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Abstract

The heat conduction problems for anisotropic bodies are studied taking intoaccount the uncertainties
in the material orientation. The best estimations of the upper and lower boundsof the considered
energy dissipation functional are based on developing new approach consisting in solution of some
optimization problems and finding the extremal internal material structures, which realize minimal
and maximal dissipation. The motivation of this study comes from paper making processes, and more
precisely, drying process, which consumes about 50% of the energy fed into the paper machine. The
understanding of the effect of uncertainties in the process arises fromstructural properties of paper
will provide the possibility to optimize the drying system.
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Introduction

The problems of incompleteness of data and uncertainties are typical for anisotropic solids and structures
having chaotic orientation of small material particles such as grains, crystalor short nanofibers. Different
possible compositions of elementary particles with various orientations result indifferent values of such
integral characteristics as a total dissipation energy in the heat conductionproblems, total potential
energy in the thermoelasticity and thermoconductivity problems. Taking into account the conditions of
uncertainties concerning the material orientations it is very important to obtain various estimations of the
considered functionals and in particular limiting estimates known as double-sided or bilateral estimates
(see book by Banichuk and Neittaanmäki [1]).



The motivation of this study arises from understanding of paper making processes. As is well known that
paper product have an anisotropic fibrous structure which propertiesdepend on the making process and
its parameters (velocity, tension, etc.). The understanding of heat conduction behaviour in anisotropic
material is very critical for optimization of the system. During paper making, the drying process con-
sumes about 50% of the energy fed into the paper machine; it is the single largest consumer of energy
in the paper manufacturing process.

To model the drying of a moving paper web, several models exist in the literature (see e.g. Karlsson [2],
Lampinen and Toivonen [3] and Lu and Shen [4]). For a thorough engineering-oriented discussion on
paper drying, see the book edited by Karlsson [5]. In our study, we have assumed, that the material is
not moving. Moreover, we consider the fundamental mathematical setup of the problem, that the results
can be applied widely.

In this article, the problem of estimation of dissipation energy characteristics isconsidered for anisotropic
body constituting of the locally orthotropic material. It is assumed that an orientation of the principle
axes of orthotropy is not known beforehand at each point of the bodyand can be distributed by various
ways in different parts of the body including chaotic orientation. The search for double-sided esti-
mates is reduced to the solution of optimization problems and finding the extremal orientations of the
orthotropy axes.

Heat conduction problem for bodies from locally orthotropic material

Let us consider heat conduction problem for solid body occupied the domainΩ (see Figure 1) with the
boundaryΓ = Γg + Γi whereΓg ∩ Γi = 0. The material of the body is anisotropic with respect to
the heat conduction process described by the known relations (see e.g.Landau and Lifshitz [6] and
Nowacki [7])

q = D ×∇ϕ, ϕ = θ−1 (1)

whereθ is a temperature,q is a vector of the heat flux andD is a heat conduction tensor of the second
rank. In the case of absence of the source of heat in the domainΩ, we will use the boundary conditions,
governing equation and the quality functional (dissipation of energy) in thefollowing form

(ϕ)
Γg

= ϕ0, (n×D ×∇ϕ)
Γi

= 0 (2)

∇× (D ×∇ϕ) = 0 x ∈ Ω (3)

J =

∫

Ω

∇ϕ×D ×∇ϕdΩ (4)

whereϕ0 is a given function specified onΓg, n is an outwards unit normal vector specified on the part
Γi, (·) between the vectors means the scalar product and the symbol∇ is the gradient operator, i.e.

∇ϕ =

{

∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3

}

.

In accordance with the variational principle (see e.g. Berdichevsky [8]), the actual distribution of the
functionϕ realizes a minimum for the functionalJ on the set of admissible functions satisfying the first
boundary condition in (2), if

J → min
ϕ

(5)

Note the second boundary condition in (2) plays the role of transversality condition for the functional
(4) and is satisfied ‘automatically’ for extremum solution. Note that Equation 3 isthe Eulerian equation
for the functional (4).



Figure 1 Domain Ω with given temperature Γi (solid) and thermally insulated Γg (dashed) bound-
ary conditions.

