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ABSTRACT

Räbinä, Jukka
On a numerical solution of the Maxwell equations by discrete exterior calculus
Jyväskylä: University of Jyväskylä, 2014, 142 p.
(Jyväskylä Studies in Computing
ISSN 1456-5390; 200)
ISBN 978-951-39-5950-0 (nid.)
ISBN 978-951-39-5951-7 (PDF)
Finnish summary
Diss.

This study considers a numerical solution method based on discrete exterior cal-
culus (DEC). The thesis concentrates on electromagnetic waves, meaning that
the mathematical model is given by the Maxwell equations. The DEC offers a
spatial discretization for the three-dimensional Maxwell problems. By apply-
ing the leapfrog style time discretization, we obtain a time-dependent simulation
scheme, where the wave propagation can be tracked forward-in-time.

We customize the DEC framework for harmonic wave problems. The har-
monic leapfrog equations produce an exact time discretization scheme for time-
harmonic problems. The spatial correction is carried out by modifying the Hodge
operator, which is the key factor in the DEC discretization. Using the spatially
harmonic assumption, the harmonic Hodge operator is derived by minimizing
the discretization error by the least squares method. The numerical experiments
show significant improvement of the simulation efficiency compared to the Yee
scheme. Further, we improve the time discretization by introducing a new non-
uniform leapfrog scheme, where the time step size can be varied inside the do-
main. The energy conservation properties are verified by numerical experiments.
The non-uniform leapfrog method offers a significant improvement of the simu-
lation efficiency compared to the uniform leapfrog method.

Alternative iteration methods are introduced to solve time-periodic prob-
lems. The alternative methods are based on the controllability approach, where
the quadratic cost function is minimized by preconditioned conjugate gradient
algorithm. The controllability method increases the speed of convergence espe-
cially with tasks, where the wave is trapped inside the domain. We compare
the DEC implementation to the well known scattering simulation method called
discrete-dipole approximation (DDA). The comparison shows that a simplified
and optimized DEC implementation could be a very competitive method for
solving scattering problems.

Keywords: discrete exterior calculus, electromagnetism, the Maxwell equations,
mesh generation, Voronoi diagram, discrete Hodge, harmonic wave,
leapfrog, non-uniform time stepping, exact controllability, scattering.
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1 INTRODUCTION

Simulation is a natural way of predicting an outcome real-world process, and it is
important from many aspects. In psychology, the threat simulation theory pred-
icates that the human brain performs virtual threat simulations unconsciously
while dreaming. The biological function of dreaming is then to simulate threat-
ening events in order to rehearse the perception of threats and to learn to avoid
them. Almost everyone has participated in an evacuation due to a fire alarm sim-
ulation, which is an example of a scheduled disaster preparedness simulation to
test and rehearse the actions to be taken in case of fire.

Computers have become important for simulating schemes in many con-
texts, since computer programs can repeat controlled events safely and at low a
cost. Education and training simulations are currently used by driving schools,
and flight simulators are employed to train aircraft pilots. The simulations can
include realistic models of even catastrophic scenarios, which could not be re-
hearsed in practice. The simulations also have an entertainment purpose be-
cause video games are based on computer simulations, as are the special effects in
movies. In industrial engineering the computer simulations are applied through-
out the entire engineering process, including design, testing, safety engineering,
and performance optimization. The scientific modeling is applied to both natu-
ral systems and human systems to gain insight into their functioning. Weather
forecasts and climate change prognoses are outcomes of scientific modeling using
observed input values.

The general purpose of computer simulations is to imitate the real-world
phenomena by the outcome of a computer program. The process of numeri-
cal simulation is illustrated in Figure 1. To model the real-world phenomenon
numerically, a mathematical model is first required. This model represents the
key characteristics of the selected physical or abstract process. The mathemati-
cal model is solved using numerical solution methods, which are implemented
in a computer program. The development of computing resources has been fast
during the last few decades due to the needs of home entertainment and more
realistic game environments. Based on these observations, Moore’s law predicts
that the processing speed and the memory capacity of computers doubles ap-
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real-world phenomenon

mathematical model

numerical solution method

simulation result

FIGURE 1 The four-step procedure of numerical simulations: The real-world phe-
nomenon is first described as a mathematical model, which is then solved
by a numerical solution method to obtain the simulation result.

proximately every two years. Problems that were computationally demanding a
few decades ago can be solved significantly faster with today’s computers. Thus,
it is possible to improve the accuracy of the numerical simulations or solve more
demanding problems. The increase of computer resources also provides opportu-
nities to use new numerical solution methods. To take advantage of the increased
computing resources, it is important that the size of the problem increases at the
same pace as the available CPUs and memory.

This thesis concentrates on numerical solution methods from an implemen-
tation point of view. The considered numerical solution method is called the dis-
crete exterior calculus (DEC), which is a naturally driven framework for solving
differential equations. The thesis concentrates on electromagnetic waves and the
mathematical model is given by the Maxwell equations. The convenient physical
phenomena and corresponding simulation results are considered in simplified
simulation examples. Mainly, the numerical experiments concentrate on scatter-
ing problems, but there is also glimpse of wave guide problems. The solution
method can be applied in antenna design, light and radar scattering problems,
electromagnetic brain studies, design of nano-structures and many other appli-
cations.

In this chapter, we begin with an introduction for the DEC framework.
The mathematical model for electromagnetic wave equations is described by the
Maxwell equations. The Maxwell equations are presented in Section 1.1 using the
classical vector field formulation. In Section 1.2, the same equations are presented
using differential forms. A short introduction for the DEC framework is given in
Section 1.3, and a review of the essential literature is presented in Section 1.4.

A more detailed description for the DEC framework is given in the follow-
ing chapters. The mesh formulation is provided in Chapter 2, and the spatial dis-
cretization of the Maxwell equations is described in Chapter 3. The framework is
described in the bounded region and some of the most common boundary con-
ditions and field formulations are introduced in Chapter 4. A time-dependent
solution method is obtained by applying the leapfrog style time discretization
method, which is discussed in Chapter 5. In physical applications, the discrete
solution must usually be transformed into a different formulation and a few of
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these transformation methods are introduced in Chapter 6. The rest of the chap-
ters describe the main results of this thesis. In Chapter 7, we derive a non-uniform
leapfrog time discretization scheme, where time step size can be varied inside the
domain. In Chapter 8, we reformulate the essential terms of the spatial discretiza-
tion using the assumption of harmonic solution. Controlled iteration strategies
for time-periodic problems are discussed in Chapter 9. The resulting numerical
solution method is verified by comparing it to another solution method in Chap-
ter 10.

1.1 The classical Maxwell equations

The mathematical model for electromagnetic waves is described by the Maxwell
equations (Cessenat, 1996). Even though the DEC framework is associated with
differential forms, we describe the Maxwell equations first in classical vector field
formulation. The derivation of the DEC framework is carried out mainly using
the classical formulation because, in general, the vector field presentation might
be better known by the readers. The traditional expression includes the vector
fields E, H, D and B, which represent electric and magnetic fields and electric
and magnetic flux densities, respectively. In this thesis, the variables in bold let-
ters denote vectors in three-dimensional space R3. The classical presentation for
symmetric Maxwell equations is written as

∇× E = −∂B

∂t
− J∗, (1)

∇× H =
∂D

∂t
+ J, (2)

∇ · B = ρ∗, (3)
∇ · D = ρ. (4)

The vector fields J and J∗ represent electric and magnetic current densities, and
the symbols ρ and ρ∗ are electric and magnetic charges, respectively. The rela-
tions between the vector fields are described by the constitutive relations. The
constitutive relations are written as

D = εE, (5)
B = μH,

where ε and μ are either real valued functions or 3x3-tensors representing the
permittivity and permeability of material, respectively. Absorbing materials are
defined by the electric and magnetic conductivities σ and σ∗, which are also rep-
resented as 3x3-tensors. The equations for current densities inside an absorbing
material are

J = σE, (6)
J∗ = σ∗H.
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The classical Maxwell equations can also be expressed in integral formula-
tion. The integral formulation is obtained by applying the Stokes’ theorem to the
classical Maxwell equations. Denoting an arbitrary surface by S and an arbitrary
volume by V, the integral presentation of the Maxwell equations is written as

∮
∂S

E · dl = − ∂

∂t

�
S

B · da −
�
S

J∗ · da,

∮
∂S

H · dl =
∂

∂t

�
S

D · da +
�
S

J · da, (7)

�
∂V

B · da =
�

V

ρ∗dv,

�
∂V

D · da =
�

V

ρdv.

1.2 The Maxwell equations in terms of differential forms

The Maxwell equations have a nice expression in differential form calculus. In
this expression, the vector fields are replaced by objects called differential forms.
The differential forms are tailor made objects for integration over manifolds. More
formally, a differential k-form is an expression that can be integrated over k-
manifolds. Inspired by the integral formulation of the Maxwell equations, we
begin by replacing the electric and magnetic fields E and H with one-forms Ẽ and
H̃. The electric and magnetic flux densities D and B are replaced by two-forms D̃
and B̃. In this thesis, the tilde symbol above the letter implies a differential form
presentation. The differential forms have the coordinate expressions

Ẽ = Exdx + Eydy + Ezdz,
H̃ = Hxdx + Hydy + Hzdz,
D̃ = Dxdy ∧ dz + Dydz ∧ dx + Dzdx ∧ dy,
B̃ = Bxdy ∧ dz + Bydz ∧ dx + Bzdx ∧ dy,

where E = (Ex, Ey, Ez), H = (Hx, Hy, Hz), D = (Dx, Dy, Dz) and B = (Bx, By, Bz)
in Euclidean coordinates. The symbol ∧ represents the wedge product, which is
the product in an exterior algebra, mapping p- and q-forms into a (p + q)-form
(for details, see Cartan, 2006; Flanders, 1989). We also replace the current densities
and charges by two-forms J̃ and J̃∗ and three-forms ρ̃ and ρ̃∗, respectively, and get

J̃ = Jxdy ∧ dz + Jydz ∧ dx + Jzdx ∧ dy,
J̃∗ = J∗x dy ∧ dz + J∗y dz ∧ dx + J∗z dx ∧ dy,

ρ̃ = ρ dx ∧ dy ∧ dz,
ρ̃∗ = ρ∗dx ∧ dy ∧ dz.
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Now, the symmetric Maxwell equations (1)–(4) are written by differential forms
as

dẼ = −∂t B̃ − J̃∗, (8)
dH̃ = ∂tD̃ + J̃, (9)
dB̃ = ρ̃∗, (10)
dD̃ = ρ̃. (11)

The symbol d represents the exterior derivative, which satisfies the generalized
Stokes’ theorem ∫

c
dα̃ =

∫
∂c

α̃.

Here, c is an oriented k-dimensional manifold with boundary and ∂c is the bound-
ary of c. The exterior derivatives of one-form and two-form imply the curl oper-
ator (∇×) and divergence operator (∇·), respectively. Applying the Stokes’ the-
orem in Equations (8)–(11) gives the integral presentation for the Maxwell equa-
tions. By denoting a two-manifold by S and a three-manifold by V, we write∫

∂S
Ẽ = −∂t

∫
S

B̃ −
∫

S
J̃∗,∫

∂S
H̃ = ∂t

∫
S

D̃ +
∫

S
J̃, (12)∫

∂V
B̃ =

∫
V

ρ̃∗,∫
∂V

D̃ =
∫

V
ρ̃.

In differential calculus, the constitutive relations are defined by the concept
of Hodge operator �, which maps a differential k-form α̃ to a differential (n − k)-
form �α̃. Here, n is the dimension of the calculus; with Maxwell equations the
dimension is n = 3. The constitutive relations are expressed using terms �ε and
�μ, as

D̃ = �εẼ,
B̃ = �μH̃.

The equations for current densities are similarly presented by the terms �σ and
�σ∗, as

J̃ = �σẼ,
J̃∗ = �σ∗H̃.

Using these relations, the Maxwell equations can be expressed without variables
D̃ and B̃. Next, we show that the Maxwell equations can be also expressed with-
out the last two equations (10) and (11), if these equations are satisfied during
the initial stage. The continuity of charge implies the following relation between
current densities and charges

∂tρ̃
∗ + dJ̃∗ = 0,

∂tρ̃ + dJ̃ = 0.
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Taking the exterior derivatives from both sides of the Faraday and the Ampére
equations (8) and (9) and applying the continuity of charge gives the relations

∂tdB̃ = ∂tρ̃
∗,

∂tdD̃ = ∂tρ̃.

These are equal to the conservation of the Gauss laws (10) and (11) through the
time integration. Thus, if the initial conditions obey the Gauss laws, then the full
Maxwell system is included in the first two equations. We apply the constitutive
relations and the equations for the current densities into the Ampére and Faraday
equations and write the Maxwell equations as an initial value problem

dẼ = −�μ∂t H̃ − �σ∗H̃,
dH̃ = �ε∂tẼ + �σẼ,

Ẽ(0) = Ẽ0, H̃(0) = H̃0.

1.3 Discrete exterior calculus in a nutshell

The discrete exterior calculus (DEC) provides the properties and calculus of dif-
ferential forms in a natural way at the discretization stage. In this section, we give
a short introduction to DEC. We apply the calculus on a regular grid and obtain
the classical Yee scheme (Yee, 1966). This section is intended to be an introduc-
tion. For a more detailed description, see Chapter 3.

We assume regular grid a), which consists of small cubes tiled next to each
other (see Figure 2). A square surface, which is a cross section of neighboring
cubes, is called a face. Each face is listed in a set {Fi}. A line segment, which
is a cross section of neighboring faces is called an edge, and the edge elements
are listed in set {Ej}. Each face and edge element is assigned an orientation. We
introduce an incidence matrix d1, which is defined by the relative orientations
of the neighboring edges and faces. The incidence matrix has a non-zero value
(d1)i,j �= 0 only, if the edge Ej is included in the boundary of the face Fi. The
non-zero entries of the incidence matrix have either the value -1 or the value +1,
depending on the relative orientation of the elements. If the edge element Ej is
oriented in a counter-clockwise manner with respect to the face element Fi, the
matrix value is positive (d1)i,j = 1. Otherwise, it is negative (d1)i,j = −1.

We express the vector fields E and B as a discrete one-form E and discrete
two-form B, respectively. The discrete one-form is a column vector, which has an
element Ej assigned to each edge element Ej. Similarly, the elements Bi of discrete
two-form are assigned to each face element Fi. More formally,

Ej :=
∫
Ej

Ẽ =
∫
Ej

E · dl,

Bi :=
∫
Fi

B̃ =
∫
Fi

B · da.
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FIGURE 2 The Faraday law and the Ampére law are discretized on the separate grids
a) and b). The dual relation of the grids c) gives a natural estimate for the
constitutive relations.

Based upon the integral formulation of the Maxwell equations (7) or (12), we get
the discrete version of the Faraday law. Assuming J∗ = 0, that is

∂tBi = −
n

∑
j=1

(d1)i,jEj. (13)

The Ampére law is discretized on another regular grid b), as illustrated in
Figure 2. This grid has an edge E∗

i corresponding to each face Fi of the original
grid a). Similarly, b) has a face F∗

j corresponding to each edge Ej of a). The grid b)

is called a dual of grid a). The elements of the dual grid have a similar orientation
to the corresponding primal elements. Then the incidence matrix of grid b) is
actually the transpose dT

1 . We apply a discrete one-form H and discrete two-form
D on the grid b) by

Hi :=
∫
E∗

i

H̃ =
∫
E∗

i

H · dl,

Dj :=
∫
F∗

j

D̃ =
∫
F∗

j

D · da.

The discrete version of the Ampére law is obtained simply by applying the in-
tegral formulation of the Maxwell equations into discrete forms. If the density
current is zero J = 0, we have

∂tDj =
m

∑
i=1

(d1)i,jHi. (14)

The grids a) and b) form a primal-dual pair c), as illustrated in Figure 2.
Each two-form value Dj or Bi can now be expressed by the corresponding one-
form value Ej or Hi using the geometric properties of the corresponding elements
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and the constitutive relations (5). Assuming the constant and real valued material
parameters ε, μ ∈ R, we get approximations

Dj

|F∗
j |

≈ ε
Ej

|Ej| ,
Bi

|Fi| ≈ μ
Hi

|E∗
i |

.

The constitutive relations are now written in form D = �εE and B = �μH, where
the discrete Hodge operators �ε and �μ are diagonal matrices, with components

�εj,j = ε
|F∗

j |
|Ej| , �μi,i = μ

|Fi|
|E∗

i |
.

We apply the constitutive relations with the discrete Faraday law (13) and discrete
Ampére law (14). Then we get

∂tE = (�ε)−1dT
1 H,

∂tH = −(�μ)−1d1E.

The two-forms B and D are now eliminated from the DEC framework, and the
whole equations run on one-forms E and H. The leapfrog style time discretization
is applied to obtain a forward-in-time simulation scheme. After defining electric
field values at the half-integer time instances Ek−1/2 and the magnetic field values
at integer time instances Hk, we obtain a leapfrog time discretization

Ek+1/2 − Ek−1/2 = Δt(�ε)−1dT
1 Hk,

Hk+1 − Hk = −Δt(�μ)−1d1Ek+1/2.

Starting from the given initial values E−1/2 and H0, this defines an iterative sim-
ulation method, where the propagation of electromagnetic waves is simulated
numerically in a very natural manner. The method is stable, if the time step size
Δt is small enough (Taflove and Brodwin, 1975). The presented model excludes
the boundary conditions, which are needed to model physical problems.

1.4 History and previous work

The Finite-Difference Time-Domain (FDTD) method is one of the most success-
ful numerical methods in the field of computational electromagnetics. The ba-
sic FDTD space grid and time-stepping algorithm trace back to the work of Yee
(1966). Thus, the FDTD framework is sometimes called the Yee scheme. The
acronym FDTD was originated by Taflove (1980). The FDTD method was first
time applied with the wave scattering problems by Umashankar and Taflove
(1982; 1983). In those studies, the near and far fields were computed for time-
harmonic waves in two- and three-dimensional structures. Since the 1990’s FDTD
techniques have emerged as a primary means to model electromagnetic wave
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interactions with material structures, and many scientific and engineering prob-
lems are included (Yee and Chen, 1997; Taflove and Hagness, 2005). The original
FDTD algorithm is based on a regular space grid. The algorithm is easy to under-
stand, and it has an exceptionally simple implementation for a full-wave solver.
However, the structured grid design has its disadvantages, especially when ap-
proximating curved boundaries (Madsen, 1995). Applying the FDTD to irregular
grids makes the implementation more complicated.

Several numerical algorithms, which allow the usage of unstructured grids,
have been studied. For example, the finite element method (FEM) (Nédélec, 1980,
1986, 2001; Volakis et al., 1998; Jin, 2002) and the finite volume method (FVM)
(Chung and Engquist, 2005) are competitive alternatives for solving electromag-
netic problems numerically in unstructured grids. Another method is the finite
integration technique (FIT), which was originated by Weiland (1977). The FIT
provides a discrete reformulation of the Maxwell equations using their integral
formulations. The resulting discretization scheme is applicable for computing,
and it allows one to simulate electromagnetic problems with complex geometries.
The FIT is based on the usage of integral balances and thus allows one to prove
the stability and conservation properties of the discrete system. This enables the
development of long-term stable numerical time integration schemes (Clemens
and Weiland, 2001; Marklein, 2002).

In the past 15 years, many researchers have been working on discretizing
the Maxwell equations in terms of differential forms. The language of differen-
tial forms and concepts of algebraic topology allow one to separate those equa-
tions, which are metric-free, arising from topology, from those, which are metric-
dependent (Teixeira and Chew, 1999; Tonti, 1999; Tarhasaari et al., 1999). The
discretization is then carried out using the concept of discrete differential forms.
Despite the different background, the new formulation closely resembles the dis-
crete formulation of the FIT, which has already been established for more than
35 years. In computational electromagnetics, this discretization method offers a
simple generalization of the FDTD to unstructured complexes. Using the new
approach, the Yee-like schemes were extended to unstructured grids for the first
time by Bossavit and Kettunen (1999, 2000). In the literature, the pioneering work
of computational electromagnetism in this research area includes Bossavit (1998,
2003), Hiptmair (2001, 2002), Mattiussi (2000), Gross and Kotiuga (2004) and Tonti
(2001, 2002). The term discrete exterior calculus (DEC) was introduced in the PhD
thesis of Hirani (2003). Since then, the term has appeared in several papers (Des-
brun et al., 2005, 2008; Stern et al., 2009; Hirani et al., 2012).

The DEC framework is based on using both primal and dual meshes in the
discretization scheme. The error sources are packed into the relation of the primal
and dual elements, and this relation is described by the concept of the discrete
Hodge operator. The preferred relation of primal and dual elements is devel-
oped during the pioneering work on the DEC method. In the beginning, many
of the authors used a barycentric dual relation to determine the Hodge operator
(Bossavit and Kettunen, 1999; Tarhasaari et al., 1999). Hiptmair (2002) was the
first to use circumcentric dual instead of barycentric construction. The use of cir-
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cumcentric dual was later shown to be essential for the theory of discrete exterior
calculus (Desbrun et al., 2005). Circumcentric dual elements are orthogonal to
corresponding primal elements, which is a highly desirable property. Then, the
discrete Hodge star can be constructed as a diagonal matrix, which increases ef-
ficiency and gives tighter error bounds for the result. Since the Hodge operator
is an essential element to ensure the accuracy of the DEC method, the develop-
ment of an accurate Hodge star is still undergoing active research (Desbrun et al.,
2008). The studies in this area have also moved in the direction of mesh gener-
ation and generalization of the dual construction (Hirani et al., 2012). A specific
mesh optimization method is developed to improve the mesh quality in terms of
the Hodge operator (Mullen et al., 2011). The resulting Hodge optimized trian-
gulation (HOT) exploits the weighted circumcentric duality.

There are not many public software titles available on discrete exterior cal-
culus. Perhaps the most advanced software is PyDEC (Bell and Hirani, 2012),
which was developed by Bell and Hirani. PyDEC is a very general implementa-
tion, and it facilitates inquiry into both physical problems on manifolds as well
as purely topological problems on abstract complexes. Both tetrahedral trian-
gulations and regular cubic complexes are used. The DEC offers a wide degree
of freedom to apply the method with different kind of meshes. Bossavit (2005)
generalized the calculus for piecewise smooth manifolds, which provides more
choice for the mesh generation. The DEC framework is also applied for fully
unstructured spacetime by Stern et al. (2009). The construction of a fully unstruc-
tured spacetime mesh offers a great challenge since a four-dimensional Delaunay
triangulation is needed.

The discretization of exterior calculus can be applied in many applications.
In this thesis, we consider only the Maxwell equations and the electromagnetic
wave problems. The acoustic, elastic and electromagnetic waves can be written
under the same class of differential form equations, as discussed in previous stud-
ies (Picard, 2009; Picard and Freymond, 2012). Thus, the results of this thesis have
wide scale of applications.



2 MESH FORMULATION

The Maxwell equations are presented in four-dimensional space, where the first
three dimensions are devoted to spatial coordinates x, y, z, and the last dimen-
sion is reserved for the time coordinate t. The standard procedure is to separate
the time dimension and consider the Maxwell system in a three-dimensional do-
main Ω ⊂ R3. In numerical methods, the domain is traditionally discretized by
a three-dimensional mesh, though the idea of entirely four-dimensional unstruc-
tured discretization is discussed by Stern et al. (2009).

Depending on the simulation method, the mesh is usually built using cer-
tain structural elements. For example, the classical Yee scheme relies on rectangu-
lar elements. The rectangular elements have their advantages, but there are also
disadvantages, for example, in the approximation of curved or oblique bound-
aries. A system based on a regular grid is also anisotropic, having different prop-
erties with different orientations. The discrete differential forms offer a tool to
relax the Yee-like scheme to work on more general meshes. Based upon the pi-
oneering work of Bossavit and Kettunen, the Yee-like scheme can be fitted for
tetrahedral elements (1999), for staggered cellular elements (2000) and for piece-
wise smooth manifolds (2005). The downside of the discretization method is the
demand for an appropriate dual mesh, which is sometimes difficult to guarantee.

In this chapter, we describe a formulation for a three-dimensional mesh and
its appropriate dual mesh. Our mesh formulation section starts by recalling the
notion of manifolds in Section 2.1. Then we introduce a manifold-like cell com-
plex with an orientation and the dual complex (see Sections 2.2, 2.3 and 2.4). In
Section 2.5, the proposed formulation for mesh and dual mesh is presented as a
special case of the complexes, where the body cell elements obey the polyhedral
shapes. In Sections 2.6 and 2.7, we discuss the mesh generation and the opti-
mization of the mesh. At the end of this chapter, we introduce several structured
space filling grids, which can be applied and mixed together to obtain structured
meshes for the DEC framework.
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FIGURE 3 The figure 8 is not a manifold, but the group of circles is. The circle on the
right is an example of a connected manifold.

2.1 Manifold

The tailor-made mathematical structure for differential forms is the differentiable
n-dimensional manifold with boundary. In this section, we briefly recall the con-
cept of manifolds. For further reading, see de Rham (1984); Munkres (1991); Lee
(2009). An n-manifold (manifold of dimension n) is a topological space that is lo-
cally similar enough to the n-dimensional Euclidean space. In other words, each
point of an n-manifold has a neighborhood that is homeomorphic to the open
n-ball

Bn :=

{
(x1, x2, . . . , xn) ∈ Rn :

n

∑
i=1

x2
i < 1

}
.

In the three-dimensional Euclidean space R3, we consider only manifolds of di-
mensions n ∈ {0, 1, 2, 3}. A zero-manifold is just a discrete space. The class of
one-manifolds include lines and circles, but a figure eight is not a manifold due
to its crossing point (see Figure 3). The two-manifolds and three-manifolds cor-
respond to surfaces and volumes, respectively. In general, a manifold does not
have to be connected. Thus, we recall the term connected manifold, meaning a
connected space, which is also a manifold.

A differentiable manifold is a manifold, which is, near to each point, simi-
lar enough to a linear space. The concept of differentiable manifold is important,
since it allows one to perform differential calculus. A manifold with boundary is
a space containing both interior points and boundary points. Each interior point

has a neighborhood homeomorphic to the open n-ball Bn. Every boundary point

has a neighborhood homeomorphic to the open half n-ball

Bn
+ :=

{
(x1, x2, . . . , xn) ∈ Rn :

n

∑
i=1

x2
i < 1 and x1 ≥ 0

}
.

The homeomorphism must send each boundary point to a point with x1 = 0.

2.2 Cell complex

The spatial discretization is based on the decomposition of the domain Ω into a
cell complex (see Munkres, 1984; Hatcher, 2002). We start with the fundamental
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object of the cell complex, which is called a cell. A general definition of a cell is
based on connected differentiable manifolds with boundary. We give the follow-
ing recursive definition for the p-cell, which is a cell of dimension p.

– A zero-cell is a single point in space.
– A one-cell is a differentiable path between two zero-cells.
– Inductively, a p-cell is a connected differentiable p-manifold with boundary,

where the boundary is constructed by a finite set of (p − 1)-cells.

The p-cell is denoted by cp. A cell cp−1, which is on the boundary of cp, is called
a boundary cell of cp. Vice versa, cp is called a parent cell of cp−1. In R3, we
consider zero-cells, one-cells, two-cells and three-cells, which are called nodes,
edges, faces and bodies, respectively. We denote a p-volume of a cell by |cp|,
which corresponds to length, area and volume of one-, two- and three-cells, re-
spectively. Examples of cells in R3 are illustrated in Figure 4.

FIGURE 4 Examples of p-cells, p ∈ {0, 1, 2, 3}. The terms node, edge, face and body

are used for these elements, respectively.

The definition of a cell requires that a cell has a boundary. Thus, a circle,
which has no boundary points, is not an edge by the definition. Similarly, a sphere
surface is not face because the sphere boundary has no boundary edges. Still, the
sphere boundary can be constructed by two half-spherical faces, and the circle
can be constructed by two half-circle edges. Because a boundary of a p-cell cp is a
(p− 1)-manifold without a boundary, the cell cp must have at least two boundary
cells to complete the boundary.

FIGURE 5 Examples of p-simplices, p ∈ {0, 1, 2, 3}.

One usually likes to operate on simplified cell elements to ease the calculus.
Therefore, we present the idea of linear and convex cells. We define the linear

cell as a cell, which is a linear manifold with linear boundary cells. The cell,
which is a convex manifold, is called a convex cell. A simplicial cell, also called
a simplex, is a special case of a linear and a convex cell. The p-simplex can be
defined as a convex hull of linearly independent p + 1 vertices. A simplicial edge
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is basically a line segment between two boundary nodes. A simplicial face is a
triangle, having exactly three boundary edges. A simplicial body is a tetrahedron
with exactly four boundary faces. An example of each p-simplex is illustrated in
Figure 5.

FIGURE 6 A two-complex and a three-complex are illustrated on the left and right, re-
spectively. The existence of interior cells of the three-complex are shown by
the cross-section on the very right.

The cell complex, or complex, is a certain collection of cells. Basically, the
complex is used to decompose the domain Ω by a honeycomb of cells, where
duplicate cells do not exist. Examples of complexes are illustrated in Figure 6. A
k-complex, denoted by K, is a complex of dimension k, and it is a finite set of cells
such that

– The largest dimension of cells is k.
– Every boundary cell of a cell in K is also a cell in K.
– The intersection of two cells in K is either a cell in K or it is the empty set.
– The intersection of two p-cells in K is not a p-cell.

