JYVASKYLA LICENTIATE THESES IN COMPUTING
18

Antti-Juhani Kaijanaho

The Extent of Empirical
Evidence that Could Inform
Evidence-Based Design of
Programming Languages

A Systematic Mapping Study

¢
|

JYVASKYLAN YLIOPISTO

JYVASKYLA LICENTIATE THESES IN COMPUTING 18

Antti-Juhani Kaijanaho

The Extent of Empirical Evidence that
Could Inform Evidence-Based Design
of Programming Languages

A Systematic Mapping Study

o

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2014

The Extent of Empirical Evidence that
Could Inform Evidence-Based Design
of Programming Languages

A Systematic Mapping Study

JYVASKYLA LICENTIATE THESES IN COMPUTING 18

Antti-Juhani Kaijanaho

The Extent of Empirical Evidence that
Could Inform Evidence-Based Design
of Programming Languages

A Systematic Mapping Study

o

UNIVERSITY OF H JYVASKYLA

JYVASKYLA 2014

Editor
Timo Mannikko
Department of Mathematical Information Technology, University of Jyvaskyla

URN:ISBN:978-951-39-5791-9
ISBN 978-951-39-5791-9 (PDF)

ISBN 978-951-39-5790-2 (nid.)
ISSN 1795-9713

Copyright © 2014, by University of Jyvaskyla

Jyvidskyld University Printing House, Jyvaskyld 2014

GLENDOWER. I can call spirits from the vasty deep.
HOTSPUR. Why, so can I, or so can any man;
But will they come when you do call for them?

— William Shakespeare’s Henry IV Part 1 (111.1)

ABSTRACT

Kaijanaho, Antti-Juhani

The extent of empirical evidence that could inform evidence-based design of pro-
gramming languages. A systematic mapping study.

Jyvaskyld: University of Jyvaskyld, 2014, 243 p.

(Jyvaskyld Licentiate Theses in Computing,

ISSN 1795-9713; 18)

ISBN 978-951-39-5790-2 (nid.)

ISBN 978-951-39-5791-9 (PDF)

Finnish summary

Background: Programming language design is not usually informed by empirical
studies. In other fields similar problems have inspired an evidence-based paradigm
of practice. Central to it are secondary studies summarizing and consolidat-
ing the research literature. Aims: This systematic mapping study looks for em-
pirical research that could inform evidence-based design of programming lan-
guages. Method: Manual and keyword-based searches were performed, as was a
single round of snowballing. There were 2056 potentially relevant publications,
of which 180 were selected for inclusion, because they reported empirical ev-
idence on the efficacy of potential design decisions and were published on or
before 2012. A thematic synthesis was created. Results: Included studies span
four decades, but activity has been sparse until the last five years or so. The
form of conditional statements and loops, as well as the choice between static
and dynamic typing have all been studied empirically for efficacy in at least five
studies each. Error proneness, programming comprehension, and human effort
are the most common forms of efficacy studied. Experimenting with programmer
participants is the most popular method. Conclusions: There clearly are language
design decisions for which empirical evidence regarding efficacy exists; they may
be of some use to language designers, and several of them may be ripe for sys-
tematic reviewing. There is concern that the lack of interest generated by studies
in this topic area until the recent surge of activity may indicate serious issues in
their research approach.

Keywords: programming languages, programming language design, evidence-
based paradigm, efficacy, research methods, systematic mapping study;,
thematic synthesis

Author’s address

Supervisors

Examiners

Antti-Juhani Kaijanaho

Department of Mathematical Information Technology
University of Jyvaskyld, Finland

PO Box 35 (Agora), FI-40014 University of Jyvaskyld
antti-juhani.kaijanaho@jyu. fi

Professor Tommi Kérkkédinen
Department of Mathematical Information Technology
University of Jyvaskyld, Finland

Doctor Vesa Lappalainen
Department of Mathematical Information Technology
University of Jyvaskyld, Finland

Doctor Ville Tirronen
Department of Mathematical Information Technology
University of Jyvaskyld, Finland

Doctor Stefan Hanenberg
University of Duisburg-Essen, Germany

Professor Stein Krogdahl
University of Oslo, Norway

ACKNOWLEDGEMENTS

I would like to thank my supervisors, Professor Tommi Kéarkkainen, Doctor Vesa
Lappalainen, and Doctor Ville Tirronen, for encouragement, discussions and feed-
back over the years.

Doctor Stefan Hanenberg of the University of Duisburg-Essen and Profes-
sor Stein Krogdahl of the University of Oslo examined this thesis; their comments
reflect fairly, in my opinion, both the strengths and the weaknesses of this thesis,
and I expect to take their comments into account when I extend the research re-
ported here. My thanks to both. It should be noted that this thesis is published
with only minor editorial changes unrelated to the examiners” comments.

The Faculty of Information Technology and the Department of Mathemati-
cal Information Technology have generously allowed me to follow my own me-
andering path in my postgraduate studies alongside my teaching duties. It has
taken about a decade to get to this point. The current Dean, Professor Pekka Neit-
taanmaki, and the current Head of Department, Professor Tuomo Rossi, have par-
ticularly offered encouragement, challenges and guidance during this process.

Professor Emeritus Markku Sakkinen, Doctor Hannakaisa Isoméiki, Doc-
tor Ville Isomottonen, Doctor Sami Kollanus, and Mr. Antti-Jussi Lakanen have
helped me with discussions, encouragement and critique. Thanks are due to all
my other colleagues, as well.

In April 2011, I attended (without a paper to present) the 15th International
Conference on Evaluation and Assessment in Software Engineering (EASE) at
Durham University, England. I enjoyed the presentations and informal discus-
sions among the participants very much; they also gave me good ideas and in-
spiration.

The three anonymous reviewers of the EASE 2012 conference gave me use-
ful feedback on an early manuscript detailing the progress of this study.

The interlibrary loan service of the university library responded efficiently
to every one of my interlibrary loan requests; I had to make a lot of them during
this mapping study. Without them, this thesis could not be what it is now.

My mother, Ms. Maija Tuomaala, with background in philosophy and in
education research, gave me useful feedback on many drafts of this thesis and
other related manuscripts.

I hereby also thank all my family and friends for encouragement, support
and understanding.

NOTE ON ENGLISH USAGE

This thesis, as is customary, has a single author. I find it awkward to use the first
person plural (“we”) about work I have done alone, even though it is somewhat
conventional. The more usual method of deliberately obscuring agency by using
short passive constructions would be, in many cases, inappropriate (while lin-
guistically quite legitimate, see Pullum 2014), as in a systematic secondary study
clear indication of who did what is an important part of the audit trail. Thus, like
Kitchenham (2010) in her mapping study, I use the singular first person in mine.

In situations where I need to refer to a person whose sex is unknown or
immaterial, I will generally use the singular “they” (see e. g. Baranowski 2002;
Paterson 2011). Of the many less than ideal options available, it is, in my opinion,
the best.

LIST OF FIGURES

FIGURE 1

FIGURE 2
FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9

FIGURE 10
FIGURE 11
FIGURE 12

A high-level representation of the mapping process. This dia-

gram omits many details. ... 55
Flow diagram of the study selection process............................ 65
Bubble plot of included publications by publication forum and
publication year..............cccoooiiiiiii 75
Bubble plot of included core publications by publication fo-
rum and publication year ... 78

Bubble plot of core sub-studies, excluding experiments, cate-
gorized by the facets of efficacy used and the primary research

methods used. ... 84
The number of included publications per year......................... 86
The number of included primary studies per publication year .. 87
The number of included core studies per publication year 87
The number of randomized controlled experiments in the core

per publication yearccooiiiiiiiiiiiii 87
The number of core studies of conditionals per year-................. 88
The number of core studies of loops per year........................... 89
The s1r-tools select form..........ccooeiiiiiiiiiiiiiiiinnnnnnn, 165

LIST OF TABLES

TABLE 1 Summary of selection processccccecvuiiiiiiiiiiiiiiiiiiie 57
TABLE2 Summary of manual search..........................., 58
TABLE3 Summary of automatic search............................ 60
TABLE 4 The overall and exclusive contribution and overlap of the var-

ious search modalities ... 62
TABLE 5 The quasi-gold standard and quasi-sensitivity for manual searches 63
TABLE6 The quasi-sensitivity and specificity of automatic searches 64
TABLE 7 Pairwise Cohen kappas in the second selection validation ex-

EICISE. Louniiiiii it 68
TABLE8 Publication forums containing at least two in publications........ 74
TABLE 9 Included studies ... 76
TABLE 10 Design decisions investigated by randomized controlled ex-

periments in the core. ... 79
TABLE 11 Facets of efficacy studied by randomized controlled experi-

ments in the core...............cooooiiiiiii 80
TABLE 12 Design decisions investigated by controlled experiments in

the CoTe .. oo 81
TABLE 13 Facets of efficacy studied by controlled experiments in the core,

building up on Table 11. ..., 82
TABLE 14 Design decisions investigated by non-controlled experiments

INthe CoTe ... 83
TABLE 15 Facets of efficacy studied by non-controlled experiments in

the core......cooooiiiiiiii 83
TABLE 16 Design decisions investigated by at least two core studies......... 84
TABLE 17 Facets of efficacy studied by at least three core studies, build-

ingupon Tables 13 and 15.ooiiiiiiiii 85

TABLE 18 Primary studies that replicate or follow up on or are otherwise
based on prior work that is itself included in this mapping study 91

TABLE 19 Design-decision codes.................ouiiiiiiiiiiiiiiiiiiiii 169
TABLE 20 Efficacy cOdes............uuuuiiiiiiiiiiiiiiiii 173
TABLE 21 Method codes for primary studies..........................coooiiiinni, 174
TABLE 22 Method codes for secondary studiescoooeiiinni, 175
TABLE 23 Primary studies and their assigned codes............................... 176
TABLE 24 Secondary studies and their assigned method codes 180
TABLE 25 Reports included in this mapping study that are also consid-

ered by included secondary studies.................ccooooo 181

TABLE 26 Reports considered by included secondary studies that have
not been included in this mapping studycoooeiiiiis 181

CONTENTS

ABSTRACT
ACKNOWLEDGEMENTS
NOTE ON ENGLISH USAGE
LIST OF FIGURES
LIST OF TABLES
CONTENTS
1 INTRODUCTION ...ccetiiiiiiiiiiiiiiiiiiiieeseeeeceeeennnnnnnnsassssesasneees 13
2 PROGRAMMING LANGUAGES AND THEIR DESIGN..........cccc.cuu.... 16
2.1 Demarcationcocooiiiiiiiiiiiiiiiiiii e 16
2.1.1 Two concepts of language.............ccccoeeeeiiiiiiiiiiiinn, 16
2.1.2 What qualifies as programming?..............ccccuvvvriinennnnn... 18
2.1.3 Definitionccoeeeiiiiiiiiiiiiiiii 19
2.2 ClasSifiCationsuueieeeeiiiiiiiiiiii e 19
221 Languagelevels.........cccooooiiiiiiiiiiiiiii, 20
222 Generations...........ooovviiiiiiiiiiiiiii 21
223 Paradigms............ccocvviiiii 22
2.3 Conceptual structure.............cocoeiiiiiiiiiiiiiiiii 24
2.4 Development of certain features............................. 26
241 Conditionalsccoooeeiiiiiiiiii 26
242 TYPOS.coiiiiiiiii 29
2.5 DeSIZN..coiiiiiiiiiiiii 33
2.5.1 Historical practice.................ooooiiiiiiiiiiiiiii 33
2.5.2 Programmer behavior.......................... 36
253 Evidence-based?...................oooiiiiiii 37
3 SYSTEMATIC SECONDARY STUDIEScccuvtiiiiieieriieirrrrnnnnnnnnnnnnn. 39
3.1 OVEIVIEW ...oiiiiiiiiiiii i 39
3.2 Best-practice methodology ... 41
3.2.1 Overall process........cceeeeeieiieiiiiiiiiiiiiiiiee e 42
322 Planningccccoooiiiiiiiiiiiii 42
323 Searching ... 43
324 Selectioncovviiiiiiiiiiiiiiii 46
3.2.5 Data extraction and synthesisccccoeeiii 47
326 Reporting.........cccoveiiiiiiiiiiiiiiiiiiii 48
3.2.7 Concluding remarksooooii 49
33 Onevidence..........cccoiiiiiiiiiiiiiiiii 49
3.3.1 Research methods..............oooiiii, 49
3.3.2 Hierarchies of evidencecccccceeeviiiiiinnnn, 51
3.3.3 On the epistemology of evidence................cccevvvviieiinnnn... 52
4 THE MAPPING PROCESSccotiiinnnnnnnininiiiiiiiiieiieseeeeeeeeeeeeeeeeeeeenn 55

4.1 Searching for candidate studies............................. 56

411 Manualsearch..........ccoooooiiiiiii 56

41.2 Automaticsearch.............ccccoiiiiiiiii 59

4.1.3 Snowball search............cccoviiiiiiiinii 62

414 Validation ... 62

4.2 Selectioncuvuiiiiiiiiiiiiiiiiii 64

421 Selection criteria............coooiiiiiiiiiiiiiiii 64

42.2 Phases of selectioncccocvvviiiiiiii 66

423 Validationcccoooeiiiiiiiiiiii 66

4.3 Data extraction and synthesisccccooeii . 68

431 Arejected approach ... 68

43.2 Immersion and quote extraction.................cccccoeeeennnnl 69

433 Coding and post-hoc exclusions....................ccooeiiiiinni, 69

434 Theme developmentooooooii 71

5 RESULTS cctttttttiiieiiiiiieeiitttttnn et 73
51 Thematicmodelcccoiiiiiiiiii 77

51.1 Periphery.......ccccooiiiiiiiiiii 77

512 COre ..oiviiiiiiiiiii i 78

51.3 Temporal pattern.........ccc.oooooiiiiiiiiiiii 86

5.2 Answers to research questions 88

6 DISCUSSION....cuuiiiiiiiiiiiiirttiiiiiiiiieeeeeeeeeeriiniiieeeeeeeeeerennaasasaes 92
6.1 Lessonslearned..............ccccciiiiiiiiiiii 93

6.2 Limitations of this studyooii 95

6.2.1 Conceptualooi 96

6.2.2 Literature search and selection.................ccccccoviiiiininnnnnn. 96

6.2.3 Thematic synthesiscccocoeviiiiiiii 97

7 CONCLUSION ..ettuiiiiiiiiieeiriiiiiiineeeeeeeeeeeinnrsieeeseeeeesesssssnnnnnnnns 98
YHTEENVETO (FINNISH SUMMARY) ..covvttiiiiiiiiiiiiiiiinniiiiiiiieeeeeennns 99
BIBLIOGRAPHY «.uuuutiiiiiiiiiiiiiiiiiiiiiiiiiriiereereeeeeeeeeeeeeeesesee e e s s e s s ssssssssssnnnnns 103
APPENDIX1 RECORD KEEPING AND TOOLS USEDccccvvrrrrrvennnnnnnn. 149
1.1 Database formatooooiiiiiiiiii 149

1.1.1 General Syntaxccoocouvuiiiiiiiiiiiiiiiiiiiiiiee 149

1.1.2 Search recordscvvveiiiiiiiiiiiiiiiiiii 150

1.1.3 Publication recordscccoooeiiiiiiiiiiiiii 151

1.14 Study records..........ccoooiiiiiiiiiiiiiiiii 153

1.1.5 Codes and raw themescovviiiiiii, 156

1.2 The query languageooooiiiiiiiiiiiiii 157

1.2.1 Lexical structurecccoooeiiiiiiiiiiiiiin 157

1.22 0 Terms ..ooovvviiiiiiiiiie e 158

T1.2.3 Predicates ..o 160

1.2.4 Pre-bound variables...............ccccoiiiii 161

1.3 The s1r-tools toolset...........ccooiiiiiiiiiiiiiiii 163

1.3.1 General usageccoeeiiiiiiiiiiiiiii 163

1.3.2 Recording search results.............cccccceveiiiil. 164

1.3.3 Selection deciSionsccvviiiiiiiiiiiiiii 164

1.34 Selection evaluation support..........ccccoeeeeiiiiiiiiiiiinn, 166

1.35 Report dumps ... 166

1.3.6 QUETIES ..uiviiiiii e 168
APPENDIX 2 CODES USED IN THEMATIC SYNTHESIS.........ccccuuuuunnnnnn. 169
APPENDIX 3 CODE ASSIGNMENTS FOR INCLUDED STUDIES............. 176
APPENDIX 4 INCLUDED SECONDARY STUDIES......cccccoevrrrmmumnnnnnnnnnnnn. 181
APPENDIX 5 EXCLUDED PUBLICATIONScccuttiiiiiiieriiiiiniinnniineninnnnnn 183
APPENDIX 6 THE REJECTED DATA EXTRACTION FORM.......c.cccceeunnnne. 243

1 INTRODUCTION

How much empirical research there is that could guide a programming language
design process to result in a language as useful to the programmer as possible?
That is the question I consider in this licentiate thesis, recognizing that such em-
pirical research has not often been taken into account in language design. An-
swering that question properly required me to conduct an over three years long
systematic mapping study, which I now report in this thesis.

There are thousands of programming languages (see e. g. Kinnersley 2001;
Pigott 2006), and languages are designed, or their designs improved, all the time
(some recent examples: Gerakios, Biboudis, et al. 2013; Kilpatrick et al. 2014;
Miller et al. 2014). The designs are generally based on the designers’ aesthet-
ics, personal preferences, implementation concerns, and theoretical models. With
few exceptions (Myers, Pane, et al. 2004; Cook 2007; Stefik and Siebert 2013),
language designers do not consider empirical knowledge regarding programmer
behavior and how different language design choices affect it (Hanenberg 2010c;
Markstrum 2010).

This is surprising. After all, for instance, the field of psychology of program-
ming is over forty years old (Weinberg 1971; Shneiderman 1980; Hoc et al. 1990;
Détienne 2002). Several possibilities to explain this come readily to mind: (1) per-
haps the body of knowledge built by the psychology of programming research
community is not useful to language designers; (2) perhaps language designers
are not aware of such research that is useful; and (3) perhaps language designers,
coming mostly from the mathematico-technological background, are intimidated
by the inherent uncertainty of behavioral research. I do not investigate these hy-
potheses in this thesis; I merely offer them as plausible conjectures.

An interesting parallel can be drawn with medicine. There is a huge body of
scientific knowledge to draw on regarding the efficacy of various medical inter-
ventions. A physician, faced with a patient with particular signs and symptoms,
must make a choice as to which diagnosis to make, and what treatment to offer
to the patient. One would hope that a physician always chooses the options that
have the best support in research. Making that happen is not a trivial under-
taking: (1) making sense of medical research literature is a skill separate from the

14

ordinary physician’s skills; (2) there is so much of it that a physician is likely over-
whelmed; and (3) quite a bit of medical research is unreliable (see e. g. loannidis
2005, 2008; Straus et al. 2011).

The now-conventional solution taught to medical students is the paradigm
of practice called Evidence-Based Medicine (see e. g. Guyatt 1991; Evidence-Based
Medicine Working Group 1992; Straus et al. 2011). This is a structured method
that an individual physician is expected to apply to resolve uncertainty in han-
dling a particular patient’s problem, involving a disciplined search of the re-
search literature, with the aid of secondary and tertiary sources designed for
this use. Many other fields have adopted a similar paradigm; most notably,
there is Evidence-Based Software Engineering (Kitchenham, Dyb4, et al. 2004; Dyba,
Kitchenham, et al. 2005).

The key conjecture that this thesis is based on is that it might be useful to
introduce the evidence-based paradigm to the field of programming language
design. Like a physician with a patient, a designer wrangling with a language
design often faces uncertainty as to the best way to proceed. Maybe an Evidence-
Based Programming Language Design' paradigm is something that language de-
signers could beneficially adopt.

In this thesis, setting the viability of such a paradigm aside for later study, I
deal with a preliminary question:

RQ: What scientific evidence is there about the efficacy of particular decisions
in programming language design?

As the phrasing of this question implies, I assume in this thesis that a designer
would consult the empirical literature mainly to choose between at least two mu-
tually incompatible design choices, and that the designer is mainly interested in
any benefit or hindrance to working programmers caused by making a particular
design decision. This leads me to set, for the purposes of this thesis, the following
two terminological definitions:

Definition 1. In the context of this study, a design decision refers to a particular choice
that a programming language designer makes in the course of the design work. In a
design decision, the designer chooses one of at least two mutually exclusive choices,
each with a different effect on the resulting language design. An archetypal example
of a design decision is the choice between static and dynamic typing.

Definition 2. The efficacy of a design decision refers, in this case, to the existence and
(so far as possible) the magnitude of any benefit (or, negatively, hindrance) to program-
mers in their programming speed, programming quality, their ability to tackle complex
programming problems or other similar matters, broadly construed. Simply put, it is
about whether a programmer is helped or hindered in his or her work by a particular
design choice, all else being equal.

These definitions prompt the following sub-questions:

RQ1: How much has the efficacy of particular programming language design
decisions been empirically studied?

Note that Stefik, Siebert, et al. (2011) use the phrase “evidence-based programming lan-
guage” in a different but related sense.

15

RQ2: Which programming language design decisions have been studied empir-
ically for efficacy?

RQ3: Which facets of efficacy regarding programming language design deci-
sions have been studied empirically?

The following two additional sub-questions are suggested mainly by curiosity,
since they are simple to answer while pursuing the previous three questions:

RQ4: Which empirical research methods have been used in studying the efficacy
of particular programming language design decisions?

RQ5: How common are follow-up or replication studies, either by the original
researchers or by others?

Any study answering any of these five questions is a secondary study, as they
deal with the state of the research literature. As is customary in the evidence-
based paradigms in the various fields, this secondary study follows a systematic
approach. Most systematic secondary studies are either systematic literature re-
views (SLRs), which aim to answer specific questions having practical relevance,
or mapping studies, which aim to construct a map to the literature. The ques-
tions I have posted are fairly broad and are more relevant to researchers than to
practitioners. Hence, this is a mapping study.

There are a number of deliberate limits I have set for this study. First, I
consider only traditional textual programming languages. Second, I exclude all
literature published after 2012. Third, I do not discuss the results of the studies I
consider.

Limiting this study only to textual languages means excluding for example
visual programming languages and the various integrated development environ-
ments, such as Eclipse, from consideration. I appreciate the point made by Myers,
Pane, et al. (2004, p. 49) — “features of the programming environment are a cru-
cial part of making a programming language effective and easy to use” —but the
scope of this study is large enough even with this exclusion.

I exclude studies published after 2012 mainly because there needs to be some
cut-off point, so that the literature searches I have made stand some chance of
being replicable. I conducted the last searches in early 2013, making the end of
2012 a natural choice.

In this study, I deliberately avoid discussing the results of the studies I have
located, as doing so properly would require turning this thesis into a series of sys-
tematic literature reviews, one for each topic on which there is relevant research;
that would be an enormous undertaking, and one I leave for later. Conversely,
dealing with the results in any improper way would be worse than useless, as
it could give a false sense of authority to unreliable conclusions. Hence, I avoid
them entirely.

I'will start by discussing programming languages and their design in Chap-
ter 2. Second, in Chapter 3 I will discuss systematic secondary studies and their
methodology in relevant part. Then, I will detail the research design in Chapter 4
and the results in Chapter 5. Finally, in Chapter 6 I will interpret the results and
discuss the limitations of this study. Chapter 7 concludes this thesis.

2 PROGRAMMING LANGUAGES AND THEIR
DESIGN

In this chapter, I will discuss five topics related to programming languages, based
on the literature. First, I need to fix a line of demarcation between programming
languages and things that are not programming languages (Section 2.1). Second,
I will discuss language classifications (Section 2.2). Third I will explain the con-
ceptual structure conventionally imposed on them (Section 2.3). Fourth, I will
examine the key design questions related certain language features of interest
(Section 2.3). Finally, I will discuss language design, both historically and the
effect of programmer behavior research might have on it (Section 2.5).

2.1 Demarcation

Before one can discuss programming languages, and more importantly, before
one can map the empirical literature of use to language design, one must solve
the demarcation problem for programming languages: what is, and what is not,
a programming language? In the following subsections, I first analyze the con-
cept of language, then the concept of programming, bringing, in the end, the two
together to a definition.

2.1.1 Two concepts of language

The IEEE Standard Glossary of Software Engineering Terminology (1990), the OED
Online (programming, n. 2013, compounds), and Dershem and Jipping (1995), as
well as perhaps Sethi (1996), adopt similar concepts of language (in this context),
based on the idea of combining symbols to communicate ideas. This is a broad
concept. It can be argued that the common desktop graphical user interface is
a language under this approach: the icons on the screen, the act of pointing at
a particular item on the screen using the mouse, and the act of clicking one of
the mouse buttons, can be interpreted as symbols, and there are clearly rules that

17

allow combining these symbols to communicate ideas. For example, pointing the
mouse at a particular icon and then clicking on the left mouse button twice in
rapid succession is a phrase in this language, whose meaning is familiar to all
computer users.

In contrast, Sammet (1969) and Fagan (1991) identify a language with the
concept of a formal language as that term is used in theoretical computer science,
coupled with an intended — and sometimes formally defined — semantics. Gab-
brielli and Martini (2010) appear to take this position as well, although they do
not articulate it. It also underlies the philosophical discussions of programming
languages by White (2004) and Turner (2007, 2009); and while Colburn (2000,
p- 190) adopts in his philosophical discussion the textbook definition of program-
ming languages (but not of languages) in Dershem and Jipping (1995), he appears
to assume that they are formal languages.

The formal language approach (see e. g. Hopcroft et al. 2007) posits that
a language is associated with an alphabet, meaning a predetermined, finite set
of symbols, and is defined by the set of strings that the language deems valid;
strings being finite (possibly empty) sequences of symbols drawn from the alpha-
bet. In this view, while infinite languages are in practice expressed using a finite
description (using one of several formalisms of differing expressive power), the
only thing that distinguishes one language from another is their respective sets
of valid strings. In the case of programming languages, these strings are conven-
tionally called programs, modules, or compilation units.

Of course, merely knowing which programs are valid in the language is
not enough, and thus every programming language, viewed from this formal-
language vantage point, has a semantics, assigning an interpretation to every
valid program in the language. In the formal point of view, these semantics are
typically mathematical functions mapping programs to mathematical objects de-
scribing their computational content (denotational semantics), mathematical rela-
tions between programs and their results (big-step operational semantics), or math-
ematical (transition) relations between states in a special-purpose abstract ma-
chine, the states encoding the program and the result, among other things (small-
step operational semantics). In some cases, particularly in academic publications
over the last three decades (e. g. Halpern et al. 1984; Launchbury 1993; Igarashi
et al. 2001; Stork et al. 2014), these semantics are specified using mathematical
notation and rigor, but the semantics of working languages are usually specified
using a natural language such as English. Reynolds (1998) and Kaijanaho (2010)
discuss the main techniques of formal semantics of programming languages; the
discussion of Java by Gosling et al. (2014) is an excellent modern example of a
natural-language description of semantics.

There are two main differences between these two concepts of a language.
In the symbols and rules approach, a language is seen first and foremost as a
structured concept, built from specific symbols using specific rules, while the for-
mal language approach treats structure as an aid of description, the languages
themselves being merely sets of valid strings.

The formal language approach, however, decrees a one-dimensional struc-

18

ture on the utterances allowed by a language: they are built from symbols in a
one-dimensional sequence. In principle, any two-dimensional formatting such as
line separation and indentation, which are commonly used in programming, are
completely ignored as mere presentation issues, although in practice it is possi-
ble to treat them, in a limited but meaningful way, by encoding line separation
or termination as a symbol in the alphabet and by encoding indentation as one
(a tabulation, specifying the indentation for each line independently) or two (in-
dent and dedent, indicating increasing and decreasing levels of indentation, re-
spectively) symbols in the alphabet (see e. g. Marlow 2010; The Python Language
Reference 2014). In contrast, the symbols and rules approach allows any structure
— spatial, temporal, or a combination. As discussed above, a graphical user inter-
face qualifies under this symbols and rules approach, and trying to shoehorn it
into a single dimension,! which is what is required to make it qualify under the
formal language approach, would be more akin to translation to another, quite
different language than a mere encoding.

For the purposes of this mapping study, I have decided to adopt the for-
mal language approach, mainly because it offers a fairly clear demarcation line
between the traditional programming languages and such things like visual pro-
gramming languages and integrated development environments.

2.1.2 What qualifies as programming?

The attribute “programming” qualifying the word “language” suggests that not
all languages are programming languages. To define the concept of a program-
ming language, one thus needs to consider what “programming” actually means.
Pair (1990) opines that programming is “describing calculations” (p. 11),
provided that calculation is understood expansively, including various forms of
communication with the external worlds. He also points out that a single pro-
gram does not describe a single calculation but a “function linking a calculation
to each possible input” (p. 10). Détienne (2002, p. 13), based on Pair (1990) and
Wirth (1976), characterizes programming as having “two aspects [...]: the de-
composition of a calculation in order to produce an algorithm and the definition
of objects”, where by objects she means a generalization of data structures.
Blackwell (2002) characterizes programming in terms of what makes it dif-
ficult. The act of programming is separated from the effects of the resulting pro-
gram in two main ways: firstly, there is temporal separation, as a program is
always executed later than it is written, and secondly, there is abstractional sep-
aration, as a program is almost always written to be executed more than once,
and thus the program must be written to adapt to each new execution context.
Blackwell calls them ““abstraction over time” and “abstraction over a class of situ-
ations’” (p. vi). Further, programming requires the use of notation (effectively, a

1 It certainly is possible to do that, as shown by the common implementation approach of

representing user actions as a temporal sequence of event descriptions (see e. g. Gettys
et al. 2002; About Messages and Message Queues 2013), which is simple to encode as a one-
dimensional sequence of symbols.

19

language), and often deliberately uses abstraction to manage complexity.

Blackwell (2002) also advocates phenomenological study of programming
in order to characterize the typical programming activity that actually occurs in
practice. He further argues that all computer users are programmers: even writ-
ing HTML or a complex spreadsheet require temporal separation and often even
abstractional separation.

These points lead me to the following conclusion. There is, without doubt,
in programming always some computer being instructed. The instruction, which
is typically called a program, must also be, like both Pair (1990) and Blackwell
(2002) note, usable more than once and it must be able to adapt to the context in
which it is used; this is typically called its input.

2.1.3 Definition

Combining all these threads yields a concept of programming language that can
be used as a definition. For the purposes of this mapping study, I will further
require that the language is a tool of a programmer, that is, a person who has
acquired some skill in and actually engages in the activity of creating programs,
whether or not it is their profession (cf. Ko et al. 2011); this also serves to exclude
languages meant only as targets for automatically generated code. I will also re-
quire, as I am mostly interested in general-purpose languages, that the language
must be able to deal with user interaction. This yields the following definition:

Definition 3. A programming language is a formal language (that is, a set of strings) with

an associated (implicit or explicit) semantics, intended for use or is used? by program-
mers to construct reusable instructions (a program) for a computer to perform a specific
task in response to, or in light of, external input, possibly including user interaction.

I'should note that this definition is intended (and I have interpreted it, in the
course of this study) to exclude such languages as SQL and HTML, for the lack
of ability to deal with user interaction, as well as visual languages, for not being
a set of strings.

2.2 Classifications

There are four commonly mentioned classifications of programming languages:
language levels, generations, paradigms and the systems programming language
versus scripting language dichotomy. All four occur in the studies included in
this mapping study.

2 This grammatical error was introduced in the first version of the protocol that carried this

definition and went uncorrected in all supporting materials during the study. I retain the
exact phrasing, including the error, for audit trail purposes.

20

2.2.1 Language levels

Every computer has a native language (called a machine language). The machine
languages of many of the earliest stored-program computers, different for each
machine, were directly readable and writable via the native character set of the
machine by their human programmers; the language of the Cambridge Univer-
sity computer EDSAC, at least, was even somewhat mnemonic (Wilkes et al. 1951;
Programming for the UNIVAC Fac-Tronic System 1953, p. 24-25; Campbell-Kelly
1980a,b; Wheeler 1992; Koss 2003). Other computers (particularly modern ones)
use a machine language that requires a separate coding step from the machine-
language programmer’s notes to machine language, and a decoding step if the
program already stored in a computer is to be read by someone. All machine lan-
guages, even the alphanumeric machine languages of computers like the EDSAC,
require detailed bookkeeping on the part of the machine-language programmer
to keep track of memory addresses, and even the slightest changes to the program
require detailed manual recomputation (see e. g. Koss 2003, p. 52).

The coding and bookkeeping required to program with a machine language
are tedious mechanical processes, and thus good candidates for automation. Pro-
gramming techniques required to produce assemblers that took a readable but ex-
tremely detailed description of a machine-language program and converted it
into machine language were developed by the early 1950s. The language under-
stood by a particular assembler is called an assembly language.

Practically all programs require the computation of nontrivial arithmetic;
for example, to access the ith element of an array that starts at address 2 and
whose elements are b bytes long (including any padding) requires the compu-
tation of a + (i — 1)b. This operation is found in essentially all programs. In
machine and assembly languages, the programmer is required to sequence the
computation and keep track of storage for the intermediate values by hand. The
programmer is also required to juggle the extremely limited number of registers,
and to take into account the numerous special cases and warts that a machine
language typically provides to a programmer.

High-level languages are programming languages that abstract away such de-
tails. The programmer may write arithmetical formulas directly in their program,
without worrying about sequencing of the arithmetic and intermediate value
storage. The programmer may pretend the machine is more regular than it is,
not caring about the limited number of registers and other technical warts of the
machine. A high-level language also hides all details concerning address calcu-
lation from the programmer, who writes only in terms of symbolic names. Most
high-level languages are sufficiently abstracted from the details of a particular
machine that programs written in them can be portable.

This definition is largely equivalent to that given by Sammet (1969, p. 8-11)
and the IEEE Standard Glossary of Software Engineering Terminology (1990, p. 37).
Some authors exclude languages like C, mostly because they do not provide as
much abstraction capability as many other commonly used languages (see e. g.
Graunke et al. 2001; Lin and Blackburn 2012).

21

Low-level languages are languages that do not qualify as high-level languages;
that means most machine languages and assembly languages, but there have also
been other low-level languages as well (e. g. Crary and Morrisett 1999). Note that
some low-level languages do not qualify as programming languages as I have
defined them earlier, because they are only intended for use and only used as
code-generation targets.

2.2.2 Generations

The most commonly mentioned programming language generations are the follow-
ing (see e. g. Martin 1985; IEEE Standard Glossary of Software Engineering Terminol-
ogy 1990; O'Regan 2012, p. 121-124; Rawlings 2014, p. 33):

1. The first generation consists of machine languages.

2. The second generation consists of assembly languages.

3. The third generation consists of high-level languages (in the expansive sense
that includes e. g. C).

4. The fourth generation typically refers to high-level languages that provide
various facilities to process large masses of data (such as databases) with
a small amount of programming effort; Martin (1982, p. 28), for example,
requires a language to be at least an order of magnitude more productive
than COBOL, a quintessential third-generation language, to belong in the
fourth generation, while three years later he merely states that such lan-
guages “permit some applications to be generated with one order of mag-
nitude fewer lines of code than would be needed with COBOL, PL/I, ADA,
or the like” (Martin 1985, p. 4-5).

5. The fifth generation comprises languages, like Prolog, that allow the pro-
grammer to specify constraint-solving problems in a relatively natural man-
ner without having to specify a constraint-solving algorithm.

A key weakness of the generation concept is that it implies a rough temporal
sequence: one would expect all languages of the same generation to be roughly
contemporaneous, and the generations to follow each other in an orderly fashion,
albeit with some overlap. Yet, assembly languages developed concurrently with
the early high-level languages, not before them, and new assembly languages
have appeared decades after high-level languages became commonplace. Finally,
none of the five generations have yet perished.

Worse, this is not the only classification of languages by generations. For
example, Wegner (1990, p. 19-20) identifies the first three generations with partic-
ular years, with the first occurring on 1954-1958 and including languages like the
original FORTRAN, the second 1959-1961 including FORTRAN II, ALGOL 60,
and COBOL, and the third 1962-1969, including PASCAL and SIMULA; he does
not acknowledge any later generations, instead calling the years 1970-1979 (e. g.
Ada and Smalltalk) “[t]he generation gap” and assigning the years 1980-1989,
which take him to the year on which he was writing, to “[p]rogramming lan-
guage paradigms”.

22

2.2.3 Paradigms

The third well-known categorization is, in fact, the concept of paradigm. In ordi-
nary English, the word means (paradigm, n. 2014, sense 1)

“A pattern or model, an exemplar; (also) a typical instance of something, an example.”

In 1962, Kuhn (1996, p. 10) famously appropriated the word to describe

“accepted examples of actual scientific practice [that] provide models from which
spring particular coherent traditions of scientific research”

Explicitly citing Kuhn, Floyd (1979) introduced in his Turing award lecture the
idea of paradigms of programming, by which he meant particular ways to organize
programs, such as structured programming and dynamic programming. Unlike
Kuhn,? whose paradigms were incommensurable and fundamentally incompat-
ible with each other requiring a scientific revolution to effect a paradigm shift,
Floyd urged programmers to “expand [their] repertory of paradigms” (p. 457,
emphasis deleted). The phrase has been mentioned, apparently with this mean-
ing, even before Floyd’s lecture, but only in passing (Goldstein and Sussman
1974, p. 13; Davis 1977, p. 47).

In the following decade and a half, a number of programming paradigms,
particularly focusing on high-level issues, became popularly accepted. Ambler
et al. (1992) identified a number of them: imperative, object-oriented, functional,
asynchronous parallel, synchronous parallel, transformational, logic, form-based,
dataflow, constraint, and demonstrational. They noted, further, that many pro-
gramming languages reflect particular paradigms, so much so that they are “often
hard to distinguish from the paradigm itself” (p. 28).

Reflecting that comment, in recent usage, programming paradigms are gen-
erally taken as programming language paradigms: categorizations of program-
ming languages based on language features they possess, originally inspired by
the Floyd-style programming paradigms that those features were designed to
support. Van Roy (2009) argues for a taxonomy of 27 modern programming (lan-
guage) paradigms, including the well-known ones: imperative programming,
functional programming, (sequential) object-oriented programming, and logic
programming. The Computing Curricula 2001 (2001, p. 113) recommended that
five paradigms be surveyed briefly in a computer science undergraduate cur-
riculum: procedural, object-oriented, functional, declarative, and scripting. The
Computer Science Curricula 2013 (2013, p. 156) recommend, without invoking the
word “paradigm”, teaching object-oriented programming, functional program-
ming, event-driven and reactive programming, and logic programming, among
many other things.

In this study, despite their disadvantages, programming paradigms do play
a role, chiefly because the primary studies I have studied in this mapping study
employ them. The following programming paradigms are of special interest to

3 Incidentally, Priestley (2011) has identified a true Kuhnian paradigm in programming lan-

guage research: ALGOL.

23

this study, defined by their main program composition or decomposition ap-
proaches:

— Imperative programming decomposes programs into a sequence of steps that
must be followed without deviation except when a step explicitly calls for
an altered flow of control (such as a conditional or a loop). Some authors
have called this procedure-oriented or procedural programming (Katz and
McGee 1963; Sammet 1969, p. 19-20; Leavenworth and Sammet 1974), but I
reserve that label to the another paradigm (as does e. g. Simmonds 2012).

— Procedural programming decomposes programs into procedural or impera-
tive subprograms which are invoked by name, may take parameters, may
return a value and may have side-effects (see e. g. Simmonds 2012).

— Structured programming is an umbrella term encompassing a number of
programming paradigms related to imperative and procedural program-
ming, particularly stepwise refinement (decomposing a program into an
imperative program using calls to fictional subprograms to delegate non-
obvious tasks for later programming, followed by doing the same to each
of the fictional subprograms), the use of a restricted set of control-flow con-
structs (sequencing, selection, and loop), and the avoidance of goto state-
ments (Weiner 1978).

— Object-oriented programming decomposes programs into objects possessing
identity, state and behavior which communicate by invoking each others’
methods and which may be related by some incremental modification de-
vice such as class inheritance (Wegner 1987; Stroustrup 1988; Taivalsaari
1993, 1996). Support for classes is common but not a requirement.

— Functional programming composes programs mostly from existing func-
tions using functionals (higher-order functions) (see e. g. Hughes 1989). Pu-
rity (lack of side-effects) and lazy evaluation of the functions are common
but not required.

— Aspect-oriented programming decomposes a program in more than one way,
encapsulating non-principal decompositions into aspects that interact with
the principal decomposition and each other at particular join points (Kicza-
les, Lamping, et al. 1997).

Note that these are not exclusive language categories, as many languages qualify
for more than one. For example, Aspect] (Kiczales, Hilsdale, et al. 2001) is an
aspect-oriented language that encourages object-oriented programming for the
principal decomposition. Almost all procedural and object-oriented languages
are also imperative languages.

A third categorization, essentially another pair of paradigms, was intro-
duced by Ousterhout (1998). He distinguished system programming languages, by
which he meant the traditional high-level languages such as Pascal, C, C++, and
Java, from scripting languages, such as the Unix shells, Perl, and Tcl. The latter
term was not his invention, but he gave it a specific meaning. System program-
ming languages are, according to him, designed for writing software from the
ground up, while scripting languages take for granted that there is existing soft-

24

ware to be glued together in order to create new useful software. The former
languages are typically compiled and have static type systems, while the latter
languages are often interpreted and use dynamic type systems. Showing the rel-
evance of the distinction, Spinellis (2005) and Loui (2008) debated the viability of
scripting languages, but neither questioned the category itself.

The concept of language paradigms is widely accepted but, I think, prob-
lematic. Krishnamurthi (2008) argues that teaching language paradigms is “a
misguided attempt to follow the practice of science rather than its spirit” (p. 81,
emphasis in the original); similarly, Stroustrup (2014, p. 11) considers the idea of
a paradigm “pretentious”, preferring instead to say that a language “provide[s]
support for programming styles” (p. 10). I largely agree; while the idea that a
language is more similar to certain languages than some others is intuitively ob-
vious, trying to formalize it into some sort of a taxonomy likely does more harm
than good, as it tends to create factions centered around particular languages.
The taxonomy proposed by Van Roy (2009) makes more sense, as it is centered
around categorizing language features, not languages per se, but it should proba-
bly not be called a taxonomy of paradigms. The idea of a programming style (or,
in Floyd’s terminology, paradigm) makes sense so long as, like Floyd (1979) and
Stroustrup (2014), one recognizes that they are not mutually exclusive.

2.3 Conceptual structure

I'have already defined a programming language (Definition 3 on page 19) as hav-
ing structure: it is a set of strings (programs) with an associated semantics. There
is traditionally, however, a more detailed conceptual structure of programming
languages, based on the typical structure of a compiler or an interpreter, that is
almost universally used to discuss them: a language is said to have both a lexical
and a syntactic structure, and both static and dynamic semantics; moreover, the
adjectives “static” and “dynamic” are widely used to classify the properties of a
language. In this section, I will review these concepts, as background for the rest
of this chapter and the mapping study.

Programming languages are typically formal languages of some standard
alphabet, usually ASCII (“American Standard Code for Information Interchange”
1963) or Unicode (Allen et al. 2013). The lexical structure of a programming lan-
guage assigns to each program of the language a sequence of lexemes (sometimes
called tokens), which usually are non-overlapping substrings of the program of-
ten separated by non-significant characters (usually whitespace), and categorizes
lexemes into lexical categories (or token types); it also rejects some strings of the
alphabet as lexically erroneous.

The syntactic structure of a programming language assigns to each program
(typically treating it as a sequence of lexemes and ignoring the details of each lex-
eme beyond its lexical category) a syntax tree describing the hierarchical structure
of the program. It also rejects some putative programs as syntactically erroneous.

25

The syntax of a programming language usually comes in two varieties: the
concrete syntax, which defines concrete syntax trees, is strictly tied to the lexemes
that make up programs. In contrast, abstract syntax, which defines abstract syn-
tax trees (or ASTs), elides details that are necessary for an unambiguous syntactic
analysis of programs but unnecessary from a semantic point of view, such as the
presence of parentheses and the concrete operator signs in an arithmetic expres-
sion (the AST will use other means than remembering the concrete character to
indicate which operation is needed). A language that defines both will usually
also define (often implicitly) the relationship between actual lexeme sequences to
abstract syntax trees.*

The semantics of a language assigns to each program (typically treating it as
an abstract syntax tree) a meaning. It is generally defined recursively, by giving
a meaning for each possible subtree of an abstract syntax tree and deriving the
semantics of larger trees in terms of the meaning of its subtrees. This meaning,
in particular, defines the behavior of the program for each permissible execution
context (including any input).

The semantics of a programming language may reject some programs, in
either all or some execution contexts, and it may be undefined for some programs
in some execution contexts. The difference is practical: a programmer can expect
to be told of a rejection but cannot expect anything with respect to programs with
undefined semantics. In any case, a program that is rejected or has undefined
semantics is said to be semantically erroneous. A language that has no undefined
semantics is sometimes called safe, although some authors additionally require
that the abstractions that the language provides do not leak (see e. g. Pierce 2002,
p- 6-8).

