LIIKUNNAN JA HERA- TAI PROTEIINIJUOMADIEETIN VAIKUTUKSET SIRTUIINEN 1-7 ILMENTYMISEEN LCR-ROTTIEN RAAJALIHAKSESSA

Anne Mäkinen

Liikuntafysiologia
Pro Gradu -tutkielma
Syksy 2014
Liikuntabiologian laitos
Jyväskylän yliopisto

Sirtuinien 1 ja 2 ilmentymisessä ei ollut tilastollisia merkittäviä eroja. Sirtuini 3 osalta kaikki juoksijaryhmät (K+J: p=0,05; P+J: p<0,001 ja H+J: p<0,001) erosi markkin tekemästään kontrolliryhmistä K, P ja H. Liikunta lisäsi sirtuini 4:n ilmentymistä erittäin merkittävästi kontrolliryhmässä K (p<0,001) sekä heran juoksijaryhmässä H+J (p<0,01). Liikunta yksin ei nostanut sirtuini 5:n ilmentymistä, sitä vastoin kaikissa muissa ryhmissä tapahtui markkin tekemästä (p<0,001) ilmentymisen nousua. Sirtuini 6:n ilmentymisessä K erosi markkin tekemästä K+J, P ja H+J (p<0,01; p<0,001; p<0,05). Sirtuini 7:n ilmentymiseen ei liikunnalla ollut vaikutusta. Markkin tekemästä eroja oli P+J, H sekä H+J ryhmissä kontrolliin K verrattuna (p<0,001). Tämä tutkimus osoitti, että liikunnalla oli voimakkaita vaikutuksia erityisesti mitokondrialaisten sirtuinien ilmentymiseen ja myös dieettit vaikuttivat sirtuinien ilmentymiseen.

Avainsanat: Histonideasetylaasit, proteiinit, sirtuinit
KÄYTETYT LYHENTEET

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>Adenosiiniterifosfaatti</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosiinidiifosfaatti</td>
</tr>
<tr>
<td>BCAA</td>
<td>Haaraketjuinen aminohappo</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoksiribonukleinvappu</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Gyiyseraldehydi-3-fosfaatti-dehydrogenaasi</td>
</tr>
<tr>
<td>HAT</td>
<td>Histooniasetylaasi</td>
</tr>
<tr>
<td>HDAC</td>
<td>Histonideaetylaasi</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA = lähetti-RNA</td>
</tr>
<tr>
<td>NAD+</td>
<td>Nikotiinahappoamiadieniinidinukleotidi</td>
</tr>
<tr>
<td>SIRT</td>
<td>Sirtuini</td>
</tr>
</tbody>
</table>

SISÄLTÖ

TIIVISTELMÄ

1 JOHDANTO ... 4
2 PROTEIINIT .. 6
 2.1 Aminohapot ... 6
 2.2 Heraproteiini ... 8
3 NUKLEOSOMIT ... 9
 3.1 Nukleotidit .. 9
 3.2 Histonit ... 10
4 HISTONIDEASETYLÄÄSIT ... 11
5 SIRTUIINIT .. 14
 5.1 SIRT1 ... 16
 5.2 SIRT2 ... 17
 5.3 SIRT3 ... 18
 5.4 SIRT4 ... 19
 5.5 SIRT5 ... 20
 5.6 SIRT6 ... 20
 5.7 SIRT7 ... 22
6 SIRTUIINIT JA LIIKUNTA ... 23
7 TUTKIMUKSEN TARKOITUS .. 25
8 TUTKIMUSMENETELMÄT ... 26
1 JOHDANTO

Proteiineilla eli valkuaisaineilla on elimistössä useita erilaisia tehtäviä; ne ovat elimistön rakenneosasia, ne voivat toimia entsyyymeinä, kuljetuksessa, solujen välisessä ja solun sisäisessä viestinnässä, puolustautumisessa vieraita aineita vastaan ja ne mahdollistavat solujen liikkeet. Puolet solun kuivapainosta on proteiinia. Proteiinit koostuvat pääasiassa aminohappoista, joiden järjestys määrittää proteiinin kolmiulotteisen rakenteen ja samalla sen toiminnan. Aminohapot jaotellaan välttämättömiin ja ei-välttämättömiin aminohappoihin. Harakketjuisia aminohappoja (branched chain amino acids = BCAAs) ovat leusiini, isoleusiini sekä valiini, jotka kaikki kuuluvat ihmiselle välttämättömiin aminohappoihin.

Hyviä proteiininlähteitä ovat esimerkiksi maitotalousotteet, kananmunanvalkuainen, liha, kala ja kana. Maidon proteiineista 20 % on heraajia ja 80 % kaseiinia. Heraproteiini tarkoittaa proteineja, jotka jäävät juuston valmistuksessa muodostuvaan nesteeseen. Heraproteiini sisältää useita eri proteineja ja peptidejä, esimerkiksi β-laktoglobulia, α-laktalbumiinia, immunoglobulia ja laktoferriiniä, ja se sisältää runsaasti välttämättömiä ja haaraketjuisia aminohappoja. Ihmisen lihakset ovat aminohappokoostumuksestaan hyvin samankaltaiset kuin heran aminohappokoostumus; hera sisältääkin miltei kaikki aminohapot, joita lihasten toimintaan ja kasvuun tarvitaan.

Histonit koostuvat positiivisesti varautuneista aminohapoista lysiniistä ja arginiinista, ne ovat proteiineja, jotka yhdessä muiden kromosomaalisten proteiinien kanssa pakkautuvat deoksiribonukleinihapon (DNA) tumaan. Histonien varauksen aiheuttaa sen ytimestä ulos tuleva N-terminaalinen aminohappopää, joka on alttiina translaation jälkeiseen kovalentti-seen modifikaaatioon, kuten esimerkiksi lysiniin tai arginiinien metylaatioon ja lysinien asetylaatioon. Histonien asetylaatiota kontrolloivat histoniasetylaasit (HAT) ja histonideasetylaasit (HDAC), jotka joko poistavat tai lisäävät asetyyliryhmien. Eräs histonideasetylaasien ryhmä on sirtuinient-syntyymys, joita on seitsemän kappaletta ja joiden toiminta on riippuvainen nikotiinihappoamidiadieniinidinukleotidista eli NAD⁺:sta. Sirtuiniit vaimentavat geenien ilmenemistä osittain tai kokonaan.
Liikunnalla on todettu olevan sirtuiini 1:n ilmentymistä lisääviä vaikutuksia. Tässä opin­näytetyössä, joka on osa laajempaa tutkimusta, tutkittiin liikunnan sekä hera- ja proteiini­juomadieettien vaikutuksia sirtuiinien 1-7 ilmentymiseen rottien raajalihaksessa.
2 PROTEIINIT