The underlying space of a complex is the union of its cells, and it is denoted by
|K|. In general, the underlying space is not necessarily a manifold. A complex,
where |K| is a manifold or a manifold with boundary, is called a manifold-like

complex. Every cell of K that is included on the boundary of |K| is called bound-

ary cell of K. Otherwise, the cell is called the interior cell of K.
In R3, the maximum dimension of a complex is three. A three-complex

includes cells of four different dimensions. In this thesis, we denote the sets of
nodes, edges, faces and bodies by N , E , F and B, respectively.

2.3 Oriented complex

In this section, we introduce the concept of orientation for the cells and the cell
complexes. The concept orientation is necessary for the discretization of the
Maxwell equations, and the oriented complex is a base for the mesh formulation.
The orientation of a complex can be defined in several manners. The orientation
is defined for an n-dimensional simplicial complex by Hirani (2003). Along the
same lines, we explain the orientation for three-dimensional cell complex, assign-
ing an orientation to edge and face elements.
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A cell that has an orientation is called an oriented cell. The definition of
the orientation is associated with the order of boundary cells. More precisely,
if τ0, . . . , τk are the boundary cells of a p-cell cp, then the oriented p-cell cp is
the same cell together with a fixed order of τ0, . . . , τk. A node (zero-cell) has no
boundary cells, which means by this definition that the node has only one pos-
sible orientation. An edge (one-cell) has two possible orientations, since the two
boundary nodes can be ordered in two possible ways. We illustrate the orienta-
tion of an edge by an orientation vector pointing from the first node to the second,
as shown on the left-hand side of Figure 7.

FIGURE 7 Oriented one-cell and oriented two-cell.

The boundary edges of a face element can be ordered in at least two pos-
sible ways because the face has at minimum two boundary edges. The number
of edges can be larger, in which case the number of permutations is larger. We
limit the number of orientations by accepting only those permutations that form
a circulation around the face. In other words, the consecutive boundary edges in
the ordered boundary list need to have a common boundary node element. By
merging the congruent circulations (i.e. the circularions that rotate in the same
direction), we reduce the number of orientations into two separate orientations.
We illustrate the orientation of a face by a counter-clockwise orientation vector, as
shown on the right-hand side of Figure 7. All the possible orientations of a body
element are merged into one equivalence class. Thus, the order of the boundary
face list has no meaning in practice.

+1

-1
+1

+1

+1

-1 +1+1

-1

FIGURE 8 A boundary cell is said to have either a positive or negative induced orien-
tation with respect to the parent cell. The positive orientation is denoted by
+1 and the negative by -1.

The reason for defining the orientation of a cell is in the concept of induced

orientation. The induced orientation declares the orientation of a boundary cell
τ with respect to the parent cell cp. The induced orientation is said to be either
positive or negative. The induced orientation is positive (denoted by +1), if

– c1: the edge orientation vector points at the boundary node τ.
– c2: the boundary edge τ is oriented in a counter clockwise direction of c2.
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– c3: the boundary face τ is oriented in inward direction of the body c3.

Otherwise, the induced direction is negative (denoted by -1). Examples of in-
duced orientations are illustrated in Figure 8.

An oriented complex is a complex where each cell is an oriented cell. Next,
we recall an essential object of an oriented complex K, called the incidence ma-

trix. An incidence p-matrix, denoted by dp, is a matrix that assigns an induced
orientation for each pair of a (p + 1)-cell and a p-cell. For the pair {cp+1

i , cp
j },

which is not a parent-boundary pair, the incidence matrix value is zero (dp)i,j = 0.

The incidence matrix has non-zero values only if the cp
j is a boundary cell of cp+1

i .
The non-zero entries of the incidence matrix have either the value -1 or the value
+1, depending on the induced orientation of the cells. In a three-complex, the
three incidence matrices d0, d1 and d2 are qualified. The incidence zero-matrix d0
is a map from nodes N to edges E . Similarly, the incidence one-matrix d1 is a map
from edges E to faces F , and the incidence two-matrix d2 is a map from faces to
F to bodies B. Later in Chapter 3, these incidence matrices represent the discrete
exterior derivatives in the formulation of the discrete exterior calculus.

2.4 Dual complex

The DEC framework requires the concept of dual complex associated with the
(primal) cell complex. In the literature, there are at least two significantly differ-
ent approaches to define the dual complex. The first approach is presented in
Hirani (2003). In this approach, every p-cell is decomposed into a separate dual
partition by the center points of the cells. This approach requires well-centered

cells, where the center point of each primal cell has to be inside the cell.
The other approach, which is also applied in this thesis, is presented in Hipt-

mair (2002) and Bossavit (2005). This approach does not require a well-centered
mesh. Still, every center point must lie inside the underlying space |K|. Let cp be
an interior p-cell of a k-complex. We define the corresponding dual cell of cp as a
(k − p)-cell and denote it by ∗cp. It is important to notice that ∗cp is not a p-cell
but a (k − p)-cell, as illustrated in Figure 9. The following two conditions hold
for the dual cells:

– If cp−1 is a boundary cell of cp, then the dual cell ∗cp−1 is a parent of ∗cp.
– If cp+1 is a parent for cp, then the dual cell ∗cp+1 is a boundary for ∗cp.

The dual cell of an interior cell is a cell similar to the primal cell, which is defined
in Section 2.2. The dual cell of a boundary cell is slightly different. On the bound-
ary, the dual cell is not closed because the boundary of the dual cell is incomplete.
The boundary can be completed by cutting the cell inside the underlying space
|K|. The additional boundary cell of a dual cell ∗cp is called a boundary dual

cell, and it can be defined as a dual cell of cp in a (k − 1)-dimensional boundary
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FIGURE 9 Primal p-cells (green) and corresponding dual (3 − p)-cells (red) in a cubic
three-complex.

complex. Thus, the boundary dual cell of cp is a (k − 1 − p)-cell. We denote the
boundary dual cell by ∗∂cp.

A dual complex is a finite set of dual cells, similarly as the primal complex
is a finite set of primal cells. Dual complex of a primal k-complex K is also a
k-complex, and we denote it by ∗K. The underlying space of a dual complex
equals the underlying space of the corresponding primal complex i.e. | ∗ K| =
|K|. A two-complex and the corresponding dual two-complex are illustrated in
Figure 10.

FIGURE 10 A two-complex of five two-cells is partitioned into an orthogonal dual com-
plex. Each primal node corresponds to a dual face, as illustrated by the
matching colors. Each primal edge corresponds to a dual edge, and each
primal face corresponds to a dual node.

A dual complex of a three-complex includes cells of four different dimen-
sions. We denote the nodes, edges, faces and bodies of the dual mesh by sets of
cells N∗, E∗, F∗ and B∗, respectively. The cells are ordered in a similar manner
to the primal cells, and we have relations

N∗
i := ∗Bi, E∗

i := ∗Fi, F∗
i := ∗Ei, B∗

i := ∗Ni.

The orientation of a dual complex follows from the primal complex orientation.
Using a similar orientation for each corresponding primal and dual cell pair, the
incidence matrix of the dual complex is just the transpose of the primal incidence
matrix (Bossavit, 2005). Denoting the incidence p-matrix of a dual k-complex by
∗dp, we write the relation between primal and dual incidence matrices as ∗dp =
dT

k−p−1. In a three-complex, this means ∗d0 = dT
2 , ∗d1 = dT

1 and ∗d2 = dT
0 .
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2.5 Mesh and dual mesh

The term mesh is often used to describe the discretization of the domain Ω in
numerical methods. In this section, we finalize a mesh formulation for the DEC
framework. The oriented complex gives a very general presentation for a mesh.
Basically, a mesh could be defined as an oriented manifold-like k-complex. Then,
for example, objects with curved boundaries could be discretized accurately. It
is important to recognize this possibility, but for simplicity, we restrict to using
only polyhedral elements. Thus, we define a k-mesh (a mesh of dimension k) as
an oriented manifold-like k-complex with linear and convex cells.

In a computer implementation, the mesh is stored as lists of p-cells. The
three-mesh then includes four lists: nodes N , edges E , faces F and bodies B.
The cells are stored in a recursive manner. A node is stored as a vector v ∈ R3.
The other cells are stored topologically according to the list of their boundary
cells. Specifically, an edge includes a list of exactly two boundary nodes. A face
includes at least three boundary edges, and a body includes at least four bound-
ary faces. The positions of the nodes and the topology declare a unique linear
complex, which is the mesh.

A dual mesh is a dual complex of a primal mesh. Since the primal mesh is an
oriented and manifold-like complex, the dual mesh is an oriented and manifold-
like dual complex. The linearity and the convexity are not self-evident properties
for the dual cells. The dual node positions must be selected carefully to obtain
these properties. In the DEC framework, the orthogonality between primal and
dual cells is a desired property. The orthogonality means that each vector of a
primal cell is orthogonal to every vector of the corresponding dual cell. Using the
circumcenters (or weighted circumcenters) of the primal bodies as the dual node
positions, all these properties can be accomplished. Next, we recall the notion of
circumcenter.

We assume a linear and convex p-cell cp lying on a p-dimensional affine
space A with extreme points v1, . . . , vn. If there is a position x ∈ A, which is in
equal distances to all nodes v1, . . . , vn, then the position x is called the circum-

center of cp. There exists always a circumcenter for an simplicial complex. The
existence of the circumcenter for cellular cells depends on the node positions. For
example, a rectangle has a circumcenter, which is actually same as the average
point of the nodes (called the barycenter). A cell that has a circumcenter is called
a circumcentric cell. Two examples of circumcentric cells are shown in Figure 11.

The circumcenter is not necessarily inside the cell i.e. x /∈ cp. In certain in-
stances, the circumcenter can be far outside the cell boundaries and far from the
barycenter of the cell. The weighted circumcenter is a more flexible alternative
for the circumcenter. Each node is now assigned a pair that includes a position
vector vi ∈ R3 and a weight wi ∈ R. The weighted circumcenter is then a position
x with equal distance ‖x − vi‖2 − wi to each extreme point of cp. This distance,
where ‖ · ‖ stands for the Euclidean distance, is sometimes referred to as the La-
guerre distance (Mullen et al., 2011). A cell, which has a weighted circumcenter,
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FIGURE 11 A circumcentric 2-cell and a circumcentric 3-cell are illustrated on the left
and right, respectively.

is called a weighted circumcentric cell. A (weighted) circumcentric dual mesh is
a linear dual mesh, where the dual node positions are selected as the (weighted)
circumcenters of the primal body elements. The circumcentric duality sets sev-
eral requirements for the primal mesh. Thus, the generation of primal and dual
elements cannot be separated. We call (weighted) circumcentric mesh a mesh,
which has a (weighted) circumcentric dual mesh.

2.6 Generation of a circumcentric mesh

A (weighted) circumcentric mesh and its dual mesh can be constructed by build-
ing the (weighted) Voronoi diagram from a set of (weighted) primal nodes. The
generation of a Voronoi diagram, which is named after the (1908) work of Georgy
Voronoi, is a standard procedure in geometry (see Aurenhammer and Klein, 2000;
de Berg et al., 2000). Algorithms for the Voronoi diagrams are available for gener-
ally normed n-dimensional spaces (Reem, 2009). In the field of mesh generation,
Voronoi diagrams are often applied to generate Delaunay triangulations (see De-
launay, 1934; Maur, 2002). For more details of the relation between Voronoi dia-
grams and Delaunay meshes, see O’Rourke (1998).

In the mesh generation procedure, which is based on the Voronoi diagram,
the generation of primal and dual meshes are inverted. Basically, the Voronoi
decomposition from the primal nodes represent the decomposition of the dual
mesh, and the primal mesh is constructed topologically from the dual mesh. The
procedure of generating a convex mesh from a point set is as follows. Assume
a set of primal nodes with positions (and weights for the weighted Voronoi di-
agram). We compute a Voronoi decomposition, where each cell represents the
volume nearest to the current node. Each Voronoi cell, centered by a node, cor-
responds to a dual body element. Voronoi planes (boundaries between Voronoi
cells) correspond to dual face elements, which are associated with primal edge
elements between two nodes. Each Voronoi edge (intersection of Voronoi planes)
generate both a dual edge and a primal face. The dual nodes and primal bodies
are generated from the crossing points of Voronoi edges. In general, the primal
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mesh is not a triangulation. Polyhedral elements like cubes, prisms, pyramids or
octahedra might exist as well. All these elements fit easily into the DEC frame-
work.

FIGURE 12 A relation between the Voronoi diagram (dotted line) and the Delaunay
triangulation (triangles) is illustrated in two-dimensions. On the right-hand
side, the Delaunay triangulation has a zero sized dual edge in the middle.

The DEC framework demands positively sized primal and dual cells. The
Delaunay triangulation, in which every circumball is empty of nodes, does not
offer this automatically. For example, if a Delaunay triangulation is constructed
from the four extreme points of a square, there exists a zero sized dual edge in
the middle, as shown on the right-hand side of Figure 12. Basically, a Delaunay
triangulation can be transformed into acceptable polyhedral mesh by combining
the cells with the same circumcenters. We insist that each circumball of a cell does
not include any nodes, but all nodes on the boundary must belong to the current
cell. To ensure positively sized dual cells at the neighborhood of the domain
boundary, we also insist that every circumcenter must lie inside the underlying
space of the mesh.

2.7 Mesh optimization

There are certain difficulties in constructing fully unstructured primal and dual
meshes. Applying the Voronoi diagrams to a random set of nodes leads almost
everywhere to a (weighted) Delaunay triangulation. A random Delaunay trian-
gulation might offer non-optimal dual elements, which are difficult for the DEC
method. For optimal meshing, one should guarantee good alignment properties
of the primal and dual elements, as discussed in Section 3.3. The element sizes
should also be close to each other because the time stepping stability criterion of
Section 5.5 is optimal for uniform element sizes. Close to zero element sizes might
also cause problems with numerical stability because a division by a small num-
ber occurs. In some cases, a sophisticated mesh generation can be an even more
challenging problem than the full DEC-based simulation of Maxwell equations.

There are several methods to improve the Delaunay meshing by optimiz-
ing certain parameters of the Delaunay triangulation (see Tournois et al., 2009;
van Kreveld et al., 2010). As described in Mullen et al. (2011), there is also an
optimization method, which is targeted specifically for the DEC framework. The
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Hodge-Optimized triangulation (HOT) is designed to improve the quality of the
Hodge operator, which is the most important factor for the DEC method accu-
racy, as we discuss in Chapter 3. The HOT optimization is based on the optimal
transport theory, and the idea is to optimize the positions vi and weights wi of
each primal node. Starting from an initial non-optimized mesh, the positions and
weights are optimized alternately by an iterative algorithm. The topological rela-
tions of the mesh remain unchanged in the optimization, which means the initial
mesh should have been selected wisely. The HOT optimization is applied only
for simplicial meshes. Applying the method for polyhedral cells might destroy
the circumcentricity of the cells. It still remains unclear, how this optimization
method could be applied to polyhedral circumcentric cells.

Our approach is to generate partly structured meshes. In other words, we
generate a mesh that consists of structured regions, which are separated by un-
structured layers. One advantage of this approach is that we can model bound-
aries as accurately as with the fully unstructured meshing. We can also modify
element sizes inside the domain. The mesh generation is also relatively fast be-
cause a very small proportion of elements is unstructured. The HOT optimiza-
tion method is needed only for the unstructured cells. In the next section, we
introduce several grid types, which are based on natural crystal structures. These
grids can be applied as structured parts of the partly structured mesh design.

2.8 Natural crystal structures for the structured grid design

Structured grids are successfully applied for the discretization of the Maxwell
equations with several frameworks. There are advantages of using structured
grids instead of unstructured grids. Usually, the construction of a structured grid
is relatively simple, and important element properties can still be controlled. The
simulation framework can also be optimized for certain structured systems, and
then both memory consumption and CPU time can be reduced. Of course, there
are also disadvantages in using structured grids. The structured grids rarely fit
curved or oblique boundaries well. The change of element sizes can also be dif-
ficult inside the domain. Usually, the structured grids are anisotropic, and thus
the system might have different properties in different spatial orientations. The
simulation accuracy might depend on the selection of the grid type, as observed
in two-dimensions by Keränen et al. (2004). In this section, we introduce several
structure types, which can be applied to structured mesh design. The properties
of the following grids are tested by numerical experiments in Section 8.5.

The cubic tiling is the simplest and the most common way to fill a three-
dimensional space. It is also the basis for the cubic crystal systems, which are
used in crystallography to explain natural crystal structures. There are three main
structures in cubic crystal systems: primitive cubic, face-centered cubic (FCC)
and body-centered cubic (BCC) (Conway and Sloane, 1999). The primitive cu-
bic structure leads to a regular grid, which has a regular dual grid. The regular
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cubic FCC BCC

FIGURE 13 The vertices of cubic, FCC and BCC grids are presented by the o symbol on
even layers and by the + symbol on odd layers. One body element of every
kind is illustrated on the grids.

grid is applied in several discretization methods, including the conventional Yee
scheme. The FCC and BCC structures and their dual structures are explained
below.

FIGURE 14 Primal and dual elements of the FCC grid are illustrated with respect to the
regular base grid. The primal nodes of the construction are represented by
small spheres.

The FCC structure can be constructed by the Voronoi diagram from the ver-
tex set, where the cubic grid vertices and the center points of each face element
are united, as shown in Figure 13. The space tiling of the FCC structure is com-
posed of alternating regular octahedra and regular tetrahedra at a ratio of 1:2.
Each primal edge is of equal length, and the primal faces are equilateral triangles
of equal areas. The circumcentric dual faces are rhombuses (a parallelogram with
four sides of equal length) with a relation of

√
2 between the longer and shorter

diagonal length. The circumcentric dual body elements are Kepler’s rhombic
dodecahedra, which consist of 12 congruent rhombic faces (Kepler, 1966). The
primal and dual elements of the FCC structure are illustrated in Figure 14.

The BCC structure is a tetrahedron structure, which is one of the Som-
merville’s grids (Sommerville, 1923). It is constructed from the cubic grid by
adding a vertex at each body center, as illustrated in Figure 13. The space tiling
of the BCC grid is composed of congruent tetrahedra, where each face is a con-
gruent isosceles triangle (see Figure 15). The bottom edges are longer than the
side edges by a ratio of 2 :

√
3. The dual space tiling consists of truncated octahe-

dra, each having 6 square faces and 8 regular hexagon faces. All the dual edges
have the same length. The dual tessellation is known as the Kelvin’s structure,
which was introduced by Thomson (1887). According to the Kelvin’s conjecture,
the Kelvin’s structure was proposed to be the best space-tiling to minimize the
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FIGURE 15 Primal and dual elements of the BCC grid are illustrated with respect to the
regular base grid. The primal nodes of the construction are represented by
small spheres.

total surface area of the interfaces between the elements of equal volume. As the
BCC structure is the simplest well-centered tetrahedral grid, it is preferred for the
Yee-like simulation schemes in several instances (Bossavit, 2003; VanderZee et al.,
2008).

Bossavit (2001, 2003) suggests to use meshes with sharp dihedral angles,
when a Yee-like scheme is applied on the tetrahedral grids. By the following
theoretical consideration, we can see that the BCC construction is not likely to be
the optimal one. The dihedral angle of a regular tetrahedron is arccos 1

3 . Hence,
in a hypothetical space-tiling configuration, we would need 2π/ arccos 1

3 ≈ 5.1,
regular tetrahedra to share the same edge. From this, it can be concluded that
in a densely packed, nearly regular tetrahedral tiling, there should be five or six
tetrahedra sharing the same edge (Sullivan, 2000). Therefore the dual elements
should have either pentagonal or hexagonal faces, which is not the case with
the Kelvin’s structure. Thus, we recall the concept of tetrahedrally close-packed
(TCP) structures (described by Frank and Kasper, 1958, 1959), which have this
property.

In TCP structures, there are four combinatorial types of the Voronoi cells,
which all have only pentagonal and hexagonal faces, with no adjacent hexagons
(Sullivan, 1998). In the literature, the most common TCP structures are known as
A15, C15 and Z lattices. In fact, the other known TCP structures can be viewed
as combinations of these three basic ones (Kusner and Sullivan, 1996; Du and
Wang, 2005; Sikiric et al., 2010). The maximum dihedral angles of A15, C15 and
Z elements are relatively sharp compared to the BCC structure, as discussed by
Eppstein et al. (2004). However, it is not obvious that the TCP structures are
optimal for the Yee-like schemes. For example, the edge lengths differ more in
the TCP structures than in the cubic crystal structures (Sullivan, 1998).

The A15 structure was first discovered in a molecule structure by Hartmann
et al. (1931). To construct A15, one can start with a BCC lattice and insert two ver-
tices on each face of the original cubic grid, as illustrated in Figure 16. The dual
body elements of A15 are irregular dodecahedrons (12-hedron with pentagonal
faces) centered at each BCC lattice vertex, and a tetrakaidecahedron (14-hedron
with two hexagonal and twelve pentagonal faces) around each of the other ver-
tices. Weaire and Phelan (1994) found that a stretched version of the dual struc-
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TABLE 1 Relative vertex coordinates for TCP structures are scaled into a unit cube.
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ture provides a counter-example to Kelvin’s conjecture on minimal surfaces. In
modern knowledge, this Weaire-Phelan structure partitions a three-dimensional
space into cells of equal volume with the smallest area of surface between them.
Therefore, it is applied, for example, in modeling bubble foams (Lautensack and
Sych, 2008).

The C15 structure was first observed in a molecule structure by Friauf (1927)
and Laves (Paufler, 2011). The fundamental structure of C15 is constructed from
24 vertices, as listed in Table 1. The C15 structure can be built on both the cubic
or the FCC base grid (see Figure 16). From the three basic TCP structures, C15
has the smallest maximum dihedral angle of 74.20 degrees (Eppstein et al., 2004).
The replicable dual structure consists of sixteen 12-hedra and eight 16-hedra.

The FCC, BCC, A15 and C15 structures are constructed from the cubic base,
and they are symmetric in positive and negative x-, y- and z-directions. The Z-
grid, defined as A4B3 by Frank and Kasper (1959), has different properties in
all three coordinate directions, but the grid is symmetric on the x-y-plane in 60-
degree increments. The z-direction is divergent to any other direction. The fun-
damental structure of the Z-grid is repeated in h increments in y- and z-directions
and in

√
3h increments in the x-direction, as illustrated in Figure 16. The listed x-

coordinates of Table 1 should then be multiplied by
√

3 to obtain a correct tiling.
The replicable dual structure consists of six 12-hedra, four 14-hedra, and four
15-hedra (Sullivan, 1998).

2.9 Refining of structured grids

The structured grids offer uniform element properties throughout the region.
Thus, tuning of the element size affects the whole domain. In many problems,
the non-uniform mesh properties are desired. With DEC meshing, the element
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FIGURE 16 The TCP structures A15, C15 and Z are illustrated in three different aspects.
The relative primal node positions, which are listed in Table 1, are shown
on the top row. The recurring primal and dual structures are illustrated on
the middle and bottom row, respectively.

properties can be changed by applying an unstructured layer between different
structures. In this approach, discretization of the unstructured elements might
be difficult, and the elements might require optimization. Luckily, there is an-
other approach. Since several grid types can be applied to the DEC framework,
the structures can be combined. The element properties between different struc-
tures can still be controlled. A two-dimensional example of such grid refining is
illustrated in Figure 17.

FIGURE 17 A refining of a structured grid in two-dimensions: Starting from a regular
triangular grid, a finer grid is achieved by adding nodes to each face center
positions. The same procedure can be repeated for the resulting grid. The
mesh is updated by the Voronoi construction at each step.

The same procedure can also be applied in three-dimensions. As presented
in the previous section, the structured grids FCC, BCC, A15 and C15 are based on
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a regular grid. The regular grid can be modified to any of these grids by adding
necessary nodes at wanted positions. The new mesh is obtained by updating the
cells by the Voronoi construction method. If a regular grid is modified to the FCC
or BCC grid, the grid can be converted back to a finer regular grid by adding a few
more points. Then, the resulting regular grid has the half edge length compared
to the original base grid. Another possibility is to modify the FCC grid to the C15
grid or modify the BCC grid to the A15 grid. The number of possible element
shapes between the modified structure and the base structure is limited. Thus,
the element properties can be known in advance, and the method can be called a
structured grid refining method. There are several variations for refining a three-
dimensional structured grid. A nice topic for future research would be to study
different mesh refining possibilities. It might be possible to build a fast mesh
generator, which produces automatically structured grids that are suitable for
DEC discretization.



3 DISCRETIZATION OF MAXWELL EQUATIONS

In this chapter, we discretize the Maxwell equations on the mesh, which is formu-
lated in the previous chapter. The discretization is carried out using the notations
of discrete exterior calculus (DEC), which is presented in several previous stud-
ies (Hirani, 2003; Desbrun et al., 2005, 2008; Stern et al., 2009). The discretization
leads to a time-dependent simulation method for electromagnetic waves. Using
the terminology of Bossavit and Kettunen (1999, 2000), the resulting method can
be considered a Yee-like scheme on polyhedral meshes. We introduce the dis-
crete differential forms using both classical and differential form presentations of
Maxwell equations.

3.1 Discrete forms

A smooth differential p-form is a tailor-made object for the integration over p-
manifolds, as described in Abraham et al. (1988). The discrete differential form is
a discrete analogue of the smooth differential form. Thus, the discrete p-form is
defined as an object, which is tailor made for integration over discrete p-cells. We
describe the discrete p-form α as a column vector, which assigns a real number
αi to each p-cell cp

i of a mesh. The discrete form values can be produced from
the smooth differential form using a so called de Rham map (see Hirani, 2003,
Chapter 3). If α̃ is a smooth differential p-form, then the corresponding discrete
form value on cp

i is defined by

αi = 〈α, cp
i 〉 :=

∫
cp

i

α̃.

To discretize the Maxwell equations, the vector fields E, B, H and D of clas-
sical presentation are transferred to discrete forms E, B, H and D. We define E
on primal edges (one-form), B on primal faces (two-form), H on dual edges (one-
form) and D on dual faces (two-form). The discrete form values are computed
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Bi
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Dj
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FIGURE 18 Illustration of discrete forms on primal and dual elements of a staggered
mesh. E and B are placed on primal elements, and H and D are placed on
dual elements. E and H lie on edges (discrete one-form), and B and D lie
on faces (discrete two-form).

from vector fields by

Ej := 〈E, Ej〉 =
∫
Ej

E · dl,

Bi := 〈B,Fi〉 =
∫
Fi

B · da,

Hi := 〈H, E∗
i 〉 =

∫
E∗

i

H · dl,

Dj := 〈D,F∗
j 〉 =

∫
F∗

j

D · da.

Here, Ej and E∗
i are primal and dual edge elements, and F∗

j and Fi are corre-
sponding dual and primal face elements, respectively. The disposition of discrete
form values on primal and dual elements are illustrated in Figure 18. In this the-
sis, the discrete forms E and D are presented as column vectors of n rows, and
discrete forms H and B are presented as column vectors of m rows.

To fully discretize the Maxwell equations, we need to introduce two dis-
crete two-forms J and J∗ corresponding to the electric and magnetic currents J

and J∗, respectively. We also introduce two discrete three-forms � and �∗, which
correspond to electric and magnetic charges ρ and ρ∗. We have

J∗i := 〈J∗,Fi〉 =
∫
Fi

J∗ · da,

Jj := 〈J,F∗
j 〉 =

∫
F∗

j

J · da,

�∗l := 〈�∗,Bl〉 =
∫
Bl

ρ∗ dv,

�k := 〈�,B∗
k 〉 =

∫
B∗

k

ρ dv.
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3.2 Discrete Maxwell equations

The curl operator ∇× E in the Faraday law (1) corresponds to exterior derivative
d in a differential form presentation (8). Using the Stokes’ theorem, we obtain the
integral formulations of Maxwell equations, which are presented in (7) or (12).
The integral formulation of Faraday law can be written exactly on surface Fi
using the discrete forms introduced in the previous section. As illustrated in
the left-hand side of Figure 19, the integral of E over the boundary ∂Fi can be
obtained by a signed sum of the bounding discrete one-form values Ej. The sign
depends on the relative orientation of edge and face elements. In fact, the sign is
obtained by the incidence matrix d1, which is presented in Section 2.3. We write
the Faraday law on surface Fi as

J∗i + ∂tBi = −
n

∑
j=1

(d1)i,jEj. (15)

After applying the Faraday law to every primal face, we obtain the discrete Fara-
day law J∗ + ∂tB = −d1E, where d1 has analogue to the discrete version of the
exterior derivative d.

FIGURE 19 The discrete Faraday law is formulated on primal faces (illustrated on the
left), where the integral of E over the face boundary can be expressed as a
signed sum of E components. Similarly, the discrete Ampére law is formu-
lated on dual faces (illustrated on the right).

