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Background: Models based on using perturbative polarization corrections and mean-field blocking approxima-
tion give conflicting results for masses of odd nuclei.
Purpose: We systematically investigate the polarization and mean-field models, implemented within self-
consistent approaches that use identical interactions and model spaces, to find reasons for the conflicts between
them.
Methods: For density-dependent interactions and with pairing correlations included, we derive and study links
between the mean-field and polarization results obtained for energies of odd nuclei. We also identify and discuss
differences between the polarization-correction and full particle-vibration-coupling (PVC) models. Numerical
calculations are performed for the mean-field ground-state properties of deformed odd nuclei and then compared
to the polarization corrections determined using the approach that conserves spherical symmetry.
Results: We have identified and numerically evaluated self-interaction (SI) energies that are at the origin of
different results obtained within the mean-field and polarization-correction approaches.
Conclusions: Mean-field energies of odd nuclei are polluted by the SI energies, and this makes them different
from those obtained using polarization-correction methods. A comparison of both approaches allows for the
identification and determination of the SI terms, which then can be calculated and removed from the mean-field
results, giving the self-interaction-free energies. The simplest deformed mean-field approach that does not break
parity symmetry is unable to reproduce full PVC effects.

DOI: 10.1103/PhysRevC.89.014307 PACS number(s): 21.10.Pc, 21.60.Jz

I. INTRODUCTION

The perturbative particle-vibration-coupling (PVC) model
for odd-particle-number nuclei emerges naturally from the
self-consistent Green’s function theory [1]. It describes the
polarization of the nucleus when one particle is added or
removed [2], and its results can, in principle, be directly
compared against experimental data. As used in nuclear
physics, the perturbative PVC method employs one-particle or
one-hole states (or one-quasiparticle states) coupled with the
random-phase approximation (RPA) or quasiparticle random-
phase approximation (QRPA) excitations of an even-even
reference nucleus and the residual nucleon-nucleon interaction
that mixes these states at second-order perturbation theory.
Numerous PVC calculations of increasing level of sophistica-
tion have already been performed; see, e.g., Refs. [3–19] and
excellent recent reviews thereof available in Refs. [14,18,20].

An alternative to describing odd nuclei within the per-
turbative PVC calculations are the energy-density-functional
(EDF) methods; see, e.g., Refs. [21–27], which use blocking
of single-particle (s.p.) or quasiparticle orbitals. To distinguish
these methods from the full PVC approach, in the present
study we call them mean-field polarizations or polarization
corrections. The advantage of blocked mean-field calculations
is that they are nonperturbative and variational.

As it turns out, the effects obtained within the blocked
mean-field methods are substantially different and, in general,

weaker than those obtained from the perturbative PVC [20].
This discrepancy between models, even when using exactly
the same interactions and model spaces, needs to be solved,
and this is the main purpose of the present work.

The link between the mean-field and perturbative methods
was proposed a long time ago [28–31]. Here we identify
several approximations that are required to firmly establish
such a link, and we also extend the derivations to EDFs based
on density-dependent interactions and to those that include
pairing correlations. Because the determination of mean-field
polarizations requires breaking symmetries, no numerical
comparison of the two approaches, such as given here, is
available up to now. As required by a thorough comparison,
both in the mean-field and (Q)RPA calculations we use full
self-consistency and exactly the same particle-hole EDFs,
pairing interactions, and model spaces.

The paper is built around two main chapters presenting
theoretical derivations in Sec. II and the Appendix and
numerical results in Sec. III. For theory, we present results
pertaining to the Hartree-Fock (HF) approximation (Sec. II A),
density functionals (Sec. II B), and pairing correlations
treated within the Hartree-Fock-Bogoliubov (HFB) framework
(Sec. II C). Then results of calculations are discussed for
the density-independent (Sec. III A) and density-dependent
(Sec. III B) particle-hole interactions and for paired systems
(Sec. III C). Conclusions are given in Sec. IV.
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II. THEORY

A. Polarization corrections in the HF approximation

In this section we revisit the classic problem [28–31]
of the polarization effect exerted by an odd particle on a
mean-field state. To put further discussion in perspective, we
study the problem in the HF approximation, and we assume
that the mean field is obtained by the HF averaging [32] of
a given known two-body density-independent interaction that
has antisymmetrized matrix elements v̄i ′k′ik .

Let ρA and hA denote, respectively, the self-consistent
density matrix and HF Hamiltonian for a system of A
fermions: TrρA = A,[hA,ρA] = 0. Similarly, let ρA±1 denote
the self-consistent density matrices corresponding to the HF
solution for the (A ± 1)-particle system: TrρA±1 = A ± 1,
[hA±1,ρA±1] = 0. We use notation in which the upper and
lower signs correspond to adding or subtracting a particle.
Without pairing correlations, even and odd systems are
described in exactly the same way, so without any loss of
generality, we assume that A is even.

Self-consistent HF total energies of the A- and (A ± 1)-
particle systems are given by [32]

EA = Tr(tρA) + 1
2 Tr1Tr2(ρAv̄ρA), (1a)

EA±1 = Tr(tρA±1) + 1
2 Tr1Tr2(ρA±1v̄ρA±1). (1b)

Here t represents the matrix of one-body kinetic energy. In
what follows we always neglect the so-called center-of-mass
correction to the kinetic energy [32,33]. These corrections are
explicitly A-dependent and thus give trivial so-called mass
polarization corrections [25] to energy differences EA±1 −
EA. Although they can always be added, they would obscure
the analysis of standard polarization corrections, which are
attributable to two-body interactions and which are the main
focus of the present study.

Suppose now that ρλ (Trρλ = 1) is the density matrix of a
s.p. state λ. We may now ask what the relations are between the
density matrices ρA, ρA±1, and ρλ. Of course, we can always
define a corrective density matrix δρ (Trδρ = 0) such that, by
definition,

ρA±1 = ρA ± ρλ + δρ. (2)

However, a perturbative treatment can only be obtained in the
case when δρ is small, that is, small in the sense that when the
energy of the odd systems EA±1 [Eq. (1b)] is calculated for
the density matrix in Eq. (2), only terms up to second order in
δρ are important.

Note that, by definition, the three density matrices are
Hermitian and projective,

(ρA)2 = ρA = (ρA)+, (3a)

(ρA±1)2 = ρA±1 = (ρA±1)+, (3b)

(ρλ)2 = ρλ = (ρλ)+. (3c)

Also note that δρ does depend on the polarizing state λ;
nevertheless, we do not mark it with superscript λ. This is to
avoid a confusion of understanding δρ as a correction to the

orbital itself; indeed, this correction certainly corresponds to a
modification of all orbitals of the system.

1. Properties of δρ

The corrective density matrix δρ can be small only when
the orbital λ and the states in even and odd nuclei are chosen
in a specific way. We may then have four interesting cases to
consider. In the first case, let us assume that we initially solve
the self-consistent equations of the even A-particle system
and |λ〉 is one of the unoccupied HF eigenstates therein (a
particle state); that is, hA|λ〉 = eλ|λ〉, ρAρλ = 0. We may
now put a particle in this orbital and solve the self-consistent
equations of the (A + 1)-particle system. In this sense, the
(A + 1)-particle system becomes polarized by an addition of
a particle to the A-particle system. Note that by this procedure
all HF s.p. states of the A-particle system become modified,
including the added state λ.

The second case is obtained by a similar procedure, where
instead we arrive at a polarized (A − 1)-particle system. For
that, we pick λ as one of the occupied HF eigenstates of the A-
particle system (a hole state); that is, hA|λ〉 = eλ|λ〉, ρAρλ =
ρλ. By removing a particle from this state and solving the
self-consistent equations of the (A − 1)-particle system, we
now obtain the polarization correction corresponding to a hole.
Note that for the two choices discussed up to now, the density
matrices ρA + ρλ and ρA − ρλ, are projective; that is,

(ρA ± ρλ)2 = ρA ± ρλ. (4)

The two remaining interesting cases correspond to in-
verse polarizations, namely, we may initially solve the self-
consistent equations of the (A ± 1)-particle systems, and
then pick λ either as an unoccupied orbital in the (A − 1)-
particle system, hA−1|λ〉 = eλ|λ〉, ρA−1ρλ = 0 or as an occu-
pied orbital in the (A + 1)-particle system, hA+1|λ〉 = eλ|λ〉,
ρA+1ρλ = ρλ. Of course, in both cases, the self-consistent
equations solved for the A-particle system give the same
solutions as before. However, now state λ corresponds to the
(A ± 1)-particle systems, and thus density matrices ρA−1 + ρλ

and ρA+1 − ρλ, are projective; that is,

(ρA∓1 ± ρλ)2 = ρA∓1 ± ρλ. (5)

We see that equations we are going to derive for the
corrective density δρ do depend on the choices made for
the state λ. For the direct polarizations, that is, when λ is a
self-consistent state in the even system, we square both sides
of Eq. (2), and from Eq. (4) we obtain

δρ = (ρA ± ρλ)δρ + δρ(ρA ± ρλ) + (δρ)2. (6)

For the inverse polarizations, that is, when λ is a self-consistent
orbital in the odd systems, we rewrite Eq. (2) in the form

ρA±1 ∓ ρλ = ρA + δρ (7)

and then square both sides, which from Eq. (5) gives

δρ = ρAδρ + δρρA + (δρ)2. (8)

Equations (6) and (8) allow us to derive specific properties
of δρ that, however, are different for direct and inverse
polarizations. Assuming that we can split δρ into terms of
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first, second, and higher (neglected) orders, that is,

δρ = δρ(1) + δρ(2) + · · · , (9)

we now separately discuss direct and inverse polarizations.
In what follows, we refer to the expansion in Eq. (9) as
small-amplitude expansion, and we strive to discuss what an
acceptable magnitude of ρλ is, for which such an expansion
is meaningful. As is well known, and as we explicitly show
below, by keeping the lowest-order terms of the small-
amplitude expansion one obtains the standard RPA equations.

