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Background: On the mean-field level, pairing correlations are incorporated through the Bogoliubov-Valatin
transformation, whereby the particle degrees of freedom are replaced by quasiparticles. This approach leads to
a spontaneous breaking of the particle-number symmetry and mixing of states with different particle numbers.
In order to restore the particle number, various methods have been employed, which are based on projection
approaches before or after variation. Approximate variation-after-projection (VAP) schemes, utilizing the Lipkin
method, have mostly been used within the Lipkin-Nogami prescription.
Purpose: Without employing the Lipkin-Nogami prescription, and using, instead, states rotated in the gauge
space, we derive the Lipkin method of particle-number restoration up to sixth order and we test the convergence
and accuracy of the obtained expansion.
Methods: We perform self-consistent calculations using the higher-order Lipkin method to restore the particle-
number symmetry in the framework of superfluid nuclear energy-density functional theory. We also apply the
Lipkin method to a schematic exactly solvable two-level pairing model.
Results: Calculations performed in open-shell tin and lead isotopes show that the Lipkin method converges at
fourth order and satisfactorily reproduces the VAP ground-state energies and energy kernels. Near closed shells,
the higher-order Lipkin method cannot be applied because of a nonanalytic kink in the ground-state energies as
a function of the particle number.
Conclusions: In open-shell nuclei, the higher-order Lipkin method provides a good approximation to the exact
VAP energies. The method is computationally inexpensive, making it particularly suitable, for example, for future
optimizations of the nuclear energy density functionals and simultaneous restoration of different symmetries.
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I. INTRODUCTION

Ground states of atomic nuclei exhibit nucleonic pairing
correlations. These manifest in odd-even mass staggering,
properties of low-lying excited states, moments of inertia,
etc., to name but a few examples [1,2]. To successfully
describe these phenomena, nucleonic pairing is usually in-
troduced within mean-field models and handled through the
Bogoliubov-Valatin transformation [2], whereby the particle
degrees of freedom are replaced by quasiparticles. This
effectively incorporates the pairing correlations but, as a
consequence, leads to particle-number-mixed wave functions.
The situation is the same also for other symmetries broken on
the mean-field level; e.g., by allowing the nucleus to deform,
quadrupole-type correlations are effectively incorporated in
the mean-field picture, at the expense of breaking the rotational
invariance. Nevertheless, true ground states conserve all
symmetries of the underlying Hamiltonian, including the
particle number.

To link the spontaneous breaking of symmetries to
symmetry-conserving states, various symmetry-restoration
schemes have been utilized. In principle, in self-consistent
approaches solved within iterative methods, broken sym-
metries should be restored during every step towards the
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solution. This is the well-known variation-after-projection
(VAP) [3–6] method. The drawback of VAP is the com-
putationally expensive integration over the gauge angles of
symmetries to be restored, applied during every iteration step.
Therefore, the usual practice is to revert to the computationally
less intensive projection-after-variation (PAV) [2,4,7] scheme,
where symmetries are restored at the end, from the converged
self-consistent symmetry-broken mean-field solution.

When applying the VAP method to superfluid nuclear
density functional theory (DFT), some of the energy density
functionals (EDFs) seem to be ill suited for the task. In
particularly, with the widely used Skyrme-like EDFs, several
pathologies exists. With particle-number restoration, poles and
nonanalytic behavior preclude obtaining a unique solution
[4,8–10]. These difficulties are traced to the noninteger powers
of density in the employed EDFs [8,11]. The same also holds
for the restoration of angular momentum [12].

To circumvent the prohibitive computational cost of the
VAP method, an approximate method is called for. The central
rationale in the Lipkin method, which fulfills this goal, is to
replace the original Hamiltonian by an auxiliary Routhian,
making the symmetry-projected states degenerate in energy
[13]. This allows us to approximately evaluate ground-state
properties of the corresponding symmetry-restored system
without actually performing any projection [13,14]. In par-
ticular, for the particle-number restoration, a power series
expansion as a function of the particle-number fluctuation was
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suggested. Based on this idea, Nogami [15,16] introduced a
prescription to calculate coefficients of the power expansion at
second order, which is called the Lipkin-Nogami (LN) method
and which has been widely used in nuclear DFT calculations
[7,17].

The quantitative effect of the particle-number-restoration
largely depends on whether the pairing correlations are
strong (midshell) or weak (near closed shell). As pointed
out in Refs. [18–21], the parabolic approximation, which
corresponds to a sum up to the second order of the Lipkin
or Kamlah [22] approximation, may fail at the limit of weak
pairing. In this work we extend the Lipkin method beyond the
second order used so far, so as to make the first tests of its
convergence and accuracy.

The central issue of the Lipkin method is to search for
a suitable set of the Lipkin power-expansion parameters
[14]. For the LN method, the second-order parameter is
calculated through the diagonal matrix elements [15,16,23,24],
which requires us to calculate the linear response of the
mean field to the particle-number projection (PNP) [23,24].
However, the response term, which has a large influence on
the potential energy surface [23], is cumbersome to evaluate.
Therefore, usually in calculations involving the LN method,
an approximate prescription of seniority pairing is used to
obtain the effective pairing strength for the second-order term
[5,25]. In this work, we propose a different way to derive these
expansion parameters, namely, starting from the nondiagonal
energy kernels.

