values of Table 6 result to mean deviations of 0.47 (with the
badly functioning Rh to Pd processes omitted) for decays to the 2+1 state, 0.74
to the 0+2−ph state and 0.82 to the 2+2−ph state.

Table 6: Calculated log ft values for decays to excited states compared with
experiment. The computations were performed with a linear gA obtained from
equation (30) and gpp = 0.7. The experimental data is extracted from [12].

A Process Ef (MeV) gA log ftexp log ftth

100 Nb(1+gs) → Mo(2+1 ) 0.5356 0.40 5.65 5.94
β−

Nb(1+gs) → Mo(0+2 ) 0.6951 0.40 5.7 5.72
β−

Nb(1+gs) → Mo(2+2 ) 1.0638 0.40 5.9 6.76
β−

100 Tc(1+gs) → Ru(2+1 ) 0.5395 0.40 6.4 5.88
β−

Tc(1+gs) → Ru(0+2 ) 1.1303 0.40 5.04 6.06
β−

Tc(1+gs) → Ru(2+2 ) 1.3622 0.40 7.1 7.35
β−

102 Tc(1+gs) → Ru(2+1 ) 0.4751 0.44 5.99 6.24
β−

Tc(1+gs) → Ru(0+2 ) 0.9437 0.44 6.60 5.60
β−

Tc(1+gs) → Ru(2+2 ) 1.1030 0.44 ≈ 7.0 6.80
β−

104 Rh(1+gs) → Ru(2+1 ) 0.3580 0.48 5.42 5.94
β+/EC

Rh(1+gs) → Ru(0+2 ) 0.9883 0.48 5.15 5.23
β+/EC

Continued on next page
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Table 6 – Continued from previous page

A Process Ef (MeV) gA log ftexp log ftth

104 Rh(1+gs) → Ru(2+2 ) 0.8931 0.48 — 6.05
β+/EC

104 Rh(1+gs) → Pd(2+1 ) 0.5558 0.48 5.80 7.43
β−

Rh(1+gs) → Pd(0+2 ) 1.3336 0.48 7.36 5.70
β−

Rh(1+gs) → Pd(2+2 ) 1.3417 0.48 8.7 7.13
β−

106 Rh(1+gs) → Pd(2+1 ) 0.5119 0.52 5.865 9.07
β−

Rh(1+gs) → Pd(0+2 ) 1.1338 0.52 5.345 5.39
β−

Rh(1+gs) → Pd(2+2 ) 1.1280 0.52 6.55 6.70
β−

106 Ag(1+gs) → Pd(2+1 ) 0.5119 0.52 5.24 5.74
β+/EC

Ag(1+gs) → Pd(0+2 ) 1.1338 0.52 6.5 5.17
β+/EC

Ag(1+gs) → Pd(2+2 ) 1.1280 0.52 — 6.01
β+/EC

108 Rh(1+gs) → Pd(2+1 ) 0.4339 0.56 5.7 9.40
β−

Rh(1+gs) → Pd(0+2 ) 1.0528 0.56 5.6 5.15
β−

Rh(1+gs) → Pd(2+2 ) 0.9312 0.56 6.0 6.43
β−

108 Ag(1+gs) → Pd(2+1 ) 0.4339 0.56 5.46 5.20
β+/EC

Ag(1+gs) → Pd(0+2 ) 1.0528 0.56 4.89 5.24
β+/EC

Continued on next page
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Table 6 – Continued from previous page