The precise boundaries between lexical, syntactic, and semantic structure
is malleable. They are, after all, only aids for language definition and analysis,
not laws of nature. One particular distinction between syntax and semantics is,
however, worthy of note. The description of the first language to use formal
grammar in its definition, Algol 60, discussed each language feature in at least
three parts: first syntax, then examples, then semantics, followed by additional
subsections as necessary (Naur et al. 1960). The syntax descriptions contained
only context-free grammars, using the then-new Backus-Naur Form (BNF), and
the semantics included statements like the following (p. 302):

“The same identifier cannot be used to denote two different quantities except when
these quantities have disjoint scopes as defined by the declarations of the program”

Griffiths (1975, p. 83), writing for a 1972 advanced course on software engineer-
ing, articulated a difference between static semantics, “that part of the semantics
which does not depend upon the execution of a program”, like the Algol passage

4 Strictly speaking, abstract syntax is truly abstract and does not involve actual trees. For

the purposes of this mapping study, that is a bit too abstract. The tree metaphor is close
enough, especially considering that abstract syntax representations of programs are often,
in practice, tree data structures. Abstract syntax, in the truly abstract sense, was introduced
by McCarthy (1996) in 1962; an elegant mathematical formulation based on universal alge-
bra was given by Gougen et al. (1977).

26

I quoted, and dynamic semantics. Practically speaking, he pointed out, static se-
mantics describes the behavior of the language compiler, and dynamic semantics
the behavior of the machine-language program it generates. He did not claim to
have invented these terms, but he does not attribute them to anyone else either,
and I have not been able to find any earlier source for them.

The distinction has been frequently used in the literature up to the present
day (e. g. Gerakios, Papaspyrou, et al. 2014; Slepak et al. 2014); a more recent
formulation has static semantics defining well-formedness, “a kind of (context-
sensitive) syntax”, while “dynamic semantics is about computation” (Mosses
2001, p. 167, emphasis deleted; see also Gabbrielli and Martini 2010, p. 40). Koster
(1974) and Meek (1990), however, make a case that static semantics is a misnomer,
belonging properly under syntax. Sakkinen (1992) and Harel and Rumpe (2004),
among others, adopt a similar point of view. Harper (2014) takes a different ap-
proach: he labels lexical and syntactic structure together with static semantics
collectively as statics, calling dynamic semantics dynamics.

More generally, static is often used as an adjective meaning roughly ‘inde-
pendent of any particular execution of the program’, and dynamic as meaning
‘pertaining to or depending on a particular execution of the program’; the ad-
verbs statically and dynamically are used with similar meanings.

These concepts are offered here mostly as background, which is used freely
in later parts of this thesis.

2.4 Development of certain features

In this section, I will review the key design options available on two language fea-
tures, conditional statements and typing. The review is partly conceptual, partly
historical; the latter partly to give the necessary historical context to certain stud-
ies included in the results of this mapping study, and partly to acknowledge the
contribution of specific people in the development of these features.

These two features were chosen because they are prominent in the results of
this mapping study. Additionally, the design choices involving conditionals that
have been investigated in the included studies include several now rare options,
and they need to be introduced. Further, in the case of typing, there is no consen-
sus on what it encompasses and what words are used to name the key concepts; I
thus need to introduce the competing traditions and establish specific definitions
for the purposes of this mapping study.

2.4.1 Conditionals

All programs need to be able to choose between two or more different execu-
tion paths based on the current state of the program at the time of the choice.
Low-level languages usually offer the ability to jump to a specified location in
the program if a particular quantity is negative, zero, or positive. A similar ap-

27

proach was taken in the early FORTRAN (Backus et al. 1956, p. 18), where an IF
statement like IF (A-B) 10,20, 30 jumps to the line labeled 10 if the expression
A-B evaluates to a negative value, to the line labeled 20 if the expression evalu-
ates to zero, and to the line labeled 30 if the expression evaluates to a positive
value. This style of a conditional was later labeled an “arithmetic IF”, to distin-
guish it from the “logical IF” (FORTRAN IV Language 1963, p. 12) statements like
IF (A.LE.B) GO TO 10 which jumps to the line labeled 10 if A is strictly less than
B, and proceeds to the statement following the IF otherwise (almost any statement
could replace the GO TO).

The International Algebraic Language or IAL (Perlis and Samelson 1958),
which is better known under the name ALGOL 58, included an if statement much
like the later “logical IF” of FORTRAN IV. The if statement made the statement
following it conditional. For example, in if a > 0; b :=a x b, the multiplication
and assignment are performed only if a is positive. From a language structure
point of view, the if and the assignment were, in the IAL, separate statements,
the if merely affecting the assignment as a side-effect, instead of the assignment
being a substatement of the if, like in modern high-level languages. However, the
IAL also allowed the formation of compound statements by enclosing a sequence
of statements in the parenthetical keywords begin and end; this made the IAL if
much more powerful than the later FORTRAN IV logical IF, by allowing a single
if statement control more than one statement at the same time without resorting
to any go fo statements.

Based on a proposal by Green et al. (1959), ALGOL 60 (Naur et al. 1960,
1963) included an enhanced if statement. First, the statement that the if con-
trols is a substatement of the if, separated from the Boolean expression not by a
semicolon but the keyword then; second, that substatement may be optionally
followed by the keyword else followed by another substatement. In ALGOL 60,
it was thus possible to write, for example

ifa >0thenb:=axbelseb:=1

meaning that b is assigned a x b if a is positive, and 1 otherwise. Of course, since
ALGOL 60 included conditional expressions (as proposed by McCarthy 1959),
the same operation could have been written as

b:=ifa > 0thena x belsel

The ALGOL 60 style if-else construct is famously susceptible to a grammat-
ical ambiguity: what is the value of x after the ALGOL 60 style statement

x:=0;ifa > 0thenifa >2thenx:=1else x:=2

when the value of a is 1?° A number of solutions were proposed in the years
following the publication of ALGOL 60 (see Abrahams 1966), including revising

5 This particular example is forbidden by the ALGOL 60 grammar, but many later languages

allow statements of this kind. Even ALGOL 60 is susceptible to this problem, but the ex-
amples are more complex (see e. g. Kaupe 1963).

28

the grammar to remove the ambiguity, declaring a disambiguation rule verbally,
and making the else mandatory. Abrahams (1966) himself proposed an elegant
grammar revision, which is now a textbook solution (e. g. Aho et al. 2007, p. 210-
212). ALGOL 68 (Wijngaarden et al. 1976), in which there was no distinction
between expressions and statements, introduced another solution: requiring that
a keyword is used to end every if expression; in bold-style reference-language
ALGOL 68, the keyword was fi, but many other languages have opted for other
keywords. Some modern languages, like Perl 5 (perlsyn 2014) instead have made
it mandatory to use the equivalent of begin—end bracketing in a conditional state-
ment.

Sime et al. (1999), originally published in 1973, called the FORTRAN logi-
cal IF style conditionals JUMP, and the ALGOL 60 conditionals NEST. Sime et al.
(1977) named a variant of NEST, in which begin and end are mandatory, NEST-
BE, and they also introduced a new variant, which they called NEST-INE (if-not-
end). In it, there is a mandatory phrase for ending a conditional statement: the
keyword end followed by a repeat of the condition. Additionally, in NEST-INE,
the keyword else is replaced by a phrase consisting of the keyword not followed
by a repeat of the condition. The previous ambiguous example might be ren-
dered in a NEST-INE variant of ALGOL 60 in either of the two following ways,
reflecting the two interpretations of the original example:

x:=0; x:=0;

if a > 0 then if a > 0 then
if a > 2 then if a > 2 then

x:=1 x:=1

enda > 2 not a > 2 then

not a > 0 then x:=2
x:=2 enda > 2

enda >0 enda >0

Embley and Hansen (1976) and Embley (1978) defined a new control struc-
ture unifying iteration and conditionals, the KAIL selector. The following is an
example given by Embley (1978, p. 200, direct quote):

x < rand(25);y < rand(25);
comment set x and y to random integers in [1,25];
write Whatis ((x)) + ((y));
[accept reply; if reply
| =x+ y: write Very good; correct_count <— correct_count + 1;
| = x *y: write Add, don’t multiply; again;
| > x + y+ 10: write No, that’s more than 10 too much; again;
| else: write No, try again; again;

1;

29

This program fragment picks two random numbers and tests whether the user
can correctly add them together. The KAIL selector consists of the square brack-
ets and everything in between; it starts with an initialization command (“accept
reply”), then evaluates the discriminator (“if reply”) and picks the first of the
multiple alternatives that results in a true test result. Within each alternative, the
“again” statement directs execution to go back to the beginning of the selector,
much like a continue statement in C or Java inside a loop.

Many currently popular languages follow the NEST model, with only cos-
metic changes. For example, C (Ritchie 1974; Kernighan and Ritchie 1978, 1988;
Information Technology — Programming Languages — C 2011), and languages de-
scended from it, like Java (Gosling et al. 2014) and C# (Information Technology —
Programming Languages — C# 2006), require an opening parenthesis immediately
after the if keyword, replace the then keyword with a closing parenthesis, and
replace the compound-statement-bracketing keywords begin and end with the
curly braces { and }, respectively. As already mentioned, Perl 5 (perisyn 2014),
which is a descendant of C, follows the NEST-BE style, albeit using the C-style
cosmetics. Many of these languages also allow the logical IF, or JUMD, style, al-
though for example Java (Gosling et al. 2014) forbids it (by not providing a goto
statement). I am not aware of any current high-level languages that allow the
NEST-INE style, the KAIL selector, or, apart from FORTRAN, the arithmetic IF.

2.4.2 Types

Integers and floating-point numbers have incompatible representations and use
different machine-language instructions to do arithmetic. In arithmetic formu-
las, a sine qua non of high-level programming languages, this distinction is ab-
sent. The problem for language designers is obvious: how does a compiler know
whether to use ADD or FADD (to use the modern IA-32/64 instruction names) to
compile a + b?

FORTRAN (Backus et al. 1956) used a lexical solution: integer expressions
consisted of integer constants (easily lexically distinguished from floating-point
constants) and integer variables (distinguished by starting with I, J, K, L, M, or N)
and were thus readily distinguishable from floating-point expressions.

The IAL (Perlis and Samelson 1958) and its successor ALGOL 60 (Naur et al.
1960, 1963) retained the idea of lexically distinct integer constants but introduced
the idea of a type declaration: a phrase within the program declares a particular
variable to be an integer, a real (floating-point) number, or Boolean, within the
whole program or only inside a particular block. Unlike many later languages,
the two ALGOL languages did not regard the arrayness, functionness or proce-
dureness of a variable to be a part of its type; after all, the use of an identifier as
an array, function, or procedure name was readily syntactically apparent.

From these two early examples, it is apparent that, as Strachey (2000, p. 35)°

Strachey wrote this paper in 1967 based on lectures he gave in the International Summer
School in Computer Programming in Copenhagen in August 1967; the proceedings the
paper was intended for never appeared, but the paper was widely circulated in manuscript

30

noted, a type (in this basic sense) has two facets: it determines the representation
of a value and the choice of interpretation for operations applied to it (nowadays
called overloading resolution). The need for the second facet springs from the first
facet: if integers and floating-point numbers had the same representation, they
could be uniformly added, multiplied, and so forth, and there would be no need
to choose between multiple interpretations.

It is, of course, possible to have structure in data. A very early language,
FLOW-MATIC (UNIVAC FLOW-MATIC Programming System 1958), separated data
description (given in separate data description forms which were subsequently
typed on magnetic tape for input to the compiler) from the algrithm description;
according to Sammet (1969, 1981), it was the first language to do so.” Directly
influenced by FLOW-MATIC, a rather powerful facility for describing structured
data was included in the Common Business Oriented Language COBOL (COBOL
1960), and from there borrowed to at least PL /I (Radin 1981; Shneiderman 1985).
In none of these languages was data structuring considered a typing issue, how-
ever.

Hoare (1965, 1966), aware of COBOL and inspired by Ross and Rodriguez
(1963) and McCarthy (1964), proposed for the next version of ALGOL? a facility
for the programmer to define new types, the values of which are references to
mutable records of named and typed fields, all records of the same type sharing
the same list of field names and types. Among their other influence, Hoare’s
records inspired changes to an ALGOL-derived language, SIMULA (Dahl and
Nygaard 1966), developing into the classes that are a central part of programming
in languages like Java and C# (Krogdahl 2005).

Records, both in the COBOL sense and in the Hoare sense, determine the
representation of a data item and overloading resolution for the operations ap-
plied to it, just like the types of early FORTRAN and ALGOL 60. Records, how-
ever, add a further complication: there are operations that make no sense applied
to them (for example, computing the sum of two symbol table entries in a com-
piler), and the operations that do make sense for records do not make sense ap-
plied to integers or floating-point numbers. Thus, types in the record era clearly
have a third function: they define interfaces, that is, what operations are allowed.

All of the languages thus far mentioned treat types as static notions. After
all, in both FORTRAN and ALGOL 60 the reason types exist at all is to provide the
compiler with compile-time (that is, static) information to direct the compilation
process. However, if one instead inverts this relation, and takes as a premise that
integers, floating-point numbers, and records form types that determine repre-
sentation, overloading resolution, and interface, it becomes apparent that there is

form in the decades before its posthumous formal publication in 2000 (Mosses 2000).

7 Curiously, Knuth and Trabb Pardo (2003), in their well-regarded survey of pre-ALGOL
languages, dismissed FLOW-MATIC summarily, in barely two paragraphs and with a min-
imal example, noting that it “had a significant effect on the design of COBOL” (p. 73); they
did not even mention its data structuring capability.

The incorporation of a feature in the ALGOL development is significant mainly because
many current languages derive from proposals floated during the 1960s for the next version
of ALGOL.

31

nothing compelling types to be static. After all, one can store enough information
in each runtime value to determine what representation it uses, how overload-
ing is to be resolved and what the interface of the value is. Indeed, a number of
languages leave the type concept dynamic, starting from LISP (McCarthy 1960),
continuing through for example BASIC (Kurtz 1981) and Smalltalk (Goldberg and
Robson 1983), and including such recent languages as Perl,” Python,'? JavaScript
(see e. g. Mikkonen and Taivalsaari 2008), and Ruby:.!!

At this point, let me define some common terms. A type error is synonymous
with the violation of an interface: an operation is applied to a value or object for
which the operation is not allowed (often because it does not make sense). Type
checking refers to language-mandated checking for type errors. A type system is
the part of a language that defines what types exist (or can be created by the
programmer), what the type errors are, and what sort of type checking is manda-
tory. Static typing, static type system, and static type checking refer to type systems
in which types and type errors are static notions, with type checking expected to
be performed before a program is allowed to execute. Dynamic typing, dynamic
type system, and dynamic type checking refer to type systems in which types and
type errors are dynamic notions, and type errors are checked for during each ex-
ecution, concentrating only on type errors that actually are about to occur during
the execution. Sometimes, a type system is characterized as strong or weak based
on how well it detects type errors. Definitions like these are fairly commonly
accepted (see e. g. Sheil 1981; Cardelli and Wegner 1985; Allende et al. 2013; Ha-
nenberg, Kleinschmager, Robbes, et al. 2013; Turner 2013; Harper 2014), but, as I
will discuss below, they are not accepted by all authors.

While representation and overloading resolution are tightly coupled, the
same cannot be said for interfaces. For example, the interface for a datum repre-
senting an arithmetic expression in a calculator or language interpreter does not
necessarily depend on whether the datum is represented as a string of charac-
ters or as an abstract syntax tree (represented typically as a graph of records). It
is therefore not a surprise that a number of researchers have advocated splitting
representation and overloading from interfaces (e. g. Liskov and Zilles 1974). It
is, of course, a central idea in object-oriented programming, and dynamic typing
in general.

There is a second tradition of types, now over a century old, which started to
mix with the programming language type tradition in the late 1960s and is now
dominant in academic research of programming language type systems (Pierce
2002). The tradition began in response to the late 19th Century mathematics,
which had delivered a number of new strange results and paradoxes and thus
shaken the mathematicians’ confidence in their methods. The simplest of the
new paradoxes is due to Russell (see e. g. Irvine and Deutsch 2013): is the set of
all such sets that are not an element of themselves an element of itself? These
developments prompted the building of firm foundations based on logic.

9
10
11

http:/ /www.perl.org/
https:/ /www.python.org/
https:/ /www.ruby-lang.org/

32

Russell himself proposed the theory of types (Russell s.d. Appendix B, 1908;
Whitehead and Russell 1910; for a recent reformulation, see Kamareddine et al.
2002). Its key concept was a propositional function — a higher-order logical for-
mula, whose free variables were interpreted as parameters of the propositional
function. Each variable, whether free (and hence a parameter) or bound by a
quantifier, was required to take values of one type only, the type being freely
choosable for each variable. All individuals belonged to one type common to
them all. All propositional functions sharing the same number and type of pa-
rameters also shared a type. Type thus identified whether a variable could take
individual or function values, and for the latter, the number and typing of its pa-
rameters. The type did not identify a function’s result, because all functions were
propositional, meaning that they all resulted in either “true” or “false”.

Additionally, Russell’s theory of types required each variable to restrict the
values it takes to a single order, which was identified by a finite ordinal. The
zeroth order consisted of individuals and propositional functions containing no
variables (whether free or bound). The order of a propositional function contain-
ing at least one (free or bound) variable was one greater than the maximum of
the orders of the variables it contains. Thus, a function with no bound variables
taking one individual argument was a first-order function; if it, however, used a
variable of the first order (either supplied as another parameter or bound by a
quantifier), it would have been a second-order function.

A formula of Russell’s theory was required to be free of both type violations
and order violations. This two-pronged approach gave it the name the theory is
today known: the ramified theory of types. The reason for the use of both types
and orders was fairly technical, which I will not discuss here. The deramifica-
tion of the theory, meaning the removal of orders from it, was suggested by at
least Chwistek (1922, 1925), Ramsey (1926) and Hilbert and Ackermann (1928,
p- 114-115); it was equally based on technical reasons related to the development
of logic. The deramified theory, considering only types and ignoring orders, ac-
quired the name simple theory of types, as it was significantly simpler than the
ramified theory.

The simple theory of types (sometimes called the theory of simple types or
simple type theory) is now better known in the formulation originally given by
Church (1940). Instead of having the parameters of a propositional function be
implicitly defined by its free variables, he introduces (based on earlier non-typed
work, see Church 1932, 1941) a quantifier-like binder, written in modern notation
Axt, which converts the term t into a function of x; he also introduces a corre-
sponding operation tu, which supplies the argument u to the function t. The
simple theory of types, in this formulation, requires a function type to specify
both the parameter type T and the result type U, written in modern notation as
T — U. A cleaned-up version of Church’s simple theory of types has been stan-
dard material in the theory of programming language types for some time now
under the name simply typed lambda calculus (Cardelli and Wegner 1985; Baren-
dregt and Hemerik 1990; Pierce 2002; Cardelli 2004).

The relevance of typed logics to programming languages became appar-

33

ent rather slowly. While McCarthy (1960) had modeled some aspects of LISP
on the (untyped) lambda calculus, and while Landin (1965) had pointed out a
close correspondence between ALGOL 60 and the (untyped) lambda calculus,
neither of them considered the simply (or otherwise) typed lambda calculus.
It appears Morris (1969) was the first to explicitly investigate the simply typed
lambda calculus (which he appears to have independently rediscovered) in the
programming language context. Reynolds (1974) extended typed lambda calcu-
lus to support basic parametric polymorphism, unaware that the logician Girard
(1971, orally presented in 1970) had done the same some years earlier; this type
system is variously called (taxonomically) the second-order lambda calculus, (fol-
lowing Reynolds) the polymorphic lambda calculus, or (after its accidental name
in Girard’s paper) System F. Milner (1978), unaware of earlier very similar work
by Hindley (1969), defined a restricted variant of the Girard—Reynolds second-
order lambda calculus in which no type declarations were required; this system
is now called the Hindley—Milner type system, and it is the basis of the type sys-
tems of ML and Haskell. By the time Cardelli and Wegner (1985) and Reynolds
(1985) published their reviews, typed lambda calculus and related formal sys-
tems appear to have been a part of the standard research toolset — although not
the main tool, as it is now (Pierce 2002; Cardelli 2004). Incidentally, there is a re-
peated pattern of logical concepts being rediscovered by programming language
type system researchers, unaware of the earlier work (Wadler 2000).

The logicians” concept of type systems, reinterpreted in the context of pro-
gramming languages, is exclusively static. The express purpose of type systems
in logic is to exclude syntactically valid expressions from semantic consideration.
From a logician’s point of view, a language that does not have a static type sys-
tem is untyped, not dynamically typed. This has lead some authors (such as
Pierce 2002; Cardelli 2004; Trancén y Widemann 2009) to declare that even in the
programming language context, types and type checking are exclusively static
concepts, and to discourage the use of terms like dynamic typing. I decline to
adopt that point of view for the purposes of this mapping study.

2.5 Design

In this section, I will look at programming language design, first as a question
of historical practice, then reviewing the influence of research on programmer
behavior on it, and finally introducing the idea of Evidence-Based Programming
Language Design.

2.5.1 Historical practice
A number of opinion essays on language design have been written over the

decades. For example, Hoare (1989), gave a number of “hints” to programming
language designers, on both overall design goals and on specific features, mostly

34

argued informally; they included the following five “catch phrases” he intended
to summarize “objective criteria for good language design” (p. 197): “simplic-
ity, security,!? fast translation, efficient object code, and readability”. It is curious
that Hoare calls them objective criteria, when reasonable people disagree on them
(and hence they are subjective to Hoare himself).

Further, he admonished that language feature design and language design
ought to be separate enterprises, the language designer focusing on “consoli-
dation, not innovation” of language features (p. 214). Wirth (1974), after dis-
cussing a number of general language design issues, made a similar point: it
is the task of the language designer to make decisions where the desiderata are
in conflict. Both Hoare and Wirth emphasize that these decisions are primarily
based on good engineering. Steele (2006, p. 31) also makes this point: “Good
programming-language design requires judgment and compromise”

Steele (1999), in a memorable presentation later published as a journal ar-
ticle, made the point that it is not a good idea to design a large language from
scratch, as building it takes too long. Instead, a language should start small, with
growth planned for from the beginning.

Unfortunately, there seem to be no contemporary case studies and only a
few historical studies of actual language design practices. The available pub-
lished sources are generally retrospective essays by the designers themselves,
typically written for one of the three History of Programming Languages con-
ferences (Wexelblat 1981; Bergin and Gibson 1996; HOPL III 2007).

The HOPL conference materials are of limited use, however. As Stern (1979,
p- 69) wrote regarding the first HOPL conference:

“No participant, despite efforts to be objective, can present an unbiased account of his

or her own work; no participant can see the whole picture quite as well as an outside

observer. Moreover, recollections which are in some cases fifteen to twenty years old
are inevitably distorted, whether consciously or unconsciously.”

Retrospective essays are useful material but their inherent bias must be taken into
an account; a proper historical study is usually preferrable where one exists.

Some peer-reviewed historical studies on the design of high-level program-
ming languages and closely related areas have been published, however, in the
(IEEE) Annals of the History of Computing (Marks 1982; Holmevik 1994; Whit-
ing and Pascoe 1994; Giloi 1997; Gray and Smith 2004; Nofre 2010). The Annals
has also published some articles on studying history that make comments which
are relevant to programming language design (Sammet 1991; Shapiro 1997; Ma-
honey 2008). There are, of course, other histories of programming languages (e. g.
Rosen 1964, 1972; Sammet 1969, 1972; Wegner 1976; Friedman 1992; Knuth and
Trabb Pardo 2003; Ryder et al. 2005).

It is beyond the scope of this mapping study to try and generate a coherent
theory of past language design practices, but there are some observations that
suggest themselves in perusing the materials just cited. First, there is a catego-
rization of languages, suggested by Brooks (1981, p. 683), namely author languages

12 By security Hoare meant the lack of undefined semantics, which is more commonly called

safety.

35

versus committee languages. He did not define the terms, but the names are sug-
gestive enough; he did, however, note a pattern during the conference: “papers
about [committee languages] almost completely concern themselves with pro-
cess”, while “papers about [author languages] have almost completely concerned
themselves with technical issues”.

I'would note that the issue separating author and committee languages from
each other is not, in my view, the number of designers or the organizational struc-
ture of the development project; instead, it is the development approach: author
languages are driven by a single author or a small number of co-authors sharing a
technical vision, while committee languages are driven by the need to combine a
number of somewhat divergent interests (often represented by stakeholders like
expected users or implementors of the language). The development of an author
language typically intertwines language definition and implementation, while a
committee language is typically clearly defined on its own, with implementation
happening elsewhere, and often later.

One author language was the original FORTRAN; Backus (1981, p. 30) de-
scribed the 1954 vintage design approach as follows:

“As far as we were aware, we simply made up the language as we went along. We did
not regard language design as a difficult problem, merely a simple prelude to the real
problem: designing a compiler which could produce efficient programs.”

Another obvious author language, until standardization, was C++ (Stroustrup
2014, p. 21 and 23):

“I invented C++, wrote its early definitions, and produced its first implementation.
I chose and formulated the design criteria for C++, designed its major language fea-
tures|[...] In the early years, there was no C++ paper design: design, documentation,
and implementation went on simultaneously.”

Consider, in contrast, the committee languages Algol (Perlis 1981; Naur 1981;
Nofre 2010) and COBOL (Sammet 1981), from the late 1950s, and Haskell (Hudak,
Hughes, et al. 2007) from late 1980s. In each case, a committee was formed to draft
anew consensus language based on a number of existing languages competing in
the same niche: for Algol, the niche was communication of numerical algorithms,
for COBOL, the writing of business applications, and for Haskell, lazy functional
programming. In each case, the plan was merely take the existing state of the art
and combine it into a coherent whole.

Second, it is clear that both author and committee language designs have
been mostly driven by technical (and occasionally business) considerations, with
implementation concerns, expressive power and the designers’ sense of aesthetics
being major drivers. Questions of efficacy, that is usefulness to the programmer,
are sometimes debated, even fiercely. Many designers (e. g. Cowlishaw 1994;
Stroustrup 1994) base their designs on language user feedback, but of the histor-
ical treatments of programming languages, only one that I am aware of (Cook
2007) even mentions the possibility of basing design decisions on systematic re-
search of usefulness to programmers.

36

2.5.2 Programmer behavior

The study of programmers using the empirical techniques of behavioral science
is over four decades old. The first somewhat relevant studies were reported in
the late 1960s (Sackman et al. 1968; Sackman 1970). The classic text by Weinberg
(1971) introduced the topic area and offered quite a bit of analysis but had little
to offer in the way of actual empirical results. By the time of the next classic
text (Shneiderman 1980), there was already some empirical research that could
be discussed (some of it is even relevant to programming language design, and
such studies are included in this mapping study). A third book on the topic (Hoc
et al. 1990) was published about a decade later; that collection of original articles
was able to present detailed psychological theories, backed at least partially by
empirical data, on many aspects of programming. A fourth book (Détienne 2002)
followed another decade later, and gives a comprehensive synthesis of the field.
Traditionally, this field is called the psychology of programming, but since I believe
there is more than psychology involved — at least cognitive science, sociology (see
e. g. Meyerovich and Rabkin 2012), and anthropology are relevant — I use a more
inclusive term, (the study of) programmer behavior.

At around the time of the Shneiderman (1980) book, three non-systematic
surveys were published (Sheil 1981; Arblaster 1982; Hoc 1983). Both Sheil (1981)
and Hoc (1983) criticised the extant body of empirical research for serious method-
ological issues — Sheil (1981) even used rather harsh language in places, for ex-
ample calling the design of one study “an absurd way to do empirical research”
(p. 116) — and the Shneiderman (1980) book for sloppy presentation, which Sheil
(1981, p. 116) regarded “the most damaging”, as it would lead readers to “reject
data that do not support their preconceptions|[, which] makes the entire empir-
ical enterprise moot”. Very recently, Stefik, Hanenberg, et al. (2014) have, in a
systematic secondary study, reviewed studies presented in certain conferences
of programmer behavior research for, among other things, research quality, and
found them generally poor.

Détienne (2002, p. 1-6) divides the research in the behavior of programming
into two phases: “the 1970s” and “the second period”. The former is, of course,
eponymous, and is rife with serious problems, both methodological and in its
basic approach. In this, Détienne echoes the criticisms of Sheil (1981) and Hoc
(1983). This contemporary criticism resulted in a paradigm shift that created the
second period that lasted at least up to the turn of the millennium, when Dé-
tienne was writing. The focus changed, Détienne (2002) recounts, from simple
atheoretical “superficial analysis” (p. 6) to the “development of cognitive models
of programming”.

I'will not review the programmer behavior literature in detail here, because
that literature is the focus of Chapter 5. There is, however, a line of research not
included in this mapping study that I wish to point out: the cognitive dimensions
model, proposed by Green (1989), is a theoretical framework designed to aid in
usability evaluation of notations, like programming languages, and notational
systems, like development environments; it might be of use to language designers

37

(see also Blackwell and Green 2003).

A key question is, whether this body of research has influenced actual lan-
guage designs.'®> As I mentioned earlier, the historical record of language design
practice indicates that it has not; this lack of influence was also noted by at least
Sheil (1981) and more recently by Hanenberg (2010c) and Markstrum (2010). It
is quite possible that this lack of influence is at least partially attributable to the
quality issues in existing empirical research. At least the chief language designer
of Ada 95, Tucker Taft, reports having “bemoaned the lack of real research into the
software engineering advantages or disadvantages of particular design choices”
(Ryder et al. 2005, p. 471).

There are two major exceptions to this, and one minor one. First, the Nat-
ural Programming project at the Carnegie Mellon University has for nearly two
decades applied the research of programmer behavior to programming language
and system design (see e. g. Pane and Myers 1996; Pane and Myers 2000; Pane,
Myers, and Miller 2002; Myers, Pane, et al. 2004; Pane and Myers 2006; Myers,
Ko, et al. 2008). Second, there is the Quorum programming language!#, whose
design was influenced by and tested in several published studies of programmer
behavior (at least Mayer et al. 2012b; Stefik and Siebert 2013), although it is not
clear how much influence the body of research other than that produced by the
language authors had on the design, since there does not appear to be a published
language design report. Third, the textbook of Klerer (1991) discussed the use of
programmer behavior research to inform language design.

2.5.3 Evidence-based?

Let us imagine a practitioner, let us say a family doctor or perhaps a computer
programmer. Let us further imagine that they are engaged in the typical task
of their profession. For the physician, that would be investigating a particular
patient’s complaint and coming up with first a diagnosis and then a treatment
plan. For the computer programmer, it is the construction of a general solution to
a particular class of similar problems by instructing a computer.

Now, let us suppose that they have reached a decision point where they
are unsure as to what is the best course forward. The physician may be having
doubts whether prescribing a particular medicine is worth its trouble in the case
of this particular patient. The programmer may be pondering whether using
aspect-oriented programming would be a better choice than object-oriented for
solving their particular problem.

Now, in both professions, one might imagine them picking up a reference
book, or asking a more experienced coworker. This will frequently appear to
solve the problem, in that both the physician and the programmer is likely to
form a decision based on that advice.

13 I do not consider here unpublished in-house usability testing of a language design, such as

that reported by Cook (2007); it is, of course, desirable, but it does not show the influence
of the body of prior research.

14 http://quorumlanguage.com/

38

There is another approach, one that is commonly advocated under the ban-
ner of evidence-based medicine (Guyatt 1991; Evidence-Based Medicine Working
Group 1992; Straus et al. 2011, and many others), often abbreviated EBM, and
evidence-based software engineering or EBSE (Kitchenham, Dyb4, et al. 2004; Dyba,
Kitchenham, et al. 2005).!> The basic idea in this approach is to put the problem-
atic question to the body of scientific knowledge and to extract an answer that
reflects the best scientific evidence available at the time.

Both EBM and EBSE advocate a five-step process for converting a decision
point with uncertainty into a decision supported by evidence (Evidence-Based
Medicine Working Group 1992, p. 2421; Rosenberg and Donald 1995; Kitchen-
ham, Dyba, et al. 2004, Table 1; Dawes et al. 2005; Dyb4d, Kitchenham, et al. 2005,
p. 59; Straus et al. 2011, p. 3):

1. Ask an answerable question that captures (a part of) your uncertainty in
how to proceed.

2. Find the best evidence available that bears on your question.

3. Critically appraise the evidence you found for validity, impact and applica-
tivity.

4. Apply the evidence in solving your practical problem.

5. Evaluate and improve your own performance in evidence-based practice.

Note that this process is intended to be followed by practitioners, not by re-
searchers. Of course, locating and appraising the evidence is too much to ask
of a practitioner without support, and thus a number of evidence-based sum-
maries of the literature have been prepared in medicine. In fact, the EBM text-
book of Straus et al. (2011) advocates a model called “6S”. At the top of the 6S
model is a hypothetical patient information system that automatically recognises
the answerable questions relevant to the patient’s condition and retrieves, for the
physician’s convenience, the applicable published evidence. At the very bottom
are the individual studies, there being too many of them in medicine to be useful
to a practicing physician without support from the other Ss. In the middle are ab-
stracts, systematic reviews and (evidence-based) textbooks. Software engineering
so far has only accumulated systematic reviews.

This mapping study is based on the conjecture that an evidence-based pro-
gramming language design (EB-PLD) approach might be beneficial. The practi-
tioner in that case would be a programming language designer. Note that this is a
different sense of the word than used by Stefik, Siebert, et al. (2011); it also differs
from the concept of “evidence-oriented programming languages” envisioned by
Stefik, Hanenberg, et al. (2014). However, the detailed study of whether EB-PLD
is feasible is beyond the scope of this study.

15 Many other disciplines also have adopted an evidence-based paradigm: e. g. management

(Rousseau 2006), policing (Sherman 1998), biological conservation (Sutherland et al. 2004),
education (Thomas and Pring 2004), and nursing (French 1999).

3 SYSTEMATIC SECONDARY STUDIES

This thesis reports a secondary study, one using the published scientific literature
(called here the primary studies) as its source of data. In this chapter, I will explain
the basic concepts and extensively summarize the current methodological guid-
ance, based on the (mainly software engineering) literature. I will close with an
examination of the concept of evidence.

3.1 Overview

Within the evidence-based movement there is a distinct preference toward sec-
ondary studies being systematic (see e. g. Straus et al. 2011). Such secondary stud-
ies start with one or more questions that one wants to answer. They perform a
systematic search of the literature, to find (as best as one can) all the relevant liter-
ature, without bias. They also perform a systematic process of inclusion and ex-
clusion decisions upon the literature found, resulting in a set of publications that
(to the best of one’s ability) report all relevant studies of sufficient quality. They
further perform a systematic process of data extraction and synthesis, yielding
answers to the research questions of the secondary study. Most importantly, all
the systematic processes used in the study are designed and documented, giving
the reader of the study a fair opportunity to evaluate its reliability, and providing
an audit trail from the literature to the answers.

There are two main species of systematic secondary studies. Systematic lit-
erature reviews (also known as systematic reviews or SLRs) ask specific questions
whose answers are immediately relevant to practice; they also involve the syn-
thesis of the results of the studies collected into research-based answers to those
practical questions. Systematic mapping studies, also called systematic scoping stud-
ies, ask general questions about the state of the research in a particular (sub)field,
often identifying areas lacking research; they usually do not engage in the syn-
thesis of the results reported by individual studies.

The literature is not quite consistent in the use of these two terms; particu-

40

larly, many studies in software engineering that purport to be systematic reviews
are under these definitions more properly classified as systematic mapping stud-
ies (e. g. Penzenstandler et al. 2012; Garcia-Borgofion et al. 2014) as they are in-
tended to guide future research instead of practice (see also Silva, Santos, Soares,
Franga, and Monteiro 2010; Santos and Silva 2013). Similarly, Cruzes and Dyba
(2011b) classify some secondary studies self-identifying as systematic literature
reviews as scoping studies on the basis that they lack a synthesis of the research
results. The three systematic studies on the state of systematic secondary studies
in software engineering (Kitchenham, Brereton, Budgen, et al. 2009; Kitchenham,
Pretorius, et al. 2010; Silva, Santos, Soares, Franga, Monteiro, and Maciel 2011)
each follow definitions that are essentially the same as mine; Kitchenham, Bud-
gen, et al. (2011, Section 2) discuss a very similar distinction between the two
species.

There is a third term that is commonly used in this context: meta-analysis.
It was originally coined by Glass (1976, p. 3) to mean “the statistical analysis of
a large collection of analysis results from individual studies for the purpose of
integrating the findings”. It is now common to call whole systematic secondary
studies meta-analyses, if they use the statistical analysis of primary-study results
in their data synthesis (e. g. Brown et al. 2014; Pinsky and Palumbi 2014). It
is, however, better to consider meta-analysis merely an umbrella term for certain
analysis and synthesis methods (see e. g. O'Rourke 2007), and indeed, many stud-
ies label themselves as “systematic review and meta-analysis” (a Google Scholar
search of that phrase, limited to titles and the year 2013, conducted on May 2,
2014, reported a hit count of about 3,850).

The research questions I have posed in this thesis are, without doubt, the
mapping study kind. They ask about the extent of published research, and are
not immediately relevant to practitioners — in this case, language designers. 1
also do not attempt to synthesize the results of the studies I look at. Hence, this
thesis reports a mapping study.

The reason for a secondary study to be conducted systematically is, accord-
ing to Kitchenham and Charters (2007, p. 3—4), to be “fair and seen to be fair”: it
“makes it less likely that the results [...] are biased”; it may “provide evidence
that [a] phenomenon is robust and transferable”; and it “increases the likelihood
of detecting real effects”. In balance, one needs to put a lot of effort into making
one. In interviews and surveys reported by Zhang and Ali Babar (2013), literature
reviewers in software engineering generally agreed with these sentiments.

The claim that systematic secondary studies are particularly trustworthy
has been examined in empirical studies to some extent. MacDonell et al. (2010)
had two independent teams of experienced researchers perform a SLR on the
same topic but designed independently of each other; they found that the two
SLRs came to similar conclusions. Kitchenham, Brereton, and Budgen (2012)
found, in a case study, that a systematic mapping study can identify publication
clusters successfully and perhaps better than a traditional expert review, though
their case mapping study did not identify all known relevant studies. Wohlin et
al. (2013) conducted two systematic mapping studies that found partially differ-

41

ent sets of publications, and came to somewhat different conclusions. They note
(p. 2605) that “the reliability of secondary studies cannot and should not be taken
for granted”. It seems that the evidence on this topic is mixed.

Petticrew and Roberts (2006, p. 16-17) date the earliest systematic literature
review to Nichols (1891). Indeed, while Nichols does not claim to be conduct-
ing a systematic review, and while he does not reveal his publication searching
and selection methods, the rest of his methodology is very familiar to a mod-
ern systematic reviewer, reviewing a number of experiment reports to come to a
conclusion on a small number of related, practically relevant, focused questions.
Chalmers et al. (2002) refer to an even earlier author as one concerned with the
issues that motivate systematic secondary studies. Lind (1757, p. viii) took upon
himself

“to exhibit a full and impartial view of what had hitherto been published on the scurvy;
and that in a chronological order, by which the sources of those mistakes might be
detected. Indeed, before this subject could be set in a clear and proper light, it was
necessary to remove a great deal of rubbish.”

To be sure, his review does not meet the modern standards required for a system-
atic review, but he did identify one of the key motivators for one.

The modern sense of the term appears to have emerged in the 1970s. Shaikh
et al. (1976) conducted a “systematic review” of studies evaluating tonsillectomy;,
which does not document the literature search but is very strict about evaluating
the primary studies under review and synthesizing a result from them. Chalmers
et al. (2002) attribute the modern popularity of the phrase to the Foreword writ-
ten by Archie Cochrane to a 1989 book collecting systematic reviews on obstrec-
tic care. In 1994, an international organization, the Cochrane Collaboration, de-
voted to the creation and maintenance of a database of systematic reviews in the
medical sciences was founded (Bero and Rennie 1995). The ongoing effort to
create systematic reviews in software engineering seems to have been initiated a
decade ago by Budgen, Boegh, et al. (2003), Kitchenham (2004a), and Kitchenham
(2004b).

3.2 Best-practice methodology

In this section, I summarize the state of best-practice methodological guidelines.
I focus on software engineering, as it is the discipline that is closest to program-
ming language research with a tradition of systematic secondary studies. I also
focus mainly on mapping studies, but discuss SLRs as well to the extent their
methodological issues are similar.

Kitchenham and Charters (2007) have published the most recent guidelines
for systematic literature reviews in software engineering. They discuss map-
ping studies only briefly, mostly referring a mapping study researcher to the SLR
guidelines. Petersen, Feldt, et al. (2008) augment the guidelines, giving more spe-
cific guidance to mapping studies. Kitchenham and Brereton (2013) conducted

42

a systematic review of methodological research regarding systematic secondary
studies in software engineering, with a goal of identifying needed changes to the
existing SLR guidelines; I will take note of the recommendations they have made,
below. Finally, Imtiaz et al. (2013) surveyed published systematic reviews in soft-
ware engineering for lessons learned about the SLR process itself; the identified
lessons are largely similar to the proposals and recommendations I have summa-
rized below and I will not discuss them further.

Many other disciplines also have well-known guidelines for conducting sys-
tematic secondary studies. In medicine, the Cochrane Collaboration has pub-
lished a detailed handbook (Higgins and Green 2011). In the social sciences, there
is the textbook by Petticrew and Roberts (2006). However, since Kitchenham and
Charters (2007) have explicitly based their guidelines on these sources (although,
in the case of the Cochrane handbook, an earlier version), I will not discuss them
in detail. Similarly, I will not discuss software engineering SLR literature predat-
ing the Kitchenham and Charters (2007) guidelines.

3.2.1 Overall process

Kitchenham and Charters (2007, p. 6) describe 13 distinct phases of a system-
atic secondary study process, of which 11 they consider mandatory. The major
phases are planning, literature search and selection, assessment of the quality
of the selected studies, extracting data, and creating a synthesis result from the
data. Kitchenham and Brereton (2013, p. 2068) would amend these guidelines to
“emphasize the need to keep records of the conduct of the study”.

Petersen, Feldt, et al. (2008, p. 2) identify five phases in the conduct of a
particular mapping study. The key difference between their process and that
of Kitchenham and Charters (2007) is the omission of quality assessment of the
included studies. Petersen, Feldt, et al. (2008, p. 7) note that this follows from the
different goals of mapping studies versus SLRs: the latter attempt to synthesize
the results reported by the individual studies into a coherent collective answer.

Budgen, Turner, et al. (2008) identify largely the same steps for conducting
mapping studies. Instead of data extraction and synthesis, they would include
the “classification of the available studies” (p. 2). Like Petersen, Feldt, et al. (2008),
they consider quality assessment nonessential in a mapping study; Kitchenham,
Budgen, et al. (2011) also express a similar opinion.

Some software tools to automate parts (or all) of a systematic secondary
study in software engineering have been proposed. A systematic map of them
up to 2012 has been published by Marshall and Brereton (2013).

3.2.2 Planning

Planning a review consists of defining research questions and writing a proto-
col document. Regarding the definition of research questions, Kitchenham and
Charters (2007, Section 5.3) give guidelines that are only relevant to SLRs. They
recommend, for example, the PICO (population, intervention, comparison, out-

43

come) and PICOC (..., context) templates for structuring questions (Petticrew
and Roberts 2006; Straus et al. 2011; Higgins and Green 2011), which are ap-
propriate only for questions about relative efficacy (which do not belong in a
mapping study). However, Kitchenham and Brereton (2013, p. 2068) consider re-
moving this recommendation from the guidelines appropriate, mostly because it
is of limited applicability and value. As to mapping studies specifically, Kitchen-
ham, Budgen, et al. (2011, Table 1 on p. 640) lists “which researchers”, “how much
activity”, and “what type of studies” as typical forms of research question.

The review protocol, per Kitchenham and Charters (2007, Section 5.4), is a
document written before the actual systematic secondary study is started, and
includes a detailed plan addressing all the phases of the study from identifying
a need for it to its dissemination. They also recommend (on p. 14) piloting the
protocol before starting the actual study.

3.2.3 Searching

The search for studies, or “identification of research” as Kitchenham and Charters
(2007, p. 6) call it, must be properly planned, executed, and documented. Like Pe-
tersen, Feldt, et al. (2008, p. 3), they recommend (in Section 6.1) listing words and
phrases for each components of the research questions, including synonyms, and
using Boolean operators to combine them to form a search term; they recommend
searching digital libraries, reference lists of relevant publications, particular jour-
nals, particular conference proceedings, and the grey literature (reports that have
not been published in well-known academic forums). They also recommend con-
tacting researchers active in the field.

As to electronic databases useful for searching, Kitchenham and Charters
(2007, p. 17) specifically mention ACM Digital Library, EI Compendex, Google
Scholar, IEEExplore, Inspec, Scopus, ScienceDirect, and SpringerLink. Dieste et
al. (2009) also recommend targeting searches on not just reputable general soft-
ware engineering venues but also on venues specific to the topic area of the sec-
ondary study; in some cases, venues of other fields are needed, as well. They thus
recommend searching in databases, like Scopus, that cover many venues.

Bailey et al. (2007) and Chen, Ali Babar, et al. (2010) studied the overlap be-
tween and contribution of several electronic databases in three and two example
systematic secondary studies, respectively, suggesting that using many databases
may be necessary; however, their research design make their generalizability be-
yond the particular example studies doubtful.