This paper is organized as follows: In Sec. II, we cover
our theoretical framework of the Lipkin method for PNP. In
Sec. III, we present numerical results, and in Sec. IV, we
give the summary and outlook. Appendix A contains explicit
expressions of the Lipkin method applied in this work and
Appendix B provides an illustration of the method within the
exactly solvable two-level pairing model.

II. LIPKIN METHOD

To start, we first recall some of the standard definitions
available in the literature, which are required in the present
work. Within the Hartree-Fock-Bogoliubov (HFB) framework,
the wave function rotated in the gauge space is defined as [2,7]

|�(φ)〉 = exp(iφ(N̂ − N0))|�〉, (1)

where φ is the gauge angle, N̂ is the particle-number operator,
and N0 = 〈�|N̂ |�〉 is the average particle number. In what
follows, for the sake of clarity, we present expressions for a
system composed only of one kind of particle. Generalization
to two types of particles, that is, to protons and neutrons,
is straightforward and is discussed briefly later. Similarly to
Ref. [14], the overlap and energy kernels are defined as

I (φ) = 〈�|�(φ)〉, (2)

H (φ) = 〈�|Ĥ |�(φ)〉, (3)

and kernels of (N̂ − N0)m as

Nm(φ) = 〈�|(N̂ − N0)m|�(φ)〉. (4)

The kernels of Eq. (4) can be calculated as derivatives of the
overlap kernel with respect to the gauge angle

Nm(φ) = (−i)m
dm

dφm
I (φ). (5)

Explicit expressions for these kernels are presented in
Appendix A. In Eqs. (3) and (4), kernels are defined in terms of
matrix elements. However, within the EDF methods they have
to be understood as standard functions of transition density
matrices; see, e.g., discussion in Ref. [8].

As demonstrated by Lipkin [13], the minimized energy,
obtained by the full variation after PNP (VAPNP), can also be
obtained through an auxiliary Routhian,

Ĥ ′ = Ĥ − K̂{N̂ − N0}, (6)

where the Lipkin operator K̂ , which is a function of the
shifted particle-number operator N̂ − N0, is chosen so as
to “flatten” the N dependence of the average Routhians
calculated for the particle-number projected states [13,14].
Had these projected Routhians been exactly N independent
(perfectly flat), the exact projected energy EN0 could have been
obtained by minimizing the average value of the Routhian for
the unprojected state |�〉; that is,

EN0 = 〈�|Ĥ − K̂{N̂ − N0}|�〉. (7)

Otherwise, the Lipkin method gives an approximate VAPNP
energy, and its accuracy depends on the quality of the choice
made for the Lipkin operator K̂ .

Similarly, after the Lipkin method is executed, the PNP of
the final Lipkin state |�〉 gives an approximation to the exact
VAPNP state. The advantage here is that the time-consuming
exact PNP calculation is performed only once; that is, the
Lipkin method allows us to obtain the full VAP result by
effectively performing only the PAV calculation. Apart from
the total energy, other observables must be calculated by using
the PNP of the Lipkin state.

As suggested by Lipkin [13], the simplest and most
manageable ansatz for the Lipkin operator K̂ has the form
of a power expansion,

K̂{N̂ − N0} =
M∑

m=1

km(N̂ − N0)m, (8)

where k1 ≡ λ is the Fermi energy, which is used as a Lagrange
multiplier to fix the average particle number. The higher-order
Lipkin parameters km for m > 1, which cannot be regarded
as Lagrange multipliers, are used to best describe the particle-
number dependence of the average energies of projected states.
Auxiliary equations are needed to determine these higher-order
parameters.

Up to now, the LN method has frequently been used to
estimate values of k2 (traditionally denoted by λ2). However,
this method relies on calculating the average values of
〈�|Ĥ N̂m|�〉 and 〈�|N̂m|�〉, and, thus, at higher orders
(m > 2) evaluation of these terms becomes cumbersome and
impractical.

The essence of the original Lipkin method is different,
namely, it relies on deriving expressions for km that “flatten”
the φ dependence of the reduced Routhian kernel h′(φ);
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that is,

h′(φ) = h(φ) −
M∑

m=1

kmnm(φ), (9)

where

h′(φ) = H ′(φ)

I (φ)
,

h(φ) = H (φ)

I (φ)
, (10)

nm(φ) = Nm(φ)

I (φ)
.

Up to any order, this is a perfectly manageable setup, because
for an arbitrary value of the gauge angle, the generalized Wick
theorem [2] allows for a simple determination of the energy
and overlap kernels H (φ) and Nm(φ). Explicit expressions for
km are presented in Appendix A.