Beginning with the inverse polarizations, Eq. (8) gives

δρ(1) = ρAδρ(1) + δρ(1)ρA, (10a)

δρ(2) = ρAδρ(2) + δρ(2)ρA + (δρ(1))2. (10b)

We can now discuss properties of the standard particle-hole
(ph), particle-particle (pp), and hole-hole (hh) matrix elements
of δρ, where the particle and hole states correspond to the
unoccupied and occupied states, respectively, in the even A-
particle system; that is,

ρA
hh′ = δhh′ , ρA

ph = 0, ρA
hp = 0, ρA

pp′ = 0. (11)

We note here that the notion of particle and hole states always
pertains to a specific projective density matrix. By definition,
the particle and hole states are the eigenstates of the density
matrix with eigenvalues 0 and 1, respectively. In the even and
time-even system, both particle and hole states are doubly
Kramers degenerate and for each such a pair, both degenerate
partner states are simultaneously either occupied or empty.
This creates the standard image of the Fermi “sphere,” whereby
the pairs of states below or above the Fermi level are occupied
or empty, respectively. This image is particularly conspicuous
in semimagic spherical systems, wherein the entire (2j + 1)-
degenerate orbitals are either occupied or empty. We described
here this standard image in such detail because below we
contrast it with a nonstandard representation of particle-hole
states pertaining to the odd system.

Equation (10a) does not put any constraint on the ph
matrix elements of δρ(1), and it requires that its pp and hh
matrix elements vanish identically. Therefore, the leading-
order (second-order) pp and hh matrix elements of δρ are
determined by Eq. (10b), and they solely depend on the
leading-order (first-order) ph matrix elements thereof; that is,

δρ
(2)
pp′ =

∑
h

δρ
(1)
ph δρ

(1)
hp′ , (12a)

δρ
(2)
hh′ = −

∑
p

δρ
(1)
hp δρ

(1)
ph′ . (12b)

We see that the standard ph structure of δρ, pertaining to
the A-particle system, appears for the inverse polarizations.
However, as we derived above, in this case the polarizing state
λ must be calculated in the odd system.

Let us next discuss the direct polarizations, for which Eq. (6)
holds. The small-amplitude expansion (9) then gives

δρ(1) = (ρA ± ρλ)δρ(1) + δρ(1)(ρA ± ρλ), (13a)

δρ(2) = (ρA ± ρλ)δρ(2) + δρ(2)(ρA ± ρλ) + (δρ(1))2. (13b)

Equations (13) are similar to those in Eq. (10), with
the notable difference of the odd-system density matrix
ρA ± ρλ replacing the even-system density matrix ρA. This
is important, because the analysis of the ph structure of δρ(1)

must now pertain to the eigenvalues of ρA ± ρλ and not to
those of ρA.

We see that the hole and particle states, which now are
denoted by symbols H and P, respectively, are identical to
the previous hole and particle states, h and p; however, the
polarizing state λ is an exception. If we consider the (A + 1)-
particle system, the state λ, which previously was a particle
state p = λ, is now an eigenstate of density matrix ρA + ρλ

with eigenvalue 1; that is, it is a hole state H = λ. Similarly,
for an (A − 1)-particle system, the previous hole state h = λ is
now an eigenstate of density matrix ρA − ρλ with eigenvalue
0; that is, it is a particle state P = λ. We should also remember,
that the Kramers-degenerate partner λ̄ of the polarizing state
λ now stays on the opposite side of the Fermi surface; namely,
when λ is a hole state, λ̄ is a particle state and vice versa. As
we see, a nonstandard form of the Fermi “sphere” must now
be considered.

Altogether, the hole (H) and particle (P) states are defined
by

(ρA ± ρλ)HH′ = δHH′ , (ρA ± ρλ)PH = 0,
(14)

(ρA ± ρλ)HP = 0, (ρA ± ρλ)PP′ = 0.

Then matrix elements δρ
(1)
PH are unconstrained, whereas the PP

and HH matrix elements of the second-order correction are
given by

δρ
(2)
PP′ =

∑
H

δρ
(1)
PHδρ

(1)
HP′ , (15a)

δρ
(2)
HH′ = −

∑
P

δρ
(1)
HPδρ

(1)
PH′ . (15b)

It is evident that the nonstandard structure of the first-order
density matrix δρ(1) implies solving the RPA equations directly
in the odd system and thus precludes using the spherical and
time-reversal symmetries.

In summary, for direct polarizations, for which the polar-
izing state λ is calculated in the even system, we obtain the
nonstandard PH structure (15) of δρ. However, for inverse
polarizations, for which the polarizing state λ is calculated
in the odd system, we obtain the standard ph structure (12)
of δρ. From these considerations, it appears that a rigorous
analysis of the HF polarization effects, which would be based
on elements solely determined in the even system, does not
exist, and one must make further simplifying assumptions.
The easiest way out is to neglect the differences between the
polarizing states calculated in the even and odd systems and
to use equations pertaining to inverse polarizations along with
the polarizing state λ determined in the even system. In what
follows, we use this strategy.

2. Corrections to energies

Equations for the polarization corrections to the s.p.
energies can be derived by comparing the self-consistent
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energies in even and odd systems. Inserting the odd-system
density matrices (2) into the odd-system energy (1b), we obtain

EA±1 = EA ± tλλ +
∑
ii ′

ti ′iδρii ′ + 1

2
v̄λλλλ

+ 1

2

∑
ii ′kk′

δρi ′i v̄ik′i ′kδρkk′ ± 1

2

∑
ii ′

ρA
i ′i v̄iλi ′λ

± 1

2

∑
kk′

v̄λk′λkρ
A
kk′ ± 1

2

∑
ii ′

δρi ′i v̄iλi ′λ

± 1

2

∑
kk′

v̄λk′λkδρkk′ + 1

2

∑
ii ′kk′

ρA
i ′i v̄ik′i ′kδρkk′

+ 1

2

∑
ii ′kk′

δρi ′i v̄ik′i ′kρ
A
kk′ . (16)

We now use the following facts and definitions:

hA
i ′i = ti ′i +

∑
kk′

v̄i ′k′ikρ
A
kk′, (17a)

eλ = hA
λλ, (17b)

0 = v̄λλλλ, (17c)

hλ
i ′i = v̄i ′λiλ, (17d)

δhi ′i =
∑
kk′

v̄i ′k′ikδρkk′ . (17e)

Equation (17a) is the standard definition of the HF mean
field in the A-particle system and eλ (17b) is its diagonal matrix
element in the self-consistent basis. Equation (17c) is a simple
consequence of the antisymmetry of the two-body matrix
elements and represents the fact that in the HF approximation
there is no self-interaction (SI). Equations (17d) and (17e)
define the mean-field potentials generated by the polarizing
state λ and correction δρ, respectively. In terms of these
definitions, the odd-system energy can be written as

EA±1 = EA ± eλ +
∑
ii ′

hA
i ′iδρii ′

±
∑
ii ′

hλ
i ′iδρii ′ + 1

2

∑
ii ′

δhi ′iδρii ′ . (18)

Up to now, expression (18) is exact. To simplify it, we
can use the small-amplitude expansion (9) and thus conditions
(12), and neglect terms beyond second order. In the basis of
particle and hole states, the mean-field Hamiltonian hA

i ′i is by
definition diagonal; therefore, owing to Eqs. (12), the third
term on the right-hand side is of the second order in δρ(1).
Similarly, the fifth term is obviously of the second order too.
However, unless we assume that hλ is small (of the first order),
the fourth term may contain subleading second-order terms,
including the pp and hh matrix elements of δρ(2), which do
not appear in the standard RPA method. Therefore, to have a
consistent RPA-type second-order expression for the energy
of the A ± 1 system, we must make the assumption of hλ

being small as compared to hA. This assumption can also be

understood as ρλ being small as compared to ρA, that is, the
system being appropriately heavy.

In fact, such an assumption can partially be tested by
keeping the leading-order (second-order) pp′ and hh′ matrix
elements of the fourth term, which depend on the leading-
order (first-order) matrix elements of δρ. Then we obtain the
following approximate expression:

EA±1 = EA ± eλ +
∑

ph

(ep − eh)δρphδρhp

+ 1

2

∑
ph

δhphδρhp + 1

2

∑
ph

δhhpδρph

±
∑
pp′h

hλ
p′pδρphδρhp′ ∓

∑
hh′p

hλ
h′hδρhpδρph′

±
∑

ph

hλ
phδρhp ±

∑
ph

hλ
hpδρph. (19)

This can be summarized in the form of polarization corrections
to energies of odd states δE,

EA±1 = EA ± eλ + δE, (20)

or polarization corrections to s.p. energies δeλ,

EA±1 = EA ± (eλ + δeλ), (21)

for

δE = ±δeλ = 1

2
(δρ∗, δρ)

(
A′ B
B∗ A′∗

) (
δρ
δρ∗

)

± (δρ∗, δρ)

(
hλ

hλ∗

)
, (22)

where δρ and hλ represent vectors of ph matrix elements, δρph

and hλ
ph, respectively; that is,

hλ
ph = v̄pλhλ, (23a)

hλ∗
ph = hλ

hp = v̄hλpλ, (23b)

and matrices A′ and B,

A′
p′h′,ph = Ap′h′,ph ± hλ

p′pδh′h ∓ hλ
hh′δpp′ , (24a)

Ap′h′,ph = (ep − eh)δpp′δhh′ + v̄hp′ph′ , (24b)

Bp′h′,ph = v̄pp′hh′ , (24c)

build the RPA matrix (A′ B
B∗ A′∗).