In what follows we will suppose that the material is locally orthotropic and the orientation of the axes
of orthotropicity is unknown beforehand. Let us fix the unit vectorse0

1
, e0

2
, e0

3
of orthogonal coordinate

systemx1, x2, x3 which is considered as a global system (see Figure 2). The principal directions unit
vectorse1, e2, e3 of the heat conduction tensorD of orthotropic material (axes of local symmetry) at
the arbitrary point(x1, x2, x3) ∈ Ω are related with the global coordinate vectorse0

1
, e0

2
, e0

3
by means of

the rotation tensorQ = Q(x) as

ei = Q ∗ e0i = Q× e0i (i = 1, 2, 3) (6)

QT ×Q = Q×QT = E (7)

where the symbol T means the operation of transposition andE = {δij} - unit tensor, whereδij is a
Kronecker symbol(i, j = 1, 2, 3) and(∗) is a tensor operation of the rotation. In the axes of symmetry
of the orthotropic material, the heat conduction tensorD is written as

D = Dijei ⊗ ej = D0
ijQ× e0i ⊗Q× e0j = Q ∗

(

D0
ije

0
i ⊗ e0j

)

= Q ∗D0 (8)

where⊗ is the tensor product and
D0 = D0

ij × e0i ⊗ e0j (9)

Figure 2 Transformation of global unit vectors to the local material principle vectors by rotation
tensor Q.

The expression for the heat conduction tensorD can be rewritten in the form

D = D0
ijQ× e0i ⊗Q× e0j = Q×

(

D0
ije

0
i ⊗ e0j

)

×QT = Q×D0 ×QT (10)

If κi ande0i i.e. eigenvalues and eigenvectors of the tensorD0, i.e.

D0 × e0i = κ
0
i e

0
i (11)

thenκ0
i andei = Q× e0i i.e. eigenvalues and eigenvectors of the tensorD = Q ∗D0, i.e.

D × ei = κ
0
i ei (12)

Taking into account Equations 7, 8 and 11, we will have Equation 12. In fact,

D × ei =
(

Q ∗D0
)

×
(

Q ∗ e0i
)

= Q ∗
(

D0 × e0i
)

= κ
0
iQ ∗ e0i = κ

0
i ei (13)

For given tensorD0, the values of the functionalsJ depend on the realization ofQ = Q(x) and
corresponding actual values ofϕ = ϕ(x), minimizing the functional of energy dissipation (4) under
constraints (2) (for consideredQ(x), i.e.

J (Q,ϕ∗) = min
ϕ

J (Q,ϕ) (14)



Uncertainties in orientation of orthotropic material and double-sided estimates

If there is no data concerning material orientation, i.e. the tensor-functionQ = Q(x) (x ∈ Ω), charac-
terizing material distribution is unknown, then it is very important to obtain the lower and upper bounds
of J , i.e. to find the limit double-sided estimatesJmin andJmax, such that

Jmin ≤ J (Q,ϕ∗) ≤ Jmax (15)

for any realization ofQ satisfying the condition (7).

To obtain reliable estimations of the dissipation energy functionalJ and other important characteristics,
we apply in the paper an approach based on the solution of two optimization problems. The following
problem is devoted to finding the lower estimate

Jmin = min
Q

J (Q,ϕ∗) = min
Q

min
ϕ

J (Q,ϕ) (16)

and another problem consists in the searching of the upper bounds

Jmax = max
Q

J (Q,ϕ∗) = max
Q

min
ϕ

J (Q,ϕ) (17)

wheremin andmax with respect toQ in Equations 16 and 17 are determined under constraint (7).
Operationmin with respect toϕ in Equations 16 and 17 is performed taking into account boundary
conditions from Equation 2.

In what follows, we will study the proposed approach and problems of searching the extremum ofJ
with respect toQ

J → extr
Q

(18)

and analyze extremum conditions and behavior equations.