The equivalency of the energy obtained by minimizing the
auxiliary Routhian with that resulting from the exact VAPNP
can be demonstrated as follows. In the HFB frame, the PNP
state can be obtained in a standard way [2],

∣∣�N0

〉 ≡ P̂N0 |�〉 = 1

2π

∫ 2π

0
dφeiφ(N̂−N0)|�〉, (11)

where P̂N0 is the projection operator for N0 particles and |�〉
is the HFB wave function. For a perfectly flat (φ-independent)
reduced Routhian kernel h′(φ) ≡ C, we then have the exact
average value of the Routhian evaluated for the state projected
on particle number N0:

E′
N0

= 〈�|Ĥ ′P̂N0 |�〉
〈�|P̂N0 |�〉 =

∫ 2π

0 H ′(φ)dφ∫ 2π

0 I (φ)dφ

=
∫ 2π

0 h′(φ)I (φ)dφ∫ 2π

0 I (φ)dφ
= C. (12)

Since for the state projected on N0, the average value of the
Lipkin operator, (8), is, by definition, equal to 0, we also have
that

EN0 = C, (13)

and thus the minimization of the average Routhian, (7), is
equivalent to the exact VAPNP. Again, any imperfection in the
φ independence of h′(φ) amounts to a certain approximation
of the exact VAPNP. However, since it is now relatively easy
to go to higher orders in the power expansion of Eq. (8), we
can systematically test the convergence of this expansion.

The largest contributions to integrals in Eq. (12) come
from the vicinity of the origin due to the largest weight
[17]. Therefore, we can evaluate Lipkin parameters km using
the gauge-rotated intrinsic states near the origin. This also
avoids the singularities caused by vanishing overlaps [8]. As
an example, at second order one obtains the Lipkin parameter,

k2 = h(φ2) − k1n1(φ2) − h(0)

n2(φ2) − n2(0)
, (14)

where φ2 is a preselected small value of the gauge angle, and
the flattened energy reads

EN0 = h(0)n2(φ2) − h(φ2)n2(0) + k1n1(φ2)n2(0)

n2(φ2) − n2(0)
. (15)

Had the expansion up to second order been exact, the values
of k2 and EN0 obtained from Eqs. (14) and (15) would have
been independent of φ2. Thus, their eventual dependence on
φ2 indicates the necessity of going beyond second order.

Similarly, at order M , we evaluate Lipkin parameters km,
m = 1, . . . ,M , using a set of M small gauge angles φi , i =
1, . . . ,M . In practice, in this work, we use equally spaced
values of φi = iφ1, and at each order we check the eventual
dependence of results on the maximum gauge angle used, φM .
If at the given order M , the convergence of the expansion of
Lipkin operator, (8), is reached, the resulting parameters do
not depend on the choice of the maximum gauge angle. We
test the convergence based on this philosophy.

The above derivations are strictly valid only in the case
of energy kernels given by average values of the Hamil-
tonian. However, in the nuclear EDF approach, most often
density-dependent interactions and interactions different in the
particle-hole and particle-particle channels are used, and thus
poles may occur when the overlaps between gauge rotated
intrinsic states vanish (it may happen at gauge angle π/2)
[4,8–10]. In this case, none of the standard methods, like
VAPNP, PAV, LN, or Kamlah, or the Lipkin method discussed
here, are strictly valid, and a construction of regularized
functionals is mandatory [9,10].

In this sense, the Lipkin method, which employs appro-
priately small maximum gauge angles, not approaching the
hypothetically dangerous region of π/2, can be regarded as
a certain regularization method. By doing so, we regularize
the energy kernels in terms of the analytic continuation
of the Lipkin energy kernels to the full range of gauge
angles. Obviously, at large gauge angles, the calculated and
regularized energy kernels can then be different. Thus the tests
of convergence of the Lipkin operator are meaningful only in
the region of gauge angles where the energy kernels are not ill
defined.

We note here that the minimization of the average Routhian,
(7), with respect to the HFB state |�〉 can be performed by
solving the standard HFB equation with additional higher-
order terms added (see Appendix A). We also note that
the Lipkin parameters km must be determined in each HFB
iteration (for each current state |�〉), in such a way that at
the end of the HFB convergence they correspond to the final
self-consistent solution and, thus, parametrically depend on it.
However, this dependence does not give rise to any additional
terms in the HFB equation, because the derivation of the
Lipkin method is based on treating them as constants (cf. the
discussion of the LN and Kamlah methods in Ref. [19]).

An exactly solvable two-level pairing model offers an ideal
environment to test qualitative properties of the Lipkin VAPNP
method. The results presented in Appendix B show that in such
a schematic model, the higher-order Lipkin VAPNP method
is able to reproduce correctly the exact VAPNP ground-state
energies, in both weak and strong pairing regimes, everywhere
apart from the immediate vicinity of the closed shell. This
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gives us confidence in the application of this method to more
involved cases of actual nuclei, which is discussed in the next
section.

III. RESULTS AND DISCUSSION

We have implemented the Lipkin VAPNP method, pre-
sented in Sec. II, in computer code HFODD (v2.68c) [26,27].
This code solves the HFB equations in a three-dimensional
Cartesian harmonic oscillator basis. Within this implementa-
tion, we tested the Lipkin VAPNP method using the Skyrme
SIII parametrization [28] in the particle-hole channel and
the volume zero-range pairing interaction in the particle-
particle channel. SIII parametrization was selected for this
study due to the fact that it contains only integer powers of
densities. In the calculation of nondiagonal terms, the density-
dependent interaction was treated within the “mixed density
prescription,” as discussed in Refs. [5,8,29,30]. The neutron
pairing strength, V0 = −155.45 MeV fm3, was adjusted within
the LN method to reproduce the empirical neutron pairing
gap of �n = 1.245 MeV in 120Sn. In principle, at each given
order of the Lipkin VAPNP method, this adjustment should be
repeated. However, for the sake of meaningful comparison of
the results obtained at different orders, we use the same pairing
strength throughout all calculations.