We see that the second-order terms depending on hλ, which
we have kept in Eq. (19), lead to modified matrix elements
A′

p′h′,ph, as compared to the standard RPA matrix Ap′h′,ph. In this
formulation, the RPA equations do depend on the polarizing
state λ. In Sec. III, we perform numerical calculations with
and without these terms, and we check that they play a minor
role and can be safely omitted, thus supporting the validity of
the assumption about the smallness of hλ.

3. Equation for δρ

Equation for the correction δρ can be derived from the fact
that the density matrix of Eq. (2) is a self-consistent solution
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of the HF equations in the (A ± 1)-particle system,

0 = [hA±1,ρA±1] = [hA ± hλ + δh,ρA ± ρλ + δρ ]. (25)

As discussed above, we neglect differences between states
λ calculated in even and odd systems; that is, we have
[hA±1,ρλ] = 0. Moreover, because ρA is the self-consistent
solution of the A-particle system, we have [hA,ρA] = 0, which
gives

0 = [hA,δρ ] ± [hλ,ρA] ± [hλ,δρ ] + [δh,ρA] + [δh,δρ ].

(26)

In the leading (first) order, the last term, quadratic in the
density δρ, can be dropped, and we also drop the second-order
matrix elements δρpp′ and δρhh′ . Then, the ph and hp matrix
elements of the above equation read

0 = (ep − eh)δρph ± hλ
ph ±

∑
p′

hλ
pp′δρp′h ∓

∑
h′

δρph′hλ
h′h + δhph

= (A′δρ)ph + (Bδρ∗)ph ± hλ
ph, (27a)

0 = (eh − ep)δρhp ∓ hλ
hp ±

∑
h′

hλ
hh′δρh′p ∓

∑
p′

δρhp′hλ
p′p − δhhp

= −(A′∗δρ∗)ph − (B∗δρ)ph ∓ hλ∗
ph, (27b)

and in the matrix notation they can be written as(
A′ B
B∗ A′∗

)(
δρ
δρ∗

)
= ∓

(
hλ

hλ∗

)
. (28)

Here again we see that the matrix elements of hλ must be at
least of the same order (the first order) as are those of δρ.

Condition (28) is exactly equal to the condition that the
total energy of the odd system (20) is stationary with respect
to correction δρ. In other words, vanishing variation of δE,
Eq. (22), with respect to δρ gives Eq. (28). Then, at the
stationary point, the correction to the total energy reads

δE = −1

2
(δρ∗, δρ)

(
A′ B
B∗ A′∗

) (
δρ
δρ∗

)
; (29)

that is, for a positive-definite RPA matrix, the correction to
the total energy is always negative, irrespective of adding or
subtracting a particle. For the corrections to s.p. energies we
have

δeλ = ∓1

2
(δρ∗, δρ)

(
A′ B
B∗ A′∗

)(
δρ
δρ∗

)
; (30)

that is, particle states move down and hole states move up. In
view of Eq. (28), corrections (30) can also be written in two
other equivalent forms:

δeλ = ∓1

2
(hλ∗, hλ)

(
A′ B
B∗ A′∗

)−1 (
hλ

hλ∗

)
, (31)

δeλ = −1

2
(δρ∗, δρ)

(
hλ

hλ∗

)
. (32)

In Eq. (31), the inverse of the RPA matrix can be calculated
either through its eigenvectors or through the RPA amplitudes.
In the second case, we use the RPA equations and completeness

relations [32],(
A′ B
B∗ A′∗

) (
X −Y ∗
Y −X∗

)
=

(
X Y ∗

−Y −X∗

) (
�ω 0
0 �ω

)
,

(33)(
X −Y ∗
Y −X∗

)(
X+ −Y+

Y T −XT

)
=

(
1 0
0 1

)
, (34)

where �ω is a diagonal matrix of positive RPA eigenvalues.
This gives(

A′ B
B∗ A′∗

)
=

(
X Y ∗

−Y −X∗

) (
�ω 0
0 �ω

)(
X† −Y †

Y T −XT

)
.

(35)

The inverse of the RPA matrix exists if all eigenvalues are
nonzero and has the form(

A′ B
B∗ A′∗

)−1

=
(

X −Y ∗
Y −X∗

)(
�ω−1 0

0 �ω−1

) (
X† Y †

−Y T −XT

)
. (36)

Finally, in terms of the RPA amplitudes and energies, correc-
tions (31) then become equal to [29]

δeλ = ∓
∑
ω>0

∣∣∑
ph hλ∗

phX
ω
ph + hλ

phY
ω
ph

∣∣2

�ω
. (37)

B. Polarization corrections for density functionals

Let us now rederive the polarization corrections of Sec. II A
for the case of the total energy given by a minimization
of an EDF and not of the HF average of a Hamiltonian.
Differences between these two cases can be of dual origin.
First, a quasilocal EDF built as the most general quadratic
function of densities deviates from a HF average of a zero-
range momentum-dependent interaction unless its coupling
constants obey a specific set of linear conditions; see, e.g.,
Refs. [34,35]. For the Skyrme EDF, these conditions can be
formulated as a linear dependence of the time-odd coupling
constants on the time-even ones, and a linear dependence
between the isovector and isoscalar spin-orbit coupling con-
stants [36]. In this work we only consider EDFs of this type.
The second reason for differences arises because of so-called
density-dependent interactions, which also lead to EDFs that
are not equal to HF averages of Hamiltonians.

Focusing on this second case, we now consider EDFs
determined by the HF averaging of antisymmetrized density-
dependent matrix elements v̄i ′k′ik[ρ]. Then, the total energies
read

EA = Tr(tρA) + 1
2 Tr1Tr2(ρAv̄[ρA]ρA), (38a)

EA±1 = Tr(tρA±1) + 1
2 Tr1Tr2(ρA±1v̄[ρA±1]ρA±1). (38b)

We see that both energies, apart from the standard quadratic
dependencies on densities [cf. Eqs. (1)], do depend on densities
through the density dependence of interactions. These latter
dependencies preclude comparing energies of even and odd
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systems, unless we make the simplifying assumption that
v̄[ρA±1] and v̄[ρA] can be connected by a second-order
expansion in ρA±1 − ρA. From Eq. (2) we see again that this
requires ρλ to be of the same (first) order as δρ. Under this
assumption, we have

v̄i ′k′ik[ρA±1]

� v̄i ′k′ik[ρA] ±
∑
mn

∂v̄i ′k′ik

∂ρmn

(
ρλ

mn ± δρmn

)

+ 1

2

∑
m′n′mn

∂2v̄i ′k′ik

∂ρmn∂ρm′n′

(
ρλ

mn ± δρmn

) (
ρλ

m′n′ ± δρm′n′
)
,

(39)

where all partial derivatives must be evaluated at ρ ≡ ρA.
We can now insert Eqs. (2) and (39) into the odd-system

energy (38b) and obtain up to the second order in ±ρλ + δρ,

EA±1 = EA + Trh̃A(±ρλ + δρ)

+ 1
2 Tr1Tr2(±ρλ + δρ) ˜̃v(±ρλ + δρ), (40)

where the mean-field Hamiltonian h̃A,

h̃A
i ′i = ti ′i +

∑
kk′

ṽi ′k′ikρ
A
kk′, (41)

and effective two-body matrix elements, ṽi ′k′ik and ˜̃vi ′k′ik ,
contain rearrangement terms,

ṽi ′k′ik = v̄i ′k′ik + 1

2

∑
j ′j

∂v̄j ′k′jk

∂ρii ′
ρA

jj ′ , (42a)

˜̃vi ′k′ik = v̄i ′k′ik +
∑
j ′j

(
∂v̄j ′k′jk

∂ρii ′
+ ∂v̄j ′i ′ji

∂ρkk′

)
ρA

jj ′

+ 1

2

∑
j ′m′jm

∂2v̄j ′m′jm

∂ρii ′∂ρkk′
ρA

jj ′ρ
A
mm′ . (42b)

The redefined two-body matrix elements allow us to write
the odd-system energy in the form analogous to Eq. (18),

EA±1 = EA ± eλ +
∑
ii ′

h̃A
i ′iδρii ′ +

1

2
˜̃hλ
λλ

±
∑
ii ′

˜̃hλ
i ′iδρii ′ + 1

2

∑
ii ′

δ ˜̃hi ′iδρii ′ , (43)

but with the following redefinitions,

eλ = h̃A
λλ (44a)

˜̃hλ
λλ = ˜̃vλλλλ, (44b)

˜̃hλ
i ′i = ˜̃vi ′λiλ, (44c)

