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Background: Density functional theory (DFT) is the microscopic tool of choice to describe properties of nuclei
over the entire nuclear landscape, with a focus on medium-mass and heavy complex systems. Modern energy
density functionals (EDFs) often offer a level of accuracy typical of phenomenological approaches based on
parameters locally fitted to the data. It is clear, however, that in order to achieve high quality of predictions
to guide spectroscopic studies, current functionals must be improved, especially in the isospin channel. In this
respect, experimental studies of short-lived nuclei far from stability offer a unique test of isospin aspects of the
many-body theory.

Purpose: We develop the isospin-invariant Skyrme-EDF method by considering local densities in all possible
isospin channels and proton-neutron (p-n) mixing terms as mandated by the isospin symmetry. The EDF
employed has the most general form that depends quadratically on the isoscalar and isovector densities. We test
and benchmark the resulting p-n EDF approach, and study the general properties of the new scheme by means
of the cranking in the isospin space.

Methods: We extend the existing axial DFT solver HFBTHO to the case of isospin-invariant EDF approach with all
possible p-n mixing terms. Explicit expressions have been derived for all the densities and potentials that appear
in the isospin representation. In practical tests, we consider the Skyrme EDF SkM* and, as a first application,
concentrate on Hartree-Fock aspects of the problem, i.e., pairing has been disregarded.

Results: Calculations have been performed for the (A = 78,7 ~ 11), (A =40,T ~8), and (A =48,T >~ 4)
isobaric analog chains. Isospin structure of self-consistent p-n mixed solutions has been investigated with and
without the Coulomb interaction, which is the sole source of isospin symmetry breaking in our approach. The
extended axial HFBTHO solver has been benchmarked against the symmetry-unrestricted HFODD code for deformed
and spherical states.

Conclusions: We developed and tested a general isospin-invariant Skyrme-EDF framework. The new approach
permits spin-isospin densities that may give rise to hitherto unexplored modes in the excitation spectrum.
The new formalism has been tested in the Hartree-Fock limit. A systematic comparison between HFODD and
HFBTHO results show a maximum deviation of about 10 keV on the total binding energy for deformed nuclei
when the Coulomb term is included. Without this term, the results of both solvers agree down to a ~10 eV
level.

DOI: 10.1103/PhysRevC.89.054317 PACS number(s): 21.10.Hw, 21.60.Jz, 21.10.Sf

I. INTRODUCTION

A major challenge for low-energy nuclear theory is to
develop a universal nuclear EDF that can be used to explain
and predict static and dynamic properties of atomic nuclei
throughout the entire nuclear landscape within the framework
of nuclear DFT. In a worldwide effort to develop a general-
purpose nuclear EDF [1-3], various strategies are applied,
and, to realize this vision, the properties of rare isotopes are
an essential guide.

In the quest of developing a universal nuclear EDF, the
existing functionals ought to be enriched by incorporating
the neglected couplings, especially in the spin and isospin
channels. Indeed, the recent work [4] suggests that the Skyrme
EDF has reached its limits and significant changes to the form
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of the functional are needed. As far as the isospin sector
is concerned, most of the EDFs include isoscalar particle
densities and a single 7, component in the isovector channel.
The #, and ¢,, or p-n mixed, components of isovector densities
are completely neglected. In the heavier nuclei where neutrons
and protons occupy different shell-model spaces, the neglect
of the p-n mixed densities could be justified. However, in the
lighter and medium-mass nuclei, neutrons and protons move
in the same shells and the exclusion of these isovector densities
cannot be justified. There are several observations that indicate
deficiencies inherent in the existing EDF and other approaches
to describe nuclei in the vicinity of the N = Z line [5,6].
For instance, it is quite well established that binding energies
of the nuclei close to the N = Z line are underestimated by
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theoretical models [7,8], and p-n correlations are expected to
be the missing piece of physics in this puzzle.

In some earlier studies, p-n mixing has been investigated
in the particle-particle channel [9-14] (see Refs. [5,6] and
Sec. IV of Ref. [15] for a more complete list of references). In
the particle-hole sector, however, the p-n mixing and resulting
symmetry breaking effects have been largely neglected (a
notable exception is the recent study of 2'Ne [16] that
considered a p-n mixing on the HF level). As discussed in
[15], such an approximation does not seem to be justified as
the self-consistent polarization between particle-hole (p-h) and
particle-particle (p-p) HFB channels is known to be strong. In
Refs. [15,17] a generalized EDF approach has been proposed
that allows for the arbitrary mixing of protons and neutrons,
and an isospin-invariant EDF has been constructed. It has been
shown that the generalized EDF gives rise to novel spin-isospin
combinations of nucleonic densities that are absent in the
standard Skyrme approaches. We expect that those extensions
may lead to new, hitherto unexplored, nuclear modes.

The main objective of this study is to develop, test,
and benchmark the isospin-invariant Skyrme-EDF (pnEDF)
approach formulated in the cylindrical coordinate system,
whose building blocks are all possible p-n mixed local
densities. Since the majority of nuclei are axial in their
ground states, such an approach will allow us to extend the
global surveys of nuclear properties [18-21] made with the
axial DFT solver HFBTHO [22,23] to observables and decays
related to isospin. The code HFBTHO has been optimized for
performance on flagship computing platforms, for it serves
as a backbone of the EDF optimization package [4,24]. In
a parallel study [25], p-n mixed densities have also been
implemented in the general-purpose solver HFODD [26] written
in a three-dimensional Cartesian basis. We take advantage of
this development to benchmark both pnEDF schemes.