For protons, the pairing strength was set to 0; that is,
the proton subsystem is described by unpaired states. This
setup allows us to test the Lipkin VAPNP method in the
neutron paired subsystem, resulting in a clearer interpre-
tation of the obtained results and allowing for a better
evaluation of the efficiency of the Lipkin VAPNP method.
Because of the used zero-range pairing interaction, we adopted
the commonly used equivalent-spectrum cutoff of 60 MeV,
applied in the quasiparticle configuration space. All calcu-
lations were performed in the spherical basis of 14 major
harmonic-oscillator shells.

To begin, we first study the convergence of the Lipkin
VAPNP method when terms up to sixth order in expansion
(8) are incorporated. At present, we limit our analysis to even
powers only; that is, we take into account terms with m = 2, 4,
and 6. This corresponds to a symmetric approximation around
the central value of the particle number N0. In Figs. 1 and 2,
we show, for 120Sn and 100Sn, respectively, the dependence of
the Lipkin parameters on the maximum gauge angle φM (see
the previous section). The figures also show the total Lipkin
VAPNP energy EN0 and Lipkin correction energy Ecorr

Ecorr = 〈�| − K̂{N̂ − N0}|�〉 = −
M∑

m=1

kmnm(0); (16)

cf. Eqs. (7) and (9).
At second order, the obtained results show a clear de-

pendence on φM , indicating insufficient expansion. On the
other hand, at fourth and sixth orders, total energy EN0 and
correction energy Ecorr are already rather insensitive to φM .
Thus, we can conclude that at sixth order, the expansion is well
converged, and at least fourth order is required for sufficiently
precise results. We also note that for the magic nucleus 100Sn,

FIG. 1. (Color online) Lipkin parameters (a) k2, (b) k4, and
(c) k6, (d) Lipkin correction energy Ecorr, (16), and (e) Lipkin VAPNP
energy EN0 , (7), determined in 120Sn at the second, fourth, and sixth
orders, as functions of the maximum gauge angle φM . Note that
Lipkin parameters k2, k4, and k6 are shown in units of MeV, keV, and
eV, respectively, which illustrates the rapid convergence of the Lipkin
expansion.

the convergence is slightly slower, and the values of Lipkin
parameters are significantly higher than those for 120Sn.

In what follows, we have used the same maximum gauge
angle of φM = 2π

51 � 0.123 in all expansions, regardless of the
expansion order. In Fig. 3, convergence of the reduced kernels
of the Lipkin operator, (8), in 100Sn and 120Sn is shown. Kernel
values at φ = 0 were subtracted, in order to illustrate how
well the reduced Routhian kernels, (9), stay constant, that is,
independent of the gauge angle φ. Again, we clearly see that
the second-order expansion is insufficient, whereas the fourth
and sixth orders already give satisfactory description of the
energy kernels.

Figure 4 shows the same kernels as plotted in Fig. 3 for
the whole range of gauge angle, up to φ = 2π . We see that
in 100Sn the energy kernel near φ = π/2 is poorly described
by the Lipkin expansion. This is directly related to the kink
in the particle-number dependence of the projected energies,

FIG. 2. (Color online) Same as Fig. 1, but for 100Sn.
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FIG. 3. (Color online) Reduced energy kernel h(φ) − h(0)
(filled squares) and reduced kernels of the Lipkin operator∑M

m=1 km(nm(φ) − nm(0)) at orders M = 2, 4, and 6 (open symbols),
as functions of the gauge angle up to φ = 1, calculated in 100Sn and
120Sn.

which appears at the magic shell closure, and which cannot
be properly described by a polynomial expansion [5,19]. In
this case, a good quality of the Lipkin expansion obtained
at small gauge angles is not sufficient to guarantee a good
convergence at larger gauge angles. The situation is entirely
different in the open-shell nucleus 120Sn, where the particle-
number dependence of the projected energies is given by a
smooth function, which can be approximated very well by a
polynomial expansion. Here, for all gauge angles, we obtain
a perfectly converging Lipkin expansion of the exact energy
kernel, even in the vicinity of the pole related to the nearly
half-filled 3s1/2 orbital [8].

In Figs. 5 and 6, we show the results of the Lipkin VAPNP
method for tin and lead isotopes, respectively. For comparison,
the figures also show the results obtained using the LN method,
similarly as in Ref. [31], and the projected LN (PLN) method,
as in Ref. [5], where the exact PNP energy is obtained via
projection from the HFB + LN self-consistent solution.

Away from the closed shells, at fourth and sixth orders,
the results of the Lipkin VAPNP method are very similar to
the PLN results. As pointed out by the VAPNP calculations
in Ref. [5], for open-shell nuclei, PLN results are very close
to exact VAPNP results. Again, the fourth and sixth orders
give similar results, signaling the convergence of the Lipkin

FIG. 4. (Color online) Same as Fig. 3, but for gauge angles up to
φ = 2π .