The Ampére law (2) or (9) is discretized in a similar manner on the dual el-
ements. We write the Ampére law on the interior dual face F∗

j . The integration
of H over the boundary ∂F∗

j is obtained by a signed sum of discrete form values
Hi, as illustrated in the right-hand side of Figure 19. The sign is obtained by the
incidence matrix of the dual mesh, which is actually a transpose of a primal inci-
dence matrix, as explained in Section 2.4. On the interior dual faces, the Ampére
law is written as

Jj + ∂tDj =
m

∑
i=1

(d1)i,jHi, (16)

The dual faces, which are cut at the domain boundary, require a specific treat-
ment. This is carried out by describing a boundary condition on such elements.
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The boundary conditions are discussed in Section 4.2. At this point, we are satis-
fied with writing the discrete Ampére law on the full domain as J + ∂tD = dT

1 H.
Next, we consider the last two equations of the Maxwell system, which are

called the Gauss laws. We show that these equations are automatically conserved
in the discretized Maxwell system. The divergence operators ∇· in Gauss laws (3)
and (4) correspond to the exterior derivative d of a differential two-form in Equa-
tions (10) and (11). The discrete divergence operators on primal and dual meshes
are represented by the incidence matrix d2 and transpose incidence matrix dT

0 ,
respectively. The Gauss laws are then written as

d2B = �∗,

dT
0 D = �.

The discrete version of the continuity of charge is written on primal and dual
meshes as ∂t�

∗ + d2 J∗ = 0 and ∂t� + dT
0 J = 0. The conservation of the Gauss

laws is obtained by multiplying the discrete Faraday law (15) from the left by
d2 and multiplying the discrete Ampére law (16) from the left by dT

0 . Using the
continuity of charge on the remaining equation, we get

−d2d1E = d2 (J∗ + ∂tB) = ∂t (−�∗ + d2B) ,

dT
0 dT

1 H = dT
0 (J + ∂tD) = ∂t

(
−� + dT

0 D
)

.

The left-hand side is zero, since d2d1 = 0 and dT
0 dT

1 = 0. The conservation of
the Gauss laws is proven by this observation. The Gauss laws can be viewed
simply as constraints on initial conditions, while the Faraday and Ampére laws
completely describe the time evolution of the system.

3.3 Material parameters as diagonal discrete Hodge operators

The equations (15) and (16) can be imposed exactly as they involve no metric.
However, the Maxwell system is not complete because there is no connection be-
tween the primal and dual discrete forms. This connection is obtained by the dis-
crete Hodge operator, which is a discrete version of the smooth Hodge star. The
Hodge star is an operator that involves the metric and thus is the most important
component for the accuracy of the DEC framework. Traditionally, the discrete
Hodge operator � is defined as a map, which transforms a discrete p-form α to a
discrete (n − p)-form �α by the relation

1
|c∗| 〈�α, c∗〉 = 1

|c| 〈α, c〉.

Here we recall that |c| is the p-volume of the cell c. For more details, see Sen et al.
(2000); Desbrun et al. (2005); Hirani et al. (2012).

Basically, the discrete Hodge operator is a map from the primal p-form to its
dual (n − p)-form. In the three-dimensional DEC framework, we consider maps
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FIGURE 20 The orthogonality and good center alignment of corresponding primal and
dual elements are desirable properties for a discrete Hodge star. Figure
a) illustrates non-orthogonal pair, and figure b) illustrates badly aligned
elements.

between one-forms and two-forms, which lie on the edges and faces, respectively.
The discrete Hodge star is always an approximative geometric operator, and the
accuracy of the approximation depends on the properties of the discretization. To
obtain maximal accuracy, the discrete Hodge operator should transform values
from edges to faces as locally as possible. Thus, we prefer the diagonal presenta-
tion of the discrete Hodge operator, where each one-form value on an edge has a
linear relation to the corresponding two-form value on the face. Using a diago-
nal Hodge matrix, we can consider the pairwise properties primal-dual element
pairs, as illustrated in Figure 20. It is widely reported in the literature that the
orthogonality of primal-dual pairs is the main demand for obtaining a diagonal
Hodge operator (Stern et al., 2009). The orthogonality can be obtained by the
(weighted) circumcentric duality, which is discussed in Section 2.5 of this thesis.
A good relative alignment of element pairs is the secondary demand for the mesh
construction. Ideally, all of the corresponding primal and dual elements should
be weighted at the corresponding positions, unlike in b) of Figure 20. This prop-
erty is not easily obtained in unstructured orthogonal dual meshing, even though
the HOT mesh optimization method is an attempt to overcome this challenge
(Mullen et al., 2011). In this thesis, we prefer using structured grids as much as
possible to control the alignment of primal-dual pairs.

Within the DEC framework, the constitutive relations (5) are replaced by
Hodge operators �ε and �μ, which correspond to permittivity ε and permeability
μ, respectively. The constitutive relations are written as

D = �εE,
B = �μH.

Since the discrete forms E and D are represented as column vectors of n rows, the
Hodge operator �ε is represented by n × n matrix. Similarly, �μ is represented by
m × m matrix. For simplicity, we prefer considering diagonal Hodge operators,
which lead to the relations Dj = �εj,jEj and Bi = �μi,iHi.

To compute the diagonal terms �εj,j and �μi,i, we assume locally constant
vector fields E and H and material tensors ε and μ. We denote the unit direction
vectors of the edge elements Ej and E∗

i by nEj and nE∗
i
, respectively. The unit nor-

mal vectors of the face elements F∗
j and Fi are denoted respectively by nF∗

j
and
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nFi . To obtain a linear relation between the corresponding discrete field values
we assume that there are real numbers ε1, μ1 ∈ R such that

ε1E · nEj = εE · nF∗
j
, (17)

μ1H · nE∗
i
= μH · nFi ,

for any selection of E, H ∈ R3. If the material parameters are isotropic i.e. ε = ε1I
and μ = μ1I , these relations are obtained simply by the orthogonal duality,
where the corresponding direction vectors are equal. The anisotropic material pa-
rameters require a specifically discretized mesh. The diagonal Hodge operators,
which are presented by Bossavit (2000), are obtained by the following considera-
tion

�εj,j =
Dj

Ej
=

∫
F∗

j
εE · da∫

Ej
E · dl

=
εE · nF∗

j
|F∗

j |
E · nEj |Ej| = ε1

|F∗
j |

|Ej| ,

�μi,i =
Bi

Hi
=

∫
Fi

μH · da∫
E∗

i
H · dl

=
μH · nFi |Fi|
H · nE∗

i
|E∗

i |
= μ1

|Fi|
|E∗

i |
.

In the third equality, we assume locally constant vector fields E, H and material
parameters ε, μ. For non-constant material parameters, we apply averaged ma-
terial parameters ε̄ := 1

|F∗
j �Ej|
∫
F∗

j �Ej
ε dv and μ̄ := 1

|Fi�E∗
i |
∫
Fi�E∗

i
μ dv. The real

valued factors are then obtained by integrating

ε1 := ε̄nEj · nF∗
j
=

1
|F∗

j � Ej|
∫
F∗

j �Ej

εnEj · nF∗
j

dv,

μ1 := μ̄nE∗
i
· nFi =

1
|Fi � E∗

i |
∫
Fi�E∗

i

μnE∗
i
· nFi dv.

Here we denote a small neighborhood of edge E and face F by a diamond prod-
uct F � E . We do not offer a formal expression for the neighborhood, but one
could use for example the minimal convex hull containing both edge and face ele-
ments. The integration of material parameters can be performed by either analyt-
ical or numerical integration. If the material parameters are declared constantly
on each discretization elements, analytical integration might be considered. For
an arbitrary declaration of material parameters, a small Monte-Carlo style inte-
gration (Rubinstein, 1981; Gentle, 1998) might be needed to compute each Hodge
term.

The discrete Hodge star is applied also to discretize the equations for elec-
tric and magnetic current densities (6). We introduce discrete Hodge operators
�σ and �σ∗ corresponding to electric and magnetic conductivities σ and σ∗, re-
spectively. The equations for the electric and magnetic currents are then

J = �σE,
J∗ = �σ∗H.
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Similarly to the Hodge operators �ε and �μ, we define �σ and �σ∗ as diagonal n×
n and m × m matrices, respectively. The diagonal terms of the Hodge operators
are then

�σj,j = σ1
|F∗

j |
|Ej| , �σ∗

i,i = σ∗
1
|Fi|
|E∗

i |
,

where the real valued material parameters are integrated by

σ1 :=
1

|F∗
j � Ej|

∫
F∗

j �Ej

σnEj · nF∗
j

dv,

σ∗
1 :=

1
|Fi � E∗

i |
∫
Fi�E∗

i

σ∗nE∗
i
· nFi dv.

These diagonal Hodge operators are obtained by assuming locally constant
vector fields. This assumption leads to a spatial discretization scheme, which is
similar to the classical Yee scheme. Thus, in this thesis, we call these formulations
as Yee’s Hodge operators. The assumption of locally constant vector fields might
not be the most accurate approximation in the spatial discretization. There are
several other ways to define the diagonal discrete Hodge operators. For example,
in Section 8.1, we derive the Hodge operators using the assumption of harmonic
waves.

The use of the discrete Hodge operators with the discretized Maxwell equa-
tions (15) and (16) reduces the need for variables B, D, J and J∗. The full Maxwell
system is now carried out by two discrete one-forms E and H, where E lies on pri-
mal edges and H lies on dual edges. The Maxwell system at the interior domain
is now presented by

�σE + �ε ∂tE = dT
1 H, (18)

�σ∗H + �μ ∂tH = −d1E.

3.4 Time-harmonic expression

The time-harmonic solutions can be uniquely expressed by complex numbers,
where real and imaginary parts represent the solution at different time phases.
In this thesis, we use the hat-symbol ˆ to denote a time-harmonic complex val-
ued variable. Using the complex time-harmonic expression Ê and Ĥ for discrete
electric and magnetic fields, the field values at time instance t are obtained by

E(t) = real(Êe−iωt),

H(t) = real(Ĥe−iωt),

where ω is the angular frequency of the time-harmonic wave. The material pa-
rameters can also be expressed in complex presentation. The imaginary terms
of complex permittivity ε̂ and permeability μ̂ include the conductivity terms σ
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and σ∗, respectively. Thus, the conductivity terms are not needed in the com-
plex presentation. The relations between the complex material parameters and
real valued material parameters can be written as ε̂ = ε + i

ω σ and μ̂ = μ + i
ω σ∗.

With the same ideology, we introduce the complex discrete Hodge operators �̂ε

and �̂μ for time-harmonic problems. The relations to real valued discrete Hodge
operators are written as

�̂ε := �ε + i
ω�σ, (19)

�̂μ := �μ + i
ω�σ∗.

The complex presentation offers a shorter notation for the Maxwell system. The
Equations (18) can be now written as

�̂ε ∂tÊ = dT
1 Ĥ, (20)

�̂μ ∂t Ĥ = −d1Ê.

In this thesis, we formulate the time-dependent solution method using the real
valued terms. Thus, the complex presentation is always transformed to a real
valued expression before continuing with the time discretization. The complex
formulation is restored to the real valued Maxwell system by applying the fol-
lowing transformation

�ε := real(�̂ε), �σ := ω imag(�̂ε), (21)
�μ := real(�̂μ), �σ∗ := ω imag(�̂μ).



4 CONDITIONS FOR SCATTERING PROBLEMS

The spatially discretized Maxwell system is presented in Equation (18). To apply
the equations to physical applications, the initial and boundary conditions must
be considered. In this chapter, we present the most common conditions for scat-
tering problems. For forthcoming arguments, we include the source terms fE and
fH into the Maxwell system and write it as

�σE + �ε∂tE = dT
1 H + fE, (22)

�σ∗H + �μ∂tH = −d1E + fH.

The terms of discrete Hodge operators �ε, �μ, �σ, �σ∗, discrete exterior deriva-
tives d1, dT

1 and source terms fE, fH are rewritten by each condition, as described
in the following sections.

4.1 Scattered field formulation

In scattering problems, it is often convenient to operate on scattered fields instead
of total electric and magnetic fields, as discussed in Holland (1977). The scattered
field formulation is based on the linearity of Maxwell equations, decomposing the
total fields into components of the incident and scattered fields. In the discrete
form presentation this is

E = Einc + Esca,
H = Hinc + Hsca.

The incident values Einc and Hinc are known in advance. Usually they are de-
scribed as simple analytical functions, usually like a polarized plane wave. The
scattered field values Esca and Hsca are the ones to be solved, while the total field
values E and H fulfill the Maxwell equations (18). The Maxwell system is rewrit-
ten as

�σ(Einc + Esca) + �ε ∂t(Einc + Esca) = dT
1 (Hinc + Hsca), (23)

�σ∗(Hinc + Hsca) + �μ ∂t(Hinc + Hsca) = −d1(Einc + Esca).



50

The incidence field is usually set to obey the Maxwell equations with certain ma-
terial parameters ε0, μ0, σ0 and σ∗

0 . Thus, we assume that the discrete Maxwell
equations with corresponding Hodge operators hold

�σ0Einc + �ε0 ∂tEinc = dT
1 Hinc,

�σ∗
0 Hinc + �μ0 ∂tHinc = −d1Einc.

We decrease this formulation from the Maxwell system (23) and get the non-
homogeneous system

�σEsca + �ε ∂tEsca = dT
1 Hsca + fE,

�σ∗Hsca + �μ ∂tHsca = −d1Esca + fH,

where the source terms fE and fH are expressed by the incident wave data as

fE := (�σ0 − �σ)Einc + (�ε0 − �ε) ∂tEinc,
fH := (�σ∗

0 − �σ∗)Hinc + (�μ0 − �μ) ∂tHinc.

In scattering problems, the scatterer is usually the dielectric object, where mate-
rial parameters differ from the incident material parameters. In other words, this
is �ε �= �ε0, �μ �= �μ0, �σ �= �σ0 or �σ∗ �= �σ∗

0. This leads to the non-zero source
terms fE �= 0 or fH �= 0 inside the scatterer. Thus, the scattered field formula-
tion is a method to generate a non-zero field from the interior of the simulation
domain.

4.2 Boundary conditions

Generally, the physical applications are defined in unbounded domains. To solve
such problems numerically, the domain must be truncated to a finite computa-
tional domain, and this is achieved by introducing boundary conditions at the
outer boundary. One of the greatest challenges in Yee-like schemes has been to ef-
ficiently and accurately model the extension of the domain to infinity. The Silver-

Müller absorbing boundary condition has been introduced to achieve this goal.
The Silver-Müller boundary condition is a first-order absorbing boundary condi-
tion; for a detailed description see Monk (2003); Hanouzet and Sesques (1993);
Barucq et al. (1998). In this section, we introduce the Silver-Müller type bound-
ary condition, which leads to two special cases to Dirichlet and Neumann type
boundary conditions.

Let n be an outward normal vector on the domain boundary. The vector
field formulation for the Silver-Müller boundary condition is then given by

H × n = −
√

ε

μ
(E × n)× n.

The Silver-Müller boundary condition is implemented in the DEC framework
by introducing and modifying the H∂-component at the domain boundary, as
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FIGURE 21 The additional magnetic field values H∂
j are introduced on the missing dual

edges at the domain boundaries. The Ampére law is then written on the
dual face elements using these values.

illustrated in Figure 21. This component completes the circulation for dual face,
and the Ampére law is then written like in Equation (16). Let Ej be a primal
edge on the boundary of mesh K. As described in Section 2.4, we introduce its
boundary dual edge as the dual of Ej on two dimensional boundary mesh ∂K.
The boundary dual edge is denoted by ∗∂E j. In this consideration, the dual ∗∂E j
is assumed to have a positive relative orientation compared to Ej. The discrete
presentation of the Silver-Müller condition is then

1
|∗∂E j|

∫
∗∂E j

H · dl = −
√

ε

μ

1
|Ej|
∫
Ej

E · dl.

The integral on the right-hand side equals the discrete form value Ej, and the
integral on the left-hand side corresponds to the missing magnetic field value
H∂

j . Using the Silver-Müller condition, the term H∂ can be expressed as

H∂
j :=

∫
∗∂E j

H · dl = −
√

ε

μ

|∗∂E j|
|Ej| Ej. (24)

We reformulate the Ampére law at the boundary edge Ej by completing the
circular integration by term H∂

j . The discrete Ampére law on this single element
is then formulated as

�σj,jEj + �εj,j ∂tEj = (dT
1 H)j + H∂

j . (25)

Using the presentation of Equation (24), the term H∂
j is expressed as a product

of term Ej. Thus, the Silver-Müller condition can be included in the conductivity
term �σj,j. The Silver-Müller boundary condition fits the discrete Maxwell for-
mulation (22) by replacing the certain diagonal terms �σj,j with the Silver-Müller
terms �σSM

j,j . The Silver-Müller terms are defined as

�σSM
j,j := �σj,j +

√
ε

μ

|∗∂E j|
|Ej| .

In scattering problems, the Silver-Müller boundary condition is usually ap-
plied for scattered fields Esca := E − Einc and Hsca := H − Hinc. Using the scat-
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tered field formulation, the Silver-Müller condition, which is expressed in Equa-
tion (24), can be written as

(
H∂ − H∂

inc

)
j

:= −
√

ε

μ

|∗∂E j|
|Ej| (E − Einc)j .

We transfer the H∂
inc term on the right-hand side and apply the term H∂

j in the
discrete Ampére law (25). As a result, we obtain

�σSM
j,j Ej + �εj,j ∂tEj = (dT

1 H)j + ( f SM
E )j, (26)

where the source term ( f SM
E )j reads as

( f SM
E )j :=

√
ε

μ

|(E∗
∂ )j|

|Ej| (Einc)j +
(

H∂
inc

)
j
.

The Silver-Müller type boundary conditions do not require additional memory
storage. As an approximation of the radiation condition, the accuracy of the
Silver-Müller boundary condition, however, crucially depends on the difference
of the wave propagation direction and the boundary normal vector. Thus, the
distance between the boundary and the radiation source has an important in-
fluence on the accuracy. As a result, there is a trade-off between accuracy and
computational overhead due to the simulation of additional space.

The material parameters ε and μ of the Silver-Müller boundary condition
can be considered to represent the material parameters at the external domain.
Thus, the Silver-Müller condition can be employed to estimate an arbitrary ma-
terial interface at the domain boundary. The special case ε → ∞ models the per-
fectly conducting material outside the simulation region. Sometimes, this condi-
tion is called the Dirichlet boundary condition with respect to the electric field.
The discretization of the Dirichlet condition is obtained by dividing both sides of
the Equation (26) by √

ε

μ

|(E∗
∂ )j|

|Ej| .

Since ε → ∞, the resulting system is written as Ej := (Einc)j. Naturally, in terms
of Equation (22), this implies that �σj,j := 1, ( fE)j := (Einc)j, �εj,j := 0 and
(dT

1 )j,k := 0 for all k = 1, . . . , n.
The boundary condition with the zero permittivity ε = 0 at the external

domain is called the Neumann boundary condition. Applying the parameter
ε = 0 to Equation (26) gives the discretization of the Neumann condition as

�σj,jEj + �εj,j ∂tEj = (dT
1 H)j +

(
H∂

inc

)
j
.

This is identical to general Ampére law (25) on boundary elements, where the
boundary magnetic field values are defined as H∂

j :=
(

H∂
inc
)

j. Thus, the Neu-
mann boundary condition affects magnetic field values similarly as the Dirichlet
condition affects electric field values. Both conditions can be used to formulate
perfectly reflecting boundaries.



53

4.3 Matched layer

An alternate approach for an absorbing boundary condition is to determine an
absorbing layer outside the region of interest. The simplest implementation of
such a layer is a medium of absorbing material, which is analogous to the physical
treatment of the walls of an anechoic chamber. Ideally, the absorbing medium is
reflectionless to all impinging waves over their full frequency spectrum. An early
implementation of absorbing material layer, reported by Holland and Williams
(1983), is called matched layer (ML). This tactic is based on conventional lossy
dispersionless absorbing medium, where electric and magnetic conductivities σ

and σ∗ are set to satisfy the condition

σ

ε
=

σ∗

μ
= βx. (27)

Here x is the distance between the inner boundary and the current position. The
factor β determines the degree of the absorption. The conductivities are amplified
linearly to minimize the dispersion affected by the discretization. The factor β

can be adjusted using knowledge of the wavelength, the discretization level and
the thickness of the layer. The layer is easily implemented by the DEC by only
changing the material parameters inside the ML. The layer is a good alternative
for the first implementation of an absorbing layer because it can be run on any
mesh discretization. The problem of this strategy is that the incident wave, which
is not orthogonal to the layer surface, is not absorbed perfectly.

4.4 Perfectly matched layer

The perfectly matched layer (PML) is designed to absorb perfectly both orthog-
onal and non-orthogonal incident plane waves. PML was originally formulated
for the Yee scheme by Berenger (1994). Berenger’s formulation splits the electro-
magnetic fields into two unphysical fields in the PML region; thus, it is sometimes
called split-field PML. The Berenger’s idea of splitting fields has become popu-
lar, and the approach has several variations, including Modified Berenger PML
(Chen et al., 1995) and a simplified PML (Sullivan, 1996). Another approach,
in which the PML is described as an artificial anisotropic absorbing material, is
called uniaxial PML or UPML, and it was first described by Gedney (1996). Al-
though Berenger’s formulation and UPML were initially derived by different ap-
proaches, both formulations were later shown to be equivalent with each other
and with another approach, called the stretched-coordinate PML (Chew and Wee-
don, 1994; Teixeira and Chew, 1998). Today, PML is a standard method in Yee-like
schemes to model electromagnetic wave interaction problems in unbounded do-
mains. It can be applied to rectangular boundaries (Taflove and Hagness, 2005),
on spherical boundaries (Teixeira and Chew, 1997) and on many other variations.
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We derive the PML using the UPML formulation, which was originally writ-
ten for FDTD framework by Gedney (1996). This formulation is derived for time-
harmonic problems, where the material parameters can be expressed in complex
formulation ε̂ = ε + i

ω σ and μ̂ = μ + i
ω σ∗. In the original approach, each coor-

dinate axis direction is assigned a specified conductivity, denoted by σx, σy and
σz. Then both permittivity and permeability are represented as complex valued
tensors ε̂ = ε ¯̄ε and μ̂ = μ ¯̄μ, where

¯̄ε = ¯̄μ =

⎛
⎜⎝

sysz
sx

0 0
0 szsx

sy
0

0 0 sxsy
sz

⎞
⎟⎠ ,

and

sx = 1 +
iσx

ωε
, sy = 1 +

iσy

ωε
, sz = 1 +

iσz

ωε
.

The UPML is not restricted to the previous Cartesian formulation. The layer
can be formulated for an arbitrary orthogonal coordinate system, where the local
coordinate axes are expressed by orthogonal unit vectors x, y and z. We assign the
directional conductivities σx, σy and σz with each direction x, y and z, respectively.
The rotated material tensor is then locally expressed as

¯̄ε = ¯̄μ =

⎛
⎝ x y z

⎞
⎠
⎛
⎜⎝

sysz
sx

0 0
0 szsx

sy
0

0 0 sxsy
sz

⎞
⎟⎠
⎛
⎝ xT

yT

zT

⎞
⎠ .

The discretation error is decreased by amplifying the absorption terms linearly
inside the PML region, as we did with the matched layer formulation. For sim-
plicity, we assume that the layer is designed to absorb waves only in the direction
of x. This means that σy = σz = 0 and the conductivity σx have a linear relation
to the depth x inside the layer. Starting from zero at the inner level x = 0, the
conductivity is determined by the relation

σx

ε
= βx. (28)

On corner regions, the conductivities σy and σz are treated separately in the same
manner and the material tensors ε̂ and μ̂ are obtained by the previous considera-
tion.

The UPML formulation is simply discretized by transforming the complex
material parameters ε̂ and μ̂ to the corresponding real valued material param-
eters ε, μ, σ and σ∗. The real valued anisotropic material parameters are then
transformed to diagonal discrete Hodge operators by the method of Section 3.3.
Thus, the spatial discretization of PML can be expressed in the discrete Maxwell
formulation of Equation (18). The anisotropic material parameters set certain de-
mands for the mesh construction. The required relations between primal and
dual elements are expressed specifically in Equation (17). The orthogonal duality
is not a sufficient property, as the material parameters are anisotropic. Addition-
ally, the primal and dual elements must be oriented in accordance with the local



55

absorption directions. In practice, this means that each edge element is either
parallel or orthogonal to every local absorption direction x, y or z. Illustrations
of such meshes are shown later in this thesis (see Figures 39 and 54).

With a closer look at the UPML formulation, one can easily see that certain
diagonal components of the discrete Hodge operators �σ and �σ∗ become neg-
ative (Gedney, 1996). This implies negative absorption for certain discrete form
values. Unfortunately, the classical leapfrog procedure fails in time discretization
of such a system. The time discretization of the PML system requires specific
consideration, and the solution for this problem is presented in Section 5.3.



5 TIME DISCRETIZATION

In this chapter, we consider the time discretization of the spatially discretized
Maxwell system (22). The time discretisation offers a forward-in-time simulation
scheme, which is applied to solve time-dependent problems. The Yee’s leapfrog
time discretization scheme, which is described in Section 5.1, relies on finite dif-
ference approximations. By assuming a time-harmonic solution, these approxi-
mations can be replaced by exact finite differences, and the resulting harmonic
leapfrog scheme is described in Section 5.2. The specific treatment of negative
absorption terms, which occur in the PML discretization, is considered in Sec-
tion 5.3. The equations for synchronizing the time-dependent solution on uni-
form time instance are expressed in Section 5.4. In time-harmonic problems, the
harmonic leapfrog scheme produces exact time discretization. Thus, the accu-
racy of the harmonic leapfrog method is independent of the time step size Δt.
Nevertheless, the stability criterion sets an upper bound for Δt, as discussed in
Section 5.5. The conservation of the system energy is considered in Section 5.6,
and Yee’s leapfrog and the harmonic leapfrog schemes are compared by numeri-
cal experiments in Section 5.7.

5.1 Leapfrog discretization procedure

The discrete forms E and H of Maxwell system (22) are expressed as functions
of time. Since we are considering time-dependent problems, we must proceed
with the discretization of the time evolution. The time discretization is estab-
lished with a staggered leapfrog-type iteration, which is a well known technique
for Yee-like schemes (Yee, 1966; Taflove and Brodwin, 1975; Weiland, 1996; Mat-
tiussi, 2000; Desbrun et al., 2005; Taflove and Hagness, 2005). In the leapfrog-type
iteration, the values for the variables E and H are computed at separate time in-
stances, as shown in Figure 22. The electric vector E1 is first solved at a given time
instance using the initial values E0 and H0. Then magnetic vector H1 is solved at
the next time instance using the updated initial values H0 and E1. This process is
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repeated over and over again to obtain the forward-in-time simulation method.

FIGURE 22 The basic idea of the leapfrog time discretization procedure.

Next, we formulate the equations for leapfrog style time discretization using
the time step size Δt. Let t0 be the initial time and recursively tk = tk−1 + Δt. We
define magnetic vectors Hk at time instance tk and electric vectors Ek at half time
step Δt

2 earlier. Formally, we write

Ek := E(tk − Δt
2 ),

Hk := H(tk).

To discretize the time derivatives of the Maxwell system (22), we express the first
equation at time instance tk and the second equation at time instance tk + Δt

2 . The
following finite difference approximations are applied

E(tk) :=
Ek + Ek+1

2
,

∂tE(tk) :=
Ek+1 − Ek

Δt
, (29)

H(tk + Δt
2 ) :=

Hk + Hk+1

2
.

∂tH(tk + Δt
2 ) :=

Hk+1 − Hk

Δt
,

Simply, by inserting these approximation at the Maxwell system (22), we obtain
the relations

Ek+1 := Ek +
(�ε

Δt
+

�σ

2

)−1 [
dT

1 Hk − �σ Ek + fE(tk)
]

, (30)

Hk+1 := Hk +

(
�μ

Δt
+

�σ∗

2

)−1 [
−d1Ek+1 − �σ∗Hk + fH(tk + Δt

2 )
]

.

These equations are now called the value update equations for the Yee’s leapfrog
time discretization method. The inverse matrices of the formulation are diagonal,
since discrete Hodge operators are diagonal. Thus, the method is explicit; the
values for each time step are determined from the values of the previous time
step. The value updates can be performed without additional memory storage,
simply by updating the vectors Ek and Hk to Ek+1 and Hk+1 at each iteration stage
in the leapfrog manner.

5.2 Exact leapfrog discretization for time-harmonic problems

The Yee’s leapfrog time discretization procedure, which is presented is Section 5.1,
is based on finite difference approximation. The accuracy of the discretization de-
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pends on the selection of Δt. By the time-harmonic assumption, the discretization
error is known in advance, and it can be eliminated. Then one obtains an exact
leapfrog time discretization scheme for time-harmonic problems. Even though
some of the details here differ from what has been presented in the past, we note
that this type of strategy has been used before in the FDTD context, for example
by Ma and Chen (2005). We assume a time-harmonic solution, which can be ex-
pressed in a complex presentation E(t) = real(Êe−iωt) and H(t) = real(Ĥe−iωt).
Next, we formulate harmonic leapfrog discretization scheme, which is in many
ways similar to the Yee’s leapfrog scheme. The k:th instances of discrete form
vectors are expressed by a complex presentation as

Ek := real(Êe−iω(tk−Δt
2 )),

Hk := real(Ĥe−iωtk
),

where tk := t0 + kΔt and Δt is the time step size. The next instance of the electric
vector is expressed as Ek+1 = real(Êe−iω(tk+Δt

2 )). Using this, we can formulate the
following relations

Ek+1 + Ek = real
[

Êe−iωtk
(

e−iω Δt
2 + eiω Δt

2

)]
= E(tk)

(
2 cos ωΔt

2

)
,

Ek+1 − Ek = real

[
−iωÊe−iωtk

(
e−iω Δt

2 − eiω Δt
2

−iω

)]
= ∂tE(tk)

(
2
ω sin ωΔt

2

)
,

where the formula ∂tE(tk) = real(−iωÊe−iωtk
) is applied in the last equality. With

these relations, we obtain exact expressions for E(tk) and ∂tE(tk). The similar con-
sideration is applied for vector H to obtain H(tk + Δt

2 ) and ∂tH(tk + Δt
2 ). Denoting

φ := ωΔt
2 , the resulting relations are written as

E(tk) =
Ek+1 + Ek

2cos φ
,

∂tE(tk) =
Ek+1 − Ek

2
ω sin φ

, (31)

H(tk + Δt
2 ) =

Hk+1 + Hk

2cos φ
,

∂tH(tk + Δt
2 ) =

Hk+1 − Hk

2
ω sin φ

.