2.1 Aminohapot

<table>
<thead>
<tr>
<th>Välttämättömät aminohapot</th>
<th>Ei-välttämättömät aminohapot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenyylialanini</td>
<td>Alaniini</td>
</tr>
<tr>
<td>Histidiini</td>
<td>Argiiniin*</td>
</tr>
<tr>
<td>Isoleusiini</td>
<td>Asparagiini</td>
</tr>
<tr>
<td>Leusiini</td>
<td>Aspartaatti</td>
</tr>
<tr>
<td>Lysiini</td>
<td>Glutamaatti</td>
</tr>
<tr>
<td>Metioniini</td>
<td>Glutamiini</td>
</tr>
<tr>
<td>Treoniini</td>
<td>Glysiiin</td>
</tr>
<tr>
<td>Tryptoaani</td>
<td>Kysteiini</td>
</tr>
<tr>
<td>Valiini</td>
<td>Prolini</td>
</tr>
<tr>
<td></td>
<td>Seriini</td>
</tr>
<tr>
<td></td>
<td>Tyrosiini</td>
</tr>
</tbody>
</table>

* Argiiniin on välttämätön aminohappo kasvuikäisille, mutta ei aikuisille

2.2 Heraproteiini

Heraproteiini on yleinen termi, joka tarkoittaa proteiineja, jotka jäävät juuston valmistuksessa muodostuvaan nesteeseen. Maidon proteiineista 20 % on heraa ja 80 % kaseinioita. Heraproteiini sisältää runsaasti välttämättömiä ja haaraketjuisia aminohappoja, ja siinä on runsaasti mineraaleja ja vitamiineja. Heralla tarkoitetaan myös soijasta saatua heraproteiinia. (Hoffman & Falvo 2004.)

Ihmisen lihakset ovat aminohappokokoostumuksestaan samankaltaiset kuin heran aminohappokokoostumus; hera sisältäkín miltei kaikki aminohapot, joita lihasten toimintaan ja kasvuvun tarvitaan (Ha & Zemel 2003).
3 NUKLEOSOMIT

3.1 Nukleotidit

Nukleoinhapot koostuvat nukleotideista. Nukleotidit ovat muodostuneet sokeri-, fosfaatti- ja emäsosasta. DNA:n eli deoksiribonukleoinhapon sokeriosana on deoksiriboosi, johon on liittynyt vety. DNA:n emäsosia ovat adeniini (A), tymiini (T), guaniini (G) ja sytosiini (C). RNA:n eli ribonukleoinhapon sokeriosaan riboosiin on liittynyt OH-ryhmä ja tymiinin tilalla on urasiili (U). (Alberts ym 2004, 171.)

3.2 Histonit

4 HISTONIDEASETYLAASIT

Histonit koostuvat positiivisesti varautuneista aminohapoista lysiiinistä ja argiinista. Varauksen aiheuttaa histonin ytimestä ulos tuleva N-terminaalinen aminohappopää. (Grant 2001.) Histonien N-terminaaliset aminohappopääät ovat alttiina translaation jälkeiseen kovalenttiseen modifikaatioon, joista tunnetuimpia ovat serinien fosforylaatio, lysinien asetyylaatio, ubiquinaatio ja sumoylaatio, lysinien tai argiinien metylaatio ja argiinien sitrullinaatio, jossa argiini muuttuu sitrulliiniiksi PAD-entsyymin avustuksella (Grant 2001; Hakala ym. 2012; Denu & Smith 2009).

Modifikaatiot ovat luonteeltaan dynaamisia, ja ne perustuvat proteiinien varauksen muuttamiseen, esimerkiksi asetyylaatio poistaa lysiiinin positiivista varausta. Deasetylointi tiivistää kromatiinin rakennetta, jolloin DNA kietoutuu tiiviimmin nukleosomin ympärille. Mitä vähemmän asetyloitut histonit ovat, sitä tiukemman kromatiinirakenteen se muodostaa DNA:n kanssa, ja lopulta deasetyylaatio estää transkriptioto laajenksen. (Kuva 2). Histonien fosforylyointi ja asetylointi mahdollistavat geenien luennon aktivoimalla kromatiinin avautumista ja metylointi estää luennon tiivistämällä kromatiinin rakennetta. (Grant 2001.)

Kuva 2. Lysiinin deasetyylaatio (Mukaillen Denu & Tong 2010).
Histoniin liysinien post-translaationaallista muokkausta katalysoivat entsyymit jakautuvat neljään luokkaan; liysinien metyylitransferaasit, liysininesifiset histonidemetylaasit, histonisetyylitransferaasit ja histonideasetyylaasit (Denu & Smith 2008).

Histoniin asetyylaatiota kontrolloivat histoniasetyylaasit (HAT, histone asetylace) ja histonideasetyylaasit (HDAC, histone deasetylace), jotka joko poistavat tai lisäävät asetyyliryhmiä. Histonideasetyylaasit muodostavat 18 entsyymin perheen, joka jakautuu neljään luokkaan; I, II, III ja IV. Luokat I, II ja IV pidetään klassisina histonideasetyylaaseina ja näihin luokittelemuun kuuluu 11 kpl Zn²⁺-riippuvaisia entsyymejä. Luokan III histonideasetyylaaseja nimitetään sirtuiineiksi, näitä entsyymejä on 7 kpl ja niiden toiminta on riippuvainen NAD⁺:sta. (Deubzer ym. 2009.)

Hapettuminen on elektronien luovuttamista ja pelkistyminen niiden vastaanottamista. Solun hapetus-pelkistysreaktiossa elektronit siirtyvät hapetus-pelkistyskoentsyymien avulla. Yksi keskeinen hapetus-pelkistyskoentsyymi on niasiinista saatava nikotiiniamidiadeninidinukleotidi eli NAD. Sen hapettunut muoto on NAD+, joka ottaa vastaan hapettuvalta aineelta kaksi elektronia ja yhden protonin muuttuen pelkistyneeseen muotoon NADH. Hapettuvalta aineelta irronnut protoni siirtyy vety-ioniksi liukseen. NADH luovuttaa elektronit mitokondrion sisäkalvon elektroninsiirtoketjuun. (Campbell 1995, 392–393.)