A Process Ef (MeV) gA log ftexp log ftth

108 Ag(1+gs) → Pd(2+2 ) 0.9312 0.56 — 6.03
β+/EC

108 Ag(1+gs) → Cd(2+1 ) 0.6330 0.56 5.35 5.97
β−

110 Ag(1+gs) → Cd(2+1 ) 0.6578 0.60 5.524 5.75
β−

Ag(1+gs) → Cd(0+2 ) 1.4731 0.60 6.80 5.55
β−

Ag(1+gs) → Cd(2+2 ) 1.4758 0.60 7.35 7.47
β−

112 In(1+gs) → Cd(2+1 ) 0.6175 0.64 5.309 5.14
β+/EC

In(1+gs) → Cd(0+2 ) 1.2245 0.64 5.376 5.66
β+/EC

In(1+gs) → Cd(2+2 ) 1.3124 0.64 7.17 6.48
β+/EC

114 Ag(1+gs) → Cd(2+1 ) 0.5585 0.68 5.6 5.99
β−

Ag(1+gs) → Cd(0+2 ) 1.1345 0.68 6.3 5.49
β−

Ag(1+gs) → Cd(2+2 ) 1.2097 0.68 6.5 7.87
β−

114 In(1+gs) → Cd(2+1 ) 0.5585 0.68 ≥ 5.3 4.84
β+/EC

In(1+gs) → Cd(0+2 ) 1.1345 0.68 5.5 5.95
β+/EC

In(1+gs) → Cd(2+2 ) 1.2097 0.68 — 6.70
β+/EC

114 In(1+gs) → Sn(2+1 ) 1.2999 0.68 5.58 5.20
β−

Continued on next page
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Table 6 – Continued from previous page

A Process Ef (MeV) gA log ftexp log ftth

116 In(1+gs) → Sn(2+1 ) 1.2935 0.72 5.85 5.52
β−

In(1+gs) → Sn(0+2 ) 1.7569 0.72 5.88 6.64
β−

In(1+gs) → Sn(2+2 ) 2.1123 0.72 6.31 7.25
β−

118 In(1+gs) → Sn(2+1 ) 1.2297 0.76 5.63 5.53
β−

In(1+gs) → Sn(0+2 ) 1.7583 0.76 5.98 6.32
β−

In(1+gs) → Sn(2+2 ) 2.0429 0.76 6.15 6.96
β−

118 Sb(1+gs) → Sn(2+1 ) 1.2297 0.76 5.79 5.58
β+/EC

Sb(1+gs) → Sn(0+2 ) 1.7583 0.76 5.69 6.89
β+/EC

Sb(1+gs) → Sn(2+2 ) 2.0429 0.76 6.84 7.81
β+/EC

120 In(1+gs) → Sn(2+1 ) 1.1713 0.80 5.23 5.58
β−

In(1+gs) → Sn(0+2 ) 1.8753 0.80 5.96 6.29
β−

In(1+gs) → Sn(2+2 ) 2.0972 0.80 6.37 6.93
β−

122 In(1+gs) → Sn(2+1 ) 1.1405 0.60 5.36 5.87
β−

In(1+gs) → Sn(0+2 ) 2.0877 0.60 6.49 6.52
β−

In(1+gs) → Sn(2+2 ) 2.1538 0.60 5.71 7.16
β−

Continued on next page
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Table 6 – Continued from previous page

A Process Ef (MeV) gA log ftexp log ftth

122 I(1+gs) → Te(2+1 ) 0.5641 0.60 5.39 6.94
β+/EC

I(1+gs) → Te(0+2 ) 1.3574 0.60 5.93 6.56
β+/EC

I(1+gs) → Te(2+2 ) 1.2570 0.60 6.31 7.81
β+/EC

124 Cs(1+gs) → Xe(2+1 ) 0.3540 0.63 5.10 5.98
β+/EC

Cs(1+gs) → Xe(2+2 ) 0.8465 0.63 5.89 7.14
β+/EC

126 Cs(1+gs) → Xe(2+1 ) 0.3886 0.67 5.151 5.77
β+/EC

Cs(1+gs) → Xe(0+2 ) 1.3139 0.67 5.39 6.52
β+/EC

Cs(1+gs) → Xe(2+2 ) 0.8799 0.67 5.78 7.23
β+/EC

128 I(1+gs) → Te(2+1 ) 0.7432 0.70 6.007 5.92
β+/EC

128 I(1+gs) → Xe(2+1 ) 0.4429 0.70 6.495 5.92
β−

I(1+gs) → Xe(0+2 ) 1.5830 0.70 7.748 5.46
β−

I(1+gs) → Xe(2+2 ) 0.9695 0.70 6.754 6.79
β−

128 Cs(1+gs) → Xe(2+1 ) 0.4429 0.70 5.093 5.71
β+/EC

Cs(1+gs) → Xe(0+2 ) 1.5830 0.70 5.583 6.84
β+/EC

Cs(1+gs) → Xe(2+2 ) 0.9695 0.70 5.832 7.47
β+/EC

Continued on next page
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Table 6 – Continued from previous page