The expressions are similar to the approximative Equations (29), but these equa-
tions are exact for a time-harmonic solution. The first equation of the Maxwell
system (22) is written at time instance tk, and the second equation is written at
time instance tk + Δt

2 . Using the relations (31), we have

Ek+1 := Ek + 2
(

ω�ε

sin φ
+

�σ

cos φ

)−1 [
dT

1 Hk − �σ

cos φ
Ek + fE(tk)

]
, (32)

Hk+1 := Hk + 2
(

ω�μ

sin φ
+

�σ∗

cos φ

)−1 [
−d1Ek+1 − �σ∗

cos φ
Hk + fH(tk + Δt

2 )

]
.
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The value update equations of time-harmonic leapfrog iteration are very similar
to the value update equations (30) of Yee’s leapfrog method. In fact, the correction
of the harmonic leapfrog method can be applied by scaling the discrete Hodge
operators �ε and �μ by φ

sin φ and the discrete Hodge operators �σ and �σ∗ by 1
cos φ .

This means the Yee’s leapfrog and the harmonic leapfrog discretization methods
have the same convergence and energy conservation properties.

5.3 Treatment of negative absorption

In this section, we formulate the time discretization procedure for single discrete
form values Ej and Hi, for which the corresponding Hodge terms �σj,j and �σ∗

i,i
are negative. The negative terms occur, particularly when the UPML formulation
is discretized. For details, see Section 4.4. Unfortunately, the classical leapfrog
procedure fails in time discretization on term Ej and Hi, since the system becomes
dispersive due to negative absorption. The time discretization at those elements
can be carried out in number of ways, but we follow the procedure, which is
found to be the most efficient by Gedney (1996). Assume that there is negative
conductivity at term �σj,j < 0. We write a single row of discretized Maxwell
system (18) in complex formulation (20) as(

�εj,j +
i
ω�σj,j

)
∂tÊj =

(
dT

1 Ĥ
)

j
.

We introduce an auxiliary variable D̂j and reformulate the equation by the fol-
lowing two-step procedure

∂tD̂j =
(

dT
1 Ĥ
)

j
,

∂tÊj =
(
�εj,j +

i
ω�σj,j

)−1
∂tD̂j.

The downside for this formulation is that it requires additional storage for the
auxiliary variable D̂j and it consist of two equations. We reformulate the latter
equation such that there exists only real valued terms. The inverse of the complex
expression can be rewritten, and we have

∂tÊj =
�εj,j − i

ω�σj,j

�ε2
j,j +

1
ω2�σ2

j,j
∂tD̂j.

Using the time-harmonic assumption, we reformulate the remaining imaginary
term by applying the relation i

ω ∂tD̂j = D̂j. Since the resulting equation includes
only real valued factors, the system can be expressed by real valued discrete
forms E and D. The two-step procedure is now written as

∂tDj =
(

dT
1 H
)

j
, (33)

∂tEj =
1

�ε2
j,j +

1
ω2�σ2

j,j

(
�εj,j∂tDj − �σj,jDj

)
.
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Now, we can apply the time discretization. The first equation can be dis-
cretized by either of the leapfrog methods, which are presented in Sections 5.1
and 5.2. Since the time-harmonic assumption is employed in the UPML formu-
lation, we calculate the time discretization using the time-harmonic approach,
described in Section 5.2. The second equation is discretized at tk by replacing the
terms ∂tEj(tk), ∂tDj(tk) and Dj(tk) by the exact formulations, which are similar to
Equations (31). The terms are written as

∂tEj(tk) =
Ek+1

j − Ek
j

2
ω sin φ

, ∂tDj(tk) =
Dk+1

j − Dk
j

2
ω sin φ

, Dj(tk) =
Dk+1

j + Dk
j

2cos φ
.

The time discretized version of the second equation of System (33) is then

Ek+1
j − Ek

j =
�εj,j − tan φ

ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dk+1

j +
−�εj,j − tan φ

ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dk

j .

The value update procedure is obtained by the following three-step method,
which can be implemented using one memory storage for both Ej and Dj val-
ues. The following equations are performed consecutively

Ek+1/2
j := Ek

j +
−�εj,j − tan φ

ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dk

j ,

Dk+1
j := Dk

j +
2 sin φ

ω

(
dT

1 Hk
)

j
, (34)

Ek+1
j := Ek+1/2

j +
�εj,j − tan φ

ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dk+1

j .

Notice that the term Ek+1/2
j does not denote the discrete form value of E at halfway

time instance. The term can be considered as an auxiliary variable in the three
step procedure. This notation illustrates, that the term Ek+1/2

j can replace the

memory storage of the term Ek
j in the first step, and it is overwritten by Ek+1

j in
the last step.

The similar value update procedure is needed for magnetic field values Hi,
for which �σ∗

i,i < 0. The auxiliary variable Bi is required, and the three-step value
update procedure is written as

Hk+1/2
i := Hk

i +
−�μi,i − tan φ

ω �σ∗
i,i

�μ2
i,i +

1
ω2�σ∗

i,i
2 Bk

i ,

Bk+1
i := Bk

i −
2 sin φ

ω

(
d1Ek+1

)
i
, (35)

Hk+1
i := Hk+1/2

i +
�μi,i − tan φ

ω �σ∗
i,i

�μ2
i,i +

1
ω2�σ∗

i,i
2 Bk+1

i .



61

5.4 Obtaining a solution at synchronized time instance

In the leapfrog discretization procedure, the electric and magnetic field values are
assigned at different time instances. The vector Hk is determined at time instance
tk, and the vector Ek is determined at time instance tk − Δ

2 , which is half time step
earlier. To obtain a full solution at time instance tk, we apply a half time step
transformation for the vector E. As illustrated in Figure 23, the transformation
from Ek to E(tk) should be applied at the end of the leapfrog iteration to obtain
the full solution at tk. Before starting the leapfrog iteration again, the inverse
transformation from E(tk) to Ek is applied in the beginning of the new iteration
procedure.

E0

H0
E1

H1
E2

H2

E(t )2

H(t )2

E(t )0

H(t )0

==

FIGURE 23 An illustration of leapfrog iteration, which is started from time instance
t0 and ended at time instance t2. The transformation from E(t0) to E0 is
applied at the beginning of the iteration. The inverse transformation from
E2 to E(t2) is performed at the end of the leapfrog iteration.

The transformation equations depend on the selected leapfrog procedure.
For the Yee’s leapfrog method (see Section 5.1), the transformation is obtained
by using the first approximation of Equations (29) and the first formulation of
Equations (30). Applying the equations consecutively, we obtain

E(tk) :=
Ek + Ek+1

2
= Ek +

(
2�ε

Δt
+ �σ

)−1 [
dT

1 Hk − �σ Ek + fE(tk)
]

.

Now vector Ek can be transformed to the solution E(tk), which is synchronized
with the Hk vector. Likewise, the vector E(tk) can be transformed to vector Ek by
the inverse transformation, which is obtained by modifying the previous equa-
tion. We have

Ek := E(tk)−
(

2�ε

Δt

)−1 [
dT

1 Hk − �σ E(tk) + fE(tk)
]

.

We formulate the transformation equations for the time-harmonic leapfrog
system, which is described in Section 5.2. After applying consecutively the first
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equation of Expressions (31) and the first equation of System (32), we obtain

E(tk) =
Ek+1 + Ek

2 cos φ

=
1

cos φ

(
Ek +

(
ω�ε

sin φ
+

�σ

cos φ

)−1 [
dT

1 Hk − �σ

cos φ
Ek + fE(tk)

])
.

By modifying this equation, we get forward and backward relations

E(tk) := Ek +

(
ωcos φ�ε

sin φ
+ �σ

)−1 [
dT

1 Hk + αEk + fE(tk)
]

, (36)

Ek := E(tk)−
(

ω�ε

sin φ

)−1 [
dT

1 Hk + αE(tk) + fE(tk)
]

,

where

α :=
ω(1 − cos φ)�ε

sin φ
− �σ.

The transformation from Ek to E(tk) is obtained by the first equation. The inverse
transformation from E(tk) to Ek can be performed by the second equation.

If the value update of Ej is treated by the three-step procedure, presented
in Section 5.3, the value update procedure include additional term Dk

j . In this

case, both values Ek
j and Dk

j need to be transformed to Ej(tk) and Dj(tk) to ob-

tain the result at synchronized time instance tk. Since the value Dj is updated
by the harmonic leapfrog procedure, the transformation of Dj is obtained in a
similar manner as that of Equations (36). The transformation of Ej is obtained by
writing the second equation of (33) at time instance tk − Δt

4 . We apply the exact
formulations

∂tE(tk − Δt
4 ) =

E(tk)− Ek

2
ω sin(φ/2)

, ∂tD(tk − Δt
4 ) =

D(tk)− Dk

2
ω sin(φ/2)

,

D(tk − Δt
4 ) =

D(tk) + Dk

2 cos(φ/2)
,

which are derived similarly to Equations (31). The following time discretization
is obtained

Ej(tk)− Ek
j =

�εj,j − tan(φ/2)
ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dj(tk) +

−�εj,j − tan(φ/2)
ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dk

j .

This relation can be applied in either direction. The transformation should be
separated into the three-step procedure to minimize the amount of required ad-
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ditional storage. The transformation from Ek
j , Dk

j to Ej(tk), Dj(tk) is obtained by

Ek+1/4
j := Ek

j +
−�εj,j − tan(φ/2)

ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dk

j ,

Dj(tk) := Dk
j +

tan φ

ω

[(
dT

1 Hk
)

j
+

ω(1 − cos φ)

sin φ
Dk

j

]
,

Ej(tk) := Ek+1/4
j +

�εj,j − tan(φ/2)
ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dj(tk).

Vice versa, the transformation from Ej(tk), Dj(tk) to Ek
j , Dk

j is obtained by

Ek+1/4
j := Ej(tk)− �εj,j − tan(φ/2)

ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dj(tk),

Dk
j := Dj(tk)− sin φ

ω

[(
dT

1 Hk
)

j
+

ω(1 − cos φ)

sin φ
Dj(tk)

]
,

Ek
j := Ek+1/4

j − −�εj,j − tan(φ/2)
ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dk

j .

5.5 Stability criterion

Stability of the leapfrog manner iteration depends on the selection of time step
size Δt. If the time step is too long, it will cause E and H components to bounce
between negative and positive values, and the absolute values will increase with-
out limit as the simulation proceeds. The correct numerical stability criterion for
Yee’s algorithm was first reported by Taflove and Brodwin (1975). The so called
Courant-Friedrichs-Lewy (CFL) condition can also be written for unstructured
grids, as discussed by Schuhmann and Weiland (1998) and Cinalli and Schiavoni
(2006). We assume that the Yee’s leapfrog discretization procedure (30) is applied
with the non-negative absorbing terms �σj,j and �σ∗

i,i. If χmax is the largest eigen-
value of the system matrix �ε−1dT

1 �μ−1d1, then the CFL limit for the time step size
is

Δt <
2√

χmax
. (37)

The same CFL limit can also be applied for the harmonic leapfrog discretization
formulas (32). The harmonic leapfrog method can be obtained by modifying the
Yee’s leapfrog method by multiplying the discrete Hodge operators �ε and �μ by

φ
sin φ and multiplying the discrete Hodge operators �σ and �σ∗ by 1

cos φ . Thus, the
corresponding system matrix of the harmonic leapfrog system is

sin2 φ
φ2 �ε−1dT

1 �μ−1d1.
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The system’s largest eigenvalue equals to sin2 φ
φ2 χmax. This is bounded from above

by χmax, which means the CFL condition (37) is also sufficient for the harmonic
leapfrog discretization.

It is important to use a tight limit for Δt to obtain an efficient time-dependent
simulation method. The use of too small time step size leads to unnecessary con-
sumption of time in the iteration process. The harmonic leapfrog method offers
an exact time discretization for time-harmonic problems. The numerical exper-
iments in Section 5.7 show that the solution method is then independent of Δt,
provided that the stability condition is satisfied. In time-harmonic problems, it
is obvious that one should use the maximal time step size, which fulfills the CFL
condition. With the Yee’s leapfrog method, the result varies according to the se-
lected time step size.

5.6 Conservation of the energy norm

In this section, we introduce the concept of the energy norm. For any Maxwell
system, the energy norm should be defined such that the energy is conserved in
a system, where absorption and emission are excluded. First, we describe the
energy norm for the discretized Maxwell system (18), which is a variation of Sys-
tem (22) with homogeneous Neumann boundary conditions at the boundary. We
multiply the first equation of System (18) from left by ET and the second equation
from left by HT. Then we obtain

ET�σE + ET∂t�εE = ETdT
1 H,

HT�σ∗H + HT∂t�μH = −HTd1E.

We sum these equations together and see that the d1 terms on the right-hand side
vanish. The second terms on the left-hand side are considered as the time deriva-
tives of quadratic functions 1

2 ET�εE and 1
2 HT�μH, respectively. The resulting

system is written as

d
dt

(
1
2 ET�εE + 1

2 HT�μH
)
= −ET�σE − HT�σ∗H.

If the conductivity terms of �σ and �σ∗ are zero, the system implies the conser-
vation of the derived value on the left-hand side. Inspired by this derivation, we
write the energy norm for the spatially discretized Maxwell system (22) as

P :=
1
2

(
ET�εE + HT�μH

)
. (38)

The similar formulation for the energy norm is obtained by Bossavit (2005, Chap-
ter III).

Next, we perform the similar consideration on the time discretized Maxwell
system. For simplicity, we consider the Yee’s leapfrog Equations (30) without the
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absorbing or source terms, meaning �σ = 0, �σ∗ = 0, fE = 0 and fH = 0. The
system is then written as

�ε
(

Ek+1 − Ek
)
= ΔtdT

1 Hk,

�μ
(

Hk+1 − Hk
)
= −Δtd1Ek+1.

The consecutive instances of the first equation are summed together and multi-
plied from the left by (Ek+1)T. The second equation is multiplied from the left by
(Hk+1 + Hk)T. Our results were as follows

(Ek+1)T�ε
(

Ek+2 − Ek+1 + Ek+1 − Ek
)
= (Ek+1)TΔtdT

1 (Hk+1 + Hk),

(Hk+1 + Hk)T�μ
(

Hk+1 − Hk
)
= −(Hk+1 + Hk)TΔtd1Ek+1.

The right-hand side terms of the equations are opposite to each other. Thus, these
terms vanish when the equations are summed together. After reorganizing the
terms, we get the following formulation

(Ek+2)T�εEk+1 + (Hk+1)T�μHk+1 = (Ek+1)T�εEk + (Hk)T�μHk.

The formulation is similar on both sides of the equation. The indices k + 2 and
k + 1 on the left-hand side correspond to the indices k + 1 and k on the right-
hand side, respectively. Thus, the energy of the leapfrog style formulation can be
defined in this manner. Similarly to the time-continuous energy norm of Equa-
tion (38), we define the energy norm for the leapfrog discretization at time in-
stance tk as

Pk :=
1
2

(
(Ek+1)T � εEk + (Hk)T � μHk

)
. (39)

5.7 Numerical comparison of the leapfrog methods

In this experiment, we try to indicate the properties of Yee’s leapfrog time step-
ping scheme and the harmonic leapfrog method in a simulation of a time-har-
monic problem. We are modeling a circularly polarized harmonic plane wave of
wavelength λ = 1 and time period T = 1. The wave is propagating to the x-
direction through a simulation domain. More specifically, the components of the
wave are expressed as

E(x, t) =

⎛
⎝ 0

cos (2π(x − t))
sin (2π(x − t))

⎞
⎠ , H(x, t) =

⎛
⎝ 0

− sin (2π(x − t))
cos (2π(x − t))

⎞
⎠ . (40)

The simulation domain is a cube with edges of length 2 oriented in the directions
of the coordinate axis. The domain is discretized by a regular cubic grid, where
each edge element is 0.05 in length. The material parameters in the entire sim-
ulation domain are ε = μ = 1. The boundary of the domain is modeled as an
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absorbing Silver-Müller type absorbing boundary condition, which is discussed
in Section 4.2. Using the scattered field formulation, the system has source terms
at the boundaries.

The simulation starts from zero initial fields E(t0) = 0 and H(t0) = 0, and
the fields are then updated as the time-dependent simulation proceeds. On thou-
sand total wave periods are iterated forward in time to obtain a stable result.
Both the Yee’s leapfrog and the harmonic leapfrog equations (30) and (32) are
employed in the discretized system. The time step size Δt is varied, dividing the
wave period T = 1 into 36, 42, 50, 70, 100, 140 and 200 time steps. The value
Δt = T/36 was found to be the largest time step size to produce convergence.
The solution is compared to the exact plane wave solution at the current time
instance by integrating the precise vector fields (E, H) over mesh elements. The
relative electric error δE, the relative magnetic error δH and the relative solution
error δS are computed using the following formulations

δE :=

√√√√√√∑j �εj,j

(
Ej −

∫
Ej

E · dl
)2

∑j �εj,j

(∫
Ej

E · dl
)2 , δH :=

√√√√√√∑i �μi,i

(
Hi −

∫
E∗

i
H · dl

)2

∑i �μi,i

(∫
E∗

i
H · dl

)2 ,

δS :=

√√√√√√∑j �εj,j

(
Ej −

∫
Ej

E · dl
)2

+ ∑i �μi,i

(
Hi −

∫
E∗

i
H · dl

)2

∑j �εj,j

(∫
Ej

E · dl
)2

+ ∑i �μi,i

(∫
E∗

i
H · dl

)2 . (41)

The results are also compared to a reference solution, which represents the best
solution of the current spatial discretization level. The reference solution is com-
puted using time-harmonic leapfrog equations with very small time step size
Δt = T/1000. The relative error is obtained by comparing the discrete values
Ej and Hi to the corresponding reference solution Ere f

j and Hre f
i by the following

formulations

δEre f :=

√√√√√√∑j �εj,j

(
Ej − Ere f

j

)2

∑j �εj,j

(
Ere f

j

)2 , δHre f :=

√√√√√√∑i �μi,i

(
Hi − Hre f

i

)2

∑i �μi,i

(
Hre f

i

)2 ,

δSre f :=

√√√√√√∑j �εj,j

(
Ej − Ere f

j

)2
+ ∑i �μi,i

(
Hi − Hre f

i

)2

∑j �εj,j

(
Ere f

j

)2
+ ∑i �μi,i

(
Hre f

i

)2 . (42)

The errors are illustrated as functions of the time step size in Figure 24.
The comparison to the reference solution (norms δEre f and δHre f ) indicates that
the harmonic leapfrog method produces a solution, which is independent of the
time step size Δt. The largest error compared to the reference is approximately
0.0020%. With Yee’s leapfrog method, the solution advances towards the refer-
ence solution as the time step size decreases. The error seems to approximately
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FIGURE 24 The error norms δEre f , δHre f , δE and δH are illustrated as functions of the
time step number. Both the Yee’s leapfrog and the harmonic leapfrog for-
mulations are considered. The harmonic leapfrog method seems to be in-
dependent of the time step size as long as the stability limit is realized.

obey the formula cΔt2 having the value 0.025% at Δt = T/200. The errors δEre f

and δHre f behave similarly to each other.
The comparison to the exact solution (norms δE and δH) indicates that the

most accurate solution is actually produced by Yee’s leapfrog method using the
maximal time step size Δt = T/36. In this case, the error in time discretiza-
tion improves the accuracy of the solution. This can be explained by consid-
ering the methods more closely. Compared to Yee’s leapfrog method, the har-
monic leapfrog strategy multiplies the material parameters ε and μ by the factor

φ
sin φ > 1. This means the simulated wavelength λ = T√

εμ is shortened compared
to the Yee’s procedure. Thus, the inaccurate Yee’s leapfrog method produces a
wavelength that is too long. In Chapter 8, we will show that the Yee’s Hodge op-
erator yields too short wavelength, which is the inverse effect. The error of Yee’s
leapfrog method is then opposite the error of Yee’s Hodge operator, which means
the errors are deductive.
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FIGURE 25 The solution error δSre f is plotted as a function of iterated periods to illus-
trate the convergence speed of the time-dependent simulation. The time
step size has no remarkable effect on the convergence speed.
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In the harmonic leapfrog method, the time step size has no effect on the
accuracy. Next, we consider what effect the time step size has on the convergence
speed of the time-dependent iteration. During the harmonic leapfrog iteration,
the intermediate solutions at several time instances are compared to the reference
result. The progress of the solution error δSre f is illustrated in Figure 25. The
results indicate that the convergence speed is almost independent of the time step
size. Thus, we cannot name a reason to use a shorter time step size than necessary
for the stability criterion. The maximal time step size implies the minimal amount
of iterations per time period, which indicates the minimal time consumption for
time-dependent iteration. With the harmonic leapfrog method, we recommend
the use of the maximal time step size as long as stability condition is realized.



6 FROM DISCRETE FORMS TO NUMERICAL

SOLUTIONS

The DEC simulations are carried out by discrete differential forms, which assign
an integral value to each mesh element. In physical applications, the discrete
form expression is hardly ever the desired formulation for the numerical solu-
tion. In this chapter, we consider methods to transform the discrete solutions into
several other formulations. In Section 6.1, we introduce a method to transform
the time-dependent leapfrog solution into a complex time-harmonic expression.
In Section 6.2, we present a method to estimate the vector fields at the desired
position. In scattering problems, the result is usually expressed as a far field so-
lution. Thus, we present the near to far field transformation in Section 6.3. The
far field Mueller matrix is formulated in Section 6.4.

6.1 Time-harmonic solution

A simulation of a time-harmonic problem can be carried out efficiently by the
leapfrog time discretization procedure, where the time-harmonic source terms
are applied. The result of a forward-in-time simulation can be transformed into
the complex presentation of a time-harmonic solution using the following con-
sideration. We denote a solution of time-dependent leapfrog iteration by Ek =
E(tk − Δt

2 ) and Hk = H(tk). With a time-harmonic assumption, the solution can
be expressed as Ek = real(Êk) and Hk = real(Ĥk), where the complex valued
terms are defined as

Êk := Êe−iω(tk−Δt
2 ),

Ĥk := Ĥe−iωtk
.

After performing l more leapfrog iterations, the new instance of the solution can
be expressed as Ek+l = real(Êke−iωlΔt) and Hk+l = real(Ĥke−iωlΔt). These re-
lations can be reformulated by expressing the complex exponential function by
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trigonometric operators, as

Ek+l = Ek cos(ωlΔt) + imag(Êk) sin(ωlΔt),

Hk+l = Hk cos(ωlΔt) + imag(Ĥk) sin(ωlΔt).

By assuming that the term sin(ωlΔt) is not zero, the imaginary terms can be writ-
ten as

imag(Êk) =
Ek+l − Ek cos(ωlΔt)

sin(ωlΔt)
,

imag(Ĥk) =
Hk+l − Hk cos(ωlΔt)

sin(ωlΔt)
.

Finally, the expression for the complex terms Ê and Ĥ is obtained by the following
consideration,

Ê = Êkeiω(tk−Δt
2 ) =

(
Ek + i

Ek+l − Ek cos(ωlΔt)
sin(ωlΔt)

)
eiω(tk−Δt

2 ),

Ĥ = Ĥkeiωtk
=

(
Hk + i

Hk+l − Hk cos(ωlΔt)
sin(ωlΔt)

)
eiωtk

.

Within this approach, the complex discrete form vectors are computed using
two separate time instances of the leapfrog solution. If the leapfrog solution obeys
a time-harmonic formulation exactly, then the consecutive solutions can be used,
and l = ±1. In practice, the leapfrog solution is rarely perfectly time-harmonic
due to unfinished iteration or numerical errors. Thus, the absolute of the divider
term | sin(ωlΔt)| should be maximized to obtain the best approximation. The
integer l should then be selected such that the term ±ωlΔt is as close to the right
angle π

2 as possible. In other words, l ≈ ± T
4Δt .

6.2 From discrete forms to vector fields

The transformation from discrete differential forms to smooth differential forms
is always an approximative operator. The transformation can be applied using
Whitney forms (Whitney, 1957), and the idea is presented briefly in Hirani (2003)
and Desbrun et al. (2008); with more detail in Bossavit (2005). Next, we present
a flexible method to compute approximative vector field values at any domain
position using discrete form values.

To obtain the electric field vector at position p, we first find at least three
linearly independent edge elements Ej in the neighborhood of position p. For
example, one could find the node element nearest to position p and select the
edges, which are connected to the node. The indices of these edges are listed
in set J . We assume a locally constant electric field vector E ∈ R3. Then each
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discrete form value is presented by

Ej =
∫
Ej

E · dl = E ·
∫
Ej

dl =: E · lEj ,

where the vector lEj is the orientation vector of element Ej, meaning the vector
between two boundary nodes. We search for a vector E such that the vector esti-
mates the discrete form values as closely as possible. We formulate a least squares
problem, where the cost function to be minimized is

JP = ∑
j∈J

�εj,j

2

(
E · lEj − Ej

)2
.

The term JP is minimized by the weighted linear least square method, as de-
scribed by Lawson and Hanson (1974). The solution is obtained by solving a
linear group of three equations, which are determined by

(
∑
j∈J

�εj,jl
T
Ej

lEj

)
E = ∑

j∈J
�εj,jlEj Ej.

The computation of vector field H is carried out in similar manner after defining
the set J of dual edge elements E∗

i .

6.3 Near to far field transformation

A far field solution is usually required in scattering problems. The far field solu-
tion is obtained from a near field result by applying a powerful and flexible near
field to far field transformation, which was first applied to the FDTD method by
Umashankar and Taflove (1982; 1983). The scattered far fields are given by trans-
formation of the equivalent currents over the free-space Green’s function (for a
background of this method, we refer to Bladel, 1964; Harrington, 1961; Jackson,
1975). For the full derivation of the far field transformation, we refer to Taflove
and Hagness (2005, Chapter 8). In this section, we introduce a practical method
to compute the far field result discretely within the DEC framework.

First, a harmonic near field solution must be computed. The harmonic so-
lution can be obtained by a time-dependent simulation using the time-harmonic
source terms. The time-dependent solution can be transformed to the time-har-
monic solution by the method described in Section 6.1. The harmonic result is
presented using the complex discrete form components Êk and Ĥl. The harmonic
near field data is collected on a boundary Γ, which encloses the scatterer object.
The material parameters ε and μ are assumed to be constant outside the enclosed
area and also in the small neighborhood of the boundary Γ. In scattering prob-
lems, a narrow layer must be left between the scatterer and Γ to obtain reliable
near field data.
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In our implementation, the enclosing boundary Γ is a union of primal face
elements Fj, where the indices j are listed in a set J . The tangential vectors
Êj and Ĥj are approximated on each boundary face Fj by applying the form to
vector transformation method, which is described in Section 6.2. The tangential
electric field component can be computed using only the edge elements on the
boundary of Fj. The tangential magnetic field component is computed using the
dual edges, which are linked to the neighboring dual node elements, as illustrated
in Figure 26.

E3

E1

E2

H1

H2

H3

H6

H5

H4

FIGURE 26 Neighboring edge and dual edge elements are utilized for the approxima-
tion of tangential vector field components Êj and Ĥj on a face element Fj.
Tangential vector fields are computed from complex discrete form values
Êk and Ĥl by the least squares transformation method of Section 6.2.

Following the derivation presented in Taflove and Hagness (2005), the scat-
tered far field is obtained by the field equivalence theorem, which is described
by Schelkunoff (1951). Let nj be the normal vector of Fj pointing outside of the
closed volume. Then, the equivalent electric and magnetic currents Ĵj and M̂j are
computed on each surface j ∈ J by

Ĵj = nj × Ĥj,

M̂j = Êj × nj.

We consider the scattering direction x with its associated orthogonal polarisation
directions y and z. The directions are presented by polar coordinates as⎛

⎝ x

y

z

⎞
⎠ =

⎛
⎝ cos θ sin θ cos φ sin θ sin φ

− sin θ cos θ cos φ cos θ sin φ

0 − sin φ cos φ

⎞
⎠ .

The far field potentials are computed by discrete integration of the electric and
magnetic currents over boundary Γ and multiplied by harmonic wave term eiκx·pj .
More explicitly, we write the far field potentials as

N̂ = ∑
j∈J

|Fj|eiκx·pj Ĵj,

L̂ = ∑
j∈J

|Fj|eiκx·pj M̂j.