Esimerkiksi mRNA-molekyylin transkription käynnistää RNA-polymeraasi II, ja reaktiossa tarvitaan myös muita proteiineja, joita kutsutaan perustranskriptiotekijöiksi. Perustranskriptiotekijät ohjaavat RNA-polymeraasin aloittamaan luennan kiinnittymällä promottorialueessa sijaitsevaan TATA-boxiin. Alueita, joihin transkriptiotekijät kiinnittyvät, kutsutaan sääte-
lyalueiksi, ja ne joko vahvistavat tai vaimentavat geenien luentaa. Sääteleyalueiden ei tarvitse olla transkription aloituskohdan välittömässä läheisyydessä, koska DNA:n rakenne pystyy taipumaan.

5 SIRTUIINIT

Silent Information Regulators 2 eli Sir2-proteiini löydettiin ensimmäisen kerran *Saccharomyces cerevisiae* hiivasolusta. SIR2-geenin, joka koodaa tätä entsyymiä, huomattiin kasvatettavissa hiivasolun elinikää lisäämällä sen perimän stabiliteettia. (Haigis & Sinclair 2010; Haigis ym. 2009.) Samankaltaisia havaintoja tehtiin myöhemmin myös monimuutkaisimmilla eliöillä kuten esimerkiksi *Caenorhabditis elegans* sukkulamadolla ja *Drosophila melanogaster* kärpässillä (Kelly 2010).

SIR2-homologeja eli sirtuiineja on löydetty useimmista organismeista kuten esimerkiksi bakteereista, kasveista ja nisäkkäistä (Haigis & Sinclair 2010). Sirtuiini nimitys tulee sanosta "sir-two-ins" (Bay ym. 2009). Sirtuiinit vaimentavat geenien ilmenemistä osittain tai kokonaan eli ne ovat regulatorisia geenejä (Gregory & Kelly 2010).

Kuvan 3 mukaisesti sirtuiineilla on samankaltainen, 275 aminohaposta koostuva ydinosa keskellä ja toisistaan poikkeavat sivuissa olevat N- ja C-termiinaliset päät, joiden perusteella sirtuiineilla on erilaiset kohdeproteiinit, substraatit ja solunsisäinen sijainti (Katzgan & Li 2011).

KUVA 3. SIRT1 on Sir2-homologi ja muut sirtuiinit eroavat siitä rakenteellisesti. Esimerkiksi SIRT7, joka on rakenteeltaan hyvin samankaltainen kuin SIRT6, on vain kaukainen homologi Sir2-proteiinille. (Katzgan & Li 2011; Letzel ym 2005.)

Fylogeneettisen rakenteensa perusteella sirtuiinit on jaettu neljään luokkaan I - IV; SIRT1 (62,0 kDa), SIRT2 (41,5 kDa) ja SIRT3 (43,6 kDa) kuuluvat luokkaan I, SIRT4 (35,2 kDa) kuuluu luokkaan II, SIRT5 (39,1 kDa) kuuluu luokkaan III sekä SIRT6 (39,1 kDa) ja SIRT7 (44,8 kDa) kuuluvat luokkaan IV. Ensimmäiseen luokkaan kuuluvat sirtuiinit SIRT1-3 ovat läheisimmin homologisia Sir2:lle, ja niissä ilmeneekin voimakkainta deasetylaasiaktiivisuutta. Vaikka sirtuiinit kokonaisuutena kuuluvatkin luokan III histonideasetylaaseihin, kai-killa sirtuiineilla ei esiinny NAD+ aktiivista toimintaa eli ne eivät ole deasetylaaseja kuten
esimerkiksi SIRT4, jonka vaikutus perustuu ADP-ribosylaatioon. (Letzel ym 2005; Lu ym 2011.)

Tumassa sijaitsevia sirtuiineja ovat SIRT1, SIRT2, SIRT6 ja SIRT7. Näistä SIRT7 sijaitsee tumajyvässä. Sirtuinid SIRT3-5 sijaitsevat mitokondrioissa, solulimassa esiintyviä sirtuiineja ovat SIRT1 ja SIRT2. (Kelly 2010.)

5.1 SIRT1

SIRT1 (62,0 kDa) on sirtuiineista tutkituin ja tunnetuin. Se deasetyloi sekä kromatiinia että kromosomaalisia proteiineja, ja sillä on vaikutusta useisiin fysiologisiin tekijöihin kuten esimerkiksi geenien ilmenemiseen, metabolismaan, tumorigeneesiin ja ikääntymiseen liittyviin sairauksiin kuten osteoporoosiin. (Altucci ym. 2012; Atalay ym. 2010.)

SIRT1 vaikuttaa heterokromatiinin muokkaukseen deasetyloimalla histoni H1:n lysiinin K26, histoni H3:n lysiinin K9, histoni H4:n lysiinin K16 sekä deasetyloimalla myös kromosomaalisia proteiineja. Kromosomaaliset proteiinit voidaan jakaa 3 ryhmään; DNA:ta korjaavat proteiinit, signalointiin liittyvät proteiinit sekä transkriptiotekijät kuten esimerkiksi p53, FOXO, E2F1, BCL6, p73 ja Rb. (Altucci ym. 2012.)

SIRT1:stä ilmenee mm. sydämessä, munuaisissa, maksassa, luurankolihaksessa ja valkeassa rasvakudoksessa. Se vaikuttaa lihavuuteen ja diabetekseen mm. deasetyloimalla PGC-1α-geenin, joka puolestaan vaikuttaa useaan transkriptiotekijään ja säätälee siten mm. insuliiniaineenvaihduntaa ja vaikuttaa aerobiseen energiantuottokykyyn. Sitoutumalla FoxO:n kanssa SIRT1:llä on vaikutusta rasvojen metabolismaan ja oksidatiiviseen stressiin. (Baur 2010; Kelly 2010.)

Kalorirajoituksen on jo pitkään tiedetty lisäävän elinikä, se pidentää elinikää n. 20 - 50% (Auwerx ym. 2012; Kumagai ym 2009). Kalorirajoitus puolestaan aktivoi sirtuiinien toimin-

5.2 SIRT2

SIRT2 (41,5 kDa) esiintyy pääasiassa solulimassa, vaikka sitä on jonkin verran löydetty myös tumasta. SIRT2 ilmenee sekä valkeassa että ruskeassa rasvakudoksessa, sydämessä, kiveksissä, luurankoliaksessä ja aivoissa. (Bay ym. 2009; Gregory & Kelly 2010; Lebiendzinska ym. 2011.) Kuten SIRT1 myös SIRT2 deasetyloi histonia H4. SIRT2 deasetyloi myös transkriptionaalista koaktivaattoria p300 vaikuttaen solusykliin, sekä α-tubuliinia stabiloiden mikrotubuluksid. Mikrotubulukset vaikuttavat mm. solun muotoon, liikkumiseen, jakautumisen säätelyyn sekä solunsisäiseen kuljetukseen. (Lebiendzinska ym. 2011; Kiviranta 2008; Moniot ym. 2012.)