FIG. 5. (Color online) LN, PLN, and Lipkin VAPNP energies
of tin isotopes relative to those obtained within the standard HFB
method.

expansion. We can thus conclude that the fourth-order Lipkin
VAPNP method is a good approximation of the exact VAPNP
method. Near shell closure, differences between various
orders of the Lipkin VAPNP method are large, indicating a
nonconvergent power series of the Lipkin operator. Once again,
this is related to the kink in the particle-number dependence
on the projected energies [5,19].

In Fig. 7, we show results obtained by projecting good
particle numbers from the states obtained either by the Lipkin
VAPNP or the LN method. It is very gratifying to see that,
irrespective whether one uses the Lipkin VAPNP or the LN
method, the projected energies, shown in Figs. 7(a) and 7(e),
are very similar. This fact means that all approximate methods
analyzed in this study lead to similar pair condensates, whereas
they differ in the determination of corrective mean-field
energies. The main advantage of using the Lipkin VAPNP
method is the fact that the PNP calculation does not have
to be performed at all. Then, as shown in Figs. 7(b)–7(d)

FIG. 6. (Color online) Same as Fig. 5, but for lead isotopes.
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FIG. 7. (Color online) (a, e) PLN energies compared with exact
PNP energies determined for states obtained by solving the Lipkin
equations at second, fourth, and sixth orders. (b–d, f–h) Comparisons
at three orders of the Lipkin VAPNP and exact PNP energies. All
energies are plotted relative to those obtained within the standard
HFB method.

and 7(f)–7(h), the obtained energies approximate the PNP
energies very well. This is particularly true near the middle
of the shell, where the influence of closed-shell kinks in the
projected energies is weaker.

We also see that at closed shells, the second-order Lipkin
VAPNP method, similarly to the LN method (see Figs. 5 and
6) gives results that are very different from those obtained by
the PNP. On the contrary, the fourth- and sixth-order Lipkin
VAPNP method gives results almost identical to the PNP. Fi-
nally, at fourth and sixth orders, the nonanalytic behavior of the
PNP energies at closed shells causes the largest discrepancies
for two or four particles away from the closed shell.

Our current implementation of the Lipkin method in the
computer code HFODD allows us to treat pairing correlations
simultaneously for neutrons and protons. However, this has
been implemented such that the Lipkin operator is simply a
sum of the neutron and proton contributions of Eq. (8), with
Lipkin parameters determined by independent gauge-angle
rotations for neutrons and protons. Although this implemen-
tation works perfectly well, we have realized that this method
is insufficient in some cases. This is illustrated in Fig. 8(a),
which shows the reduced energy kernel of 124Xe calculated in
two dimensions, as a function of the neutron φn and proton
φp gauge angles. We clearly see that energy kernel is tilted
with respect to the main axes of the neutron and proton gauge
angles. Evidently, the Lipkin operator, here being the sum
of the neutron and proton contributions separately, leads to
a nontilted energy kernel, as shown in Fig. 8(b). Therefore,

FIG. 8. (Color online) Reduced energy kernel h(φν,φπ ) − h(0,0)
(left) compared to the reduced kernel of the Lipkin operator∑M

m=1 km(nm(φν,φπ ) − nm(0,0)) at sixth order (right), calculated for
124Xe.

to fully reproduce the true energy kernel, one has to use the
Lipkin operator that contains cross terms, which depend on
products of neutron and proton particle numbers. Within the
proton-neutron pairing scheme, combined with the PLN, these
kinds of cross-terms are required [32,33]. Implementations of
such more complicated forms of the Lipkin operator will be
the subject of future study.

IV. SUMMARY

In the framework of the nuclear energy DFT, we have
derived the Lipkin method of approximate particle-number
symmetry restoration up to sixth order. The Lipkin parameters
were determined from nondiagonal energy kernels, resulting
in a more manageable approach compared to the traditional
LN approach.

Convergence of the Lipkin VAPNP method was tested by
investigating the gauge dependence of expansion parameters.
Taking 120Sn as an example, the Lipkin expansion up to
the second order was found to have explicit gauge-angle
dependence. Inclusion of fourth-order terms subsequently
diminished the dependence on the gauge angle significantly.
With the inclusion of sixth-order terms of the expansion, the
overall change is minimal, indicating a converging series.
The accuracy of the Lipkin VAPNP method was tested by
comparing the reduced energy kernel and Lipkin operator
approximated by a power series. It was found that the chosen
Lipkin operator describes well the small gauge-angle rotation
of the intrinsic wave function. The results obtained for 100Sn
and 120Sn show that the second-order Lipkin expansion is
typically not sufficiently converged. Within the fourth order,
the series already mimics the reduced energy kernels rather
well. With inclusion of the sixth-order term, the results stay
practically the same, again indicating a well-converged series.

In chains of tin and lead isotopes, we have compared the
Lipkin VAPNP method to the LN and PLN methods. As
pointed out in Ref. [5], for midshell nuclei, the PLN is a very
good approximation to the exact VAP method. Our results
show that for midshell nuclei, the Lipkin VAPNP method
already at second order gives rather well-converged results.
When advancing to higher orders, the results are improved.
Near closed shells, because of the kink in the particle-number
dependence on the projected energy, the Lipkin VAPNP
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method is unable to reproduce the exact projected energy.
Also, near the closed-shell region, the pairing correlations have
a dynamic nature [2]. Within the Lipkin VAPNP method, this
kind of feature cannot be reproduced with a well-converging
series expansion. The main features of the results obtained for
nuclei were corroborated within the exactly solvable two-level
pairing model.