A Process Ef (MeV) gA log ftexp log ftth

130 Cs(1+gs) → Xe(2+1 ) 0.5361 0.73 6.3 5.65
β+/EC

Cs(1+gs) → Xe(0+2 ) 1.7935 0.73 7.0 7.16
β+/EC

Cs(1+gs) → Xe(2+2 ) 1.1221 0.73 7.5 7.74
β+/EC

134 La(1+gs) → Ba(2+1 ) 0.6047 0.80 5.99 5.40
β+/EC

La(1+gs) → Ba(0+2 ) 1.7606 0.80 7.32 7.36
β+/EC

La(1+gs) → Ba(2+2 ) 1.1680 0.80 7.31 7.83
β+/EC
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Figure 7: Experimental and theoretical log ft values of decays to the first excited
2+ states of the even-even nuclei.

A curious case arises in the decay of rhodium to palladium via β− decay, in
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Figure 8: Experimental and theoretical log ft values of decays to the 0+

quadrupole two-phonon states of the even-even nuclei.

which the transition to the first 2+ state is predicted very slow for each A =

104, 106, 108. This can be seen in Figure 7 as the largest deviations from
the experimental values. The deviation is likely to be due to the X and Y

amplitudes in the major components of the wave function of the ground state of
the Rh nucleus having opposite sign. There are thus large cancellations in the
transition amplitudes and the calculated log ft values are very high making the
comparative half lives too long by several orders of magnitude. It might also
hint that the QRPA wave function of the first 2+ state does not connect with
the corresponding experimental state.

It is often not clear which states in the experimental spectrum actually corre-
spond to the excited two-phonon states calculated from equation (8). There
might be two 2+ states accompanied by a 0+ state within an essentially de-
generate small energy interval. The degeneracy of the quadrupole two-phonon
triplet might also be split by an unexpectedly large amount in the experimental
spectrum. There are cases like this in the A = 116 − 118 processes involving
isotopes of Sn. Sn has a magic proton number of 50, which leads to the en-
ergy of the first excited 2+ state to be high compared to other neighbouring
isotopes. This then leads to the two-phonon states to have a higher energy and
thus makes it easier for them to get mixed with other kinds of excited states.
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Figure 9: Experimental and theoretical log ft values of decays to the 2+

quadrupole two-phonon states of the even-even nuclei.

The experimental log ft values for these states are rather similar, though, so
the error brought by a mistaken two-phonon state is not very substantial. The
states appearing on Table 6 are ones thought of as the most reasonable guesses.

A disappearance of a clear two-phonon 0+ state happens at A ≥ 126. The
experimental log ft values are given for the lowest excited 0+ state, but this
state is always too high in energy to be the two-phonon state the theory pre-
dicts. Either the degeneracy of the collective two-phonon triplet increases with
increasing mass number A or the formation of this particular multipolarity is
prevented in nuclei investigated here with A ≥ 126. The theoretical log ft val-
ues for these transitions often seem to deviate more than one unit from the
experimental log ft value for the 0+2 state. There are also a few cases in which
the theoretical prediction would coincide almost perfectly with the experimental
value for the 0+2 state. Predictions of log ft values in the QRPA framework are
often a game of chance in single events and it would take a larger specimen of
nuclei and processes to make definite conclusions on the matter. The 4+ state
of the supposed quadrupole two phonon triplet can nevertheless be found, as is
the case in the experimental energy spectra of 126Xe and 128Xe in Figure 10.
The first excited 0+ state in these cases lies around triple the energy of the first
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2+ state. This makes it more probable for the 0+2 state to result from some
other origin than two quadrupole phonons.