δ ˜̃hi ′i =
∑
kk′

˜̃vi ′k′ikδρkk′ . (44d)

We see that the first-order rearrangement terms (42a)
become fully absorbed in the s.p. energies, which are now, as
usual, the eigenvalues of mean fields h̃A. Moreover, both the
polarizing fields ˜̃hλ and RPA matrices A and B [see Eqs. (23)

and (24)] must now be determined using the second-order
rearrangement terms (42b). Therefore, owing to the fact
that the effective two-body matrix elements (42a) are not
antisymmetric, the SI term (44b),

Eλ
SI = 1

2
˜̃hλ
λλ, (45)

is nonzero, and explicitly appears in Eq. (43). This leads to
corrections to s.p. energies now having the form,

δeλ = ±δE = ± (
δEλ

SIF + Eλ
SI

)
, (46)

where, based on the analogy with Eq. (37), the first term can
be called self-interaction-free (SIF) polarization correction,

δEλ
SIF = −

∑
ω>0

∣∣∑
ph

˜̃hλ∗
phX

ω
ph + ˜̃hλ

phY
ω
ph

∣∣2

�ω
. (47)

The second-order mean fields ˜̃hλ
i ′i (44c) and δ ˜̃hi ′i (44d) are

simply related to the linearized first-order mean fields; that is,

˜̃hλ
i ′i =

∑
k′k

∂h̃i ′i

∂ρk′k

∣∣∣∣∣∣
ρ=ρA

ρλ
k′k, (48a)

δ ˜̃hi ′i =
∑
k′k

∂h̃i ′i

∂ρk′k

∣∣∣∣∣∣
ρ=ρA

δρk′k. (48b)

These expressions can be explicitly verified directly from
definitions (42). They are extremely useful in practical
applications because (i) the second-order mean fields (48a)
that define the polarization vertex (47) can be determined
without explicitly calculating the second derivatives of matrix
elements, (ii) the amplitude mean fields (48b) are the only
objects that one has to calculate when using the iterative
methods to solve the RPA equations [37], and (iii) exactly
the same piece of code can be used to calculate both mean
fields (48a) and (48b).

1. The self-interaction

The SI term (45), where a particle interacts with the mean
field generated by itself, is unphysical, because, in reality,
each nucleon should interact with the other nucleons only. As
discussed in Sec. II A 2, for an EDF generated by Hamiltonian,
no SI appears. However, EDFs generated by density-dependent
interactions do produce the SI.

An EDF has a one-body SI if it gives nonzero energy for a
single nucleon state. This was discussed in Ref. [35], where it
has been shown how the one-body SI of a Skyrme EDF can be
removed by introducing extra constraints between the Skyrme
coupling constants. We note here that in our approach there
is no SI of this type, because we use the so-called “native”
time-odd terms [27], that is, those originating from the mean-
field averaging of the Skyrme force. In general, the SI results
from the violation of the antisymmetry of effective matrix
elements (42b); that is, the SI studied here originates from the
density dependence of the Skyrme force. Another source of the
SI is the mismatch between the ph and the pp matrix elements
of the interaction; see Eq. (68) below.
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For density functionals used in electronic structure calcu-
lations, an SI correction was originally introduced by Perdew
and Zunger [38], and numerous variations and improvements
of the method were later constructed. A short review of the
various SI-correction methods used in electronic structure
calculations can be found in Ref. [39]. In a nuclear-physics
context, the SI problem in connection with density-dependent
Skyrme interactions was early on discussed in Ref. [40] and
more recently in Ref. [41]. In Refs. [42,43], the SI problem
and ways to correct it were discussed in detail, together with
the related concept of self pairing; see also Sec. II C.

Within the Skyrme EDF approach without pairing, the SI
results from the zero-range density-dependent interaction and
from the Coulomb exchange, which is treated in the Slater
approximation. Because in the polarization correction (46) the
SI term appears explicitly, one can simply remove it from
this expression and thus obtain SIF result (47). However, we
stress here that the self-consistent calculations performed in
odd nuclei do contain the SI term and lead to the polarization
correction (46) with the SI term included.

C. Polarization corrections with pairing

For an even-paired system corresponding to the average
number of particles A, one diagonalizes the quasiparticle
Hamiltonian HA, which in the standard double-dimension
representation [32] reads

HA = T + GA − λN =
(

hA − λ �A

−�A∗ −hA∗ + λ

)
, (49)

where

T =
(

t 0
0 −t∗

)
, GA =

(
�A �A

−�A∗ −�A∗

)
,

N =
(

1 0
0 −1

)
, (50)

and where �A
i ′i and �A

i ′k′ are the ph and pp mean potentials,
respectively. The even-system Fermi energy λ is adjusted
so as the average particle number equals to TrρA = A. In
what follows, for clarity we write only one Fermi energy λ,
generalizations to separate neutron and proton Fermi energies
being obvious.

The eigenequation for HA defines one-quasiparticle states
UL and one-quasiparticle energies EL,

HAUL = ELUL, (51)

where positive (negative) indices L > 0 (L < 0) correspond
to positive (negative) quasiparticle energies EL > 0(EL < 0)
of quasiparticle (quasihole) states. Then the basic dynamical
quantity describing the system is the generalized density
matrix, (RA)2 = RA,

RA =
∑
L<0

ULU+
L =

(
ρA κA

−κA∗ 1 − ρA∗

)
, (52)

which projects states on the space of occupied quasihole states,

RAUL =
{

0 for L > 0,
UL for L < 0,

(53)

and depends on the density matrix ρA and pairing tensor κA.
When the quasiparticle and quasihole states are arranged as
columns of matrix U in doubled dimensions, they form the
matrix of the Bogoliubov transformation [32],

U =
(

U V ∗
V U ∗

)
, (54)

in terms of which we have ρA = V ∗V T and κA = V ∗UT .
The generalized density matrix of an odd system RA±1

is obtained by the blocking procedure [32,44], whereupon
one occupied quasihole state for L = −
 < 0 is replaced
by its empty quasiparticle partner for L = 
 > 0. Then
Eqs. (49)–(52) are solved self-consistently again, with the
odd-system Fermi energy λA±1 adjusted so as the average
particle number now equals TrρA±1 = A ± 1. The QRPA
polarization correction δR is defined in analogy with Eq. (2)
as

RA±1 = RA + R
 + δR, (55)

where the generalized density matrixR
 describes the blocked
orbital [see Eq. (52)],

R
 = −U−
U+
−
 + U
U+


 . (56)

This gives the density matrix and pairing tensor of the odd
system in the form

ρA±1 = ρA + ρ
 + δρ, (57a)

κA±1 = κA + κ
 + δκ, (57b)

with explicit contributions coming from the blocked orbital
given by

ρ

αβ = −V ∗

α
Vβ
 + Uα
U ∗
β
, (58a)

κ

αβ = −V ∗

α
Uβ
 + Uα
V ∗
β
. (58b)

Density matrices and pairing tensors, self-consistently cal-
culated in even and odd systems, determine the corresponding
total energies with pairing as

EA = Tr tρA + 1
2 Tr(�AρA − �AκA∗)

= 1
2 Tr T QA + 1

4 TrGAQA, (59a)

EA±1 = Tr tρA±1 + 1
2 Tr(�A±1ρA±1 − �A±1κA±1∗)

= 1
2 Tr T QA±1 + 1

4 TrGA±1QA±1, (59b)

where QA ≡ RA − (0 0
0 1) and QA±1 ≡ RA±1 − (0 0

0 1).
Let us now discuss the case of the ph and pp potentials

being determined by averaging the corresponding ph and pp
two-body antisymmetric interaction matrix elements, that is,

�A
i ′i =

∑
k′k

v̄
ph
i ′k′ikρ

A
kk′, (60a)

�A
i ′k′ = 1

2

∑
ik

v̄
pp
i ′k′ikκ

A
ik, (60b)
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with the analogous equations defining the potentials in the odd
system, �A±1 and �A±1. In most nuclear-physics applications,
the ph and pp matrix elements are different, which means that
the total energies do not, strictly speaking, correspond to an
average value of a Hamiltonian.

To discuss the structure of the resulting expressions, we first
analyze the situation of these matrix elements being density-
independent, that is, with the rearrangement terms ignored.
Then, the potentials depend linearly on densities, and each
term in the generalized density matrix RA±1 (55) gives the
corresponding term in the generalized potential GA±1,

GA±1 = GA + G
 + δG. (61)

By inserting Eqs. (55) and (61) into the expression for the
total energy of the odd system (59b), we easily obtain the
analog of Eq. (18) with pairing, that is,

EA±1 = EA + Tr
[

1
2 (HA + λN )R
 + 1

2 (HA + λN )δR

+ 1
4H


R
 + 1
2H


δR + 1
4δHδR

]
, (62)

where, to keep notation consistent with the unpaired case of
Sec. II A 2, we have denoted H
 ≡ G
 and δH ≡ δG.