Chen, Ali Babar, et al. (2010, p. 2) define three metrics for the performance
of a particular “electronic data source” (meaning a particular database, but read-
ily generalizable to any search) in a particular secondary study: the overall con-
tribution of a search is the count of relevant publications found by it; the over-
lap between two searches (which should be computed for all unordered pairs of
searches, and reported in matrix form) is the number of publications that were
found by both, and the exclusive contribution of a search is the count of relevant
publications found by it and by no other search. Both contribution metrics have,

44

in addition to the absolute count version, a relative version, computed as the
ratio of the absolute metric to the total count of relevant studies (with dupli-
cates removed) found in all searches. They suggest that subsequent systematic
secondary studies report these metrics, as that would eventually allow a meta-
analysis of such studies to generate widely applicable recommendations as to
databases to search.

There are two important ratios, borrowed from the field of information re-
trieval (see e. g. Ceri et al. 2013, p. 7-9), that quantify the performance of a search
(see e. g. Petticrew and Roberts 2006, p. 83; Dieste et al. 2009, p. 515; Zhang, Ali
Babar, and Tell 2011, p. 627). Sensitivity, also called recall, quantifies how many
of publications that should have been found actually were found. Specificity, also
called precision, quantifies how many of publications that were found were ac-
tually publications that should have been found. For the best use of researcher
resources, maximizing both ratios is desirable, but as is often the case in multiple-
criteria decision problems, there generally is no single optimal search strategy.

More precisely, writing for the moment R for the set of all publications
(whether found or not) that are relevant, F for the set of all publications that were

found, and |- - - | for the size of a set, the defining equations are the following;:
e |FNR] e [FNAR
Sel’lSIthIl’y = |R| spec1f1C1ty — ‘P|

Sensitivity is, of course, often impossible to determine accurately, as it requires
knowing the extent of the set R, which includes publications that were not found.
Sometimes, the set R (or a set believed to approximate R well) is called the gold
standard (e. g. Dieste et al. 2009, p. 516; Zhang, Ali Babar, and Tell 2011, p. 627).
However, since both F (the set of all found publications) and F N R (the set of
all found publications that are relevant) are determined during a systematic sec-
ondary study, specificity is usually readily computable.

Dieste et al. (2009) recommend that, when searching for experiments, a re-
searcher should use not just the word “experiment” as a keyword, but also a
number of compound terms involving the adjective “experimental”, to get good
sensitivity and specificity. However, certain other related phrases (like “experi-
mentation” and “empirical study”) increase sensitivity modestly while they de-
crease specificity significantly and are thus not recommended. The keywords
should be searched for in article titles and abstracts (not just one of them alone),
but widening to other fields is not recommended.

Zhang, Ali Babar, and Tell (2011) propose a disciplined method for defining
a query expression for automated searches (see also Zhang, Ali Babar, Bai, et al.
2011). A quasi-gold standard (QGS) is, they define, a set of relevant publications
published in particular venues during a particular timespan; this set can gener-
ally be determined with reasonable use of resources using a manual search and
the application of the selection procedure (see next section). A query expression
for automated searches can then be elicited by using text mining techniques on
the quasi-gold standard, although it is also possible to use ad-hoc query expres-
sions. Then, the ratio of the number of publications in the QGS actually found by

45

the query to the size of the QGS itself, called quasi-sensitivity, is computed. The
query expression must then be iteratively improved until the quasi-sensitivity
meets or exceeds a predetermined threshold. Zhang, Ali Babar, and Tell (2011,
p- 629) recommend using a threshold between 70 % and 80 %. Kitchenham and
Brereton (2013, p. 2068) consider it appropriate to change the SLR guidelines to
recommend this approach.

As already mentioned, Kitchenham and Charters (2007, p. 15) recommend
searching in the bibliographies of already identified study reports, a process some-
times called “backward searching” (by e. g. Levy and Ellis 2006). Petticrew and
Roberts (2006, p. 98-99) recommend a complementary process that they call “pearl
growing” or “forward searching” (the latter also used by e. g. Levy and Ellis
2006), namely “searching for articles which themselves cite a key reference”. Both
are also an integral part of the search strategy recommended by Webster and Wat-
son (2002) for literature reviews in information systems. The term snowballing
encompasses both, and appears to be common within the software-engineering
systematic secondary study literature (e. g. Budgen, Burn, et al. 2011; Kitchen-
ham, Budgen, et al. 2011; Jalali and Wohlin 2012; Kitchenham and Brereton 2013).

Comparing backward snowballing starting from a known set of papers to
database searches, Jalali and Wohlin (2012) found no obvious advantage to ei-
ther but concluded that they find a slightly different set of papers. A variant of
snowballing was also evaluated with encouraging results by Skoglund and Rune-
son (2009) for software engineering SLRs. Wohlin et al. (2013) in turn conjecture,
based on their mapping study reliability study, that snowballing is “more effi-
cient than trying to find optimal search strings” (p. 2605). Further, Kitchenham
and Brereton (2013, p. 2068) would amend the SLR guidelines to discuss snow-
balling more fully.

It is generally expected that all planned searches are exhaustive, that is, ev-
erything that is findable by the searches are found and considered for inclusion.
Kitchenham and Charters (2007), Budgen, Turner, et al. (2008), Petersen, Feldt, et
al. (2008), and Kitchenham, Budgen, et al. (2011) do not discuss this explicitly, but
this expectation is clearly implied by them. Petticrew and Roberts (2006, p. 100-
101), however, point out that knowing that one has actually achieved finding
everything relevant is impossible, and discuss two potential “stopping rules”:
stopping when key indexes have already been searched and further searching
finds very few relevant publications; and stopping when saturation is achieved,
that is, when “no further perspectives or schools of thought are added” (quoting
Chilcott et al. 2003, p. 7). The proper stopping rule depends, of course, on the
particulars of the secondary study.

Kitchenham, Brereton, Turner, et al. (2010) note that a “broad automated
search finds more relevant studies than a restricted manual search” and that the
results of a systematic secondary study are sensitive to additional studies, ex-
cept perhaps if low quality publications are excluded. Kitchenham, Brereton, and
Budgen (2012) recommend, for “mapping studies of a large body of literature”,
that “a large and varied set of known studies” be obtained and used in search
validation. Publications found via “manual search of important sources” qualify

46

for this set of studies.
3.2.4 Selection

Publications identified by the search efforts must be filtered to select those and
only those that are relevant to the secondary study at hand. Kitchenham and
Charters (2007, p. 18- 20) recommend that criteria for making this decision, based
on the research questions and on practical issues like publication language, be
defined in advance and tested. They also recommend an iterative process, first
using the title and abstract to exclude clearly irrelevant publications and then
looking at the full text of the rest, with possibly a third iteration to enforce a
quality threshold. Further, they recommend that, apart from “totally irrelevant”
publications, a complete record is kept of exclusion decisions.

Kitchenham and Charters (2007, p. 20) also recommend that either all se-
lection decisions be made by two or more researchers independently or a single
researcher working alone retest a random sample of the publications. Petticrew
and Roberts (2006, p. 120) make similar recommendations, and also allow a prac-
tice where one researcher makes all decisions, with another researcher retesting a
random sample. The agreement between researchers (or between the original and
the retest) should, say Kitchenham and Charters (2007, p. 20), be evaluated and
documented using the Cohen (1960) statistic, and any disagreements should be
then resolved by discussion. They also recommend a sensitivity analysis in cases
where there is uncertainty about the correct decision.

The Cohen (1960) « (kappa) statistic that Kitchenham and Charters (2007,
p- 20) recommend is a measure of interrater agreement. It assumes that two people
(raters or judges) independently rate a number of items by assigning each of them
into one of at least two “independent, mutually exclusive and exhaustive” (Co-
hen 1960, p. 38) categories. It only works with two independent raters and only
if both rate all items. Although Kitchenham and Charters (2007) do not mention
it, there is a well-known and commonly used multi-rater x statistic, the Fleiss
(1971) x. Both « statistics range from negative values greater than —1 (indicating
disagreement beyond mere chance) through 0 (indicating agreement purely by
chance) to +1 (indicating perfect agreement). There a widely used verbal scale
associated with « statistics, originating from Landis and Koch (1977, p. 165): a
negative « is labeled “poor” agreement, a x between 0 and 0.2 indicates “slight”
agreement, a ¥ above 0.2 but at most 0.4 indicates “fair” agreement, a x above
0.4 but at most 0.6 indicates “moderate” agreement, a xk above 0.6 but at most 0.8
indicates “substantial” agreement, and a x above 0.8 indicates “almost perfect”
agreement. However, these verbalizations are “clearly arbitrary” and thus their
use is supported by nothing but convention.

Petersen and Ali (2011) have identified a number of strategies researchers
in software engineering have used to resolve disagreement about selection de-
cisions. The most common in the secondary studies they identified were a post-
selection evaluation of the objectivity of the selection criteria, having another per-
son reviewing the publications in dispute and making the final decision, having

47

researchers discuss the publications in dispute, and letting a publication survive
a preliminary round of selection if at least one researcher is uncertain. They rec-
ommend that systematic secondary studies report the procedures and decision
rules used to make selection decisions in problematic cases.

Malheiros et al. (2007), Tomassetti et al. (2011), Felizardo, Salleh, et al. (2011),
and Felizardo, Andery, et al. (2012) propose and validate approaches for using
text mining in support of systematic secondary studies, particularly in the selec-
tion stage. Kitchenham and Brereton (2013, p. 2068) consider it appropriate for
the SLR guidelines to recommend, in the future, that “researchers consider the
use of textual analysis tools to evaluate the consistency of inclusion/exclusion
decisions” (emphasis in the original).

3.2.5 Data extraction and synthesis

With respect to data extraction, Kitchenham and Charters (2007, Section 6.4) rec-
ommend defining and piloting “data extraction forms” which direct a researcher
to find answers to specific questions selected with the intent that the collected
answers can be synthesized into answers to the secondary study research ques-
tions. As is the case with exclusion decisions, they recommend that at least two
researchers should independently extract data from every included study. In the
case of researchers working alone, they allow a retest of a random sample. Turner
et al. (2008) reiterate the recommendation of using independent extractions by
different researchers (or retesting, in the case of a single researcher), instead of
having separate extractor and checker roles.

Care should be taken, Kitchenham and Charters (2007, Section 6.4) recom-
mend, to avoid treating multiple publications reporting the same study as report-
ing different studies. Kitchenham and Brereton (2013, p. 2068) would amend the
guidelines to “mention the need to report how duplicate studies are handled.”

Kitchenham and Charters (2007, Section 6.5) recommend tabulating the ex-
tracted data, highlighting similarities and differences between the studies. Be-
yond this, their recommendations make sense only in the context of synthesiz-
ing outcomes, which mapping studies generally (and this mapping study specif-
ically) do not do.

While outcome synthesis is not particularly relevant to a mapping study;,
it must be noted that even systematic literature reviews in software engineering
have not, at least until recently, properly considered the problem of such synthe-
sis, according to Cruzes and Dyba (2011b).

Petersen, Feldt, et al. (2008, p. 3-5), for their part, describe a two-stage pro-
cess of creating a systematic map, in which data extraction and synthesis are
intertwined. They first had researchers identify, for each paper included, key-
words that “reflect the contribution of the paper” in the paper’s abstract (and
in some cases, its introduction and conclusion sections). These keywords were
the interpretation of the researchers themselves, and need not be the same as
any keywords chosen by the authors of the paper under study. The results were
then combined, yielding a classification scheme for papers. Then, each paper was

48

classified according to the scheme. The resulting systematic map consisted of the
various frequencies of publications in each category. For visualizing the map,
they recommend a bubble plot, a scatterplot in which each data point is drawn as
a circle, the area of which being proportional to the magnitude of the data point
—in this case, the magnitude being the frequency of publications.

Cruzes and Dyba (2011a) introduce a method for synthesizing outcomes of
qualitative primary studies in SLRs, although the method makes sense also in the
mapping study context. This thematic synthesis method proceeds by identifying
relevant passages in the primary studies, then assigning codes!, then creating
themes out of the codes, and finally generating a thematic model of the primary
studies.

Felizardo, Riaz, et al. (2011) recommend, based on a controlled experiment,
presenting synthesis results using edge-node graph drawings. Their experimen-
tal setup tested this recommendation on a quintessentially mapping-study data
set, the relationship between articles and publication years, and thus their rec-
ommendation, although phrased as applying to SLRs, is readily applicable to
mapping studies.

Cruzes, Mendonga, et al. (2007) and Felizardo, Nakagawa, et al. (2010) sug-
gest that text-mining tools be used in the data extraction phase of systematic
secondary studies. The technique advanced by Felizardo et. al is particularly
designed for generating a systematic map. Nieminen et al. (2013) introduce a
knowledge discovery approach to creating a nonsystematic map of a research
field, which probably can be adapted to function as a part of a systematic sec-
ondary study process.

3.2.6 Reporting

Kitchenham and Charters (2007, p. 40) recommend that all systematic secondary
studies be reported both as a journal or a conference paper and as a technical
report or a thesis. They also recommend that the journal or conference paper,
having usually a length limit, refer to the technical report or thesis for details
omitted in the paper. They further recommend that some sort of peer review be
performed on all to-be-published systematic secondary study reports, including
technical reports that are not typically subject to it, if they are published on the
World Wide Web.

Kitchenham, Brereton, Li, et al. (2011) recommend, based on a case study
involving two independent SLRs on the same topic, that systematic secondary
studies be reported in detail, including documenting search strings and the selec-
tion criteria, so that there is a chance for the study to be repeatable.

Kitchenham, Brereton, and Budgen (2012) recommend that mapping study
reports cite all publications related to included studies, not just the most recent

1 Codes, in qualitative research, are labels given to passages of text, describing the content of

those passages for an analytic purpose; the process of assigning codes is called coding (see
e. g. Schwandt 2007, entry for “coding” on p. 33-34). Despite the similar terminology, this
has nothing to do with writing computer programs.

49

or most complete, even though analysis and synthesis must of course merge the
duplicates.

3.2.7 Concluding remarks

I have now summarized the current recommended practice for systematic sec-
ondary studies primarily in software engineering. These recommendations in-
fluenced the design of this mapping study. To some extent, this mapping study
does not comply with all of these recommendations, mostly because this study
was designed before they were published, but also to some extent due to the fact
that I misjudged the relevance of some of them (particularly Zhang, Ali Babar,
and Tell 2011; Zhang, Ali Babar, Bai, et al. 2011, describing the quasi-gold stan-
dard method of iterative literature searching) at the time of their publication.

3.3 On evidence

A systematic secondary study is most often about locating and summarizing evi-
dence. What evidence is seems obvious at first, but, as Vesa Lappalainen demon-
strated to me in personal communication, reveals significant hidden uncertainty
and depth upon closer inspection. This mapping study explicitly looks for ev-
idence, and therefore a clear definition had to be developed to guide literature
searching. A full development of the issue is beyond the scope of this mapping
study, but the key ideas and arguments are outlined below.

3.3.1 Research methods

In a systematic secondary study, the implicit context is that one is looking for
research evidence, that is, scientific or scholarly studies duly reported that bear on
the subject at hand (collectively called primary studies). In the behavioral sciences,
which are the most relevant for this study, a number of research methods have
become standard; they are conventionally classified into the quantitative and the
qualitative.?

There are a number of qualitative methods, including case study (Yin 2009;
Runeson et al. 2012), content analysis and thematic analysis (see e. g. Vaismoradi et
al. 2013), grounded theory (Glaser and Strauss 1967), ethnography (see e. g. Crabtree
et al. 2009; Morrison et al. 2010), and action research (see e. g. Avison et al. 1999).
Common to all of them is a focus on the particulars of a specific situation and
attempting to achieve a deep understanding of it, and sometimes a beneficial
change in it, instead of generalization into putatively universal laws. Commonly,
the situation is looked at from the point of view of the participants instead of

2 Vessey, Ramesh, et al. (2005) developed a classification of, among other things, research

methods in computing, partially based on Alavi and Carlson (1992). I find these classifica-
tions not very useful, as they do not define their terms very clearly (see Section 6.1).

50

the point of view of an outside observer. It should be noted that the mere use of
qualitative data (such as interviews) does not make a study qualitative in nature.

In quantitative research the goal is typically to estimate the effect of one or
more treatments (the choice of treatment, including perhaps their absence, form
the conditions, also referred to as the values of the independent variables) on one or
more quantities of interest, the dependent variables, with the goal of testing theories
consisting of (qualified) universal laws and asserting a causal connection between
the independent and dependent variables. The methods are broadly categorized
(see e. g. Whitley et al. 2013, p. 36-45) into the experimental approach, in which
the researchers control to various degrees the circumstances and conduct of the
research, and the correlational, in which the researchers observe real-life phenom-
ena without exerting control over them.

Experimental studies have, according to Whitley et al. (2013, p. 242), three
defining characteristics: “manipulation of the independent variable”, “holding
all other variables in the research situation constant”, and “ensuring that partici-
pants in the experimental and control conditions have equivalent personal char-
acteristics and are equivalent with respect to the dependent variable before they
take part in the experiment”. They can be between-subjects designs, in which the
various treatments and perhaps their absence are assigned to different people
(forming experimental groups and a control group, the latter being given no treat-
ment or a control treatment), and the result is obtained by examining the differ-
ence in the dependent variable values between the groups (Whitley et al. 2013,
p- 252-255). Alternatively, they can be within-subjects (or repeated measures) de-
signs, in which each participant is sequentially subjected to each of the experi-
mental treatments and the control treatment in turn, and the result is obtained
by considering the change in the dependent variables; within-subjects designs
can be counterbalanced, in which the participants are divided into several groups,
each getting the treatments in a different sequence (Whitley et al. 2013, p. 255—
259). Factorial designs can be used to measure the effect of several independent
variables in the same experiment (Whitley et al. 2013, p. 264-255), in which case
the experiment may be within subjects for some variables and between subjects
for others.

Campbell and Stanley (1963) further classified experimental study designs
into three categories: pre-experimental designs, true experimental designs, and quasi-
experimental designs. True experiments they defined to be experiments following
all contemporary recommendations on experiment design, particularly the use
of a control group for which the treatment is absent, and assignment of partici-
pants to the groups by a random process. Pre-experimental designs predate the
establishment of these standards and generally fall short of them, though they
can be successful in limited circumstances. Quasi-experiments are experimental
studies that lack one or more of the requirements imposed on true experiments
due to circumstances of the experiment that preclude their employment (one sup-
poses that if a design fails to meet the criteria for some reason attributable not to
the circumstances but to the researchers, the study would be classified as pre-
experimental and not quasi-experimental). They include within-subjects designs

51

(even counterbalanced ones) in the quasi-experimental category.

In this mapping study, I will assign experiments into three categories. The
most broad category is that of experiments: studies in which the researchers at-
tempt to influence one or more independent variables in order to cause changes
in one or more dependent variables. The next category is that of controlled ex-
periments: experiments in which the experimental subjects (which, if human, are
called participants), are assigned into groups based on which treatment (or their
absence) they are subjected to and in which sequence. I further require that in
controlled experiments the groups cover all treatments (including their absence,
if no control treatment is used) and all the possible sequences in which they are
administered. Thus, I categorize a within-subjects experiment as controlled only
if it is completely counterbalanced. The third category is that of randomized con-
trolled experiments (also often called randomized controlled trials): controlled experi-
ments in which subjects are assigned into groups by a random process. Note that
there are studies that I categorize as experiments that Whitley et al. (2013) would
not; further, while I believe all the Campbell and Stanley (1963) true experiments
qualify as randomized controlled experiments, not all randomized controlled ex-
periments are true experiments.

3.3.2 Hierarchies of evidence

In Evidence-Based Medicine, the concept of evidence is often simplified into a hi-
erarchy of evidence. For example, the Oxford Centre for Evidence Based Medicine
(Howick et al. 2011) allocates, for assessing treatment benefits, the following lev-
els: Level 1 consists of systematic reviews of randomized controlled trials, Level 2
of individual randomized controlled trials or correlational studies that demon-
strate a “dramatic effect”, Level 3 of individual non-randomized controlled trials,
Level 4 of certain other types of studies, and Level 5 of reasoning from theoretical
knowledge.

This simplification of the concept of evidence should not be confused with
the real thing, as that leads to absurd results, both serious (Atwood 2008; Ham-
merstrom and Bjerndal 2011) and humorous (Smith and Pell 2003). Both prob-
lems stem from an overly rigid interpretation of the evidence hierarchy, trusting
randomized controlled trials over all other evidence, however convincing the lat-
ter are on their own terms. After all, there is an inherent weakness in all statistical
studies, namely the possibility that a positive result is actually false (even if the
study is methodologically flawless), which is significantly magnified when the
prior probability of an effect is small and when the true effect, if present, is small
(for a recent well-known case and its aftermath, see Bem 2011, Wagenmakers et
al. 2011; Francis 2012; Fiedler and Krueger 2013; more generally, see loannidis
2005, 2008; see also Every-Palmer and Howick 2014)

Further, as Cartwright and Stegenga (2011) — writing in the context of evi-
dence-based policy — point out, a traditional hierarchy of evidence with random-
ized controlled experiments at the top and theoretical inferences at the bottom
is only one aspect of evidence that is relevant to its potential user: equally im-

52

portant are its relevance and its evaluation in the specific context of proposed
use. There are relevant empirical questions, for which evidence is desirable, for
which the traditional hierarchy is the wrong approach, according to Cartwright
and Stegenga (2011), for example the causal structure of the proposed context of
use. Dyb4, Sjeberg, et al. (2012) also stress the importance of context in empirical
software engineering and how that context is practically impossible to control for
in an experiment, reducing the usefulness of controlled experiments in that field;
there does not seem to be any reason to suspect the programming language field
is spared from this.

3.3.3 On the epistemology of evidence

In this mapping study, I approach evidence without a preconceived hierarchy in
mind (I do, however, use an evidence hierarchy in the analysis and synthesis of
the included studies). The main criterion I use is whether a study provides scien-
tific empirical evidence on a relevant question. This approach, however, requires
me to confront the question of what evidence actually is. This is a question of
epistemology; although a proper study of the relevant questions is beyond the
scope of this study, I will sketch the main argument.

First, I must dismiss a number of historical epistemological stances. First is
the idea that a series of successful empirical tests of a theory confirms a theory;
the second is the idea, due to Popper (1980), that the only thing we can say of a
theory is that it has or has not been falsified. The untenability of the former is
well known (see e. g. Russell 1983, p. 35). The idea of falsification fails as well,
for two separate reasons: the status of not-yet-falsified is absolutely useless when
one must choose among several such theories, and as Quine (1951) noted, it is
always possible to react to an empirical refutation of a theory by tweaking the
theory (and in many cases this is even the right choice). These arguments are
introductory-textbook material in the philosophy of science (see e. g. Bird 199§;
Godfrey-Smith 2003).

In the social sciences, there are two major epistemological traditions of re-
search. Each generally (though not universally) dismisses the other, sometimes
with strong harsh words. One tradition, self-labelled as antipositivism, has given
the other the (often pejoratively intended) label positivism (this label is, however,
historically inaccurate, see Mackenzie 2011) and regards it as a decades earlier
thoroughly discredited research paradigm (for a recent antipositivist formulation,
see St. Pierre 2012). The antipositivists themselves divide into several sub-camps
each having a label, proudly worn by its members, such as critical theory, feminism,
and constructivism (for an overview, see Guba and Lincoln 1994).

On the other side of the divide, the researchers who are given the positivist
label do not typically use that (or any other) label of themselves; they merely
see their approach as good scientific practice and regard the antipositivist ap-
proaches as unscientific or worse (for a recent strongly worded formulation, see
Colquhoun 2011, p. 336-339), and often just ignore them.

The reason for these divisions is a fundamental difference in ontological,

53

epistemological, and axiological views which results in different and perhaps
even incompatible methodology and standards of good research (for a summary
written by antipositivists, see Lincoln et al. 2011). The antipositivists generally
avoid quantitative methods, while the other tradition embraces them; hence,
these two traditions are often (somewhat incorrectly) called the gqualitative and
the quantitative paradigms, respectively.

In this study, I do not wish to take a firm stand for or against either ap-
proach; however, the very fact that I am working within an evidence-based par-
adigm (as well as my methodology here generally) does bias this study against
the antipositivists somewhat (see e. g. Suri 2013). Instead, I have attempted to
formulate an epistemological position that is reasonably agnostic on this issue.

There are, in recent philosophy of science, two main approaches to episte-
mology. One is inference to the best explanation (see e. g. Lipton 2004), and the other
is Bayesianism (see e. g. Howson and Urbach 2006; Jeffrey 2004). Some authors
(such as Godfrey-Smith 2003) are of the opinion that they are incompatible, but
like Lipton (2004), I believe them to be compatible. In any case, for the purposes
of this mapping study, the Bayesian approach is more instructive.

The central idea of Bayesian epistemology is that the proper way to assess a
claim is to assign it a probability. A probability assignment based on the totality
of current knowledge about the claim is called a prior probability or just a prior;
when a new piece of knowledge is added, the prior is transformed into a new
probability, the posterior probability or just the posterior. When another new piece
of knowledge is about to be added, the old posterior becomes the new prior, and
the new piece creates a new posterior.

Some Bayesians (e. g. Jeffrey 2004) posit that Bayesianism is about the ideal
rational person, the Bayesian agent, defined as having the following characteris-
tics: if it were to place bets based on its beliefs, it would not be vulnerable to a
Dutch book — a set of bets which is certain to result in a net loss, such as betting
against the ordinary mathematical statement 141 = 2, but usually more complex
—and it reacts to observations by adopting the posterior probability suggested by
a Bayesian analysis as its new prior. Others (e. g. Howson and Urbach 2006) re-
gard the Bayesian theory of probability as a logic of induction, on a par with the
more familiar logics of deduction (such as elementary first-order logic); it does
not define a rational being, merely what it means to be rational.

From this point of view, the meaning of “evidence” becomes plain. First,
evidence is an observation, something external to the observer that the observer
becomes aware of. Second, evidence requires interpretation. Third, evidence
never exists in isolation, rather all evidence is evidence about some proposition.
In sum, evidence about a proposition is an observation that a rational person
interprets as changing their confidence in that proposition. In other words:

Definition 4. Evidence comprises reported observations about the contingent aspects of
the world. Evidence is about a claim if it has the potential to affect a rational person’s
confidence in the claim. Evidence is scientific if it has been honestly, systematically and
deliberately collected for a research purpose. Plain assertions, descriptions of function-
ality, anecdotes, expert opinions, personal experience reports by the researchers, and
formal proofs are not scientific empirical evidence.

54

This may be just an artifact of Bayesianism but I adopt it here: evidence is
inherently empirical. A logically valid or contradictory proposition has, for all
Bayesian agents, probability of one or zero, respectively, which no observation
can possibly change within the Bayesian logic. Only contingent propositions can
have evidence.

Definition 5. A proposition is contingent if it there are possible worlds where it is true
and possible worlds where it is false. In other words, a contingent proposition is not
a logical tautology nor a logical contradiction; a Bayesian agent would know its truth
value a priori.

Note that this definition sidesteps the notorious problem of old evidence
often attributed to Bayesianism: how can an observation known to a Bayesian
agent be first dismissed as irrelevant but later be recognized as evidence, which
is something that happens in actuality? My definition does not require a person to
be a Bayesian agent, it merely speaks of a hypothetical “rational person”, which
is a Bayesian agent. When one recognizes an old observation as evidence, one
is essentially realizing that a Bayesian agent would change its confidence in the
proposition at hand upon observing it.

I'have used these definitions in the mapping study as an aid to decide when
a study provides (empirical) evidence and when it does not. The following chap-
ter details the actual process, both for making those decisions and for other as-
pects of this study.

4 THE MAPPING PROCESS

This thesis reports a systematic mapping study; this chapter explains the map-
ping process used. A high-level view to the process is shown in Figure 1.

THEMATIC
MODEL
Thematic
Systematic Synthesis
documented &
search ODES
Coding

PooL oF

POTENTIALLY RELEVANT

STUDIES rrrfa

Systematic Identification of
documented
i relevant quotes
selection

SELECTED

STUDIES

FIGURE1 A high-level representation of the mapping process. This diagram omits
many details.

First, wrote a protocol document that described the planned process before
any actual work commenced. As the study progressed, I revised the protocol
several times. My supervisors reviewed the original protocol document and all

56

revisions before I started following them. I did not request an external review of
the protocol. The protocol and all its revisions are available from me by request.

Throughout the study, I maintained a record on the process, including all the
intermediate data generated during the process. The records form a text-based,
both machine- and human-readable database under version control. Appendix 1
details the database and the tools I used.

I searched for candidate studies by manual and automatic search of various
venues and databases and in several iterations, as discussed in Section 4.1. 1
then proceeded to decide which of the potential studies should be included in
three phases: Phase I was a preliminary selection phase, in which only the most
obvious cases were excluded, and the rest were retained for more careful checking
in Phase II; I considered only on-line metadata in these two phases. In Phase 111,
I obtained the full text of all studies that survived the previous phases, and made
my provisionally final decisions. I also conducted a single iteration of snowball
search on studies that had provisionally been selected for inclusion; this yielded
additional candidate studies that I then subjected to selection Phases I through III.
After a selection evaluation exercise, the decisions were finalized. The selection
process is discussed in Section 4.2.

After final selection decisions, I conducted a four-stage thematic synthesis
process, as discussed in Section 4.3. I first read all studies selected for inclusion.
Then, I extracted from the studies direct quotes that appeared relevant to the
research questions. I then developed a coding scheme, and applied it to these
quotes. I finally created a thematic model of the included studies.

4.1 Searching for candidate studies

The search for candidate studies consisted of three phases: manual search, auto-
matic search, and snowball search. This process is summarized in Table 1.!

The first iteration of manual and automatic searches took place from De-
cember 2010 to September 2011. A second iteration of manual and automatic
searches was conducted in December 2012 and January 2013, to update the set of
candidate studies to include studies published up to 2012. The single iteration of
snowball search took place between February and April 2013.

4.1.1 Manual search

I conducted a manual search (summarized in Table 2) of the following journals
and conference proceedings series, which I believed to be the most relevant venues
in programming language research and in empirical studies of software engineer-
ing and of programmers:

1 The table shows article counts as of this writing. They do not necessarily reflect the situ-

ation at the indicated end dates, as subsequent developments have revealed duplicates in
the article database, which have been merged as discovered.

57

TABLE1 Summary of selection process. This table does not show selection validation
and the resulting changes in inclusion/exclusion decisions, nor does it show
exclusions made post hoc during data extraction.

From To Passed Excluded

First iteration — initial searches

—Phasel Dec.9,2010 Sep. 16,2011 1515

—Phasell Sep.17,2011 Novw. 24,2011 1045 470
—Phase Il Novw. 24,2011 Apr. 30,2013 92 953
Second iteration — search update up to 2012

—Phasel Dec.20,2012 Jan. 10,2013 248

—Phasell Jan.9,2013 Jan. 23,2013 151 97
—Phase Il Jan. 24,2013 Feb. 18, 2013 26 125
Third iteration — first round of snowballing

—Phasel Feb. 15,2013 Mar. 12,2013 293

—Phasell Mar. 13,2013 Mar. 19,2013 223 70
—Phase Il Mar. 19,2013 Apr. 30,2013 68 155

— ACM Transactions on Programming Languages and Systems (TOPLAS)

— ACM Letters on Programming Languages and Systems (LOPLAS)

— Communications of the ACM (CACM, up to 1990)

— Empirical software engineering (ESE)

— European Conference on Object-Oriented Programming (ECOOP)

— ACM SIGPLAN International Conference on Object-Oriented Systems, Lan-
guages, and Applications (OOPSLA)

— ACM International Conference on Systems, Programming, Languages and
Applications: Software for Humanity (SPLASH)

— ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL)

— ACM/IEEE International Symposium on Empirical Software Engineering
(ISESE)

— ACM/IEEE International Symposium Empirical Software Engineering and
Measurement (ESEM)

— Symposium of the Psychology of Programming Interest Group (PPIG)

— International Journal of Man—Machine Studies (IJMMS)

— International Journal of Human—Computer Studies (IJHCS)

Around the year 1990, the CACM was repositioned as a magazine targeting the
ACM'’s membership rather than the research community (Denning 1989). Thus,
the CACM does not seem crucial enough a forum after 1990 to warrant manual
searching. The IIMMS and the IJHCS were added to this list after the first iteration
of searches had uncovered a number of articles in the JMMS, making it likely that
it, and its successor the IJHCS, would contain more relevant articles.

58

TABLE 2 Summary of manual search

(a) Journals

Journal Vols. Years Source Date of search Yield*
ESE 1-17 1997-2012 Springer Dec. 10, 2010, Jan. 4, 2013 9
CACM 1-33 1958-1990 ACM Dec. 13-21, 2010, Jan. 17-19,2011 280
TOPLAS 1-34 1979-2012 ACM Dec. 17-20, 2010, Jan. 7-10, 2013 182
LOPLAS 1-2 1992-1993 ACM Dec. 21, 2010 7
OMMS 1-39 1969-1993 SD Dec. 20-21, 2012 82
JHCS 40-70 1993-2012 SD Dec. 21, 2012, Jan. 4, 2013 27
(b) Conference proceedings
Proc. of Years Source Date of search Yield*
PPIG 1989-2012 PPIG? Dec. 9, 2010, Jan. 4, 2013 63
ISESE 2002-2006 ACM, IEEE Dec. 10, 2010 1
ESEM 2007-2012 ACM, IEEE"" Dec. 10, 2010, Jan. 4, 2013 8
OOPSLA & SPLASH 19862012 ACM Jan. 19-28, 2011, Jan. 7, 2013 207
ECOOP 1987-2012 Springer'™ Jan. 28, Feb. 1-7, Jun. 1-17, 286
Aug. 4-19, 2011, Jan. 4, 2013
POPL 1973-2012 ACM Aug. 19-22, Sep. 1, 2011, Jan. 4, 219

2013

Source abbreviations: ACM = ACM Digital Library, IEEE = IEEE Xplore, Springer = SpringerLink, SD = ScienceDirect, PPIG = http:/ /ppig.org/workshops/
* Yield refers to the number of candidate publications recorded.
* Except for the year 2012, where http:/ /ppig2012.eventbrite.com/ (accessed on January 4, 2013) was used.

 Except for the year 2012, where http:/ /esem.cs.Ith.se/esem2012/esem/program.shtml (accessed on January 4, 2013) was used.

Htt Except for the year 1989, where http:/ /www.ifs.uni-linz.ac.at/ ~ecoop/cd/tocs/tec89.htm (accessed on February 7, 2011) was used.

59

4.1.2 Automatic search

While manual searching of specific publication venues can be very reliable so far
as the venues themselves are concerned, it completely ignores any publications
in other venues. To achieve better coverage of the full field of relevant publica-
tions, I performed additional keyword-based searches of literature and citation
databases, summarized in Table 3.

I developed the search phrase used in this study from the following refor-
mulation of the study goal:

to find empirical studies regarding the impact of design decisions on programming

language’s influence on the programming process.
I considered each of the key phrases in the reformulation separately, to form a set
of key phrases:

empirical study: This mapping study is limited to empirical studies. However,
the exact phrase “empirical study” is not likely to appear in all relevant
papers. The word “empirical” alone is more likely, but it is also likely to
appear in many irrelevant papers. Requiring that the word appears in the
article title narrows the set of matches quite a lot and is likely to drop many
relevant studies as well. This can be mitigated by listing likely empirical
research methods, selected from among those listed by Glass et al. (2002)
and Ramesh et al. (2004): “experiment”, “action research”, “case study”,
“ethnography”, “field study”, “grounded theory”, “hermeneutics”, “litera-

ture review”, “meta-analysis”, and “phenomenology”. Adding likely vari-
ants, I ended up with the following disjunctive compound:

M=
empirical V experiment V experimental \ action research V
case study V ethnography V ethnographical V field study V
grounded theory V hermeneutics VV hermeneutical V literature review V
meta-analysis V meta-analytical V phenomenological V phenomenology
impact of design decisions: I dropped this phrase, because there did not appear
to be any variants of it that are found in the relevant studies but not in lots
of other studies.
programming language: Any relevant study will contain this term; there are
many irrelevant studies that won’t. Thus, I retained it unchanged.
influence on the programming process: I dropped this phrase, because there do

not appear to be any variants of it that are found in the relevant studies but
not in lots of other studies.

Thus, the search phrase used is simply
programming language A M

(with M restricted to article titles) adapted to the query language of each search
engine at hand.
I performed this search in the following databases:

60

TABLE 3 Summary of automatic search

Engine Search expression Years Date Hits* Yield*
Google Scholar "programming language" (intitle:hermeneutics OR all Sep. 5, 2011 161 9
intitle:hermeneutical OR intitle:"literature review" OR
intitle:"meta-analysis" OR intitle:"meta-analytical” OR
intitle:phenomenological OR intitle:phenomenology)
ScienceDirect "programming language" AND title(empirical OR experiment all Sep. 5,2011 870 45
OR experimental OR "action research" OR "case study" OR
ethnography OR ethnographical OR "field study" OR "grounded
theory” OR hermeneutics OR hermeneutical OR "literature review"
OR "meta-analysis" OR logical OR logy)
IEEE Xplore "programming language" AND ("Document Title":empirical OR all Sep. 6, 2011 862 57
"Document Title":experiment OR "Document Title":"action
research" OR "Document Title":"case study" OR "Document
Title":ethnography OR "Document Title":ethnographical OR
"Document Title":"field study")
Google Scholar "programming language" (intitle:"empirical" OR all Sep. 7,2011 2050 99
intitle:"experiment™)
Google Scholar "programming language" (intitle:"empirical" OR up to 2000 Sep. 12,2011 659 83
intitle:"experiment™)
Google Scholar "programming language" (intitle:"empirical” OR 2001-2005 Sep. 12,2011 418 26
intitle:"experiment™)
Google Scholar "programming language" (intitle:"empirical" OR 2006 onward Sep. 13,2011 667 39
intitle:"experiment")
Google Scholar "programming language" intitle:"experimental" up to 2000 Sep. 14,2011 494 45
Google Scholar "programming language" intitle:"experimental" 2001 onward Sep. 14,2011 676 17
Google Scholar "programming language" intitle:"action research" all Sep. 15,2011 13 0
Google Scholar "programming language" intitle:"case study" up to 2002 Sep. 15,2011 932 83
Google Scholar "programming language" intitle:"case study" 2003-2007 Sep. 16, 2011 594 11
Google Scholar "programming language" intitle:"case study" 2008 onward Sep. 16, 2011 510 14
Google Scholar "programming language" (intitle:ethnography OR all Sep. 16, 2011 59 6
intitle:ethnographical OR intitle:"field study" OR
intitle:"grounded theory")
Web of Science TI="programming language" AND TI=(empirical OR experiment all Sep. 16, 2011 19 9
OR experimental OR "action research" OR "case study" OR
ethnography OR ethnographical OR "field study" OR "grounded
theory” OR hermeneutics OR hermeneutical OR "literature review"
OR "meta-analysis" OR "meta-analytical™ OR phenomenological OR
phenomenology)
IEEE Xplore "programming language" AND ("Document Title":'"grounded all Sep. 16, 2011 3 0
theory" OR "Document Title":hermeneutics OR "Document
Title":hermeneutical OR "Document Title":"literature
review" OR "Document Title":"meta-analysis" OR "Document
Title":"meta-analytical™ OR "Document Title":phenomenological
OR "Document Title":phenomenology)
Google Scholar "programming language" (intitle:hermeneutics OR 2011-2012 Jan.7,2013 61 2
intitle:hermeneutical OR intitle:"literature review" OR
intitle:"meta-analysis" OR intitle:"meta-analytical” OR
intitle:phenomenological OR intitle:phenomenology)
Google Scholar "programming language" (intitle:"empirical" OR 2011-2012 Jan.7,2013 382 28
intitle:"experiment™)
Google Scholar "programming language" intitle:"experimental" 2011-2012 Jan. 8, 2013 254 2
Google Scholar "programming language" (intitle:"action research" 2011-2012 Jan. 8, 2013 525 15
OR intitle:"case study" OR intitle:ethnography OR
intitle:ethnographical OR intitle:"field study" OR
intitle:"grounded theory")
IEEE Xplore "programming language" AND ("Document Title":empirical OR 2011-2012 Jan. 9, 2013 129 11
"Document Title":experiment OR "Document Title":"action
research” OR "Document Title":"case study" OR "Document
Title":ethnography OR "Document Title":ethnographical OR
"Document Title":"field study")
IEEE Xplore "programming language" AND ("Document Title":"grounded 2011-2012 Jan. 9, 2013 1 1
theory"” OR "Document Title":hermeneutics OR "Document
Title":hermeneutical OR "Document Title":"literature
review" OR "Document Title":"meta-analysis" OR "Document
Title" eta-analytical” OR "Document Title":phenomenological
OR "Document Title":phenomenology)
ScienceDirect "programming language" AND title(empirical OR experiment 2011-2012 Jan.9,2013 152 5
OR experimental OR "action research" OR "case study" OR
ethnography OR ethnographical OR "field study" OR "grounded
theory" OR hermeneutics OR hermeneutical OR "literature review"
OR "meta-analysis" OR phenomenological OR phenomenology)
‘Web of Science TI="programming language" AND TI=(empirical OR experiment 2011-2012 Jan. 9, 2013 1 1

OR experimental OR "action research" OR "case study" OR
ethnography OR ethnographical OR "field study" OR "grounded

theory" OR hermeneutics OR hermeneutical OR "literature review"
OR "meta-analysis" OR "meta-analytical" OR phenomenological OR

phenomenology)

* Hits refers to the number of search results obtained, as reported by the search engine.
* Yield refers to the number of candidate publications recorded (may include some of the same candidates as other searches).
See discussion in the text (p. 95).

61

— Google Scholar

— IEEE Xplore

— ISI Web of Science
— ScienceDirect

The following databases were considered and rejected:

— ACM Digital Library, because of an insufficient search language
— EI Compendex, because I was not familiar with it

— SpringerLink, because of an insufficient search language

— SCOPUS, because I did not have access to it at the time

After the protocol-indicated searches had been completed and selection had been
commenced, at the suggestion of a colleague, on 29 September 2011, I reassessed
the viability of ACM Digital Library and SpringerLink for direct keyword search-
ing. I made the following observations:

— ACM Digital Library provides two kinds of searches. A simple search box
is provided (apparently) with no guidance as to syntax. There is a link to
advanced search, which allows a multitude of structured queries but ap-
parently not what this study needs: a phrase search in all fields conjuncted
with a word or phrase in the title field. However, a Google search for ""acm
digital library" search help’ reveals a “Search Help” page?. It reveals that
phrases can be indicated by using double quotes and that space separation
is interpreted as conjunction (ACM s.d.[a]). However, even though there is
an indication that searching fields is supported (ACM s.d.[b]), trial searches
indicate that this is not the case: for example, the search ""programming
language" title:experiment’ retrieves no matches. Also, the documentation
appears to be generic help for a search engine that ACM Digital Library pre-
sumably uses but has not been reviewed and customized to match the actual
situation in the Digital library (see the note at the end of ACM s.d.[b]).

— SpringerLink also provides two kinds of searches. SpringerLink (s.d.) in-
dicates that the simple search box supports Boolean searches, but there ap-
pears to be no way to restrict particular components of the search to a field
such as title. Advanced search allows structured searching but even it does
not allow searching on both all fields and a specific field at the same time.

The ability to restrict some but not all of the keywords to the title field is an im-
portant part of the search strategy and allows controlling the size of the result set.
Accordingly, both search engines are considered unfit for this study. As earlier in-
dicated, this is mitigated by the fact that Google Scholar indexes both databases.
All Google Scholar searches found 49 articles bearing a 10.1007 (Springer) DOI (of
a total of 330 articles with such DOIs found in all searches), and 80 articles bear-
ing a 10.1145 (ACM) DOI (967 total); but it should be noted that these numbers
are before selection and thus the totals contain quite a bit of irrelevant hits.

2 http:/ /dl.acm.org/search_help.cfm

62

4.1.3 Snowball search

After manual and automatic searches, I made selection decisions regarding all of
the publications located, as described in the next section. I then subjected each
publication that I had selected for inclusion to a snowball search:

— I'scanned by eyeball the references list of each such article.

— I also searched for the article in ACM Digital Library, Google Scholar and ISI
Web of Science, and scanned by eyeball the lists of citing articles that each
database returned.

The publications uncovered by this snowball search were then submitted to a
new iteration of selection (see the next section).

Snowball searching occurred between February 15 and March 12, 2013. Due
to time pressure, I conducted only one round of snowballing; that is, references
uncovered during snowballing that survived selection were not submitted to
snowball searching.

4.1.4 Validation

During protocol development, I identified four articles that should be found by
the searches: Hanenberg (2010a), Hanenberg (2010b), Malayeri and Aldrich (2009),
and Prechelt and Tichy (1998). All four were found. The rest of this validation is
post hoc, not considered in the protocol.

Table 4 shows the overall and exclusive contribution of each of the auto-
matic search engines, of manual searches collectively, and of snowball search, as
well as their overlap (for a discussion of these metrics, see page 43). These num-
bers are absolute; to compute the corresponding relative metrics, divide by the
total number of included publications (180); thus, the relative exclusive contribu-
tion of snowball search is (68 / 180) x 100 % = 38 %. The sum of all exclusive
contributions is 107 (59 %). I did not consider these metrics during the study; I
will assess their implications in Section 6.2.2.