Here pj is the center position of the face Fj, and |Fj| is the area of surface Fj. The
angular wave number κ = ω

√
εμ determines the far field wavelength. The far
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field potentials are applied to determine the far field terms

Êy = −L̂ · z −
√

μ

ε
N̂ · y,

Êz = L̂ · y −
√

μ

ε
N̂ · z, (43)

Ĥy = N̂ · z −
√

ε

μ
L̂ · y,

Ĥz = −N̂ · y −
√

ε

μ
L̂ · z,

which represent the scaled electric and magnetic components on directions y and
z at the far field region. The far field components on direction x are zero, since x

is the considered wave propagation direction. Using the terms of Equations (43),
the electric and magnetic far fields Ê and Ĥ in direction x are obtained by relations

lim
r→∞

4πreiκr

iκ
Ê = yÊy + zÊz,

lim
r→∞

4πreiκr

iκ
Ĥ = yĤy + zĤz.

The values of electric and magnetic far fields can be utilized to obtain the
scattering power in the x direction. The scattering power can be written in the
formula Psca = 1

2 |Ê × Ĥ|. Using this formula, we get the following equation in
the far field region

Psca =

∣∣∣∣ iκ
4πreiκr

∣∣∣∣
2 (

yÊy + zÊz

)× (yĤy + zĤz

)
=

κ2

16π2r2

(
ÊyĤz − ÊzĤy

)
.

Since Ĥz =
√

ε
μ Êy and Ĥy = −

√
ε
μ Êz, we can express the scattering power in

either of the following two ways

Psca =

√
εκ2

32
√

μπ2r2

(
Ê2

y + Ê2
z

)
=

√
μκ2

32
√

επ2r2

(
Ĥ2

y + Ĥ2
z

)
.

In a similar manner, the electric and magnetic far fields can be utilized to obtain
scattering properties like radar cross sections, phase functions and Mueller ma-
trices. In the next section, we describe the calculation of a Mueller matrix using
the obtained far field solution.

6.4 Mueller matrix

A Mueller matrix is a 4 × 4 matrix, which is used together with the Stokes vec-
tor to reproduce the effect of a given optical element. The Mueller calculus was
developed in 1943 by Hans Mueller, a professor of physics at the Massachusetts
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Institute of Technology (McLean, 2008). The method is a representation for coher-
ent and partially polarized electromagnetic waves, and it has several applications
with the ray tracing techniques (Bohren and Huffman, 1983).

The Stokes vector is a presentation for harmonic plane waves. The Stokes
vector (I, Q, U, V)T has four real valued components, where each component il-
lustrates certain polarization properties of the electromagnetic wave. We consider
a harmonic plane wave propagating in the x-axis direction. Then, the electric field
vector can be expressed as E = real(Êeiκx−iωt), where Ê is a complex valued vec-
tor. We denote the y- and z-components of Ê by the complex valued terms Êy and
Êz, respectively. Then, the wave can be expressed in the Stokes vector presenta-
tion, as

I = |Êy|+ |Êz|,
Q = |Êy| − |Êz|,
U = 2 real(Êy · Ê′

z),
V = −2 imag(Êy · Ê′

z).

Here Ê′
z represents the complex conjugate of Êz. In the Stokes vector formulation,

the first component I simply represents the intensity of the plane wave. The other
components correspond to the polarization properties of the plane wave. The
Stokes vector presentation can be applied for a plane wave of any propagation
direction by modifying the coordinate basis.

The Mueller calculus is based on multiplying the Stokes vectors by Mueller
matrices. If the incident wave is presented by the Stokes vector formulation
(I, Q, U, V)T, a scattered wave (I′, Q′, U′, V′)T is computed by the matrix product⎛

⎜⎜⎝
I′
Q′
U′
V′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44

⎞
⎟⎟⎠
⎛
⎜⎜⎝

I
Q
U
V

⎞
⎟⎟⎠ .

For more details, see Bohren and Huffman (1983). For scattering problems, the
Mueller matrix is generally presented as a function of the scattering angle θ. The
scattering angle is defined such that the direction of the incident wave implies
the zero scattering angle θ = 0. The 90 degree scattering implies θ = π

2 and the
backscattering implies θ = π. If the scatterer object is symmetric around the x
axis, the scattering properties can be expressed comprehensively by the Mueller
matrix. A sphere and an x-oriented disc are examples of such scatterer objects.

Next, we introduce a method, which is applied to compute the Mueller ma-
trix by the DEC framework. First, the scattering geometry must be discretized
by the DEC framework. The unbounded domain of the physical problem is trun-
cated to a finite discrete domain by an absorbing boundary condition or by an
absorbing layer. In many instances, the usage of an absorbing PML layer is pre-
ferred. The convex volume inside the PML layer should include the target object.
Most efficiently, the simulation is carried out with the scattered field formulation,
which is described in Section 4.1. The incident wave is a fully polarized har-
monic plane wave, which is propagating to the x-direction. The polarization is
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FIGURE 27 The geometry for the Mueller matrix calculation. The incident wave is po-
larized as illustrated on the left. The scattered far fields for angle θ are
computed in the two directions xq and xr, which are illustrated on the right.

selected such that the E field vibrates in the y-direction, and the H field vibrates
in the z-direction, as illustrated on the left of Figure 27. After the simulation has
proceeded, the near to far field transformation of Section 6.3 is applied to obtain
the far field solutions. For each scattering angle θ, we compute far field terms of
Equations (43) at two scattering directions xq and xr. The scattering directions,
which are illustrated on the right-hand side of Figure 27, are written formally as⎛
⎝ xq

yq

zq

⎞
⎠ =

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠ ,

⎛
⎝ xr

yr

zr

⎞
⎠ =

⎛
⎝ cos θ 0 sin θ

sin θ 0 − cos θ

0 1 0

⎞
⎠ .

Specifically, we obtain the first two terms of Equations (43) at scattering direc-
tion xq and denote them Êq

y and Êq
z, respectively. The same terms are also ob-

tained at scattering direction xr, and these are denoted by Êr
y and Êr

z. We employ
these terms to obtain four more scattering terms, which represent the terms of
45-degree polarization and the terms of circular polarization

Ês
y,z :=

Êq
y,z − Êr

y,z√
2

, Êt
y,z :=

Êq
y,z + Êr

y,z√
2

,

Êu
y,z :=

Êq
y,z + iÊr

y,z√
2

, Êv
y,z :=

Êq
y,z − iÊr

y,z√
2

.

The first component m11 of the Mueller matrix represents the average scat-
tering power for the scattering angle θ. Sometimes the term m11 is used without
the other Mueller matrix components, and the function m11(θ) is then called the
scattering phase function. The scale of the Mueller matrix can be determined in
many possible ways. A common way to scale the matrix is to set

m11 :=
Pq

sca + Pr
sca

2Pinc
,

where Pinc is the incident field power and Pq
sca and Pr

sca represent the scattered
field power at radius r = 1. Then the term m11 can be expressed as

m11 := c
[
(Êq

y)
2 + (Êq

z)
2 + (Êr

y)
2 + (Êr

z)
2
]

,
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where

c :=
εω2√εμ

64π2Pinc
.

The rest of the Mueller matrix components are expressed as

m12 := c
[
(Êq

y)
2 − (Êq

z)
2 + (Êr

y)
2 − (Êr

z)
2
]

,

m13 := c
[
2 real(Êq

y(Êq
z)

′ + Êr
y(Êr

z)
′)
]

,

m14 := c
[
2 imag(Êq

y(Êq
z)

′ + Êr
y(Êr

z)
′)
]

,

m21 := c
[
(Êq

y)
2 + (Êq

z)
2 − (Êr

y)
2 − (Êr

z)
2
]

,

m22 := c
[
(Êq

y)
2 − (Êq

z)
2 − (Êr

y)
2 + (Êr

z)
2
]

,

m23 := c
[
2 real(Êq

y(Êq
z)

′ − Êr
y(Êr

z)
′)
]

,

m24 := c
[
2 imag(Êq

y(Êq
z)

′ − Êr
y(Êr

z)
′)
]

,

m31 := c
[
(Ês

y)
2 + (Ês

z)
2 − (Êt

y)
2 − (Êt

z)
2
]

,

m32 := c
[
(Ês

y)
2 − (Ês

z)
2 − (Êt

y)
2 + (Êt

z)
2
]

,

m33 := c
[
2 real(Ês

y(Ês
z)

′ − Êt
y(Êt

z)
′)
]

,

m34 := c
[
2 imag(Ês

y(Ês
z)

′ − Êt
y(Êt

z)
′)
]

,

m41 := c
[
(Êu

y)
2 + (Êu

z )
2 − (Êv

y)
2 − (Êv

z)
2
]

,

m42 := c
[
(Êu

y)
2 − (Êu

z )
2 − (Êv

y)
2 + (Êv

z)
2
]

,

m43 := c
[
2 real(Êu

y(Êu
z )

′ − Êv
y(Êv

z)
′)
]

,

m44 := c
[
2 imag(Êu

y(Êu
z )

′ − Êv
y(Êv

z)
′)
]

.



7 NON-UNIFORM TIME STEPPING

In the leapfrog time discretization scheme, the upper bound for the time step
size Δt is determined by the CFL condition, as discussed in Section 5.5. The CFL
condition offers a uniform time step size, which can be used everywhere in the
simulation region. On unstructured spatial discretization, the uniform time step
size is rarely optimal in the full domain. In this chapter, we introduce a non-
uniform leapfrog scheme, in which the time step size can be varied on different
parts of the domain. We start with formulating an estimate for piecewise stability
criterion in Section 7.1. The piecewise stability criterion is applied for the non-
uniform leapfrog time stepping scheme, which is presented in Section 7.2. At the
end of this chapter, we present numerical experiments, which show that the sym-
metric non-uniform time stepping scheme can be applied efficiently to problems
where the properties of spatial discretization alternate heavily.

7.1 An estimate for piecewise stability criterion

Our aim is to formulate a piecewise limit for Δt, which could be used to automat-
ically determine optimal non-uniform time step sizes for an unstructured system.
The CFL condition (37) does not help in this case because it gives a stability cri-
terion only for the uniform time stepping scheme. Ideally, we would like to be
able to determine the optimal time step sizes ΔtEj and ΔtHi for each discrete form
values Ej and Hi, respectively. Then each value update could be performed using
an individual time step size instead of a general time step size. In this section, we
estimate a piecewise stability criterion.

The instability of the leapfrog iteration method is generally caused by the
dispersion of simulated values, as shown in Figure 28. This distribution leads
us to formulate a stability criterion, which prevents this kind of behavior. As-
sume arbitrary positive real values Emax such that |Ej| ≤ Emax

j for all j. We try to
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FIGURE 28 The simulation will be unstable if discrete form components bounce too
much on a single time step.

eliminate the dispersion by setting∣∣∣Ek+1
j − 2Ek

j + Ek−1
j

∣∣∣ ≤ CEmax
j . (44)

The selection of constant C defines how small changes are allowed to influence
discrete form values. Constant C = 4 would allow Ej to bounce between −Emax

j
and Emax

j on consecutive time steps. Hence, we require C ≤ 4. Still, the con-
vergence can not be guaranteed for any non-uniform time stepping scheme. We
consider the selection of C more specifically in Section 7.4, where we apply nu-
merical experiments to a non-uniform time stepping scheme.

We derive a limit for the piecewise time step size ΔtEj using the assumption
of Equation (44). We assume the Yee’s leapfrog discretization scheme (30) has
zero source terms ( fE = 0, fH = 0) and zero absorbing terms (�σ = 0, �σ∗ = 0).
The system is then expressed as

Ek+1 − Ek = Δt�ε−1dT
1 Hk,

Hk+1 − Hk = −Δt�μ−1d1Ek+1.

These equations are applied consecutively to reformulate the left-hand side of
Equation (44). We have

(Ek+1 − Ek)− (Ek − Ek−1) = Δt�ε−1dT
1 (Hk − Hk−1) = −Δt2�ε−1dT

1 �μ−1d1Ek.

Applying this to Equation (44), we have the relation

Δt2 ≤
CEmax

j∣∣∣(�ε−1dT
1 �μ−1d1Ek

)
j

∣∣∣ ,
which is realized for all k ≥ 0. We write an upper bound for the divisor using the
assumption |Ek

j | ≤ Emax
j . Using the notation |M|i,j := |Mi,j|, we estimate

∣∣∣∣(�ε−1dT
1 �μ−1d1Ek

)
j

∣∣∣∣ ≤ (∣∣∣�ε−1dT
1 �μ−1d1

∣∣∣ Emax
)

j
.

Now, we can write a sufficient condition for time step size. We denote the
local time step for a value update of Ej by ΔtEj . Assuming that Ej and its neighbor
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values Hi are discretized using this same time step size, a sufficient condition to
fulfill the stability criterion (44) can be written as

ΔtEj ≤
√√√√ CEmax

j(∣∣�ε−1dT
1 �μ−1d1

∣∣ Emax
)

j
. (45)

The similar consideration is applied on the magnetic field values Hi to obtain the
local time step size ΔtHi . The corresponding formulation for the stability criterion
is

ΔtHi ≤
√

CHmax
i(∣∣�μ−1d1�ε−1dT

1

∣∣Hmax
)

i
. (46)

The time step consideration is carried out using an arbitrary selection of
Emax and Hmax. The selection of maximal values Emax

j and Hmax
i determines how

the condition is weighted between elements. For example, if the Emax is selected
as the eigenvector corresponding to an eigenvalue χ of |�ε−1dT

1 �μ−1d1|, then the
uniform criterion ΔtEj ≤ √C/χ is obtained. This presentation is close to the
presentation of the CFL condition. We select the maximal value vectors Emax and
Hmax inspired by the energy norm formulation (38). Letting each value have the
same maximal weight on the energy norm, we obtain

Emax
j =

1√
�εj,j

, Hmax
i =

1√
�μi,i

.

7.2 Non-uniform leapfrog method

Instead of picking the same time step size for every element, it is often more effi-
cient to assign each element its own optimized time step. There are several ways
to implement a non-uniform (or asynchronous) time stepping scheme. Lew et
al. (2003) developed an asynchronous time stepping scheme for elastodynamics
using asynchronous variational integrators (AVI). Later Stern et al. (2009) applied
the same idea to electromagnetism. The idea of AVI is based on preserving opti-
mal energy conservation in time-dependent simulations.

The value update of the AVI iteration is illustrated in Figure 29. As previous
studies have shown (Lew et al., 2003; Stern et al., 2009), the explicit AVI scheme
can be implemented by selecting mesh elements from a priority queue, sorting by
time and iterating forward-in-time. However, the scheme is not strictly iterative
since the update of a value can depend on several past time instances (dotted
arrows in the figure). This is carried out by using extra variables to store potential.
Note that if all elements take uniform time steps, the AVI method is reduced to a
basic leapfrog scheme.

Unfortunately, we have not identified an adequate analysis for the energy
conservation or the stability criterion of the AVI based method. Our experience is
that the energy is not conserved during the iteration, even if the small time step
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FIGURE 29 One-dimensional illustration of asychronous time stepping using the AVI
method. Each H term has its specific time step size, and time instances
are represented by circles with numbers. The E terms are computed on
the sections between neighboring time instances. The arrows show which
neighboring instances are used to compute the current instance. The dotted
arrows are used for relations with past values, and those relations require a
special consideration.

sizes are applied. This is the reason why we prefer the following non-uniform
leapfrog time discretization scheme. The non-uniform leapfrog method begins
with computing the maximal local time step sizes Δtmax

Ej
and Δtmax

Hi
by the stabil-

ity criterion estimates presented in Equations (45) and (46). Then we select the
general time step Δt, which is the smallest uniform iteration block to be repeated
over and over again in the forward in time iteration. The local time step sizes
are then set as ΔtEj = Δt/sEj and ΔtHi = Δt/sHi , where sEj and sHi are integers
representing the number of time steps on Δt period. The general time step size Δt
is selected between the minimal and maximal values of the local time step sizes
Δtmax

Ej
and Δtmax

Hi
.

The derivation of the piecewise stability criterion for Δtmax
Ej

assumes that the
neighbor values Hi are discretized using the same time step size Δtmax

Ej
. This can

not be guaranteed in non-uniform time stepping. Still, we can guarantee that the
neighbor values are discretized at least on the same level. We assume indices i
and j such that the primal edge Ej is a boundary element of the primal face Fi
(this implies (d1)i,j �= 0). Then we require

sEj ≥
Δt

min
{

Δtmax
Ej

, Δtmax
Hi

} , sHi ≥
Δt

min
{

Δtmax
Hi

, Δtmax
Ej

} .

These inequalities offer a small enough time step size for each element. Still, the
time stepping is asynchronous, meaning that the energy conservation is not as
clear as we discussed in Section 5.6. We synchronize the time stepping scheme by
selecting the numbers sEj and sHi such that they can be written as a power of three,
i.e. s = 3u ∈ {1, 3, 9, 27, . . . }. Using this selection, each neighbor element, which
has finer time stepping than the current element, also has a half-way instance
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for the current value update (see Figure 30). This property is the base for the
leapfrog methods, and for this reason we call this scheme a non-uniform leapfrog
method. The half-way instance is not available for those cases where the current
element has a finer time step size than the neighboring element. In those cases,
the iteration is still symmetric on Δt period, as illustrated in Figure 30.

H H
E E
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3

FIGURE 30 In non-uniform time stepping, Δt is divided into smaller steps only where
this is needed. In this one-dimensional illustration, the circles with a num-
ber inside represent time instances of Ej and Hi. The arrows illustrate the
chronological order of computation.

The time stepping of the non-uniform leapfrog method is carried out in
chronological order. The value updates are strictly iterative, meaning that a new
value Enew

j or Hnew
i can be computed from the latest instance of values. Thus,

no extra storage is required during the computation. The following two equa-
tions illustrate the value updates in the non-uniform leapfrog method, where the
"new" values replace the previous values immediately. Based on Yee’s leapfrog
Equations (30), we write

Enew
j := Ej +

( sEj�εj,j

Δt
+

�σj,j

2

)−1
[

m

∑
i=1

(dT
1 )j,iHi − �σj,jEj + fE(t)j

]
, (47)

Hnew
i := Hi +

( sHi�μi,i

Δt
+

�σ∗
i,i

2

)−1 [
−

n

∑
j=1

(d1)i,jEj − �σ∗
i,iHi + fH(t)i

]
.

In the non-uniform leapfrog method, the H values are declared at integer
time instances at the beginning and at the end of Δt iteration (see Figure 30). The
E values are declared, in principle, at the half-integer time instance, which is at
ΔtEj /2 earlier for Ej. The chronological order of the value updates is obtained by
ordering the relative update times

tk
Ej

:= Δt
k − 1

sEj

, tk
Hi

:= Δt
k − 1

2
sHi

,



82

which correspond to the k:th value update inside the Δt period. To obtain the full
solution at synchronized time instance, we apply the transformation for E field
values, as described in Section 5.4. We denote the synchronized value by Esync

j .

The transformation from Ej to Esync
j and the inverse transformation from Esync

j to
Ej are obtained, respectively, by equations

Esync
j := Ej +

(2sEj�εj,j

Δt
+ �σj,j

)−1 [ m

∑
i=1

(dT
1 )j,iHi − �σj,jEj + fE(t)j

]
, (48)

Ej := Esync
j −

(2sEj�εj,j

Δt

)−1 [ m

∑
i=1

(dT
1 )j,iHi − �σj,jE

sync
j + fE(t)j

]
.

7.3 Harmonic non-uniform leapfrog method

The Equations (47) and (48) of the non-uniform leapfrog method are based on
Yee’s leapfrog approximations. The equations can be also formulated using the
time-harmonic approach of Section 5.2. In the harmonic non-uniform leapfrog
method, the value update Equations (47) are replaced by

Enew
j := Ej + 2

(
ω�εj,j

sin φEj

+
�σj,j

cos φEj

)−1 [ m

∑
i=1

(dT
1 )j,iHi −

�σj,j

cos φEj

Ej + fE(t)j

]
, (49)

Hnew
i := Hi + 2

(
ω�μi,i

sin φHi

+
�σ∗

i,i

cos φHi

)−1 [
−

n

∑
j=1

(d1)i,jEj −
�σ∗

i,i

cos φHi

Hi + fH(t)i

]
,

where φEj := ωΔt
2sEj

and φHi := ωΔt
2sHi

. The new synchronization formulas, which

replace Equation (48), are written as

Esync
j := Ej +

(
ωcos φEj�εj,j

sin φEj

+ �σj,j

)−1 [ m

∑
i=1

(dT
1 )j,iHi + αjEj + fE(t)j

]
,

Ej := Esync
j −

(
ω�εj,j

sin φEj

)−1 [ m

∑
i=1

(dT
1 )j,iHi + αjE

sync
j + fE(t)j

]
,

where

αj :=
ω(1 − cos φEj)�εj,j

sin φEj

− �σj,j.

The value update Equations (49) are exact for time-harmonic waves, if the neigh-
bor values are determined exactly at the middle of the time step. Unfortunately,
this is not always the case with non-uniform time stepping. If the neighboring
values are updated with fewer time steps, the formulation employs often non-
synchronized neighbor instances, and then the value update is not exact. Nev-
ertheless, the approximations are still improved in comparison to Equation (47),



83

and we prefer using the harmonic non-uniform time stepping for time-harmonic
problems.

The treatment of negative absorption can also be transformed to the non-
uniform time stepping scheme. As explained in Section 5.3, the value update of
Ej or Hi is treated by a three-step procedure, which requires additional memory
storage for the Dj or Bi values, respectively. The value update equations for the
non-uniform method are very similar to the Equations (34) and (35). We only
replace the term φ with φEj and φHi , respectively. The equations for the Ej and Dj
value updates are

Etemp
j := Ej +

−�εj,j −
tan φEj

ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dj,

Dnew
j := Dj +

2 sin φEj

ω

(
dT

1 H
)

j
,

Enew
j := Etemp

j +
�εj,j −

tan φEj
ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dnew

j ,

and the equations for Hi and Bi value updates are

Htemp
i := Hi +

−�μi,i −
tan φHi

ω �σ∗
i,i

�μ2
i,i +

1
ω2�σ∗

i,i
2 Bi,

Bnew
i := Bi −

2 sin φHi

ω
(d1E)i ,

Hnew
i := Htemp

i +
�μi,i −

tan φHi
ω �σ∗

i,i

�μ2
i,i +

1
ω2�σ∗

i,i
2 Bnew

i .

The synchronization of the Ej and Dj values is performed using the follow-
ing equations. The transformation from Ej, Dj to Esync

j , Dsync
j is obtained by

Etemp
j := Ej +

−�εj,j −
tan(φEj /2)

ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dj,

Dsync
j := Dj +

tan φEj

ω

[(
dT

1 H
)

j
+

ω(1 − cos φ)

sin φ
Dj

]
,

Esync
j := Etemp

j +
�εj,j −

tan(φEj /2)

ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dsync

j .
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The inverse transformation from Esync
j , Dsync

j to Ej, Dj is obtained by

Etemp
j := Esync

j − �εj,j −
tan(φEj /2)

ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dsync

j ,

Dj := Dsync
j − sin φEj

ω

[
dT

1 Hk +
ω(1 − cos φ)

sin φ
Dsync

j

]
,

Ej := Etemp
j − −�εj,j −

tan(φEj /2)

ω �σj,j

�ε2
j,j +

1
ω2�σ2

j,j
Dj.

7.4 Numerical consideration of the non-uniform leapfrog method

Next, we consider stability, efficiency and energy conservation of the non-uniform
time stepping scheme, which is presented in Section 7.2. We perform numerical
experiments, where the initialized wave is simulated forward-in-time in a do-
main with perfectly reflecting boundaries. The simulation domain is a cube of
edge length 2. The domain is discretized by a randomly generated mesh, which
is illustrated in the left-hand side of Figure 31. The boundary of a cube is con-
structed by squares with an edge length 0.1. The interior is generated by Voronoi
construction from randomly positioned nodes. The nodes are dropped randomly
using the uniform density function, where the node density is one node per vol-
ume 10−3. The nodes are not allowed to be too near to each other. If the latest
node is less than 0.01 away from any previous node, it is regenerated by the same
uniform random function, and the same test is repeated. The range of produced
element sizes is wide, as shown in Table 2.

TABLE 2 The element sizes of the random Voronoi cube.

Minimum Mean Maximum

Primal edge length 0.0100 0.129 0.309
Primal face area 7.95e-5 0.00628 0.0273

Dual edge length 1.44e-6 0.0442 0.201
Dual face area 1.03e-11 0.00384 0.0288

At the initial stage, the discrete field values E(t0) and H(t0) are initialized
by an initial wave, which is similar to Equation (40). The initial wave is a circu-
larly polarized plane wave of wavelength λ = 1 and period T = 1, which propa-
gates perpendicularly to the two faces of the domain. Material parameters in the
domain region are ε = μ = 1. The domain boundaries are modeled by the per-
fectly reflecting Dirichlet boundary condition. After the initialization, the system
should not include any absorption or emission. We apply both uniform and non-
uniform time stepping schemes in these simulations by using Yee’s value update
Equations (30) and (47). The simulations were iterated forward in time through
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FIGURE 31 The random mesh is illustrated on the left-hand side. The initialized wave
is trapped inside the domain, as shown on the right-hand side. The energy
conservation is studied by long term simulation.

1000 periods. The discrete energy norm of Equation (38) is computed after each
iterated period. The E value instances are synchronized before the computation.
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FIGURE 32 The uniform time stepping scheme conserves the energy norm exactly.
Within the non-uniform time stepping, the energy norm remains almost
constant during long term simulation.

The energy norms are plotted in Figure 32. The energy conservation of the
uniform time stepping scheme is exact, as we noticed analytically in Section 5.6.
The energy conservation of the non-uniform time stepping scheme also seems
to be satisfactory. The standard deviation of the energy norm is 0.0014, and the
difference between the maximal and minimal values is 0.0074. The relative stan-
dard deviation is 0.010%, and the relative maximal difference is 0.050%. The re-
sults also show that the system is stable with both uniform and non-uniform time
stepping schemes. The stability constant C = 4 was applied with both methods
using the stability criterion of Section 7.1. This constant is now seen to be suffi-
cient for the convergence of this problem. Using another simulation, we found
that neither uniform nor non-uniform time stepping schemes converged with the
constant C = 4.5. Thus, the stability criterion nominates a quite tight bound for
the time step size in the current random mesh discretization. Still, we have found
that with certain spatial discretizations, the constant C = 4 is not sufficient for
the convergence. Then we apply C = 2, which has been a reliable criterion in all
of our simulations.
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We also compared the iteration times of both schemes in our test problem.
We performed a single core simulation on a Intel Xeon E5-2670 processor at 2.60
GHz. The time consumption of non-uniform time stepping scheme was 0.773
seconds per one period simulation. The maximum of time step divisors sEj and
sHi was 81, which means there was a remarkable difference between the smallest
and largest time step sizes. The uniform time step scheme is scaled to obey the
stability criterion at every part of the domain, which means the minimum time
step is used for every element. An iteration time for period T of the uniform time
stepping scheme was 13.9 seconds, which is about 18 times the corresponding
iteration time of non-uniform time stepping scheme. Thus, non-uniform time
stepping can cause a significant improvement in the method efficiency.



8 HARMONIC HODGE OPERATOR

In the DEC framework, the error in spatial discretization is packed into one source,
which is the Hodge operator. Therefore, it is important to examine this oper-
ator more closely. The selection of the Hodge operator can significantly affect
the accuracy of the method; therefore, the development of DEC is partly shift-
ing to the consideration of the Hodge operator (Hirani et al., 2012; Mullen et al.,
2011). In this chapter, we introduce a diagonal discrete Hodge operator, which
is optimized for problems including harmonic waves. We compare the harmonic
Hodge presentation to the Yee’s Hodge operator by the numerical experiments
and observe significant improvement in accuracy. In this context, we also com-
pare the structured grids of Section 2.8 in association with DEC simulations. We
observe that the isotropic properties of grids have a significant influence on the
method accuracy.

8.1 The Yee’s Hodge operators for the Maxwell system

The four discrete Hodge operators �ε, �μ, �σ and �σ∗ are introduced in Section 3.3
to formulate the discrete Maxwell system. The relations for the Hodge operators
are written as

D = �εE, B = �μH,
J = �σE, J∗ = �σ∗H.

These relations are supposed to estimate the corresponding physical relations as
accurately as possible. The Hodge operators are presented as diagonal matrices,
when the orthogonal duality is required. The Yee’s Hodge operator is based on an
assumption of constant material parameters ε, μ, σ and σ∗, and locally constant
vector fields D, E, B, H, J and J∗. The discrete form values Dj, Ej, Bi, Hi, Jj and J∗i
can then be expressed by the dot product between the vector field and the element
volume vector: for example, relations Ej = |Ej|nEj · E and Dj = |F∗

j |nF∗
j
· D.

Assuming real valued material parameters ε, μ, σ and σ∗, the diagonal discrete
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Hodge operators have formulations

�εj,j = ε
|F∗

j |
|Ej| , �μi,i = μ

|Fi|
|E∗

i |
,

�σj,j = σ
|F∗

j |
|Ej| , �σ∗

i,i = σ∗ |Fi|
|E∗

i |
We recall that |F | is the area of face F and |E | is the length of edge E . The dual
element is denoted by a star ∗ after the element symbol.