At this point, taking the trace of Eq. (57a) we can calculate
the average number of particles in the blocked state, which
gives

A ± 1 = A + Tr ρ
 + Tr δρ

= A + 1
2 TrNR
 + 1

2 TrN δR. (63)

Then we obtain that

EA±1 = EA ± λ + Tr
[

1
2H

AR
 + 1
2H

AδR

+ 1
4H


R
 + 1
2H


δR + 1
4δHδR

]
. (64)

From this point on, derivations proceed exactly as in the
case of no pairing (Sec. II A), so we only repeat principal def-
initions and results. We assume that the blocked quasiparticle
wave function U
, which is determined in the odd system, is
identical to that determined in the even system. Only under
such an assumption we have 1

2 TrHAR
 = E
 [see Eqs. (51)
and (56)] and the analog of Eq. (10a) holds,

δR = RAδR + δRRA. (65)

In Eq. (64) we identify the SI term, analogous to that derived
without pairing (45), namely,

E

SI = 1

4 TrH
R
 = 1
2 Tr (�
ρ
 − �
κ
∗), (66)

where �
 and �
 are the mean fields generated by the blocked
quasiparticle,

�

i ′i =

∑
k′k

v̄
ph
i ′k′ikρ



kk′ , (67a)

�

i ′k′ = 1

2

∑
ik

v̄
pp
i ′k′ikκ



ik . (67b)

Thus, the SI term corresponds to the blocked quasiparticle

 that interacts with the generalized mean-field potential it
has generated. By combining Eqs. (58) and (67), we can easily

derive that

E

SI =

∑
i ′k′ik

U ∗
k′
Vi ′


(
v̄

pp
i ′k′ik − v̄

ph
i ′k′ik

)
Uk
V ∗

i
, (68)

where the antisymmetry of matrix elements v̄
pp
i ′k′ik and v̄

ph
i ′k′ik

was used. We explicitly see that a nonzero value of E

SI can

only appear when the pp and ph interactions, which define the
EDF with pairing, are not identical to one another.

Another assumption we have to make is that the mean field
H
, generated by the blocked quasiparticle 
, is appropriately
small, of the first order in the small-amplitude expansion. Then,
the polarization corrections to paired energies of odd states δE
and those to quasiparticle energies δE
 [cf. Eqs. (20) and (21)],
which are defined by

EA±1 = EA ± λ + E
 + δE = EA ± λ + (E
 + δE
), (69)

can be expressed in the form

δE = δE
 = 1

2
(Z∗, Z)

(
A B
B∗ A∗

)(
Z
Z∗

)

+ (Z∗, Z)

(
W


W
∗

)
+ E


SI, (70)

where Z and W
 represent vectors of quasiparticle-quasihole
matrix elements of δR and H
, respectively; that is,

ZLL′ = U+
L δRU−L′ , (71)

W

LL′ = U+

L H
U−L′ , (72)

for L > L′ > 0, and A and B are the standard components of
the QRPA matrix [32].

An equation for Z can easily be derived by following
the steps presented in Sec. II A 3; it simply results from the
requirement that the correction to the energy (70) is stationary,
which gives (

A B
B∗ A∗

)(
Z
Z∗

)
= −

(
W


W
∗

)
(73)

and

δE = δE

SIF + E


SI, (74)

for

δE

SIF = −1

2
(W
∗, W
)

(
A B
B∗ A∗

)−1 (
W


W
∗

)
. (75)

The QRPA SIF polarization correction to quasiparticle energy
explicitly reads

δE

SIF = −

∑
ω>0

∣∣∑
L>L′

(
W
∗

LL′Xω
LL′ + W


LL′Yω
LL′

)∣∣2

�ω
, (76)

where Xω
LL′ and Yω

LL′ are the standard QRPA amplitudes.

D. A few remarks to Sec. II

Before discussing numerical results in the next section, let
us briefly touch upon the problem of conserved symmetries.
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No specific conserved symmetry was, in fact, assumed in
the derivations presented so far. In the Appendix, we discuss
in detail implications of conserving the spherical symmetry.
For the conserved parity, the s.p. wave function ψλ(r) of a
polarizing state λ has a definite parity πλ, that is, ψλ(−r) =
πλψλ(r). Therefore, the density matrix ρλ, which in the
space coordinates reads ρλ(r,r ′) = ψλ(r)ψλ(r ′)∗, is always
parity even, irrespective of the parity of the polarizing state:
ρλ(−r,−r ′) = π2

λψλ(r)ψλ(r ′)∗ = ρλ(r,r ′). With pairing cor-
relations included, analogous arguments hold for quasiparticle
wave function U−
 and generalized density matrix R
.
Because interactions are parity invariant, the positive parity
of ρλ or R
 implies positive parity of mean fields hλ or W
,
and thus only positive-parity phonons contribute to the energy
shifts in Eqs. (47) or (76).

This means that, for conserved spherical and parity sym-
metries, all polarization corrections discussed in Sec. II relate
to the RPA and QRPA channels and phonons Jπ with positive
parity π = +1 only. Therefore, the discussed polarization
corrections cannot, and do not, involve any couplings to
negative-parity channels, including those to the very important
3− channel. The latter can only be treated within the PVC
methods [14], which will be discussed in a forthcoming
study [45].

We also note that the polarization corrections studied in
this work are equivalent to the “diagonal” approximation to
the PVC; that is, they involve the PVC energy denominators
(εp − εp′ − �ω)−1 for p = p′; see Eqs. (47) and (76). The
“diagonal” approximation has two important consequences.
First, the polarization vertex is limited to the same state
as the one for which the PVC is evaluated. This shows
again that the parity conservation in the vertex excludes
coupling to negative-parity phonons. Second, polarization
corrections do not include large PVC contributions from
states with (εp � εp′ + �ω), which correspond to small energy
denominators. Thus, the lack of couplings to negative-parity
channels constitutes the main drawback of the mean-field
methods in describing states in odd nuclei, and the “diagonal”
approximation may imply missing large corrections to their
binding energies.

There is a hypothetical possibility of including the coupling
to negative-parity phonons, namely, through a dynamical
parity breaking of the mean field. This would require perform-
ing generator-coordinate-like calculations based on mixing
octupole-deformed states for odd nuclei. It is, however, unclear
if such an approach can be equivalent to the PVC that includes
negative-parity phonons.

Another drawback of the mean-field approach, clearly
identified in Secs. II B and II C, is the presence of the SI terms
in the mean-field binding energies of odd nuclei. Based on
the analyses performed within the RPA and QRPA methods,
we could explicitly identify these terms, which allows for
calculating them after variation. The explicit identification
may also allow us to remove them before variation, which
will be the subject of subsequent studies. Of course, although
not explicitly “visible,” the SI terms are also present in the
mean-field binding energies of even nuclei, and in the future
new functionals with these terms removed should also be
studied.

We note that expression (68) for the SI energy with pairing
is valid only for density-independent interactions. However,
expression (66) does take effects of density-dependent inter-
actions into account, provided it is evaluated for mean-field
potentials with rearrangement terms included, as derived in
Sec. II A; that is,

E

SI = 1

2 Tr ( ˜̃h
ρ
 − �
κ
∗). (77)

Let us now summarize our results on the equivalence
between the HF(B) and (Q)RPA polarization corrections. As
we showed in Sec. II B for the HF case, this equivalence has
the form of equation [cf. Eq. (43)]:

EA±1 − EA ∓ eλ − Eλ
SI = δEλ

SIF. (78)

On the left-hand side, there appear quantities calculated
within the HF method, that is, (i) the total self-consistent
ground-state energies of odd and even systems (38), EA±1

and EA, respectively; (ii) HF s.p. energy eλ (44a); and (iii) SI
energy Eλ

SI (45). On the right-hand side, there appears the SIF
correction δEλ

SIF (47), calculated within the RPA method.
Similarly, in Sec. II C we showed for the HFB case that [cf.

Eq. (69)]

EA±1 − EA ∓ λ − E
 − E

SI = δE


SIF, (79)

where on the left-hand side there appear quantities calculated
within the HFB method, that is, (i) the total self-consistent
paired ground-state energies of odd and even systems (60),
EA±1 and EA, respectively; (ii) HFB even-system Fermi
energy λ; (iii) HFB one-quasiparticle energy E
 (51); and
(iv) SI energy E


SI (77). On the right-hand side, there appears
the SIF correction δE


SIF (76), calculated within the QRPA
method.

The above equivalence between the HF(B) and (Q)RPA
polarization corrections holds only up to the validity of the
small-amplitude expansion (9), which was used before in the
standard derivations presented in Refs. [28–31]. However, in
this work we have identified additional assumptions required
for Eqs. (78) and (79) to hold, namely,

(i) differences between the s.p. (one-quasiparticle) states
calculated in even and odd systems must be neglected;

(ii) the density matrix ρλ (R
), corresponding to the
polarizing s.p. (one-quasiparticle) state, must be ap-
propriately small, that is, of the first order in the
small-amplitude expansion (9);

(iii) the mean field hλ (H
), corresponding to the polariz-
ing s.p. (one-quasiparticle) state, must be appropriately
small, that is, of the first order in the small-amplitude
expansion;

(iv) differences between the density-dependent matrix
elements in odd and even systems can be accounted for
by the small-amplitude expansion up to second order.

These assumptions can only be tested by numerical calcu-
lations and in Sec. III are shown to be quite well justified.

An important observation relates to the size of the phase
space taken into account after solving the (Q)RPA equations.
In the full PVC calculations, one usually includes only those
phonons that are both significantly collective and have suitably
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low energies [14]. However, assuming the above assumptions
are fulfilled, the equivalence of the HF(B) and (Q)RPA
polarization corrections is obtained only when all phonons
are included, irrespective of their collectivity or energy. This
is because, when deriving the SIF corrections of Eqs. (47)
or (76), the exact (Q)RPA completeness relations must be used.
In addition, the same equivalence guarantees the convergence
of sums in Eqs. (47) or (76); indeed, with the increasing phase
space, owing to the variational principle, the HF(B) energies
must converge, and thus the (Q)RPA polarization corrections
must converge too.