TABLE 4 The overall and exclusive contribution and overlap of the various search

modalities
contrib. overlap matrix
oa. excl S| M|WS|SD |IX GS‘
Google Scholar 67 15 | G5 |38 |17 | 3 7 |17
IEEE Xplore 18 0 X |12 2 0 0
ScienceDirect 8 0 SD | 5|7 0
Web of Science 3 0 [WS| 1|0
Manual 62 24 M | 31
Snowball 126 68 S

It is feasible to define a quasi-gold standard (Zhang, Ali Babar, and Tell
2011) by considering all included publications published in one of the publication

63

venues that were targeted by manual search. Unlike Zhang, Ali Babar, and Tell
(2011), I include also any such publications found by non-manual searches; this
allows me to evaluate the manual searches, as well. In order to compute the QGS,
I added to the records of all included publications a tag describing the publica-
tion venue; after adding the tags, I checked them by comparing all tags with the
corresponding bibliographical data, further, I checked that all journal tags corre-
sponded to journal publications and conference tags to conference publications; I
finally checked all tags that were not journal or conference tags individually.

Table 5 shows the quasi-sensitivity of each manual search, computed sep-
arately against a QGS consisting only of included publications published in the
searched forum itself, and the quasi-sensitivity of manual search overall, com-
puted against the full QGS. Since I do not have reliable numbers on the total
number of publications in each manually searched forum, I did not compute
specificity for the manual searches. Table 6 shows the quasi-sensitivity and speci-
ficity of each automatic search venue, computed against the full QGS.

TABLE5 The quasi-gold standard and quasi-sensitivity for manual searches

QGS

total contrib. q.-s.
ESE 3 1 33%
CACM 4 4 100 %
TOPLAS 9 9 100 %

LOPLAS 0
JMMS 14 12 86 %
IJHCS 2 2 100 %
PPIG 2 1 50%

ISESE 0
ESEM 2 2 100 %
OOPSLA 14 9 64%

SPLASH 0
ECOOP 13 13 100 %
POPL 3 3 100 %
66 56 85%

In computing the QGS and related metrics, I did not limit the Communica-
tions of the ACM to years up to 1990 like I did in the manual search. This is a
valid simplification, because no included publication was published in the Com-
munications after 1990; this observation also speaks to the validity of restricting
the search in the first place.

Finally, an evaluation exercise can be conducted based on the set of sec-
ondary studies that have been included in this mapping study, as described in
the next section. As described in Section 4.3, the set of relevant primary stud-
ies described by the included secondary studies have been extracted. For each
such identified primary study, the publications cited by the secondary study in

64

TABLE 6 The quasi-sensitivity and specificity of automatic searches. The quasi-gold
standard consists of all included publications published in the venues for
manual search. It consists of 66 individual publications.

contrib.
yield oa. QGS q.-s. sp.

Google Scholar 8455 67 16 24% 1%

IEEE Xplore 995 18 2 3% 18%
ScienceDirect 1022 8 7 11% 1%
Web of Science 20 3 0 0% 15%

10492 69 18 27% 1%

question were recorded. Some of them had not been recorded during searches;
disregarding duplicates, altogether 18 publications had been recorded as having
been cited by secondary studies without having been recorded during searches.
This means that 18 potentially relevant publications had not been found during
searches, or if they were found, were thought to be obviously irrelevant. Out of
the 2056 publications recorded during searches, this is less than one percent. As a
worst case scenario, one might suppose that all of them would have been selected
for inclusion had they been found and recorded during search, which means that,
hypothetically, 10 % of relevant publications had been missed.

4.2 Selection

Every publication located during the searches was subjected to a three-phase se-
lection decision procedure, summarized in Figure 2. The outcome of each phase
was either exclusion, in which case the publication did not proceed to the next
phase, or passing, which allowed the publication to survive that phase and go to
the next phase. Passing in Phase III resulted in a provisional decision to include
the publication in this mapping study.

4.2.1 Selection criteria

Selection decisions were based on the following seven inclusion and exclusion
criteria, written in an interrogatory form. I will generally refer to them as “Ques-
tion k” or “Qk”, wherek =1,...,7:

1. Is this a primary study that attempts to determine the efficacy of a program-
ming language design decision? (If not, skip question 5.)

2. Isthis a literature review that attempts to summarize or consolidate research
on the efficacy of a programming language design decision? (If not, skip
questions 6 and 7.)

65

Initial search Search update Snowballing

1515 248 293

‘ Exclusion decisions based on on-line metadata ‘
1045 151 223

‘ Exclusion decisions based on full text ‘
92 26 68

references and citing articles

186 articles provisionally included in the study

FIGURE 2 Flow diagram of the study selection process. This diagram does not show

-

selection validation and the resulting changes in selection decisions, nor does
it show exclusions made post hoc during data extraction.

Can you find a complete written and published report about this study?*
Is the study reported in English, Finnish or Swedish?*

. Does this primary study present scientific empirical evidence about their

claims?
Does this secondary study include any primary studies that present scien-
tific empirical evidence?

. Does this secondary study discuss scientific empirical evidence in the pri-

mary studies under review?

The first two questions are the inclusion criteria. The next five questions are the ex-
clusion criteria. A publication was excluded if the answer to both inclusion criteria
or any one of the exclusion criteria was negative.

During the search update in early 2013, I added an unnumbered exclusion

criterion: any study published after 2012 must be excluded. In some cases, I first
passed an article as it had been published online before formal publication but
then excluded it once I learned it had later been published formally with a 2013

date.

In interpreting the selection criteria, I used Definitions 1 (on page 14), 3 (on

page 19), 2 (on page 14), and 4 (on page 53), as well as the following definition:

3

The “you” in this question addresses the decision-maker, which during Phases I-III was I.
Other decision-makers took part in the selection evaluation exercises.

I am able to read these languages, and obtaining translations from other languages would
not be cost effective in this study. In any case, English is the lingua franca of the information
technology community, and serious research reports are rarely in other languages.

66

Definition 6. The completeness criterion for study reports requires that the data col-
lection and data analysis (if any) are documented in the report in sufficient detail that
there is reason to believe that the reported study could be critically evaluated based on
the report alone. Specifically, a mere statement of results is not a “complete” report.
This excludes, inter alia, studies that are reported only in lectures, abstracts, extended
abstracts and presentation material.

4.2.2 Phases of selection

Phase I of selection took place during searches. I evaluated all publications un-
covered by a search based on their title, abstract, keywords and other metadata
readily available during the search. I some cases, where it was easily accessible
and the available metadata was not very useful, I also briefly looked at the full
text. In Phase I, I only applied the inclusion criteria and ignored the exclusion
criteria; but I did, on occasion, also exclude in this phase publications that were
too short to be able to survive the completeness criterion.

I did not record any exclusion decisions made in Phase I. This was mainly
because of the poor specificity of my searches. To counter this, I only excluded in
Phase I publications for which this was obviously the correct decision; for example,
if I felt I needed to explain an exclusion, I passed.

In Phase II, I considered the same online metadata as in Phase I. The main
differences between the two phases were that I considered publications in a (lit-
erally) random order; that I applied both the inclusion and the exclusion criteria;
and that I recorded all exclusions during Phase II, generally with an explanation.
The last point allowed me to lower the threshold of exclusion: in Phase II, an
exclusion decision required me to be convinced that it was the correct decision.

Finally, for Phase III, I attempted to obtain the full text of every publica-
tion that had passed Phase II. Failure to obtain it after reasonable effort (which
included an interlibrary loan request, unless I judged it obviously futile) was
grounds for exclusion under Question 3. I would generally record an explanation
for both pass and exclusion decisions. Otherwise, this phase was quite similar to
Phase II.

The passing decisions of Phase III amounted to provisional inclusion deci-
sions. Final decisions deviated only in response to problems uncovered during
selection validation. A small number of post hoc exclusion decisions, modifying
the final decisions, occurred during data extraction.

4.2.3 Validation

On December 9, 2011, after Phase II had finished with respect to the first search
iteration and once Phase III had resulted in a decision for 150 publications, I se-
lected a sample by the following method:

1. A number n; between 3 and 7, was randomly chosen. Another number was
computed as ng = 10 — nj.

2. Of the set of publications for which a Phase III inclusion decision had been
reached by this time, a subset of 1] publications was randomly chosen.

67

3. Of the set of publications for which a Phase III exclusion decision had been
reached by this time, a subset of ng publications was randomly chosen.

Thus, the sample consisted of at least three included and at least three excluded
publications, the precise ratio of included to excluded publications being ran-
domized, forming a total of 10 publications.

Iinvited all three of my advisors as well as two of my colleagues to partic-
ipate in a validation exercise; two (TK and VT) participated. Their task was to
make an independent Phase III selection decision for each of the publications in
this sample. The procedure for constructing the sample was disclosed to them,
but the numbers n; and ng were kept confidential.

Pairwise Cohen (1960) kappas and a three-way Fleiss (1971) kappa were
computed to assess interrater reliability: between myself and TK, x = 0.62 (95 %
CI 0.14 to 1.00), between myself and VT, x = 0.58 (95 % CI 0.07 to 1.00), between
TK and VT, « = 0.23 (95 % CI -0.35 to 0.81), and between all three, x = 0.46
(95 % CI 0.10 to 0.83). Note that the confidence intervals are of questionable use-
fulness as the examined publications did not form a simple random sample. On
the Landis—Koch verbal scale of strength of agreement (see page 46), all the kap-
pas between myself and the others indicate either a moderate or a substantial
strength of agreement. I discussed divergent decisions with all three separately;
my original decisions were accepted by all.

After Phase IIl had finished, on April 30, 2013, I selected a random sequence
of 100 publications from among all the 2056 publications recorded during the
searches. I asked each of my three advisors to pick the number of publications
they would be willing to examine, between 10 and 100. I sent each their chosen
number of publications, each an initial subsequence of the sample sequence, and
asked them to make independent Phase III selection decisions on each (VL asked
for and received some assistance from me, trying to not reveal my own choices;
all others were independent). Simultaneously, I re-examined the full sample of
100 publications, making new Phase III selection decisions without reference to
my original ones.

Table 7 shows the pairwise Cohen kappas between all the ratings; on the
Landis-Koch verbal scale, the strength of agreement was, judging from the point
estimates, almost perfect (between AJK-1 and AJK-2, and AJK-2 and VT), sub-
stantial (between all others except TK), and fair (between TK and all others). The
multi-way Fleiss kappa for all ratings was x = 0.42 (95 % CI —0.19 to 1.00, n = 10,
slight). As the pairwise kappas demonstrate, TK was an outlier in this round; the
multi-way Fleiss kappa for all others was x = 0.77 (95 % CI 0.02 to 1.00, n = 10,
substantial).

This exercise concluded with a meeting on August 7, 2013, with I and all my
advisors present, in which the divergent decisions were discussed. Altogether
eight publications had divergence, and a consensus decision was recorded for
all.

Finally, as a post hoc validation exercise not considered in the protocol, it
is again possible to consider publications cited by included secondary studies.
The relevant data is reproduced in Appendix 4. The included secondary studies

68

TABLE 7 Pairwise Cohen kappas and their 95 % confidence intervals in the second se-
lection validation exercise. AJK-1 is my original set of decisions (n = 2056),
AJK-2 is my set of re-examinations (1 = 100), and VT (n = 28), TK (n = 20),
and VL (n = 10) are my three supervisors; the pairwise comparisons use the
smaller n of the pair, except between TK and VT (n = 19).

AJK-2 [0.82 (+0.65 t0 0.99
VT | 0.78 (+0.36 to 1.00
VL | 0.62 (—0.10to 1.00) | 0.62 (—0.10 to 1.00) | 0.62 (—0.10 to 1.00)
TK | 0.29 (—0.26t00.83) | 0.38 (—0.15t00.92) | 0.22 (—0.45t00.90) | 0.38 (—0.40 to 1.00)
K AJK-1 AJK-2 VT VL

1.00 (+1.00 to 1.00)

P Naw? Nl N’

describe altogether 46 primary studies, some of which are duplicates due to the
same study being described by multiple secondary studies. They cite 33 pub-
lications that have been recorded in the searches; 30 of these have been finally
selected for inclusion in this study. Thus, three publications recorded as having
been cited by the secondary study (which implies a judgment of mine that they
are potentially relevant to the mapping study) were explicitly excluded.

4.3 Data extraction and synthesis

In data extraction and synthesis, I followed the thematic synthesis method as
outlined by Cruzes and Dyba (2011a). It is designed for synthesizing evidence
from qualitative studies in a systematic review, and thus not all of its features are
directly applicable to mapping studies.

43.1 A rejected approach

In my initial design of this study, I followed the recommendations of Kitchenham
and Charters (2007): I created a data extraction form (reproduced in Appendix 6)
and intended to synthesize results from the extracted data.

As described in Subsection 4.2.3, I had performed a selection validation ex-
ercise after Phase III had resulted in a decision for 150 publications. After that
validation exercise, I conducted a belated pilot extraction on the subset of those
150 publications that had received a Phase III pass, altogether nine publications
(with one accompanied by a technical report). As control, my supervisor TK per-
formed an independent extraction.

This approach turned out to be too problematic (as discussed in Section 6.1),
and was rejected. I eventually redesigned data extraction and synthesis following
the thematic synthesis method as outlined by Cruzes and Dyba (2011a). The rest
of this section covers this redesigned method.

69

4.3.2 Immersion and quote extraction

After the inclusion and exclusion decisions had been finalized, I systematically
read every publication selected for inclusion in August and September 2013. This
process, referred to as “get[ting] immersed with the data” by Cruzes and Dyba
(2011a, p. 276), was time-consuming and mind-numbing given the number of
included publications, but taking to heart Cruzes and Dybé’s admonition not to
skip this step, it was performed anyway. Afterward, the mapping study protocol
was updated to reflect insights up to this point.

Then, in October and early November 2013, I processed each included pub-
lication, gathering direct quotes relevant to four topics (design decision, efficacy
measurement, research method, and prior studies being followed up on or repli-
cated). At the same time, I grouped publications into studies, combining publi-
cations that reported the same study, and splitting a publication if it clearly re-
ported multiple unrelated studies. I assigned each study an identifier of the form
Sn, where 1 is a sequentially assigned number starting from 1; the last identifier
assigned was 5159.

If a publication reported more than one related study, I split it into sub-
studies, coding each separately under the same study identifier. Where necessary
to identify a particular sub-study, I use a letter in the sequence g, b, c. . . to indicate
its ordinal within the list of sub-studies under the study identifier.

Some of the studies were secondary studies. Of them, I gathered direct
quotes relevant to the secondary study’s overall research method, and identified
each primary study it described as a separate sub-study. For each such primary
sub-study, I gathered quotes on the four topics listed above as usual. I also iden-
tified the publications that the secondary study cites as describing the sub-study.

4.3.3 Coding and post-hoc exclusions

Next, in November 2013, I processed all the studies, identifying relevant ideas
related to the three of the four topics mentioned above by assigning labels (also
known as codes) describing those ideas to each of the 159 studies and their sub-
studies created in the previous step. I developed the code book along the way, by
creating a code when needed to code a particular study, splitting a code into two
or more codes when its content seemed too broad and so forth. Some of the codes
were derived from my a priori conceptualizations of the issues, as they applied to
the studies at hand; most arose from the studies themselves. I assigned each
code to one of three categories, design decision, efficacy, and method, and I required
myself to assign at least one code of each category to each sub-study. I also coded
each secondary study for its overall method.

The resulting code book is reproduced in Appendix 2, and the code assign-
ments themselves are reproduced in Appendix 3. There are, in total, 245 codes:
178 for coding design decisions (90 coding specific languages, leaving 88 for other
uses), 24 for coding facets of efficacy, 40 for coding primary-study methods, and
3 for coding secondary-study methods. While the total is large, the count of codes

70

for efficacy and methods is, in each, within the recommended range of 30-40
codes (Cruzes and Dyba 2011a, Figure 1 and p. 278). The number of design de-
cision codes is large mostly because the codes emerged mostly from the primary
studies themselves, and I did not want to prematurely commit to any particular
clustering of them.

Some of the studies proved not to have relevant content, revealing a mistake
in the decision to include those publications in this study. Those publications and
the studies they embody were excluded from this study post hoc.

One article (Cartwright 1998) I had initially split into two studies. Study
519 comprised its related works section and was initially intended to be treated
as a secondary study. The primary study reported in the same publication was
split into S20. Subsequently, during the course of processing all the publications,
I made it a rule not to consider related works sections independent secondary
studies (allowing for the hypothetical exception of a systematic review reported
as a related works section, which never materialized). Accordingly, S19 was ex-
cluded post hoc. The publication it embodied remains included, as it also reports
study S20.

A post-hoc validation exercise was attempted in December 2013. I first ran-
domly shuffled all study identifiers and gave the resulting list to my supervisor
VT.Iasked him to familiarize himself with my code book, and we then discussed
any questions and concerns he had developed regarding it. Then, I asked him
to independently code as many of the studies he had time for, in the order given
by the randomly shuffled list, and using the code book I had developed, without
reference to how I had coded them. He coded four:

— For 579 (Iselin 1988), we both assigned the codes Conditionals, COBOL, Pro-
gramComprehension, ControlledExperiment, ProgrammingStudents, Pro-
fessionalProgrammers, and BetweenSubjects. I had, in addition, assigned
the codes FeatureDesign, Loops, RandomizedControlledExperiment, and
AdvancedProgrammingStudents. VT had also assigned (in parentheses, in-
dicating hesitation) BooleanQueries.

— For 5153 (Volos et al. 2009), we both assigned the codes FeatureDesign, STM,
NestedParallelism, RuntimePerformance, and BenchmarkPrograms. I had,
in addition, assigned the code MemoryLocking. VT had also assigned the
code DeterministicParallelism.

— For S115 (Pankratius, Schmidyt, et al. 2012), we both assigned the codes Lan-
guageComparison, Scala, Java, ProgrammingEffort, LinesOfCodeCompar-
ison, ControlledExperiment, AdvancedProgrammingStudents, and Profes-
sionalProgrammers. I had, in addition, assigned the codes Randomized-
ControlledExperiment and WithinSubjects. VT had also assigned the codes
ParadigmComparison, Parallelism /Concurrency /Multithreading, Between-
Subjects, LanguageShootout, FP, OOP, RuntimePerformance, PerceivedCom-
plexity, PerceivedIntuitivity, ErrorProneness, and SideEffectingExpressions.

— For 5132 (Seixas et al. 2009), we both assigned the codes StaticTyping, Dy-
namicTyping, SecurityVulnerabilityProneness, and CorpusAnalysis. I had

71

assigned, in addition, the codes FeatureDesign and HistoricalControl. VT
had also assigned the codes PHP, Java, C#, VB.net, (OpenCoding?), Paradigm-
Comparison(Type/DynamicType), and SecuritylssuePrevention. The paren-
theses, solidus, and question mark were VT’s own markup.

From these, it is clear that in the detail level the code book was not completely
clear. For two out of these four, the differences in the codings would have caused
significant differences in their placement in the thematic analysis. I am not aware
of a suitable quantitative metric to assess the level of agreement or disagreement
in this exercise.

Another post hoc validation exercise is simple. Looking at the commit log of
my database since commit 3b4£880 dated 26 November 2013, which contained
the last regular batch of coding, reveals the following later changes (made during
theme development and results drafting) to the assigned codes:

— I'added a number of FeatureDesign StaticTyping codes to studies for which
I had already assigned particular FeaturePresence codes involving particu-
lar static-typing features (at the time thinking that the distinction between
feature design and feature presence would be prominent in my thematic
model).

— I rearranged the Experiment codes to make explicit that a particular study
was nonrandomized or noncontrolled.

— T added the Conditionals code to 5143 (Stefik and Gellenbeck 2011).

— Iadded the FeaturePresence and ProgramIndentation codes to S151 (Vessey
and Weber 1984a), due to noticing during writing a since-discarded draft of
the results that this coding had been mistakenly omitted.

— I'rearranged the codes used to indicate experiment participant background
to make it more explicit.

434 Theme development

In December 2013, I programmed an automatically (re)generable HTML repre-
sentation of the database collected during this study. It includes most of the raw
data in the database, but it also provides generated reports on, for example, codes
that occur together. Further, I programmed a query language (see Appendix 1.2)
and a method for defining (raw) themes by querying the database. Using this
query apparatus, I then proceeded to define a number of raw themes by query,
looking for interesting conceptual abstractions within the existing codes.

At the same time, I wrote a draft of the result chapter, looking for a suitable
thematic model to present. I drafted a number of bubble plots of various combi-
nations of the data to see if any interesting patterns emerged. A big problem I had
with these early drafts was the sheer number of studies to present, and progress
was halting as I attempted a narrative linking them all. Eventually, it occurred to
me to consider whether all the included studies were of equal worth. I did not
have a formal quality appraisal to use, as this was a mapping study, and I had
deliberately avoided pre-specifying the research methods that would be allowed

72

in the study (most quality appraisal instruments are rather specific to research
approach in the primary studies). Instead, I decided to see if importing a simple
evidence hierarchy, which depends only on research method data which I already
had, would make the data manageable and reveal interesting patterns.

At a fairly late date it occurred to me to see if there was a pattern in the
publication forums; I then proceeded to add a coding for the forums partly for
this use and partly to develop the data necessary for Figure 5. Bubble plots cross-
tabulating forums and publication years did show a clear pattern, which then
suggested a possible interpretation of the data.

The following result chapter is the outcome of these considerations.

5 RESULTS

Overall, 180 publications were finally included in this study; Table 8 lists the
publication forums in which at least two included publications have appeared
by number of publications; it also gives the tags used to identify forums in a
number of subsequent figures. One of them, Figure 3! plots publications by fo-
rum and publication year, restricted to forums containing at least two included
publications. The figure also shows the years each forum was available for pub-
lication, which data I gathered mostly from their web sites. I have arranged the
publication forums on the y axis to emphasize the rough linear progression that
is apparent in the plot that results from some publications no longer publishing
these studies and other forums starting such publication; mostly, these starts and
stops do not coincide with a forum’s birth and death. The one notable exception,
the International Journal of Man-Machine Studies, is an artifact of it changing it
name at the beginning of 1994 to the International Journal of Human Computer
Studies, and not a real coincidence.

Combining publications that report the same study and (in some cases)
splitting publications that report more than one study results in the 156 publi-
cations listed in Table 9. Each study has been assigned an identifier between S1
and S159; there are three gaps in the identifier list, because of post hoc exclusions
after identifier assignment. In the list there are 137 primary studies and 19 sec-
ondary studies.

Some studies have sub-studies. This usually occurs when a single publi-
cation reports several related studies; each of them is allocated a sub-study. For
secondary studies, sub-studies encode the primary studies described in the sec-
ondary study. All the sub-studies are listed in Appendices 3 and 4, with a letter
code appended to a study identifier to distinguish between sub-studies when a
study has more than one, and to distinguish between a secondary study and its
(primary) sub-studies. There are, in total, 141 sub-studies of primary studies,
when considering each study to have at least one sub-study. There are 46 sub-

! The figure is a bubble plot, a form of scatterplot in which each data point is shown as a

circle whose area is proportional to the data point’s magnitude (in this case, the number of
studies published in this particular forum in this particular year).

74

TABLE 8 Publication forums containing at least two included publications, sorted by
the number of included publications published in them. The tags are used to

identify forums in the bubble plots involving forums.

Forum # Tag
International Journal of Man-Machine Studies 14 jIJMMS
ACM SIGPLAN International Conference on Object-Oriented Systems, 14 proc:OOPSLA
Languages, and Applications

European Conference on Object-Oriented Programming 13 proc:ECOOP
ACM Transactions on Programming Languages and Systems 9 jTOPLAS
Technical reports published by various institutions 7 tr

IEEE Transactions on Software Engineering 6 j:TSE
International Conference on Software Engineering 5 prociICSE
Communications of the ACM 4 jCACM
Journal of Systems and Software 4 jJSS
Workshop on Evaluation and Usability of Programming Languagesand 4 proc:PLATEAU
Tools

Empirical Software Engineering 3 jJ:ESE
Software: Practice and Experience 3 j:SPE

IEEE International Conference on Software Maintenance 3 procICSM
ACM SIGPLAN-SIGACT Symposium on Principles of Programming 3 proc:POPL
Languages

The Computer Journal 2 §CJ
International Journal of Human-Computer Studies 2 jIJHCS
Journal of Occupational Psychology 2 jJor

ACM SIGCSE Bulletin 2 j:SIGCSEB
Software Quality Journal 2 j:SQJ

AFIPS National Computer Conference 2 proc:AFIPS
ACM CHI Conference on Human Factors in Computing 2 proc:CHI
ACMY/IEEE International Symposium on Empirical Software Engineer- 2 proc:ESEM
ing and Measurement

IEEE International Conference on Program Comprehension 2 procICPC
Psychology of Programming Annual Conference 2 proc:PPIG
Simpésio Brasileiro de Engenharia de Software 2 proc:SBES
ACM Technical Symposium on Computer Science Education 2 proc:SIGCSE
ACM Symposium on Parallelism in Algorithms and Architectures 2 proc:SPAA
arXiv 2 arXiv
Bachelor’s theses in various universities 2 thesis:BSc

75

proc:ICPC |- m—
arXiv [~ m—
proc:ESEM | |—0—0—
proc:SBES |- o
proc:PLATEAU |- 0—0—. -
o |- - o—0—
proc:SPAA |- “ “—
proc:POPL | 0—0—0—
proc:ICSE | 9—0—0—

L1
jrorLAs |- o 00060 —00-
proc:ECOOP |- (1)
JESE |- O—0—©
thesis:BSc 11} 11}
proc:OOPSLA | w m m_
proc:ICSM | (1) 11} (1)
u o 0O o 0 0—0
s |- o o o ™
00 ®
e @ o @ o0 o
procPPIG |- e
proc:SIGCSE 11} 11}
j:SIGCSEB 11 11}
FITHCS |- 9
s L o—000—il)-0-0—o- :
:CACM 11 0—9
proc:CHI |- 9

JJOP |- |
iy o o

proc:AFIPS | |—o o |

IS S S S S S) I S S U S S s o

M IOONOANOHANOHINDO 0 O—dN FHIOONOND ANDOHIOODNONO—N

DN ININININDNOO OO0 000 0 DD DN NO D000

A oo oo oY O OOy O ONO\OO\NO\O OO0 O0O0OO0O0OO0OOO

e e e R R e e e e e R B B R o B R R e E e R N S I S T S K S f S N e s X K K e\ K e\

FIGURE 3 Bubble plot of included publications by publication forum and publication
year, restricted to forums containing at least two included publications. The
years when the forum has been available are indicated.

76

TABLE 9 Included studies
Study P/S Consists of Study P/S Consists of Study P/S Consists of
S1 P Ahmad and Talha 2002 S54 P Fahndrich and Leino 2003 5107 P Necula et al. 2005
S2 P Ahsan et al. 2009 S55 P Gannon and Horning 5108 P Norcio 1982
1975a,b; Gannon 1976
S3 P Aldrich et al. 2002 S56 P Gannon 1977 (5109 EXCLUDED)
S4 P Andreae et al. 2006 S57 P Gil and Shragai 2009 S110 P Nystrom et al. 2006
S5 S Arblaster 1982 S58 P Gil and Lenz 2010 S111 P Nystrom et al. 2007
S6 P Badreddin, Forward, et al. S59 P Gilmore and Green 1984 S112 S Pane and Myers 2000
2012; Badreddin and Leth-
bridge 2012
S7 P Badreddin and Lethbridge S60 r Green 1977 S113 S Pane and Myers 2006
2012
S8 P Badri et al. 2012 S61 S Green 1980 S114 P Pankratius, Adl-Tabatabai,
and Otto 2009; Pankratius
and Adl-Tabatabai 2011
S9 P Barnes and Welch 2001 S62 P Greenwood et al. 2007 S115 P Pankratius, Schmidt, et al.
2012
S10 P Bartsch and Harrison 2008 563 P Halverson 1993 s116 P Patel and Gilbert 2008
S11 P Benander and Benander S64 P Hanenberg, Klein- S117 P Patterson 1981
1997 schmager, and Josupeit-
Walter 2009; Klein-
schmager 2009
S12 P Benton et al. 2004 S65 P Hanenberg 2009, 2010a,b S118 P Perrott et al. 1980
S13 P Biermann et al. 1983 S66 r Harel and McLean 1985 S119 P Poletto et al. 1999
S14 P Bocchino et al. 2011 S67 P Harrison, Smaraweera, et S120 r Prechelt and Tichy 1996,
al. 1996 1998
S15 S Boehm-Davis 2002 S68 P Harrison, Counsell, et al. S121 P Prechelt 2000; Prechelt
2000 2003
Sl6 S Briand et al. 1999 569 P Henry and Humphrey S122 P Prechelt, Unger, et al. 2003;
1988; Henry and Unger and Prechelt 1998
Humphrey 1990; Henry
and Humphrey 1993
S17 P Burckhardt et al. 2011 S70 P Hertz and Berger 2005 S123 P Przybytek 2011
S18 P Cacho et al. 2009 S71 P Hicks et al. 2004 S124 P Qi and Myers 2010
(519 EXCLUDED) S72 r Hitz and Hudec 1995 S125 r Ramalingam and Wieden-
beck 1997
$20 P Cartwright 1998 S73 S Hoc 1983 S126 S Roberts 1995
S21 P Castor, Cacho, et al. 2009 S74 P Hochstein and Basili 2006; S127 P Rossbach et al. 2009, 2010
Hochstein, Basili, et al.
2008
S22 P Castor, Oliveira, et al. 2011 S75 P Hoffman and Eugster 2008 S128 P Saal and Weiss 1977
S23 P Cesarini et al. 2008 S76 r Hu et al. 2010 S129 S Sadowski and Shewmaker
2010
S24 P Chalin and James 2007 S77 r Huang and Smaragdakis S130 P Sawadpong et al. 2012
2011
S25 P Champeaux et al. 1992 S78 P Hudak and Jones 1994 S131 P Scholte et al. 2012
526 P Charles et al. 2005 S79 P Iselin 1988 5132 P Seixas et al. 2009
S27 P Chen and Vecchio 1992 S80 P Jim et al. 2002 S133 S Sheil 1981
528 P Cherry 1986 S81 S Johnson 2002 5134 P Sheppard et al. 1979
S29 P Coelho et al. 2008 582 P Kesler et al. 1984 S135 S Shneiderman 1975
S30 P Cohen et al. 2012 S83 P Kleinschmager et al. 2012; S136 P Shneiderman 1976; Shnei-
Kleinschmager 2012 derman and Mayer 1979
S31 P Condit et al. 2003 S84 P Klerer 1984 5137 P Sime et al. 1973, 1999
S32 S Curtis 1982 S85 P Kosar et al. 2010 S138 P Sime et al. 1977
S33 P Daly et al. 1995; Daly et al. 586 r Kulesza et al. 2006 S139 S Sime, Arblaster, et al. 1977
1996
S34 P Daly, Sazawal, et al. 2009 587 S Laughery and Laughery S140 P Smith and Dunsmore 1982
1985
S35 S Deligiannis et al. 2002 588 r Leblanc and Fischer 1982 S141 P Soloway et al. 1983
S36 P Demsky and Dash 2008 S89 P Lee et al. 2003 S142 P Stefik, Siebert, et al. 2011
837 P Dolado et al. 2003 S90 P Lewis et al. 1991, 1992 5143 P Stefik and Gellenbeck 2011
S38 P Dolby et al. 2012 591 P Lima et al. 2011 S144 P Stuchlik and Hanenberg
2011
S39 P Doscher 1990 592 P Liu et al. 2006 5145 P Taveira et al. 2009
(540 EXCLUDED) 593 P Lucas and Kaplan 1976 S146 P Tenny 1985
S41 P Dyer et al. 2012 594 r Luff 2009 S147 P Thies and Amarasinghe
2010
S42 P Ebcioglu et al. 2006 595 P Madeyski and Szala 2007 S148 P Tobin-Hochstadt and
Felleisen 2008
$43 P Embley 1978 596 P Malayeri and Aldrich 2009 S149 P Tonella and Ceccato 2005
S44 P Endrikat and Hanenberg 597 P Mayer et al. 2012b; Mayer S150 P Valente et al. 2010
2011 etal. 2012a
545 P Engebretson and Wieden- 598 r McCaffrey and Bonar 2010 S151 P Vessey and Weber 1984a
beck 2002
S46 P Ertl 1999 599 r McEwan et al. 2010 S152 S Vessey and Weber 1984b
S47 P Ferrari et al. 2010 5100 r Mclver 2000 S153 P Volos et al. 2009
S48 P Ferrett and Offutt 2002 5101 P Miara et al. 1983 S154 P ‘Walker, Bamassad, et al.
1998; Walker, Baniassad, et
al. 1999
S49 P Figueiredo et al. 2008 5102 P Millstein 2004; Millstein et S155 P Walker, Lamere, et al. 2002
al. 2009
S50 P Flanagan et al. 2008 5103 P Mortensen et al. 2012 S156 P Weimer and Necula 2008
S51 P Foster et al. 2006 5104 P Myers, Giuse, et al. 1992 S157 P Westbrook et al. 2012
S52 S Furuta and Kemp 1979 5105 P Myrtveit and Stensrud S158 P Wiedenbeck and Rama-
2008 lingam 1999
S53 S Fyfe 1997b,a 5106 P Nanz et al. 2010; Nanz et S159 r Wiedenbeck, Ramalingam,

al. 2011b,a

etal. 1999

P = primary study

S = secondary study

77

studies of secondary studies.

I have used the secondary studies in the validation of the search and se-
lection processes (see Subsections 4.1.4 and 4.2.3). I will only consider primary
studies from now on.

5.1 Thematic model

The thematic model is the kernel of the results of the study; from it flow all the an-
swers to the research questions, and any post hoc observations that can be made.
The set of primary studies in this mapping study has three a priori thematic di-
mensions that follow from the research questions. Each study has been coded on
the design decisions and on the facets of efficacy it investigates, as well as the research
method it uses. Each code has also been assigned a subcategory within these three
dimensions; some of the thematic model is specified using the subcategories. The
codes used, including their subcategories, are listed in Appendix 2, and the code
assignments are given in Appendix 3.

5.1.1 Periphery

The process used to select studies for inclusion in this mapping study was delib-
erately designed to include a study if there was doubt. This implies that at least
some of the included studies are questionable from the point of view of this map-
ping study. The first task of the thematic model is to identify categories of these
questionable studies; I will call them the periphery.

There are a number of included primary studies that merely compare lan-
guages or, through such a comparison, attempt to evaluate paradigms or lan-
guage generations, without any attempt to isolate particular features for study.
They are identifiable by having been coded as LanguageComparison, Genera-
tionComparison, or ParadigmComparison without a FeatureDesign or FeatureP-
resence code; there are also one or more codes with subcategory SpecificLan-
guage, LanguageGeneration, or Paradigm that identify the languages, genera-
tions, and paradigms under comparison. Such studies are potentially of some
interest to language designers, but they are likely to be fairly uninformative.

The most common language comparison pair is Aspect] and Java (12 sub-
studies); the following language pairs have two comparison sub-studies each: C
and C++, C and CCured, C and Pascal, C++ and Pascal, and Java and Umple. Fif-
teen sub-studies have claimed to compare the object-oriented and aspect-oriented
paradigms, seven sub-studies have claimed to compare the object-oriented and
procedural paradigms; one sub-study each has claimed to compare object-oriented
programming to functional programming, system programming languages to
scripting languages, and declarative paradigm to the procedural paradigm. One
sub-study has claimed to compare the third generation to the fourth generation.

There are also 15 studies (and as many sub-studies), coded BenchmarkPro-

78

grams, whose research method is to select programs or programming problems
from the literature or folklore and to demonstrate that the design decision under
study is capable of dealing with them. It is arguable that this is not empirical
at all under the definition I have adopted. In any case, I will not consider them
further.

5.1.2 Core

The remaining studies, that is, those primary studies that are coded Feature-
Design or FeaturePresence and are not coded BenchmarkPrograms, form the core.
It consists of 63 studies and 65 sub-studies.

Figure 4 shows a version of Figure 3 restricted to core publications only; I
have again chosen the order of the forums to emphasize the pattern that is appar-
ent in the plot, similar to the one for all publications.

T T T T T T T T
proc:ECOOP | F
proc:OOPSLA |- + m M
proc:PLATEAU | e.—q 7
proc:ICSE |- 9——0
proc:SPAA - - c 0—
tr c i'—"—
1S |- O—0O (1
FTSE |- (1 (1
:CACM 7] 9
s -Y——00——0-§)-0—0—0- .
| || |1 | | | | | || N Y
Q) N 00 Ot O ®© IN] © o Ot OO
N NN WPD D D foN X D OO OO H
[N SN AN X D o S S SS oSS0
— —— e = — - & A AAAAAAA

FIGURE 4 Bubble plot of included core publications by publication forum and publica-
tion year, restricted to forums containing at least two included core pub-
lications. Note that absent years in this plot do not necessarily signify
publication-less years. The years when each forum has been available are
indicated.

In an abuse of metaphors, the core may be further analyzed as an onion,
based on a hierarchy of evidence: the inner core consists of randomized controlled
experiments; there are middle layers for non-randomized controlled experiments
and other experiments; and the outer core consists of non-experimental studies.

There are 22 studies (and as many sub-studies) in the inner core. As dis-
cussed above, they are randomized controlled experiments that do not merely
compare languages, paradigms, or language generations. Four of them were
published in the International Journal of Man-Machine Studies, three as tech-
nical reports, and two in the Journal of Systems and Software. A number of fo-
rums published only one study; of course, some studies were published in more
than one forum. Tables 10 and 11 summarize the design decisions and facets of
efficacy, respectively, that these studies investigate.

79

TABLE 10 Design decisions investigated by randomized controlled experiments in the

core.

Design decisions

Studies

Static versus dynamic typing

Class inheritance

Software transactional memory

Conditionals

Program indentation

Fixity

Task-specific constructs

Loops

GOTO

Java- vs Eiffel-style concurrency
Static versus no typing
Comments

Structured programming

S34 (Daly, Sazawal, et al. 2009)

583 (Kleinschmager 2012; Kleinschmager et al. 2012)

597 (Mayer et al. 2012a; Mayer et al. 2012b)

5144 (Stuchlik and Hanenberg 2011)

520 (Cartwright 1998)

S33 (Daly et al. 1995; Daly et al. 1996)

S68 (Harrison, Counsell, et al. 2000)

5122 (Unger and Prechelt 1998; Prechelt, Unger, et al. 2003)
S22 (Castor, Oliveira, et al. 2011)
S114 (Pankratius, Adl-Tabatabai,
Pankratius and Adl-Tabatabai 2011)
5127 (Rossbach et al. 2009, 2010)

S59 (Gilmore and Green 1984)

S63 (Halverson 1993)

579 (Iselin 1988)

S82 (Kesler et al. 1984)

5108 (Norcio 1982)

528 (Cherry 1986)

545 (Engebretson and Wiedenbeck 2002)
579 (Iselin 1988)

593 (Lucas and Kaplan 1976)

5106 (Nanz et al. 2010; Nanz et al. 2011a,b)
5120 (Prechelt and Tichy 1996, 1998)

5134 (Sheppard et al. 1979)

5134 (Sheppard et al. 1979)

and Otto 2009;

80

TABLE 11 Facets of efficacy studied by randomized controlled experiments in the core.

Facet of efficacy Studies
Programming effort 522 (Castor, Oliveira, et al. 2011)
528 (Cherry 1986)

Program comprehension

Error proneness

Maintenance effort

Debugging effort

Lines-of-code comparison

Performance in a Cloze test
Modifiability

583 (Kleinschmager 2012; Kleinschmager et al. 2012)

593 (Lucas and Kaplan 1976)

597 (Mayer et al. 2012a; Mayer et al. 2012b)

S114 (Pankratius, Adl-Tabatabai, and Otto 2009; Pankratius and
Adl-Tabatabai 2011)

5127 (Rossbach et al. 2009, 2010)

5144 (Stuchlik and Hanenberg 2011)

520 (Cartwright 1998)

S59 (Gilmore and Green 1984)

S68 (Harrison, Counsell, et al. 2000)

S79 (Iselin 1988)

S82 (Kesler et al. 1984)

5106 (Nanz et al. 2010; Nanz et al. 2011a,b)

5134 (Sheppard et al. 1979)

S22 (Castor, Oliveira, et al. 2011)

528 (Cherry 1986)

S63 (Halverson 1993)

S106 (Nanz et al. 2010; Nanz et al. 2011b,a)

5120 (Prechelt and Tichy 1996, 1998)

5122 (Unger and Prechelt 1998; Prechelt, Unger, et al. 2003)
5127 (Rossbach et al. 2009, 2010)

520 (Cartwright 1998)

533 (Daly et al. 1995; Daly et al. 1996)

545 (Engebretson and Wiedenbeck 2002)

593 (Lucas and Kaplan 1976)

5122 (Unger and Prechelt 1998; Prechelt, Unger, et al. 2003)
5134 (Sheppard et al. 1979)

534 (Daly, Sazawal, et al. 2009)

5106 (Nanz et al. 2010; Nanz et al. 2011a,b)

522 (Castor, Oliveira, et al. 2011)

S114 (Pankratius, Adl-Tabatabai, and Otto 2009; Pankratius and
Ad]l-Tabatabai 2011)

5108 (Norcio 1982)

S68 (Harrison, Counsell, et al. 2000)

81

The first layer on top of the inner core consists of core studies that are con-
trolled experiments but have not randomized their allocation of participants to
groups (or if they have, they did not report it). This layer consists of 13 stud-
ies (and as many sub-studies), four of which were published in the International
Journal of Man—Machine Studies, three in the Communications of the ACM, two
in the PLATEAU conference; again, a number of forums published only one
study. Table 12 and 13 list the design decisions and facets of efficacy, respectively,
investigated by the inner core and the first layer together (that is, by all controlled
experiments whether or not they are randomized).

TABLE 12 Design decisions investigated by controlled experiments in the core, adding
nonrandomized experiments to the categories of Table 10 and new cate-

gories.

Design decisions

Studies

Conditionals

Static versus dynamic typing

Class inheritance
Software transactional memory

Program indentation

Loops

Interprocess message passing

Static versus no typing
Comments

Fixity

Task-specific constructs

GOTO

Structured programming

Java- vs Eiffel-style concurrency
Side-effects in expressions

Nested subroutines

3 randomized controlled experiments, and
543 (Embley 1978)

5136 (Shneiderman 1976; Shneiderman and Mayer 1979)
S137 (Sime et al. 1973, 1999)

5138 (Sime et al. 1977)

5151 (Vessey and Weber 1984a)

4 randomized controlled experiments, and
565 (Hanenberg 2009, 2010a,b)

4 randomized controlled experiments

3 randomized controlled experiments, and
S94 (Luff 2009)

2 randomized controlled experiments, and
S101 (Miara et al. 1983)

5151 (Vessey and Weber 1984a)

1 randomized controlled experiment, and
543 (Embley 1978)

5141 (Soloway et al. 1983)

no randomized controlled experiments, and
S74 (Hochstein and Basili 2006; Hochstein, Basili, et al.
2008)

594 (Luff 2009)

1 randomized controlled experiment, and
S56 (Gannon 1977)

1 randomized controlled experiment, and
5146 (Tenny 1985)

1 randomized controlled experiment

1 randomized controlled experiment

1 randomized controlled experiment

1 randomized controlled experiment

1 randomized controlled experiment

no randomized controlled experiments, and
S37 (Dolado et al. 2003)

no randomized controlled experiments, and
5146 (Tenny 1985)

The second layer consists of non-controlled experiments. Such studies do

82

TABLE 13 Facets of efficacy studied by controlled experiments in the core, building up

on Table 11.
Facet of efficacy Studies
Error proneness 7 randomized controlled experiments, and

S56 (Gannon 1977)
565 (Hanenberg 2009, 2010a,b)
S74 (Hochstein and Basili 2006; Hochstein, Basili, et al. 2008)
5137 (Sime et al. 1973, 1999)
S138 (Sime et al. 1977)
5141 (Soloway et al. 1983)
5151 (Vessey and Weber 1984a)
Programming effort 8 randomized controlled experiments, and
565 (Hanenberg 2009, 2010a,b)
S74 (Hochstein and Basili 2006; Hochstein, Basili, et al. 2008)
594 (Luff 2009)
5137 (Sime et al. 1973, 1999)
5151 (Vessey and Weber 1984a)
Program comprehension 7 randomized controlled experiments, and
S37 (Dolado et al. 2003)
543 (Embley 1978)
5101 (Miara et al. 1983)
5136 (Shneiderman 1976; Shneiderman and Mayer 1979)

5146 (Tenny 1985)
Maintenance effort 6 randomized controlled experiments
Lines-of-code comparison 2 randomized controlled experiments, and
594 (Luff 2009)
Debugging effort 2 randomized controlled experiments
Performance in a Cloze test 1 randomized controlled experiment
Modifiability 1 randomized controlled experiment
Perceived complexity no randomized controlled experiments, and

S94 (Luff 2009)

83

attempt to control one or more variables in order to influence one or more other
variables (and therefore qualify as experiments), but they do not allocate their
participants into groups to cover all relevant values of the independent variables,
and, in the case of a repeated-measures design, to cover all relevant ways to se-
quence the dependent-variable measurements. There are five such studies (and
as many sub-studies), two of which were published in the International Journal
of Man-Machine studies, one in the Journal of Occupational Psychology, one in
the ICSE conference, and one in the International Conference on Aspect-oriented
Software Development. Tables 14 and 15 summarize the design decisions and
facets of efficacy, respectively, studied in the non-controlled experiments.