When neutrons and protons were treated simultaneously
within the Lipkin VAPNP method, we observed the necessity
to include in the Lipkin operator cross terms, which depend
simultaneously on the neutron and proton number operators.
For the case of 124Xe, the contour lines of the reduced energy
kernel, with respect to the neutron’s and proton’s gauge angles,
show tilted shapes. Without the cross terms, this kind of
behavior cannot be reproduced. A study of the cross terms
will be the subject of future work.

The Lipkin VAPNP method presented in this work allows
for a computationally inexpensive way to approximate the
exact VAPNP energy of the ground state. We need to point
out that this method cannot replace the exact projection for
the case of, e.g., calculation of transition matrix elements or
evaluation of selection rules, where good quantum numbers
are mandatory. The Lipkin method can also be applied to
approximate the restoration of other symmetries, broken at the

mean-field level, at a small or no extra computational cost.
This is important, for example, at the stage of adjusting the
functionals, where rapid evaluations of penalty functions are
required. This can be particularly significant for adjustments
of EDFs tailored for beyond-mean-field multireference studies
[34]. Work towards restoring isospin and rotational symmetries
within the framework of the Lipkin method is currently in
progress.
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APPENDIX A: KERNELS AND LIPKIN PARAMETERS UP TO SIXTH ORDER

To calculate kernels Nm(φ) from derivatives of the overlap kernel I (φ), in Eq. (5), we use the Onishi theorem [2]:

〈�|�(φ)〉 = det1/2(1 + e2iφCC+)

det1/2(1 + CC+)
e−iN0φ, (A1)

where C is the Thouless matrix. In the canonical basis of the Bogoliubov transformation, the above overlap is given as

〈�|�(φ)〉 =
∏
μ>0

(
u2

μ + v2
μe2iφ

)
e−iN0φ, (A2)

where the label μ > 0 is associated with one of the pair-conjugated canonical states {μ,μ̄}. Then the density matrix in the
canonical basis can be obtained as

ρμν(φ) = 〈�|a+
ν aμ|�(φ)〉

〈�|�(φ)〉 = e2iφv2
μ

u2
μ + v2

μe2iφ
δμν. (A3)

We then have the reduced kernels nm(φ) = Nm(φ)/I (φ), given as

n1(φ) = Trρ(φ) − N0 ≡ R0(φ), (A4)

n2(φ) = R2
0(φ) − i

d

dφ
R0(φ) ≡ R2

0(φ) + R1(φ), (A5)

n3(φ) = R3
0(φ) + 3R0(φ)R1(φ) + R2(φ), (A6)

n4(φ) = R4
0(φ) + 6R2

0(φ)R1(φ) + 4R0(φ)R2(φ) + 3R2
1(φ) + R3(φ), (A7)

n5(φ) = R5
0(φ) + 10R3

0(φ)R1(φ) + 10R2
0(φ)R2(φ) + 15R0(φ)R2

1(φ) + 5R0(φ)R3(φ) + 10R1(φ)R2(φ) + R4(φ), (A8)

n6(φ) = R6
0(φ) + 15R4

0(φ)R1(φ) + 20R3
0(φ)R2(φ) + 45R2

0(φ)R2
1(φ) + 15R2

0(φ)R3(φ) + 60R0(φ)R1(φ)R2(φ)

+ 6R0(φ)R4(φ) + 15R3
1(φ) + 15R1(φ)R3(φ) + 10R2

2(φ) + R5(φ), (A9)

where we used the definition

Rn(φ) = (−i)n
dn

dφn
(Trρ(φ) − N0) . (A10)
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Derivatives of the density matrix ρ(φ) (A3) can be calculated as,

− i
d

dφ
ρ(φ) = 2ρ(φ)(1 − ρ(φ)), (A11)

(−i)2 d2

dφ2
ρ(φ) = 4ρ(φ)(1 − ρ(φ))(1 − 2ρ(φ)), (A12)

(−i)3 d3

dφ3
ρ(φ) = 8ρ(φ)(1 − ρ(φ)) − 48ρ2(φ)(1 − ρ(φ))2, (A13)

(−i)4 d4

dφ4
ρ(φ) = 16ρ(φ)(1 − ρ(φ))2 − 16ρ2(φ)(1 − ρ(φ)) − 192ρ2(φ)(1 − ρ(φ))3 + 192ρ3(φ)(1 − ρ(φ))2, (A14)

(−i)5 d5

dφ5
ρ(φ) = 32ρ(φ)(1 − ρ(φ))3 − 128ρ2(φ)(1 − ρ(φ))2 + 32ρ3(φ)(1 − ρ(φ)) + 2304ρ3(φ)(1 − ρ(φ))3

− 768ρ2(φ)(1 − ρ(φ))4 − 768ρ4(φ)(1 − ρ(φ))2, (A15)

which gives

R0(φ) = Trρ(φ) − N0, (A16)

R1(φ) = 2Trρ(φ)(1 − ρ(φ)), (A17)