III. RESULTS

All calculations presented in this section aim at comparing
self-consistent results obtained using the deformed solver
HFODD (v2.52k) [46], with RPA and QRPA solutions im-
plemented in the spherical solver HOSPHE [47]. We used the
configuration space that includes all harmonic-oscillator shells
up to N0 = 15.

A. RPA calculations in 100Sn for the Skyrme EDF SV

We begin the presentation by showing examples of calcu-
lations performed for the case of an exact HF approximation,
as discussed in Sec. II A. To this end, we employed the
density-independent Skyrme interaction SV [48] and we
analyzed results only for neutrons, so as to avoid effects
of density-dependent Slater approximation for the Coulomb
exchange term. On the one hand, to treat the EDF SV as fully
generated by an interaction, we included in the functional
all tensor terms, that is, those given by the square of the
spin-orbit density J2, which were originally neglected [48].
Also the so-called “native” time-odd terms [27], that is, those
originating from the mean-field averaging of the Skyrme force,
were all included. On the other hand, as mentioned in Sec. II A,
we neglected the so-called center-of-mass correction to the
kinetic energy.

In Fig. 1 we test Eq. (21); that is, we compare polarization
corrections,

δeλ = ±(EA±1 − EA) − eλ, (80)

FIG. 1. (Color online) Comparison of polarization corrections of
selected orbitals in 100Sn, determined using the HF and RPA methods
and Skyrme EDF SV [48]; see text. Lines connect the values obtained
for different projections of the angular momentum |mλ| = 1

2 , . . . ,jλ

(from left to right).

FIG. 2. (Color online) Polarization corrections of |mλ| = jλ or-
bitals in 100Sn, determined by not including (left bars) and including
(right bars) the orbital-dependent terms in the RPA matrices; see text.
The order of orbitals is the same as shown in Fig. 1. Contributions
coming from four RPA channels J π = 0+, 1+, 2+, and 3+ are shown
separately (note very different scales).

obtained from the HF energies of odd and even systems, EA±1

and EA, and HF s.p. energies, eλ, with those determined form
the RPA solutions [Eq. (37)]. Apart from a few cases, the
obtained agreement is nearly perfect. This result is particu-
larly gratifying, because it confirms not only the analytical
derivations presented in Sec. II A and the Appendix, but also
the validity of two completely independent numerical codes.

At this point, we must discuss one important aspect of the
HF calculations in odd nuclei. In principle, for any given value
of mλ, there may exist two solutions: one with prolate and
another one with oblate shape. Usually only the lowest one
can be converged; the other one, being excited, either does not
converge or falls down to the lowest one. In our calculations,
in full agreement with the standard Nilsson diagram [32], we
obtain converged prolate (oblate) solutions for low-mλ (high-
mλ) particle states, and vice versa for the hole states. We
note here that we did not constrain these solutions to axial
symmetry; nevertheless, stable triaxial solutions were never
obtained.

FIG. 3. (Color online) Contributions to polarization corrections
of |mλ| = jλ orbitals in 100Sn, coming from different J π RPA
channels, determined for the Skyrme EDF SV [48]. The order of
orbitals is the same as shown in Fig. 1. Contributions are ordered
according to the value of J , with the 0+ channels shown nearest the
abscissa.
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FIG. 4. (Color online) Same as in Fig. 3, but for the |mλ| = 1
2

orbitals.

Next we tested the assumption, discussed in Sec. II A,
related to the smallness of terms ρλ and hλ with respect to the
small-amplitude expansion. In Fig. 2, we compare polarization
corrections determined using the standard RPA matrices (24b)
with those containing the orbital-dependent terms (24a).
Because both sets of results are almost identical, we conclude
that in medium-heavy nuclei like 100Sn, the orbital-dependent
terms can be safely ignored. This significantly simplifies the
calculations because a single common solution of the RPA
equation can then be used to determine polarization corrections
for all orbitals.

In Fig. 3, we show polarization corrections of the |mλ| = jλ

orbitals in 100Sn, split into contributions from different Jπ

RPA channels. First we note that the geometric constraints in
Eq. (A16) limit the polarizations of jλ orbitals to channels with
J � 2jλ. As expected, the largest contributions come from the
coupling to the quadrupole channel 2+; however, the monopole
0+ and dipole 1+ channels also significantly contribute. For
higher-jλ orbitals, channels 3+ and 4+ show some effect,
whereas channels with J > 4 can be safely neglected. For the
|mλ| = 1

2 orbitals shown in Fig. 4, the convergence is slightly
slower, but still all terms with J > 5 contribute very little.

B. RPA calculations in 100Sn for the Skyrme EDF SLy5

We now proceed to discuss the problem of SI energies
in the EDF calculations, presented in Sec. II B. To this

FIG. 5. (Color online) Same as in Fig. 1, but for the Skyrme EDF
SLy5 [49]. The RPA results correspond to the SIF terms in Eq. (46),
whereas RPA + SI denotes both SIF and SI contributions combined.

FIG. 6. (Color online) The SIF and SI contributions to the polar-
ization corrections of Eq. (46), calculated in 100Sn for the Skyrme
EDF SLy5.

end, we repeated the self-consistent calculations presented in
Sec. III A by employing the Skyrme EDF SLy5 [49]. This is a
standard Skyrme parametrization containing a strong density-
dependent term, for which we can study the SI energies, as
defined in Eq. (45). As before, the “native” time-odd terms of
SLy5 were included and the center-of-mass correction to the
kinetic energy was neglected.

In Fig. 5, we show the RPA (SIF) contributions to polar-
ization corrections (46), and we compare the total polarization
corrections calculated using Eq. (46) with the HF results (80).
The obtained agreement is very good, although not as perfect as
that obtained in Sec. III A for the Skyrme EDF SV. Moreover,
the RPA results obtained for the SV and SLy5 functionals are
significantly different from one another, the latter ones being
close to about ±0.4 MeV for holes and particles, respectively.
We also see that the SLy5 results are much less mλ dependent.

The most striking observation seen in Fig. 5, also explicitly
illustrated in Fig. 6, is a strong cancellation between the SIF
and SI contributions to the polarization corrections (46). This
cancellation makes the HF polarization corrections quite small
and gives the explanation to the long-standing problem of
significant differences between the magnitudes of the HF and
RPA values [20]. Indeed, it is the unphysical SI contribution
that renders the HF polarization corrections so small; see
Ref. [25] for a set of comprehensive calculations across the
mass chart.

FIG. 7. (Color online) Same as in Fig. 3, but for the contributions
to the RPA SIF polarization corrections of |mλ| = jλ orbitals,
determined for the Skyrme EDF SLy5.
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FIG. 8. (Color online) Same as in Fig. 7, but for the |mλ| = 1
2

orbitals.

We conclude this section by showing, in Figs. 7 and 8,
the RPA SIF polarization corrections of the |mλ| = jλ and
|mλ| = 1

2 orbitals, respectively, split into contributions coming
from different Jπ RPA channels and calculated in 100Sn for the
Skyrme EDF SLy5. These can be compared with the analogous
ones shown in Figs. 3 and 4 for the Skyrme EDF SV. We first
see that for the |mλ| = jλ orbitals, the convergence patterns
obtained for both EDFs are fairly similar. However, for the

|mλ| = 1
2 orbitals, contributions coming from the J = 2jλ

phonons turn out to be always quite large. For example, results
obtained for the h11/2 orbital certainly require taking into
account the J = 11+ phonons.

C. QRPA calculations in 100–132Sn for the Skyrme EDF SLy5

To present numerical results pertaining to the description
of polarization effects with pairing correlations included
(Sec. II C), we performed HFB and QRPA calculations for
the tin isotopes 100–132Sn. As in Sec. III B, we used the Skyrme
EDF SLy5, whereas the pairing interaction was modeled by
a contact volume pairing force with the strength of V0 =
200 MeV fm−3 and active pairing space restricted to states
below 60 MeV.

In Fig. 9 we aim at testing Eq. (69), where EA±1 and EA

are self-consistent HFB ground-state energies of odd and even
nuclei, respectively, λ and E
 are the HFB Fermi energy and
quasiparticle energy of the blocked state, respectively, and
δE is the QRPA (SIF + SI) polarization correction (74). For
this comparison, we must decide whether to use the HFB
results obtained for the lighter (A − 1) or heavier (A + 1) odd
system. Obviously, the former (latter) option must be used
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FIG. 9. (Color online) Comparison of the QRPA SIF + SI (symbols) and HFB (lines) polarization corrections to quasiparticle energies in
tin isotopes.
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FIG. 10. (Color online) Same as in Fig. 6, but for 110Sn.

for predominantly hole-type (particle-type) quasiparticles. For
quasiparticles near the Fermi level, however, there is a certain
degree of ambiguity, which we here arbitrarily resolve by
checking whether the s.p. energy e
 corresponding to the
blocked quasiparticle state is below or above the Fermi level
λ. In practice, we determine e
 by diagonalizing in the even
nucleus the mean-field Hamiltonian hA, which is a part of the
HFB Hamiltonian (49). In addition, to link results presented in
this section to those presented before for magic nuclei without
pairing, in Figs. 9–16 we plot results for hole states with flipped
signs, that is,

− δE = +(EA − EA−1) − (λ − E
) for e
 < λ, (81a)

+δE = −(EA − EA+1) − (λ + E
) for e
 > λ (81b)

[cf. Eq. (80)].
Within such a convention, in Fig. 9 we show the QRPA

SIF + SI (symbols) and HFB (lines) polarization corrections
given by the left-hand and right-hand sides of Eqs. (81),
respectively. We note that not all blocked quasiparticle states
could be converged in all studied nuclei, and thus in the figure
there is quite a number of missing HFB points. Nevertheless,
we conclude that the agreement between the QRPA and the
HFB results is satisfactory. By this we establish the equivalence
of the two methods in determining the polarization corrections
with pairing.