5.3 SIRT3

SIRT3 on mitokondrioiden matriksissa sijaitseva sirtuin. Siitä esiintyy luurankolihaissa, aivoissa, ruskeassa ja valkeassa rasvakudoksessa, sydämessä, munuaisissa, maksassa ja muissa metabolisesti aktiivisissa kudoksissa. (Bay et al. 2009; Kelly 2010.) Mitokondriaaliset sirtuinit aistivat NAD+/NADH-konsentraatiota seuraten ja säädellen siten energiametaboliaa. SIRT3 säätelee aineenvaihduntaan ja energiantuotantoon osallistuvien proteiinien toimintaa ja on pääasiallinen mitokondriaalinen deasetylaasi. SIRT3 edistää oksidatiivista fosforylaatiota stimuloimalla syklistä adenosiinimonofosfaattia (cAMPK), säädlee asetylylylikoentsyyymi A:n syntetasaan (AceCS1) aktiivisuutta ja deasetyloi UCP1:tä ja PGC-1α:a sekä osallistuu mm. rasvahappojen pilkkomiseen säätémällä LCAD:ta (long-chain acyl-CoA dehydrogenase). (Auwrex et al. 2012; Bay et al. 2009; Gregory & Kelly 2010.)

SIRT3:lla (28 kDa) on tumassa alatyyppi (44 kDa), jonka toimintaa ei vielä tarkasti tiedetä, mutta on ehdotettu, että normaaltilassa SIRT3 voi esiintyä sekä mitokondriossa että tumassa, mutta erilaisissa elimistön stressitilanteissa sitä esiintyi ainoastaan mitokondrioissa (Lebiendzinska et al. 2011). SIRT3 parantaa hermokudosten toimintaa vaikuttamalla UCP4:n toimintaan, deasetyloimalla p53:a ja muita mitokondrioiden patologisia proteiineja ja lisäämällä hermostollisten solujen mitokondrioiden hapenkäyttöä (Bay et al. 2009).

Solulimassa sijaitseva SIRT1 deasetyloi PGC-1α:a joka vaikuttaa mitokondriossa sijaitsevaan SIRT3:n ERRE:n (estrogen-related receptor binding element) kautta. Näin ollen SIRT1 voi epäsuoarasti säädellä SIR3:n ilmentymistä PGC-1α:n deasetyloinnin kautta. (Katzgan & Li 2011.) SIRT3 on mitokondriaalisista sirtuineista (SIRT3, SIRT4, SIRT5) vahvin deasetylaasi (Letzel et al. 2005).
5.4 SIRT4

SIRT4 on oksidatiivisen metabolian negatiivinen säätelijä toisin kuin sirtuiinit 1 ja 3, jotka lisäävät kudosten oksidatiivista kapasiteettia. SIRT4 esimerkiksi sätelee GDH:ta ja rasvahappojen oksidaatiota SIRT3:n kanssa päinvastaisella tavalla. Tarkkaa mekanismia, jolla SIRT4 vaikuttaa lipidimetaboliaanien käytännössä vielä tunneta. (Auwrex et al. 2012; Bare et al. 2010.) SIRT3 voi deasetyoida GDH:ta, vaikka ADP-ribosylaation ja deasetylaation välistä yhteyttä ei vielä täysin ymmärretty (Lebiendzinska et al. 2011).
5.5 SIRT5

SIRT5 (33,8 kDa) sijaitsee mitokondriin jokaisessa sekä myös mitokondriin ulko- ja sisäsäätökalvon välisestä tilasta ja sitä ilmentyy useissa kudoksissa kuten esimerkiksi maksassa, sydämessä, munuaisissa, aivoissa ja luurankoliinahaksissa (Gregory & Kelly 2010). SIRT5:n on ehdotettu toimivan lähinnä desukkinylaasina tai demalonylaasina enemmän kuin deasetylaasina (Lu ym. 2011). Tämä sirtuini vaikuttaa sytokromi c:n ilmenemiseen, jolla on keskeinen rooli aerobisessa energiantuotannossa (Gregory & Kelly 2010). SIRT5:n substraattina toimii karbamoyylifosfaattisynteesiä CPS1, joka on ureasykliä säätävän entsyymi. SIRT5 lisää CPS1:n aktiivisuutta ja urean muodostumista niukkaravinteissä olosuhteissa, jolloin aminohappojen hajotus ja ammoniakin tuotto on runsasta. (Hirschey ym. 2010.)

5.6 SIRT6

SIRT6 (39,1 kDa) sijaitsee tumassa ja sitä ilmentyy rasvakudoksessa, luurankoliinahaksissa, aivoissa ja sydämessä. SIRT6 deasetyloi histonin H3 lysiiin K9. (Kelly 2010.) Perimän säilyttäminen stabiilina ja erityisesti DNA:n rakenteen virheiden korjaaminen ovat tärkeitä kaikkien eliöiden säilymiseen (Gorbunova ym. 2010). SIRT6:n on todettu vaikuttavan ikääntymiseen osallistumalla DNA:n korjaamiseen ja säätäemällä kromatiinin rakennetta (Berber ym. 2009).

SIRT6 vaikuttaa DNA:n korjaantumiseen säätäemällä emäseksiisiokorjausta (BER= Base excision repair) korjaten vaurioita, jotka ovat syntyneet ionisoivan säteilyn kautta. Toinen tärkeä korjausmekanismi on DNA:n kaksoissäikeen katkeamisen korjaus (DSB=DNA double-strand break), johon SIRT6 osallistuu muodostamalla makromolekulaarisen kompleksin DNA-PK:n (DNA-dependent protein kinase) kanssa. (Jia ym. 2012.)
DNA:n kaksoissäikeen korjaus tapahtuu joko DNA:n homologisella rekombinaatiolla (HR= Homologous Recombination) tai ei-homologisella säikeitten päiden yhteen liittämisellä (NHEJ= Non-homologous DNA End Joining). SIRT6 on osa homologista rekombinaatiota, jota pidetään NHEJ-korjausjärjestelmä luotettavimpana. Myös SIRT1:n on raportoitu osallistuvan DNA:n korjaukseen. (Gorbunova ym. 2012; Gorbunova ym. 2011.) SIRT6 mono-ADP-ribosyloit PARP1:stä edistää yksisäikeisen DNA:n korjaamista (Gorbunova ym. 2011).