The assumption of locally constant vector fields is not accurate. Many prob-
lems have harmonic or curved solutions, where the curvature can be approxi-
mated in advance. For example, time-harmonic problems usually have a solu-
tion, which is locally space-harmonic in some direction. If one knows the local
material parameters and the period of the solution, the wavelength λ can be es-
timated. This information can be used to improve the estimate for the Hodge
operator and to obtain more accurate results.

8.2 Principle of harmonic Hodge

From now on, we use a complex time-harmonic expression for Hodge operators
and discrete form values. As discussed in Section 6.1, the four discrete Hodge
operators �ε, �μ, �σ and �σ∗ can be expressed by two complex valued discrete
Hodge operators �̂ε and �̂μ, which are defined by Equation (19). This notation al-
lows us to express the discretized Maxwell system in a shorter form as presented
in Equation (20).

From now on, we consider only the Hodge operator �̂ε and the fields cor-
responding to it. The other Hodge operator, �̂μ, can be computed in a similar
manner. We make an assumption that the time-harmonic property will gener-
ate locally space-harmonic solutions. In other words, we assume that in a small,
environment the solution behaves like a harmonic plane wave. Let d be the prop-
agation direction of a plane wave. Then the harmonic discrete form values Êd

j

and D̂d
j corresponding to plane wave solution are

Êd
j :=

∫
Ej

Êd
0 eiω

√
ε̂μ̂(p·d) · dl, D̂d

j :=
∫
F∗

j

ε̂Êd
0 eiω

√
ε̂μ̂(p·d) · da.

Here Êd
0 is a complex-valued field vector in C3 and p represents a position vector.

Physically, the diagonal Hodge operator �̂ε is designed to estimate the relation
D̂d

j = �̂εj,j Êd
j . The error of the Hodge transformation for a plane wave propagat-

ing in the direction d is
r̂d

j = Êd
j − �̂ε−1

j,j D̂d
j .

Since the propagation direction is not usually known in advance, we want to
minimize the error in all directions. We minimize the squared error norm ∑d |r̂d

j |2,
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where ∑d goes through a wide range of propagation directions. The least square
minimization gives the best estimate for the Hodge operator, which is obtained
by the equation

�̂εj,j =
∑d D̂d

j D̂d′
j

∑d Êd
j D̂d′

j
. (50)

The minimization can be carried out numerically, simply by selecting a set of
propagation directions for the computation. Another way is to integrate propa-
gation directions analytically over a unit sphere surface. The analytical approach
is discussed in Section 8.3.

There is an interesting question of how much does harmonic Hodge oper-
ator differ from the Yee’s Hodge operator? For computing we assume a regular
grid, where the length of edge elements is 1. Further, we assume that the solution
of the example is a plane wave that propagates to the x-direction with wavelength
λ = 2π

ω
√

εμ . Here, ω is the angular frequency, and the material parameters ε and
μ are constant real numbers. The x-components of the resulting vector fields are
zero. Every non-zero discrete value of the solution lies on the edges in a y- or
z-direction or on their corresponding orthogonal faces. Since the problem is sym-
metric for the y- and z-directions, we need to compute only one direction of the
wave. We select primal edge Ej as the unit line on the z-axis with its center at
the origin. Let dual face F∗

j be a unit square on the x-y-plane with its center at
the origin. We know the propagation direction; therefore, we can compute the
exact harmonic Hodge operator for this one direction. The diagonal term of the
harmonic Hodge operator is

�̂εj,j =
D̂d

j

Êd
j
=

∫ 0.5
−0.5

∫ 0.5
−0.5 εÊ0eiω

√
εμx dydx∫ 0.5

−0.5 Ê0eiω
√

εμx dz
= ε

e
iω

√
εμ

2 − e−
iω

√
εμ

2

iω
√

εμ
= ε

sin(ω
√

εμ
2 )

ω
√

εμ
2

.

In this case, the component of the harmonic Hodge operator has a real value. The
expression is now compared to the Yee’s Hodge operator. Since |F∗

j | = |Ej| =
1, the diagonal term for the Yee’s Hodge operator is �εj,j = ε. This means the
relative difference of the Yee’s Hodge and the harmonic Hodge operators is

�̂εj,j − �εj,j

�εj,j
=

sin
(

ω
√

εμ
2

)
ω
√

εμ
2

− 1.

If the wavelength is ten times the element edge length (i.e. λ = 10), then the
value of term ω

√
εμ

2 equals π
10 . Using this in the previous equation, we get the

difference of Hodge operators. The harmonic Hodge operator has 1.64% smaller
values than Yee’s Hodge operator. Since the harmonic Hodge operator is exact in
this case, the system with the Yee’s Hodge operator produces a 1.64% too short
wavelength. We verify this result by numerical experiments in Section 8.5.1.
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8.3 Integration of the harmonic Hodge operator

In this section, we perform an analytical derivation for the harmonic Hodge op-
erator. We express the wave propagation direction d by the polar coordinate
presentation

d =

⎛
⎝ cos θ

sin θ cos φ

sin θ sin φ

⎞
⎠ .

The discrete formulation (50) of the harmonic Hodge operator can be expressed
in continuous form by replacing the discrete sum of propagation directions by the
integration of all propagation directions over a unit sphere. The harmonic Hodge
operator is now written as

�̂εj,j =

∫ π
0

∫ 2π
0 D̂d

j D̂d
j sin θ dφdθ∫ π

0

∫ 2π
0 Êd

j D̂d
j sin θ dφdθ

. (51)

To evaluate the integrations, we estimate the terms D̂d
j D̂d

j and Êd
j D̂d

j . We assume
that the primal edge Ej is a line segment of length l and the corresponding dual
face F∗

j is a circle of radius r. As we illustrate in Figure 33, the edge element is
pointing at the x-direction, and the dual face element is orthogonal to it, lying on
the y-z-plane. Both elements are centered at the origin.

x

y

z
j

*

E
jF

FIGURE 33 An illustration of the elements, which are applied in the derivation of the
harmonic Hodge operator.

The layout of the elements is symmetric for all azimuth angles φ, which
let us simplify the consideration assuming φ = 0. The x-component of the field
vector is denoted by (Êd

0 )x. Then the discrete form value D̂d
j is computed by

D̂d
j =

∫ r

−r

∫ √
r2−z2

−√
r2−z2

ε̂(Êd
0 )xeiω

√
ε̂μ̂y sin θdydz.

The face element F∗
j is supposed to be small compared to the wavelength. Thus,

the Taylor polynomial expression offers a good formulation for the exponential
function. To simplify the forthcoming formulation, we introduce an auxiliary
term α̂ := iω

√
ε̂μ̂ sin θ. The Taylor polynomial for the exponential function is
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then eα̂y = ∑∞
n=0

α̂nyn

n! . We integrate the expression for the discrete form value as

D̂d
j = ε̂(Êd

0 )x

∫ r

−r

∫ √
r2−z2

−√
r2−z2

∞

∑
n=0

αnyn

n!
dydz

= ε̂(Êd
0 )x

∫ r

−r

∞

∑
n=0

α̂n
(
(
√

r2 − z2)n+1 − (−√
r2 − z2)n+1

)
(n + 1)!

dz

= ε̂(Êd
0 )x

∫ r

−r

∞

∑
n=0

2α̂2n
(√

r2 − z2
)2n+1

(2n + 1)!
dz.

To continue the integration, we change the variable z to t such that z = r sin t.
By this selection, we have dz = r cos tdt and

√
r2 − z2 = r cos t. The precom-

puted integrals of Table 3 are applied to get the few first terms of the resulting
polynomial

D̂d
j = ε̂(Êd

0 )x

∞

∑
n=0

2α̂2nr2n+2

(2n + 1)!

∫ π
2

−π
2

(cos t)2n+2 dt

= πr2ε̂(Êd
0 )x

(
1 +

(α̂r)2

8
+

(α̂r)4

192
+ . . .

)
. (52)

TABLE 3 Precomputed integrals of trigonometric functions.

∫ π
2
−π

2
cos2 tdt = π

2

∫ π
0 sin3 θdθ = 4

3

∫ π
0 sin5 θ cos2 θdθ = 16

105

∫ π
2
−π

2
cos4 tdt = 3π

8

∫ π
0 sin5 θdθ = 16

15

∫ π
0 sin3 θ cos2 θdθ = 4

15

∫ π
2
−π

2
cos6 tdt = 5π

16

∫ π
0 sin7 θdθ = 32

35

∫ π
0 sin3 θ cos4 θdθ = 4

35

A similar computation is performed for the term Êd
j . This integration is

applied through an edge element, which makes the consideration a little easier.
Again, the edge element is relatively small, which allows us to use the Taylor
formulation. We initialize an auxiliary variable β̂ := iω

√
ε̂μ̂ cos θ. The use of the
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Taylor formulation eβ̂y = ∑∞
n=0

β̂nyn

n! leads to the following formulation

Êd
j =

∫ l
2

− l
2

(Êd
0 )xeiω

√
ε̂μ̂x cos θdx

= (Êd
0 )x

∫ l
2

− l
2

∞

∑
n=0

β̂nxn

n!
dx

= (Êd
0 )x

∞

∑
n=0

β̂n
(
( l

2)
n+1 − (− l

2)
n+1
)

(n + 1)!

= l(Êd
0 )x

∞

∑
n=0

(β̂l)2n

22n(2n + 1)!

= l(Êd
0 )x

(
1 +

(β̂l)2

24
+

(β̂l)4

1920
+ . . .

)
. (53)

Equations (52) and (53) let us reformulate the product terms D̂d
j D̂d

j and

Êd
j D̂d

j , which are needed for Equation (51). The first terms of the Taylor poly-
nomials are

Dd
j Dd

j ≈ π2r4ε2(Ed
0 )

2
x

(
1 +

(αr)2

4
+

5(αr)4

192

)
,

Ed
j Dd

j ≈ lπr2ε(Ed
0 )

2
x

(
1 +

(αr)2

8
+

(βl)2

24
+

(αrβl)2

192
+

(αr)4

192
+

(βl)4

1920

)
.

Next, we introduce the curvature terms κ̂F∗
j

and κ̂Ej corresponding to the
elements F∗

j and Ej, respectively, and set

κ̂F∗
j

:= ω2ε̂μ̂r2, κ̂Ej := ω2ε̂μ̂l2. (54)

The terms α̂ and β̂ are then eliminated by the relations (α̂r)2 = −κ̂F∗
j

sin2 θ and

(β̂l)2 = −κ̂Ej cos2 θ. The x-component of the field vector is expressed by the
relation (Êd

0 )x = Ê0 sin θ. Using the new notations and Table 3 of precomputed
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integrals, we obtain

∫ π

0
2π sin θD̂d

j D̂d
j dθ ≈ 2π3r4ε̂2Ê2

0

∫ π

0

⎛
⎝sin3 θ −

κ̂F∗
j

sin5 θ

4
+

5κ̂2
F∗

j
sin7 θ

192

⎞
⎠ dθ

=
8
3

π3r4ε̂2Ê2
0

⎛
⎝1 −

κ̂F∗
j

5
+

κ̂2
F∗

j

56

⎞
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The harmonic Hodge operator �̂εj,j is obtained by a division of the above
formulation, as expressed in Equation (51). We replace the term πr2 by the area
of the dual face |F∗

j | and the term l by the length of primal edge |Ej|. Then we
finally have

�̂εj,j ≈ ε̂
|F∗

j |
|Ej|

⎛
⎜⎝ 1 −

κ̂F∗
j

5 +
κ̂2
F∗

j
56

1 −
κ̂F∗

j
10 − κ̂Ej

120 +
κ̂2
F∗

j
280 +

κ̂F∗
j

κ̂Ej

1680 +
κ̂2
Ej

22400

⎞
⎟⎠ . (55)

The corresponding formulation for the harmonic Hodge operator �̂μi,i is obtained
by a similar consideration between primal face element Fi and dual edge element
E∗

i . Applying the curvature terms κ̂Fi and κ̂E∗
i

that correspond to the elements,
respectively, we write

�̂μi,i ≈ μ̂
|Fi|
|E∗

i |

⎛
⎜⎝ 1 − κ̂Fi

5 +
κ̂2
Fi

56

1 − κ̂Fi
10 − κ̂E∗i

120 +
κ̂2
Fi

280 +
κ̂Fi

κ̂E∗i
1680 +

κ̂2
E∗i

22400

⎞
⎟⎠ . (56)

8.4 A generalization for convex polygon elements

The formulations (55) and (56) are derived by assuming circular face elements.
The harmonic Hodge formulation for �̂ε differs from Yee’s Hodge operators �ε

by the Taylor polynomial factors, which include the curvature terms (54). In this
section, we estimate the curvature term κ̂F∗

j
by assuming an arbitrary convex

polygon element. More specifically, we determine a proper estimate for radius
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rF∗
j

such that

κ̂F∗
j

:= ω2ε̂μ̂r2
F∗

j
.

The maximum internal sphere (radius r) and the minimal external sphere (radius
R) determine lower and upper bounds for rF∗

j
respectively, as shown on the left-

hand side of Figure 34. To select a proper radius between these limits, we turn to
regular polygons.

r

R

r1
r2

r3

r4

R1

R2

R3

R4

FIGURE 34 On the left, the internal and external spheres determine lower and upper
limits for model radius (dotted sphere). On the right, we illustrate the com-
putation of the average internal distance rk and the average edge length
lk.

Using a polynomial integration on regular triangles and squares, we can
observe that the formulation r2

F∗
j
= 1

3(2r2 + R2) leads to the Hodge operators,

where the first three terms of Taylor polynomials are equal to Equation (55). The
integration is similar to the integration presented in the previous Section 8.3, and
we omit it at this stage. Nevertheless, we keep this approximation as our starting
point. For irregular polygons, the exact computation of the internal and external
radii is inappropriate. Instead, we approximate these parameters by distances
between elements. Intuitively, the internal radius corresponds to the distance be-
tween the face center and a boundary edge center. Similarly, the external radius
corresponds to the distance between the face center and an extreme node posi-
tion. We denote these distances by rk and Rk, respectively, as illustrated on the
right-hand side of Figure 34. Assume that n is the number of boundary elements.
Then the intuition gives us the following approximation, where internal and ex-
ternal radii are estimated by averages of square distances

r2
F∗

j
≈ 1

3n

n

∑
k=1

(2r2
k + R2

k).

The curvature term κF∗
j

can now be written by this estimate. Applying the same
procedure to estimate κFi , we obtain formulations

κF∗
j
=

ω2ε̂μ̂

3n

n

∑
k=1

(2r2
k + R2

k), κFi =
ω2ε̂μ̂

3n

n

∑
k=1

(2r2
k + R2

k). (57)
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FIGURE 35 The geometry for the numerical experiment to study the wavelength of the
harmonic solution.

8.5 Numerical experiments

In this section, we report the numerical experiments considering approximations
of the Hodge operators. Simulations are run with the crystal grids presented
in Section 2.8 and the properties of each grid are analyzed. The Yee’s Hodge and
the harmonic Hodge approximations are compared. We begin the experiments by
considering the simulated wavelength in different wave propagating directions.
Then, we study how the wavelength error correlates to the overall efficiency of
the method in physical scattering problems.

8.5.1 Simulated wavelength

In the first experiment, we focus on testing how close the simulated wavelength is
to the theoretical wavelength. We solve a time-harmonic problem with constant
material parameters ε = 1 and μ = 1. The simulation is run with a time-harmonic
source function, which has time period T = 1. The theoretical value for the wave-
length is λ = T√

εμ = 1, which is the reference for the simulated wavelength.
The computational domain is a sphere of radius R = 7, as illustrated in

Figure 35. An internal sphere of radius r = 5 is surrounded by an absorbing
ML layer, which is introduced in Section 4.3. The thickness of the layer is 2, and
the absorbing parameter for Equation (27) is β = 0.8π. The Dirichlet boundary
condition is applied at the external boundary. The scattered field formulation of
Section 4.1 is applied in the absorbing layer to generate a scattered plane wave
solution at the internal domain. The incident wave is a circularly polarized plane
wave such that the x directional wave can be expressed as in Equation (40). Since
the total wave of the system is zero, the scattered wave solution should then be
opposite to the incident wave. The time-harmonic solution is observed at the
line of length l = 8, which is parallel to the wave propagation direction d and
centered at the domain center. The phase error of the simulated wave is computed
at several positions on the line. The position and the phase error are plotted on
an x-y-grid, and simple linear regression curve is fitted on the result. The slope
defines the error of the simulated wavelength.

To validate the spatial isotropy, the simulations are run in 10 different wave



96

FIGURE 36 The wave propagation directions of the simulations are illustrated on the
cross section of the unit sphere.

propagation directions d labelled from A to J. The directions are illustrated on
the cross section of the unit sphere in Figure 36. All the grids, except the Z grid,
are symmetric in positive and negative x-, y- and z-directions. With those grids,
the selection of directions is comprehensive because the symmetrical directions
of the 10 cases cover 218 directions of the full unit sphere. The Z grid is tested in
6 different coordinate axis permutation to cover all these directions. The angles
between adjacent directions are about 15 degrees.

The simulation domain is discretized by six different grid types, which are
presented in Section 2.8. The grids are cubic grid, FCC, BCC, A15, C15 and Z grid.
The lengths of edge elements in the cubic grid are h = 1/10. The other grids are
scaled by the base scale factors presented in Table 4 to keep the computing time
fixed. The computing times are obtained by simulations of this problem. The
iteration times on the bottom row represent the median iteration times needed for
a simulation of time period T forward-in-time. The simulations are carried out
by 200 periods of time-dependent simulation on 32 Intel Xeon E7-8837 processors
at 2.67 GHz. The uniform harmonic leapfrog iteration scheme is applied in the
simulations to eliminate the error of time discretization. Both the Yee’s Hodge
and the harmonic Hodge operators are considered, and the errors of directional
wavelengths are illustrated in Figures 37 and 38.

The statistics of the wavelength error are reported in Table 5. In the case of
the Yee’s Hodge operator (see Figure 37), the largest relative error, -1.63%, occurs
with the cubic grid in orthogonal case A. This is close to the value we com-
puted analytically at the end of Section 8.2. Naturally, the simulated wavelength
varies with the propagation direction. On average, the most accurate results are
achieved with the FCC grid. In that case, the average error is 0.82%, while it is be-
tween 0.96% and 1.00% for the other grids. However, the tetrahedral grids have
the smallest directional dependencies for the wavelength. The C15 grid is the
most isotropic, having a standard deviation of 0.04% for the relative error. The
cubic grid has the largest directional dependency with the standard deviation
0.36%. On the whole, the same characteristics are observed with the harmonic
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FIGURE 37 The relative errors of the simulated wavelength are plotted for the Yee’s
Hodge operator. Each grid is tested with 10 propagation directions, labelled
as A - J. The non-symmetric Z grid is additionally rotated in 6 different
orientations to cover all the directions.
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FIGURE 38 The relative errors of the simulated wavelength are plotted for the harmonic
Hodge operator. In comparison to the Yee’s Hodge operator (see Figure 37),
the average errors are now located much closer to the zero value.
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TABLE 4 Primal and dual (*) element sizes are scaled to correspond a cubic grid of edge
length 1. The base scale indicates the edge length of the base rectangle in cur-
rent tiling. The sizes of edges, faces and bodies are presented as lengths, areas
and volumes respectively. The iteration times of the test runs are illustrated at
the bottom line.

cubic FCC BCC A15 C15 Z

base scale 1 2.12 1.84 2.92 4.20 2.92
|edge| 1 1.50 1.59–1.84 1.46–1.79 1.48–1.82 1.46–1.84
|*edge| 1 0.92 0.65 0.42–0.91 0.54–0.87 0.54–0.97
|face| 1 0.97 1.20 1.07–1.38 0.95–1.35 0.92–1.38
|*face| 1 0.79 0.42–1.10 0.63–1.30 0.75–1.05 0.65–1.62
|body| 1 0.40–1.59 0.52 0.52–0.58 0.39–0.58 0.45–0.60
|*body| 1 2.38 3.11 3.04–3.14 2.87–3.53 2.79–3.46
iter. time 1.1360s 1.1364s 1.1654s 1.1552s 1.0912s 1.1663s

TABLE 5 Statistics of the wavelength error: average, standard deviation, and minimum
and maximum of the relative errors.

Yee’s Hodge Harmonic Hodge
average stdev min max average stdev min max

cubic -0.96% 0.36% -1.63% -0.53% 0.00% 0.35% -0.65% 0.41%
FCC -0.82% 0.21% -1.08% -0.44% -0.04% 0.19% -0.27% 0.29%
BCC -1.00% 0.08% -1.08% -0.85% 0.00% 0.07% -0.08% 0.13%
A15 -0.98% 0.10% -1.13% -0.85% -0.02% 0.08% -0.15% 0.09%
C15 -0.98% 0.04% -1.05% -0.92% -0.02% 0.03% -0.07% 0.01%
Z -0.97% 0.07% -1.20% -0.88% -0.01% 0.06% -0.18% 0.05%

Hodge operators (see Figure 38). However, the average errors of the simulated
wavelengths are moved very close to zero (-0.04%–0.00%). The C15 grid, which
has the smallest directional dependency, provides the most accurate results when
the harmonic Hodge operator is applied.

The current consideration shows how the wavelength is varied by the prop-
agation direction in staggered grids. A similar result was observed earlier by
Keränen et al. (2004), who compared two-dimensional regular grid to the equilat-
eral triangular grid. Different grids have unique properties, and the wavelength
error in each direction depends on both the element size and the selection of the
grid. If the harmonic Hodge operator is used, the systematic error of the wave-
length is very small.

8.5.2 Scattering by a sphere

In this section, we study how the error in wavelength correlates to the accu-
racy of a scattering simulation. We consider a scattering problem, where a time-
harmonic electromagnetic wave is scattered by a spherical obstacle. The incident
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FIGURE 39 An illustration of the mesh construction in the sphere scattering simula-
tions. The spherical mesh with cubic grid inside the scatterer is illustrated
on the left. The corresponding cubic mesh for the Yee scheme simulation
is illustrated on the right. The figures represent the lowest discretization
levels used in these simulations.

wave is chosen to be a fully polarized plane wave of wavelength λ = 1 propagat-
ing in the direction of the positive x-axis. Formally, the incident wave is written
in vector field presentation as

E(x, t) =

⎛
⎝ 0

cos (2π(x − t))
0

⎞
⎠ , H(x, t) =

⎛
⎝ 0

0
cos (2π(x − t))

⎞
⎠ . (58)

The scattering target object is a sphere of radius 2.5. The refractive index of the
sphere is 1.6 + i0.01, which means ε̂sphere = 2.5599 + i0.032 and μ̂sphere = 1. The
material parameters outside the scatterer are ε̂0 = 1 and μ̂0 = 1.

The interior of the scatterer is discretized using all the six grid types pre-
sented in Section 2.8. Five different discretization levels are applied for each grid
type. The resolutions for the cubic grid are defined such that the edge element
lengths are 1

11.2 , 1
16 , 1

22.4 , 1
32 and 1

44.8 . The wavelength inside the scatterer is approx-
imately 0.625, which means there are 7, 10, 14, 20 and 28 elements per scatterer
wavelength, respectively. The grids of other types are scaled by the factors pre-
sented in Table 4 to keep the computing time fixed. The boundary of the sphere
is discretized by triangles, and the region between the boundary and the interior
grid is constructed by the Voronoi diagram construction method. To improve el-
ement quality, the boundary elements are optimized by the HOT optimization
method, which is discussed in Section 2.7. The boundary surface is stretched in
a radial direction such that totally a 1.7 thick layer is generated outside the scat-
terer. The full domain radius is then 4.2, as illustrated in the left-hand side of
Figure 39. The elements outside the scatterer are scaled to match approximately
each discretization level, meaning 7, 10, 14, 20 or 28 elements per wavelength.
The simulations are carried out for both Yee’s Hodge and harmonic Hodge oper-
ators. The harmonic non-uniform time stepping scheme is applied for the time
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discretization.
For comparison, we perform the similar simulations with the classical Yee

scheme, where the simulation domain is discretized by uniform cubic elements.
The spherical scatterer is centered in a cubic domain, of edge length 8.4, corre-
sponding to the smallest cube that can contain the spherical domain of radius 4.2
(see Figure 39). To maintain the same level of time consumption as in the other
scattering simulations, the edge element lengths 1

8 , 1
11.2 , 1

16 , 1
22.4 and 1

32 are applied
in the whole simulation domain. In the Yee scheme simulations, the Yee’s Hodge
operator and the Yee’s uniform leapfrog time discretization scheme are applied.

The simulations are carried out by the scattered field formulation, which is
discussed in Section 4.1. In this formulation, the scattered field is produced inside
the target object, and the energy is then absorbed by absorbing boundary outside
the target object. A 1.5 thick PML layer is initialized outside the scatterer using
the absorbing factor β = 1.0π, presented in Equation (28). The simulations are
performed by forward-in-time iteration through 200 time periods T. The iteration
method is started from zero initial values E(t0) = 0 and H(t0) = 0, and the
simulations are performed on 16 Intel Xeon E5-2670 processors at 2.60 GHz.

The resulting fields of the DEC simulations are measured at the inner bound-
ary of the PML at a radius of 2.7. The near field solution is transferred to the far
field scattering results by applying a powerful and flexible near field to far field
transformation, which is discussed in Section 6.3. The far field scattering data is
applied to produce the Mueller matrix, as discussed in Section 6.4.

We validate the quality of the scattering results by comparing the obtained
Mueller matrices to the analytical Mie scattering solution, which is described by
Bowman et al. (1969). The analytical solution of the Mueller matrix Mmie(θ) is
computed by the Mie scattering code, presented by Mätzler (2002). The relative
error of simulated Mueller matrix M(θ) is determined by integrating the Mueller
matrix components over a unit sphere. The relative error can be expressed as

δM :=

∫ π
0 sin θ

∥∥M(θ)− Mmie(θ)
∥∥ dθ∫ π

0 sin θ ‖Mmie(θ)‖ dθ
, (59)

where the norm ‖ · ‖ denotes the L2-norm. Figure 40 illustrates the relative error
of Mueller matrices in each simulation case. The simulation time increases as
the element size becomes smaller. Naturally, the smaller element size implies a
smaller error. For each grid type, the relative error is smaller in the case of the
harmonic Hodge operator compared to the Yee’s Hodge operator. The simple
cubic grid with the harmonic Hodge operator seems to produce about equally
efficient simulations as the FCC grid with the Yee’s Hodge operator. The grid
types affect the accuracy in similar way as the results of Section 8.5.1 predicted.

With the Yee’s Hodge operator, the FCC grid produces the most accurate
results. By using the FCC grid, a particular accuracy, expressed as relative error,
is achieved with considerable lower CPU time than by using any other grid with
the Yee’s Hodge operator (see Figure 41). For instance, if we set the target relative
error to be 5%, the CPU time required to solve the problem with the FCC grid
is around one fifth of that required with the simple cubic mesh. This accuracy
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FIGURE 40 The relative error of the Mueller matrix is plotted as a function of total iter-
ation time.
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FIGURE 41 The required simulation times to obtain given error levels 2% and 5% are
illustrated by bars. The bars are cut at the 8000 second level.

level is not achieved by the Yee scheme simulations, but at the 10% level, the
time consumption of FCC simulation is less than one tenth compared to the Yee
approach (see Figure 40).

Even higher CPU time saving is gained by utilizing the harmonic Hodge
operator. The simulation with the simple cubic mesh is the most CPU time de-
manding, while the most accurate results are obtained with C15, Z and BCC grids.
The simulations with the those grids reach a prescribed accuracy about ten times
faster than the simulations with the simple cubic mesh. Hence, by selecting an
appropriate grid and a sophisticated Hodge operator we managed to decrease
the time consumption down to a few percent, or even less, compared to the con-
ventional methods based on cubical grids and the Yee’s Hodge operator.
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8.5.3 Scattering by a more complicated particle

We introduce another scattering problem to test the grid types and the Hodge
operators. In this problem, we apply a more complicated scatterer object, which
obeys the shape of the Stanford bunny (see Figure 42). The Stanford bunny is
a standard three-dimensional object, which was originally built by the surface
reconstruction technique by Turk and Levoy (1994). Several instances of object
surface meshes are freely available on the internet. The surface of the Stanford
bunny object was transformed to a Delaunay two-mesh. The object is rotated
such that the ground is in the negative z-direction and the bunny tail points in
the negative x-direction. The object is scaled such that the bunny height (maximal
difference between z-values from ear tip to the ground) is 6.173.

x
y

z

FIGURE 42 The Stanford bunny object is illustrated on the left-hand side. The x-z-plane
cross section of the scattered E field is illustrated on the right. The red, green
and blue components of the figure present the x- y- and z-components of
the electric field, respectively.

The incident wave is chosen to be a fully polarized plane wave of wave-
length λ = 1 propagating in the direction of the positive x-axis. The incident
wave obeys the formulation of Equation (58). The refractive index of the scatterer
is set to 2.0 + 0.01i, meaning that the material parameters inside the scatterer are
ε̂bunny = 3.9999 + 0.04i and μ̂bunny = 1. The outside material parameters are
ε̂0 = 1 and μ̂0 = 1. The scatterer object is placed in the middle of a rectangle of
edge lengths 9.5, 8.1 and 9.4 in x-, y- and z-directions, respectively. A rectangu-
lar perfectly matched layer (PML) of thickness 1.5 is applied around the object
to absorb the outgoing wave. The absorption term β = 1.0π is employed in the
PML. The external part of the domain is discretized by a regular cubic grid with
element edge length 1

10 . The harmonic Hodge operator is applied outside the
scatterer in each simulation to keep the external discretization constant. The dis-
cretization at the scatterer interior is varied using different grid types, element
sizes and Hodge operators.