In Figs. 10 and 11, we compare the QRPA SIF (76) and
SI (77) contributions to the polarization corrections. Similar

FIG. 11. (Color online) Same as in Fig. 6, but for 120Sn.

FIG. 12. (Color online) Same as in Fig. 7, but for 110Sn.

to that seen in the case without pairing, shown in Fig. 6,
the SIF and SI terms always have opposite signs, and thus
the SI partially cancels the SIF contribution. However, here
the SI terms are relatively smaller, and thus they to a lesser
degree decrease the SIF contributions, as compared to the
results with no pairing. It is fairly difficult to pin down specific
reasons for the qualitative differences between the SI energies
obtained with and without pairing correlations. It could be that
the SI energies related to density dependence of the Skyrme
interaction (45) and those related to differences between the
pp and ph channels (68), partially cancel out.

Convergence of the QRPA polarization corrections as a
function of the angular momentum J of the QRPA phonons,
shown in Figs. 12 and 13, is much faster than that without
pairing; cf. Figs. 7 and 8. Here, the 2+ channels clearly dom-
inate. This can be interpreted as the result of the quadrupole
collectivity being increased by the pairing correlations. In most
cases, channels with J > 4 can be safely neglected, with the
exception of the J = 2j
 channels that slightly contribute to
the corrections of the m
 = 1

2 quasiparticle states.
All results presented up to now pertain to single-reference

HF(B) and (Q)RPA calculations; that is, only one single
orbital, with a fixed projection mλ or m
, was occupied and
was inducing polarization effects. As discussed previously,
this required symmetry breaking in the HF(B) solutions
and required coupling of (Q)RPA phonons to odd particles
in a symmetry-nonconserving way. However, a symmetry-
conserving (Q)RPA coupling [14] simply amounts to averag-
ing the results obtained for different values of mλ or m
; see
Eqs. (A18). In Figs. 14–16, we present results for the averages
obtained in this way.

FIG. 13. (Color online) Same as in Fig. 8, but for 110Sn.
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FIG. 14. (Color online) Average QRPA (SIF + SI) polarization
corrections δESIF + ESI, Eqs. (A18), in tin isotopes.

Figures 14 and 15 summarize our results obtained for
the QRPA polarization effects in tin isotopes. We see that
the polarization corrections strongly depend on A. This is
mostly attributable to the fact that for the Skyrme EDF SLy5,
the quadrupole collectivity in tin isotopes varies with A and
peaks near A = 110, where the nuclei are softest against the
quadrupole deformation and the QRPA 2+ phonons are lowest

FIG. 15. (Color online) Same as in Fig. 14, but for the QRPA SIF
polarization corrections only.

FIG. 16. (Color online) Average SI corrections ESI (A18a) plot-
ted for quasiparticles closest to the Fermi level in open-shell tin
isotopes.

in energy and have the largest strength. At A = 110, values of
polarization corrections reach up to 0.6 MeV.

Note that when a given orbital crosses the Fermi level, its
plotted polarization correction jumps from negative to positive
values, which is the result of the plotting convention explained
in Eqs. (81). In fact, the QRPA polarization corrections
to quasiparticle energies are always negative. For the SIF
contributions [cf. Eqs. (76) and (A16)], this fact is obvious,
whereas for paired open-shell nuclei, smaller opposite-sign SI
contributions are unable to change this general rule.

In Fig. 16, for selected quasiparticles in open-shell tin iso-
topes, we show values of the average SI corrections ESI (A18a).
Solid lines connect values obtained for quasiparticles at the
Fermi level, and dashed and dotted lines pertain to those
just below and above the Fermi level, respectively. It is
interesting to see that for the quasiparticle at the Fermi level,
the SI corrections become fairly small, not exceeding 50 keV,
whereas away from the Fermi level they can be of the order
of 200 keV; see also Figs. 10 and 11. If this observation is
confirmed or derived in a systematic way, we can hope that
near ground states of odd open-shell nuclei, the effects of
SI energies might be small. This is important, because the
odd-even mass staggering, where masses of odd nuclei enter,
is routinely used to gauge the intensity of pairing correlations.

IV. CONCLUSIONS

In the present study, we investigated links between the
mean-field and polarization-correction approaches to masses
of odd nuclei. The former ones are rooted in the EDF methods
and strive to describe odd systems by blocking odd particle or
quasiparticle states. Energies of odd nuclei are then obtained by
minimization methods, in full analogy with those used in even
nuclei, and by employing the same EDFs. The latter ones are
based on the perturbative “diagonal” coupling between the odd
particle and vibrational phonons calculated in even systems.

Following the classic analyses presented in Refs. [28–31],
we derived links between these two classes of approaches
also in the case of density-dependent interactions and/or
paired systems. This allowed us to show limitations of
the polarization-correction methods as compared to the full
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“nondiagonal” PVC that is rooted in the many-body perturba-
tion theory.

We performed numerical analyses using the deformed
mean-field code HFODD (v2.52k) [46], which is able to
solve self-consistent equations in odd nuclei by breaking all
symmetries. The polarization corrections were independently
calculated using the spherical code HOSPHE [47], which has
the capability to solve efficiently the (Q)RPA equations. The
comparison of results allowed us to identify the reason of
discrepancies between the masses of odd nuclei calculated with
these two approaches, which turns out to be the self-interaction
energy, polluting the mean-field energies of odd nuclei. Our
derivations also allowed us to explicitly define and calculate
the self-interaction energies, which then can be subtracted from
the mean-field results leading to SIF masses.
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APPENDIX: SPHERICAL SYMMETRY

In this Appendix, we specify the final equations obtained
for the SI energy (66) and polarization correction (76) to the
case of spherical symmetry, for which the numerical analyses
of this work were performed. First we note that the use of
spherical symmetry does not mean that in the odd system the
spherical symmetry is conserved.

Indeed, in the even system, the quasiparticles move in the
spherical field and thus their wave functions are character-
ized by quantum numbers 
 ≡ n
j
m
 that comprise the
principal quantum number n
, angular momentum j
, and
its projection m
. Quasiparticles having different projections
m
 are degenerate, and, therefore, any linear combination of
them can be used as the blocked orbital. In this work, we
make a simplifying assumption that the blocked quasiparticle
corresponds to a specific single value of the projection m
.
The general case could have been treated equally easy, and at
the end of the Appendix we discuss the meaning of it.

An odd state, obtained by blocking a quasiparticle, becomes
necessarily deformed. In the calculations performed with the
deformed code HFODD, this is particularly well and explicitly
visible, as the self-consistent solutions obtained in odd systems
always acquire small but nonzero deformations. The aim of this
appendix is to show in which way the deformation, and the
dependence of final results on the values of m
, appears in the
QRPA calculations that are performed in the spherical basis
and using the spherical code HOSPHE.

We begin by specifying expressions for the density matrix
and pairing tensor of the blocked quasiparticle (58) to the case
of the spherical basis α ≡ nαjαmα ,

ρ

nαjαmα,nβjβmβ

= −V ∗
nαjαmα,n
j
m


Vnβjβmβ,n
j
m


+Unαjαmα,n
j
m

U ∗

nβjβmβ,n
j
m

, (A1a)

κ

nαjαmα,nβjβmβ

= −V ∗
nαjαmα,n
j
m


Unβjβmβ,n
j
m


+Unαjαmα,n
j
m

V ∗

nβjβmβ,n
j
m

, (A1b)

where the spherically symmetric quasiparticle wave functions
read

Unαjαmα,nLjLmL
= δjαjL

δmαmL
UjL

nαnL
, (A2a)

Vnαjαmα,nLjLmL
= (−1)jα−mαδjαjL

δmα,−mL
V jL

nαnL
, (A2b)

and U
jL
nαnL

and V
jL
nαnL

are solutions of the HFB equation,
obtained for the quasiparticle state with quantum numbers
L ≡ nLjLmL in the given jL block.