The paper is organized as follows. Basic expressions
pertaining to the isospin-invariant pnEDF approach are briefly
summarized in Sec. II. Section III discusses the HF application
of the formalism to isobaric analog states (IASs) using the
two-dimensional isocranking formalism. The axial HFBTHO
pnEDF framework is benchmarked against the symmetry-
unconstrained pnEDF HFODD approach in Sec. IV. Finally,
Sec. V contains the summary of our work and prospects for
further developments.

II. BASICS OF pnEDF APPROACH

The pnEDF Kohn-Sham state |W) is a single Slater
determinant built of the set of A fully occupied single-particle
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(s.p.) states, that is,

A

W) =[]ct0). e))
k=1

where ¢;” denotes the s.p. state creation operator. This operator
can be expressed in terms of the s.p. wave function Vi (rst),

cf = /d3rz Virsta), (k< A), @)
st

where a;*st creates the nucleon at point r, spin s = :t%, and
isospin t = —l—% (neutron) or —% (proton). In the p-n mixing
framework, the HF s.p. state ¢;” contains the neutron and proton
components. In the present study, we only consider unpaired
systems and particle-hole (p-h) densities, whereupon Vi (rst)
are simply the self-consistent HF wave functions. However,
expressions given below are also valid within the HFB
approach, where V(rst) correspond to lower components of
the quasiparticle wave functions [27,28].

To fix the notation, we now recall basic expressions
introduced and derived in Ref. [17]. The one-body density
matrix p is defined as

Iy +

p(rst,r's't’) = (Vla, ., ars | V)

A
= Z Vi(r's't YV (rst), (3)

k=1

and the pnEDF can be written as

Alp] = / PrH(r) = / PrHs(r) + Ecoulpl, ()

where the Skyrme energy density is

2

Hsk(r) = 2, 10+ x0(r) + X1 (r) &)
with to(r) being the isoscalar kinetic-energy density (it
is assumed in the following that the neutron and proton
masses are equal). The Coulomb energy functional Ecq, is
the only term that breaks the isospin symmetry. The Slater
approximation is used for the Coulomb exchange functional.
The p-h Skyrme interaction-energy densities xo(r) and y;(r)
depend quadratically on the isoscalar and isovector densities,
respectively. Based on general rules of constructing the energy
density [17], one obtains

Xo(r) = C{ p2 + Co" poApo + Cgpoto + CJ°JE + CJ1 I + C2 3 + €Y poV - o
+Cys2+ CLso - Aso+ Clso - To+ CLj+Cyso- (V x jo)+ Cy*(V -50)° + Cl'so - Fo, (6a)

- - - > o =4 =2 =2 > 2
X)) =Clp2+CM¥poAp+Cipot+CI0T2+C' T +C{? +CYpov.-J

F OS24 N5 0AF+CT5 - oT +Clj +CV5 - o(V x j)+ CV(V -5) + CF'5 - oF, (6b)
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where x stands for the vector product of vectors in space,
o stands for the scalar product of isovectors in isospace, and
other definitions closely follow those introduced in Ref. [17].
Quasilocal densities px, Tk, St, Tk, ji» Fi. Ji, Jx, and J,,
are defined through the particle and spin nonlocal densities,

pelrr’) =) plrstr'st)if,, @

stt’

si(ror')y =) prst.r's'!)6 g, ®)

ss'tt’

where k runs from 0 to 3, & and £¥(k = 1,2,3) are the Pauli
matrices for spin and isospin, respectively, and ft(,)t = 6y;. The
explicit definitions and expressions in the cylindrical basis
for the local densities appearing in Egs. (6) are given in the
Appendix. By varying the pnEDF with respect to the density
matrices, one obtains the p-h mean-field Hamiltonian:

SH(p]
Sp(rst,r's't")

h2
= — —8(" — r/)V -V S.V’S(St’t
2m

h(r's't rst) =

+ 0@'s't  rst) + 0.(r's't rst),  (9)

where I" is the HF potential and I, is the rearrangement
potential.

For the pnEDF depending on quasilocal densities only, such
asin Eq. (6), the HF Hamiltonian is a local differential operator,

h(r's't',rst) = 8(r — rh(r;s't’ st), (10)
which has a simple isospin structure:
h(r;s't' st) = ho(r; s',5)80 + h(r;s',s)o Ty (11)
The isoscalar and isovector parts of the HF Skyrme Hamilto-
nian can be written in the compact form as
hz
hi(rss's) = — S— V83810 + Uidys + Z - 6
2m
1 .
+ E[lkfss’s + (Bk . o—s’s)] %

oV Uiy + B 6]
—V - [MSys + Cy - 64,1V
—V-Di6y,-V, (12)
where k = 0,1,2,3, and
(B-6)y = > Bub’, (13)
b

for a = x,y,z, denotes the ath component of a space vector.
By introducing the unit space tensor § and the antisymmetric
space tensor (€ - J)qp = ). €qcpJ . the local real potentials
can be written as

Ui(r) = 2CL pi +2C Apy + Cl e + €IV - Ji, (14a)
Ti(r) = 2Cs; +2(CA — CV)Asp — 2CY°V x (V x s3)
+CI'T,+CIFi+CV x ji, (14b)
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I(r) = 2C/ ji + CY/V x sy, (14¢)
Bi(r) = 2C/° k8 —2C e - Ji +2C)%, +CY e -V,

(14d)
Mi(r) = C; px, (14e)
Ci(r) = Clsy, (14f)
Di(r) = Cls;. (14g)

All coupling constants C; in Egs. (14) are taken with r = O for
k = 0 (isoscalars), and with t = 1 for k = 1,2,3 (isovectors).'