Extremal conditions for orthotropic material orientation

To derive extremum conditions, defining the orthogonal tensor of rotationQ = Q(x) and characterizing
the extremal orientations of orthotropy axes let us use the method of Lagrange multipliers and construct
augmented functional

JL = J + JP (19)

JP =

∫

Ω

P · ·
(

QT ×Q− E
)

dΩ (20)

J =

∫

Ω

∇ϕ×
(

Q ∗Q0
)

×∇ϕdΩ =

∫

Ω

∇ϕ×
(

Q ·D0 ×QT)×∇ϕdΩ (21)

where(··) between tensors mean double scalar product and symmetric tensor of second rankP = P (x)
(x ∈ Ω) is Lagrange multiplier, specifying inΩ and corresponding to the condition of orthogonality
(see Equation 7). The dissipation energy functionalJ can be also rewritten as

J =

∫

Ω

B · ·
(

Q×D0 ×QT)dΩ (22)

Here, by means ofB, we denote the following symmetric second rank tensor

B = ∇ϕ⊗∇ϕ, BT = B (23)



and the symbol⊗ is the tensor product.

Let us derive the following expressions for the first variationsδJ andδJP with respect to variationδQ
of rotation tensorQ. We will have

δJ =

∫

Ω

B · ·
(

δQ×D0 ×QT +Q×D0 × δQT)dΩ = 2

∫

Ω

δQ · ·
(

D0 ×QT ×B
)

dΩ (24)

and

δJP =

∫

Ω

P · ·
(

δQT ×Q+QT × δQ
)

dΩ = 2

∫

Ω

δQ · ·
(

P ×QT) dΩ (25)

Taking into account the expressions (19) to (21), (24) and (25), we will find the expression for the total
variationδQ in the following form

δJL = δJ + δJP = 2

∫

Ω

δQ · ·
(

D0 ×QT ×B + P ×QT) dΩ (26)

Using the extremum condition
δJL = 0 (27)

and arbitrariness ofQ, i.e. arbitrariness ofδQ, we will have

D0 ×QT ×B + P ×QT = 0, x ∈ Ω (28)

Multiplying the relation (28) onQ and using formulae (10) and (23) we find

D ×∇ϕ⊗∇ϕ = −Q× P ×QT, x ∈ Ω (29)

This relation means the symmetry of the second rank tensor

(D ×∇ϕ)⊗∇ϕ

written in the left-hand side of the equality (29), i.e.

(D ×∇ϕ)⊗∇ϕ = ∇ϕ⊗ (D ×∇ϕ) (30)

The equality (30) is satisfied if the vectorsD ×∇ϕ and∇ϕ are parallel, i.e.

D ×∇ϕ = λ∇ϕ (31)

whereλ is some scalar value.

Double-sided estimates based on derived extremal conditions

The necessary extremum condition (31) for dissipation energy functional J with respect to rotation
tensorQ, defining an extremal distribution ofQ and expressing the collinearity of the vectors∇ϕ and

D ×∇ϕ =
(

Q×D ×QT)×∇ϕ

is an eigenvalue problem. Consequently, the vector∇ϕ is one of the eigenvectors of the heat conduction
tensorD:

D ×∇ϕ = λi∇ϕ, i = 1, 2, 3 (32)



Taking into account that the eigenvaluesλi of the tensorsD andD0 are equal (see Equations 11 and 13)
and given, we assume

λ1 = λmin < λ2 < λ3 = λmax (33)

Substituting (32) into the Euler equation (3) of the functionalJ , we obtain the equations that determine
the stationary distribution of scalar functionϕ = ϕ(x) :

∇× (λi∇ϕ) = 0, (i = 1, 2, 3), x ∈ Ω (34)

in the case of specified rotation tensorQ according to the equation

(

Q×D0 ×QT)×∇ϕ = λi∇ϕ (35)

The elliptical partial differential equation (34) with the boundary conditions

(ϕ)
Γg

= ϕ0, (λin×∇ϕ)
Γi

= 0 (36)

corresponding to conditions (2) with the relations (32) constitute the conventional boundary value
problem describing, as it is well known, homogeneous or nonhomogeneous isotropic processes of
the heat conductivity. Under some known additional constraints superimposed on the boundary shape
Γ = Γg +Γi, whereΓg ∩ Γi = 0, we have the existence and uniqueness of the solution of (34) and (36)
with givenλi.