Telomeerit ovat kromosomien päissä olevia suojakokoja, jotka lyhenevät aina solun jakautuessa. SIRT6 pystyy säätellemään telomeerien toimintaa esimerkiksi histonin H3 lysiinin K56 asetylaation tasoa säätellemällä. Tutkimuksissa, joissa SIRT6 tehtiin toimimatomaaksi, havaittiin että telomeereille muodostui samankaltainen toiminta-äirmö kuten Wernerin syndroomassa, joka aiheuttaa ennenaikaista vanhenemista. SIRT6:n on raportoitu aiheuttavan apoptoosia syöpäsoluissa, mutta ei normaaleissa soluissa. (Jia ym. 2012; Altucci ym. 2012.)

SIRT6 inhiboi hypoksiaindusoituva tekijä 1 α:aa (Hif1 α = Hypoxia-inducible factor 1 α), joka säätlee glykolyysiin osallistuvien geenien aktiivisuutta (Clish ym. 2010). SIRT6:n alhaiset tasot tehostavat glukoositransportterien GLUT1 ja GLUT4 toimintaa (Deng ym. 2010). SIRT6 on tärkein energiytasaapainoa säätellevä sirtuin, joka vaikuttaa histonin H3 lysineihin K9 ja K56 säädellen glukoositasaapainoa inhiboimalla glykolyytissä geenejä (Clish ym. 2010; Auwerx ym. 2012). SIRT6:a esiintyy runsaasti aivokudoksessa, jossa se osallistuu kasvuhormonin GH ja insuliinin kaltaisen kasvutekijän 1:n pitoisuksien säätelyyn (Alt ym. 2010).
5.7 SIRT7

SIRT7 (44,8 kDa) sijaitsee tumajyvässä. SIRT7 ilmenee mm. aivoissa, maksassa, munuaisissa, keuhkoissa, rasvasoluissa sekä kardiomyosyyteissä. Sitä ilmenee vähäisissä määrin myös munasarjoissa ja luutankolihaksessa. (Gregory & Kelly 2010; Lebiendzinska ym. 2011; Letzel ym. 2005.) SIRT7 deasetyloi RNA-polymeraasi I:stä ja p53- proteiinia säädellen rRNA transkriptiota ja solusykliä olemalla keskeinen osa RNA-polymeraasi I:n toimintaa (Auwerx ym. 2012; Ford ym 2006; Kelly 2010; Lebiendzinska ym. 2011).

SIRT7 deasetyloi histonin H3 lysiiinin 18 (H3K18) stabiloiden syöpäsolujen fenotyyppiejä ja sillä onkin keskeinen rooli kromatiinin säätelyssä ja syöpäsolujen kehittymisessä. SIRT7 ilmeneminen on liitetty onkogeenisiin muutoksiin ja potilaan huonoon ennusteeseen. (Altucci ym 2012.)
6 SIRTUIINIT JA LIIKUNTA

Liikunta lisää mitokondrioiden toimintaa nostamalla mitokondriaalisten entsyyminen aktiivisuutta ja kasvattamalla PGC-1α-proteiinin aktiivisuutta lihassoluissa. PGC-1α vaikuttaa useiden transkriptiotekijöiden aktiivisuuteen, jotka säätelivät mitokondriaalisia proteiineja. Liikunta lisää lihasten sirtuini 1-aktivisuutta, ja aktivoi PGC-1α:n ja mitokondriaalisten entsyyminen aktiivisuutta. Sirtuini 1:n roolia luurankoli haksessa ei vielä täysin tiedetä. (Bonen ym 2010.)

Atalay ym. liikunnan vaikutuksia SIRT1, SIRT6, NAD ja NAMPT proteiinien tasoihin ikääntyneiden ja nuorien rottien luurankolihaksessa, ja selvittivät, että liikunta lisää NAD+, NAMPT:n ja UCP3:n (mitochondrial uncoupling protein-3, irtikytkentäproteiini) aktiivisuutta ikääntyneillä roteilla samalle tasolle nuorien rottien kanssa. Tutkimuksessaan he totesivat, että säännöllinen liikunta lisäsi sirtuini 1:n aktiivisuutta sekä nuorilla että ikääntyneillä eläimillä, ja että samalla se hidastaa ikääntymisen vaikutuksia luurankolihaksessa NAMPT-NAD+- sirtuini 1-signaloinnin vaikutuksesta.

Ikääntymisen myötä kudokset kärsivät enenevässä määrin oksidatiivisista vaurioista. Säännöllinen liikunta vähentää oksidatiivisia vaurioita lisäämällä antioksidanttien pitoisuuksia lihaksissa SIRT1:n säädellä näiden muutoksien tasoja. (Atalay ym 2010.) Liikunta vähentää ikääntymisen negatiivisia vaikutuksia stimuloimalla NAD+-n biosynteesiä sirtuini 1 aktivaation kautta. Liikunta myös vähentää ikääntymisen aiheuttamaa sirtuini 6 aktiivisuuden nousua, joka vaikuttaa glukoosimetaboliaa heikentävästi. (Jia ym. 2012.)

sirtuini 1:n proteiinitason aktiivisuuden kanssa. Sirtuini 1:llä on positiivinen vaikutus mitokondriaaliseen biogeneesiin deasetylaation ja PGC-1α:n aktivaation kautta.

Sirtuini 1 ilmenee enemmän punaisissa, hitaissa oksidatiivisissa lihassoluissa kuin valkeissa nopeissa glykolyyttisissä lihassoluissa. Luurankolihasten sirtuini1-pitoisuus nousee sekä nopeus- että kestävyystyyppisten harjoittelumuotojen seurauksena. (Kumagai ym. 2008.)

Kalorirajoituksen tiedetään nostavan keskimääräistä ja maksimielinikää, jota myös säännöllinen liikunta lisää. Sirtuiniit vaikuttavat molempiin, erityisesti sirtuini 1 sätelee osaltaan kalorirajoituksesta aiheutuvaa eliniän pitenemistä. Kalorirajoituksella ja säännöllisellä liikunnalla on terveyttä edistäviä vaikutuksia. (Boldogh ym. 2013.)
7 TUTKIMUKSEN TARKOITUS

Tutkimuksen tarkoituksena oli selvittää, miten liikunta ja hera- tai proteiinijuomadieetti vaikuttaa sirtuiinien 1-7 ilmentymiseen rottien raajalihaksessa.