In a way similar to that for the angular-momentum-
projected deformed states [32], we can write the deformed
density matrix ρ
 and pairing tensor κ
 as sums of those
projected on good angular momentum J and its projections on
the laboratory axis M and on the intrinsic axis K , ρ
,JMK and
κ
,JMK , that is,

ρ

nαjαmα,nβjβmβ

=
∑
JK

ρ

,JKK
nαjαmα,nβjβmβ

, (A3a)

κ

nαjαmα,nβjβmβ

=
∑
JK

κ

,JKK
nαjαmα,nβjβmβ

, (A3b)

where only the M = K terms appear in the expansion [32].
Using the Wigner-Eckart theorem [50], one can always express
laboratory spherical-tensor matrices, ρ
,JMK and κ
,JMK ,
corresponding to quantum numbers JM , as

ρ

,JMK
nαjαmα,nβjβmβ

= 1√
2jα + 1

C
jαmα

jβmβJM〈nαjα||ρ
,JK ||nβjβ〉,

(A4a)

κ

,JMK
nαjαmα,nβjβmβ

= 1√
2jα + 1

(−1)jβ−mβ C
jαmα

jβ ,−mβJM

×〈nαjα||κ
,JK ||nβjβ〉, (A4b)

where the reduced matrix elements can be calculated as

〈nαjα||ρ
,JK ||nβjβ〉 =
∑
mαmβ

2J + 1√
2jα + 1

C
jαmα

jβmβJK

× ρ

nαjαmα,nβjβmβ

, (A5a)

〈nαjα||κ
,JK ||nβjβ〉 =
∑
mαmβ

2J + 1√
2jα + 1

C
jαmα

jβmβJK

× (−1)jβ+mβ κ

nαjαmα,nβjβ ,−mβ

. (A5b)
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Validity of expansions (A3) can now be explicitly verified
using summation properties of the Clebsh-Gordan coeffi-
cients [50].

At this point, we can use the fact that the spherical-basis
properties of mean fields are exactly the same as those of
densities; that is, Eqs. (A3)–(A5) hold equally well for ρ
 and
κ
 replaced by �
 and �
, respectively. Then, by summing
the Clebsh-Gordan coefficients again, traces in Eq. (66) can
be explicitly evaluated, which gives

E

SI = 1

2

∑
nαjαnβjβJK

1

2J + 1

× (〈nαjα||�
,JK ||nβjβ〉〈nαjα||ρ
,J,−K ||nβjβ〉∗
+ 〈nαjα||�
,JK ||nβjβ〉〈nαjα||κ
,JK ||nβjβ〉∗). (A6)

Similarly, we can evaluate the QRPA SIF polarization
correction of Eq. (76). Because the spherical QRPA amplitudes
X and Y can be labeled with the good quantum numbers JM ,

we have

δE

SIF = −1

4

∑
JM

∑
ωJ >0

∣∣∑
LL′

(
W
∗

LL′X
ω,JM
LL′ + W


LL′Y
ω,JM
LL′

)∣∣2

�ωJ

.

(A7)

From the Wigner-Eckart theorem, amplitudes Xω,JM and
Yω,JM read

X
ω,JM
nLjLmL,nL′ jL′mL′ = 1√

2jL + 1
(−1)jL′−mL′ C

jLmL

jL′ ,−mL′ JM

×〈nLjL||Xω,J ||nL′jL′ 〉, (A8)

Y
ω,JM
nLjLmL,nL′ jL′mL′ = 1√

2jL + 1
(−1)jL−mLC

jL,−mL

jL′mL′JM

×〈nLjL||Yω,J ||nL′jL′ 〉. (A9)

Using the fact that the spherical-basis properties of quasi-
particle matrix W
 are the same as those of κ
 [see
Eqs. (A3b), (A4b), and (A5b)], we can derive that

δE

SIF = −1

4

∑
JK

1

(2J + 1)2

∑
ωJ >0

1

�ωJ

∣∣∣∣∣
∑

nLjLnL′ jL′

(〈nLjL||W
,JK ||nL′jL′ 〉∗〈nLjL||Xω,J ||nL′jL′ 〉

− (−1)J+K〈nLjL||W
,J,−K ||nL′jL′ 〉〈nLjL||Yω,J ||nL′jL′ 〉)
∣∣∣∣∣
2

. (A10)

Finally, we note that Eqs. (A3)–(A10) hold for an arbitrary blocked quasiparticle. However, when the reduced matrix elements
(A5) are evaluated for a specific quasiparticle (A2) that has a fixed value of projection m
, we obtain

〈nαjα||ρJK ||nβjβ〉 = 2J + 1√
2j
 + 1

C
j
m


j
m
J0δjα,j

δjβ ,j


δK0
[−(−1)J V j
∗

nαn

V j


nβn

+ Uj


nαn

Uj
∗

nβn


]
, (A11a)

〈nαjα||κJK ||nβjβ〉 = 2J + 1√
2j
 + 1

C
j
m


j
m
J0δjα,j

δjβ ,j


δK0
[
(−1)J V j
∗

nαn

Uj


nβn

+ Uj


nαn

V j
∗

nβn


]
. (A11b)

In this case, in Eqs. (A6) and (A10) only the K = 0 terms contribute to the SI energy and SIF polarization correction,
respectively.

In any channel J , the results depend on m
 only through the Clebsh-Gordan coefficient C
j
m


j
m
J0. It is, therefore, advantageous
to define triple reduced matrix elements that do not depend on m
,

〈αjα||ρ
,JK ||βjβ〉 = F (m
,J )δK0〈αjα|||ρ
,J |||βjβ〉, (A12a)

〈αjα||κ
,JK ||βjβ〉 = F (m
,J )δK0〈αjα|||κ
,J |||βjβ〉, (A12b)

for

F (m
,J ) = √
2J + 1C

j
m


j
m
J0. (A13)

Then, using the triple reduced matrix elements, calculation of mean fields can be performed only once, and the results valid for
arbitrary values of m
 can be reconstructed as

〈αjα||�
,JK ||βjβ〉 = F (m
,J )δK0〈αjα|||�
,J |||βjβ〉, (A14a)

〈αjα||�
,JK ||βjβ〉 = F (m
,J )δK0〈αjα|||�
,J |||βjβ〉, (A14b)

〈αjα||W
,JK ||βjβ〉 = F (m
,J )δK0〈αjα|||W
,J |||βjβ〉. (A14c)
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In terms of the triple reduced matrix elements, for fixed-m
 quasiparticles, results (A6) and (A10) can be expressed through
contributions coming from different channels,

E

SI,J = 1

2

∑
nαnβ

(〈nαj
|||�
,J |||nβj
〉〈nαj
|||ρ
,J |||nβj
〉∗ + 〈nαj
|||�
,J |||nβj
〉〈nαj
|||κ
,J |||nβj
〉∗), (A15)

δE

SIF,J = − 1

4(2J + 1)

∑
ωJ >0

1

�ωJ

∣∣∣∣∣∣
∑

nLjLnL′ jL′

(〈nLjL|||W
,J |||nL′jL′ 〉∗〈nLjL||Xω,J ||nL′jL′ 〉

− (−1)J 〈nLjL|||W
,J |||nL′jL′ 〉〈nLjL||Yω,J ||nL′jL′ 〉)
∣∣∣∣∣∣
2

, (A16)

whereupon they read

E

SI =

∑
J

(
C

j
m


j
m
J0

)2
E


SI,J , (A17a)

δE

SIF =

∑
J

(
C

j
m


j
m
J0

)2
δE


SIF,J . (A17b)

We note that factors δjα,j

δjβ ,j


, which are present in Eqs. (A11), allowed for reducing Eq. (A15) to terms with jα = jβ = j


only. However, fields (A14) are not restricted to jL = jL′ = j
 and thus the QRPA SIF corrections (A16) must be summed up
over jL and jL′ .

From expressions (A17) we see that the polarization corrections calculated for orbitals with given values of m
 are obtained by
folding the J -dependent (but m
-independent) contributions E


SI,J and δE

SIF,J with simple Clebsh-Gordan coefficients. Values

of these coefficients thus dictate how strongly a given channel J contributes. Moreover, owing to the summation properties of
the Clebsh-Gordan coefficients, the average contributions read

ESI ≡ 1

2j
 + 1

∑
m


E

SI =

∑
J

1

2J + 1
E


SI,J , (A18a)

δESIF ≡ 1

2j
 + 1

∑
m


δE

SIF =

∑
J

1

2J + 1
δE


SIF,J . (A18b)

As shown in this Appendix, by blocking quasiparticles that have fixed values of projections m
, one obtains only the K = 0
terms in densities and fields; that is, deformations of odd systems are axial. It is also clear that by blocking quasiparticles with
mixed values of m
, one would have obtained nonzero reduced matrix elements for nonzero values of K , and thus in odd systems,
nonaxial deformations would have appeared. Numerical results presented in this study indicate, however, that axial solutions
have systematically lower energies.
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[20] P. F. Bortignon, G. Colò, and H. Sagawa, J. Phys. G 37, 064013
(2010).

[21] K. Rutz, M. Bender, J. A. Maruhn, P.-G. Reinhard, and
W. Greiner, Nucl. Phys. A 634, 67 (1998).

[22] W. Satuła, J. Dobaczewski, and W. Nazarewicz, Phys. Rev. Lett.
81, 3599 (1998).

[23] T. Duguet, P. Bonche, P.-H. Heenen, and J. Meyer, Phys. Rev. C
65, 014310 (2001).

[24] T. Duguet, P. Bonche, P.-H. Heenen, and J. Meyer, Phys. Rev. C
65, 014311 (2001).

[25] M. Zalewski, J. Dobaczewski, W. Satuła, and T. R. Werner, Phys.
Rev. C 77, 024316 (2008).

[26] G. F. Bertsch, C. A. Bertulani, W. Nazarewicz, N. Schunck, and
M. V. Stoitsov, Phys. Rev. C 79, 034306 (2009).

[27] N. Schunck, J. Dobaczewski, J. McDonnell, J. Moré,
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