TABLE 14 Design decisions investigated by non-controlled experiments in the core

Design decisions Studies
Conditionals 8 controlled experiments, and
S27 (Chen and Vecchio 1992)
S60 (Green 1977)
5140 (Smith and Dunsmore 1982)
Loops 3 controlled experiments, and

5140 (Smith and Dunsmore 1982)
Structured programming 1 controlled experiment

5140 (Smith and Dunsmore 1982)
Pointcuts no controlled experiments, and

541 (Dyer et al. 2012)
Conditional compilation = no controlled experiments, and

549 Figueiredo et al. 2008

TABLE 15 Facets of efficacy studied by non-controlled experiments in the core

Facet of efficacy Studies

Program comprehension 12 controlled experiments, and
S27 (Chen and Vecchio 1992)

S60 (Green 1977)
5140 (Smith and Dunsmore 1982)
Program quality no controlled experiments, and
541 (Dyer et al. 2012)
Design stability no controlled experiments, and

549 Figueiredo et al. 2008

The third and outer layer of the core consists of all other studies, 23 in to-
tal (containing 24 sub-studies). Five were published in the OOPSLA conferences,
four in the ECOOP conferences, and two in the ICSE conference; a number of
other forums published one each. Figures 16 and 17 summarize the design de-
cisions and facets of efficacy, respectively, investigated by at least two core stud-
ies; additionally, nine studied particular features of static type systems and two
studied particular features of shared-memory communication. Figure 5 cross-
tabulates the facets of efficacy and primary research method used in each sub-
study in this outer layer.

84

SecurityVulnerabilityProneness -

RuntimePerformance |-

Reusability - e
B\ RetrofittingOpportunity |- 0
<
3 ProgramQuality |- e
=
qu PerceivedValue |-
'46 ProgramTranslationEffort |- 0
-,qj PerceivedIntuitivity |-
Q
[—E LinesOfCodeComparison | e
FeaturePrevalence o
ErrorProneness [— o o
AnnotationOverhead |- e
l l l l l
> 2 &) 5
E E E E: :
o2} ES =S 3
-1 S o @
H 3 F
o] ‘a3 &
& = I
=] g I
o s &
50
2
&

Primary research method

FIGURE 5 Bubble plot of core sub-studies, excluding experiments, categorized by the
facets of efficacy used and the primary research methods used.

TABLE 16 Design decisions investigated by core studies, adding non-experiments to
the categories of Tables 12 and 14, adding new categories, and removing all

categories with only one core study

Design decisions

Studies

Conditionals
Static versus dynamic typing
Loops

Class inheritance

Software transactional memory
Program indentation

Pointcuts

Static structural subtyping

Interprocess message passing
Static versus no typing
Comments

Structured programming

11 experiments, and

5143 (Stefik and Gellenbeck 2011)
5 experiments, and

5132 (Seixas et al. 2009)

4 experiments, and

5143 (Stefik and Gellenbeck 2011)
4 experiments

4 experiments

4 experiments

1 experiment, and

S47 (Ferrari et al. 2010)

no experiments, and

S89 (Lee et al. 2003)

596 (Malayeri and Aldrich 2009)
2 experiments

2 experiments

2 experiments

2 experiments

85

TABLE 17 Facets of efficacy studied by at least three core studies, building up on Ta-

bles 13 and 15.

Facet of efficacy

Studies

Error proneness

Program comprehension
Programming effort
Program translation effort

Lines-of-code comparison

Maintenance effort
Retrofitting opportunity

Feature prevalence

Program quality

14 experiments, and

S47 (Ferrari et al. 2010)

S88 (Leblanc and Fischer 1982)
5130 (Sawadpong et al. 2012)

S131 (Scholte et al. 2012)

5132 (Seixas et al. 2009)

15 experiments

13 experiments

no experiments, and

S30 (Cohen et al. 2012)

538 (Dolby et al. 2012)

592 (Liu et al. 2006)

5102 (Millstein 2004; Millstein et al. 2009)
5110 (Nystrom et al. 2006)

5156 (Weimer and Necula 2008)
5157 (Westbrook et al. 2012)

3 experiments, and

592 (Liu et al. 2006)

5102 (Millstein 2004; Millstein et al. 2009)
5124 (Qi and Myers 2010)

6 experiments

no experiments, and

524 (Chalin and James 2007)

S51 (Foster et al. 2006)

557 (Gil and Shragai 2009)

596 (Malayeri and Aldrich 2009)

no experiments, and

S58 (Gil and Lenz 2010)

S89 (Lee et al. 2003)

5147 (Thies and Amarasinghe 2010)
1 experiment, and

575 (Hoffman and Eugster 2008)
5102 (Millstein 2004; Millstein et al. 2009)

86

5.1.3 Temporal pattern

Figure 6 shows how included publications distribute between years. The earliest
publication dates from 1973, and the latest from 2012 (the cutoff year for this
mapping study), giving 40 years of publications, an average of 4.5 publications
per year. A pattern is quite clear in this figure: there are peaks in publications in
1977, 1982-1984, 1992, 1999, 2002, 2006, and from 2008 onward; also, the number
of publications per year has increased dramatically first in 1999, and then from
2008 onward.

I e s S s s s e s [
16

] 15

—_
Qa1
T

14

—_
(@)
T

©
I

Number of publications
Q1

FIGURE 6 The number of included publications per year

Figure 7 summarizes the years of first publication of all primary studies.
The same pattern as noted with Figure 6 is visible here too: peaks in 1977, 1982—
1984, 1992, 1999, 2002, 2006, and from 2008 onward, and a dramatic rise in the
number of studies per year first in 2002 (not 1999) and from 2008 onward.

Figure 8 shows the distribution of first publications of core studies over the
years. The average rate is 1.6 new core studies published per year. Again, the
pattern seen with Figures 6 and 7 is visible, though with minor mutations: peaks
in 1977, 1982-1984, 1998 (not 1999), and from 2008 onward, and a dramatic rise
in the number of studies per year from 2008 onward. The peaks of 1992, 2002,
and 2006 disappear; instead, the dramatic rise in the recent years is preceded by
a moderate rise from 2003 onward.

Figure 9 shows the distribution of the publication years of the inner core.
The average rate is 0.6 studies per year. The patterns seen with Figures 8, 7 and 6
is muted but partially still visible: peaks in 1984, 1998, and 2009. The rise after
2009 is not so dramatic, but it is noticeable: an average of 2 inner core studies
were first published per year in 2009—2012. A notable change is the appearance
of long gaps, 1989-1992 and 2003-2008.

87

3

3

[11

S9IPNJS JO JOqUINN]

Year of first publication

FIGURE 7 The number of included primary studies per publication year

[1]

2
1
0 ’7
I
ee]
[oN
=)
—

Year of first publication

0 000 0
T
[aKso)
DN
[o)¥e))
i

00
I
[$2]
D~
=)}
—

L
o
—

[>e]

O

<t

o

S9IPNIS JO IOqUINN]

FIGURE 8 The number of included core studies per publication year

- ¢10¢
- 110C

5 - - 010¢
© - 600¢

= - 800C

= £00T

=~ 900C

= - 900C

= - ¥00C

= |- €00C

5 - - ¢00¢
= |- 100C

- 000¢

= |- 6661

8 « I 8661
= |- 661

- 9661

- G661

= |- 7661

5 - - €661
= |- ¢661

= 1661

= 0661

= | 6861

- 8861

= |- /861

- 9861

= |- 9861

5 o - ¥861
5 = |- €861
5 - - 861
= 1861
8 = | 0861
5 - - 661
8 = | 861
5 = |- 461
5 - - 961

! ! !
<t o (q\l — o

SOIPNJS JO JoqUINN

Year of first publication

FIGURE9 The number of randomized controlled experiments in the core per publica-

tion year

88

5.2 Answers to research questions

I will now turn to answering each of the research questions.

RQ1 How much has the efficacy of particular programming language design decisions
been empirically studied?

In this study, I have identified 65 core sub-studies of primary studies spanning
four decades, between 1973-2012, each studying the efficacy of some language
design decision empirically. There were 141 sub-studies in all, including the pe-
riphery. If one were to consider only the traditional gold standard of efficacy ev-
idence — randomized controlled experiments — there still are 22 core sub-studies,
the earliest dating from 1976. For the last category, there is a noticeable gap in
publications between 1989-1992 and 2003-2008.

RQ2 Which programming language design decisions have been studied empirically for
efficacy?

The form of the conditional statement is the most studied design decision in the core,
with altogether 11 core experiments, including 8 controlled experiments, of which
3 were randomized. As can be seen in Figure 10, this design decision has been
studied over a long period of time. It is the one studied by the oldest study (Sime
et al. 1973, 1999), and it has been studied nearly up to the present day (Stefik and
Gellenbeck 2011), though there was a long gap after the Halverson (1993) ran-
domized controlled experiment. About half of these studies have concentrated
on comparing the styles defined by Sime et al. (1973, 1977, 1999), namely, JUMP,
NEST, NEST-BE, and NEST-INE, discussed in Subsection 2.4.1.

I e e e e S e S e e s S s

n 4

]

B

3

Zs3| |

2]

= 2

S 2| i

)

Q0 1 1 1 1 1 1 11 1

=

Z 0 0 000 0 000 000 000O0O0OOOOOOOOOOO0OO0O0

O r—rrrrrrr T T T T T
OFHIOONVANOOHANFHIOONONO AN HLOONOND =N HLOONDONDO —
DNENDNINININDN O 00 VNV VN0V XD i
AN
Hrea AN AN AN AN AN AN AN N
Year of first publication

FIGURE 10 The number of core studies of conditionals per year

The choice between static and dynamic typing is the second most studied design
decision in the core, with altogether 6 core studies, of which 5 were controlled
experiments, of which 4 were randomized. The oldest of these studies are those
of Daly, Sazawal, et al. (2009) and Seixas et al. (2009); it is, therefore a very new
area of research, even though the design options themselves date from the 1960s.

89

I do not include Prechelt (2000) and Prechelt (2003), as they are pure language
comparisons and thus in the periphery, nor Gannon (1977) and Prechelt and Tichy
(1996, 1998), as they compare static typing to the lack of type checking altogether.
Loops are the third studied design decision in the core, with 5 core stud-
ies, of which one was a non-experiment, one a non-controlled experiment, one a
randomized controlled experiment, and two non-randomized controlled exper-
iments. The oldest is the controlled experiment of Embley (1978), studying the
KAIL selector for both loops and conditionals, and the newest is Stefik and Gel-
lenbeck (2011), investigating the syntactic options for many different language
constructs. Figure 10 shows the distribution of the studies over the years.

| |

n 4

O

g

R]

w

G

o 20 i

)

Q 1 1 11 1 1

=}

Z 0 0 0 0O 0 0 o0 o o0 o0 o0 o0 o0o0O0OO0OO0OO0OO0OO0OO0O0O0O0O0O0 U0 O0O0

O I T T T I I T T T T I T I
AN =AM FHOONNOANANOD AN FHLOOINODNOD NN FHLOONDND A
ININOOD DX DXV XVDXDDNDDINDNDNDANDNDNDDNDNDNODODDODODOODOODOODOODO0 O —
[e) e e Ne Ne Ne e) Ne) Ne e o) Neo o) Ne)Ne)Ne)Ne)Neo)We)Heo)lo) o) NN Ro ool ol oo oo
A AN AN AN AN AN AN ANANANAN AN
Year of first publication

FIGURE 11 The number of core studies of loops per year

The full list of all design decisions with at least two core studies is given in
Table 16.

RQ3 Which facets of efficacy regarding programming language design decisions have
been studied empirically?

As seen in Table 17, the top three facets of efficacy in core studies are error prone-
ness (measured typically by seeing how many errors participants make), program
comprehension, and programming effort (measured typically by wall-clock time re-
quired to complete an experimental task).

Some of the other facets of efficacy identified in Table 17 may need some
explanation. For example, program translation effort occurs, as can seen in Figure 5,
only with the program-rewrite method. What these two mean is illustrated by the
following quote from Westbrook et al. (2012, p. 633-634):

“More specifically, we have taken a set of H] programs, written without permissions in

mind, and ported them to HJp by adding enough annotations to statically guarantee

race-freedom. [...] We measured the number of lines of code (LoC) that had to be
modified (from the HJ version) to statically ensure race-freedom.”

Thus, efficacy is measured by seeing how much effort (proxied here by the num-
ber of lines of code modified) it takes to convert existing programs to the new
language feature.

Another perhaps-not-clear facet is retrofitting opportunity. It is illustrated by
the following quote from Malayeri and Aldrich (2009, p. 109):

90

“In summary, we found that a number of different aspects of Java programs suggest the
potential utility of structural subtyping. While some of the results are not as strong as
others, taken together the data suggests that programs could benefit from the addition
of structural subtyping, even if they were written in a nominally-typed language.”

What is measured here is how well a new feature would fit an existing language,
based on the usage patterns actually extant in real-world code in that language;
in other words, the degree of opportunity to retrofit the feature to the language.
Feature prevalence is similar, measuring how much a particular feature is in use in
real-world code, which information may be useful to a designer considering its
modification in a language, or its introduction to a new language.

RQ4 Which empirical research methods have been used in studying the efficacy of partic-
ular programming language design decisions?

Among the core sub-studies, there are 41 experiments, 11 program rewrite studies,
8 program corpus analyses, 2 case studies, 2 surveys, and 1 program pair analysis. 1
have explained what I mean by experiments and program rewrite studies ear-
lier. Program corpus analysis consists of analyzing without modifying a (usually
large) set of programs written for other purposes than the study in question. I use
the term “case study” consistent with the Yinite? definition (Yin 2009; Runeson et
al. 2012). Surveys refer to questionnaire-based research. A program pair anal-
ysis consists of taking a small number of pairs of related programs not written
specifically for this study and comparing them.

Of the experiments in the core, 18 are between subjects and 14 are within
subjects; it is not possible to assign 9 experiments to either category. One (non-
controlled) experiment in the core does not have human participants. A total of
35 experiments in the core use programmers of various kinds as participants, and
5 use non-programmers. Of the 35 programmer experiments, 29 use students, 7 used
professional programmers, and one uses end-user programmers (some used partic-
ipants from more than one of these groups). Of the 29 programming student
experiments, 5 use beginners (students who are taking or have completed basic
programming courses but no more), while 15 use advanced students; for 9 student
experiments, it is not possible to determine the student type.

RQ5 How common are follow-up or replication studies, either by the original researchers
or by others?

Of all the 141 sub-studies in the included primary studies, including both core
and periphery, there are 31 sub-studies which I was able to identify as having
significant prior work. Considering only such prior work that has been found
and recorded during the searches, 3 sub-studies replicated such a prior work,
and 13 sub-studies otherwise followed up on such a prior work. Table 18 lists all
such relationships between primary studies included in this mapping study.

This is the term used, according to my recollection, in the oral presentation of the Tofan
et al. (2011) paper.

91

TABLE 18 Primary studies that replicate or follow up on or are otherwise based on prior
work that is itself included in this mapping study

Study Replicates

Follows up on

Other significant prior work

S18
520
S41
S44
S56
S60a
S60b
S64
S68
S79
S83
597
5107
S122
5138
S142
S144
S151
S158

533

5141

5125

529

S64
555
5137, 5138
5137,5138

533

556, S65, 5120, S144
531

519, 520, S33, S68
5137

565
560, S137, 5138

549, 562

5154

S65, S83, 5144

5143
597,597

6 DISCUSSION

From the results of this mapping study; it is clear that the empirical research on
the efficacy of programming language design decisions has a long history, start-
ing from Sime et al. (1973), but it has not been particularly prolific. Before the
most recent upsurge of activity, research output had been fairly constant, with an
occasional low peak. A significant rise in activity has occurred since 2009. It is
notable that this pattern is visible in the data mostly unchanged up to and until
removing all but controlled experiments from the data; a major change is seen
only when considering solely randomized controlled experiments.

The low level of activity until recent years suggests a rather depressing
model of researcher behavior: every once in a while a researcher or a research
group comes up with the bright idea that this sort of research would be useful,
then conducts a small number of studies, eventually runs out of steam and drops
this research area. Both the low number of studies following up on other studies
and the general lack of increase in study numbers, excluding the recent years,
suggests that the published studies have not been particularly inspiring to other
researchers. No paradigm study, in the Kuhn (1996) sense, has emerged to cap-
ture the imagination of a generation of researchers; again, disregarding the recent
years.

Despite that I have not conducted a formal quality evaluation of the in-
cluded studies, I think the most plausible explanation is that the studies, not
counting the recent couple of years, have simply not been of particularly good
quality. This conclusion is reinforced by the fairly scathing critiques of the early
studies by Sheil (1981), Hoc (1983), and Détienne (2002). It is also supported
by the fact that language designers have generally ignored these studies, as I dis-
cussed in Section 2.5. It also accords with the informal impression of the included
studies that I have acquired during the conduct of this mapping study.

It is further notable that the most prolific publication forum for the first
twenty years, the International Journal of Man—-Machine Studies, has all but ceased
publishing these studies, despite continuing to be published to this day, albeit
with a changed name, the Journal of Human—Computer Studies. Similarly, the
premier conference of the programmer behavior research community, the Psy-

93

chology of Programming Annual Conference (PPIG), has been conspicuously
silent with respect to these studies, a fact noted also by Stefik, Hanenberg, et al.
(2014). My inclination is to explain these observations by the supposition that the
HCI research community has collectively decided that the kinds of studies that
my mapping study would consider are not worth the effort. Indeed, Détienne
(2002) makes basically this claim: research in the psychology of programming
has shifted from a code-centered approach (which is likely relevant to language
design) to consider “more removed” (p. 9) topics, related to, for example “speci-
fication and design” and teamwork.

Much of what I have just written may apply to the current upsurge of re-
search, or it may not. The absolute numbers are still not very large, indicating that
the number of researchers working on the topic may still be fairly low. Whether
the current upsurge translates into a sustained growth into a healthy research area
or wanes in the next years back to the background levels of the last four decades
remains to be seen. The results of this study cannot support any conclusions on
that point.

In this study, I have deliberately avoided taking any position as to the con-
clusions one should make regarding the actual design decisions. For example,
I do not offer any analysis on whether static or dynamic typing is better. That
task belongs properly to focused systematic literature reviews and is beyond the
scope of any mapping study.

The results of this study point to a small number of design decisions that
may be ripe for systematic reviewing. The choice between static and dynamic
typing, as well as the questions of class inheritance, software transactional mem-
ory, conditionals, and program indentation each have at least two randomized
controlled experiments and thus it may be possible to synthesize high-quality ev-
idence on them. When considering other core studies, also the question of loops
emerges as a potentially viable topic for a systematic review, with its four experi-
ments and one core non-experiment.

It would be too much to expect for any systematic review on these topics to
be able to pronounce universally applicable conclusions recommending a single
solution to all situations. Instead, as Dybd, Sjeberg, et al. (2012) point out, they
are more likely to find, if anything, that each available solution is the best in some
context, and perhaps identify which solutions work best in which contexts. That
too, would be valuable information.

The same topics that might benefit from systematic reviews are also well
enough populated with research that a language designer might actually learn
something useful from them.

6.1 Lessons learned

The greatest surprise to me in this mapping study process has been the incredi-
ble amount of work it took. My initial estimate was on the order of three or four

94

months; it took three and a half years. The literature searches themselves, produc-
ing a total of 2056 recorded publications, not counting duplicates, took almost a
year of calendar time (precisely 294 days), though a lot of that is accounted by my
teaching duties interfering with this work, and some is accounted by vacations.
All'in all, on average I seem to have recorded about 7 publications each day (in-
cluding teaching days and vacations); I am likely to have processed a lot more.
The process of going through all the 2056 recorded publications to a final selec-
tion decision took almost two years (629 days), meaning an average of 3 decisions
every day, including teaching and vacation days. These speeds likely reflect the
difficulty of deciding where the line between inclusion and exclusion really lies,
based on my definitions of the concepts. A more focused study is likely to be able
to attain much higher speeds.

One particular source of trouble was the low general usefulness of abstracts
in programming language research. They rarely described what empirical meth-
ods, if any, were used to evaluate their work, nor did they usually reveal the
results of any such evaluation. As a result, Phase II (based exclusively on on-
line metadata such as abstracts) excluded only about 30 % of the publications.
In software enginering, similar problems have been noticed as well, and the use
of structured abstracts (that is, abstracts with standard explicit subheadings) has
been proposed and evaluated with some success (see e. g. Kitchenham, Brereton,
Owen, et al. 2008; Budgen, Kitchenham, et al. 2008). I have adopted this practice
in the abstract of this study.

I'would caution any other research student not to attempt a systematic sec-
ondary study alone. An ideal team size is, in my estimate, about six: as rec-
ommended by guidelines, each publication should be looked at by at least two
researchers independently in each phase of the study, to allow for the estimation
of the reliability of decisions; having three teams of two researchers allows signif-
icant parallelization of the work. A workable minimum is, I think, three, working
together in pairs with a third opinion available for the difficult cases.

In retrospect, the literature search arrangement could have been much more
efficient. The problem was that of a bootstrap: I could likely design a more ef-
ficient search strategy for this study now, but to get here I had to conduct the
inefficient searches. The quasi-gold standard method proposed by Zhang, Ali
Babar, and Tell (2011) seems very promising, and I second the recommendation
of Kitchenham and Brereton (2013, p. 2068) to incorporate it in future guidelines.

I'had initially a lot of trouble with defining the demarcation of evidence. My
original plan was to simply take the research method list compiled by Vessey,
Ramesh, et al. (2005) as a guide, but it quickly turned out to be unworkable,
as they neither define what they mean by the names of the methods nor cite
sources for any clear definitions. In the pilot extraction exercise described in Sub-
section 4.3.1, I and professor Karkkdinen had significant trouble interpreting the
method list. Particular problems for us were the categories DA, data analysis,
and LS, laboratory experiment (software).

We debated the question of whether a study that collected existing pro-
grams from various sources, ran static analyses and computed metrics on them,

95

and then statistically analyzed the resulting data, could be considered being “based
on secondary or existing data” (Vessey, Ramesh, et al. 2005, p. 252) and thus a
DA study. Professor Karkkdinen offered the opinion that all programs are data
and thus existing programs are existing data; at the time, I advocated the posi-
tion that programs in such studies are analogous to human participants and that
the metrics derived from them are primary data in each such study. In my later
thematic synthesis code book, these studies were allocated the primary method
code of CorpusAnalysis or ProgramPairAnalysis, depending on the details of the
study.

Similarly, it took some time for us to understand the LS category. Vessey
et al. only offered the following comment about it: “We also added [...] Labora-
tory Experiment (Software) to assist in characterizing computer science/software
engineering work.” (Vessey, Ramesh, et al. 2005, p. 252). Presumably, it was in-
tended to be an analogy to LH — Laboratory experiment (Human Subjects). A
laboratory experiment, according to Alavi and Carlson (1992) (who Vessey et al.
cited), “controls for intervening variables”. Typically this means assigning some
participants to the trial intervention and other participants to a control interven-
tion, but how does one do that when the participants are pieces of software?
Eventually we agreed that, for software experiments, control of intervening vari-
ables is often implicit as the effect of the control intervention is known a priori,
and otherwise typically easily instituted by resetting the software before chang-
ing interventions (which cannot be done, ethically at least, to humans). This was
one of the main motivations for my later definition of an experiment, which dif-
fers considerably from the concept of a “true experiment” commonly defined by
behavioral researchers; in my taxonomy true experiments would be called ran-
domized controlled experiments. However, in practice, I ended up using non-
experimental codes like ProgramRewrite and BenchmarkPrograms for studies of
this type.

A problem revealed itself in the Google Scholar search performed on Septem-
ber 7, 2011. It turned out that Google Scholar refuses to display more than one
thousand hits. The reported hit count was 2050, and thus the particular search
was abandoned under compulsion before the halfway mark was reached. Google
(2011) indicates that there is no direct way to overcome this limitation. To try to
find the same hits, I conducted the same search with year restrictions, covering
together all years, on September 12 and 13, 2011. The combined reported hit
count for the piecemeal re-search was 1744, which is 85 % of the reported count
of the original abandoned search. A similar tactic for avoiding over-1,000 hits
was adopted on subsequent Google Scholar searches.

6.2 Limitations of this study

Every study has limitations; some come from its basic approach, some from its
design, and some from problems in its execution. In this section, I will highlight

96

the key limitations of this study.

6.2.1 Conceptual

The concepts of “design decision”, “efficacy” and “evidence” are defined in this
study in a particular manner, attempting to follow the ordinary meaning of those
words but with the goal of giving them a precise content that helps in deciding
what studies belong in and what do not belong in this mapping study. Those
definitions impose a particular a priori model which in some cases is in tension
with the model used by the primary studies considered for this mapping study.

6.2.2 Literature search and selection

The quasi-sensitivity of automatic search was, as reported in Subsection 4.1.4,
fairly poor. Manual searches fared better, but considering that they have an op-
portunity to examine all publications in the forums in the quasi-gold standard,
the quasi-sensitivity of 85 % is not ideal. The publications in the quasi-gold stan-
dard not identified in manual or automatic search were found by snowballing,
in some cases over two years after the original searches; it is likely that my un-
derstanding of what belongs in the study and what does not had evolved during
that time, despite the defined criteria.

The single round of snowballing contributed over half of the publications
selected for inclusion, and about 40 % came only from snowballing. Addition-
ally, there are a small number of publications cited by secondary studies (see
Subsection 4.1.4) that had not been found or recorded during searches despite
being potentially relevant. Since 3 of 30 recorded publications cited by secondary
studies had been explicitly rejected, this implies for the 18 not recorded an esti-
mated 90 % survival rate; we may thus assume that 16 of them would have been
included. This is a direct consequence of the decision not to do more than one
snowballing round. These two observations show clearly that snowball search
was stopped before a fixed point was achieved.

The selection validation exercises documented in Subsection 4.2.3 show ex-
cellent agreement between myself and my own retest, which is expected due to
learning effects, and between myself and one of my supervisors, Ville Tirronen,
which is more significant since both of us have studied and taught matters re-
lated to programming language research for over a decade. Agreement between
myself and another supervisor, Vesa Lappalainen, as well as between Tirronen
and Lappalainen, was substantial. My supervisor Tommi Kdrkkdinen was a clear
outlier, showing only a fair agreement; unfortunately, I inadvertently destroyed
the papers on which he recorded his reasoning behind this divergence, thinking
that they were not unique copies, and we have been unable to reconstruct them.

Allin all, these considerations show that the search and selection of publica-
tions for this mapping study have some clear limitations that affect the credibility
of the results reported. A counterbalancing consideration is the deliberate biasing
of both search and selection toward overinclusion, which necessitated the sepa-

97

ration between core and periphery in the thematic model. On the balance, I do
believe that most of the relevant literature has been included, and while there are
likely some missing publications, they are unlikely to seriously jeopardize my
conclusions.

6.2.3 Thematic synthesis

The validation exercise of coding, described in Subsection 4.3.3, suggests that
the code book developed was not quite transparent to another researcher but
was fairly stable in my own use. The thematic model is supported by the data
but there are other possible ways the model could have been framed; other re-
searchers are likely to have created different models. In the main, however, I
believe any such differences are likely not to have made a difference in the results
obtained, as they are well supported by the data.

7 CONCLUSION

There is clearly some empirical evidence on the efficacy of language design deci-
sions that could inform evidence-based programming language design; however,
it is rather sparse. Significant bodies of research seem to exist only of handful of
design decisions.

Language designers may find it informative to familiarize themselves with
the studies identified in this mapping study at least on the topics of conditional
statements, static versus dynamic typing, loops, class inheritance, software trans-
actional memory, and program indentation, concentrating on topics that each de-
signer find of interest to them.

Researchers contemplating the empirical study of programming behavior
for the purpose of informing language design might benefit from examining closely
the critique of earlier studies offered by Sheil (1981), Hoc (1983), and Détienne
(2002). It may be beneficial to reflect on what factors made the earlier research
fail both to inspire much further work and to capture the interest of language de-
signers, as well as how the same fate might be avoided for the current upsurge of
research on this topic.

Finally, as is traditional in systematic secondary studies and as is amply
demonstrated by the results of this study, I note that further primary research
is needed on the efficacy of various language design decisions that are relevant
for modern languages; particularly, the studies on conditionals are so old as to
likely require significant updating to account for current conditions. The same
topics I highlighted for language designers above may also benefit from focused
systematic reviews.

YHTEENVETO (FINNISH SUMMARY)

Nayttoon perustuvan ohjelmointikielten suunnittelun tueksi sopivan empiiri-
sen tutkimusndyton laajuus. Jarjestelmillinen kirjallisuuskartoitus.

Ohjelmointikielid on tuhansittain, ja niitd luodaan liséé (ja olemassa olevia kielid
muokataan) jatkuvasti. Tdmd luonti- ja kehitystyd perustuu yleensa laatijoiden
ja kehittdjien omaan tyylitajuun, henkilokohtaisiin mieltymyksiin seka teoreetti-
seen tietimykseen. Empiiristd tutkimustietoa ohjelmointikielten ja niiden muu-
tosten hyodyllisyydestd ei kdytetd juuri lainkaan. Ohjelmoinnin psykologian tut-
kimus on kuitenkin yli neljakymmentd vuotta vanha tieteenala, ja siitd luulisi
olevan hyotya ohjelmointikielten laatijoille ja kehittajille.

Tuleville ladkéreille on jo useampi vuosikymmen opetettu nayttoon perus-
tuvan ladketieteen mallia: jos lddkéri ei ole varma, miten tulisi toimia jonkin tie-
tyn potilaan ongelman kanssa, ensiksi hdn muotoilee vastattavissa olevan kysy-
myksen; toiseksi hdn etsii tutkimuskirjallisuudesta ja siithen perustuvista toisio-
lahteistd tutkimusndyttod, joka vastaa kyseiseen kysymykseen; kolmanneksi han
arvioi tuon ndyton luotettavuuden; neljanneksi hdn soveltaa tuon tutkimusnay-
ton antamaa vastausta potilaansa ongelmaan; ja viidenneksi arvioi omaa suoriu-
tumistaan tdssd prosessissa. Tama ladketieteestd perdisin oleva toimintamalli on
sittemmin otettu soveltuvin osin kdyttdon myos monilla muilla asiantuntijuuteen
perustuvilla aloilla, muiden muassa ohjelmistotekniikassa.

Taman lisensiaatintyoni ldhtokohtana oli ndyttéon perustuvan ohjelmointi-
kielten suunnittelun idea. Tyon tarkoituksena oli selvittdd, kuinka paljon sellaista
empiiristd tutkimusndyttod on olemassa, josta voisi olla hyotya ohjelmointikiel-
ten suunnittelijoille. Keskityin tarkastelemaan tutkimuksia, jotka pyrkivét vertai-
lemaan kahden tai useamman vaihtoehtoisen suunnitteluratkaisun hyodyllisyyt-
td ohjelmoijan ndkokulmasta. Halusin selvittda lisdksi, mitd tdllaisia suunnitte-
luratkaisuja on tutkittu talla tavalla, milla eri tavoin hyddyllisyys on ymmarretty
tdllaisissa tutkimuksissa, sekd mitd tutkimusmenetelmia tdllaisissa tutkimuksissa
on kédytetty.

Tama lisensiaatintyoni on kirjallisuuteen perustuva tutkimus, niin sanot-
tu toisiotutkimus, jossa aineistona kdytetddn ensiotutkimuksia eli tutkimuksia,
joissa tutkijat ovat itse véalittomaésti havainnoineet tutkittavaa ilmiotd. Useimmat
jarjestelmalliset toisiotutkimukset kuuluvat kahteen padluokkaan. Jarjestelmal-
liset katsaukset pyrkivit vastaamaan kdytdnnon toiminnan kannalta oleellisiin,
hyvin tarkkarajaisiin kysymyksiin. Jarjestelmalliset kartoitukset puolestaan pyr-
kivat hahmottamaan tutkimuskirjallisuuden yleisen tilanteen jollakin tutkimusa-
lalla. Tama tyoni on selkedsti kartoitus.

Olen taustoittamisen tarkoituksessa késitellyt tdssd tyossani ohjelmointi-
kielten erilaisia luokitteluja (kielten tasot, sukupolvet ja paradigmat), kielten ka-
sitteellistd rakennetta, tiettyjen suunnitteluratkaisujen historiaa seka ohjelmointi-
kielten kehitystyon historiaa. Liséksi olen tyossédni suhteellisen laajasti referoinut
ohjelmistotekniikan alalla julkaistuja systemaattisten kirjallisuuskartoitusten tut-
kimusmetodologisia toimintaohjeita. Tyoni sisdltdd myos ohjelmointikielen kasit-

100

teen analyysid sekd ndyton késitteen tietoteoreettista pohdintaa.

Itse kartoituksen ldhdemateriaalin etsin useita eri hakumenetelmiad kayt-
taen. Ensiksi selasin ldpi erdiden kansainvilisten tutkimuslehtien ja konferens-
sijulkaisujen kaikki numerot (kdyttaen hyviksi tietoverkossa julkaistuja sisallys-
luetteloja ja abstrakteja). Seuraavaksi tein avainsanahakuja useissa kansainva-
lisesti tunnetuissa tutkimuskirjallisuustietokannoissa. Lopuksi etsin lisédldhteitd
kaikkien edellisilld hauilla 16ytyneiden kartoitukseeni hyvaksymieni tutkimus-
julkaisuiden ldhdeluetteloista sekd erdiden tietokantojen luetteloista ndihin jul-
kaisuihin viittaavista julkaisuista; tdtd kutsun jatkossa lumipallohauksi.

Hauilla 16ytyneet julkaisut kdvin ldpi kolmessa kierroksessa. Ensimmaisel-
14 kierroksella hylkésin tutkimukseni kannalta ilmiselvisti epdolennaiset julkai-
sut. Toisella kierroksella hylkdsin ne julkaisut, joiden epdolennaisuudesta olin va-
kuuttunut. N4illd kahdella kierroksella paatokseni perustuivat tietoverkosta saa-
taviin metatietoihin. Kolmatta kierrosta varten hankin jokaisesta vield jiljelld ole-
vasta julkaisusta sen koko tekstisisdllon, joko paperilla tai sahkoisesti. Talld kier-
roksella hylkédsin ne, joiden epédolennaisuudesta vakuutuin; loput otin mukaan
tdhédn tutkimukseen. Valintojen oikeellisuuden selvittimiseksi lisensiaatintyoni
ohjaajat tekivat kukin pienelle osalle 16ytyneista julkaisuista satunnaisotannalla
itsendisen hyviaksymis- tai hylkdyspédatoksen. Olimme pddosin samaa mieltd; eri-
mielisyydet ratkaisimme lopullisesti konsensuspaatoksella.

Mukaan kartoitukseen otin ne ensio- ja toisiotutkimukset, jotka pyrkivat sel-
vittdmaan jonkin ohjelmointikielten suunnitteluratkaisun hyoddyllisyyden ohjel-
moijan ndkokulmasta, joista oli saatavilla tdydellinen, viimeistddn vuonna 2012
julkaistu tutkimusraportti englannin, suomen tai ruotsin kielelld ja jotka esittivat
empiiristd tutkimusnayttoa véitteittensa tueksi.

Selaamalla 16ytyi 1515 ensimmaisen kierroksen hyvaksymaa julkaisua, avain-
sanahauilla 16ytyi 248 lisdd ja lumipallohaulla vield 293 julkaisua ndiden lisédksi.
Toisella kierroksella jéljelle jai 1045 selaamalla 16ytynyttd, 151 avainsanahauil-
la 16ytynyttd ja 223 lumipallohaun 16ytamaa. Lopullisesti kartoitukseen hyvak-
syttiin 180 tutkimusjulkaisua, jotka raportoivat 137 ensiotutkimusta. Toisiotutki-
muksia julkaisuissa raportoitiin 19. Varsinaisessa kartoituksessa olen kisitellyt
vain ensiotutkimuksia.

Tein tutkimukseen mukaan otetuista tutkimusjulkaisuista temaattisen syn-
teesin seuraavasti. Ensiksi luin kaikki mukaan otetut julkaisut lapi. Seuraavaksi
valitsin jokaisesta suoria lainauksia, jotka liittyivat tutkimukseni aiheeseen. T&-
man jalkeen koodasin lainaukset (eli annoin niille kuvaavia avainsanoja). Koo-
dien perusteella etsin aineistosta esille nousevia, tutkimukseni aiheen kannalta
merkittdvid teemoja, joista lopulta rakensin temaattisen mallin. Koodauksen oi-
keellisuuden arvioimiseksi yksi ohjaajistani koodasi muutaman artikkelin uudes-
taan; ratkaisumme erosivat jonkin verran toisistaan.

Temaattinen mallini jakoi kartoitukseen mukaan ottamani ensidétutkimuk-
set kahteen luokkaan. Reuna-alueeseen kuuluivat tutkimukset, jotka eivét olleet
kovin oleellisia kartoitukseni kannalta: ne vain vertailivat kielid tai kieliluokkia
toisiinsa taikka kayttivit yksittdisid olemassa olevia ohjelmia tai ohjelmointiteh-
tdavid jonkin teknologian kédyttokelpoisuuden osoittamiseen. Loput 65 tutkimusta

101

muodostivat ytimen, joka puolestaan jakautui sipulimaisesti useaan kerrokseen
kdytetyn tutkimusmenetelmédn mukaan.

Ydinsipulin uloin kerros koostui tutkimuksista, joissa ei kdytetty minkaan-
laista koeasetelmaa; tyypillisesti kyse oli maarallisestd havainnoivasta tutkimuk-
sesta taikka laadullisesta tutkimuksesta. Seuraavaksi uloin kerros koostui kokeis-
ta eli tutkimuksista, joissa tutkijat ovat pyrkineet vaikuttamaan tutkimustilantee-
seen siten, ettd tistd aiheutuva muutos tulosmittareissa on havaittavissa. Seuraa-
va, toiseksi sisin, kerros koostui kontrolloiduista kokeista eli tutkimuksista, joissa
koehenkil6t tai muut tutkimuskohteet on jaettu ryhmiin sen mukaan, mitd tutki-
muksessa mukana olevaa suunnitteluratkaisua he kdyttavat tai missa jarjestyk-
sessd he kdyttavat mukana olevia suunnitteluratkaisua. Ydinsipulin sisin kerros
eli syddn koostui satunnaistetuista kontrolloiduista kokeista eli kontrolloiduista
kokeista, joissa koehenkilot tai muut tutkimuskohteet on jaettu ryhmiin jollakin
satunnaisprosessilla. Sipulin syddamessa oli 22 tutkimusta.

Tutkimusten julkaisuajoista oli havaittavissa mielenkiintoinen ilmio. Van-
hin kartoituksessa mukana ollut julkaisu oli julkaistu 1973 ja uusin vuonna 2012
(koska uudempia en ottanut kartoitukseen mukaan). Aina vuosituhannen vaih-
teen paikkeille asti tutkimuksia julkaistiin suunnilleen saman verran joka vuosi,
mutta madrat nousivat vuosituhannen vaihteen paikkeilla ja uudestaan dramaat-
tisesti vuoden 2008 paikkeilla. Vastaava ilmi6 on havaittavissa, joskin heikompa-
na, kaikissa ydinsipulin kerroksissa.

Kartoituksessa havaitsin, ettd ohjelmointikielten suunnitteluratkaisujen hyo-
dyllisyytta on tutkittu jonkin verran: kaiken kaikkiaan tutkimuksia 16ytyi 141 ja
satunnaistettuja kontrolloituja kokeita 22. Eniten on tutkittu eri tapoja ilmais-
ta suorituksen haarautumista (11 koetta ytimessd, joista 8 kontrolloituja, joista
3 satunnaistettuja; vanhin tutkimus julkaistu 1973), valintaa staattisen ja dynaa-
misen tyypityksen vililla (6 tutkimusta ytimessd, joista 5 kontrolloituja kokeita,
joista 4 satunnaistettuja; vanhin tutkimus julkaistu 2009), seka eri tapoja ilmaista
silmukkarakenne (5 tutkimusta ytimessd, joista 4 kokeita, joista 3 kontrolloitu-
ja ja yksi satunnaistettu; vanhin tutkimus julkaistu 1978). Hyodyllisyytta on tut-
kimuksissa tarkasteltu péddasiassa virhealttiuden, ohjelmien ymmarrettdvyyden
sekéd ohjelmointityon tyoldyden kautta.

Tutkimusmenetelmistd suosituin ytimessa oli (méaarallinen) koe, jota kdyt-
ti 41 tutkimusta. Toiseksi suosituin 11 tutkimuksella oli tutkimusasetelma, jossa
olemassa olevia ohjelmia muokattiin kdyttdmé&an uutta ohjelmointikielen suun-
nitteluratkaisua hyviakseen. Kolmanneksi suosituin 8 tutkimuksella oli ohjelmis-
tokorpuksen analyysi. Ytimessd kédytettiin lisdksi tapaustutkimusta (2), kyselyad (2)
ja ohjelmaparien analysointia (1). Ytimen kokeellisissa tutkimuksissa yleisimmin
koehenkiloina kadytettiin ohjelmoijia (35 koetta), jotka tavallisimmin olivat ohjel-
moinnin opiskelijoita (29 koetta).

Kartoituksen tuloksista on pédateltdavissd varsin masentava kuva taméan kar-
toituksen alueeseen kuuluvasta tutkimusaktiviteetista. Vaikuttaa siltd, ettd aina
silloin talldin joku tutkija tai tutkimusryhma keksii, etta tallaiset tutkimukset oli-
sivat hieno juttu, ja tekee niitd sitten muutaman kunnes kylldstyy ja vaihtaa ai-
hetta. Julkaistut tutkimukset eivét vaikuttaisi inspiroineen kovin paljoa jatkotut-

102

kimuksia, eikd paradigman perustavia esimerkkitutkimuksia ndyta syntyneen.
On kuitenkin mahdollista, ettd viimeisen viiden vuoden aikana lisddntynyt tutki-
mustoiminta tarkoittaa, ettd tilanne on muuttunut; mutta koska lukumaarat ovat
edelleen pienid, saattaa tilanne palata jokusen vuoden jdlkeen takaisin matalan
aktiviteetin tasolle. Valitettavasti kartoitukseni aineistosta ei ole mahdollista paa-
telld mitddn viime vuosien tutkimustoiminnasta.

Lisensiaatintyoni kuluessa tein havainnon, ettd ohjelmointikielten alan tut-
kimusartikkeleiden tiivistelmat ovat varsin hyodyttomid, silld niissd ei useinkaan
kerrota tutkimuksen empiirisen osan metodia eikd silld saatuja tuloksia. Tahan
voisi mahdollisesti saada hyotyd muilla aloilla jo kdytossd olevasta rakenteisen
tiivistelmdn ideasta, jota olen tdimdnkin tyon englanninkielisessd tiivistelméassa
(abstract) soveltanut.

Kuten kaikilla tutkimuksilla, tdlld lisensiaatintyolld on rajoitteita, jotka tu-
lee tuloksia tulkittaessa ottaa huomioon. Keskeisin rajoite on, ettd julkaisujen mu-
kaan ottamisessa ja tutkimusten koodauksessa on voinut sattua virheitd, vaikka
niitd on pyritty valttdmaan ja 10ytamaan. On myos mahdollista, ettd joitakin asi-
aan liittyvid tutkimuksia ei ole 16ytynyt hauissa eiké siksi ole kartoituksessa huo-
mioitu.

Kartoitukseni johtopditds on, ettd nayttoon pohjautuvan ohjelmointikielten
suunnittelun tueksi on olemassa jonkin verran empiiristd tutkimusnayttod, mut-
ta vain muutamaa suunnitteluratkaisua on tutkittu laajemmin. Kielten suunnit-
telijat saattavat hyotyd kartoituksessa 10ydettyihin tutkimuksiin tutustumisesta,
erityisesti haarautumista, silmukkaa, staattista ja dynaamista tyypitystd, luokka-
perintdd, tapahtumapohjaista muistia ja sisennystd koskien. Kartoituksen alan
kuuluvaa tutkimusta harjoittavien tutkijoiden on syytd tutustua kritiikkiin, jo-
ta kirjallisuudessa on esitetty aiempia tutkimuksia vastaan. Lisdksi, kuten jarjes-
telmallisissd toisiotutkimuksissa on tapana, totean, ettd uusien ensiotutkimusten
tekeminen on tarpeen; erityisesti haarautumista koskevat tutkimukset ovat jo idk-
kaita eivatkd ne vélttdmattd vastaa kovin hyvin nykyoloja. Joistakin aiheista on
mahdollisesti my6s hyodyllista laatia jarjestelmallisid katsauksia.

BIBLIOGRAPHY

About Messages and Message Queues 2013. (URL: http:/ /msdn.microsoft.com/
en-us /library / windows / desktop / ms644927(v=vs.85).aspx) [visited on
2014-02-12] (cit. on p. 18).

Abrahams, P. W. 1966. A Final Solution to the Dangling else of ALGOL 60 and
Related Languages. Communications of the ACM 9 (9), 679-682. DOI: 10.
1145/365813.365821 (cit. on pp. 27, 28).

ACM s.d.(a). Searching with Words, Phrases, or Plain Language. (URL: http:/ /dl.
acm.org/documentation/Types.htm) [visited on 2011-10-19] (cit. on p. 61).

ACM s.d.(b). Zone and Field Searches. (URL: http://dl.acm.org/documentation/
Zone.htm) [visited on 2011-10-19] (cit. on p. 61).

Ahmad, A. and Talha, M. 2002. An Empirical Experimentation to Evaluate Effec-
tiveness of Declarative Programming Languages in Software Development
Process. In Proc. Software Engineering and Applications (SEA 2002). (URL:
http:/ /www.actapress.com/ Abstract.aspx?paperld=24494) (cit. on pp. 76,
176).