R2(φ) = 4Trρ(φ)(1 − ρ(φ))(1 − 2ρ(φ)), (A18)

R3(φ) = 8Trρ(φ)(1 − ρ(φ)) − 48Trρ2(φ)(1 − ρ(φ))2, (A19)

R4(φ) = 16Trρ(φ)(1 − ρ(φ))2 − 16Trρ2(φ)(1 − ρ(φ)) − 192Trρ2(φ)(1 − ρ(φ))3 + 192Trρ3(φ)(1 − ρ(φ))2, (A20)

R5(φ) = 32Trρ(φ)(1 − ρ(φ))3 − 128Trρ2(φ)(1 − ρ(φ))2 + 32Trρ3(φ)(1 − ρ(φ)) + 2304Trρ3(φ)(1 − ρ(φ))3

− 768Trρ2(φ)(1 − ρ(φ))4 − 768Trρ4(φ)(1 − ρ(φ))2. (A21)

Up to the sixth order, the average Routhian of Eq. (7) to be minimized reads

EN0 = 〈�|Ĥ − k1(N̂ − N0) − k2(N̂ − N0)2 − k3(N̂ − N0)3 − k4(N̂ − N0)4 − k5(N̂ − N0)5 − k6(N̂ − N0)6|�〉. (A22)

Average values of powers of the particle-number operator are given in Eqs. (A4)–(A9) taken at φ = 0. Moreover, in all terms
with m � 2, one can set R0 ≡ 0. This gives

EN0 = 〈�|Ĥ |�〉 − k1(Trρ − N0) − 2k2Trρ(1 − ρ) − 4k3Trρ(1 − ρ)(1 − 2ρ) − 12k4(Trρ(1 − ρ))2

− 8k4Trρ(1 − ρ) + 48k4Trρ2(1 − ρ)2 − 80k5(Trρ(1 − ρ))(Trρ(1 − ρ)(1 − 2ρ))

− 16k5Trρ(1 − ρ)2 + 16k5Trρ2(1 − ρ) + 192k5Trρ2(1 − ρ)3 − 192k5Trρ3(1 − ρ)2

− 120k6(Trρ(1 − ρ))3 − 240k6(Trρ(1 − ρ))2 + 1440k6(Trρ(1 − ρ))(Trρ2(1 − ρ)2)

− 160k6(Trρ(1 − ρ)(1 − 2ρ))2 − 32k6Trρ(1 − ρ)3 + 128k6Trρ2(1 − ρ)2

− 32k6Trρ3(1 − ρ) − 2304k6Trρ3(1 − ρ)3 + 768k6Trρ2(1 − ρ)4 + 768k6Trρ4(1 − ρ)2. (A23)

Hence, the corresponding mean-field Routhian (to be used in the HFB equations) reads1

h′ = h − k1 − (2k2 + 24k4Trρ(1 − ρ) + 8k4) (1 − 2ρ) − 4k3((1 − 2ρ)2 − 2ρ(1 − ρ))

+ 96k4ρ(1 − ρ)(1 − 2ρ) − 80k5(Trρ(1 − ρ)(1 − 2ρ))(1 − 2ρ) − 80k5(Trρ(1 − ρ))(1 − 2ρ)2

+ 160k5(Trρ(1 − ρ))ρ(1 − ρ) − 16k5(1 − ρ)2 + 64k5ρ(1 − ρ) − 16k5ρ
2 + 384k5ρ(1 − ρ)3

− 1152k5ρ
2(1 − ρ)2 + 384k5ρ

3(1 − ρ) − 32k6 − 360k6(Trρ(1 − ρ))2 − 320k6(Trρ(1 − ρ)(1 − 2ρ))

− 480k6(Trρ(1 − ρ)) + 1440k6(Trρ2(1 − ρ)2) + 1984k6ρ + 720k6(Trρ(1 − ρ))2ρ + 1920k6(Trρ(1 − ρ)(1 − 2ρ))ρ

+ 3840k6(Trρ(1 − ρ))ρ − 2880k6(Trρ2(1 − ρ)2)ρ − 17280k6ρ
2 − 8640k6(Trρ(1 − ρ))ρ2

− 1920k6(Trρ(1 − ρ)(1 − 2ρ))ρ2 + 49 920k6ρ
3 + 5760k6(Trρ(1 − ρ))ρ3 − 57 600k6ρ

4 + 23040k6ρ
5. (A24)

1Mean fields, (A24), and reduced energy kernels, (10), are tradi-
tionally denoted by the same symbol, h, but should not be confused
with one another.

Although the expression for the mean-field Routhian looks
complicated, it is easy to compute. Additional terms appearing
within the Lipkin method are simply composed of powers of
density matrices, and the manipulations of these terms can be
easily performed numerically. The particle-particle mean fields
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FIG. 9. (Color online) Ground-state energies in the two-level
pairing model calculated within the sixth-order Lipkin and exact
VAPNP methods. To render the curves symmetric with respect to
the closed shell at N = 20, the appropriate linear term was added.
Normalization of 50G + ε = 1 MeV was used.

remain the same, so that the HFB equations are modified only
through Eq. (A24).