The interior of the scatterer is discretized by the six grid types of Section 2.8.
Five discretization levels are applied for each grid type. In the cubic discretiza-
tion, the edge element lengths 1

10 , 1
14 , 1

20 , 1
28 and 1

40 are utilized. The other grid
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types are scaled using the factors of Table 4. Since the real part of the scatterer
refractive index is 2, the interior wavelength is approximately λ/2. Thus, the
number of elements per wavelength is approximately 5, 7, 10, 14 and 20, respec-
tively, for each discretization level. From now on, these values are applied to
indicate which discretization level is applied. The interior grid is attached to the
scatterer surface using unstructured elements, which are obtained by the Voronoi
diagram construction method. Both the Yee’s Hodge and the harmonic Hodge
operators are applied inside the scatterer.

The analytical solution is not available for this problem, hence the accuracy
of each simulation is compared to a reference solution. The reference solution
is computed on a mesh having the BCC grid with 40 elements per wavelength
inside the scatterer. The scatterer boundary and the external domain are dis-
cretized similarly to the other cases. The harmonic Hodge operator is applied
to the whole domain. All the simulations are carried out by a forward-in-time
simulation method, where 200 total time periods are iterated. The harmonic non-
uniform leapfrog scheme is applied for the time discretization.

The Mueller matrices are computed by the near field solution, which is ob-
tained at the inner boundary of the absorbing layer. The equations of Section 6.4
are utilized, even though the physical meaning of the Mueller matrix is ambigu-
ous due to the lack of symmetry. The Mueller matrix is compared to the reference
solution in each case. The relative Mueller matrix error δM is computed by the
formulation of Equation (59). Mueller matrix errors are illustrated in Figure 43.
Naturally, the relative error decreases by decreasing the element size. The har-
monic Hodge operator seems to induce more accurate solutions than the Yee’s
Hodge operator. The error, which is produced by the Yee’s Hodge operator, is
1.99–6.63 times the error, produced by the harmonic Hodge operator. The grid
type does not have as remarkable an effect on the accuracy as we observed in
the previous section. With the Yee’s Hodge operator, the largest error is less than
1.53 times the smallest error at each discretization level. In each case, the smallest
error is induced by the FCC grid. The cubic grid suffers in comparison, especially
when the harmonic Hodge operator is applied. With a discretization level 14 el-
ements per wavelength, the error of cubic grid simulation is 1.98 times the error
of C15 grid simulation. The C15 and FCC grids induce the smallest error levels,
when the simulations are carried out by the harmonic Hodge operator.

The similar comparison is carried out by comparing the internal fields at the
target object. The reference interior fields Ere f (pi) and Hre f (pi) are obtained from
the reference solutions at 2012 uniformly distributed positions pi ∈ R3 inside
the target object. The form-to-vector transformation of Section 6.2 is applied to
obtain the fields at certain time instance. The corresponding vector fields E(pi)
and H(pi) are computed for different discretizations to perform the comparison.
The relative interior field error δSp is obtained by formulation

δSp :=

√√√√∑i ε(pi)
∥∥E(pi)− Ere f (pi)

∥∥2
+ ∑i μ(pi)

∥∥H(pi)− Hre f (pi)
∥∥2

∑i ε(pi)
∥∥Ere f (pi)

∥∥2
+ ∑i μ(pi)

∥∥Hre f (pi)
∥∥2 . (60)
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FIGURE 43 The Mueller matrix error δM is plotted as a function of the discretization
level. The results of six grid types and two Hodge operators are illustrated
in separate lines.

5 7 10 14 20
10

10

10

-2

-1

0

cubic
FCC
BCC

elements per wavelength

re
la

tiv
e 

er
ro

r

grid type

Yee's
harmonic

Hodge type

A15
C15
Z

FIGURE 44 The interior field error δM is plotted as a function of the discretization level.
The grid types and the Hodge operators are illustrated in separate lines.
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The relative errors of the interior fields are illustrated in Figure 44. The behavior
of the error norm δSp is similar to the behavior of the Mueller matrix error δM.
The Hodge operator seems to have very significant effect on the accuracy. The
grid type has a smaller, but still remarkable, effect on the accuracy.

8.5.4 Conclusions

We formulated a harmonic Hodge operator to optimize the DEC framework in
cases of time-harmonic problems. The harmonic Hodge operator has a similar
diagonal matrix presentation as the Yee’s Hodge operator and offers a small cor-
rection on the diagonal terms. Thus, the convergence properties of the modified
Hodge operator remain unchanged. The properties of different Hodge operators
were analyzed by numerical experiments. The DEC simulations with a harmonic
Hodge operator produce a better adjusted wavelength. Then the accuracy of the
DEC simulation depends on the isotropy of the grid. Several grid constructions
were compared, and the tetrahedrally close-packed structures offered the most
isotropic grid constructions.



9 ITERATION METHODS FOR TIME-PERIODIC

PROBLEMS

In this thesis, the Maxwell equations are reformulated in a discrete domain by the
method based on discrete exterior calculus (DEC). We used leapfrog style time
discretization to obtain a time-dependent solver, where electromagnetic wave
propagation is modeled forward-in-time. A time-dependent solver can be ap-
plied for many types of problems, including time-periodic and time-harmonic
ones. However, the efficiency of the forward-in-time iteration is not always as
good as the efficiency of the other solution methods. In this chapter, we recall
the concept of controllability methods for solving time-harmonic problems. The
controllability method leads to a minimization problem, which is then solved by
the iterative conjugate gradient (CG) algorithm.

Let us now express the forward-in-time iteration scheme in a shorter nota-
tion, which enables us to follow the forthcoming arguments and basic ideas more
easily. The leapfrog iteration methods can be performed by updating a single col-
umn vector by matrix operators. We write the discrete forms E and H and the
additional PML terms D and B in a single column vector and denote it by

u :=

⎛
⎜⎜⎝

E
H
D
B

⎞
⎟⎟⎠ .

The additional terms D and B are needed only for the value update equations,
which have negative absorption due to the PML formulation. Nevertheless, we
consider D and B as full-sized column vectors to simplify the notation. Then most
of the terms are zero throughout the simulation. Both E and D are considered as
column vectors of m rows. The column vectors H and B include n rows.

The forward-in-time simulation scheme is now considered as a series of ma-
trix multiplications. An update of a single value of u is carried out by a matrix
multiplication unew := Qjucurr + bj, where ucurr is a vector of the current values
and unew is a vector of the next values. The matrix Qj differs from the identity
matrix in a single row, and the source vector bj has at maximum one non-zero
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component such that only one component of u is affected. Starting from the ini-
tial values u0 = (E0, H0, D0, B0)T, the iteration over one time step Δt is operated
by

uk+1 = Qs

(
· · ·
(

Q2

(
Q1uk + b1

)
+ b2

)
· · ·
)
+ bs

=: Quk + bk.

In the uniform leapfrog time stepping scheme, each value update equation is per-
formed once during the uniform Δt iteration. If the PML terms are excluded, the
number of matrix products is then s = m + n. In the non-uniform time step-
ping scheme, some values are updated several times during the Δt iteration. The
number of matrix products is then

s =
m

∑
i=j

sEj +
n

∑
j=i

sHi ,

where sEj and sHi are the number of time steps for Ej and Hi elements, respec-
tively, as defined in Section 7.2. Including the PML increases the number of ma-
trix products. The matrix Q := Qs · · · Q2Q1 is not necessarily a sparse matrix.
Thus, this matrix is not expressed explicitly in an efficient solver. Instead, each
pair {Qj, bj} is expressed as a sparse matrix. Since the pair {Qj, bj} has only
one significant row, the expression can be reduced into a sparse row formulation.
Each value update is then performed by the operators that are determined by this
single row. The matrix product Q can be expressed as an ordered list of sparse
rows. In this approach, the number of computing operations and the amount of
memory consumption are reduced.

The forward-in-time simulation through time period T is carried out by sev-
eral iterations over Δt. Assume that Δt is selected such that T = lΔt holds for a
selected integer l. The simulation through time period T is then applied by con-
secutive matrix multiplications

uk+l = Q
(
· · ·
(

Q
(

Quk + bk
)
+ bk+1

)
· · ·
)
+ bk+l−1

=: Qluk + bk,l.

Here, the multiplication matrix Q remains unchanged during the iterations and
the source vector bk varies depending on the current time instance. In the shorter
notation, the Ql represents the l:th power of Q and the bk,l represents the com-
bined source terms for the time period.

A time-periodic system can now be expressed with the new notation. In the
time-periodic solution, the same sequence of time instances is repeated on time
intervals T, as illustrated in Figure 45. Thus, the discrete solution is time-periodic
if uk+l = uk for every k. In a discrete system, this is obtained only if the source
terms bk,l are also repeated on time intervals T. We call the discrete system time-
periodic if bk,l = bk+l,l for every k.

Due to the nature of the leapfrog time discretization, the electric field values
of uk are determined at different time instances than the magnetic field values.
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T

FIGURE 45 In a time-periodic solution, the same sequence of instances is repeated on
time intervals T.

The values can be transformed to a synchronized time instance by applying a
transformation on electric field values, as discussed in Section 5.4. The transfor-
mation can be considered as a matrix vector product, similarly to the forward-
in-time iteration. We denote the synchronized time instance solution using the
underlined symbols and define uk :=

(
E(tk), H(tk), D(tk), B(tk)

)T
. The synchro-

nization transformation is applied by operation uk = Q uk + bk, where Q is a
transformation matrix and bk is a source function. The inverse transformation
is obtained by uk = Q−1(uk − bk). The iteration between synchronized time in-
stances over one period is obtained by the system

uk+l = Q
(

QlQ−1
(

uk − bk
)
+ bk,l

)
+ bk =: QQlQ−1uk + bk,l. (61)

9.1 Asymptotic iteration

If the forward-in-time iteration is applied for a time-periodic problem, then the
solution method relies on asymptotic convergence. To express the convergence as
a sequence, we change to the lower corner indices un to illustrate time instances
between time period T. By the terms of Equation (61), we define un := unl, where
lΔt = T. Then we obtain series u0, u1, u2 . . . , which represents solutions at syn-
chronized time instances on T periods. By assuming a time-periodic system, we
can use constant source terms on each iteration and we write b := b0,l. Then the
iteration step over one time period can be expressed as

un+1 = QQlQ−1un + b. (62)

Since the terms Q, Ql and b are constants, the solution is naturally time-periodic
if the consecutive instances are equal i.e. un+1 = un. Thus, the convergence of the
iterative method can be controlled by the difference un+1 − un. Inspired by the
energy norm of Equation (38), we write the control norm as

PΔ :=
1
2
(un+1 − un)

TΛ(un+1 − un), (63)

where

Λ :=

⎛
⎜⎜⎝

�ε 0 0 0
0 �μ 0 0
0 0 �ε−1 0
0 0 0 �μ−1

⎞
⎟⎟⎠ .
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The iterative system (62), starting from an initial value u0, is called an asymp-

totic iteration method. The asymptotic iteration is performed simply by time-
dependent simulation, and one iteration implies a full time period T of time-
dependent iteration. The asymptotic iteration method is a natural way of solving
time-periodic problems. In this procedure, the electromagnetic energy is basi-
cally produced by a source and absorbed due to either a boundary condition or
absorbing materials. The asymptotic iteration method converges only if the solu-
tion tends to oscillate like a time-periodic solution. Thus, the system must have
a balance between the emission and the absorption. The asymptotic iteration
method suffers in the geometries, where the energy is trapped without reaching
absorbing elements. In this thesis, the asymptotic iteration method is applied by
using the zero initial values u0 = 0, if not otherwise mentioned.

9.2 Controllability method for time-periodic problems

In this section, we consider an iteration method, which is aimed to accelerate the
solution convergence in time-periodic problems. The iteration method is based
on the exact controllability concept presented by Bristeau et al. (1998, 1999). Es-
sentially, the approach is a controlled variation of the asymptotic approach with
periodic constraints, and the iteration is applied by the conjugate gradient (CG)
minimization algorithm. The controllability method is derived for the general-
ized Maxwell equations by Pauly and Rossi (2011), where the method is based
on an approach, which was proposed in the short paper of Glowinski and Rossi
(2006). The control method has been recently applied to acoustics in Kähkönen et
al. (2011) and elastodynamics in Mönkölä et al. (2008).

We recall the classical CG algorithm, originated by Hestenes and Stiefel
(1952). The CG method is developed for solving a linear system Ax + y = 0
where the matrix A is symmetric (AT = A) and positive definite (xT Ax > 0 for
all non-zero vector x). The CG method can be defined as an iterative algorithm
closely related to gradient descent or the deepest descent method. Starting from
an initial value x0, the solution is updated on each iteration by

xn = xn−1 + αdn,

where dn is the current minimizing direction and α ∈ R defines the optimal dis-
tance for minimization. In the CG algorithm, the minimization directions dn are
conjugate with respect to A, meaning that dT

i Adj = 0 for all integers i �= j. This
property can be guaranteed without storing previous minimization directions by
the CG algorithm 1.

Theoretically, the CG method produces the exact solution after a finite num-
ber of iterations, where the number of iterations is not larger than the dimension
of the matrix A. Fortunately, the CG method, viewed as an iterative algorithm,
may reach the required tolerance even for a much smaller number of iterations.
The iterative method provides monotonically improving approximations xn to
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Algorithm 1 Conjugate gradient algorithm for solving x from Ax + y = 0 where
A is a symmetric and positive definite matrix.

set iteration count n ← 0
get initial control vector x0
compute residual r0 ← Ax0 + y
compute norm s0 ← rT

0 r0
set first minimizing direction d1 = r0
while sn > ε2 and n < N do

update iteration count n ← n + 1
compute gradient d ← Adn
compute parameter α ← − sn−1

dTdn
update control vector xn ← xn−1 + αdn
update residual vector rn ← rn−1 + αd
compute norm sn ← rT

n rn
compute parameter β ← sn

sn−1
update minimizing direction dn+1 ← rn + βdn

end while

return xn as solution

the exact solution, and the improvement is typically linear (Saad, 2003). Still, the
linearity of the convergence is not guaranteed. The speed of the convergence de-
pends on the condition number κ(A) of the system matrix A. A larger condition
number indicates slower convergence, and vice versa.

A standard procedure for controlling the condition number of the system
matrix is called preconditioning (Saad, 2003; Eisenstat, 1981; Axelsson, 1974). The
preconditioning means that instead of directly solving the linear system Ax+ y =
0, we apply the CG algorithm 1 to a linear system

P−1(A(PT)−1x′ + y) = 0,

where P is an invertible matrix and x′ = PTx. The matrix M = PPT is called
the preconditioner, and it must be symmetric and positive definite. The aim of
the preconditioning is to minimize the condition number of the system matrix
P−1A(PT)−1. The preconditioned CG algorithm is written in Algorithm 2.

The CG algorithm can also be applied for system of linear equations where
the system matrix A is not symmetric. In case of an arbitrary system matrix A,
the standard procedure is to solve normal equations

AT(Ax + y) = 0

instead of original equations Ax + y = 0 (Saad, 2003, Chapter 9.5). The matrix
AT A is symmetric and positive semidefinite, which means the CG algorithm is
valid. However, the downside of forming the normal equations is that the con-
dition number κ(AT A) is equal to κ2(A), and the rate of convergence may be
slow.
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Algorithm 2 Preconditioned Conjugate Gradient Algorithm for solving x from
Ax + y = 0, where A is a symmetric and positive definite matrix. Using the
symmetric and positive definite preconditioner matrix M = PPT, the algorithm
is identical to Algorithm 1 when applied for problem P−1(A(PT)−1x′ + y) = 0
where x′ = PTx.

set iteration count n ← 0
get initial control vector x0
compute residual r0 ← M−1(Ax0 + y)
compute norm s0 ← rT

0 Mr0
set first minimizing direction d1 = r0
while sn > ε2 and n < N do

update iteration count n ← n + 1
compute gradient d ← M−1Adn
compute parameter α ← − sn−1

dT Mdn
update control vector xn ← xn−1 + αdn
update residual vector rn ← rn−1 + αd
compute norm sn ← rT

n Mrn
compute parameter β ← sn

sn−1
update minimizing direction dn+1 ← rn + βdn

end while

return xn as solution

The controllability method is described to offer a solution for time-periodic
Maxwell problems. We formulate the controllability as a minimization problem,
where the control norm PΔ of Equation (63) is the term to be minimized. The con-
trol norm can be rewritten as a function of un by applying the Formulation (62).
Then we have

PΔ(un) :=
1
2

[(
QQlQ−1 − I

)
un + b

]T
Λ
[(

QQlQ−1 − I
)

un + b
]

.

The problem is to find x such that the norm PΔ(x) is minimized. Then x represents
the solution of the time-periodic problem at the initial time instance. The norm
can be minimized by finding the zero of its gradient, which can be expressed as

∇PΔ(x) =
(

QQlQ−1 − I
)T

Λ
[(

QQlQ−1 − I
)

x + b
]

.

Setting ∇PΔ(x) = 0, we formulate a linear system, where the system matrix is
symmetric and positive definite. Thus, we can solve the system by the CG algo-
rithm 1 using the parameters

A :=
(

QQlQ−1 − I
)T

Λ
(

QQlQ−1 − I
)

,

y :=
(

QQlQ−1 − I
)T

Λb.

The control vector for the CG algorithm can be initialized by any initial solution
x0 := u0. In this thesis, we use zero initial control vector x0 = 0, if not mentioned
otherwise. The result xn of the CG iteration is taken as the solution x.
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The transpose matrix (QQlQ−1 − I)T is called the adjoint state matrix and
sometimes is also considered for backward-in-time equations (Glowinski and Li-
ons, 1995; Mönkölä, 2011). The multiplication by the adjoint state matrix is quite
straightforward. We write(

QQlQ−1 − I
)T

=
(

Q−1
)T (

QT
)l

QT − I .

Since Q := Qs · · · Q2Q1, we have QT := QT
1 QT

2 · · · QT
s , where each QT

j differs
from the identity matrix only in a single column. Thus, the operation unew :=
QT

j ucurr updates a small number of values in u only by adding a single scaled
value on each affected row. Each value update consists of one multiplication and
one plus operation, which means the transpose operation is as fast as the original
operation.

The efficiency of the controllability method relies on the convergence of the
CG algorithm. Thus, we call the method a CG iteration method. To improve the
convergence of the CG method, we recommend applying a preconditioner and
using the CG algorithm 2. Practically, we have found that the matrix M = Λ is a
good choice for the preconditioner.

An iteration of the CG algorithm is twice as demanding as the asymptotic
iteration because one iteration includes a period T of forward-in-time iteration
and a period T of adjoint state iteration. The parallel implementation of the CG
method is as simple as the parallel implementation of the traditional asymptotic
method. In practice, the most time demanding part of the algorithm is the it-
erations over time period T. The forward-in-time iteration can be parallelized
in a very efficient manner by mesh partitioning, where a small amount of cross-
processor communication is needed. The same mesh partitioning can be applied
for adjoint state iteration. In the CG algorithm 2, all the vectors xn, rn, dn and
d and diagonal matrix Λ can be separated for different threads, and thus the
amount of cross-processor communication remains small. An advantage of the
conjugate gradient algorithm is that the source terms b are needed only once at
the initial stage of the method. The rest of the iteration is carried out by perform-
ing only homogeneous matrix multiplications.

9.3 Controllability method with half-periodic constraints

The controllability method of the previous section was formulated for the time-
periodic problems. A similar iteration method can also be formulated for prob-
lems with half-periodic constraints u(t) + u(t + T

2 ) = 0 where t is any time in-
stance and T is the time period. A wave with the half-periodic constraints is sym-
metric on T/2 interval, as illustrated in Figure 46. For example, time-harmonic
waves coincide with this category. In this thesis, we call the following iteration
method the half-periodic conjugate gradient (HPCG) method. The iteration time
of the HPCG method is, generally, half of the iteration time of the CG method
and similar to the iteration time of the asymptotic iteration method.
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T/2

FIGURE 46 A time-periodic wave with half-periodic constraints u(t) + u(t + T
2 ) = 0 is

symmetric on time intervals T/2.

Assume that the iteration over time period T is divided into an even number
of iterations over Δt. In other words, the integer l, for which lΔt = T, is now even,
meaning that the number l/2 is also an integer. By the terms of Equation (61), the
iteration over a half time period is expressed as

uk+l/2 = QQl/2Q−1uk + bk,l/2.

For the time discretized expression, the half-periodic constraints are written as
uk+l/2 + uk = 0. This relation can hold only if the system has the half-periodic
constraints bk,l/2 = bk+l/2,l/2 for all k.

We define sequence v0, v1, v2 . . . by setting vn := (−1)nunl/2. Starting from
the initial value v0 := u0, the same sequence can be expressed recursively as

vn+1 = −(QQl/2Q−1vn + c).

where c := b0,l/2. Naturally, the half-periodic constraints are realized only if
vn+1 = vn. Similarly to the previous section, we formulate a controllability
method by minimizing the control norm

P1/2
Δ :=

1
2
(vn+1 − vn)

TΛ(vn+1 − vn).

The control norm can be expressed as a function of vn by writing

P1/2
Δ (vn) :=

1
2

[(
QQl/2Q−1 + I

)
vn + c

]T
Λ
[(

QQl/2Q−1 + I
)

vn + c
]

.

The control norm is minimized at solution x by finding the zero of gradient i.e.
∇P1/2

Δ (x) = 0. This equation formulates a linear system, which can be solved by
the CG algorithm 1, where the following terms are used

A :=
(

QQl/2Q−1 + I
)T

Λ
(

QQl/2Q−1 + I
)

,

y :=
(

QQl/2Q−1 + I
)T

Λc.

To improve the convergence of the iterative method, we recommend using the
preconditioned CG algorithm 2, similarly to the previous section, with the pre-
conditioner M = λ. In this thesis, the iteration is started with a zero initial value
x0 = 0, if not mentioned otherwise.
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9.4 Combined methods

The iteration methods, described in Sections 9.1, 9.2 and 9.3, can be easily com-
bined together using the solution of first method as the initial value for the sec-
ond method. As we show by the numerical experiments in the next section, it
is usually beneficial to start the iteration with the asymptotic iteration method.
If the problem includes a significant amount of absorption, the asymptotic itera-
tion method converges quite well. Then the asymptotic method gives a moderate
approximation for the solution before starting one of the controllability methods.
With good initial values, the convergence of the conjugate gradient method might
be significantly faster than with zero initial values. The final result is controlled
by the last iteration method.

Each of the original methods are derived by using different constraints for
the solution. A time-harmonic solution fulfills all of the constraints and, thus, all
of the methods can be applied for time-harmonic problems. Still, the methods
might converge to different solutions because none of the methods guarantee
its solution to be time-harmonic. Methods with looser restrictions might find a
wider range of acceptable solutions, as illustrated by numerical experience in Sec-
tion 9.5.2. This happens specifically with wave trapping obstacles, as discussed
in Bardos and Rauch (1994) and Zuazua (2007).

9.5 Numerical experiments

In this section, we present numerical experiments to compare the previously in-
troduced iteration methods. All the iteration methods are suitable for solving
time-harmonic problems and, thus, we formulate the time-harmonic test prob-
lems. We are interested in the convergence speed of each iteration method. The
natural choice is to consider the convergence of the error norm, which repre-
sents the solution error with respect to the exact solution. The iteration of the
discretized Maxwell system never reaches the exact solution due to the inaccu-
racy of spatial and time discretization. Thus, the exact error norm is not the best
norm to illustrate the convergence properties of the iteration methods. We also
consider the error norm, which represents the solution error with respect to the
so-called converged solution. The converged solution is obtained by using the
particular discretization and performing the iteration much further than the con-
vergence consideration proceeds. This error norm eliminates discretization error
and allows the convergence properties to be illustrated much better.

9.5.1 Plane wave in a cube

We start with comparing the iteration methods in a very simplified geometry. In
these experiments, the domain is a cube, where the edges are parallel to coordi-
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nate axis x, y and z, and the edge length is 2. The domain boundary is modeled
by the absorbing Silver-Müller boundary condition such that the source terms
generate a circularly polarized plane wave inside the domain region. The wave-
length is λ = 1, and the propagation direction is diagonal with respect to the
domain cube. The plane wave can be expressed as

E(φ, t) =

⎛
⎜⎜⎝

− cos φ√
2
− sin φ√

6
cos φ√

2
− sin φ√

6
sin φ√

6

⎞
⎟⎟⎠ , H(φ, t) =

⎛
⎜⎜⎝

sin φ√
2
− cos φ√

6
− sin φ√

2
− cos φ√

6
cos φ√

6

⎞
⎟⎟⎠ ,

where the angular term is φ := 2π
(

x+y+z√
3

− t
)

. The material parameters ε = 1
and μ = 1 are applied in the whole domain. The domain is discretized using
regular grids with cubic cells. Four discretization levels are applied where the
length h of edge elements are 1

10 , 1
20 , 1

50 and 1
100 . The discretization is operated

using the harmonic Hodge operator and the harmonic uniform leapfrog method.
We compare the four iteration methods, which are the asymptotic iteration

method (Section 9.1), the CG iteration method (Section 9.2), the HPCG method
(Section 9.3) and the combined method (Section 9.4). Each iteration method be-
gan with zero initial values u0 = 0. The combined method starts with 10 asymp-
totic iterations, and the rest of the iteration is carried out by the HPCG iterations.
We consider the iteration stage by the term "iterated periods," which indicate the
number of time periods simulated in the iteration process. In the asymptotic it-
eration method, the HPCG method and the combined method, this implies one
iteration step of the particular method. The periodic CG iteration takes two iter-
ated periods per iteration step.

Two error norms are evaluated during the iterations. The first error norm δS
is obtained by comparing the numerical solution to the exact field E(φ, t), H(φ, t)
and using error formulation, as described in Equation (41). The second error
norm δSre f represents error with respect to a converged solution. The converged
solution Ere f , Hre f is computed separately for each iteration method, and it is ob-
tained by executing the particular iteration procedure over 1000 iterated periods.
The methods, which are based on the conjugate gradient algorithm, are alterna-
tively stopped if residual norm becomes smaller than 10−13. The formulation for
δSre f is expressed in Equation (42).

The error norms δS and δSre f are computed at several iteration stages, and
the convergence of the norms is illustrated in Figure 47. The results indicate that
the controllability methods (CG and HPCG) converge slower than the asymptotic
iteration at the beginning of the process. The asymptotic iteration slows down
quickly, and the controllability methods outperform the asymptotic method at
some stages. Both CG and HPCG methods have similar behavior at the begin-
ning. The HPCG seems to have more steady convergence compared to the CG at
the latter part of the iteration. The fastest convergence of δSre f is obtained by the
combined iteration method.

The progress of the exact error norm δS stops at a certain level, which de-
pends on the element size h. Naturally, a smaller element size h implies a smaller
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FIGURE 47 Convergence of the error norms δS and δSre f , when the mesh element size
h is varied.

error and the error seems to decrease in relation to h2. With respect to the error
norm δS, the controllability methods do not improve the convergence compared
to asymptotic iteration on the smaller tasks (h = 1

10 and h = 1
20). Nevertheless,

the controllability methods become valuable, especially with larger tasks, where
the element size is small and the solution is more accurate (h = 1

50 or h = 1
100).

On case h = 1
100 , the accuracy level δS = 0.00078, which takes 150 periods of

asymptotic iteration, is obtained by 46, 69 and 81 iterated periods by the com-
bined method, the HPCG method and the CG method, respectively.
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FIGURE 48 Convergence of the error norms by different combinations of asymptotic
and HPCG iteration methods.

The combined method takes advantage of both asymptotic and HPCG iter-
ation methods. The asymptotic iteration method converges quickly in the begin-
ning, and the convergence of the HPCG is accelerated by taking the asymptotic
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solution as an initial value. There is no evidence of what is the optimal num-
ber of asymptotic iterations before starting the HPCG iteration. We tried to fig-
ure that out by simulating the case h = 1

50 with a few options. The number of
asymptotic iterations varied between 0, 3, 10, 30 and 150. The value 0 indicates
a completely HPCG procedure, and the value 150 indicates a completely asymp-
totic procedure. The results are illustrated in Figure 48. The results show that the
HPCG method seems to converge faster the more asymptotic iterations are per-
formed in advance. Naturally, the asymptotic iteration method also consumes
time, which means that the number of asymptotic iterations should be selected
as a compromise between these facts.

9.5.2 Trapped wave simulations

The problem of the previous section includes a lot of absorption. The asymptotic
iteration process, which requires the absorbing terms, converges quite well in
such cases. In this section, we modify the problem by changing the boundary con-
ditions on domain faces. Instead of having the absorbing Silver-Müller boundary
condition on all faces, we employ the perfectly reflecting Dirichlet boundary con-
dition on certain areas. By using the Dirichlet boundary condition, we decrease
the amount of absorption in the system.