126
54Xe72

0+ 0.0

2+ 388.6

2+ 879.9

4+ 942

3+ 1313.9

0+ 1317.7

128
52Te76

0+ 0.0

2+ 742.2

4+ 1497

2+ 1520

6+ 1811.2

1+ 2+ 3+ 1968.5

0+ 1978.8

Figure 10: The experimental low energy spectra of 126Xe and 128Xe [12]. The
energies are in keV. The 2+ and 4+ members of the quadrupole two-phonon
triplets can be recognized at around twice the energy of the first 2+ state, but
the first 0+ state is much higher in energy.
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4 Conclusions

A study of beta decay properties in the QRPA framework was performed in a
vast mass region A = 100 − 134 in order to understand the systematics of the
effective axial-vector coupling constant gA in allowed Gamow-Teller transitions.
The investigated processes were transitions to and from the ground states of
the following odd-odd nuclei: 100Nb, 100Tc, 102Tc, 104Rh, 106Rh, 106Ag, 108Rh,
108Ag, 110Ag, 112In, 114Ag, 114In, 116In, 118In, 118Sb, 120In, 122In, 122I, 124Cs,
126Cs, 128I, 128Cs, 130Cs and 134La. Calculations were made in the QRPA
framework in large valence spaces using realistic Bonn-A two-body interactions.

First, the ground state to ground state decays were examined by fitting the
theoretical geometric means of the left and right Gamow-Teller matrix elements
associated with each odd-odd nucleus to an experimental theoretical mean. This
was done using four separate values for the particle-particle interaction strength
parameter gpp = 0.6, 0.7, 0.8, 0.9. The results were plotted to a graph, which
is presented in Figure 6. In the graph, there were two mass regions in which
the average behaviour of gA was roughly linear. By this method, a linear model
for the behaviour of gA as a function of the mass number A was adopted and
predictions were made for the log ft values of ground state to ground state
decays with an average value of gpp = 0.7 and

gA =

0.02A− 1.6, forA ∈ [100, 120]

1
60A−

43
30 , forA ∈ [122, 134]

.

This examination left little doubt as to whether an effective value for gA is
needed as the results all around pointed to values less than unity. With a linear
model suggested to depict the behaviour of the effective gA, the model was then
put to a test. The linear model for gA was found accurate in describing the
ground state to ground state decays. The mean deviation of theoretical log ft

values from experimental ones with all processes included was 0.23. Much of the
deviation is attributed to the decays which were furthest away from the linear
fit of Figure 6. The linear model gives very good predictions for such a simple
model.

The study was then extended to decays from the 1+ ground state of the odd-odd
nuclei to the lowest lying excited states in the even-even nuclei: the first excited
2+ state and the collective quadrupole two-phonon 0+ and 2+ states. Predic-
tions of log ft values were made for every process with experimental reference
data available.
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The accuracy of the predictions for decays to the first 2+ states was decent, yet
somewhat expectedly not as good as in the case of ground state decays. The
decay of rhodium 1+gs to palladium 2+1 yielded a very high theoretical log ft value
for each A = 104, 106, 108. This was attributed to unfortunate cancellations in
the transition amplitudes due to the X and Y amplitudes of the wave function
of the 1+ ground state of the rhodium nucleus. All other theoretical values were
within reasonable limits of the experimental values. In any case, the linear gA
model gives better overall predictions than a single constant value for gA.

The predictions to the two-phonon states act as just that: predictions. It is
difficult to make any definite conclusions based on the calculations presented
here. The transitions to the 2+2−ph states are systematically predicted too slow
except on a few occasions. On the decays to 0+2−ph states there is more variance.
It is also often difficult to be sure if a state in the experimental spectrum is
actually a two-phonon state. In the spectra of tin isotopes, there are a lot
of 2+ states around the expected energy of the two-phonon triplet. There is
not much variance in the experimental log ft values to these states making this
beta decay property a bad indicator of a two-phonon state. There is a curious
disappearance of the two-phonon 0+ states in the experimental spectra of even-
even nuclei with A ≥ 126. Either the degeneracy of the triplet is badly broken
or, as the beta decay results and the fact that a 2+ and a 4+ state are still found
at the expected energy of the two-phonon triplet would hint, the 0+ state of the
triplet does not form.

The linear model for gA has deemed successful in predicting single beta decays
from ground state to ground state as well as decays to the first excited 2+ state
of the even even nuclei. The next step would be to apply the model to the study
of double beta decay. Predictions can be made for each possible two neutrino
double beta decay in the investigated mass region and compare with available
experimental data. It would also help to have good predictions for processes still
lacking experimental data. The results are expected to be in good agreement
with experiment.
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