If we assume that the same way of extremum orientation of the principle axes oforthotropy is realized
for all domainΩ, thenλi is constant inΩ and the considered heat conduction process is described by
the classical boundary value problem

∆ϕ = 0, x ∈ Ω (37)

(ϕ)
Γg

= ϕ0, (n× ϕ)
Γi

= 0 (38)

for Laplace equation with mixed (in general case) boundary conditions. Here∆ is a Laplace operator
acting in a three-dimensional space.

Note that the equality in Equation 37 means that in the case of the body with extremum orthotropy the
heat conduction process is described by the same equation as in the isotropic case. If the domainΩ
consists of several subdomainsΩi such that

Ω = ∪Ωi, Ωi ∩ Ωj = 0 (i 6= j) (39)

and for each separate subdomainΩi, the same extremum way of material orientation is taken, then the
isotropic heat conduction process is realized for all considered subdomains.

Let us assume that the orthotropic material is distributed in accordance with thesame extremum rule in
the domainΩ. Then we will have the ‘isotropic’ boundary value problem (37) and (38), and consequently
the state variableϕ (inverse temperature) is independent ofλi. As a result, we obtain the following
minimal and maximal values of the considered quality functionalJ :

min
Q

J = λminI (40)

max
Q

J = λmaxI (41)

where

I =

∫

Ω

(∇ϕ)2 dΩ (42)



Thus, the double-sided estimates of the energy dissipation functionals can be written as

λmin ≤
J

I
≤ λmax (43)

Two-dimensional case of extremal material orientation

Separately, consider the two-dimensional case with plane domainΩ. In this case

∇ϕ =

{

∂ϕ

∂x1
,
∂ϕ

∂x2

}

, x = {x1, x2} ∈ Ω (44)

Then the element of orthogonal tensorQ are represented in the form

Q11 = Q22 = cosα Q21 = −Q12 = sinα (45)

whereα is the angle of rotation of the specified tensorQ. On the basis of Equation 35, we obtain an
explicit expression relating the angleα = α(x1, x2) with the functionϕ = ϕ(x1, x2). In Figure 3, the
orientation of local orthotropicity is presented. For definiteness, assume that the vector∇ϕ, presented in
Equation 44, correspond to the eigenvalueλi. Then the eigenvectork, corresponding to the eigenvalue
λj(i 6= j) is

k =

{

∂ϕ

∂x2
,−

∂ϕ

∂x1

}

(46)

which is orthogonal to the eigenvector∇ϕ from Equation 44. We form a scalar product of both sides of
the vector equality (32) with the vectork. We will have

k×D ×∇ϕ = 0 (47)

This relation contains two separate cases. The first case

cos 2α = C, sin 2α = S (48)

where

C = −

(

D0
11

−D0
22

)

{

(

∂ϕ

∂x1

)2

−

(

∂ϕ

∂x2

)2
}

+ 4D0
12

∂ϕ

∂x1

∂ϕ

∂x2

(∇ϕ)2
√

(

D0
11

−D0
22

)2
+ 4

(

D0
12

)2
(49)

and

S =

2
(

D0
11

−D0
22

) ∂ϕ

∂x1

∂ϕ

∂x2
− 2D0

12

{

(

∂ϕ

∂x1

)2

−

(

∂ϕ

∂x2

)2
}

(∇ϕ)2
√

(

D0
11

−D0
22

)2
+ 4

(

D0
12

)2
(50)

corresponds to the smaller eigenvalueλ1(λ1 < λ2). The second case

cos 2α = −C, sin 2α = −S (51)

corresponds to the larger eigenvalueλ2(λ2 > λ1).

Figure 3 Orientation of local orthotropicity in a two-dimensional case.