8 TUTKIMUSMENETELMÄT

8.1 Koe-eläimet ja olosuhteet

Tämä opinnäytetyö oli osa laajempaa tutkimusta, ja tässä työssä tutkittiin sirtuiinnien ilmentymistä rottien raajalihaksessa. Koe-eläiminä käytettiin LCR (low capacity runner) rottia (Michigan, USA), jotka olivat tutkimuksen alussa noin 5 kuukauden ikäisiä. Näillä LCR rotille metabolisen oireyhtymän riskitekijät olivat koholla. Rotat oli yksilöity korvamerkillä ja hännän värikoodilla. Rottien saavuttua koe-eläintilalle niiden terveydentila tarkastettiin. Rotat painoivat tutkimuksen alussa n. 290 g.

Rottia pidettiin koe-eläintiloissa, jossa lämpötila oli 21 astetta ja ilmankosteus keskimäärin 50 %. Rottien vuorokausirytmien vuoksi huoneessa on valoisaa 8.00–20.00 ja pimeää 20.00–08.00. Rottia pidettiin polykarbonaattilatikoissa, aluksi kaksi rotta samanaikaisesti ja mittauksien alettua jokainen rotta sijoitettiin omaan häkkiinsä. Ravintona oli rehua (R36, Laborfor/Lactamin, Tukholma, Ruotsi). Ravintosisällöltään rehun koostumus oli; 300 kcal/100 g ja sen koostumus oli proteiinia 18.5 %, rasvaa 4.0 %, NFE (nitrogen free extracts) 55.7 %, kuitua 3.5 %, tuhkaa 6.3 % ja vettä < 12 %. Vettä oli saatavilla koko ajan. Tutkimukselle oli koe-eläinten eettisen toimikunnan puoltava lausunto.
8.2 Koeasetelma

Tutkimukseen osallistuvat 47 rottaa jaettiin 6 ryhmään, joissa eläimiä oli 8 eläintä, paitsi P+J-ryhmässä jossa eläimiä oli 7 kappaletta. Intervention aikana puolet rotista sijoitettiin häkkeihin, joissa oli juoksupyörä (Ø 38 cm) vapaaehtoiseen liikuntaan ja toiset suunnilleen samankokoisiin juoksupyörätömiin häkkeihin. Ryhmät olivat; kontrolliryhmä K ja sen kontrolliryhmä K+J eli kontrollijuoksijat, sekä hera- ja proteiinijuomaryhmät H ja P juoksijakontrolleineen H+J ja P+J.

Ryhmät:
-kontrolliryhmä K
-juoksijakontrolliryhmä K+J, juoksupyörä vapaaehtoiseen liikuntaan
-heraryhmä H
-heraryhmä H+J juoksupyörä
-maitopohjainen proteiinijuomaryhmä P
-maitopohjainen proteiinijuomaryhmä P+J juoksupyörä

Tutkimuksen aikana rottilla oli ravintoa saatavilla rajattomasti ja juomana dieettiensä mukaisesti joko vesi, hera-vesiseos tai proteiinijuoma. Proteiinijuoman ravintosisältö oli 73 kcal/100 g ja sen koostumuksesta oli proteiinia 8 %, hiilihydraattia 8 % ja rasvaa 1 %. Suklaanmakuinen proteiinijuoma laimennettiin samaan määrään vettä ja sitä annosteltiin proteiiniryhmälle P 1 dl ja proteiinijuosijaryhmälle P+J 1,2 dl, koska kontrolliproteiiniryhmä joi kuitenkin. Hera-vesiliuos valmistettiin herajauheesta ja vedestä. Hera-vesiliuoksen pitoisuus oli juoksijaryhmällä suurempi, koska ne joivat vähemmän, liuosta annosteltiin 1-1,2 dl kerrallaan. Heran annostelu rotilla oli 5 g/kg. Dieetit valmistettiin ja edellisen päivän kulutus mitattiin päivittäin. Rotat ja rottien rehu punnittiin 3 vrk:n välein.

23 viikon pituisen intervention jälkeen rotat lopetettiin vaivuttamalla ne syvään anestesiaan, jonka jälkeen suoritettiin niskamurto. Veri kerättiin talteen. Rotilta otettiin veren lisäksi
talteen valkoinen ja ruskea rasvakudos, raajojen luut, aivot, sydän, maksa ja lihaksista soleus, plantaris, gastrocnemius, EDL, MQF. Tässä tutkimuksessa proteiininmääritykset tehtiin plantaris-lihaksesta.
8.3 Proteiinimääritykset

Tässä tutkimuksessa analysoin sirtuiinien 1, 3, 6 ja 7 ilmentymistä. Sirtuiinit 2, 4 ja 5 analysoitiin toisaalla. Tutkimuksessa käytettyjen primäärivasta-aineiden laimennokset olivat: Sirt1 (Abcam, Cambridge, UK) 1:5000; Sirt3 (Abcam) 1:400; Sirt6 (Abcam) 1:500, Sirt7 (Abnova, Atlanta, GA, USA) 1:500 ja GAPDH (Sigma Aldrich, St. Louis, USA) 1:40 000. Sekundäärivasta-aineiden laimennokset olivat HRP-anti-rabbit IgG, Sigma Aldrich (1:40 000) ja Odyssey anti-rabbit IRDye 800 ja 600 CW (1:20 000).

Lihasnäytteet homogenisoitiin jääkylmässä [20 mM HEPES (pH 7.4), 1 mM EDTA, 5 mM EGTA, 10 mM Mg2Cl, 100 mM β-glyserofosfaatti, 1 mM Na3VO4, 1 mM DTT, 1 % Triton-X-100] liuosessa, johon oli lisätty proteaasi- ja fosfataasi-inhibiittoreita (molemmat Sigma Aldrichilta). Totaaliproteiinien konsentraatio määritettiin käyttäen kaupallista Piercen (Thermo Scientific, Rockford, IL; USA) valmistamaa kolorimetriseen mittaukseen perustuvaa kittiä.