The resulting HF equation can be written as a self-consistent
eigenvalue problem,

/ d’r Zﬁ(r’s/ﬂ,rsz)vk*(rsr) =g Vi(r's't), (15)
st

which is solved by filling the lowest A s.p. orbits in the density
matrix (3).

III. MODEL STUDY

Recently, two computer codes capable of solving the self-
consistent equations for the isospin-invariant pnEDFs with
the p-n mixing, have been developed in parallel. The recent
study [25] describes the scheme based on the code HFODD
[26], which can treat symmetry-unrestricted nuclear shapes.
In this work, we present the implementation based on the code
HFBTHO, which assumes axial and time-reversal symmetries.
The two codes complement each other in that HFODD is more
general whereas HFBTHO is much faster, and thus they have
different scopes and application ranges. While HFBTHO can
employ the transformed oscillator basis that is particularly
useful for weakly bound nuclei, the focus of the present work
is to benchmark HFBTHO with HFODD; hence, we shall use the
standard harmonic oscillator basis.

As in Ref. [25], we diagonalize the s.p. Routhian,

W=h-%ot, (16)

where h is given by Eq. (11) and contains kinetic, Skyrme-
pnEDF, and Coulomb-energy terms. The isocranking term
[29], —%o ? depends on the isocranking frequency (isovector
Fermi energy) X and the s.p. isospin operator f = T /2.

For systems obeying the time-reversal symmetry, (f,)
vanishes [17] and the rotation in isospace is described by a
two-dimensional isocranking, that is,

R0t = —Ady — Ak (17)

The isocranking frequencies, A, and A,, can be varied to
control the isospin of the system. Following the methodology
developed in Ref. [25], they are parametrized as

Ay = A cosO + Ao, Ay = A'sinf’, (18)

'Note that traditionally (cf. Ref. [17]) the same symbol ¢ denotes
either the s.p. isospin coordinate r = :I:% or isoscalar/isovector
coupling constants (+ = 0/t = 1). The meaning of ¢ thus has to be
inferred from the context in which it is used.
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and the isocranking tilting angle 6’ is varied between 0° and
180°, that is, the isovector Fermi energy on the A,—X, plane
moves along a shifted semicircle. In this work, numerical
calculations were performed for the A = 78 IASs with T ~
11. We used the Skyrme EDF parametrization SkM* [30]
and the s.p. basis space consisting of Ng, = 16 spherical
harmonic-oscillator (HO) shells. Fore more details on the
parameters employed, see Sec. [V.

In the absence of the Coulomb interaction, choosing
A =21 MeV, Ao =0 MeV, and varying 6’ from 0° to
180° generates all the A = 78 and T = 11 IASs. The angles
6’ = 0°, 90°, and 180° correspond to the HF solutions for
8Ni (T, = 11), ®Y (T, = 0 in the odd-odd system), and ®Sn
(T, = —11), respectively. Our example involves very exotic
nuclei, including those beyond the proton drip line. We find
this case interesting because the nuclei at both ends of the
isobaric chain are heavy and doubly magic, thus spherical.

As discussed in Ref. [25], with the Coulomb term off, the
value of 1 is roughly equal to the absolute value of difference
between the proton and neutron Fermi energies in ®Ni or
7880, |An — Apl =21.18 MeV. Then, the isocranking term
makes the Fermi energies of neutrons and protons almost
equal. In the presence of the Coulomb interaction, however,
a large asymmetry between |4, — A, | develops between "®Ni
(12.31 MeV) and 78Sn (33.62 MeV). Therefore, to offset the
difference of Fermi energies at 6’ = 0° and 180° with Coulomb
interaction present, we set the values

A = HIAn — A, BND) + |4, — 4,/(®Sn)},  (192)
hott = 311 = Ap|5Ni) = |2, — 2, |(*Sm)}. (19b)

Using these expressions, A’ =22.94 MeV and Ax =
—10.92 MeV.

Figure 1 shows that, in the absence of the Coulomb
interaction, the total energy is independent of 6’. This should be
the case, as the pnEDF is isospin-invariant and thus the energy
must be independent of the direction of the isospin vector.
This also turned out to be an important test on the derived
expressions and numerical code, as different terms of pnEDF

-450 | w/ Coulomb ——

w/o Coulomb s
-500

-550 |
-600 |

Etot (MeV)

650
700 | A=78, T=11
750 |
-800

0 20 40 60 80 100 120 140 160 180
0 (deg)

FIG. 1. (Color online) Total HF energy of the A =78, T ~ 11
IASs as a function of 6" with (solid line) and without (dashed line)
the isospin-symmetry-breaking Coulomb term.
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FIG. 2. (Color online) Similar as in Fig. 1, but for the expectation
values of (T}) (a) and (T.) (b).

become active for different values of 8’. For 8’ = 0° and 180°,
solutions are unmixed and the densities are block-diagonal in
neutron and proton subspaces. At intermediate values of ',
the solutions are p-n mixed. For the special case of 6’ = 90°,
proton and neutron densities are equally mixed. When the
Coulomb interaction is turned on, the total energy increases
with 6" (Fig. 1), because more and more protons replace
neutrons and the Coulomb repulsion grows.

The degree of p-n mixing can be directly inferred from the
expectation values of (7',) plotted in Fig. 2(a). As expected, the
p-n mixing increases with 8" and reaches its maximum value
for 8’ = 90°, and then drops again. In Fig. 2(b), we show (7.)
and it is seen that the values of 8’ = 0°, ~90°, and 180° do
correspond to 8N4, 7Y, and "8Sn, respectively. The behavior
of (TZ) and (T,) weakly depends on whether the Coulomb
term is included or not. This is entirely due to our choice of
the shifted semicircle (18), whereupon the linear constraint
Aofif; absorbs the major part of the isovector component of the
Coulomb interaction.

