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Abstract

The heat conduction problems for anisotropic bodies are studied takingdotmint the uncertainties
in the material orientation. The best estimations of the upper and lower badinkds considered
energy dissipation functional are based on developing new appraasisting in solution of some
optimization problems and finding the extremal internal material structureshwadize minimal
and maximal dissipation. The motivation of this study comes from paper makicggses, and more
precisely, drying process, which consumes about 50% of the enedgptb the paper machine. The
understanding of the effect of uncertainties in the process arisesstroictural properties of paper
will provide the possibility to optimize the drying system.
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I ntroduction

The problems of incompleteness of data and uncertainties are typicalgotrapic solids and structures
having chaotic orientation of small material particles such as grains, coystlabrt nanofibers. Different
possible compositions of elementary particles with various orientations reslifitarent values of such
integral characteristics as a total dissipation energy in the heat condpctblems, total potential
energy in the thermoelasticity and thermoconductivity problems. Taking intuatthe conditions of
uncertainties concerning the material orientations it is very important to ol#eous estimations of the
considered functionals and in particular limiting estimates known as doublé-sidslateral estimates
(see book by Banichuk and Neittaanmaki [1]).



The motivation of this study arises from understanding of paper makirgpses. As is well known that
paper product have an anisotropic fibrous structure which propeemsnd on the making process and
its parameters (velocity, tension, etc.). The understanding of heat ctiordbehaviour in anisotropic
material is very critical for optimization of the system. During paper making, thimglprocess con-
sumes about 50% of the energy fed into the paper machine; it is the singéstlacnsumer of energy
in the paper manufacturing process.

To model the drying of a moving paper web, several models exist in the literggee e.g. Karlsson [2],

Lampinen and Toivonen [3] and Lu and Shen [4]). For a thorouglineeging-oriented discussion on
paper drying, see the book edited by Karlsson [5]. In our study, we hasumed, that the material is
not moving. Moreover, we consider the fundamental mathematical setup pfablem, that the results

can be applied widely.

In this article, the problem of estimation of dissipation energy characteristiosgdered for anisotropic
body constituting of the locally orthotropic material. It is assumed that an otientaf the principle
axes of orthotropy is not known beforehand at each point of the badycan be distributed by various
ways in different parts of the body including chaotic orientation. Thecbetor double-sided esti-
mates is reduced to the solution of optimization problems and finding the extreiewtabions of the
orthotropy axes.

Heat conduction problem for bodiesfrom locally orthotropic material

Let us consider heat conduction problem for solid body occupied thranid (see Figure 1) with the
boundaryl' = I'y 4+ I'; wherel'y N I'; = 0. The material of the body is anisotropic with respect to
the heat conduction process described by the known relations (seekandau and Lifshitz [6] and
Nowacki [7])

q=DxVp, o=0" (1)

wheref is a temperaturey is a vector of the heat flux an@ is a heat conduction tensor of the second
rank. In the case of absence of the source of heat in the ddmawe will use the boundary conditions,
governing equation and the quality functional (dissipation of energy) ifolleving form

(‘P)rg = ¢, (nx D x VSO)Fi =0 2)
VX (DxVyp)=0 z €N (3)
Jz/V(prngon 4

Q

wherey? is a given function specified di,, n is an outwards unit normal vector specified on the part
I';, (-) between the vectors means the scalar product and the sywhisdhe gradient operator, i.e.

_[9p 9¢p Op
N 89@1’6902’8953 .

In accordance with the variational principle (see e.g. BerdichevsRy 8 actual distribution of the
function realizes a minimum for the functiondlon the set of admissible functions satisfying the first
boundary condition in (2), if

J = m@in (5)
Note the second boundary condition in (2) plays the role of transversalitgition for the functional
(4) and is satisfied ‘automatically’ for extremum solution. Note that Equatiort&i&ulerian equation
for the functional (4).



Figure1 Domain Q2 with given temperature I'; (solid) and thermally insulated I'y (dashed) bound-
ary conditions.