Aho, A. V,, Lam, M. S,, Sethi, R., and Ullman,]J. D. 2007. Compilers. Principles,
Techniques, & Tools. 2nd ed. Boston: Pearson Addison Wesley (cit. on p. 28).

Ahsan, S. N., Ferzund, J., and Wotawa, F. 2009. Are There Language Specific Bug
Patterns? Results Obtained from a Case Study Using Mozilla. In Software
Engineering Advances, 2009. ICSEA ‘09. Fourth International Conference
on, 210-215. DOI: 10.1109/ICSEA.2009.41 (cit. on pp. 76, 176).

Alavi, M. and Carlson, P. 1992. A Review of MIS Research and Disciplinary De-
velopment. Journal of Management Information Systems 8 (4), 45-62 (cit. on
pp. 49, 95).

Aldrich, J., Chambers, C., and Notkin, D. 2002. Architectural Reasoning in Arch-
Java. In Proc. ECOOP 2002 European Conference on Object-Oriented Pro-
gramming. Lecture Notes in Computer Science 2374, 334-367. DO1: 10.1007/
3-540-47993-7_15 (cit. on pp. 76, 176).

Allen, J. D., Anderson, D., Becker, J., Cook, R., Davis, M., Edberg, P., Everson, M.,
Freytag, A., Jenkins, J. H., McGowan, R., Moore, L., Muller, E., Phillips, A.,
Suignard, M., and Whistler, K., eds. The Unicode Standard 2013. Unicode
Consortium. (URL: http:/ / www.unicode.org / versions / latest/) (cit. on
p- 24).

Allende, E., Callat, O., Fabry, J., Tanger, E., and Denker, M. 2013. Gradual typing
for Smalltalk. Science of Computer Programming. In press. DOI: 10.1016/j.
scic0.2013.06.006 (cit. on p. 31).

Ambler, A. L., Burnett, M. M., and Zimmerman, B. A. 1992. Operational versus
Definitional. A Perspective on Programming Paradigms. Computer 25 (9),
28-43. DOI: 10.1109/2.156380 (cit. on p. 22).

104

American Standard Code for Information Interchange 1963. Communications of
the ACM 6 (8), 422-426. DOI: 10.1145/366707.367524 (cit. on p. 24).

Andreae, C., Coady, Y., Gibbs, C., Noble, J., Vitek, J., and Zhao, T. 2006. Scoped
Types and Aspects for Real-Time Java. In Proc. ECOOP 2006 European Con-
ference on Object-Oriented Programming. Lecture Notes in Computer Sci-
ence 4067, 124-147. DOI: 10.1007 /11785477 _7 (cit. on pp. 76, 176).

Arblaster, A. 1982. Human factors in the design and use of computing languages.
International Journal of Man-Machine Studies 17 (2), 211-224. DO1: 10.1016/
50020-7373(82)80020-5 (cit. on pp. 36, 76, 180, 181).

Atwood, K. 2008. Homeopathy and Evidence-Based Medicine. Back to the Fu-
ture Part V. Science-Based Medicine (Feb. 8, 2008). (URL: http:/ / www.
sciencebasedmedicine.org / homeopathy -and - evidence - based - medicine-
back-to-the-future-part-v/) (cit. on p. 51).

Avison, D., Lau, F,, Myers, M., and Nielsen, P. A. 1999. Action Research. Com-
munications of the ACM 42 (1), 94-97. DOI: 10.1145/291469.291479 (cit. on
p- 49).

Backus, J. W., Beeber, R.]., Best, S., Goldberg, R., Herrick, H. L., Hughes, R. A,
Mitchell, L. B., Nelson, R. A., Nutt, R, Sayre, D., Sheridan, P. B., Stern,
H., and Ziller, I. 1956. Programmer’s Reference Manual. The FORTRAN
Automatic Coding System fort the IBM 704 EDPM. International Busi-
ness Machines Corporation. New York, Oct. 1956. (URL: http:/ / archive.
computerhistory.org / resources / text / Fortran / 102649787.05.01.acc. pdf)
[visited on 2014-04-15] (cit. on pp. 27, 29).

Backus, J. 1981. The History of FORTRAN [, II, and III. In History of Programming
Languages. Ed. by Wexelblat, R. L. ACM monograph series. New York, NY:
Academic, 25-45. DOI: 10.1145/800025.1198345 (cit. on p. 35).

Badreddin, O., Forward, A., and Lethbridge, T. C. 2012. Model oriented program-
ming: an empirical study of comprehension. In Proceedings of the 2012 Con-
ference of the Center for Advanced Studies on Collaborative Research, 73—
86. (URL: http:/ / www.engineering.uottawa.ca/downloads/pdf/Model _
Oriented _Programming_ An_Empirical _Study_of_Comprehension.pdf)
(cit. on pp. 76, 176).

Badreddin, O. and Lethbridge, T. C. 2012. Combining experiments and grounded
theory to evaluate a research prototype: Lessons from the umple model-
oriented programming technology. In User Evaluation for Software Engi-
neering Researchers (USER), 2012, 1-4. DOI: 10.1109 / USER.2012.6226575
(cit. on pp. 76, 176).

Badri, M., Kout, A., and Badri, L. 2012. On the effect of aspect-oriented refactoring
on testability of classes: A case study. In Computer Systems and Industrial
Informatics (ICCSII), 2012 International Conference on, 1-7. DOI: 10.1109 /
ICCSI1.2012.6454577 (cit. on pp. 76, 176).

105

Bailey, J., Zhang, C., Budgen, D., Turner, M., and Charters, S. 2007. Search En-
gine Overlaps. Do they agree or disagree? In Proceedings of the Second In-
ternational Workshop on Realising Evidence-Based Software Engineering
(REBSE 2007). DOI: 10.1109/REBSE.2007.4 (cit. on p. 43).

Baranowski, M. 2002. Current usage of the epicene pronoun in written English.
Journal of Sociolinguistics 6 (3), 378-397. DOI: 10.1111/1467-9481.00193 (cit.
onp. 6).

Barendregt, H. and Hemerik, K. 1990. Types in Lambda Calculi and Programming
Languages. In ESOP’90. 3rd European Symposium on Programming. Ed.
by Jones, N. Lecture Notes in Computer Science 432. Springer, 1-35. DOI:
10.1007 /3-540-52592-0_53 (cit. on p. 32).

Barnes, F. R. M. and Welch, P. H. 2001. Mobile Data, Dynamic Allocation and
Zero Aliasing: an occam Experiment. In Communicating Process Architec-
tures 2001. Ed. by Chalmers, A., Mirmehdi, M., and Muller, H. Concurrent
Systems Engineering Series 59. Amsterdam: I0S, 243-264. (URL: http:/ /kar.
kent.ac.uk/13552/) (cit. on pp. 76, 176).

Bartsch, M. and Harrison, R. 2008. An exploratory study of the effect of aspect-
oriented programming on maintainability. Software Quality Journal 16 (1),
23-44. DOI: 10.1007 /511219-007-9022-7 (cit. on pp. 76, 176).

Bem, D. J. 2011. Feeling the Future. Experimental Evidence for Anomalous
Retroactive Influences on Cognition and Affect. Journal of Personality and
Social Psychology 100 (3), 407-425. DOI: 10.1037 /20021524 (cit. on p. 51).

Benander, A. C. and Benander, B. A. 1997. C or Pascal as an Introductory CIS
Programming Language? An Empirical Study of Student Experience and
Performance. The Journal of Computer Information Systems 37 (3), 85-90
(cit. on pp. 76, 176).

Benton, N., Cardelli, L., and Fournet, C. 2004. Modern concurrency abstractions
for C#. ACM Transactions on Programming Languages and Systems 26 (5),
769-804. DOI: 10.1145/1018203.1018205 (cit. on pp. 76, 176).

Bergin Jr., T. J. and Gibson Jr.,, R. G., eds. History of Programming Languages—II
1996. New York: ACM Press (cit. on p. 34).

Bero, L. and Rennie, D. 1995. The Cochrane Collaboration. Preparing, Maintain-
ing, and Disseminating Systematic Reviews of the Effects of Health Care.
JAMA 274 (24), 1935-1938. DOI: 10.1001 /jama.1995.03530240045039 (cit. on
p- 41).

Biermann, A. W., Ballard, B. W., and Sigmon, A. H. 1983. An experimental study
of natural language programming. International Journal of Man-Machine
Studies 18 (1), 71-87. DOI: 10.1016 / S0020-7373(83)80005-4 (cit. on pp. 76,
176).

Bird, A. 1998. Philosophy of Science. UCL Press (cit. on p. 52).

106

Blackwell, A. F. 2002. What is Programming? In Proceedings of the 14th Annual
Workshop of the Psychology of Programming Interest Group (PPIG). (URL:
http:/ /www.ppig.org/papers/ 14th-blackwell.pdf) [visited on 2014-04-08]
(cit. on pp. 18, 19).

Blackwell, A. and Green, T. 2003. Notational Systems. The Cognitive Dimensions
of Notations Framework. In HCI Models, Theories, and Frameworks. To-
wards a Multidisciplinary Science. Ed. by Carroll, J. M. Morgan Kaufmann,
103-133 (cit. on p. 37).

Bocchino Jr., R. L., Heumann, S., Honarmand, N., Adve, S. V., Adve, V. S., Welc,
A., and Shpeisman, T. 2011. Safe nondeterminism in a deterministic-by-
default parallel language. In Proc. 38th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL), 535-548. DOI: 10.
1145/1926385.1926447 (cit. on pp. 76, 176).

Boehm-Davis, D. A. 2002. Empirical Research on Program Comprehension. In En-
cyclopedia of Software Engineering. John Wiley & Sons, Inc. DOI: 10.1002/
0471028959.50f103 (cit. on pp. 76, 180, 181).

Briand, L., Arisholm, E., Counsell, S., Houdek, F., and Thévenod-Fosse, P. 1999.
Empirical Studies of Object-Oriented Artifacts, Methods, and Processes:
State of the Art and Future Directions. Empirical Software Engineering 4
(4), 387-404. DO1: 10.1023 / A:1009825923070 (cit. on pp. 76, 180, 181).

Brooks, F. 1981. APL Session. Transcript of discussant’s remarks. In History of
Programming Languages. Ed. by Wexelblat, R. L. ACM monograph series.
New York, NY: Academic, 683-685. DOI: 10.1145 /800025.1198425 (cit. on
p. 34).

Brown, N. C., Andreazza, A. C., and Young, L. T. 2014. An updated meta-analysis
of oxidative stress markers in bipolar disorder. Psychiatry Research. In
press. DOT: 10.1016/j.psychres.2014.04.005 (cit. on p. 40).

Budgen, D., Burn, A., Brereton, O. P., Kitchenham, B. A., and Pretorius, R. 2011.
Empirical evidence about the UML. A systematic literature review. Software
— Practice and Experience 41 (4), 363-392. DOI: 10.1002 / spe.1009 (cit. on
p. 45).

Budgen, D., Boegh, J., and Mohan, A. 2003. Organising Evidence to support Soft-
ware Engineering Practice. Report from a Workshop held at STEP 2003,
Amsterdam, September 2003. In Proceedings of the Eleventh Annual In-
ternational Workshop on Software Technology and Engineering Practice
(STEP’03). DOI: 10.1109/STEP.2003.23 (cit. on p. 41).

Budgen, D., Kitchenham, B. A., Charters, S. M., Turner, M., Brereton, P, and
Linkman, S. G. 2008. Presenting software engineering results using struc-
tured abstracts. A randomized experiment. Empirical Software Engineering
13 (4), 435-468. DOTI: 10.1007 /s10664-008-9075-7 (cit. on p. 94).

107

Budgen, D., Turner, M., Brereton, P., and Kitchenham, B. 2008. Using Mapping
Studies in Software Engineering. In Proc. 20th Annual Workshop of the Psy-
chology of Programming Interest Group (PPIG). (URL: http:/ / ppig.org/
papers/20th-budgen.pdf) [visited on 2014-03-13] (cit. on pp. 42, 45).

Burckhardt, S., Leijen, D., Sadowski, C., Yij,]J., and Ball, T. 2011. Two for the price
of one: a model for parallel and incremental computation. In Proceedings
of the 2011 ACM international conference on Object oriented programming
systems languages and applications. New York, NY, USA: ACM, 427-444.
DOLI: 10.1145/2048066.2048101 (cit. on pp. 76, 176).

Cacho, N., Dantas, F,, Garcia, A., and Castor, F. 2009. Exception Flows Made Ex-
plicit: An Exploratory Study. In Software Engineering, 2009. SBES "09. XXIII
Brazilian Symposium on, 43-53. DOI: 10.1109/SBES.2009.11 (cit. on pp. 76,
176).

Campbell, D. T. and Stanley, J. C. 1963. Experimental and Quasi-Experimental De-
signs for Research. Reprinted from the Handbook of Research on Teaching.
Chicago: Rand McNally (cit. on pp. 50, 51).

Campbell-Kelly, M. 1980a. Programming the EDSAC. Early Programming Activ-
ity at the University of Cambridge. Annals of the History of Computing 2
(1) (Jan. 1980), 7-36. DOI: 10.1109/MAHC.1980.10009 (cit. on p. 20).

Campbell-Kelly, M. 1980b. Programming the Mark I. Early Programming Activity
at the University of Manchester. Annals of the History of Computing 2 (2)
(Apr. 1980), 130-168. DOTI: 10.1109/MAHC.1980.10018 (cit. on p. 20).

Cardelli, L. 2004. Type Systems. In CRC Handbook of Computer Science and
Engineering. Ed. by Tucker, A. B. 2nd ed. CRC. Chap. 97. (URL: http:/ /
lucacardelli.name / Papers / TypeSystems. pdf) [visited on 2014-04-22] (cit.
on pp. 32, 33).

Cardelli, L. and Wegner, P. 1985. On Understanding Types, Data Abstraction, and
Polymorphism. Computing Surveys 17 (4), 471-522. DOI: 10.1145/6041.6042
(cit. on pp. 31-33).

Cartwright, M. 1998. An empirical view of inheritance. Information and Software
Technology 40 (14), 795-799. DOI: 10.1016 / S0950-5849(98)00105-0 (cit. on
pp- 70, 76,79, 80, 176, 181).

Cartwright, N. and Stegenga, J. 2011. A Theory of Evidence for Evidence-Based
Policy. In ed. by Dawid, P, Twining, W., and Vasilaki, M. Proceedings of the
British Academy 171. Oxford University Press, 291-322 (cit. on pp. 51, 52).

Castor, E, Cacho, N., Figueiredo, E., Garcia, A., Rubira, C. M. F, Amorim, J. S.
de, and Silva, H. O. da 2009. On the modularization and reuse of exception
handling with aspects. Software: Practice and Experience 39 (17), 1377-1417.
DOTI: 10.1002/spe.939 (cit. on pp. 76, 176).

108

Castor, F, Oliveira, J. P, and Santos, A. L. M. 2011. Software transactional memory
vs. locking in a functional language: a controlled experiment. In Proceed-
ings of the compilation of the co-located workshops on DSM’11, TMC'11,
AGERE!11, AOOPES’11, NEAT’11, & VMIL'11. New York, NY, USA: ACM,
117-122. DOI: 10.1145/2095050.2095071 (cit. on pp. 76, 79, 80, 176).

Ceri, S., Bozzon, A., Brambilla, M., Della Valle, E., Fraternali, P, and Quarteroni,
S. 2013. Web Information Retrieval. Berlin: Springer. DOI: 10.1007 /978-3-
642-39314-3 (cit. on p. 44).

Cesarini, F., Pappalardo, V., and Santoro, C. 2008. A comparative evaluation of
imperative and functional implementations of the imap protocol. In Pro-
ceedings of the 7th ACM SIGPLAN workshop on ERLANG. ERLANG ’08.
New York, NY, USA: ACM, 29-40. DOI: 10.1145/1411273.1411279 (cit. on
pp- 76, 176).

Chalin, P. and James, P. R. 2007. Non-null References by Default in Java: Alleviat-
ing the Nullity Annotation Burden. In Proc. ECOOP 2007 European Confer-
ence on Object-Oriented Programming. Lecture Notes in Computer Science
4609, 227-247. DO1: 10.1007 /978-3-540-73589-2_12 (cit. on pp. 76, 85, 176).

Chalmers, 1., Hedges, L. V., and Cooper, H. 2002. A Brief History of Research
Synthesis. Evaluation & the Health Professions 25 (1), 12-37. bo1: 10.1177/
0163278702025001003 (cit. on p. 41).

Champeaux, D. de, Anderson, A., and Feldhousen, E. 1992. Case study of object-
oriented software development. In OOPSLA ’92: conference proceedings on
Object-oriented programming systems, languages, and applications, 377-
391. DOI: 10.1145/141936.141967 (cit. on pp. 76, 176).

Charles, P, Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,
Praun, C. von, and Sarkar, V. 2005. X10: an object-oriented approach to non-
uniform cluster computing. In OOPSLA ’05: Proceedings of the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, 519-538. DOI: 10.1145 /1094811.1094852 (cit. on
pp- 76, 176).

Chen, H.-G. and Vecchio, R. P. 1992. Nested IF-THEN-ELSE constructs in end-
user computing: personality and aptitude as predictors of programming
ability. International Journal of Man-Machine Studies 36 (6), 843-859. DOI:
10.1016/0020-7373(92)90076-W (cit. on pp. 76, 83, 176).

Chen, L., Ali Babar, M., and Zhang, H. 2010. Towards and Evidence-Based Un-
derstanding of Electronic Data Sources. In Proc. 14th International Confer-
ence on Evaluation and Assessment in Software Engineering (EASE). (URL:
http:/ /ewic.bcs.org/ content/ ConWebDoc /34796) [visited on 2014-03-18]
(cit. on p. 43).

Cherry, J. M. 1986. An experimental evaluation of prefix and postfix notation in
command language syntax. International Journal of Man-Machine Studies
24 (4), 365-374. DOI: 10.1016 / S0020-7373(86)80052-9 (cit. on pp. 76, 79, 80,
176).

109

Chilcott,]., Brennan, A., Booth, A., Karnon, J., and Tappenden, P. 2003. The Role
of Modelling in Prioritising and Planning Clinical Trials. Health Technology
Assessment 7 (23). (URL: http:/ / www.journalslibrary.nihr.ac.uk / hta /
volume-7/issue-23) [visited on 2014-03-17] (cit. on p. 45).

Church, A. 1932. A Set of Postulates for the Foundation of Logic. Annals of Math-
ematics. 2nd ser. 33 (3), 346-366. DOI: 10.2307 /1968337 (cit. on p. 32).

Church, A. 1940. A Formulation of the Simple Theory of Types. Journal of Sym-
bolic Logic 5 (2), 56-68. DOI: 10.2307 /2266170. (URL: http:/ /www.jstor.org/
stable/2266170) (cit. on p. 32).

Church, A. 1941. The Calculi of Lambda-Conversion. Annals of Mathematics
Studies 6. Princeton University Press (cit. on p. 32).

Chwistek, L. 1922. Uber die Antinomien der Pinzipien der Mathematik. Matem-
atische Zeitschrift 14 (1), 236-243. DOI: 10.1007 / BF01215902. (URL: http:
/ /resolver.sub.uni-goettingen.de /purl?PPN266833020_0014) (cit. on p. 32).

Chwistek, L. 1925. The Theory of Constructive Logic. (Principles of Logic and
Mathematics). Extracted from the «Annales de la Société Polonaise de Math-
ématique». Cracow: University Press. (URL: http:/ / name.umdl.umich.
edu/AAS7985.0001.001) (cit. on p. 32).

COBOL. Report to Conference on Data Systems Languages Including Initial Spec-
ifications for a Common Business Oriented Language (COBOL) for Pro-
gramming Electronic Digital Computers 1960. Department of Defense. Apr.
1960. (URL: http:/ /bitsavers.org / pdf / codasyl / COBOL_Report_Apr60.
pdf) [visited on 2014-04-20] (cit. on p. 30).

Coelho, R., Rashid, A., Garcia, A., Ferrari, F., Cacho, N., Kulesza, U., Staa, A.
von, and Lucena, C. 2008. Assessing the Impact of Aspects on Exception
Flows: An Exploratory Study. In Proc. ECOOP 2008 European Conference
on Object-Oriented Programming. Lecture Notes in Computer Science 5142,
207-234. DOI: 10.1007 /978-3-540-70592-5_10 (cit. on pp. 76, 176).

Cohen, J. 1960. A Coefficient of Agreement for Nominal Scales. Educa-
tional and Psychological Measurement 20 (1), 37—-46. por: 10 . 1177 /
001316446002000104 (cit. on pp. 46, 67).

Cohen, M., Zhu, H. S., Senem, E. E., and Liu, Y. D. 2012. Energy types. In Proceed-
ings of the ACM international conference on Object oriented programming
systems languages and applications. New York, NY, USA: ACM, 831-850.
DOI: 10.1145/2384616.2384676 (cit. on pp. 76, 85, 176).

Colburn, T. R. 2000. Philosophy and Computer Science. Armonk: Sharpe (cit. on
p- 17).

Colquhoun, D. 2011. In Praise of Randomisation. The Importance of Causality in
Medicine and its Subversion by Philosophers of Science. In Evidence, Infer-
ence and Enquiry. Ed. by Dawid, P, Twining, W., and Vasilaki, M. Proceed-
ings of the British Academy 171. Oxford University Press, 323-343 (cit. on
p- 52).

110

Computer Science Curricula 2013. Curriculum Guidelines for Undergraduate De-
gree Programs in Computer Science 2013. Dec. 2013. DOI: 10.1145 /2534860
(cit. on p. 22).

Computing Curricula 2001. Computer Science Final Report 2001. Dec. 2001. DOI:
10.1145/384274.384275 (cit. on p. 22).

Condit, J., Harren, M., McPeak, S., Necula, G. C., and Weimer, W. 2003. CCured
in the real world. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation. PLDI "03. New York,
NY, USA: ACM, 232-244. pOI: 10.1145/781131.781157 (cit. on pp. 76, 176).

Cook, W. R. 2007. AppleScript. In HOPL III. Proceedings of the third ACM SIG-
PLAN conference on History of programming languages. New York: ACM.
DOI: 10.1145/1238844.1238845 (cit. on pp. 13, 35, 37).

Cowlishaw, M. 1994. The Early History of REXX. IEEE Annals of the History of
Computing 16 (4), 15-24. DOI: 10.1109/85.329753 (cit. on p. 35).

Crabtree, A., Rodden, T., Tolmie, P., and Button, G. 2009. Ethnography consid-
ered harmful. In CHI'2009 - Digital Life New World. The 27th Annual CHI
Conference on Human Factors in Computing Systems. Vol. 2, 879-888. DOI:
10.1145/1518701.1518835 (cit. on p. 49).

Crary, K. and Morrisett, G. 1999. Type Structuere for Low-Level Programming
Languages. In Automata, Languages and Programming. 26th International
Colloquium, ICALP'99. Ed. by Wiedermann, J.,, Emde Boas, P. van, and
Nielsen, M. Berlin: Springer, 40-54. DOI: 10.1007 / 3-540-48523-6_4 (cit.
on p. 21).

Crocker, D. H. 1982. Standard for the Format of ARPA Internet Text Messages.
Request for Comments 822. (URL: http:/ / www.ietf.org / rfc / rfc822. txt)
(cit. on p. 149).

Cruzes, D. S. and Dyb4, T. 2011a. Recommended Steps for Thematic Synthesis in
Software Engineering. In Proceedings of the 2011 Fifth International Sympo-
sium on Empirical Software Engineering and Measurement, 275-284. DOL:
10.1109/ESEM.2011.36 (cit. on pp. 48, 68-70).

Cruzes, D. S. and Dyb4d, T. 2011b. Research synthesis in software engineering. A
tertiary study. Information and Software Technology 53 (5), 440-455. DOI:
10.1016/j.infsof.2011.01.004 (cit. on pp. 40, 47).

Cruzes, D., Mendonga, M., Basili, V., Shull, F,, and Jino, M. 2007. Automated
Information Extraction from Empirical Software Engineering Literature. Is
that possible? In ESEM 2007. Proceedings of the First International Sympo-
sium on Empirical Software Engineering and Measurement, 491-493. DOI:
10.1109/ESEM.2007.62 (cit. on p. 48).

Curtis, B. 1982. A review of human factors research on programming languages
and specifications. In Proceedings of the 1982 Conference on Human Factors
in Computing Systems. CHI "82. New York, NY, USA: ACM, 212-218. DOI:
10.1145/800049.801782 (cit. on pp. 76, 180, 181).

111

Dahl, O.-]. and Nygaard, K. 1966. SIMULA. An ALGOL-Based Simulation Lan-
guage. Communications of the ACM 9 (9), 671-678. DOI: 10.1145/365813.
365819 (cit. on p. 30).

Daly, J., Brooks, A., Miller, J., Roper, M., and Wood, M. 1995. The effect of inheri-
tance on the maintainability of object-oriented software: an empirical study.
In Software Maintenance, 1995. Proceedings., International Conference on,
20-29. DOI: 10.1109/ICSM.1995.526524 (cit. on pp. 76, 79, 80, 176).

Daly, J., Brooks, A., Miller, J., Roper, M., and Wood, M. 1996. Evaluating inher-
itance depth on the maintainability of object-oriented software. Empirical
Software Engineering 1 (2), 109-132. po1: 10.1007 / BF00368701 (cit. on
pp- 76,79, 80, 176, 181).

Daly, M. T., Sazawal, V., and Foster, J. S. 2009. Work In Progress: an Empirical
Study of Static Typing in Ruby. In Proc. PLATEAU 2009. (URL: http://ecs.
victoria.ac.nz/foswiki/pub/Events/PLATEAU /2009Program / plateau09-
daly.pdf) (cit. on pp. 76, 79, 80, 88, 176).

Dawes, M., Summerskill, W., Glasziou, P., Cartabellotta, A., Martin, J., Hopayian,
K., Porzsolt, E, Burls, A., and Osborne, J. 2005. Sicily statement on evidence-
based practice. BMC Medical Education 5. DOI: 10.1186 / 1472-6920-5-1.
[Visited on 2011-09-27] (cit. on p. 38).

Dawid, P, Twining, W., and Vasilaki, M., eds. Evidence, Inference and Enquiry
2011. Proceedings of the British Academy 171. Oxford University Press.

Davis, R. 1977. Generalized procedure calling and content-directed invocation. In
Proceedings of the 1977 symposium on Artificial intelligence and program-
ming languages, 45-54. DOI: 10.1145/800228.806931 (cit. on p. 22).

Deligiannis, I. S., Shepperd, M., Webster, S., and Roumeliotis, M. 2002. A Review
of Experimental Investigations into Object-Oriented Technology. Empirical
Software Engineering 7 (3), 193-231. DOI: 10.1023/A:1016392131540 (cit. on
pp. 76, 180, 181).

Demsky, B. and Dash, A. 2008. Bristlecone: A Language for Robust Software Sys-
tems. In Proc. ECOOP 2008 European Conference on Object-Oriented Pro-
gramming. Lecture Notes in Computer Science 5142, 490-515. DO1: 10.1007 /
978-3-540-70592-5_21 (cit. on pp. 76, 177).

Denning, P. J. 1989. Editorial: New directions for the Communications. Communi-
cations of the ACM 32 (2), 164-165. DOI: 10.1145/63342.315917. [Visited on
2011-09-06] (cit. on p. 57).

Dershem, H. L. and Jipping, M. J. 1995. Programming Languages. Structures and
Models. Boston: PWS (cit. on pp. 16, 17).

Détienne, F. 2002. Software Design. Cognitive Aspects. Trans. by Bott, F. Practi-
tioner Series. London: Springer (cit. on pp. 13, 18, 36, 92, 93, 98).

Dieste, O., Grimdn, A., and Juristo, N. 2009. Developing search strategies for de-
tecting relevant experiments. Empirical Software Engineering 14 (5), 513—
539. DOI: 10.1007 /s10664-008-9091-7 (cit. on pp. 43, 44).

112

Dolado, J. J.,, Harman, M., Otero, M. C., and Hu, L. 2003. An empirical investi-
gation of the influence of a type of side effects on program comprehension.
Software Engineering, IEEE Transactions on 29 (7), 665-670. DOIL: 10.1109 /
TSE.2003.1214329 (cit. on pp. 76, 81, 82, 177).

Dolby, J., Hammer, C., Marino, D., Tip, E, Vaziri, M., and Vitek, J. 2012. A data-
centric approach to synchronization. ACM Transactions on Programming
Languages and Systems 34 (1), 4:1-4:48. DOI: 10.1145/2160910.2160913 (cit.
on pp. 76, 85, 177).

Doscher, H. 1990. An Ada case study in cellular telephony testing tools. In Pro-
ceedings of the Ada-Europe international conference on Ada : experiences
and prospects: experiences and prospects. New York, NY, USA: Cambridge
University Press, 24-35. (URL: http://dl.acm.org/ citation.cfm?id=103367.
103626) (cit. on pp. 76, 177).

Dyba, T., Kitchenham, B. A., and Jergensen, M. 2005. Evidence-Based Software
Engineering for Practitioners. IEEE Software 22 (1), 58-65. DOI: 10.1109 /
MS.2005.6. [Visited on 2011-09-26] (cit. on pp. 14, 38).

Dyba, T., Sjeberg, D. 1. K., and Cruzes, D. S. 2012. What Works for Whom, Where,
When, and Why? On the Role of Context in Empirical Software Engineering.
In ESEM’12. Proceedings of the ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, 19-28. DOI: 10.1145 /
2372251.2372256 (cit. on pp. 52, 93).

Dyer, R., Rajan, H., and Cai, Y. 2012. An exploratory study of the design impact of
language features for aspect-oriented interfaces. In Proceedings of the 11th
annual international conference on Aspect-oriented Software Development.
New York, NY, USA: ACM, 143-154. DOI: 10.1145/2162049.2162067 (cit. on
pp. 76, 83, 177).

Ebcioglu, K., Sarkar, V., El-Ghazawi, T., and Urbanic, J. 2006. An experiment in
measuring the productivity of three parallel programming languages. In
Proceedings of the Third Workshop on Productivity and Performance in
High-End Computing (PPHEC-06). (URL: https: / / upc-bugs.1Ibl.gov /
~phargrov /sc12 /PGAS-SC12/ content /x10/x10-lang / www.cs.rice.edu/
_vs3/PDF/PPHEC2006-final.pdf) (cit. on pp. 76, 177, 181).

Embley, D. W. 1978. Empirical and formal language design applied to a unified
control construct for interactive computing. International Journal of Man-
Machine Studies 10 (2), 197-216. DOI: 10.1016 /S0020-7373(78)80012-1 (cit.
on pp. 28,76, 81, 82, 89,177, 181).

Embley, D. W. and Hansen, W.]. 1976. The KAIL Selector. A Unified Control
Construct. SIGPLAN Notices 11 (1), 22-29. DOI: 10.1145/987324.987327 (cit.
on p. 28).

113

Endrikat, S. and Hanenberg, S. 2011. Is Aspect-Oriented Programming a Re-
warding Investment into Future Code Changes? A Socio-technical Study on
Development and Maintenance Time. In Program Comprehension (ICPC),
2011 IEEE 19th International Conference on, 51-60. DOI: 10.1109 /ICPC.2011.
46 (cit. on pp. 76, 177).

Engebretson, A. and Wiedenbeck, S. 2002. Novice comprehension of programs
using task-specific and non-task-specific constructs. In Human Centric
Computing Languages and Environments, 2002. Proceedings. IEEE 2002
Symposia on, 11-18. DOI: 10.1109 / HCC.2002.1046335 (cit. on pp. 76, 79,
80, 177).

Ertl, M. A. 1999. Is Forth Code Compact? A Case Study. In EuroForth’99. (URL:
http:/ /www.complang.tuwien.ac.at/papers/ertl99ef.ps.gz) (cit. on pp. 76,
177).

Every-Palmer, S. and Howick, J. 2014. How evidence-based medicine is failing
due to biased trials and selective publication. Journal of Evaluation in Clin-
ical Practice. Advance online publication. DOI: 10.1111 /jep.12147 (cit. on
p.51).

Evidence-Based Medicine Working Group, the 1992. Evidence-Based Medicine.
A New Approach to Teaching the Practice of Medicine. JAMA the Journal
of the American Medical Association 268 (17), 2420-2425 (cit. on pp. 14, 38).

Fagan, M. 1991. Soft Typing. An Approach to Type Checking for Dynamically
Typed Languages. PhD thesis. Rice University. (URL: http:/ /scholarship.
rice.edu/handle/1911/16439) [visited on 2014-02-10] (cit. on p. 17).

Felizardo, K. R., Andery, G. E, Paulovich, F. V., Minghim, R., and Maldonado, J. C.
2012. A visual analysis approach to validate the selection review of primary
studies in systematic reviews. Information and Software Technology 54 (10),
1079-1091. DOI: 10.1016/j.infsof.2012.04.003 (cit. on p. 47).

Felizardo, K. R., Salleh, N., Martins, R. M., Mendes, E., MacDonell, S. G., and Mal-
donado, J. C. 2011. Using Visual Text Mining to Support the Study Selection
Activity in Systematic Literature Reviews. In Proceedings of the 2011 Fifth
International Symposium on Empirical Software Engineering and Measure-
ment, 77-86. DOI: 10.1109/ESEM.2011.16 (cit. on p. 47).

Felizardo, K. R., Nakagawa, E. Y., Feitosa, D., Minghim, R., and Maldonado, J. C.
2010. An Approach Based on Visual Text Mining to Support Categoriza-
tion and Classification in the Systematic Mapping. In Proc. 14th Interna-
tional Conference on Evaluation and Assessment in Software Engineering
(EASE). (URL: http:/ /ewic.bcs.org/ content/ ConWebDoc / 34783) [visited
on 2014-03-20] (cit. on p. 48).

Felizardo, K. R., Riaz, M., Sulayman, M., Mendes, E., MacDonell, S. G., and Mal-
donado, J. C. 2011. Analyzing the use of graphs to represent the results of
Systematic Reviews in Software Engineering. In SBES 2011. 25th Brazilian
Symposium on Software Engineering, 174-183. DOI: 10.1109 / SBES.2011.9
(cit. on p. 48).

114

Ferrari, F, Burrows, R., Lemos, O., Garcia, A., Figueiredo, E., Cacho, N., Lopes,
E., Temudo, N., Silva, L., Soares, S., Rashid, A., Masiero, ., Batista, T., and
Maldonado, J. 2010. An exploratory study of fault-proneness in evolving
aspect-oriented programs. In Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 1. ICSE "10. New York,
NY, USA: ACM, 65-74. DOI: 10.1145/1806799.1806813 (cit. on pp. 76, 84, 85,
177).

Ferrett, L. K. and Offutt, J. 2002. An empirical comparison of modularity of pro-
cedural and object-oriented software. In Engineering of Complex Computer
Systems, 2002. Proceedings. Eighth IEEE International Conference on, 173-
182. DOI: 10.1109/ICECCS.2002.1181510 (cit. on pp. 76, 177).

Fiedler, K. and Krueger, J. I. 2013. Afterthoughts on precognition. No cogent ev-
idence for anomalous influences of consequent events on preceding cogni-
tion. Theory & Psychology 23 (3), 323-333. DOI: 10.1177 /0959354313485504
(cit. on p. 51).

Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A,
Soares, S., Ferrari, F,, Khan, S., Filho, F. C., and Dantas, F. 2008. Evolving
software product lines with aspects. In Software Engineering, 2008. ICSE
’08. ACM/IEEE 30th International Conference on, 261-270. DOI: 10.1145/
1368088.1368124 (cit. on pp. 76, 83, 177).

Flanagan, C., Freund, S. N., Lifshin, M., and Qadeer, S. 2008. Types for atomicity:
Static checking and inference for Java. ACM Transactions on Programming
Languages and Systems 30 (4). DOI: 10.1145/1377492.1377495 (cit. on pp. 76,
177).

Fleiss, J. L. 1971. Measuring Nominal Scale Agreement Among Many Raters. Psy-
chological Bulletin 76 (5), 378-382 (cit. on pp. 46, 67).

Floyd, R. W. 1979. The paradigms of programming. Communications of the ACM
22 (8) (Aug. 1979), 455-460. DOI: 10.1145/359138.359140 (cit. on pp. 22, 24).

FORTRAN IV Language 1963. International Business Machines Corporation.
(URL: http:/ / www.fh-jena.de / ~kleine / history / languages / C28-6274-
1_7090_FORTRANIV.pdf) [visited on 2014-04-15] (cit. on p. 27).

Foster, J. S., Johnson, R., Kodumal, J., and Aiken, A. 2006. Flow-insensitive type
qualifiers. ACM Transactions on Programming Languages and Systems 28
(6), 1035-1087. DOI: 10.1145/1186632.1186635 (cit. on pp. 76, 85, 177).

Francis, G. 2012. Too good to be true. Publication bias in two prominent studies
from experimental psychology. Psychonomic Bulletin & Review 19 (2), 151
156. DOTI: 10.3758 /513423-012-0227-9 (cit. on p. 51).

French, P. 1999. The development of evidence-based nursing. Journal of Ad-
vanced Nursing 29 (1), 72-78. DOI: 10.1046 /j.1365-2648.1999.00865 . x.
[Visited on 2011-10-04] (cit. on p. 38).

Friedman, L. W. 1992. From Babbage to Babel and Beyond. A Brief History of
Programming Languages. Computer Languages 17 (1), 1-17 (cit. on p. 34).

115

Furuta, R. and Kemp, P. M. 1979. Experimental evaluation of programming lan-
guage features: Implications for introductory programming languages. In
Proceedings of the tenth SIGCSE technical symposium on Computer science
education. New York, NY, USA: ACM, 18-21. DOI: 10.1145/800126.809544
(cit. on pp. 76, 180, 181).

Fyfe, R. 1997a. An Empirical Study of C++ Programs. BSc thesis. (URL: http:/ /
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.142.5633&rep=repl&
type=pdf) (cit. on pp. 76, 180, 181).

Fyfe, R. 1997b. An Empirical Study on C++ Programs Project Literature Review.
Student project report. (URL: http: / / citeseerx.ist. psu.edu / viewdoc /
download ?doi=10.1.1.142.6326 &rep =repl & type=pdf) (cit. on pp. 76,
180, 181).

Fahndrich, M. and Leino, K. R. M. 2003. Declaring and checking non-null types
in an object-oriented language. In OOPSLA ’03: Proceedings of the 18th an-
nual ACM SIGPLAN conference on Object-oriented programing, systems,
languages, and applications, 302-312. DOI: 10.1145/949305.949332 (cit. on
pp- 76, 177).

Gabbrielli, M. and Martini, S. 2010. Programming Languages. Principles and
Paradigms. London: Springer. DOT: 10.1007 / 978-1-84882-914-5 (cit. on
pp- 17, 26).

Gannon, J. D. 1977. An experimental evaluation of data type conventions. Com-
munications of the ACM 20 (8), 584-595. DOI: 10.1145/359763.359800 (cit. on
pp. 76, 81, 82, 89, 177, 181).

Gannon, J. D. and Horning, J. J. 1975a. Language design for programming reli-
ability. Software Engineering, IEEE Transactions on SE-1 (2), 179-191. DOL:
10.1109/TSE.1975.6312838 (cit. on pp. 76, 177, 181).

Gannon, J. D. and Horning, J. J. 1975b. The impact of language design on the
production of reliable software. In Proceedings of the international confer-
ence on Reliable software. New York, NY, USA: ACM, 10-22. por: 10.1145/
800027.808420 (cit. on pp. 76, 177, 181).

Gannon, J. D. 1976. An experiment for the evaluation of language features. Inter-
national Journal of Man-Machine Studies 8 (1), 61-73. DOI: 10.1016 /S0020-
7373(76)80010-7 (cit. on pp. 76, 177, 181).

Garcia-Borgorion, L., Barcelona, M. A., Garcfa-Garcia, J. A., Alba, M., and
Escalona, M. J. 2014. Software process modeling languages. A systematic lit-
erature review. Information and Software Technology 56 (2), 103-116. DOI:
10.1016/j.infsof.2013.10.001 (cit. on p. 40).

Gerakios, P.,, Biboudis, A., and Smaragdakis, Y. 2013. Forsaking Inheritance. Su-
percharged Delegation in Delph]. In OOPSLA13. The Proceedings of the
2013 International Conference on Object Oriented Programming, Systems,
Languages & Applications, 233-251. DOI: 10.1145/2509136.2509535 (cit. on

p- 13).

116

Gerakios, P, Papaspyrou, N., and Sagonas, K. 2014. Static safety guarantees for a
low-level multithreaded language with regions. Science of Computer Pro-
gramming 80, 223-263. DOI: 10.1016/j.scico.2013.06.005 (cit. on p. 26).

Gettys, J., Scheifler, R. W., Adams, C., Joloboff, V., Hiura, H., McMahon, B., New-
man, R., Tabayoyon, A., Widener, G., and Yamada, S. 2002. Xlib. C Language
X Interface. X Consortium Standard. (URL: http:/ / www.x.org/ releases /
X11R7.7 /doc/1ibX11/1ibX11 /1ibX11.html) [visited on 2014-02-12] (cit. on
p- 18).

Gil, J. and Lenz, K. 2010. The Use of Overloading in Java Programs. In Proc.
ECOOQOP 2010 European Conference on Object-Oriented Programming. Lec-
ture Notes in Computer Science 6183, 529-551. DOI: 10.1007 / 978-3-642-
14107-2_25 (cit. on pp. 76, 85, 177).

Gil, J. and Shragai, T. 2009. Are We Ready for a Safer Construction Environment?
In Proc. ECOOP 2009 European Conference on Object-Oriented Program-
ming. Lecture Notes in Computer Science 5653, 495-519. DOI: 10.1007 /978-
3-642-03013-0_23 (cit. on pp. 76, 85, 177).

Gilmore, D. J. and Green, T. R. G. 1984. Comprehension and recall of miniature
programs. International Journal of Man-Machine Studies 21 (1), 31-48. DOIL:
10.1016/50020-7373(84)80037-1 (cit. on pp. 76, 79, 80, 177).

Giloi, W. K. 1997. Konrad Zuse’s Plankalkiil. The First High-Level, “non von Neu-
mann” Programming Language. IEEE Annals of the History of Computing
19 (2), 17-24. DOI: 10.1109/85.586068 (cit. on p. 34).

Girard, J.-Y. 1971. Une extension de l'interpretation de Godel a 'analyse, et son
application a l'elimination des coupures dans l'analyse et la theorie des
types. In Proceedings of the Second Scandinavian Logic Symposium. Ed.
by Fenstad, J. E. Studies in logic and the foundations of mathematics 63.
Amsterdam: North-Holland, 63-92 (cit. on p. 33).

Glaser, B. G. and Strauss, A. L. 1967. The Discovery of Grounded Theory. Strate-
gies for Qualitative Research. Chicago: Aldine (cit. on p. 49).

Glass, G. V. 1976. Primary, Secondary and Meta-Analysis of Research. Educa-
tional Researcher 5 (10), 3-8. (URL: http://www.jstor.org/stable /1174772)
(cit. on p. 40).

Glass, R. L., Vessey, ., and Ramesh, V. 2002. Research in software engineering. An
analysis of the literature. Information and Software Technology 44, 491-506
(cit. on p. 59).

Godfrey-Smith, P. 2003. Theory and reality. An introduction to the philosophy of
science. Chicago: University of Chicago Press (cit. on pp. 52, 53).

Goldberg, A. and Robson, D. 1983. SMALLTALK’80. The language and its imple-
mentation. Reading, Massachusetts: Addison-Wesley. (URL: http:/ /dl.acm.
org/citation.cfm?id=273) (cit. on p. 31).

117

Goldstein, I. and Sussman, G. J. 1974. Some Projects in Automatic Programming.
Working Paper 67. Massachusetts Institute of Technology Artificial Intelli-
gence Laboratory, Apr. 1974. (URL: https:/ / dspace.mit.edu/handle/1721.
1/41102) [visited on 2014-04-11] (cit. on p. 22).

Google 2011. Google Scholar Help. (URL: http:/ /scholar.google.com/intl/en/
scholar/help.html) [visited on 2011-09-09] (cit. on p. 95).

Gosling, J., Joy, B., Steele, G., Bracha, G., and Buckley, A. 2014. The Java® Lan-
guage Specification. Java SE 8 Edition. Oracle. (URL: http:/ / docs.oracle.
com/javase/specs/jls/se8/jls8.pdf) [visited on 2014-04-17] (cit. on pp. 17,
29, 157).

Gougen,]. A., Thatcher,]. W., Wagner, E. G., and Wright, J. B. 1977. Initial Al-
gebra Semantics and Continuous Algebras. Journal of the Association for
Computing Machinery 24 (1), 68-95. DOI: 10.1145/321992.321997 (cit. on
p- 25).

Graunke, P., Krishnamurthi, S., Van Der Hoeven, S., and Felleisen, M. 2001. Pro-
gramming the Web with High-Level Programming Languages. In Program-
ming Languages and Systems. 10th European Symposium on Program-
ming, ESOP 2001, Held as Part of the Joint Europaean Conferences on The-
ory and Practice of Software, ETAPS 2001. Ed. by Sands, D. Lecture Notes
in Computer Science 2028. Berlin: Springer, 122-136. DOI: 10.1007 / 3-540-
45309-1_9 (cit. on p. 20).

Gray, G. T. and Smith, R. Q. 2004. Sperry Rand’s First-Generation Computers,
1955-1960. Hardware and Software. IEEE Annals of the History of Comput-
ing 26 (4), 20-34. DOI: 10.1109/MAHC.2004.34 (cit. on p. 34).