The Coulomb interaction breaks isospin and thus induces
the isospin mixing in the HF wave function. To illustrate this,
Fig. 3 shows the average value of (72) for the converged
HF solutions. For the considered case of the T = 11 systems,
(T?) should be exactly equal to 11 x 12 = 132 in the absence
of isospin mixing. However, as shown in Fig. 3, even
in the absence of the Coulomb interaction, (72) slightly
deviates from this value. At the origin of this effect is the
spurious isospin mixing [31-33]. Indeed, within the mean-field
approximation, the isospin symmetry is broken spontaneously
as the HF wave function is not an isospin eigenstate. However,
since the Skyrme EDF is isospin covariant [15,34], the HF
solutions corresponding to different orientations in the isospin
space are degenerate in energy. While the neutron-proton
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A=78 T=~11

1325 t
1324
132.3
S 1322
=)
1321
132.0
w/ Coulomb ——
131.9 W/O Coulomb ...... [
131.8 —
0 20 40 60 80 100 120 140 160 180
0 (deg)

FIG. 3. (Color online) Similar as in Fig. 1, but for (T2).

mixing changes with the angle 6, (7'2) must remain the same
in the absence of the Coulomb interaction. In the presence
of the Coulomb term, the isospin mixing is very small in
the isospin-stretched |7, | = 11 configurations (for ' = 0° and
180°) and reaches its maximum around 6’ = 90° for 7, = 0
[33.35].

The s.p. Routhians as functions of 6" are shown in Figs. 4
(without Coulomb) and 5 (with Coulomb). Eleven spherical
neutron levels and seven proton levels are occupied at 6" = 0°,
and the neutron and proton Fermi energies are shifted in such
a way that the gaps in the s.p. spectra appear at A = 78 around
—15 MeV (Fig. 4) and —10 MeV (Fig. 5). Our choice of s
guarantees that, in the presence of the Coulomb interaction, the
s.p. Routhians near the Fermi surface do not cross as functions
of 6’; this would have caused a drastic structural changes of the

A=78, T=11  w/o Coulomb <7A'Z>
1.0
0.8
-
> 0.6
(]
= 0.4
N
8 301“38l3'33ll’333'l“"llt.'llllt'll"ﬂ 0.2
:CQS gsssssssssssssssssssssssssssssssssss 0.0
E g00000000000888888888888088888888¢8¢38¢8¢8¢
o _40‘!..............................‘.... _0 2
(a4
Q:‘ (XXX [ X ] ...1: -0l4
m _50‘7..........‘........................7 _0 6
0000000000000 0000000000000000000000 _0.8
-60 “1.0

0 30 60 90 120 150 180

0’ (deg)

FIG. 4. (Color online) Single-particle Routhians as functions of
0’ for T ~ 11 configurations in the A = 78 systems. The Coulomb
interaction is not included. Points are colored according to the s.p.
expectation values of (). At 8’ = 0°, neutron and proton states are
plotted up to 1g7/, and 2p, ;», respectively.
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N E;;;:;;;;;;:i ll!!!llln!!shun 0.6
L _20 co00 ‘oo.:::':
= f2533ss0eenegdiilseces spaseee” 88838338 0.4
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& -A0f e ssppaneanntdITANIIe ) g o02
cé" .oooo"'..' -0.4
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-0.8
A=78, T=11 w/ Coulomb
%03 60 90 120 150 180 '°
0’ (deg)

FIG. 5. (Color online) Similar to Fig. 4, but with the Coulomb
interaction included.

mean field and made the adiabatic tracing of the 7 >~ 11 IAS
as a function of 0’ extremely difficult. At6’ = 0° and 180°, the
s.p. states have pure values of (7,) = :I:%. At6" ~ 90°, most of
the s.p. Routhians have (£,) close to zero, that is, they are fully
p-n mixed.

Figure 6 displays s.p. HF energies, that is, s.p. Routhians
with the isocranking term removed. Note that these are not
eigenvalues but the average values of the HF Hamiltonian,
calculated for states that are eigenstates of the Routhian (16).
With increasing 6’, owing to the increasing Coulomb field,

10 ‘ ‘
A=78, T=11
Y ———

ece000® o0
:.oonO. oo

I
=
o

boo.."‘..

pececececcceg,y,
o".!"‘ s.

|
w
<

s.p. energies (MeV)
|

ST .3 .t
403 gansy.

|
ul
o

€0 w/ Coulomb Lo
0 30 60 90 120 150 180

0’ (deg)

FIG. 6. (Color online) Similar to Fig. 4 but for the s.p. energies

with the Coulomb interaction included. Only the occupied states are
plotted; that is, at 6’ = 0°, neutron and proton states are plotted up to

1g9/» and 1 f7, shells, respectively.
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protons at 6’=180° .2
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sseesasee®” et 2 (2
T B <Tz>
P 1 R
> 0..:::3:.... 0.8
L-05 ..'l 330, 0.6
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~ e, 89/2 0.4
175} ®eg%0s 1f '
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q" 1S1/2 -0.4
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1.0 eseves 1ps/> | -0.6
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<lds )
S
—0.5’ | 1/2
_1.0,
b | | | |
0 30 60 90 120 150 180
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FIG. 7. (Color online) Evolution of s.p. energies of occupied HF
states (with Coulomb) originating from proton (top) and neutron
(bottom) shells at 8" = 180 with respect to the energy of the 1f7,»
shell, and relative to the corresponding values at ' = 0°. That is, the
energies plotted are [£;(0') — ¢, 0] — [£:(0°) — €5, (07)].

s.p. states that increase proton (neutron) component gradually
increase (decrease) in energy.