In what follows we will suppose that the material is locally orthotropic and thentation of the axes
of orthotropicity is unknown beforehand. Let us fix the unit vectgse), e} of orthogonal coordinate
systemaxy, z2, x3 Which is considered as a global system (see Figure 2). The princig&tidins unit
vectorsey, e,, e of the heat conduction tens@y of orthotropic material (axes of local symmetry) at
the arbitrary pointxy, 22, z3) € 2 are related with the global coordinate vectese?, e by means of
the rotation tensof) = Q(z) as

e, =Qxe) =Qxe) (i=1,2,3) (6)

Q"xQ=QxQ"=E (7)
where the symbol T means the operation of transpositionfanrd {J;;} - unit tensor, where;; is a
Kronecker symboli, j = 1,2, 3) and(x) is a tensor operation of the rotation. In the axes of symmetry
of the orthotropic material, the heat conduction ten9as written as
D:Dijei®ej:D%Qxe?®QXe2:Q*(ngeg®eg):Q*DO (8)
where® is the tensor product and
DozD?j xe?@e? 9)

Figure 2 Transformation of global unit vectorsto thelocal material principle vectors by rotation
tensor Q.

The expression for the heat conduction tenSaran be rewritten in the form

D:D%Qxe?@@xe?:@x(DQ.e;)@e;?)xQTzpronT (10)

v]

If 5; ande! i.e. eigenvalues and eigenvectors of the terigdri.e.

DY x &) = 50e? (12)

thens) ande; = @ x € i.e. eigenvalues and eigenvectors of the ted3er Q = D, i.e.
D xe = %?ei (12)
Taking into account Equations 7, 8 and 11, we will have Equation 12.cln fa

Dxe = (QxD% x (Qxel) =Qx (D" xe)) =3Q xel = se (13)

i

For given tensorD?, the values of the functional$ depend on the realization @ = Q(z) and
corresponding actual values of = ¢(z), minimizing the functional of energy dissipation (4) under
constraints (2) (for considereg(x), i.e.

J (@ px) = min J(Q, ¢) (14)



Uncertaintiesin orientation of orthotropic material and double-sided estimates

If there is no data concerning material orientation, i.e. the tensor-fun@ienQ(z) (z € ), charac-
terizing material distribution is unknown, then it is very important to obtain thed@md upper bounds
of J, i.e. to find the limit double-sided estimatés;, and.J,..x, such that

Jmin < J(Q,QO*) < Jmax (15)
for any realization of) satisfying the condition (7).

To obtain reliable estimations of the dissipation energy functidreaid other important characteristics,
we apply in the paper an approach based on the solution of two optimizatiblepr® The following
problem is devoted to finding the lower estimate

Jmin = min J (@, ¢x) = minmin J (Q, ) (16)
Q Q ¢
and another problem consists in the searching of the upper bounds

Jmax = max J (Q, px) = maxmin J (Q, ) (17)
Q QR ¥

wheremin and max with respect toQ) in Equations 16 and 17 are determined under constraint (7).
Operationmin with respect top in Equations 16 and 17 is performed taking into account boundary
conditions from Equation 2.

In what follows, we will study the proposed approach and problems acheng the extremum of
with respect ta
J = eétr (18)

and analyze extremum conditions and behavior equations.

Extremal conditionsfor orthotropic material orientation

To derive extremum conditions, defining the orthogonal tensor of rotétienQ(x) and characterizing
the extremal orientations of orthotropy axes let us use the method of lgegnamltipliers and construct
augmented functional

JE=J+Jp (19)
Jp:/P.-(QTxQ—E)dQ (20)
Q
J:/Vgpx(Q*QO)ngde:/Vgpx(C}DonT)xVade (21)
Q Q

where(--) between tensors mean double scalar product and symmetric tensormed saokP = P(x)
(x € Q) is Lagrange multiplier, specifying if2 and corresponding to the condition of orthogonality
(see Equation 7). The dissipation energy functiohahn be also rewritten as

J:/B--(QXDOXQT)dQ (22)
Q
Here, by means aB, we denote the following symmetric second rank tensor

B=Vp®Vop, B"'=B (23)



and the symbok is the tensor product.

Let us derive the following expressions for the first variati6risandd./p with respect to variation
of rotation tensor). We will have

5J=/ﬁ}.waLﬂxQT+szﬁx5QUdQ:2/kQ-(D0xQTxBﬁm (24)
Q Q

and

MP:A}%.@QTxQ+QTx&mdQ:2KfQ-(PXQUdQ (25)

Taking into account the expressions (19) to (21), (24) and (25), Wénd the expression for the total
variationd@ in the following form

5ﬂfﬁJ+&h:2/5Q~uﬁxQTxB+PxQUd2 (26)
Q

Using the extremum condition
5JE =0 (27)

and arbitrariness af, i.e. arbitrariness of @, we will have
D' x Q" xB+PxQ"=0, req (28)
Multiplying the relation (28) or) and using formulae (10) and (23) we find
DxVeaVe=—-QxPxQT, RRY) (29)
This relation means the symmetry of the second rank tensor
(D x V)@ Ve
written in the left-hand side of the equality (29), i.e.
(DxVp)@Ve=Ve® (D x V) (30)
The equality (30) is satisfied if the vectalsx Vi andV are parallel, i.e.
D x Vo =\Vp (31)

where\ is some scalar value.