The geometry of this section is similar to the geometry of the previous sec-
tion. Thus, the simulation domain is a cube of edge length 2, and the circularly
polarized plane wave of wavelength λ = 1 crosses the domain diagonally. The
domain is discretized by a regular cubic grid, where the lengths of edge elements
are 1

20 . We vary the number of Dirichlet faces D such that the opposite faces al-
ways have the same boundary condition. Let us consider the domain as a dice. In
the first case (D = 0), all the faces 1–6 are modeled using the absorbing boundary
condition. This is exactly the same problem as the λ/20 case in the previous sec-
tion. The second case (D = 2) has two Dirichlet faces; such as 1 and 6 on a dice.
The third case (D = 4) has four Dirichlet faces; for example numbers 1, 2, 5 and 6
on a dice. In the last case (D = 6), all six faces are modeled by Dirichlet boundary.
Like in the previous section, the error norms δS and δSre f are computed at several
simulation stages, and the results are illustrated in Figure 49.

Figure 49 indicates that the convergence of δSre f becomes slower with all
iteration methods when the amount of absorption is decreased. The asymptotic
iteration method suffers the most, as we expected. The asymptotic method does
not converge at all when all six boundary faces are perfectly reflecting (D = 6).
The controllability methods converge well in every case. The progress of the
exact error norm δS indicates that the iterative methods converge to different so-
lutions when the Dirichlet boundaries are employed. The HPCG method and the
combined iteration method converge close to the expected time-harmonic solu-
tion. The asymptotic method and the CG method converge to a time-periodic
solution, which is relatively far from the time-harmonic solution. In fact, all four
iteration methods find the solutions that they are looking for. For example, the
converged solution of the CG method fulfills the periodic constraints very well,
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FIGURE 49 Convergence of the error norms δS and δSre f , when the amount of absorp-
tion is varied. The term D denotes the number of domain faces, which are
modeled by perfectly reflecting Dirichlet boundary conditions. The other
faces are modeled by the Silver-Müller boundary condition.

since the relative residual norm is less than 10−6 in all cases after 1000 iterated
periods. In this experiment, the half-periodic constraints are important to nar-
row down the solution space. Thus, if a time-harmonic solution is required, we
recommend using the HPCG method instead of the CG method.

9.5.3 Electromagnetic wave in a wave guide

In this section, we consider a wave trapping problem in a more complicated ge-
ometry. The domain of this problem is a narrow cylindrical wave guide of length
12 and diameter 2. The cylinder axis is oriented in the x-direction, and it is cen-
tered at the origin. In the middle of the domain, there is a spherical bump of
diameter 6. The material parameters ε = 1 and μ = 1 are applied in the whole
domain. The curved boundaries of the domain are modeled as the perfectly re-
flecting Neumann type boundary condition. The cylinder ends are modeled by
the absorbing Silver-Müller boundary condition. An incident wave is initialized
at the cylinder end in the negative x-direction. The incident wave is a circularly
polarized plane wave of wavelength λ = 1 and period T = 1, and it obeys the
formulation of Equation (40).

Several types of cells are used in the domain discretization. The boundary
of the bump is discretized by structured triangular elements, as illustrated in the
left-hand side of Figure 50. The interior of the bump is discretized by the body
centered cubic grid (BCC), and the Voronoi diagram is applied near the bound-
ary to connect the grid with the boundary. The cylinder outside the bump is
discretized using prism elements. Figure 50 is a scaled illustration of the mesh
construction and much finer mesh is used in the simulations. The simulations are
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run on a mesh, where the element lengths are scaled to be approximately 1
20 . Since

the exact solution is not available for the current problem, we compute the ref-
erence solution using a much finer discretization. In the reference discretization,
the average element lengths are approximately 1

40 . The number of primal body
elements are 1 761 560 and 13 747 476 for 1

20 and 1
40 discretizations, respectively.

FIGURE 50 The mesh structure is illustrated on the left with approximately 6 times
larger elements than in our simulation. The mesh is cut to show how vol-
ume consists of tetrahedra and prisms. The simulation result is presented
on the right-hand side image. Electric field components x, y, and z are illus-
trated by the colors red, green and blue, respectively, on z = 0 plane.
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FIGURE 51 The convergence of the error norms δSp and δSre f during the iteration pro-
cess.

The convergence is experienced by considering relative errors at each iter-
ation stage. Mainly, we consider error norm δSre f , which represents the solution
error with respect to a converged solution. The converged solution is obtained
separately for each iteration method by iterating the particular method over 2000
periods. Since the exact result is not available, we consider the error δSp instead
of the exact error. The error δSp is computed with respect to a reference solution,
which is obtained by the reference simulation with the finer spatial discretization.
The iteration for the reference solution is preformed using 500 consecutive itera-
tions of the asymptotic method, HPCG method and CG method. The reference
solution is transformed to the electric and magnetic fields Ere f (pi) and Hre f (pi)
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at 4173 different positions pi, which are uniformly distributed inside the domain.
The transformation is performed by the method described in Section 6.2. During
the iteration, the similar fields E(pi) and H(pi) are computed in several iteration
stages. The formulation for the error norm δSp is expressed in Equation (60).

The convergence of the error norms is illustrated in Figure 51. The asymp-
totic iteration scheme converge slowly compared to the controllability methods.
The controllability methods achieve the desired accuracy in about 250–300 peri-
ods of iteration. After that, the error δSp does not improve significantly because
the accuracy level of current discretization is found. The asymptotic iteration
method needs 800 or more iterations to achieve the same accuracy level. The re-
sults show that the controllability methods are important, especially in trapped
wave problems. In these simulations, the CG and the HPCG methods converge
at the same rate. The combined method, which includes 50 periods of asymptotic
iteration followed by the HPCG process, converges slightly better at some stages,
but the improvement is not remarkable.

9.5.4 A sphere scattering problem

In scattering problems, the amount of absorption is usually significant, since
the unbounded physical domain is truncated to bounded region by absorbing
boundary condition or absorbing layer. Thus, the asymptotic iteration method
might produce a solution relatively efficiently compared to the controllability
techniques. In this section, we consider the sphere scattering problem, which
is already described in Section 8.5.2. For the spatial discretization, we use the
same meshes, which were applied in that section for the BCC simulations. Thus,
the scatterer object is constructed by the BCC grid, and the rest of the mesh con-
struction is illustrated in the left-hand side of Figure 39. We consider the four
finest discretization levels, which correspond to 10, 14, 20 and 28 elements per
wavelength, as explained in Section 8.5.2. The harmonic Hodge operator and the
harmonic non-uniform leapfrog method are applied in the simulations.

We consider the convergence of the Mueller matrix error δM during the iter-
ation. At several iteration stages, the simulated Mueller matrix M(θ) is compared
to the Mueller matrix Mmie(θ) of the analytical Mie scattering solution. The error
norm δM is then obtained by the formulation of Equation (59). Similarly to the
previous sections, we also compare the iteration stage to the converged solution.
The Mueller matrix Mre f (θ) of the converged solution is computed separately
for each discretization level. The converged solution is obtained as a result of
the combined iteration method, which consists of 300 asymptotic iterations, 300
HPCG iterations and 150 CG iterations, respectively. The convergence error is
denoted by δMre f , and it is computed by

δMre f :=

∫ π
0 sin θ

∥∥M(θ)− Mre f (θ)
∥∥ dθ∫ π

0 sin θ
∥∥Mre f (θ)

∥∥ dθ
.

The convergence results are illustrated in Figure 52. The convergence of
δMre f is almost identical with all four discretization levels. The asymptotic iter-
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FIGURE 52 Convergence of the Mueller matrix error in a sphere scattering simulations,
where the PML absorbing layer is applied.
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FIGURE 53 Convergence of the Mueller matrix error in a sphere scattering simulation
using the Silver-Müller type absorbing boundary condition.
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ation method seems to offer the fastest convergence, though the convergence is
far from monotonic. The controllability methods do not converge that well. The
combined method still offers a temporary improvement for the convergence. The
combined method begins with 30 periods of the asymptotic iteration method, and
the iteration is continued with the HPCG method.

To show that the slower convergence of the controllability methods is not
due to the PML layer, we performed the same simulations without the absorbing
layer. Figure 53 illustrated the convergence for the problem, where the Silver-
Müller absorbing boundary condition is applied at the external boundary. The
exact error δM does not improve significantly by refining the mesh. This is due
to the inferior approximation of unbounded domain offered by the Silver-Müller
boundary condition. The reference error δMre f converges slightly faster than we
observed with the experiments, including the PML.

9.5.5 Conclusions

The iteration methods for time-harmonic problems are compared by numerical
experiments. The asymptotic iteration method is a natural consequence from the
forward-in-time iteration scheme. The numerical experiments show that the con-
trollability methods can speed up the convergence compared to the asymptotic
method. The controllability methods improve the convergence speed especially
in trapped wave problems. In scattering problems, where the wave is absorbed
almost immediately after its generation, the asymptotic iteration can outperform
the controllability methods. The combined method, where the iteration begins
with the asymptotic approach and continues with a control method, seems to be
the most versatile alternative to obtain fast convergence.



10 NUMERICAL COMPARISON TO DDA

In this chapter, we consider the produced DEC framework as a numerical method
for solving electromagnetic scattering problems. More specifically, we compare
the DEC method to another approach, the discrete-dipole approximation (DDA),
which is a well-known technique in the context of electromagnetic scattering
(Yurkin and Hoekstra, 2007). The first comparison between the DEC and the DDA
is published in Räbinä et al. (2014), where the efficiency of the DEC simulation
method was compared to the DDA method in regards to electromagnetic scatter-
ing problems. The efficiency of a numerical simulation method corresponds to
the level of accuracy in a given amount of simulation time. In the first compari-
son, the accuracy was qualified by the error of the scattering phase function (the
first component of the Mueller matrix). Here, we repeat the numerical experi-
ments of the article using a full Mueller matrix in the comparison.

10.1 Discrete-dipole approximation

The discrete-dipole approximation (DDA) is a well-established technique in the
context of solving scattering problems numerically. Its details and formulation
are already covered in many publications. We recommend that the interested
reader should see Yurkin and Hoekstra (2007) for a general description of the
method. The method has several excellent open-source implementations, which
have been reviewed and tested for example by Penttilä et al. (2007).

In a DDA approach, the domain is divided into sub-volumes, which are
called the dipoles. The linear system of DDA equations is usually quite large,
since it has 3n unknowns, where n is the number of dipoles. Direct solution
becomes impossible, and iterative methods are used. Although it is not required
that the dipoles should lie in a rectangular grid, in practice, this is often desired.
With its rectangular grid, the discrete fast Fourier transform (FFT) can be used to
speed up the matrix-vector multiplications in the iterative solver. With FFT, the
number of computational operations needed for solving the scattering problem
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with the DDA is of order O(n log n), where n is the number of dipoles used for the
space discretization. The possible errors in the DDA method can be eliminated
by decreasing the dipole size. It seems that the theoretical results in this field
are difficult, as discussed by Yurkin et al. (2006b). Nevertheless, there are many
numerical studies that show good convergence in practice with decreasing dipole
size (Draine and Flatau, 1994; Yurkin et al., 2006a; Yurkin and Kahnert, 2013).

The DDA results of this chapter were produced by Antti Penttilä from the
Department of Physics in the University of Helsinki. The results are obtained
by the same DDA simulations, which were produced for the first comparison
and published by Räbinä et al. (2014). The DDA simulations were performed by
the ADDA code, version 1.2, which is described in detail by Yurkin and Hoekstra
(2011). Several iterative methods for solving the DDA equations are implemented
in the ADDA code, and the bi-conjugate gradient stabilized method and the quasi
minimal residual method are employed in these simulations.

10.2 Comparison by numerical experiments

The efficiencies of DEC and DDA are compared by performing electromagnetic
scattering simulations. By the efficiency of a method we refer to the ratio between
accuracy and the computational work required to achieve that level of accuracy.
The accuracy of the discrete solutions depends on the spatial discretization, the
approximation of the geometry and the stopping criterion of the iterative solving
procedure. In the DEC simulations, the radiation condition, which is constructed
by PML, in another source of error. The time discretization is performed using the
harmonic non-uniform leapfrog method, presented in Section 7.3. The harmonic
Hodge operator of Chapter 8 is used for the spatial discretization.

To compare the methods, we compute scattering Mueller matrices for three
different target objects. The incident wave for computation is a fully polarized
harmonic plane wave with a wavelength λ = 2π and a time period T = 2π. The
plane wave propagates in the direction of the positive x-axis, and the E field of
the incident wave is orthogonal to x- and z-axis. The target objects have material
parameters ε̂target = 2.5575 + 0.16i and μ̂target = 1.0 implying to the refractive
index r̂ = 1.6 + 0.05i. The material parameters outside the scatterer are ε̂0 = 1
and μ̂0 = 1. Analytical solutions for the scattering problems of this type exist only
for some simple geometries, like a sphere. That is why we have chosen a sphere
of diameter 5λ as the first obstacle in the numerical experiments. In this case, the
accuracy of the methods is validated by comparing the solution with the known
analytical solution, which is available by the Mie-theory (Bowman et al., 1969).
The exact Mueller matrices are produced by the Mie-scattering code of (Mätzler,
2002). The other two obstacles, which we use, are a cube and a torus. Both the
edge length of the cube and the outer diameter of the torus are set to be 5λ. The
inner diameter of the torus is set to be 3λ, which means that the thickness of torus
ring is λ. The incident wave propagates orthogonal to one of the cubic faces and
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through the torus hole. All the obstacles and the DEC meshes are illustrated in
Figure 54.

x
y

z

FIGURE 54 The DEC discretizations by polygons of different shapes (tetrahedron,
prism, cube, octahedron). For clarity, these figures are made with 5 ele-
ments per wavelength, but 10 to 28 elements per wavelength are used in
the simulations. An absorbing layer of thickness 1.3λ is surrounding the
scattering objects.

x

y

FIGURE 55 The xy-plane cross-section of the DEC scattered fields are presented by
background colors, where red, green, and blue components represent the
x-, y- and z-components of the electric field, respectively. The white line
represents the physical domain boundary, where the PML begins. The black
arrows illustrate the absorption directions of the PML.

The DEC meshes are constructed by combining structured grids. With spher-
ical and toroidal target objects, we obtain unstructured elements between the
structured regions. The unstructured elements are then optimized by the Hodge
optimization method, as described in Section 2.7. The structured grid refining
protocol is applied with the cube and torus meshes to refine the mesh at the tar-
get object region. At the target object region, the BCC grid is obtained by inserting
nodes at each body center location of the regular base grid, as described in Sec-
tion 2.9. The torus mesh is not in accordance with the target object surface and
the material parameters are then converted to discrete Hodge matrices by nu-
merical integration over volume elements, as discussed in Section 3.3. The DEC
meshes are generated for four different discretization levels, which correspond
approximately to 10, 14, 20 and 28 elements per wavelength. The element shapes
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vary within the meshes, which means these numbers are given for illustrative
purpose only. By the same ideology, the resolution in Figure 54 is 5 elements per
wavelength. The element sizes are adjusted to fit the local wavelength, which is
λ
|r̂| inside the target object and λ outside the target object. We recall, that λ is the
wavelength of the incident wave.

The 1.5λ thick structured grid is applied in each mesh outside the target
object. The absorbing PML layer of thickness 1.3λ is surrounding the obstacles,
starting from the 0.2λ distance outside the scatterer. The PML, described in Sec-
tion 4.4, requires a specific mesh design, where primal and dual edges are either
parallel or orthogonal to the absorption direction. The absorption directions of
each geometry are illustrated by the black arrows in Figure 55. The cube and
torus geometries include corner regions, where several absorption directions are
combined. The absorbing term β = 0.7 is applied for the PML.

The elements of the DDA system are dipoles placed on a regular grid. The
computational domain is the minimal rectangular parallelepiped that encom-
passes the scatterer. No absorbing layers are needed for the DDA. The resolutions
of the spatial discretization used with the DDA are 10, 20, and 30 dipoles per
wavelength. The cube and the sphere are discretized by the systems of 80 × 80 ×
80, 160 × 160 × 160 and 240 × 240 × 240 dipoles, whereas the torus is discretized
by the systems of 16× 80× 80, 32× 160× 160, and 48× 240× 240 dipoles, respec-
tively. For the non-spherical target objects, the reference solution is computed by
the DDA method with 80 dipoles per wavelength. Thus, the numbers of dipoles
are 640 × 640 × 640 for the cube and 128 × 640 × 640 for the torus. The fine dis-
cretization gives a highly accurate solution. The Muller matrix error for cube is
known to be less than one percent at every measurement angle.

The method accuracy is considered as the relative error of the Mueller ma-
trix as already formulated in Equation (59). The far field scattering data are ob-
tained from the DEC result by applying a powerful and flexible near field to far
field transformation, which is discussed in Sections 6.3 and 6.4. The near field
data was collected at distance of 0.2λ outside the scatterer, as illustrated by white
lines in Figure 55. The transformation from discrete field to Mueller matrix is
another source of error in the DEC approach.

The DEC simulations were iterated using the combined iteration method of
Section 9.4. The simulations were started with 20 asymptotic iterations and fol-
lowed by HPCG iterations until the residual norm dropped down to 0.005. From
7 to 21 HPCG iretations were needed in the procedure. The stopping criterion for
the iterative solver in ADDA, concerning the relative residual norm, was set to
10−8. In DDA simulations, the Bi-CG stabilized method was used with the cubic
target object, but with the sphere and torus target objects the iteration was suc-
cessful using the default method of quasi minimal residual. All the computations
have been carried out on an Intel Xeon E5-2670 processor at 2.6 GHz.

To illustrate the efficiency of numerical simulation, the relative error of the
Mueller matrix is presented as a function of simulation time in Figure 56. With
both simulation methods, it is possible to improve the accuracy at the expense of
computational time by using finer spatial discretization. It can be seen that the
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computational costs are of the same order of magnitude for the both methods.
The DDA method seems to be slightly more efficient with cubical and spherical
target objects. With the toroidal target object, the DEC outperforms the DDA. The
results are quite similar to the article of Räbinä et al. (2014). Both methods have
their own strengths and weaknesses, depending on the geometry of the scatterer
and the details of the discretization.
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FIGURE 56 The Mueller matrix errors are plotted in function of simulation time for both
DEC and DDA methods.
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FIGURE 57 The first two components of the Mueller matrix are presented for each tar-
get object.

The first two components of the Mueller matrices are illustrated in Figure 57
for each target object. In this illustration, the best corresponding discretization
levels are selected for DEC and DDA curves. The densest, the second densest and
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the third densest discretization levels are used in torus, cube and sphere graphs,
respectively.

10.3 Conclusions

We compared the DEC to the discrete-dipole approximation (DDA) for solving
electromagnetic scattering problems. Three different target obstacles were con-
sidered, and the computational efficiencies were of the same order of magnitude
with both methods. The results were similar to the article of Räbinä et al. (2014).
Both methods have their own strengths and weaknesses, depending on the ge-
ometry of the scatterer and the details of the discretization. Certainly, the DEC
is a more flexible method than the DDA, but the efficiency of the DEC method
depends on the quality of the spatial discretization. Thus, an efficient DEC im-
plementation requires a good mesh generator. Generating a good mesh for DEC
is often much more difficult problem than solving the Maxwell equations. Since
there exist no optimized and easy-to-use DEC software, which includes the mesh
generation, the DEC method is not yet competitive with DDA (or with FDTD)
in simple scattering problems. An interesting direction to continue these studies
would be to produce such an interface, which could be operated by physicists
who have deeper interest and understanding on scattering phenomena. Thus, an
automated grid generator might be a good approach for this task, as it is with
DDA and with FDTD. The crystal structures and the structured mesh refining
might be an answer for this demand.



11 SUMMARY

This study considers a numerical solution method based on discrete exterior cal-
culus (DEC). The thesis concentrates on electromagnetic waves, meaning that
the mathematical model is given by the Maxwell equations. The DEC offers
a natural-driven time-dependent simulation scheme, where the wave propaga-
tion can be tracked forward-in-time. The implementation is formulated for three-
dimensional problems. The time axis brings in the fourth dimension.

The space and time discretizations are separated in the derivation. The spa-
tial discretization is described by the mesh, which divides the simulation domain
into small elements. The elements are either nodes, edges, faces or bodies de-
pending on the dimension of the element. We also introduce a dual mesh, which
has dual elements corresponding to each element of the primal mesh. In three
dimensions, the dual of a node is a body and the dual of an edge is a face, and
vice versa. The vector fields of the Maxwell equations are described by discrete
differential forms, which are defined as integrals over mesh elements. The dis-
crete Faraday and Ampére laws of the Maxwell equations are discretized exactly
on primal and dual meshes, respectively. The constitutive relations between flux
densities and fields are expressed by the discrete Hodge operators. Using the
orthogonal relation of primal and dual mesh elements, the discrete Hodge opera-
tors are expressed as diagonal matrices, and the outcoming discretization scheme
has exact energy conservation properties. The discrete Hodge operator is the only
source of error in spatial discretization.

The time discretization is described in the leapfrog manner, where electric
and magnetic field values are updated by turns. As a result, a forward-in-time
iteration scheme is obtained. A new non-uniform leapfrog scheme with variable
time step size is introduced, and an estimate for stability criterion is formulated.
Numerical experiments on a random mesh show good energy conservation prop-
erties for the non-uniform leapfrog method. The improvement of the method
efficiency is significant.

There are many practical problems that can be described as time-harmonic
problems. Based on the harmonic approach, the harmonic formulations for space
and time discretization are presented. The time-harmonic leapfrog equations pro-
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duce an exact time discretization for time-harmonic problems. The harmonic
Hodge operator is derived from space harmonic assumption by minimizing the
error based on the least squares method. The harmonic corrections have no effect
on energy conservation. The numerical experiments show that the correction can
significantly improve the simulation accuracy.

Alternative iteration methods are introduced to solve time-periodic prob-
lems. The alternative methods are based on a controllability approach, where the
formulated cost function is minimized by conveniently preconditioned conjugate
gradient method. The controllability method is compared to asymptotic forward-
in-time iteration method by comparing the development of solution error during
the iterations. The controllability method increases the speed of convergence, es-
pecially in tasks, where the wave can be trapped inside the domain. The asymp-
totic iteration can be faster in problems with a lot of absorption. A combined
method, where the iteration begins with the asymptotic approach and continues
with a control method seems to give the fastest convergence in almost every test
cases.

The mesh quality is one of the most significant factors to affect the effi-
ciency of the DEC solver. The relations between primal and dual elements have
a tremendous effect on the mesh quality. Generating a high-quality mesh can
sometimes be an even more laborious task than solving wave equations. The
meshes of this thesis are constructed using crystal structures, and even the most
complicated meshes are mostly made up of structured elements. By comparing
the crystal structures in DEC simulations, the isotropy is found to be one of the
most important properties for simulation efficiency. The building of the meshes
by Voronoi diagrams enables the combination of crystal structures, which could
be an efficient way for controlled mesh refining inside the simulation domain.
The comparison to discrete dipole approximation shows that a simplified and
optimized DEC implementation could be a very competitive method for solving
scattering problems.



YHTEENVETO (FINNISH SUMMARY)

Väitöskirjan suomenkielinen nimi on Maxwellin yhtälöiden numeerinen ratkaisemi-
nen diskreettiä differentiaalilaskentaa hyödyntäen. Väitöskirja käsittelee numeerista
ratkaisumenetelmää, joka perustuu diskreettiin differentiaalilaskentaan, ja jos-
ta käytetään lyhennettä DEC (englanniksi discrete exterior calculus). Numeeri-
nen ratkaisumenetelmä johdetaan ja muotoillaan sähkömagneettista aaltoliikettä
mallintaville Maxwellin yhtälöille. DEC tarjoaa hyvin luonnollisen lähestymista-
van ajasta riippuvien tehtävien ratkaisuun, jossa sähkömagneettisen aallon ete-
nemistä voidaan seurata ajassa edeten. Ratkaisija on toteutettu kolmiulotteiseen
paikka-avaruuteen. Neljännen ulottuvuuden tuo mukanaan aika-avaruus.

Paikka- ja aikadiskretointi määritellään erillisinä vaiheina DEC-toteutukses-
sa. Paikkadiskretoinnin määrittämiseen tarvitaan kolmiulotteinen verkko, joka
jakaa simulointialueen pieniin osasiin. Osaset ovat joko pisteitä, janoja, monikul-
mioita tai näiden rajaamia tilavuuselementtejä. Verkolle määritellään myös du-
aaliverkko, jonka osaset muodostuvat alkuperäisen verkon duaaliosasista. Kol-
miulotteisessa tapauksessa pisteen duaaliosanen on tilavuuselementti ja janan
duaaliosanen on monikulmio, ja toisinpäin. Sähkö- ja magneettikentät esitetään
diskreettien differentiaalimuotojen avulla siten, että diskreetin muodon alkiot
määritellään integraaleina osasten yli. Näin Maxwellin yhtälöt pystytään diskre-
toimaan tarkasti alkuperäisen verkon ja duaaliverkon avulla. Verkkojen välinen
riippuvuus määritellään matriisilla, jota kutsutaan diskreetiksi Hodge-operaatto-
riksi. Kun duaaliverkon elementit noudattavat tiettyä kohtisuoruussääntöä, voi-
daan diskreetti Hodge-operaattori esittää diagonaalisena matriisina. Tällöin sys-
teemin energia säilyy täydellisesti ajan edetessä, mikä on tärkeä ominaisuus me-
netelmän toimivuuden kannalta. Diskreetti Hodge-operaattori on paikkadiskre-
toinnin ainoa virhelähde.

Aikadiskretointi toteutetaan yleisesti käytössä olevalla pukkihyppelyteknii-
kalla, missä sähkö- ja magneettiarvot päivitetään vuorotellen toisiaan hyödyn-
täen. Tuloksena syntyy ajassa etenevä iterointimenetelmä. Väitöskirjassa esite-
tään uusi epävakioitu pukkihyppelymenetelmä, missä aika-askeleen kokoa voi-
daan vaihdella simulointialueen eri osissa. Samassa yhteydessä esitetään arvioi-
tu yläraja aika-askeleen koolle. Numeeriset tulokset osoittavat, että menetelmän
energian säilyvyys on erinomainen. Satunnaisverkossa simuloituna epävakioitu
pukkihyppelymenetelmä parantaa menetelmän tehokkuutta merkittävästi.

Sähkömagneettiseen aaltoliikkeeseen liittyvät käytännön ongelmat voidaan
usein esittää aikaharmonisina tehtävinä. Väitöskirjassa esitellään harmoniseen
oletukseen perustuen muotoilut sekä paikka- että aikadiskretoinnille. Harmoni-
nen pukkihyppelymenetelmä johtaa tarkkaan aikadiskretointiin, mikäli tehtävä
on aikaharmoninen. Harmoninen Hodge-operaattori puolestaan johdetaan paik-
kaharmoniselle aaltoliikkeelle minimoimalla operaattorin aiheuttama virhe pie-
nimmän neliösumman menetelmään perustuen. Harmoniset korjaukset eivät vai-
kuta energian säilymiseen, mutta numeeriset laskelmat osoittavat korjauksilla
olevan merkittäviä vaikutuksia tulosten tarkkuuteen.
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Väitöskirjassa on esitelty myös vaihtoehtoisia iterointimenetelmiä aikajak-
sollisten tehtävien ratkaisuun. Vaihtoehtoiset menetelmät ovat kontrollimenetel-
miä, joissa aikajaksolliselle tehtävälle muotoiltu kustannusfunktio minimoidaan
sopivasti pohjustetulla konjugaattigradienttimenetelmällä. Kontrollimenetelmiä
verrataan suoraan ajassa etenevään simulointiin vertaamalla todellisen virheen
kehitystä iteroinnin aikana. Kontrollimenetelmä nopeuttaa ratkaisun löytymistä
erityisesti tehtävissä, joissa aalto jää kimpoilemaan simulointialueen sisään. Teh-
tävissä, joissa absorptiota on paljon, voi suora menetelmä olla kontrollimenetel-
mää nopeampi. Yhdistetty menetelmä, jossa iterointi aloitetaan suoralla menetel-
mällä ja viimeistellään kontrollimenetelmällä, on tulosten mukaan toimivin rat-
kaisu lähes kaikissa testitapauksissa.

Verkon laatu on yksi merkittävimmistä DEC-ratkaisijan tehokkuuteen vai-
kuttavista tekijöistä. Verkon laatuun vaikuttavat ensisijaisesti alkuperäisen ver-
kon osasten ja duaaliosasten keskinäiset suhteet. Laadukkaan verkon luominen
voi olla työläämpi tehtävä kuin itse aaltoyhtälöiden ratkaiseminen. Väitöskirjas-
sa hyödynnetään verkkojen luomisessa kiderakenteita ja monimutkaisetkin ver-
kot muodostetaan pääasiassa näitä rakenteita hyödyntäen. Vertailemalla kidera-
kenteita DEC-simulaatioissa huomataan rakenteiden isotrooppisuudella olevan
suuri vaikutus simulaation tarkkuuteen. Verkkojen luominen Voronoin kaaviota
käyttämällä mahdollistaa kristallirakenteiden hallitun yhdistelemisen, mikä voi
olla erinomainen keino rakenteen hallittuun tihentämiseen simulointialueen si-
sällä. Vertailu yleisemmin tunnettuun sironnan simulointimenetelmään (DDA)
osoittaa, että yksinkertainen ja optimoitu DEC-toteutus voisi olla erittäin kilpai-
lukykyinen menetelmä sirontatehtävien ratkaisuun.
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