To better visualize the relative shifts of s.p. levels with 6’, in
Fig. 7 we show s.p. energies relative to the energy of the 1 f7/»
shell. The figure nicely illustrates the effect of the Coulomb
interaction on the proton components of the s.p. orbits: the
relative level shifts correlate with their binding energies and
£ values [36,37]. Indeed, the deeply (loosely) bound levels,
which have smaller (larger) rms radii and thus experience
stronger (weaker) Coulomb repulsion, are shifted up (down)
in energy relative to the high-£ 1 f7,, shell.

Some of the calculated A = 78, T ~ 11 IASs are predicted
to appear beyond the proton drip line. As seen in Fig. 6, energy
of the 1go,» level (which is neutron at 6" = 0° and proton
at 8’ = 180°) becomes positive at around 6’ = 100°, where
<7sz> ~ —1.5.At6’ = 180°, energies of the lgg/z, 1f5/2, 2[)1/2,
and 2p3/, shells are positive. However, all these states are
well localized by the Coulomb barrier, and thus correspond
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FIG. 8. (Color online) The total HF energy (with Coulomb) for
A =78, T ~ 11 calculated with Ny, = 10, 12, and 14 HO shells
relative to that with Ny, = 16 shells as a function of 6’.

to narrow resonances, whose energies can be reasonably well
described within the HO basis expansion [37].

In Fig. 8, we show the convergence of the total HF energy
with respect to the total number of HO shells Ng,. Calculations
using Ny, = 14 are not yet completely converged, with the
energy difference between Ny, = 16 and Ny, = 14 varying
around 73 keV at 8’ = 0° and 135 keV at 6’ = 180°. Although
it is expected that by increasing Ny, one may still lower the
energy, the change is expected to be less than 100 keV, and
the results presented in this study are not expected to change
significantly. A delayed convergence beyond 6’ = 140° shows
that the higher HO shells are more important at 8’ = 180°
than at 6’ = 0°; that is, a larger model space is required
for the description of the unbound proton resonances [38].
Nevertheless, as seen in Fig. 9, even near 6’ = 180° no sudden
increase of proton rms radii is obtained.

To investigate properties of the unbound proton orbits, for
the ground states of A = 78, T ~~ |T,| nuclei, we performed the
HFBRAD [39] calculations (without p-n mixing). In Fig. 10, we
show results obtained for the 1g9,, and 2p, proton states. For
each A = 78 isobar, a dotis placed at the values of s.p. energies
and radii, and lines show standard total effective HF proton
potentials. The total effective HF proton potential consists
of the standard central, spin-orbit, centrifugal, and Coulomb
terms. The proton 1g9 /> orbit in "Zr is bound, and in "®Mo it
becomes slightly unbound. This result is consistent with the
experimental observation, whereby the last bound nucleus of
the A = 78 isobaric chain, which is experimentally known,
is 8Zr (T, = —1). The rms radii of the proton 1gg/, orbits
are about 5 fm, and the s.p. wave functions are still localized,
even if the orbits become unbound. This is because the 1g9/»
and 2p;,, protons occupy states well below the potential
barrier, which pushes the proton continuum up in energy, thus
effectively extending the range of nuclear landscape into the
proton-unstable region [21,40].

It is worth noting that the 2p;/, orbit, which has a small
centrifugal barrier, is bound up to around (6’ = 125° (T.) ~
—5.7) in Fig. 6. This is consistent with Fig. 10 that shows
that the s.p. energy of 2p;, is unbound in 8Ru ((f“z) = -5).
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FIG. 9. (Color online) Neutron and proton rms radii as functions
of 6.

In the presence of p-n mixing, the proton components of the
s.p. states are smaller than those in the pure proton states, and
this effectively reduces the repulsive Coulomb energies of the
1g9/2 orbits.

IV. BENCHMARKING WITH HFODD

To demonstrate that the isospin-invariant formalism has
been properly implemented, we provide a detailed comparison
between the HFODD [25] and HFBTHO frameworks. This
benchmarking is meaningful as the two pnEDF codes were
developed independently and have fairly different structures.

proton gg» effective potential (MeV)

proton p4/» effective potential (MeV)
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In particular, the HF equations in HFODD [26] are solved in
three-dimensional Cartesian basis while HFBTHO employs the
two-dimensional cylindrical basis.

Calculations were performed for the A =40, T ~ 8 de-
formed IASs with SkM* EDF parametrization using the s.p.
basis space of Ny, = 10. The oscillator length was assumed
to be b = 1.697626 fm. The mass constant in Eq. (5) was
fixed at A?/2m =20.73 MeV fm?. As far as integration
is concerned, we used Ngy = 26 Gauss-Hermite nodes for
each Cartesian coordinate in HFODD, whereas in HFBTHO the
numbers of Gauss-Hermite (p-direction) and Gauss-Laguerre
(z-direction) nodes were assumed to be equal: Ngy = NgL =
40. In addition, in HFBTHO, the number of Gauss-Legendre
nodes used in the integration of the direct Coulomb field
was set to 80, and the Coulomb length scale was taken to
be L =50 fm. This set of parameters was recommended
as a default value in the latest version of the HFBTHO, as
it provides a sufficient precision on the direct Coulomb
energy [23]. Without Coulomb, the isocranking frequency
was set to A’ =27.092394 MeV and A,y = 0 MeV. With
Coulomb, we took the values A" = 28.613 615 MeV and Ay =
—6.010741 MeV.