Examples of double-sided estimates

Suppose at first that the orthotropic material occupies the three-dimensional domainΩ situated between
the internal sphere of radiusr1, wherer1, r2(r1 < r2) is given values. The temperature ofθ = θ1 is
defined at the internal boundary and the temperatureθ = θ2 is given at the external boundary, where
θ1 < θ2. Note thatθi, (i = 1, 2) are given and positive values. Thus, we consider the following
boundary conditions:

ϕ = ϕ1 =
1

θ1
, r = r1

ϕ = ϕ2 =
1

θ2
, r = r2 (52)

whereϕ1 < ϕ2. Here, we use spherical coordinate system with the origin atr = 0. From the properties
of symmetry, it follows that the extremum orientations of the axes of orthotropywith

λ1 = λmin and λ3 = λmax

corresponding respectively to the cases

J → min
Q

and J → max
Q

are realized in radial direction. Besides, the gradient ofϕ, i.e. vector∇ϕ, and also the heat flux vector
q are directed along the radius vector at each point of the domainΩ. Note that the heat fluxq is absent
in circumferential directions. The following values characterize the extremal distribution of material:

qmin = λminNr0, qmax = λmaxNr0 (53)

λminI ≤ J ≤ λmaxI

N =
ϕ2 − ϕ1

r2 − r1
, r0 =

r

|r|

where

I =

∫

Ω

(∇ϕ)2 dΩ =
4

3
πN (ϕ2 − ϕ1)

(

r21 + r1r2 + r22
)

(54)

andr0 is a unit vector, oriented in radial direction.

Next let us consider the problem of finding the double-side estimates when asimply connected domain
Ω occupied by the orthotropic material is a rectangular parallel-piped with the upper and lower faces at
x3 = −c andx3 = c and side faces atx1 = ±a andx2 = ±b. We use the Cartesian coordinate system
(x1, x2, x3) and we assume that the temperatureθ is given at the lower and upper faces and the side
faces are thermally insulated, i.e. the boundary conditions have the form:

ϕ = ϕ1 =
1

θ1
, x3 = −c and ϕ = ϕ2 =

1

θ2
, x3 = c (55)

and
q× n = n×D ×∇ϕ = 0 atx1 = ±a, x2 = ±b (56)

whereθ1 > 0, θ2 > 0 and(θ1 > θ2). Extremal material distribution and corresponding heat conduction
processes are characterized by the existenec of level surfacesx3 is constant(−c < x3 < c ∈ Ω) with
a constant distribution of variableϕ (constant temperatureθ). The gradient ofϕ is parallel tox-axis.
Therefore the axes of orthotropy with minimal eigenvalueλ = λmin (in the caseJ → minQ) and with
maximal eigenvalueλ = λmax (in the case ofJ → maxQ) are oriented in a parallel way with respect to
the axisx3. Such orientation provides, respectively, either the minimium or the maximum of dissipation.



For considered problem we will have

qmin = λminΦx
0
3, q = λmaxΦx

0
3 (57)

min
Q

J = λminI, max
Q

J = λmaxI

Φ =
ϕ2 − ϕ1

2c
, ∇ϕ = Φx0

3, x0
3 =

x3

|x3|

where

I =

∫

Ω

(∇ϕ)2 dΩ =
2ab

c
(ϕ2 − ϕ1)

2 (58)

andx0
3

is an unit vector of thex3-axis, obtained when the vectorx3 is divided by its length|x3|.

Conclusions

In the case, when the coefficientDij and the considered eigenvaluesλi are independent ofx = (x1, x2, x3),
then the anisotropic behaviour equation is reduced to the Laplace equation which describes the heat
conduction of homogeneous isotropic body. Since the theory of the heat conduction of isotropic homo-
geneous solids is well developed and solution of the corresponding boundary value problem has been
found (analytically and numerically) for most problems of practical importance, then this reduction
allows to consider the above problem of obtaining of double-sided estimates tobe solved.

Taking into account the conditions of uncertainties concerning material orientations, we obtain various
estimations of the considered functionals and in particular limiting estimates known as double-sided
or bilateral estimates. The search of double-sided estimates as it was shownis reduced to the solution
of optimization problems and finding the extremal orientation of the orthotropy axes. The results can
be applied for example to the optimization of the paper drying process, which has a significant role in
energy consumption of the paper production.
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