Lipkin parameters km for m = 1, . . . ,M can be determined
from Eq. (9) by requiring that it is fulfilled at gauge angle
φ = φ0 = 0 and also at all M other nonzero values of the
gauge angle φi . This gives

C +
∑
m

kmnm(φi) = h(φi), (A25)

where C is the flattened Routhian. Then, at sixth order, Lipkin
parameters km can be easily obtained by inverting the matrix
built of coefficients nm(φi) as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C

k1

k2

k3

k4

k5

k6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 n1(0) · · · n6(0)

1 n1(φ1) · · · n6(φ1)

1 n1(φ2) · · · n6(φ2)

1 n1(φ3) · · · n6(φ3)

1 n1(φ4) · · · n6(φ4)

1 n1(φ5) · · · n6(φ5)

1 n1(φ6) · · · n6(φ6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h(0)

h(φ1)

h(φ2)

h(φ3)

h(φ4)

h(φ5)

h(φ6)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A26)

At lower orders, or when neglecting odd orders, a smaller
number of gauge-angle points can be used.

In fact, the value of C obtained from the first row in
Eq. (A26) does not appear in the mean-field Routhian, (A24),
and can be ignored. At any rate, at convergence it is calculated
from Eq. (A24). Moreover, during the iteration of the HFB
equation, the parameter k1 ≡ λ is treated as a Lagrange
multiplier, determined so as to adjust the average particle
number, for which, at convergence, one has Trρ = N0, and
thus k1 has no influence on the value of the right-hand side of
Eq. (A24). This means that in the linear equation, (A25), the
term related to k1 can be simply moved from the left-hand side

FIG. 10. (Color online) Ratios of approximate pairing energies,
calculated within the approximate LN (open circles) and Lipkin
VAPNP methods, relative to those of the exact VAPNP method. The
figure shows results obtained for φM = 0.06 as a function of the
pairing-strength parameter x = G/2ε. Note that (a)–(j) are drawn on
very different scales, indicating the discrepancies of up to 100% for
N = 20 and only 0.2% for N = 2.

to the right, and the dimension of the matrix in Eq. (A26) can
be further reduced correspondingly.

APPENDIX B: THE LIPKIN METHOD APPLIED TO THE
TWO-LEVEL PAIRING MODEL

In this Appendix, we apply the Lipkin method to the
standard two-level pairing model, which is characterized by
two �-fold degenerate levels with the single-particle energy
difference 2ε and pairing strength G. Below we closely follow
the notations and definitions presented in Refs. [18,19], where
the results obtained within the LN method have been studied.

In Fig. 9, we show the particle-number dependence of the
ground-state energies obtained for � = 20 and for three values
of the ratio x = G/2ε: 0.03 (weak pairing), 0.053 (critical
pairing), and 1 (strong pairing). Results show excellent agree-
ment between the sixth-order Lipkin and the exact VAPNP
methods, which on the absolute scale of energy cannot be
distinguished one from another. To compare the approximate
and exact VAPNP methods in fine detail, in Fig. 10 we plot the
ratios of the respective pairing energies, R = E

approx
pair /EVAPNP

pair ,
as functions of x. The pairing energies are defined [18,19] as
differences between the total and the Hartree-Fock energies.
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FIG. 11. (Color online) Same as Fig. 10, but for the results
obtained for x = 0.03 (weak pairing) plotted as a function of the
maximum gauge angle φM .

Note that the results are exactly symmetric with respect to the
midshell; that is, those for particle numbers of N and 2� − N
are exactly identical.

The ratio of R = 1, that is, perfect agreement, is, for all
particle numbers, reached in the strong-pairing regime. For
weak pairing, the largest discrepancies appear at midshell,
N = 20, and they gradually decrease towards smaller (or
larger) particle numbers. This is related to the kink in
the particle-number dependence of ground-state energies
[19] (cf. Fig. 9), which disappears with increasing pairing
correlations.

For N = 20, with increasing order of the Lipkin expansion,
the agreement with the exact results gradually increases, and
the Lipkin VAPNP method, even at second order, is here visibly
superior to the LN method. Note that at N = 20, the odd orders
of expansion (third and fifth) do not bring any improvement:
this owes to the symmetry of the model with respect to the
midshell.

For N = 18, the Lipkin expansion cannot reproduce the
kink appearing at the adjacent particle number of N = 20
(see Fig. 9), and it does not seem to converge to the exact
result, whereas the LN results are clearly superior. For smaller
particle numbers, this pattern gradually changes, for N � 12
the Lipkin expansion does converge to the exact result, and at
orders higher than 4 it becomes better than the LN method.

We stress here that in the realistic cases discussed in Sec. III,
the pattern of comparison between the LN and the Lipkin
VAPNP methods pertains to moderately high pairing strengths,
certainly beyond the pairing phase transition, which, in the
two-level model, appears at xc = 1/(� − 1) � 0.053.

Finally, in Fig. 11, we show the dependence of the
results on the maximum gauge angle φM used in the Lipkin
VAPNP method (see Secs. II and III). We see that for all
particle numbers, the second-order results do depend on φM ,
indicating an insufficient order of expansion. For N � 12 we
see that with increasing order of expansion, the results become
perfectly independent of φM , which characterizes a converging
expansion. On the other hand, closer to the midshell, even at
sixth order a visible dependence on φM still remains.
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