The benchmarking results for the deformed case are shown
in Tables I and II for ” = 0° and 90°, respectively. In the
absence of the Coulomb term, the difference in the total energy
E,y is less than 20 eV, and the total isospin (72) agrees up to
the sixth decimal place. With the inclusion of the Coulomb
term, the agreement is slightly reduced but is still excellent. A
comparison between HFBTHO and HFODD was also performed
for the spherical A =48, T >~ 4 1ASs, and the results are

(e}

1
W

—
o

-15+

r (fm)

FIG. 10. (Color online) Lines: proton effective HF potential (with Coulomb and centrifugal terms included), calculated for the A = 78,
T >~ |T;| isobars for £ = 4 (a) and £ = 1 (b). Dots: rms radii and s.p. energies of the proton 1g9,, (a) and 1p;, states.
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TABLE I. Benchmarking of HFODD with HFBTHO for the de-
formed A = 40,T ~ 8 IASs using SkM* EDF (Ny, = 10), and 6’ =
0° (“°Mg). Other parameters are A’ = 27.092 394 MeV, Ao = 0 MeV
(without Coulomb), and A’ = 28.613615 MeV, A.,; = —6.010741
MeV (with Coulomb). Shown are various contributions to the total
binding energy E (in MeV), rms radii (in fm), expectation values of
T2,T,, and T, and the quadrupole deformation B,. The digits which
do not coincide in HFODD and HFBTHO are marked in bold.

Without Coulomb With Coulomb
HFODD HFBTHO HFODD HFBTHO
Ew —30342519 —303.42520 -276.47641 —276.47643
EDM 498448466 498.448464 49553929  495.53930
EY 175371764 175371762 171.30205  171.30206
Ep —977.24542 —977.24543 —970.09923 —970.099 26
Eso  —34.357903 —34357905 —33.184812 —33.184816
ESD 30.920704  30.920 697
ESY —4.139228  —4.139228
ro 3.697718 3.697718 3.709 975 3.709 975
P 3.176 356 3.176 356 3.217587 3.217587
T2 72022743 72.022743 72023123  72.023123
T. 8.000 000 8.000 000 8.000 000 8.000 000
T, 0.000000  0.000000  0.000000  0.000000
B 0.304201 0.304 201 0.311518 0.311518

presented in Table III for 6’ = 90° where the differences
between the two codes are largest. In this case, it is found
that deviation in the total energy is about 20 eV.

It is to be noted that both HFODD and HFBTHO use the same
number of basis harmonic oscillator states. Moreover, as it has
been demonstrated previously [23], using a sufficient number
of quadrature points in HFBTHO and HFODD, the results of
both solvers agree with a high accuracy of several eV. The
differences between the two codes with the Coulomb potential
turned on can be traced back to different techniques used to
compute the direct Coulomb field: the solver HFODD uses a
more accurate Green’s function approach. The benchmark

TABLE II. Similar to Table I but for 8’ = 90° (*°Ca).

Without Coulomb With Coulomb

HFODD HFBTHO HFODD HFBTHO
Ew —303.42519 —303.42520 —234.429  —234.419
E® 336910115 336910113  333.68 333.71
EY 336910115 336910113  318.704 318.713
Epw  —977.245420 —977.24543  —954.79 —954.83
Eso  —34.357903 —34.357905 —31.49 -31.51
ESD 75.105 75.106
ESS —7.12522 —7.12525
rm 3.549360 3.549 360 3.5930 3.5928
Fos 3.549.360 3.549 360 3.63519 3.63512
T2 72.022743 72022743 72.149 72.155
T, 0.000 000 0.000 000 0.15649 0.15652
T, 8.000 000 8.000 000 8.0051 8.005 4
B 0.304201 0.304201 0.3184 0.3182
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TABLEIII. Similar to Table I but for the spherical A = 48,7 ~ 4
IASs and 0’ = 90° (¥Cr). Other parameters are: A’ = 11.0 MeV,
Aot = 0 MeV (without Coulomb), and A’ = 12.0 MeV, Ao = —8.0
MeV (with Coulomb).

Without Coulomb With Coulomb
HFODD HFBTHO HFODD HFBTHO

Eo —491.243706 —491.243724 —389.8454  —380.8438
EM 42293152 42293158  415.69 41571
EY 42293152 42293143  404.673 404.679
Ep —1337.10675 —1337.10673 —1310.44 —1310.46

Eso —36.736418 —36.736417 —34.1216  —34.1240
ESD 109.377 4 109.3781
ES —9.14576  —9.14581
rom 3.497939 3.497940 3.52633 3.52628
T, 3.497939 3.497939 3.57787 3.577 84
T2 20.037818  20.037818  20.0756 20.0771
T, 0.000 000 0.000003 —0.012676 —0.012663
T, 4.000 000 4.000 000 4.002 64 4.00278

examples discussed in this section demonstrate that the p-n
mixing has been implemented correctly in both codes.
Presently, we are in process of implementing the cylindrical
Green’s function treatment of the Coulomb potential into
HFBTHO, and it is expected that the agreement between the
two codes will further improve.

V. SUMMARY AND OUTLOOK

The description of weakly bound complex nuclei is a
demanding task, as it requires the understanding and control
of three crucial aspects of the nuclear many-body problem:
interaction, correlations, and coupling to the low-lying particle
continuum. Here, the theoretical tool of choice is nuclear
density functional theory based on the self-consistent EDF
approach. The quest for a truly universal nuclear EDF is one
of the main themes of theoretical nuclear structure research
today.