Inkubaation jälkeen membraanit pestiin 0.1 % TBS/Tween-20:llä (TBS-T) 4x5min ja inkuboitiin 1.5 tuntia sekundäärä vasta-aineella. Inkubaation jälkeen membraanit pestiin kuten yllä, ja kehitettiin kemiluminesenssien avulla (Amersham ECL Advance Western Blotting Detection Kit, GE Healthcare, UK) ja kvantitoitiin ChemiDoc XRS sekä Quantity One oh-
jelmistolla (version 4.6.3. Bio-Rad Laboratories), tai Odyssey CLX Infrared Imager Li-COR laitteistolla ja valmistajan ohjelmistolla.

Tarvittaessa membraanit stripattiin 0.2 M NaOH 10 min ajan huoneenlämmössä ja pestiin TBS-Tweenillä, jonka jälkeen ne blokattiin ja käsiteltiin primääri- ja sekundääri vasta-aineilla sekä kehitettiin kuten edellä on kuvattu. Kaikki näytteet ja tulokset normalisoitiin omaan GAPDH-määrän mukaan. Jos näytteet ajettiin eri geeleillä, käytettiin normalisoinnissa kontrollinäytettä, joka toistettiin jokaisella geellä.

8.4 Tilastomenetelmät

Tilastolliset analyysit suoritettiin SPSS-ohjelman versiolla 13.0. Tulokset on ilmoitettu keskiarvoina. Datan normaalijakautuneisuus testattiin, ja ryhmien välisiä eroja tutkittiin yksisuuntaisella variansianalyysillä ANOVA Bonferroni-korjausta käyttäen. Merkitsevyyden rajaksi asetettiin $p \leq 0.05$.
9 TULOKSET

9.1 Sirtuiini 1

Sirtuiini 1 ilmenemisessä ei todettu tilastollisia merkitsevyksiä (Kuva 4a).

KUVA 4b. Western Blot-kalvo sirtuiini 1:n ilmentymisestä. Ryhmät ovat samat kuin edellä.
9.2 Sirtuiini 2

Sirtuiini 2 ilmenemisessä ei todettu tilastollisia merkitsevyyksiä (Kuva 5a).

KUVA 5b. Western Blot-kalvo sirtuiini 2:n ilmentymisestä.
9.3 Sirtuini 3

Sirtuinin 3 ilmenemisessä oli merkittäviä eroja. Kaikki juoksijaryhmät (K+J: p=0.05; P+J: p<0,001 ja H+J: p<0,001) erosivat merkittävästi kontrolliryhmistään K, P ja H. Eroja ilmeni proteiiniryhmän juoksijoiden P+J että heraryhmän juoksijoiden H+J ja kontrolliryhmän K välillä (p<0,001). Erittäin merkitseviä eroja oli kontrollijuoksijaryhmän ja heraryhmän juoksijoiden välillä (p<0,001) (Kuva 6a).

Sirtuini 3

KUVA 6a. Sirtuini 3:n ilmeneminen. K=Kontrolli, K+J= Juoksijakontrolli, P=Proteiinijuoma, P+J= Proteiinijuomaryhmän juoksijat, H=Heraryhmä, H+J= Heraryhmän juoksijat. (*p< 0.05 **p<0.01 ***p<0.001)

KUVA 6b. Western Blot-kalvo sirtuini 3:n ilmentymisestä.
9.4 Sirtuiini 4

Sirtuiini 4 ilmentymisessä kontrolliryhmän K ja juoksijaryhmän K+J välillä oli tilastollisesti erittäin merkitsevä ero (p<0,001). Kontrolliryhmä erosi merkittävästi heraryhmän juoksijoista H+J (p<0,01). Heraryhmä H erosi juoksijaryhmästä H+J merkittävästi (p<0,01), mutta proteiiniryhmällä P ei ilmennyt samanlaista vaikutusta. Kontrolliryhmän juoksijoilla K+J oli erittäin merkitsevä ero proteiiniryhmään P (p<0,001), merkittävä ero proteiiniryhmän juoksijoihin P+J (p<0,05), ja merkittävä ero heraryhmään H (p<0,01). Eri dieettiryhmien välillä ei ollut eroja eivätkä ne eronneet kontrolliryhmästä K (Kuva 7a).

KUVA 7a. Sirtuiini 4:n ilmeneminen. K=Kontrolli, K+J= Juoksijakontrolli, P=Proteiinijuoma, P+J= Proteiinijuomaryhmän juoksijat, H=Heraryhmä, H+J= Heraryhmän juoksijat. (*p<0,05 **p<0,01 ***p<0,001)

KUVA 7b. Western Blot-kalvo sirtuiini 4:n ilmentymisestä.
9.5 Sirtuini 5

Sirtuini 5 ilmentymisessä dieettiryhmät ja niitä vastaavat juoksijaryhmät eivät eronneet keskenään. Kontrolliryhmä K erosi heraryhmästä H merkitsevästi (p<0,05) ja proteiiniryhmästä P erittäin merkitsevästi (p<0,001). Molempien dieettiryhmien juoksijat H+J ja P+J erosivat erittäin merkittävästi kontrolliryhmästä K (p<0,001). Juoksijaryhmä K+J erosi erittäin merkitsevästi proteiiniryhmästä P sekä proteiiniryhmän ja heraryhmän juoksijoista P+J ja H+J (p<0,001). Eri dieettiryhmät eivät eronneet toisistaan (Kuva 8a).

KUVA 8a. Sirtuini 5:n ilmeneminen. K=Kontrolli, K+J=Juoksijakontrolli, P=Proteiinijuoma, P+J=Proteiinijuomaryhmän juoksijat, H=Heraryhmä, H+J=Heraryhmän juoksijat. (*p<0,05 **p<0,01 ***p<0,001)

KUVA 8b. Western Blot-kalvo sirtuini 5:n ilmentymisestä.
9.6 Sirtuiini 6

Kontrolliryhmä K erosi juoksijaryhmästä K+J merkittävästi (p<0,01), proteiiniryhmästä P erittäin merkittävästi (p<0,001) ja heraryhmän juoksijoista H+J merkittävästi (p<0,05). Juoksijaryhmä K+J erosi erittäin merkitsevästi proteiiniryhmästä P, proteiiniryhmän juoksijoista P+J ja heraryhmän H (p<0,001), mutta eroa heraryhmän juoksijoihin H+J ei ilmennyt. Proteiiniryhmällä P oli erittäin merkittävä ero heraryhmän juoksijoihin H+J (p<0,001) ja merkittävä ero heraryhmän H (p<0,01). Proteiiniryhmän juoksijat P+J erosivat heraryhmän juoksijoista H+J erittäin merkittävästi (p<0,001). Heraryhmä H erosi merkittävästi heraryhmän juoksijoista H+J (p<0,01) (Kuva 9a).