Green, J., Shapiro, R. M., Helt Jr,, E. R., Franciotti, R. G., and Theil, E. H. 1959. Re-
marks on ALGOL and Symbol Manipulation. Communications of the ACM
2(9), 25-27. DOI: 10.1145/368424.368438 (cit. on p. 27).

Green, T. R. G. 1977. Conditional program statements and their comprehensibility
to professional programmers. Journal of Occupational Psychology 50 (2),
93-109. DOTI: 10.1111/j.2044-8325.1977.tb00363.x (cit. on pp. 76, 83, 177, 181).

Green, T. R. G. 1980. Ifs and thens: Is nesting just for the birds? Software: Practice
and Experience 10 (5), 373-381. DOI: 10.1002/spe.4380100505 (cit. on pp. 76,
180, 181).

Green, T. R. G. 1989. Cognitive Dimensions of Notations. In People and Com-
puters V. Ed. by Sutcliffe, A. and Macaulay, L. Cambridge University Press,
443-460. (URL: https:/ /www.cl.cam.ac.uk/~afb21/CognitiveDimensions /
papers/Green1989.pdf) [visited on 2014-04-26] (cit. on p. 36).

118

Greenwood, P, Bartolomei, T., Figueiredo, E., Dosea, M., Garcia, A., Cacho, N.,
Sant’Anna, C., Soares, S., Borba, P.,, Kulesza, U., and Rashid, A. 2007. On
the Impact of Aspectual Decompositions on Design Stability: An Empirical
Study. In Proc. ECOOP 2007 European Conference on Object-Oriented Pro-
gramming. Lecture Notes in Computer Science 4609, 176-200. DO1: 10.1007 /
978-3-540-73589-2_9 (cit. on pp. 76, 177).

Griffiths, M. 1975. Relationship Between Definition and Implementation of a Lan-
guage. In Software Engineering. An Advanced Course. Ed. by Bauer, E. L.
Lecture Notes in Computer Science 30. Berlin: Springer, 76-110. DOTI: 10.
1007 /3-540-07168-7_75 (cit. on p. 25).

Guba, E. G. and Lincoln, Y. S. 1994. Competing Paradigms in Qualitative Re-
search. In Handbook of Qualitative Research. Ed. by Denzin, N. K. and Lin-
coln, Y. S. Thousand Oaks: SAGE, 105-117 (cit. on p. 52).

Guyatt, G. H. 1991. Evidence-Based Medicine [Editorial]. Annals of Internal
Medicine 114 (ACP Journal Club supplement 2), A-16 (cit. on pp. 14, 38).

Halpern, J. Y., Meyer, A. R., and Trakhtenbrot, B. A. 1984. The Semantics of Local
Storage, or What Makes the Free-List Free. Preliminary report. In POPL'84.
Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, 245-257. DOT: 10.1145 /800017 .800536 (cit. on
p-17).

Halverson R., J. 1993. An empirical investigation comparing IF-THEN rules and
decision tables for programming rule-based expert systems. In System Sci-
ences, 1993, Proceeding of the Twenty-Sixth Hawaii International Confer-
ence on. Vol. iii, 316-323 vol.3. DOI: 10.1109 / HICSS.1993.284327 (cit. on
pp- 76,79, 80, 88, 177).

Hammerstrom, K. T. and Bjorndal, A. 2011. If there are no randomized controlled
trials, do we always need more research? Cochrane Database of System-
atic Reviews (Mar. 14, 2011). (URL: http:/ /www.thecochranelibrary.com /
details / editorial / 1034087 / If- there-are-no-randomised- controlled - trials-
do-we-always-need-more-research.html) (cit. on p. 51).

Hanenberg, S., Kleinschmager, S., and Josupeit-Walter, M. 2009. Does aspect-
oriented programming increase the development speed for crosscutting
code? An empirical study. In Third international symposium on Empiri-
cal Software Engineering and Measurement ESEM 2009, 156-167. DOI: 10.
1109/ESEM.2009.5316028 (cit. on pp. 76, 177).

Hanenberg, S. 2009. What is the Impact of Type Systems on Programming Time?
First Empirical Results. In Proc. PLATEAU 2009. (URL: http:/ /ecs.victoria.
ac . nz / foswiki / pub / Events / PLATEAU / 2009Program / plateau09 -
hanenberg.pdf) (cit. on pp. 76, 81, 82, 177).

119

Hanenberg, S. 2010a. An experiment about static and dynamic type systems:
doubts about the positive impact of static type systems on development
time events. In OOPSLA “10: Proceedings of the ACM international confer-
ence on Object oriented programming systems languages and applications,
22-35. DOI: 10.1145/1869459.1869462 (cit. on pp. 62, 76, 81, 82, 177).

Hanenberg, S. 2010b. Doubts about the Positive Impact of Static Type Systems on
Programming Tasks in Single Developer Projects - An Empirical Study. In
Proc. ECOOP 2010 European Conference on Object-Oriented Programming,.
Lecture Notes in Computer Science 6183, 300-303. DOI: 10.1007 /978-3-642-
14107-2_14 (cit. on pp. 62, 76, 81, 82, 177).

Hanenberg, S. 2010c. Faith, hope, and love. An essay on software science’s ne-
glect of human factors. In Proceedings of the ACM international confer-
ence on Object oriented programming systems languages and applications.
Reno/Tahoe, Nevada, USA: ACM, 933-946. 1SBN: 978-1-4503-0203-6. DOTI:
10.1145/1869459.1869536 (cit. on pp. 13, 37).

Hanenberg, S., Kleinschmager, S., Robbes, R., Tanter, E., and Stefik, A. 2013. An
Empirical Study on the impact of Static Typing on Software Maintainability.
Empirical Software Engineering. DOI: 10.1007 / s10664-013-9289-1 (cit. on
p. 31).

Harel, D. and Rumpe, B. 2004. Meaningful Modeling. What’s the Semantics of
“Semantics”? Computer 37 (10), 64-72. DOI: 10.1109 /MC.2004.172 (cit. on
p- 26).

Harel, E. C. and McLean, E. R. 1985. The Effects of Using a Nonprocedural Com-
puter Language on Programmer Productivity. MIS Quarterly 9 (2), 109-120.
(URL: http:/ /www.jstor.org/stable/249112) (cit. on pp. 76, 177).

Harper, R. 2014. Practical Foundations for Programming Languages. Version 1.43.
(URL: http: / / www.cs.cmu.edu / ~rwh / plbook / book. pdf) [visited on
2014-04-22] (cit. on pp. 26, 31).

Harrison, R., Counsell, S., and Nithi, R. 2000. Experimental assessment of the ef-
fect of inheritance on the maintainability of object-oriented systems. Journal
of Systems and Software 52 (2-3), 173-179. DOIL: 10.1016 / S0164-1212(99)
00144-2 (cit. on pp. 76, 79, 80, 178, 181).

Harrison, R., Smaraweera, L. G., Dobie, M. R., and Lewis, P. H. 1996. Comparing
programming paradigms: an evaluation of functional and object-oriented
programs. Software Engineering Journal 11 (4), 247-254. (URL: http:/ /
ieeexplore.ieee.org / xpls / abs_all.jsp ?arnumber=511273 &tag=1) (cit. on
pp. 76,177, 181).

Henry, S. M. and Humphrey, M. 1990. A controlled experiment to evaluate main-
tainability of object-oriented software. In Software Maintenance, 1990., Pro-
ceedings., Conference on, 258-265. DOI: 10.1109/ICSM.1990.131370 (cit. on
pp. 76, 178, 181).

120

Henry, S. and Humphrey, M. 1993. Object-oriented vs procedural programming-
languages: effectiveness in program maintenance. Journal of Object-
Oriented Programming 6 (3), 4149 (cit. on pp. 76, 178).

Henry, S. M. and Humphrey, M. C. 1988. Comparison of an Object-Oriented Pro-
gramming Language to a Procedural Programming Language for Effective-
ness in Program Maintenance. Technical Report TR-88-49. Computer Sci-
ence, Virginia Polytechnic Institute and State University. (URL: http:/ /
eprints.cs.vt.edu/archive/00000133/) (cit. on pp. 76, 178).

Hertz, M. and Berger, E. D. 2005. Quantifying the performance of garbage col-
lection vs. explicit memory management. In OOPSLA ’05: Proceedings of
the 20th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, 313-326. DOI: 10.1145/1094811.
1094836 (cit. on pp. 76, 178).

Hicks, M., Morrisett, G., Grossman, D., and Jim, T. 2004. Experience with safe
manual memory-management in cyclone. In Proceedings of the 4th inter-
national symposium on Memory management. New York, NY, USA: ACM,
73-84. DOI: 10.1145/1029873.1029883 (cit. on pp. 76, 178).

Higgins, J. P. and Green, S., eds. Cochrane Handbook for Systematic Reviews of
Interventions 2011. Version 5.1.0. The Cochrane Collaboration. (URL: http:
/ /handbook.cochrane.org/) (cit. on pp. 42, 43).

Hilbert, D. and Ackermann, W. 1928. Grundziige der Theoretischen Logik. Die
Grundlehren der Matematischen Wissenschaften XXVII. Berlin: Springer
(cit. on p. 32).

Hindley, R. 1969. The Principal Type-Scheme of an Object in Combinatory Logic.
Transactions of the American Mathematical Society 146 (Dec. 1969), 29-60.
DOI: 10.2307/1995158 (cit. on p. 33).

Hitz, M. and Hudec, M. 1995. Modula-2 versus C++ as a first programming lan-
guage—some empirical results. SIGCSE Bulletin 27 (1), 317-321. DOI: 10.
1145/199691.199838 (cit. on pp. 76, 178).

Hoare, C. A. R. 1965. Record Handling. ALGOL Bulletin (21) (Nov. 1965), 39-69.
(URL: http://dl.acm.org/citation.cfm?id=1061041) (cit. on p. 30).

Hoare, C. A. R. 1966. Further Thoughts on Record Handling AB21.3.6. ALGOL
Bulletin (23) (May 1966), 5-11. (URL: http:/ /dl.acm.org/ citation.cfm?id=
1061069) (cit. on p. 30).

Hoare, C. A. R. 1989. Hints on programming-language design. In Essays in Com-
puting Science. Ed. by Jones, C. B. Prentice Hall, 193-216 (cit. on p. 33).

Hoc, J.-M. 1983. Psychological study of programming activity: a review. Technol-
ogy and Science of Informatics 1 (5). (URL: http:/ /jeanmichelhoc.free.fr/
pdf/Hoc%201983a.pdf) (cit. on pp. 36, 76, 92, 98, 180-182).

Hoc, J.-M., Green, T. R. G., Samurgay, R., and Gilmore, D. J., eds. Psychology of
Programming 1990. London: Academic (cit. on pp. 13, 36).

121

Hochstein, L. and Basili, V. R. 2006. An empirical study to compare two parallel
programming models. In Proceedings of the eighteenth annual ACM sym-
posium on Parallelism in algorithms and architectures. SPAA "06. New York,
NY, USA: ACM, 114-114. DO1: 10.1145/1148109.1148127 (cit. on pp. 76, 81,
82,178).

Hochstein, L., Basili, V. R., Vishkin, U., and Gilbert, J. 2008. A pilot study to com-
pare programming effort for two parallel programming models. Journal of
Systems and Software 81 (11), 1920-1930. DOI: 10.1016 /j.jss.2007.12.798
(cit. on pp. 76, 81, 82, 178, 181).

Hoffman, K. and Eugster, P. 2008. Towards reusable components with aspects:
an empirical study on modularity and obliviousness. In Proceedings of the
30th international conference on Software engineering. ICSE '08. New York,
NY, USA: ACM, 91-100. DOI: 10.1145/1368088.1368102 (cit. on pp. 76, 85,
178).

Holmevik, J. R. 1994. Compiling SIMULA. A Historical Study of Technological
Genesis. IEEE Annals of the History of Computing 16 (4), 25-37. DOI: 10.
1109/85.329756 (cit. on p. 34).

Hopcroft, J. E., Motwani, R., and Ullman, J. D. 2007. Introduction to Automata
Theory, Languages, and Computation. 3rd ed. Pearson Addison Wesley (cit.
on p. 17).

HOPL III. Proceedings of the third ACM SIGPLAN conference on History of pro-
gramming languages 2007. New York: ACM (cit. on p. 34).

Howick, J., Chalmers, I., Glasziou, P., Greenhalgh, T., Heneghan, C., Liberati, A.,
Moschetti, I., Phillips, B., Thornton, H., Goddard, O., and Hodginkson, M.
2011. The Oxford 2011 Levels of Evidence. (URL: http:/ /www.cebm.net/
index.aspx?0=5653) [visited on 2014-04-26] (cit. on p. 51).

Howson, C. and Urbach, P. 2006. Scientific Reasoning. The Bayesian Approach.
3rd ed. Chicago: Open Court (cit. on p. 53).

Hu, R., Kouzapas, D., Pernet, O., Yoshida, N., and Honda, K. 2010. Type-Safe
Eventful Sessions in Java. In Proc. ECOOP 2010 European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science 6183,
329-353. DOT: 10.1007 /978-3-642-14107-2_16 (cit. on pp. 76, 178).

Huang, S. S. and Smaragdakis, Y. 2011. Morphing: Structurally shaping a class
by reflecting on others. ACM Transactions on Programming Languages and
Systems 33 (2), 6:1-6:44. DOI: 10.1145/1890028.1890029 (cit. on pp. 76, 178).

Hudak, P, Hughes, J., Peyton Jones, S., and Wadler, P. 2007. A History of Haskell.
Being Lazy With Class. In Proceedings of the Third ACM SIGPLAN History
of Programming Languages Conference. HOPL-III. DOI: 10.1145/1238844.
1238856 (cit. on p. 35).

122

Hudak, P. and Jones, M. P. 1994. Haskell vs. Ada vs. C++ vs. Awk vs. ...: An Ex-
periment in Software Prototyping Productivity. Tech. rep. Yale University.
(URL: http:/ /www.cs.yale.edu/ publications / techreports / tr1049.pdf) (cit.
on pp. 76, 178).

Hughes, J. 1989. Why Functional Programming Matters. The Computer Journal
32 (2),98-107. bo1: 10.1093/comjnl/32.2.98 (cit. on p. 23).

IEEE Standard Glossary of Software Engineering Terminology 1990. IEEE Std
610.12-1990. DOI: 10.1109/IEEESTD.1990.101064 (cit. on pp. 16, 20, 21).

Igarashi, A., Pierce, B. C., and Wadler, P. 2001. Featherweight Java. A Minimal
Core Calculus for Java and GJ. ACM Transactions on Programming Lan-
guages and Systems 23 (3), 396—450. DOI: 10.1145 /503502.503505 (cit. on
p- 17).

Imtiaz, S., Bano, M., Ikram, N., and Niazi, M. 2013. A Teriary Study. Experiences
of Conducting Systematic Literature Reviews in Software Engineering. In
EASE 2013. Proceedings of the 17th International Conference on Evaluation
and Assessment in Software Engineering, 177-182. DOI: 10.1145 /2460999.
2461025 (cit. on p. 42).

Information Technology — Programming Languages — C# 2006. ISO/IEC 23270.
(URL: http:/ /standards.iso.org/ittf / Publicly AvailableStandards / c042926 _
ISO_IEC_23270_2006(E).zip) [visited on 2014-04-17] (cit. on pp. 29, 157).

Information Technology — Programming Languages — C 2011. INCITS/ISO/IEC
9899 (cit. on pp. 29, 157).

Ioannidis, J. P. A. 2005. Why Most Published Research Findings are False. PLoS
Medicine 2 (8), a124. DOI: 10.1371 /journal.pmed.0020124 (cit. on pp. 14, 51).

Ioannidis, J. P. A. 2008. Why Most Discovered True Associations Are Inflated.
Epidemiology 19 (5), 640-648. DOI: 10.1097 /EDE.0b013e31818131e7 (cit. on
pp. 14, 51).

Irvine, A. D. and Deutsch, H. 2013. Russell’s Paradox. In Stanford Encyclopedia
of Philosophy. Ed. by Zalta, E. N. Winter 2013. (URL: http:/ /plato.stanford.
edu/archives/win2013/entries/russell-paradox/) (cit. on p. 31).

Iselin, E. R. 1988. Conditional statements, looping constructs, and program com-
prehension: an experimental study. International Journal of Man-Machine
Studies 28 (1), 45-66. DOI: 10.1016 /S0020-7373(88)80052-X (cit. on pp. 70,
76,79, 80, 178).

Jalali, S. and Wohlin, C. 2012. Systematic Literature Studies. Database Searches
vs. Backward Snowballing. In ESEM"12. Proceedings of the ACM-IEEE In-
ternational Symposium on Empirical Software Engineering and Measure-
ment, 29-38. DOI: 10.1145/2372251.2372257 (cit. on p. 45).

Jeffrey, R. 2004. Subjective Probability. The Real Thing. Cambridge University
Press (cit. on p. 53).

123

Jim, T., Morrisett, G., Grossman, D., Hicks, M., Cheney, J., and Wang, Y. 2002. Cy-
clone: A safe dialect of C. In USENIX Annual Technical Conference. Vol. 90.
(URL: http:/ /static.usenix.org/event/usenix02 /jim.html) (cit. on pp. 76,
178).

Johnson, R. A. 2002. Object-oriented systems development: A review of empirical
research. Communications of the Association for Information Systems 8 (1).
(URL: http://aisel.aisnet.org/cais/vol8/iss1/4/) (cit. on pp. 76, 180, 181).

Kaijanaho, A.-J. 2010. Ohjelmointikielten periaatteet. Luentomoniste 16.
Jyvaskylan yliopisto, tietotekniikan laitos. (URL: http:/ / users.jyu.fi/
~antkaij/opetus/okp /2012 /okp-moniste.pdf) (cit. on p. 17).

Kamareddine, E, Laan, T., and Nederpelt, R. 2002. Types in Logic and Mathemat-
ics before 1940. The Bulletin of Symbolic Logic 8 (2), 185-245. DOI: 10.2307/
2693964. (URL: http:/ /www.jstor.org/stable/2693964) (cit. on p. 32).

Katz,]. H. and McGee, W. C. 1963. An Experiment in Non-Procedural Program-
ming. In 1963 Fall Joint Computer Conference. AFIPS Conference Proceed-
ings 24. Spartan. DOI: 10.1145/1463822.1463824 (cit. on p. 23).

Kaupe Jr., A. F. 1963. A Note on the Dangling else in ALGOL 60. Communications
of the ACM 6 (8), 460-462. DOT: 10.1145/366707.367585 (cit. on p. 27).

Kernighan, B. W. and Ritchie, D. M. 1978. The C programming language. Prentice-
Hall (cit. on p. 29).

Kernighan, B. W. and Ritchie, D. M. 1988. The C programming language. 2nd ed.
Prentice Hall (cit. on p. 29).

Kesler, T. E., Uram, R. B., Magareh-Abed, F., Fritzsche, A., Amport, C., and Dun-
smore, H. E. 1984. The effect of indentation on program comprehension. In-
ternational Journal of Man-Machine Studies 21 (5), 415-428. DoOI: 10.1016/
50020-7373(84)80068-1 (cit. on pp. 76, 79, 80, 178).

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G.
2001. An Overview of Aspect]. In ECOOP 2001 — Object-Oriented Program-
ming. 15th European Conference. Ed. by Knudsen, J. L. Berlin. Lecture
Notes in Computer Science 2072. Springer, 327-353. DOI: 10.1007 / 3-540-
45337-7_18 (cit. on p. 23).

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier,].-M.,
and Irwin, J. 1997. Aspect-Oriented Programming. In ECOOP’97 — Object-
Oriented Programming. 11th European Conference. Ed. by Aksit, M. and
Matsuoka, S. Lecture Notes in Computer Science 1241. Berlin: Springer, 220-
242. DOI: 10.1007 /BFb0053381 (cit. on p. 23).

Kilpatrick, S., Dreyer, D., Peyton Jones, S., and Marlow, S. 2014. Backpack.
Retrofitting Haskell with Interfaces. In POPL'14. Proceedings of the 41st An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
languages, 19-31. DOI: 10.1145/2535838.2535884 (cit. on p. 13).

124

Kinnersley, B. 2001. The Language List. Collected Information On About 2500
Computer Languages, Past and Present. (URL: http:/ / people.ku.edu /
~nkinners / LangList / Extras / langlist. htm) [visited on 2014-02-21] (cit. on
p- 13).

Kitchenham, B. A., Brereton, O. P., Owen, S., Butcher,]., and Jeffries, C. 2008.
Length and readability of structured software engineering abstracts. IET
Software 2 (1), 37-45. DOI: 10.1049/iet-sen:20070044 (cit. on p. 94).

Kitchenham, B. 2004a. Procedures for Performing Systematic Reviews. Joint Tech-
nical Report Keele TR/SE-0401, NICTA 0400011T.1. An early version of
Kitchenham and Charters (2007). Keele University and National ICT Aus-
tralia. (URL: http:/ /www.scm.keele.ac.uk/ease /sreview.doc) [visited on
2014-05-05] (cit. on p. 41).

Kitchenham, B. 2010. What's up with software metrics? A preliminary mapping
study. Journal of Systems and Software 83, 37-51. DOI: 10.1016/j.jss.2009.
06.041 (cit. on p. 6).

Kitchenham, B. A. 2004b. Systematic Reviews. In Proceedings of the 10th Inter-
national Symposium on Software Metrics, xii. DOI: 10.1109/ METRIC.2004.
1357885 (cit. on p. 41).

Kitchenham, B. A., Brereton, P, Turner, M., Niazi, M. K., Linkman, S., Pretorius,
R., and Budgen, D. 2010. Refining the Systematic Literature Review Process.
Two participant-observer case studies. Empirical Software Engineering 15
(6), 618-653. DOI: 10.1007 /510664-010-9134-8 (cit. on p. 45).

Kitchenham, B. A., Budgen, D., and Brereton, O. P. 2011. Using mapping studies
as the basis for further research. A participant-observer case study. Infor-
mation and Software Technology 53 (6), 638-651. DOI: 10.1016/j.infsof.2010.
12.011 (cit. on pp. 40, 42, 43, 45).

Kitchenham, B. A, Dyb4, T., and Jergensen, M. 2004. Evidence-Based Software
Engineering. In Proceedings of the 26th International Conference on Soft-
ware Engineering (ICSE’04). DOI: 10.1109 /ICSE.2004.1317449. [Visited on
2011-09-26] (cit. on pp. 14, 38).

Kitchenham, B., Brereton, O. P, Budgen, D., Turner, M., Bailey, J., and Linkman,
S. 2009. Systematic literature reviews in software engineering. A systematic
literature review. Information and Software Technology 51 (1), 7-15. DOI:
10.1016/j.infsof.2008.09.009 (cit. on p. 40).

Kitchenham, B. and Brereton, P. 2013. A systematic review of systematic review
process research in software engineering. Information and Software Tech-
nology 55 (12), 2049-2075. DOI: 10.1016 /j.infsof.2013.07.010 (cit. on pp. 41—
43,45,47,94).

125

Kitchenham, B., Brereton, P., and Budgen, D. 2012. Mapping study completeness
and reliability. A case study. In EASE 2012. 16th International Conference
on Evaluation & Assessment in Software Engineering Proceedings. Ed. by
Baldassarre, T., Genero, M., Mendes, E., and Piattini, M. DOI: 10.1049 /ic.
2012.0016 (cit. on pp. 40, 45, 48).

Kitchenham, B., Brereton, P, Li, Z., Budgen, D., and Burn, A. 2011. Repeatability
of Systematic Literature Reviews. In Proceedings of the 15th Annual Con-
ference on Evaluation & Assessment in Software Engineering (EASE 2011),
46-55. DOI: 10.1049/ic.2011.0006 (cit. on p. 48).

Kitchenham, B. and Charters, S. 2007. Guidelines for performing Systematic Lit-
erature Reviews in Software Engineering. Tech. rep. EBSE, July 2007. (URL:
http:/ /www.dur.ac.uk/ebse/resources/guidelines/Systematic-reviews-5-
8.pdf) [visited on 2014-03-13] (cit. on pp. 4043, 45-48, 68, 124).

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M.,
and Linkman, S. 2010. Systematic literature reviews in software engineering.
A tertiary study. Information and Software Technology 52 (8), 792-805. DOI:
10.1016/j.infsof.2010.03.006 (cit. on p. 40).

Kleinschmager, S. 2012. Can static type systems speed up programming? An ex-
perimental evaluation of static and dynamic type systems. GRIN Verlag.
(URL: http:/ /www.grin.com/en/e-book /199362 / can-static-type-systems-
speed-up-programming-an-experimental-evaluation) (cit. on pp. 76, 79, 80,
178).

Kleinschmager, S., Hanenberg, S., Robbes, R., Tanter, E., and Stefik, A. 2012. Do
static type systems improve the maintainability of software systems? An
empirical study. In Program Comprehension (ICPC), 2012 IEEE 20th Inter-
national Conference on, 153-162. DOI: 10.1109 /ICPC.2012.6240483 (cit. on
pp. 76,79, 80, 178).

Kleinschmager, S. 2009. A Controlled Experiment for Measuring the Impact of
Aspect-Oriented Programming on Software Development Time. GRIN Ver-
lag. (URL: http:/ / www.grin.com / en / e-book / 199337 / a- controlled -
experiment-for-measuring-the-impact- of-aspect-oriented- programming)
(cit. on pp. 76, 177).

Klerer, M. 1984. Experimental study of a two-dimensional language vs Fortran for
first-course programmers. International Journal of Man-Machine Studies 20
(5), 445-467. DOI: 10.1016/50020-7373(84)80021-8 (cit. on pp. 76, 178).

Klerer, M. 1991. Design of Very High-Level Computer Languages. A User-
Oriented Approach. 2nd ed. 1991: McGraw-Hill (cit. on p. 37).

Knuth, D. E. and Trabb Pardo, L. 2003. The Early Development of Programming
Languages. In Selected Papers on Computer Languages. Ed. by Knuth, D. E.
CSLI Lecture Notes 139. Originally published in the Encyclopedia of Com-
puter Science and Technology 7, 1977. Center for the Study of Language and
Information, Stanford University, 1-93 (cit. on pp. 30, 34).

126

Ko, A.]., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaf-
fidi, C., Lawrance, J., Lieberman, H., Myers, B., Rosson, M. B., Rothermel,
G., Shaw, M., and Wiedenbeck, S. 2011. The State of the Art in End-user
Software Engineering. ACM Computing Surveys 43 (3), a21. DOI: 10.1145/
1922649.1922658 (cit. on p. 19).

Kosar, T., Oliveira, N., Mernik, M., Pereira, V. J. M., Crepinéek, M., Cruz, D. da,
and Henriques, R. P. 2010. Comparing general-purpose and domain-specific
languages: An empirical study. Computer Science and Information Systems
7 (2), 247-264. DOI: 10.2298 /CSIS1002247K (cit. on pp. 76, 178).

Koss, A. M. 2003. Programming on the Univac 1. A Woman’s Account. IEEE An-
nals of the History of Computing 25 (1), 48-59. DOI: 10.1109/MAHC.2003.
1179879 (cit. on p. 20).

Koster, C. H. A. 1974. Two-level grammars. In Compiler Construction. An Ad-
vanced Course. Ed. by Bauer, F. L. and Eickel, J. Lecture Notes in Computer
Science 21. Berlin: Springer, 146-156. DOI: 10.1007 / 978-3-662-21549-4_7
(cit. on p. 26).

Krishnamurthi, S. 2008. Teaching Programming Languages in a Post-Linnaean
Age. ACM SIGPLAN Notices 43 (11). DOI: 10.1145/1480828.1480846 (cit. on
p- 24).

Krogdahl, S. 2005. The birth of Simula. In History of Nordic Computing. IFIP
WG9.7 First Working Conference on the History of Nordic Computing
(HiNC1). Ed. by Bubenko Jr., J., Impagliazzo, J., and Selvberg, A. IFIP In-
ternational Federation for Information Processing 174. Springer, 261-275.
DOI: 10.1007 /0-387-24168-X_24. (URL: http:/ /home.ifi.uio.no/ steinkr /
papers/HiNC1-webversion-simula.pdf) (cit. on p. 30).

Kuhn, T. S. 1996. The Structure of Scientific Revolutions. 3rd ed. University of
Chicago Press (cit. on pp. 22, 92).

Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R., Staa, A. von, and Lucena, C.
2006. Quantifying the Effects of Aspect-Oriented Programming: A Mainte-
nance Study. In Software Maintenance, 2006. ICSM ’06. 22nd IEEE Interna-
tional Conference on, 223-233. DOI: 10.1109 /ICSM.2006.48 (cit. on pp. 76,
178).

Kurtz, T. E. 1981. BASIC. In History of Programming Languages. Ed. by Wexel-
blat, R. L. ACM monograph series. New York, NY: Academic, 515-537. DOTI:
10.1145/800025.1198404 (cit. on p. 31).

Landin, P.J. 1965. A Correspondence Between ALGOL 60 and Church’s Lambda
Notation. Part I. Communications of the ACM 8 (2), 89-101. DOI: 10.1145/
363744.363749 (cit. on p. 33).

Landis, J. R. and Koch, G. G. 1977. The Measurement of Observer Agreement for
Categorical Data. Biometrics 33 (1), 159-174. (URL: http:/ /www.jstor.org/
stable/2529310) [visited on 2014-03-19] (cit. on p. 46).

127

Laughery Jr., K. R. and Laughery Sr., K. R. 1985. Human factors in software en-
gineering: A review of the literature. Journal of Systems and Software 5 (1),
3-14. DOI: 10.1016/0164-1212(85)90003-2 (cit. on pp. 76, 180-182).

Launchbury, J. 1993. A Natural Semantics for Lazy Evaluation. In POPL’93. Pro-
ceedings of the 20th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 144-154. DOI: 10.1145 / 158511.158618 (cit. on
p.- 17).

Leavenworth, B. M. and Sammet, J. E. 1974. An Overview of Nonprocedural Lan-

guages. In Proceedings of the ACM SIGPLAN Symposium on Very high
level languages, 1-12. DOI: 10.1145/800233.807040 (cit. on p. 23).

Leblanc, R. J. and Fischer, C. N. 1982. A case study of run-time errors in Pascal
programs. Software: Practice and Experience 12 (9), 825-834. DOI: 10.1002/
spe.4380120903 (cit. on pp. 76, 85, 178).

Lee, K., LaMarca, A., and Chambers, C. 2003. Hydro]: object-oriented pattern
matching for evolvable distributed systems. In OOPSLA ’03: Proceedings of
the 18th annual ACM SIGPLAN conference on Object-oriented programing,
systems, languages, and applications, 205-223. DOI: 10.1145/949305.949324
(cit. on pp. 76, 84, 85, 178).

Lewis, J. A., Henry, S. M., Kafura, D. G., and Schulman, R. S. 1991. An empiri-
cal study of the object-oriented paradigm and software reuse. In OOPSLA
’91: Conference proceedings on Object-oriented programming systems, lan-
guages, and applications, 184-196. DOI: 10.1145 / 117954 .117969 (cit. on
pp. 76, 178, 181).

Lewis, J. A., Henry, S. M., Kafura, D. G., and Schulman, R. S. 1992. On the Re-
lationship Between the Object-Oriented Paradigm and Software Reuse: An
Empirical Investigation. Technical Report TR-92-15. Computer Science, Vir-
ginia Polytechnic Institute and State University. (URL: http:/ /eprints.cs.vt.
edu/archive/00000295/) (cit. on pp. 76, 178, 181).

Levy, Y. and Ellis, T.]. 2006. A Systems Approach to Conduct an Effective Litera-
ture Review in Support of Information Systems Research. Informing Science
Journal 9, 181-212. (URL: http:/ /www.inform.nu/ Articles / Vol9 /V9p181-
212Levy99.pdf) [visited on 2014-03-14] (cit. on p. 45).

Lima, A., Gouldo, M., and Monteiro, M. P. 2011. Evidence-Based Comparison of
Modularity Support Between Java and Object Teams. Paper at arXiv. (URL:
http:/ /arxiv.org/abs/1109.2075) (cit. on pp. 76, 178).

Lin, Y. and Blackburn, S. M. 2012. Bypassing Portability Pitfalls of High-level
Low-level Programming. In VMIL'12. Proceedings of the 2012 ACM Work-
shop on Virtual Machines and Intermediate Languages, 23-32. DOI: 10.
1145/2414740.2414746 (cit. on p. 20).

128

Lincoln, Y. S., Lynham, S. A., and Guba, E. G. 2011. Paradigmatic Controversies,
Contradictions, and Emerging Confluences, Revisited. In The SAGE Hand-
book of Qualitative Research. Ed. by Denzin, N. K. and Lincoln, Y. S. 4th ed.
Los Angeles: SAGE, 97-128 (cit. on p. 53).

Lind, J. 1757. A Treatise on the Scurvy in Three Parts. Containing An Inquiry
into the Nature, Causes, and Cure, of that Disease together with a Critical
and Chronological View of what has been published on the Subject. 2nd ed.
London: A. Millar. (URL: https:/ / play. google.com /store /books / details?
id=oP1UEXWU7£sC) (cit. on p. 41).

Lipton, P. 2004. Inference to the Best Explanation. 2nd ed. London: Routledge (cit.
on p. 53).

Liskov, B. and Zilles, S. 1974. Programming with Abstract Data Types. In Pro-
ceedings of the ACM SIGPLAN Symposium on Very high level languages,
50-59. DOI: 10.1145/800233.807045 (cit. on p. 31).

Liu, J., Kimball, A., and Myers, A. C. 2006. Interruptible iterators. In Proc. 33nd
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL), 283-294. DOI: 10.1145/1111037.1111063 (cit. on pp. 76, 85,
178).

Loui, R. P. 2008. In Praise of Scripting. Real Programming Pragmatism. Computer
41 (7), 22-26. DOI: 10.1109/MC.2008.228 (cit. on p. 24).

Lucas, H. C. and Kaplan, R. B. 1976. A Structured Programming Experiment. The
Computer Journal 19 (2), 136-138. DOIL: 10.1093 / comjnl /19.2.136 (cit. on
pp- 76,79, 80, 178, 181).

Luff, M. 2009. Empirically investigating parallel programming paradigms: A null
result. In Proc. PLATEAU 2009, 43-49. (URL: http:/ / ecs.victoria.ac.nz /
foswiki/pub / Events / PLATEAU /2009Program / plateau09-luff. pdf) (cit.
on pp. 76, 81, 82, 178, 181).

MacDonell, S., Shepperd, M., Kitchenham, B., and Mendes, E. 2010. How Reliable
Are Systematic Reviews in Empirical Software Engineering? IEEE Transac-
tions on Software Engineering 36 (5), 676-687. DOI: 10.1109 / TSE.2010.28
(cit. on p. 40).

Mackenzie, J. 2011. Positivism and Constructivism, Truth and ‘Truth’. Educa-
tional Philosophy and Theory 43 (5), 534-546. DOI: 10.1111/j.1469-5812.
2010.00676.x (cit. on p. 52).

Madeyski, L. and Szala, L. 2007. Impact of aspect-oriented programming on soft-
ware development efficiency and design quality: an empirical study. Soft-
ware, IET 1 (5), 180-187. DOI: 10.1049/iet-sen:20060071 (cit. on pp. 76, 178).

Mahoney, M. S. 2008. What Makes the History of Software Hard. IEEE Annals of
the History of Computing 30 (3), 8-18. pOI1: 10.1109/MAHC.2008.55 (cit. on
p. 34).

129

Malayeri, D. and Aldrich, J. 2009. Is Structural Subtyping Useful? An Empiri-
cal Study. In Programming Languages and Systems. Ed. by Castagna, G.
Vol. 5502. Lecture Notes in Computer Science, 95-111. DOI: 10.1007 /978-3-
642-00590-9_8 (cit. on pp. 62, 76, 84, 85, 89, 178).

Malheiros, V., Hohn, E., Pinho, R., Mendonca, M., and Maldonado, J. C. 2007. A
Visual Text Mining approach for Systematic Reviews. In ESEM 2007. Pro-
ceedings of the First International Symposium on Empirical Software Engi-
neering and Measurement, 245-254. DOI: 10.1109 / ESEM.2007.21 (cit. on
p-47).

Marks, S. L. 1982. JOSS. Conversational Computing for the Nonprogrammer. An-
nals of the History of Computing 4 (1), 35-52. DOI: 10.1109/ MAHC.1982.
10004 (cit. on p. 34).

Markstrum, S. 2010. Staking Claims. A History of Programming Language De-
sign Claims and Evidence. In PLATEAU ’10. Evaluation and Usability of
Programming Languages and Tools. DOI: 10.1145/1937117.1937124 (cit. on
pp- 13, 37).

Marlow, S., ed. Haskell 2010 Language Report 2010. (URL: http:/ /www.haskell.
org/onlinereport/haskell2010) (cit. on p. 18).

Marshall, C. and Brereton, P. 2013. Tools to Support Systematic Literature Re-
views in Software Engineering. A Mapping Study. In ESEM 2013. 2013 ACM
/ 1EEE International Symposium on Empirical Software Engineering and
Measurement Proceedings, 296-299. DOI: 10.1109 / ESEM.2013.32 (cit. on
p. 42).

Martin, J. 1982. Application Development Without Programmers. Englewood
Cliffs: Prentice-Hall (cit. on p. 21).

Martin, J. 1985. Fourth-Generation Languages. Vol. I: Principles. Englewood
Cliffs: Prentice-Hall (cit. on p. 21).

Mayer, C., Hanenberg, S., Robbes, R., Tanter, E., and Stefik, A. 2012a. Static type
systems (sometimes) have a positive impact on the usability of undocu-
mented software: An empirical evaluation. Technical report. (URL: http:
/ /www.dcc.uchile.cl /TR /2012 / TR_DCC-20120418-005. pdf) (cit. on
pp. 76,79, 80, 178).

Mayer, C., Hanenberg, S., Robbes, R., Tanter, E., and Stefik, A. 2012b. An em-
pirical study of the influence of static type systems on the usability of un-
documented software. In Proceedings of the ACM international conference
on Object oriented programming systems languages and applications. New
York, NY, USA: ACM, 683-702. DOI: 10.1145/2384616.2384666 (cit. on pp. 37,
76,79, 80, 178).

130

McCaffrey, J. D. and Bonar, A. 2010. A Case Study of the Factors Associated
with Using the F# Programming Language for Software Test Automation.
In Information Technology: New Generations (ITNG), 2010 Seventh Inter-
national Conference on, 1009-1013. DOT: 10.1109 /ITNG.2010.253 (cit. on
pp. 76, 178).

McCarthy, J. 1996. Towards a Mathematical Science of Computation. (URL: http:
/ /www-formal.stanford.edu/jmc/towards.html) [visited on 2014-04-11]
(cit. on p. 25).

McCarthy, J. 1959. Letter to the editor. Communications of the ACM 2 (8), 2-3.
DOI: perlis58:_prelim_repor (cit. on p. 27).

McCarthy, J. 1960. Recursive Functions of Symbolic Expressions and Their Com-
putation by Machine, Part I. Communications of the ACM 3 (4), 184-195.
DOI: 10.1145/367177.367199 (cit. on pp. 31, 33).

McCarthy, J. 1964. Definition of New Data Types in ALGOL X. ALGOL Bulletin
(18) (Oct. 1964), 45. (URL: http:/ /dl.acm.org / citation.cfm?id =1060993)
(cit. on p. 30).

McEwan, P, Bergenheim, K., Yuan, Y., Tetlow, A. P., and Gordon, J. P. 2010. Assess-
ing the Relationship between Computational Speed and Precision: A Case
Study Comparing an Interpreted versus Compiled Programming Language
using a Stochastic Simulation Model in Diabetes Care. PharmacoEconomics
28 (8), 665-674. (URL: http:/ / www.ingentaconnect.com / content / adis /
pec/2010/00000028 /00000008 /art00005) (cit. on pp. 76, 178).

Mclver, L. 2000. The Effect of Programming Language on Error Rates of Novice
Programmers. In PPIG 2000. (URL: http:/ / www.ppig.org / papers / 12th-
mciver.pdf) (cit. on pp. 76, 178).

Meek, B. 1990. The static semantics file. SIGPLAN Notices 25 (4), 33—42. DOTI: 10.
1145/987481.987483 (cit. on p. 26).

Meyerovich, L. A. and Rabkin, A. 2012. Socio-PLT. Principles for Programming
Language Adoption. In Onward! 2012. Proceedings of the ACM Intena-
tional Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software, 39-53. DOI: 10.1145 / 2384592 .2384597 (cit. on
p- 36).

Miara, R. J.,, Musselman, J. A., Navarro, J. A., and Shneiderman, B. 1983. Program

indentation and comprehensibility. Communications of the ACM 26 (11),
861-867. DOL: 10.1145/182.358437 (cit. on pp. 76, 81, 82, 178).

Mikkonen, T. and Taivalsaari, A. 2008. Using JavaScript as a Real Programming
Language. Tech. rep. SMLI TR-2007-168. Sun Microsystems Laboratories,
Oct. 2008. (URL: http:/ /dl.acm.org / citation.cfm ?id =1698202) (cit. on

p. 31).

131

Miller, A., Hicks, M., Katz, J., and Shi, E. 2014. Authenticated Data Structures,
Generically. In POPL'14. Proceedings of the 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming languages, 411-423.
DOI: 10.1145/2535838.2535851 (cit. on p. 13).

Millstein, T. 2004. Practical predicate dispatch. In OOPSLA ’04: Proceedings of
the 19th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, 345-364. DOI: 10.1145/1028976.
1029006 (cit. on pp. 76, 85, 179).

Millstein, T., Frost, C., Ryder, J., and Warth, A. 2009. Expressive and modular
predicate dispatch for Java. ACM Transactions on Programming Languages
and Systems 31 (2). DOI: 10.1145/1462166.1462168 (cit. on pp. 76, 85, 179).

Milner, R. 1978. A Theory of Type Polymorphism in Programming. Journal of
Computer and System Sciences 17 (3), 348-375. DOI: 10.1016/0022-0000(78)
90014-4 (cit. on p. 33).

Morris Jr., J. H. 1969. Lambda-calculus Models of Programming Languages. PhD
thesis. Massachusetts Institute of Technology. (URL: http:/ /hdlLhandle.net/
1721.1/64850) [visited on 2014-04-21] (cit. on p. 33).

Morrison, A., Viller, S., and Mitchell, P. 2010. Ethnography Considered Useful.
Situating criticality. In OZCHI 2010. Conference Proceedings, 184-187. DOL:
10.1145/1952222.1952261 (cit. on p. 49).

Mortensen, M., Ghosh, S., and Bieman, J. M. 2012. Aspect-Oriented Refactoring
of Legacy Applications: An Evaluation. Software Engineering, IEEE Trans-
actions on 38 (1), 118-140. DoI: 10.1109/TSE.2010.109 (cit. on pp. 76, 179).

Mosses, P. D. 2000. A Foreword to ‘Fundamental Concepts in Programming Lan-
guages’. Higher-Order and Symbolic Computation 13 (1-2), 7-9. DOI: 10.
1023/ A:1010048229036 (cit. on p. 30).

Mosses, P. D. 2001. The Varieties of Programming Language Semantics. And Their
Uses. In Perspectives of System Informatics. 4th International Andrei Er-
shov Memorial Conference, PSI 2001. Lecture Notes in Computer Science
2244. Berlin: Springer, 165-190. DOI: 10.1007 / 3-540-45575-2_18 (cit. on
p- 26).

Myers, B. A., Giuse, D. A, and Zanden, B. V. 1992. Declarative programming in
a prototype-instance system: object-oriented programming without writing
methods. In OOPSLA “92: conference proceedings on Object-oriented pro-
gramming systems, languages, and applications, 184-200. DOIL: 10.1145 /
141936.141953 (cit. on pp. 76, 179).

Myers, B. A., Ko, A.], Park, S. Y, Stylos, J., LaToza, T. D., and Beaton,]J. 2008.
More natural end-user software engineering. In Proceedings of the 4th inter-
national workshop on End-user software engineering. WEUSE "08. Leipzig,
Germany: ACM, 30-34. 1SBN: 978-1-60558-034-0. DOI: 10.1145 / 1370847 .
1370854 (cit. on p. 37).

132

Myers, B. A., Pane, J. F, and Ko, A. 2004. Natural programming languages and
environments. Communications of the ACM 47 (9) (Sept. 2004), 47-52. ISSN:
0001-0782. DOI: 10.1145/1015864.1015888 (cit. on pp. 13, 15, 37).

Myrtveit, I. and Stensrud, E. 2008. An empirical study of software development
productivity in C and C++. In Proc. Norsk Informatikkonferanse 2008. (URL:
http:/ /www.nik.no/2008/03-Myrtveit.pdf) (cit. on pp. 76, 179).

Nanz, S., Torshizi, F., Pedroni, M., and Meyer, B. 2011a. Design of an Empirical
Study for Comparing the Usability of Concurrent Programming Languages.
In Empirical Software Engineering and Measurement (ESEM), 2011 Interna-
tional Symposium on, 325-334. DOI: 10.1109 /ESEM.2011.41 (cit. on pp. 76,
79, 80, 179).

Nanz, S., Torshizi, F, Pedroni, M., and Meyer, B. 2011b. Empirical assessment
of languages for teaching concurrency: Methodology and application. In
Software Engineering Education and Training (CSEE T), 2011 24th IEEE-CS
Conference on, 477-481. DOI: 10.1109 / CSEET.2011.5876128 (cit. on pp. 76,
79, 80, 179).