The isospin channel of the nuclear EDF still remains
largely unexplored. In the existing functionals, only isoscalar
and ¢, components of the isovector densities are used as
building blocks. In a completely isospin-invariant formalism,
all three isovector density components should be considered:
those correspond to p-n mixed densities. For heavy nuclei,
possessing significant neutron excess, the omission of p-n
mixed densities can be justified as neutron and protons
occupy different shells. However, for lighter systems, neutrons
and protons usually occupy the same shell-model orbits,
and p-n mixed densities are likely to appear. Some limited
experimental evidence suggests that the p-n fields play a role
near the N = Z line.

In the present work, we have developed a new Skyrme-EDF
approach with the inclusion of p-n mixed densities [17]. The
expressions for the densities and HF fields have been worked
out in the axial limit. The present 2D HFBTHO implementation
that includes mixed p-n densities and fields is fairly fast,
and this allows for systematic large-scale surveys. The new
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framework has been tested in the HF limit and it was bench-
marked with 3D HFODD spherical and deformed calculations
[25]. The basic features of the p-n mixed HF formalism have
been investigated by studying the A = 78,T ~ 11 IAS chain.
In particular, we investigated the isospin breaking effects and
stability of solutions obtained for the proton-unbound systems.

The present work has been primarily devoted to the
detailed test of the newly developed isospin-invariant density
functional formalism. In the near future, we intend to perform
realistic HFB calculations by including the generalized pairing
interaction in both isoscalar and isovector channels in order
to study the importance of the 7" = 0 pairing densities and
fields on the structure of nuclei close to the N = Z line and
the impact of p-n mixing on 8 decays.
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APPENDIX: CYLINDRICAL SYMMETRY

In the case of cylindrical symmetry, the third component
J, of the total angular-momentum is conserved and provides a
good quantum number €2;. The HF s.p. wave functions in the
axial limit can be written as [22]

Vi(rst) = Vi (rz)e'™ ? xi1)0(s)

+ Vo (rz)e™  x_i(s), (Al)
where AT = Q, + 1/2 and (r,¢,z) are the cylindrical coor-
dinates defining the three-dimensional position vector, r =
(rcos¢,rsing,z) and z is the chosen symmetry axis. In the
following section, the expressions in the cylindrical coordinate
basis under the axial symmetry are provided for the local
particle-hole densities. In the second section, expressions of
the derivatives of the local densities, which are used in the
evaluation of the HF potentials, are given.
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1. Particle-hole densities

We give the expression for particle density p, kinetic density
7, spin density s, spin-kinetic density 7', current density j, and
spin-current density J. Tensor-Kinetic density F is not used and
its expression is omitted.

(a) Scalar particle density

pm(r) = pm(rar,)|r:r’ (A2)

where m takes values 0, 1, 2, and 3. Suffix O represents
isoscalar component of the density and 1 to 3 are the
isovector components. Expressing the density in terms
of HFB wave functions (A1), we obtain

pm(r) =Y p" (r2)e)h

tt’

(A3)

where

Pl =Y IV Ve + ViVl (Ad)
k

and we use the abbreviation of HFB wave functions
Vip = Vis(ra). (A5)
Isospin components of the particle density are given by

po(r) = p""(rz) + p™(rz)

= 1(p""(rz) + pPP(rz) + c.c), (A6)
o1(r) = p™(rz) + p"(rz) = p"(rz) + c.c.,
(A7)
oo(r) = i[p"(rz) — pP"(r7)l = ip"(rz) +c.c.,
(AB)
p3(r) = p"'(rz) — p""(rz)
= 1(p""(rz) — p"(rz) + c.c.). (A9)

The isospin structure of the particle density given
by Egs. (A6)—(A9) is identical for all the following
particle-hole densities, and these expressions shall not
be repeated in the following.

(b) Kinetic density

() = (V- V)pu (.t )emp = Y 7" (r2)e)h,
tt’

(A10)
where

" (rz) = Z { 8, Vi “109, Vi1 + [9, Vi 109, Vi ]
k

(A7)
2

(A*)

e Ve sy —
+ Vi Vi + r—zvkt*Vkﬂ

+ [0,V 00,V + [0,V 106, vk,/]}.
(A11)

(c) Pseudovector spin density

Sm(r) = su(r, 1)y =Y 8" (r2)T)k,

1t

(A12)
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where
tr’
s (rz) = Z[ers (r2) + egsy (r2) + e.sl! (r2)]
= Z{er[vk;* Vie + Vi Vi ]
k
+eilViy Vi = Vi Vi
e ViV — VIV (A13)
(d) Pseudovector spin-kinetic density
T(r) =[(V - V)su(r. )=
=Y T" (o7, (A14)
'
where
, A+A
T (rz) = Z{er<[8 Va8, Vil + —— Vv,

k
+ [0,V 110, Vi 1 + [0, Vi *110, Vi
AA* o I
+ 72 Vie Vi +10:V,, 110V,

A A
+ie, ([a Vi 18,V + —— ViV,

+ [az Vthr*][az Vk;] -

A"AT -
- r—szt*Vthr, — [0, sz*][az Vthr’]>

[, V,;*][ar Vil

A72
+e (1090 v+ v
+ [9. V110, Vi

AT?
— V'V — [0,V 1[0 VJ)}.
2 kt Tkt Z Tkt ZVkt

(A15)

— [0r V,;*][ar Virl

(e) Vector current density

1
.]m(r) = 2_[(V - V/)pm(r»r/)]rzr’
l

=Y ",

tt’

(A16)

where
J'rz) = % ij{er([ar Ve IVih + 10,V "1V
VIV Vi1, Vi)
—2iey (AT Vi "V + ATJr Vie" V,;,)
+ e.([0- Vi 1Vr 4 [0: Vi * 1V,

— V.V = Vi lo. Vkl/])}. (A17)
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(f) Tensor spin current density