KUVA 9a. Sirtuiini 6:n ilmeneminen. K=Kontrolli, K+J= Juoksijakontrolli, P=Proteiinijuoma, P+J= Proteiinijuomaryhmän juoksijat, H=Heraryhmä, H+J= Heraryhmän juoksijat. (*p< 0.05 **p<0.01 ***p<0.001)
KUVA 9b. Western Blot-kalvo sirtuiini 6:n ilmentymisestä.
9.7 Sirtuini 7

Kontrolliryhmästä erittäin merkitsevästi erosivat proteiiniryhmän juoksijat, heraryhmä sekä heraryhmän juoksijat (p<0,001). Proteiiniryhmä erosi kontrolliryhmästä merkittävästi (p<0,01). Juoksijakontrolliryhmä erosoi erittäin merkitsevästi sekä proteiini- että heraryhmistä ja niiden juoksijaryhmistä (p<0,001). Proteiiniryhmän juoksijoiden ja heraryhmän juoksijoiden välinen ero oli merkittävä (p<0,05). Dieettiryhmät eivät erooneet toisistaan eivätkä juoksijaryhmistään. (Kuva 10a).

Sirtuini 7

KUVA 10a. Sirtuini 7:n ilmeneminen. K=Kontrolli, K+J= juoksijakontrolli, P=proteiinijuoma, P+J= Proteiinijuomaryhmän juoksijat, H=heraryhmä, H+J= Heraryhmän juoksijat. (*p< 0.05 **p<0.01 ***p<0.001)

KUVA 10b. Western Blot-kalvo sirtuini 5:n ilmentyminen.
10 POHDINTA

Tutkimuksen tulos oli odotusten vastainen, sillä liikunta ei lisännyt sirtuini 1:n ilmentymistä. Myöskään sirtuini 2:n ilmentymisessä ei havaittu tilastollisia eroavaisuuksia. Sirtuini 2 on sirtuini 1:stä huomattavasti vähemmän tutkittu ja tunnettu, joten lähtöönotusta liikunnan ja dieettien vaikutuksista tämän sirtuiniin ilmentymiselle ei ollut.

Sirtuini 3, joka on mitokondriaalisista sirtuineista vahvin deasetylaasi, ilmentymisessä oli merkitevää eroa kaikkien juoksijaryhmien ja vastaavien dieettikontrollien välillä, eli liikunnalla oli selvästi dieettejä suurempi vaikutus sirtuiniin 3:n ilmentymiseen, ja sen vaikutus tulee esiin liikunnan kautta.

Sirtuini 4 ilmentymisessä kontrolliryhmän ja juoksijaryhmän välillä oli erittäin merkitevä ero ja molemmat dieettiryhmät erosivat merkitevästi kontrolleistaan mutta dieetit eivät eronneet keskenään. Vaikka dieetit eivät eronneet toisistaan, niin dieetit yhdistettyynä liikuntaan toivat tilastollisesti merkiteviä eroja; proteiniryhmän juoksijoilla ero oli merkitevä ja heraryhmän juoksijoilla erittäin merkitevä. Kyseinen sirtuini kuuluu mitokondriaalisiiin sirtuineihin, ja koska se edistää aminohappojen käyttöä energianlähteenä (Auwrex. ym 2012; Haigis & Sinclair 2010), heraryhmän erittäin merkitevä ero kontrolliryhmään verrat-
tuna on looginen. Sirtuiini 4 ilmentymisen nousu tapahtuu liikunnan kautta ja heran ami-nohappokoostumus lisää ilmentymistä edelleen.

Sirtuiini 5 ilmentymisessä liikunnalla ei ollut vaikutusta kontrolliryhmään verrattuna, mutta sekä dieetit että dieettien juoksijaryhmät erosivat kontrollista. Sirtuiini 5 ilmentymisen nousu johtuu näin ollen dieeteistä eikä liikunnalla ole siihen suoraa vaikutusta. Koska dieettiryhmät eivät eronneet toisistaan, voi päätellä että dieetin ravintosisällöllä sinällään ei ollut merkittävää vaikutusta.

Tutkittavalla lihaksella voi olla merkitystä tutkimuksen tulokseen. Tutkimuksessaan 2008 Kumagai ym. ovat osoittaneet, että luurankolihaksen sirtuiini 1-pitoisuus on suurempi punaisissa hitaissa lihassoluissa, kuin nopeissa valkoisissa lihassoluissa. Toisaalta, jos liikunta ei vaikuta sirtuiinien ilmentymiseen, tai jos kyseistä sirtuiinia ilmenee tutkittavassa luurankolihaksessa vain vähäisiä määriä, niin tutkittavalla lihaksella ei ole suurta vaikutusta.
Vaikka sirtuiنين ja liikunnan välisiä yhteyksiä onkin tutkittu, lisätutkimuksia tarvitaan. Liikunnan avulla sirtuinit saavat geenejämme ilmentymään suotuisasti, ja se on asia, jolla on vaikutusta meille kaikille. Tässä tutkimuksessa mukana olleet maitopohjainen proteiinijuoma- ja heradieetti osoittivat niiden olevan esimerkkejä ruokavalioista, joilla saattaisi olla suotuisia vaikutuksia sirtuiنين ilmentymiseen.

Useat sirtuiنين itsessäänkin kaipaavat vielä lisätutkimuksia, jotta ymmärtäisimme niiden toimintamekanismeja. Sirtuiinnitus nousevat esiin lukuisissa eri tutkimusyhteyksissä, ja ne ovat varmasti yksi tämän hetken ja tulevaisuuden kiehtovimmista tutkimusaiheista. Kun tiedetään enemmän sirtuiنين toiminnasta, ja ennen kaikkea siitä, miten niihin voidaan vaikuttaa, ja millaisia mahdollisuuksia niiden toimintaa modifioimalla saavutetaan, sirtuiنين avulla voidaan vaikuttaa useaan elämänlaatuun liittyvään mekanismiin.
11 LÄHTEET

Deubzer, H.E., Milde, T., Oehme, I., Witt, O. 2009. HDAC family: What are the cancer relevant targets? Cancer Letters 277, 8–21

Lebiendzinska, M., Mariusz, R., Iliveira, P.J., Pereira C.V. 2011. Regulation and protection of mitochondrial physiology by sirtuins. Mitochondrion, 12, 66–76.