Double-sided estimates based on derived extremal conditions

The necessary extremum condition (31) for dissipation energy funttidmeith respect to rotation
tensor@), defining an extremal distribution ¢ and expressing the collinearity of the vect®&® and

DxVe=(QxDxQ") x Vo

is an eigenvalue problem. Consequently, the vettpris one of the eigenvectors of the heat conduction
tensorD:
DxVo=\Vy, i=1,23 (32)



Taking into account that the eigenvalugof the tensord) and D are equal (see Equations 11 and 13)
and given, we assume
>\1 = )\min < )\2 < )\3 = )\max (33)

Substituting (32) into the Euler equation (3) of the functiofialve obtain the equations that determine
the stationary distribution of scalar functign= ¢(x) :

V x (AiVe) =0, (i=1,2,3), axecQ (34)
in the case of specified rotation tengpraccording to the equation
(@ x D° x Q") x Vo= \;Vyp (35)
The elliptical partial differential equation (34) with the boundary conditions
(@), =¢", (A x V), =0 (36)

corresponding to conditions (2) with the relations (32) constitute the ctiomah boundary value
problem describing, as it is well known, homogeneous or nonhomogsnisotropic processes of
the heat conductivity. Under some known additional constraints supesegdpan the boundary shape

I' =T, +1I;, wherel', N T'; = 0, we have the existence and uniqueness of the solution of (34) and (36)
with given \;.

If we assume that the same way of extremum orientation of the principle axethotropy is realized
for all domain(2, then ), is constant in2 and the considered heat conduction process is described by
the classical boundary value problem

Ap=0, z2€9 (37)

(90)1“9 = ¢, (n x %O)Fi =0 (38)
for Laplace equation with mixed (in general case) boundary conditioese M is a Laplace operator
acting in a three-dimensional space.

Note that the equality in Equation 37 means that in the case of the body with ertrerthotropy the
heat conduction process is described by the same equation as in theicsofap. If the domaiii2
consists of several subdomaifssuch that

and for each separate subdomgin the same extremum way of material orientation is taken, then the
isotropic heat conduction process is realized for all considered sudids.

Let us assume that the orthotropic material is distributed in accordance wihrtieextremum rule in
the domairf2. Then we will have the ‘isotropic’ boundary value problem (37) and,(88Y consequently
the state variable (inverse temperature) is independent\gf As a result, we obtain the following
minimal and maximal values of the considered quality functiohal

min J = Apind (40)
Q
méix J = Amaxd (42)

where
I= / (V) d (42)
Q



Thus, the double-sided estimates of the energy dissipation functionale cenitien as

~l

Amin < < )\max (43)

Two-dimensional case of extremal material orientation

Separately, consider the two-dimensional case with plane ddmdimthis case

_[9¢ 9y _
V«p—{axl,am}, x={r1, 12} €Q (44)

Then the element of orthogonal tengpiare represented in the form

Q11 = Q22 = cosa Q21 = —Q12 = sina (45)

wherea is the angle of rotation of the specified tengpr On the basis of Equation 35, we obtain an
explicit expression relating the angle= «(x1, z2) with the functiony = ¢(x1,x2). In Figure 3, the
orientation of local orthotropicity is presented. For definiteness, asswatinthvectolV o, presented in
Equation 44, correspond to the eigenvalje Then the eigenvectdt, corresponding to the eigenvalue

Aj(i # j)is e b
_ )% 9%
k= {8332’ 83?1} (46)

which is orthogonal to the eigenvectorp from Equation 44. We form a scalar product of both sides of
the vector equality (32) with the vectar We will have

kx D x V=0 (47)

This relation contains two separate cases. The first case

cos2a = C, sin2a = S (48)
where ) )
i D dp Op
0 _ o oy (Y% oYY Y¥
(DY), — D3y) {<3$1> <8x2> } +4D126x1 Dy
C=— - - (49)
(V) /(DY — D)’ +4 (DY)
and ) )
Jp Jyp dip Iy
2(DY, — DY) === —2p0% ¢ (=) — (==
( 1 22) 81‘1 8.%'2 12 { <8x1> <8.1’2
S = = - (50)
(VSO)Q \/(D(l)l - D82) +4 (D(1)2)
corresponds to the smaller eigenvalué\; < \2). The second case
cos2a = —C) sin 2 = —S (51)

corresponds to the larger eigenvalug )\, > \1).