. 1 .
)= —(V; = V))s) (r.r')
21

Z J” (ro)T)y.

r= 1t
(A18)
Explicit expressions of the components are
, 1 o — X -
Jora) = 5 D 8, Vi Vi — Vil [0, V]
k
VWV VSVl (AL9)
, 1 . .
Ji(ro) = 2% Z{[ar Ve Wi = Vi [0 Vi ]
k
10, Vi, Vi + Vi [0, Vig ) (A20)
1 + AT — —
Jira) = — Z{ Vv — —Vi Vk,,},
(A21)
, 1 _ _
Ji(rz) = 3 D A0V Wi — Vil [0,V ]
k
—[32 V];*]Vk? + Vk?* [81 V];;L/]}a (A22)
. 1 _ -
Ji(rz) = % Y VIV — Vi [0:. Vi, ]
k
OV IVE — Vit o: Vb, (A23)
, 1 A~ - AT,
Jgr(VZ) = —5 Z{ TV];* th/ + Tth Vljt—’
k
AT e AT
Vo Ve Vi Vo (A2%)
. 1 N N
JLra) = = D A0V Vi = Vi [0: Vi)
k
—0. Vi WV + Vi [0V 1), (A25)
1 A~ AT
Jifs(rz) = ~ 5 {TV,(Z*V,;, + TV,;*V,;
k
At AT
-V Vi — TVk’ Vi s (A26)
, 1 o — . -
S = =3 A0V Vi = Vi 10, Vi)
k

+[0, VIVE = V[0, Va1 (A27)
The trace, antisymmetric, and symmetric parts of the tensor

spin-current density are given by

Ty =" Jkaa(r), (A28)
T =Y €apedive(r), (A29)
b,c=x,y,z
1 1 1
i) = 59k () + S dipa(r) = 2Ty (A30)
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2. Derivatives of the densities

(a) Divergence of tensor spin current density

IV T =2 S VVArs'?) - (V X 64V (rst)
kss'tt!
— VVi(rst) - (V x 6y,)Vi(rs't)}t]!
=> (DI (r))+ DI} (r2) + DI (r2)T)s,
tt
(A31)
where
: 1 A~ A~
DJ!"(rz) = 3 Z{ i Cf Vv — — (9, Vi v

k
+ 10, V110,V 1 — [0, V,, 110, V,h ]
— 18,V 1[0, Vi1 4 [, VE 8.V, ¥

+ At
+ [0V + 18V Wkﬂ},

(A32)
1’ + +x A~ +x +
DI} (rz) = ——Z —v,d, Vi1 Vi 10, Vi)
A™ + —% " —k +
- Tvkt’[az th 1= _sz (9. th’]
AT A _
- —— Vil Vi — — Vi,V
AT AT
——Veld: V"1 - _th*[arvkt’]}’
r r
(A33)
1’ ! + —% AT 1y —*
DI (r2) = =5 > 0.V 19, Vit - —[0: Vi1V,
k
—% + A —*71y77+
= [9:Vi "0, Vil = —[9:Vi "V
— +% A~ — +x
— [0V 119, Vi1 = —=10: Vi IV
A+
+ 10V, "0, Vi 1 = — o Vir Wi }
(A34)

Isospin components are given by

V- Jor)= Y (DI + DI (r2). (A35)
i=(r,¢,2)

V-Jir)= Y (DI +DIM"(r). (A36)
i=(r,¢,2)

V-Dr) =i Y (DJ"(z)—DIJ"(r). (A37)
i=(r,¢,z)
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V. Jir)= Y (DJ"(rz)— DI (rz). (A38)
i=(r,¢,z)

(b) Curl of current density

V X ju(m) =Y (V x )2k,

tt’

(A39)

where

(V x j)"(r2)

2

k

{ < Vi [9:Vig ] + V,;*[B Virl

A" AT
+ [0V Wi + — 10V Vg

+ iezp([az ij*] [3r V];,L/] + [az Vk;*][ar Vk:/]
- [ar V/;*][az V/;f] - [ar Vl;*][az V];/])

+

A~ A o
- ez(T[ar V/;*]V/:,_/ + T[ar th*]vkt,

A~ AT _
+ v+ v v ) |
(A40)

(c) Curl of spin density

V X §,(r) = Z(V X s)”’(rz)rﬂ;,

tt’

(A41)

where

(V x 8" (r2) =i Y {er([0: V"1Vt + Vi [0: Vi ]
k

- [82 VthF*]ij’ - ij* [82 Vk;])

— iep([3: Vi "1V + Vi "[9: Vi ]
+ [0, V.1V, + Vi 9.V, ]
—[8: Vi Vi = Vi "9, Vi)

+ 10- Vi W + Vi "10: Vi D
+e.([8, V71V, + Vi [0, Vi,

— [0,V Vi = Vi "[8, Vb D).

(A42)
(d) Laplacian of p

Viou(r) =) Q")+ L") 7, (A43)

74
where
L"(rz) = ) (VI IV Vil + Vi VPV
k

+ VLIVEV T+ Vo IVEV AT, (A44)
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Vb= Vet ?, (A45)
Vi, = Vet (A46)
(e) Laplacian of s
V25, (r) = Z(zT”’m) +8"(r2)
1’
€r 1w €y 1 m
— r_zsr (rz) — r_2S¢ (rz)) T, (A47)
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where

S (rz2) =Y eIV V" 1Vih + Vi [V V]
k

+ V2V IV, + VI IVEVLD
+iey(—[V2V IV = Vi VAVl
+IVIV Ve + Vi IV VD

+ e ([V? VIV + VI vAvE]

— V2V IV — VIVIVLD). (A48)
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