Figure 3 Orientation of local orthotropicity in a two-dimensional case.




Examples of double-sided estimates

Suppose at first that the orthotropic material occupies the three-dimahdmmain( situated between
the internal sphere of radius, wherery, ra(r; < 72) is given values. The temperaturef= 6, is
defined at the internal boundary and the temperaiute 6, is given at the external boundary, where
01 < 6. Note thatd;, (i = 1,2) are given and positive values. Thus, we consider the following
boundary conditions:

1

p=p1= g r=r
1

p=v2= r=r (52)
2

wherep, < 9. Here, we use spherical coordinate system with the origin=at). From the properties
of symmetry, it follows that the extremum orientations of the axes of orthotnathy

)\1 - )\min and )\3 - /\max
corresponding respectively to the cases

J — min and J — max
Q Q

are realized in radial direction. Besides, the gradieng,dfe. vectorV, and also the heat flux vector
q are directed along the radius vector at each point of the dofaadiote that the heat fluy is absent
in circumferential directions. The following values characterize the exirdisi@ibution of material:

Qmin = )\minNr(]a Qmax = )\maerO (53)

)\minI S J S )\maXI

N:M, ro =
ro —1r ’I“

r

where

3
andrg is a unit vector, oriented in radial direction.

4
I = / (VQD)Q dQ = —7N (p2 — ¢1) (r% 4+ rirg + r%) (54)
Q

Next let us consider the problem of finding the double-side estimates wiempdy connected domain

2 occupied by the orthotropic material is a rectangular parallel-piped with therwmd lower faces at
x3 = —c andzs = ¢ and side faces at; = +a andzy = +b. We use the Cartesian coordinate system
(z1,x9,x3) and we assume that the temperat@iis given at the lower and upper faces and the side
faces are thermally insulated, i.e. the boundary conditions have the form:

1 1
0 =@ =_—, r3=—c and o=y =_—, T3 =c (55)
01 02
and
gqxn=nxDxVey=0atr; =+a, xo = +b (56)

wheref; > 0, 0, > 0 and(#; > ;). Extremal material distribution and corresponding heat conduction
processes are characterized by the existenec of level surfadesonstan{—c < z3 < ¢ € Q) with

a constant distribution of variable (constant temperatu@®. The gradient ofp is parallel toz-axis.
Therefore the axes of orthotropy with minimal eigenvalue: A, (in the case/ — ming) and with
maximal eigenvalug = A\« (in the case off — maxg) are oriented in a parallel way with respect to
the axisrs. Such orientation provides, respectively, either the minimium or the maximuimsipdtion.



For considered problem we will have
Qumin = Amin®xY, A = Amax®x9 (57)
minJ = Apind, max J = Apaxd
Q Q

X3
Vo = &x) X ==
39 3 ‘Xg‘

Y2 — 1

o = ,
2c

where
= /Q (V)2 dQ = — (92 — ¢1)° (58)

C

andxg is an unit vector of the:s-axis, obtained when the vectgs is divided by its lengthxs|.

Conclusions

Inthe case, when the coefficieft; and the considered eigenvalugsre independent af = (x1, x2, 23),
then the anisotropic behaviour equation is reduced to the Laplace equdtion describes the heat
conduction of homogeneous isotropic body. Since the theory of the bedtiction of isotropic homo-

geneous solids is well developed and solution of the correspondinglagumalue problem has been
found (analytically and numerically) for most problems of practical impoegarieen this reduction

allows to consider the above problem of obtaining of double-sided estimabesstmved.

Taking into account the conditions of uncertainties concerning materiaitatiens, we obtain various
estimations of the considered functionals and in particular limiting estimates knewnuble-sided
or bilateral estimates. The search of double-sided estimates as it was ish@sdnced to the solution
of optimization problems and finding the extremal orientation of the orthotropg.aXhe results can
be applied for example to the optimization of the paper drying process, whih Bignificant role in
energy consumption of the paper production.
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