Nanz, S., Torshizi, E, Pedroni, M., and Meyer, B. 2010. A Comparative Study of
the Usability of Two Object-oriented Concurrent Programming Languages.
Paper in arXiv. (URL: http:/ /arxiv.org/abs/1011.6047) (cit. on pp. 76, 79,
80, 179).

Naur, P. 1981. The European side of the last phase development of ALGOL 60. In
History of Programming Languages. Ed. by Wexelblat, R. L. ACM mono-
graph series. New York, NY: Academic, 92-139. DOIL: 10. 1145 / 800025 .
1198353 (cit. on p. 35).

Naur, P, Backus, J. W,, Bauer, F. L., Green,]., Katz, C., McCarthy, J., Perlis, A.],
Rutishauser, H., Samuelson, K., Vauquois, B., Wegstein, J. H., Wijngaarden,
A. van, and Woodger, M. 1960. Report on the Algorithmic Language AL-
GOL 60. Communications of the ACM 3 (5), 299-314. DOI: 10.1145/367236.
367262 (cit. on pp. 25, 27, 29).

Naur, P, Backus, J. W, Bauer, E. L., Green, J., Katz, C., McCarthy, J., Perlis, A.],
Rutishauser, H., Samuelson, K., Vauquois, B., Wegstein, J. H., Wijngaarden,
A.van, and Woodger, M. 1963. Revised Report on the Algorithmic Language
ALGOL 60. Communications of the ACM 6 (1), 1-17. DOI: 10.1145/366193.
366201 (cit. on pp. 27, 29).

Necula, G. C., Condit, J., Harren, M., McPeak, S., and Weimer, W. 2005. CCured:
type-safe retrofitting of legacy software. ACM Transactions on Program-
ming Languages and Systems 27 (3), 477-526. DOI: 10.1145/1065887.1065892
(cit. on pp. 76, 179).

Nichols, H. 1891. The Psychology of Time. American Journal of Psychology 3 (4),
453-529. DOI: 10.2307 /1412061 (cit. on p. 41).

133

Nieminen, P., P6lonen, L., and Sipola, T. 2013. Research literature clustering using
diffusion maps. Journal of Informetrics 7 (4), 874-886. DOI: 10.1016 /j.joi.
2013.08.004 (cit. on p. 48).

Nofre, D. 2010. Unraveling Algol. US, Europe, and the Creation of a Programming
Language. IEEE Annals of the History of Computing 32 (2), 58-68. DOLI: 10.
1109/MAHC.2010.4 (cit. on pp. 34, 35).

Norcio, A. F. 1982. Indentation, documentation and programmer comprehension.
In Proceedings of the 1982 Conference on Human Factors in Computing
Systems. CHI "82. New York, NY, USA: ACM, 118-120. DOI: 10.1145/800049.
801766 (cit. on pp. 76, 79, 80, 179, 181).

Nystrom, N., Qi, X., and Myers, A. C. 2006. J&: nested intersection for scalable
software composition. In OOPSLA ’06: Proceedings of the 21st annual ACM
SIGPLAN conference on Object-oriented programming systems, languages,
and applications, 21-36. DOI: 10.1145 /1167473.1167476 (cit. on pp. 76, 85,
179).

Nystrom, J., Trinder, P., and King, D. 2007. Evaluating high-level distributed lan-
guage constructs. In Proceedings of the 12th ACM SIGPLAN international
conference on Functional programming. ICFP "07. New York, NY, USA:
ACM, 203-212. DOI: 10.1145/1291151.1291182 (cit. on pp. 76, 179).

O'Regan, G. 2012. A Brief History of Computing. 2nd ed. London: Springer. DOI:
10.1007 /978-1-4471-2359-0 (cit. on p. 21).

O'Rourke, K. 2007. An historical perspective on meta-analysis. Dealing quantita-
tively with varying study results. Journal of the Royal Society of Medicine
100 (12). DOI: 10.1258 /jrsm.100.12.579 (cit. on p. 40).

Ousterhout, J. K. 1998. Scripting. Higher-Level Programming for the 21st Century.
Computer 31 (3), 23-30. DOI: 10.1109/2.660187 (cit. on p. 23).

Pair, C. 1990. Programming, Programming Languages and Programming Meth-
ods. In Psychology of Programming. Ed. by Hoc, J.-M., Green, T. R. G,,
Samurgcay, R., and Gilmore, D. J. London: Academic, 9-19 (cit. on pp. 18,
19).

Pane, J. F,, Myers, B. A., and Miller, L. B. 2002. Using HCI techniques to design
a more usable programming system. In Proc. Human Centric Computing
Languages and Environments, 198-206. DOI: 10.1109 / HCC.2002.1046372
(cit. on p. 37).

Pane, J. F. and Myers, B. A. 2000. The influence of the psychology of programming
on a language design: Project status report. In PPIG 2000. (URL: http:/ /ppig.
org/papers/12th-pane.pdf) (cit. on pp. 37, 76, 180, 182).

Pane, J. F. and Myers, B. A. 2006. More Natural Programming Languages and En-
vironments. In End User Development. Ed. by Lieberman, H., Paterno, E,
and Wulf, V. Vol. 9. Human-Computer Interaction Series. Springer Nether-
lands, 31-50. DOI: 10.1007 /1-4020-5386-X_3 (cit. on pp. 37, 76, 180, 182).

134

Pane, J. and Myers, B. 1996. Usability Issues in the Design of Novice Program-
ming Systems. Paper 820. Institute for Software Research. (URL: http:/ /
repository.cmu.edu/isr/820) (cit. on p. 37).

Pankratius, V., Schmidt, F,, and Garreton, G. 2012. Combining functional and im-
perative programming for multicore software: An empirical study evaluat-
ing Scala and Java. In Software Engineering (ICSE), 2012 34th International
Conference on, 123-133. DOI: 10.1109/ICSE.2012.6227200 (cit. on pp. 70, 76,
179).

Pankratius, V. and Adl-Tabatabai, A.-R. 2011. A study of transactional memory
vs. locks in practice. In Proceedings of the 23rd ACM symposium on Par-
allelism in algorithms and architectures. SPAA "11. New York, NY, USA:
ACM, 43-52. DOI: 10.1145/1989493.1989500 (cit. on pp. 76, 79, 80, 179).

Pankratius, V., Adl-Tabatabai, A.-R., and Otto, F. 2009. Does Transactional Mem-
ory Keep Its Promises? Results from an Empirical Study. Technical Report
2009-12. IPD, University of Karlsruhe, Germany. (URL: http:/ /www.rz.uni-
karlsruhe.de / ~kb95 / papers / pankratius- TMStudy.pdf) (cit. on pp. 76, 79,
80, 179).

paradigm, n. 2014. In OED Online. Mar. 2014. (URL: http:/ / www.oed.com /
view/Entry/137329) [visited on 2014-04-10] (cit. on p. 22).

Patel, I. and Gilbert, J. R. 2008. An empirical study of the performance and pro-
ductivity of two parallel programming models. In Parallel and Distributed
Processing, 2008. IPDPS 2008. IEEE International Symposium on, 1-7. DOI:
10.1109/IPDPS.2008.4536192 (cit. on pp. 76, 179).

Paterson, L. L. 2011. Epicene pronouns in UK national newspapers. A diachronic
study. ICAME Journal 35, 171-184. (URL: http:/ /icame.uib.no/ij35/Laura_
Louise_Paterson.pdf) (cit. on p. 6).

Patterson, D. A. 1981. An experiment in high level language microprogramming
and verification. Communications of the ACM 24 (10), 699-709. DOTI: 10.
1145/358769.358788 (cit. on pp. 76, 179).

Penzenstandler, B., Bauer, V., Calero, C., and Franch, X. 2012. Sustainability in
Software Engineering. A Systematic Literature Review. In Proc. 16th Inter-
national Conference on Evaluation & Assessment in Software Engineering
(EASE), 32-41. DOI: 10.1049/ic.2012.0004 (cit. on p. 40).

Perlis, A. J. and Samelson, K. 1958. Preliminary Report. International Algebraic
Language. Communications of the ACM 1 (12), 8-22. DOT: 10.1145/377924.
594925 (cit. on pp. 27, 29).

Perlis, A. J. 1981. The American side of the development of ALGOL. In History
of Programming Languages. Ed. by Wexelblat, R. L. ACM monograph se-
ries. New York, NY: Academic, 75-91. DOI: 10.1145/800025.1198352 (cit. on
p. 35).

perlsyn. Perl syntax 2014. Version 5.18.2. (URL: http:/ /perldoc.perl.org/perlsyn.
pdf) [visited on 2014-04-16] (cit. on pp. 28, 29).

135

Perrott, R. H., Raja, A. K., and O’Kane, P. C. 1980. A simulation experiment using
two languages. The Computer Journal 23 (2), 142-146. DOI: 10.1093 /comjnl/
23.2.142 (cit. on pp. 76, 179).

Petersen, K. and Ali, N. B. 2011. Identifying Strategies for Study Selection in Sys-
tematic Reviews and Maps. In Proceedings of the 2011 Fifth International
Symposium on Empirical Software Engineering and Measurement. DOI: 10.
1109/ESEM.2011.46 (cit. on p. 46).

Petersen, K., Feldt, R., Mujtaba, S., and Mattson, M. 2008. Systematic Mapping
Studies in Software Engineering. In Proc. 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE). (URL: http:
/ /ewic.bes.org / content/ ConWebDoc /19543) [visited on 2014-03-13] (cit.
on pp. 41-43, 45, 47).

Petticrew, M. and Roberts, H. 2006. Systematic Reviews in the Social Sciences. A
Practical Guide. Malden, MA: Blackwell (cit. on pp. 41-46).

Pierce, B. C. 2002. Types and Programming Languages. Cambridge, Mas-
sachusetts: MIT Press (cit. on pp. 25, 31-33).

Pigott, D. 2006. HOPL. An interactive Roster of Programming Languages. (URL:
https:/ / web.archive.org /web /20111205165034 / http: / /hopl.murdoch.
edu.au/) (cit. on p. 13).

Pinsky, M. L. and Palumbi, S. R. 2014. Meta-analysis reveals lower genetic di-
versity in overfished populations. Molecular Ecology 23 (1), 29-39. DOI: 10.
1111/mec.12509 (cit. on p. 40).

Pogran, K., Vittal,]., Crocker, D., and Henderson, A. 1977. Proposed Official Stan-
dard for the Format of ARPA Network Messages. Request for Comments
724. (URL: http:/ /www.ietf.org/rfc/rfc724.txt) (cit. on p. 149).

Poletto, M., Hsieh, W. C., Engler, D. R, and Kaashoek, M. F. 1999. C and tcc: a
language and compiler for dynamic code generation. ACM Transactions on
Programming Languages and Systems 21 (2), 324-369. DOT: 10.1145/316686.
316697 (cit. on pp. 76, 179).

POPL'14. Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming languages 2014.

Popper, K. R. 1980. The Logic of Scientific Discovery. 10th impression (revised).
London: Unwin Hyman (cit. on p. 52).

Prechelt, L. 2000. An empirical comparison of seven programming languages.
Computer 33 (10), 23-29. DOI: 10.1109/2.876288 (cit. on pp. 76, 89, 179).

Prechelt, L. and Tichy, W. F. 1996. An experiment to assess the benefits of inter-
module type checking. In Software Metrics Symposium, 1996., Proceedings
of the 3rd International, 112-119. DOI: 10.1109/METRIC.1996.492448 (cit. on
pp- 76,79, 80, 89, 179).

136

Prechelt, L. and Tichy, W. F. 1998. A controlled experiment to assess the benefits
of procedure argument type checking. Software Engineering, IEEE Transac-
tions on 24 (4), 302-312. DOI: 10.1109/32.677186 (cit. on pp. 62, 76, 79, 80, 89,
179).

Prechelt, L. 2003. Are Scripting Languages Any Good? A Validation of Perl,
Python, Rexx, and Tcl against C, C++, and Java. Advances in Computers
57,205-270. DOI: 10.1016/S0065-2458(03)57005-X (cit. on pp. 76, 89, 179).

Prechelt, L., Unger, B., Philippsen, M., and Tichy, W. 2003. A controlled experi-
ment on inheritance depth as a cost factor for code maintenance. Journal of
Systems and Software 65 (2), 115-126. DOI: 10.1016/50164-1212(02)00053-5
(cit. on pp. 76, 79, 80, 179).

Priestley, M. 2011. A Science of Operations. Machines, Logic and the Invention of
Programming. London: Springer. DOI: 10.1007 /978-1-84882-555-0 (cit. on
p- 22).

Programming for the UNIVAC Fac-Tronic System 1953. Remington—-Rand Eckert-
Mauchly Division. Jan. 1953. (URL: http : / / www . bitsavers . org /
pdf / univac / univacl / UNIVAC _ Programming _Jan53. pdf) [visited on
2014-04-13] (cit. on p. 20).

programming, n. 2013. In OED Online. Dec. 2013. (URL: http:/ /www.oed.com /
view /Entry/152232) [visited on 2014-02-03] (cit. on p. 16).

Przybylek, A. 2011. Where the Truth Lies: AOP and Its Impact on Software Mod-
ularity. In Fundamental Approaches to Software Engineering. Ed. by Gian-
nakopoulou, D. and Orejas, F. Vol. 6603. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 447-461. DOI: 10.1007 /978-3-642-19811-3_31
(cit. on pp. 76, 179).

Pullum, G. K. 2014. Fear and loathing of the English passive. Language & Com-
munication. In press. DOI: 10.1016/j.Jangcom.2013.08.009 (cit. on p. 6).

Qj, X. and Myers, A. C. 2010. Homogeneous family sharing. In OOPSLA "10: Pro-
ceedings of the ACM international conference on Object oriented program-
ming systems languages and applications, 520-538. DOI: 10.1145/1869459.
1869502 (cit. on pp. 76, 85, 179).

Quine, W. V. 1951. Two dogmas of empiricism. Philosophical Review 60 (1), 20—
43. (URL: http:/ /www.jstor.org/stable/2181906) (cit. on p. 52).

Radin, G. 1981. The Early History and Characteristics of PL/I. In History of Pro-
gramming Languages. Ed. by Wexelblat, R. L. ACM monograph series. New
York, NY: Academic, 551-575. DOI: 10.1145/800025.1198410 (cit. on p. 30).

Ramalingam, V. and Wiedenbeck, S. 1997. An empirical study of novice program
comprehension in the imperative and object-oriented styles. In Papers pre-
sented at the seventh workshop on Empirical studies of programmers, 124—
139. DOT: 10.1145/266399.266411 (cit. on pp. 76, 179, 181).

Ramesh, V., Glass, R. L., and Vessey, 1. 2004. Research in computer science. An
empirical study. Journal of Systems and Software 70, 165-176 (cit. on p. 59).

137

Ramsey, F. P. 1926. The Foundations of Mathematics. Proceedings of the London
Mathematical Society. 2nd ser. 25 (1), 338-384. DOI: 10.1112/plms /s2-25.1.
338 (cit. on p. 32).

Rawlings, N. 2014. The History of NOMAD. A Fourth Generation Language.
IEEE Annals of the History of Computing 36 (1), 30-38. DoI: 10.1109 /
MAHC.2014.10 (cit. on p. 21).

Resnick, P, ed. Internet Message Format 2008. Request for Comments 5322. (URL:
http:/ /www.ietf.org/rfc/rfc5322.txt) (cit. on p. 149).

Reynolds, J. C. 1974. Towards a Theory of Type Structure. In Programming Sym-
posium. Proceedings, Colloque sur la Programmation. Ed. by Robinet, B.
Lecture Notes in Computer Science 19. Berlin: Springer, 408—-425. DOTI: 10.
1007 /3-540-06859-7_148 (cit. on p. 33).

Reynolds, J. C. 1985. Three Approaches to Type Structure. In Mathematical
Foundations of Software Development. Proceedings of the International
Joint Conference on Theory and Practice of Software Development (TAP-
SOFT) Berlin, March 25-29, 1985 Volume I: Colloquium on Trees in Algebra
and Programming (CAAP’85). Ed. by Ehrig, H., Floyd, C., Nivat, M., and
Thatcher, J. Lecture Notes in Computer Science 185. Berlin: Springer, 97—
138. DOI: 10.1007/3-540-15198-2_7 (cit. on p. 33).

Reynolds, J. C. 1998. Theories of Programming Languages. Cambridge University
Press (cit. on p. 17).

Ritchie, D. M. 1974. C Reference Manual. Bell Laboratories. (URL: http:/ /cm.bell-
labs.com/cm/cs/who/dmr/cman74.pdf) [visited on 2014-04-17] (cit. on
pp- 29, 157).

Roberts, E. S. 1995. Loop exits and structured programming: reopening the de-
bate. In Proceedings of the twenty-sixth SIGCSE technical symposium on
Computer science education. SIGCSE "95. New York, NY, USA: ACM, 268-
272. DOI: 10.1145/199688.199815 (cit. on pp. 76, 180-182).

Rosen, S. 1964. Programming Systems and Languages. A Historical Survey. In
1964 Spring Joint Computer Conference. AFIPS Conference Proceedings 25.
Spartan, 1-15. DOI: 10.1145/1464122.1464124 (cit. on p. 34).

Rosen, S. 1972. Programming Systems and Languages 1965-1975. Communica-
tions of the ACM 15 (7), 591-600. DOI: 10.1145/361454.361482 (cit. on p. 34).

Rosenberg, W. and Donald, A. 1995. Evidence based medicine. An approach to
clinical problem-solving. BMJ 310, 1122-1126. (URL: http:/ /www.ncbi.nlm.
nih.gov/pmc/articles/PMC2549505/) [visited on 2011-09-26] (cit. on p. 38).

Ross, D. T. and Rodriguez, J. E. 1963. Theoretical Foundations for the Computer-
Adided Design System. In 1963 Spring Joint Computer Conference. AFIPS
Conference Proceedings 23. Spartan. DOI: 10.1145/1461551.1461589 (cit. on
p- 30).

138

Rossbach, C. J., Hofmann, O. S., and Witchel, E. 2009. Is transactional program-
ming actually easier? In Proc. 8th Annual Workshop on Duplicating, Decon-
structing, and Debunking. (URL: http://pharm.ece.wisc.edu/wddd/2009/
papers/wddd_04.pdf) (cit. on pp. 76,79, 80, 179).

Rossbach, C. J., Hofmann, O. S., and Witchel, E. 2010. Is transactional program-
ming actually easier? In Proceedings of the 15th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. PPoPP "10. New
York, NY, USA: ACM, 47-56. DOI: 10.1145/1693453.1693462 (cit. on pp. 76,
79, 80, 179, 181).

Rousseau, D. M. 2006. 2005 Presidential Address. Is There Such a Thing as
“Evidence-Based Management”? Academy of Management Review 31 (2),
256-269. (URL: http:/ /search.ebscohost.com /login.aspx?direct=true&db=
bsh&AN=20208679&site=ehost-live) [visited on 2011-10-04] (cit. on p. 38).

Runeson, P, Host, M., Rainer, A., and Regnell, B. 2012. Case Study Research in
Software Engineering. Guidelines and Examples. Hoboken, New Jersey: Wi-
ley (cit. on pp. 49, 90).

Russell, B. 1908. Mathematical Logic as based on the Theory of Types. American
Journal of Mathematics 30 (3), 222-262. DOI: 10.2307 /2369948 (cit. on p. 32).

Russell, B. 1983. The Problems of Philosophy. 11th impression. Oxford University
Press (cit. on p. 52).

Russell, B. s.d. The Principles of Mathematics. 2nd ed. New York: Norton. (URL:
https: / / archive . org / details / principlesofmath005807mbp) [visited on
2014-04-19] (cit. on p. 32).

Ryder, B. G., Soffa, M. L., and Burnett, M. 2005. The impact of software engi-
neering research on modern progamming languages. ACM Transactions on
Software Engineering and Methodology 14 (4) (Oct. 2005), 431-477. DOL:
10.1145/1101815.1101818 (cit. on pp. 34, 37).

Saal, H. J. and Weiss, Z. 1977. An empirical study of APL programs. Computer
Languages 2 (3), 47-59. bo1: 10.1016 /0096-0551(77)90007-8 (cit. on pp. 76,
179).

Sackman, H., Erikson, W. J., and Grant, E. E. 1968. Exploratory Experimental
Studies Comparing Online and Offline Programming Performance. Com-
munications of the ACM 11 (1), 3-11. DOI: 10.1145/362851.362858 (cit. on
p- 36).

Sackman, H. 1970. Man—Computer Problem Solving. Experimental Evaluation of
Time-Sharing and Batch Processing. Princeton: Auerbach (cit. on p. 36).

Sadowski, C. and Shewmaker, A. 2010. The last mile: parallel programming and
usability. In Proceedings of the FSE/SDP workshop on Future of software
engineering research. FOSER "10. New York, NY, USA: ACM, 309-314. DOT:
10.1145/1882362.1882426 (cit. on pp. 76, 180-182).

139

Sakkinen, M. 1992. Inheritance and Other Main Principles of C++ and Other
Object-oriented Languages. Jyvdskyld Studies in Computer Science, Eco-
nomics and Statistics 20. University of Jyvaskyla. (URL: http:/ /urn.fi/URN:
ISBN:978-951-39-4352-3) (cit. on p. 26).

Sammet, J. E. 1969. Programming Languages. History and Fundamentals. Engle-
wood Cliffs: Prentice-Hall (cit. on pp. 17, 20, 23, 30, 34).

Sammet, J. E. 1972. Programming Languages. History and Future. Communica-
tions of the ACM 15 (7), 601-610. DOI: 10.1145/361454.361485 (cit. on p. 34).

Sammet, J. E. 1981. The early history of COBOL. In History of Programming Lan-
guages. Ed. by Wexelblat, R. L. ACM monograph series. New York, NY:
Academic, 199-243. DOI: 10.1145/800025.1198367 (cit. on pp. 30, 35).

Sammet, J. E. 1991. Some Approaches to, and Illustrations of, Programming Lan-
guage History. Annals of the History of Computing 13 (3), 33-50. DOI: 10.
1109/MAHC.1991.10001 (cit. on p. 34).

Santos, R. E. S. and Silva, E. Q. B. da 2013. Motivation to Perform Systematic
Reviews and their Impact on Software Engineering Practice. In Proc. 2013
ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), 292-295. DOI: 10.1109 / ESEM.2013.36 (cit. on
p- 40).

Sawadpong, P, Allen, E. B., and Williams, B. J. 2012. Exception Handling Defects:
An Empirical Study. In High-Assurance Systems Engineering (HASE), 2012
IEEE 14th International Symposium on, 90-97. DOI: 10.1109/HASE.2012.24
(cit. on pp. 76, 85, 179).

Scholte, T., Robertson, W., Balzarotti, D., and Kirda, E. 2012. An empirical anal-
ysis of input validation mechanisms in web applications and languages. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing.
New York, NY, USA: ACM, 1419-1426. DOI: 10.1145/2245276.2232004 (cit.
on pp. 76, 85, 179).

Schwandt, T. A. 2007. The SAGE Dictionary of Qualitative Inquiry. SAGE. DOI:
10.4135/9781412986281 (cit. on p. 48).

Seixas, N., Fonseca, J., Vieira, M., and Madeira, H. 2009. Looking at Web Secu-
rity Vulnerabilities from the Programming Language Perspective: A Field
Study. In Software Reliability Engineering, 2009. ISSRE '09. 20th Interna-
tional Symposium on, 129-135. DOI: 10.1109 /ISSRE.2009.30 (cit. on pp. 70,
76, 84, 85, 88, 179).

Sethi, R. 1996. Programming Languages. Concepts & Constructs. 2nd ed. Read-
ing, MA: Addison-Wesley (cit. on p. 16).

Shaikh, W., Vayda, E., and Feldman, W. 1976. A Systematic Review of the Litera-
ture on Evaluative Studies of Tonsillectomy and Adenoidectomy. Pediatrics

57 (3), 401-407. (URL: http:/ / pediatrics.aappublications.org/content /57 /
3/401) [visited on 2014-05-05] (cit. on p. 41).

140

Shapiro, S. 1997. Splitting the Difference. The Historical Necessity of Synthesis
in Software Engineering. IEEE Annals of the History of Computing 19 (1),
20-54. DOI: 10.1109/85.560729 (cit. on p. 34).

Sheil, B. A. 1981. The Psychological Study of Programming. ACM Computing
Surveys 13 (1), 101-120. DOI: 10.1145/356835.356840 (cit. on pp. 31, 36, 37,
76,92, 98, 180-182).

Sheppard, S. B., Curtis, B., Milliman, P., Borst, M. A., and Love, T. 1979. First-year
results from a research program on human factors in software engineering.
Managing Requirements Knowledge, International Workshop on, 1021. DOL:
10.1109/ AFIPS.1979.59 (cit. on pp. 76, 79, 80, 179, 181).

Sherman, L. W. 1998. Evidence-Based Policing. Ideas in American Policing. Police
Foundation. (URL: http://www.policefoundation.org/pdf/Sherman.pdf)
[visited on 2011-10-04] (cit. on p. 38).

Shneiderman, B. 1975. Experimental testing in programming languages, stylis-
tic considerations and design techniques. In Proceedings of the May 19-22,
1975, national computer conference and exposition, 653-656. DOI: 10.1145/
1499949.1500087 (cit. on pp. 76, 180, 181).

Shneiderman, B. 1976. Exploratory experiments in programmer behavior. Inter-
national Journal of Computer and Information Sciences 5 (2), 123-143. DOL:
10.1007 /BF00975629 (cit. on pp. 76, 81, 82, 179, 181).

Shneiderman, B. 1980. Software Psychology. Human Factors in Computer and
Information Systems. Cambridge, MA: Winthrop (cit. on pp. 13, 36).

Shneiderman, B. 1985. The Relationship Between COBOL and Computer Science.
Annals of the History of Computing 7 (4), 348-352. DOI: 10.1109/ MAHC.
1985.10041 (cit. on p. 30).

Shneiderman, B. and Mayer, R. 1979. Syntactic/semantic interactions in program-
mer behavior: A model and experimental results. International Journal of
Parallel Programming 8 (3), 219-238. DO1: 10.1007 / BF0O0977789 (cit. on
pp. 76, 81, 82, 179).

Silva, E. Q. B. da, Santos, A. L. M., Soares, S. C. B., Franca, A. C. C., and Mon-
teiro, C. V. F. 2010. A Critical Appraisal of Systematic Reviews in Software
Engineering from the Perspective of the Research Questions Asked in the
Reviews. In ESEM 2010. Proceedings of the 2010 ACM-IEEE International
Symposium on Proceedings of the 2010 ACM-IEEE International Sympo-
sium on. DOI: 10.1145/1852786.1852830 (cit. on p. 40).

Silva, E. Q. B. da, Santos, A. L. M., Soares, S., Franca, A. C. C., Monteiro, C. V. E,
and Maciel, E. F. 2011. Six years of systematic literature reviews in software
engineering. An updated tertiary study. Information and Software Technol-
ogy 53 (9), 899-913. DOI: 10.1016/j.infsof.2011.04.004 (cit. on p. 40).

Sime, M. E., Arblaster, A. T., and Green, T. R. G. 1977. Structuring the program-
mer’s task. Journal of Occupational Psychology 50 (3), 205-216. DOI: 10.
1111/j.2044-8325.1977.tb00376.x (cit. on pp. 76, 180-182).

141

Sime, M. E., Green, T. R. G., and Guest, D. J. 1973. Psychological evaluation of two
conditional constructions used in computer languages. International Jour-
nal of Man-Machine Studies 5 (1), 105-113. DO1: 10.1016 / S0020-7373(73)
80011-2. (URL: http:/ / www. sciencedirect.com / science / article / pii /
S0020737373800112) (cit. on pp. 76, 81, 82, 88, 92, 179, 181).

Sime, M. E., Green, T. R. G., and Guest, D. J. 1977. Scope marking in computer
conditionals — a psychological evaluation. International Journal of Man-
Machine Studies 9 (1), 107-118. DOI: 10.1016 /50020-7373(77)80045-X (cit. on
pp- 28,76, 81, 82, 88,179, 181).

Sime, M. E., Green, T. R. G., and Guest, D.]J. 1999. Psychological Evaluation
of Two Conditional Constructions Used in Computer Languages. Interna-
tional Journal of Human-Computer Studies 51 (2), 125-133. DOI: 10.1006 /
ijhc.1972.0302 (cit. on pp. 28, 76, 81, 82, 88, 179).

Simmonds, D. M. 2012. The Programming Paradigm Evolution. Computer 45 (6),
93-95 (cit. on p. 23).

Skoglund, M. and Runeson, P. 2009. Reference-Based Search Strategies in Sys-
tematic Reviews. In Proceedings of the 13th International Conference on
Evaluation and Assessment in Software Engineering (EASE). (URL: http:
/ /ewic.bes.org / content/ ConWebDoc /25022) [visited on 2014-03-21] (cit.
on p. 45).

Slepak, J., Shivers, O., and Manolios, P. 2014. An Array-Oriented Language with
Static Rank Polymorphism. In Programming Languages and Systems. 23rd
European Symposium on Programming, ESOP 2014, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS 2014.
Ed. by Shao, Z. Lecture Notes in Computer Science 8410. Berlin: Springer,
27-46. DOI: 10.1007 /978-3-642-54833-8_3 (cit. on p. 26).

Smith, C. H. and Dunsmore, H. E. 1982. On the relative comprehensibility of vari-
ous control structures by novice Fortran programmers. International Journal
of Man-Machine Studies 17 (2), 165-171. DOI: 10.1016/50020-7373(82)80017-
5 (cit. on pp. 76, 83, 179).

Smith, G. C. S. and Pell, J. P. 2003. Parachute Use to Prevent Death and Major
Trauma Related to Gravitational Challenge. Systematic review of random-
ized controlled trials. BMJ 327 (7429), 1459-1461. DOI: 10.1136 /bm;.327.7429.
1459. (URL: http:/ /www.ncbi.nlm.nih.gov / pmc/ articles / PMC300808/)
(cit. on p. 51).

Soloway, E., Bonar, J., and Ehrlich, K. 1983. Cognitive strategies and looping con-
structs: an empirical study. Communications of the ACM 26 (11), 853-860.
DOI: 10.1145/182.358436 (cit. on pp. 76, 81, 82, 180, 181).

Spinellis, D. 2005. Java Makes Scripting Languages Irrelevant? IEEE Software 22
(3), 70-71. DOI: 10.1109/MS.2005.67 (cit. on p. 24).

SpringerLink s.d. Search FAQ. (URL: http: / / www. springerlink . com / help /
search-tips.mpXx) [visited on 2011-10-19] (cit. on p. 61).

142

St. Pierre, E. A. 2012. Another Postmodern Report on Knowledge. Positivism
and its others. International Journal of Leadership in Education. Theory and
Practice 15 (4), 483-503. DOI: 10.1080/13603124.2012.696710 (cit. on p. 52).

Steele Jr., G. L. 1999. Growing a Language. Higher-Order and Symbolic Compu-
tation 12 (3), 221-236. DOI: 10.1023/ A:1010085415024 (cit. on p. 34).

Steele Jr., G. L. 2006. Thoughts on Language Design. Dr. Dobb’s Journal 31 (1),
31-32 (cit. on p. 34).

Stefik, A. and Gellenbeck, E. 2011. Empirical studies on programming language
stimuli. Software Quality Journal 19 (1), 65-99. DOI: 10.1007 /s11219-010-
9106-7 (cit. on pp. 71, 76, 84, 88, 89, 180).

Stefik, A., Hanenberg, S., McKenney, M., Andrews, A., Yellanki, S. K., and Siebert,
S. 2014. What Is the Foundation of Evidence of Human Factors Decisions in
Language Design? An Empirical Study on Programming Language Work-
shops. To be presented in the 22nd International Conference on Program
Comprehension, June 2-3, 2014, in Hyderabad, India (cit. on pp. 36, 38, 93).

Stefik, A. and Siebert, S. 2013. An Empirical Investigation into Programming Lan-
guage Syntax. ACM Transactions on Computing Education 13 (4), a19. DO
10.1145/2534973 (cit. on pp. 13, 37).

Stefik, A., Siebert, S., Stefik, M., and Slattery, K. 2011. An empirical comparison
of the accuracy rates of novices using the quorum, perl, and randomo pro-
gramming languages. In Proceedings of the 3rd ACM SIGPLAN workshop
on Evaluation and usability of programming languages and tools. New
York, NY, USA: ACM, 3-8. DOI: 10.1145 /2089155.2089159 (cit. on pp. 14,
38, 76, 180).

Stern, N. 1979. The History of Programming Languages Conference. I. From an
Historian’s Perspective. Annals of the History of Computing 1 (1), 68-71.
DOI: 10.1109/MAHC.1979.10006 (cit. on p. 34).

Stork, S., Naden, K., Sunshine, J., Mohr, M., Fonseca, A., and Aldrich, J. 2014.
ZMINIUM. A Permission-Based Concurrent-by-Default Programming Lan-
guage Approach. ACM Transactions on Programming Languages and Sys-
tems 36 (1), a2 (cit. on p. 17).

Strachey, C. 2000. Fundamental Concepts in Programming Languages. Higher-
Order and Symbolic Computation 13 (1-2), 11-49. po1: 10.1023 / A :
1010000313106 (cit. on p. 29).

Straus, S. E., Glasziou, P, Richardson, W. S., and Haynes, R. B. 2011. Evidence-
Based Medicine. How to practice and teach it. 4th ed. Edinburgh: Churchill
Livingstone (cit. on pp. 14, 38, 39, 43).

Stroustrup, B. 1988. What is Object-Oriented Programming? IEEE Software 5 (3),
10-20. DOI: 10.1109/52.2020 (cit. on p. 23).

Stroustrup, B. 1994. The Design and Evolution of C++. Reading, Massachusetts:
Addison-Wesley (cit. on p. 35).

143

Stroustrup, B. 2014. The C++ Programming Language. 4th ed. Upper Saddle
River: Addison-Wesley (cit. on pp. 24, 35).

Stuchlik, A. and Hanenberg, S. 2011. Static vs. dynamic type systems: an empiri-
cal study about the relationship between type casts and development time.
In Proceedings of the 7th symposium on Dynamic languages. New York,
NY, USA: ACM, 97-106. DOI: 10.1145 /2047849.2047861 (cit. on pp. 76, 79,
80, 180).

Suri, H. 2013. Epistemological pluralism in research synthesis methods. Inter-
national Journal of Qualitative Studies in Education 26 (7), 889-911. DOTI:
10.1080/09518398.2012.691565 (cit. on p. 53).

Sutherland, W. J., Pullin, A. S., Dolman, P. M., and Knight, T. M. 2004. The need
for evidence-based conservation. Trends in Ecology and Evolution 19 (6),
305-308. DOI: 10.1016/j.tree.2004.03.018. [Visited on 2011-10-04] (cit. on
p- 38).

Taivalsaari, A. 1993. On the Notion of Object. Journal of Systems and Software 21
(1), 4-16. DOI: 10.1016/0164-1212(93)90013-N (cit. on p. 23).

Taivalsaari, A. 1996. On the Notion of Inheritance. ACM Computing Surveys 28
(3),438-479. DOI: 10.1145/243439.243441 (cit. on p. 23).

Taveira, J. C., Queiroz, C., Lima, R., Saraiva, J., Soares, S., Oliveira, H., Temudo,
N., Araujo, A., Amorim, J., Castor, F,, and Barreiros, E. 2009. Assessing Intra-
application Exception Handling Reuse with Aspects. In Software Engineer-
ing, 2009. SBES "09. XXIII Brazilian Symposium on, 22-31. DOI: 10.1109 /
SBES.2009.21 (cit. on pp. 76, 180).

Tenny, T. 1985. Procedures and comments vs. the banker’s algorithm. SIGCSE
Bulletin 17 (3), 44-53. DOI: 10.1145 / 382208.382523 (cit. on pp. 76, 81, 82,
180).

The Debian Policy Manual 2013. Version 3.9.5.0. Oct. 28, 2013. (URL: https:/ /
www.debian.org/doc/debian-policy/policy.pdf.gz) [visited on 2014-04-03]
(cit. on p. 149).

The Python Language Reference 2014. (URL: http:/ / docs . python.org /3 /
reference/) (cit. on p. 18).

Thies, W. and Amarasinghe, S. 2010. An empirical characterization of stream pro-
grams and its implications for language and compiler design. In Proceed-
ings of the 19th international conference on Parallel architectures and com-
pilation techniques, 365-376. DOI: 10.1145/1854273.1854319 (cit. on pp. 76,
85, 180).

Thomas, G. and Pring, R., eds. Evidence-Based Practice in Education 2004. Maid-
enhead, Berkshire: Open University Press (cit. on p. 38).

Tobin-Hochstadt, S. and Felleisen, M. 2008. The design and implementation of
typed scheme. In Proc. 35th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages (POPL), 395-406. DO1: 10.1145/1328438.
1328486 (cit. on pp. 76, 180).

144

Tofan, D., Galster, M., Avgeriou, P., and Weyns, D. 2011. Software Engineering Re-
searchers” Attitudes on Case Studies and Experiments. An Exploratory Sur-
vey. In Proceedings of the 15th Annual Conference on Evaluation & Assess-
ment in Software Engineering (EASE 2011), 91-95. DOI: 10.1049 /ic.2011.0011
(cit. on p. 90).

Tomassetti, F., Rizzo, G., Vetro’, A., Ardito, L., Torchiano, M., and Morisio, M.
2011. Linked Data approach for selection process automation in Systematic
Reviews. In Proceedings of the 15th Annual Conference on Evaluation &
Assessment in Software Engineering (EASE 2011), 31-35. DOI: 10.1049 /ic.
2011.0004 (cit. on p. 47).

Tonella, P. and Ceccato, M. 2005. Refactoring the aspectizable interfaces: an em-
pirical assessment. Software Engineering, IEEE Transactions on 31 (10), 819-
832. pOI: 10.1109/TSE.2005.115 (cit. on pp. 76, 180).

Trancén y Widemann, B. 2009. Church vs. Curry. A Modern Introduction to
the Fundamental Dichotomy of Type System Paradigms. In Programmier-
sprachen und Rechenkonzepte. 26. Workshop der GI-Fachgruppe ,Pro-
grammiersprachen und Rechenkonzepte”. Ed. by Hanus, M. and Braflel,
B. Bericht 0915. Institut fiir Informatik der Christian-Albrechts-Universitat
zu Kiel, 50-61. (URL: http:/ / www.informatik.uni-kiel.de / uploads / tx_
publication/tr_0915.pdf) [visited on 2014-04-22] (cit. on p. 33).

Turner, D. A. 2013. Some History of Functional Programming Languages. (Invited
Talk). In Trends in Functional Programming. 13th International Symposium,
TFP 2012, St. Andrews, UK, June 12-14, 2012, Revised Selected Papers. Ed.
by Loidl, H.-W. and Pefa, R. Lecture Notes in Computer Science 7829. Hei-
delberg: Springer, 1-20. DOI: 10.1007 /978-3-642-40447-4_1 (cit. on p. 31).

Turner, M., Kitchenham, B., Budgen, D., and Brereton, P. 2008. Lessons Learnt Un-
dertaking a Large-scale Systematic Literature Review. In Proceedings of the
12th International Conference on Evaluation and Assessment in Software
Engineering (EASE). (URL: http:/ / ewic.bcs.org / content / ConWebDoc /
19549) [visited on 2014-03-21] (cit. on p. 47).

Turner, R. 2007. Understanding Programming Languages. Minds & Machines 17
(2), 203-216. DOI: 10.1007 /s11023-007-9062-6 (cit. on p. 17).

Turner, R. 2009. The Meaning of Programming Languages. Newsletter on Philos-
ophy and Computers 9 (1), 2-7. (URL: http:/ / cswww.essex.ac.uk / staff /
turnr / Mypapers / v09n1_Computers. pdf) [visited on 2014-02-10] (cit. on
p-17).

Unger, B. and Prechelt, L. 1998. The impact of inheritance depth on mainte-
nance tasks: Detailed description and evaluation of two experiment repli-
cations. Technical report. (URL: http:/ /www.ipd.uka.de/Tichy /uploads/
publikationen/143/inheritTR.pdf) (cit. on pp. 76, 79, 80, 179, 181).

UNIVAC FLOW-MATIC Programming System 1958. Remington-Rand Univac
(cit. on p. 30).

145

Wadler, P. 2000. Old ideas form the basis of advancements in functional program-
ming. Dr. Dobb’s Journal (Dec. 2000), 37—41. (URL: http:/ /www.drdobbs.
com/old-ideas-form-the-basis-of-advancements/184404384) (cit. on p. 33).

Wagenmakers, E. J., Wetzels, R., Borsboom, D., and Maas, H. L. J. van der 2011.
Why Psychologists Must Change the Way They Analyze Their Data. The
Case Of Psi: Comment on Bem (2011). Journal of Personality and Social Psy-
chology 100 (3), 426-432. DOI: 10.1037 /20022790 (cit. on p. 51).

Vaismoradi, M., Turunen, H., and Bondas, T. 2013. Content analysis and thematic
analysis. Implications for conducting a qualitative descriptive study. Nurs-
ing and Health Sciences 15 (3), 398-405. DOI: 10.1111 / nhs.12048 (cit. on
p- 49).

Valente, M., Couto, C., Faria, J., and Soares, S. 2010. On the benefits of quantifi-
cation in Aspect] systems. Journal of the Brazilian Computer Society 16 (2),
133-146. DOI: 10.1007 /s13173-010-0008-0 (cit. on pp. 76, 180).

Walker, R. J., Bamassad, E. L. A., and Murphy, G. C. 1998. Assessing Aspect-
Oriented Programming: Preliminary Results. In ECOOP’98 European Con-
ference on Object-Oriented Programming Workshop Reader. Lecture Notes
in Computer Science 1543, 586. DOI: 10.1007 / 3-540-49255-0_131 (cit. on
pp- 76, 180).

Walker, R. J., Baniassad, E. L. A., and Murphy, G. C. 1999. An initial assessment
of aspect-oriented programming. In Proceedings of the 21st international
conference on Software engineering. ICSE '99. New York, NY, USA: ACM,
120-130. DOI: 10.1145/302405.302458 (cit. on pp. 76, 180).

Walker, W., Lamere, P., and Kwok, P. 2002. FreeTTS: a performance case study.
Tech. rep. TR-2002-114. Sun Microsystems, Inc. (URL: http:/ /labs.oracle.
com/techrep /2002 /abstract-114.html) (cit. on pp. 76, 180).

Van Roy, P. 2009. Programming Paradigms for Dummies. What Every Program-
mer Should Know. In New Computational Paradigms for Computer Music.
Ed. by Assayag, G. and Gerzso, A. IRCAM / Delatour. (URL: http://www.
info.ucl.ac.be / ~pvr / VanRoyChapter.pdf) [visited on 2014-04-10] (cit. on
pp. 22, 24).

Webster, J. and Watson, R. T. 2002. Analyzing the Past to Prepare for the Future.
Writing a Literature Review. MIS Quarterly 26 (2), xiii—xxiii. (URL: http:/ /
www.jstor.org/stable/4132319) [visited on 2014-03-14] (cit. on p. 45).

Wegner, P. 1976. Programming Languages. The First 25 Years. IEEE Transactions
on Computers C-25 (12), 1207-1225. DOI: 10.1109/TC.1976.1674589 (cit. on
p- 34).

Wegner, P. 1987. Dimensions of Object-Based Language Design. In OOPSLA “87.
Object-Oriented Programming Systems, Languages and Applications, 168-
182. DOI: 10.1145/38765.38823 (cit. on p. 23).

146

Wegner, P. 1990. Concepts and Paradigms of Object-Oriented Programming.
ACM SIGPLAN OOPS Messenger 1 (1), 7-87. DOI: 10.1145/382192.383004
(cit. on p. 21).

Weimer, W. and Necula, G. C. 2008. Exceptional situations and program reliabil-
ity. ACM Transactions on Programming Languages and Systems 30 (2). DOT:
10.1145/1330017.1330019 (cit. on pp. 76, 85, 180).

Weinberg, G. M. 1971. The Psychology of Computer Programming. New York:
Van Nostrand Reinhold (cit. on pp. 13, 36).

Weiner, L. H. 1978. The Roots of Structured Programming. In SIGCSE’78. Papers
of the SIGCSE/CSA technical symposium on Computer Science education,
243-254. DOI: 10.1145/990555.990636 (cit. on p. 23).

Vessey, 1., Ramesh, V., and Glass, R. L. 2005. A unified classification system for re-
search in the computing disciplines. Information and Software Technology
47 (4), 245-255. DOTI: 10.1016/j.infsof.2004.08.006 (cit. on pp. 49, 94, 95, 243).

Vessey, 1. and Weber, R. 1984a. Conditional statements and program coding: an
experimental evaluation. International Journal of Man-Machine Studies 21
(2), 161-190. poI: 10.1016 / S0020-7373(84)80065-6. (URL: http:/ / www.
sciencedirect.com /science / article / pii / S0020737384800656) (cit. on pp. 71,
76, 81, 82, 180).

Vessey, 1. and Weber, R. 1984b. Research on Structured Programming: An Em-
piricist’s Evaluation. Software Engineering, IEEE Transactions on SE-10 (4),
397-407. DOI: 10.1109/TSE.1984.5010252 (cit. on pp. 76, 180, 181).

Westbrook, E., Zhao, J., Budimli¢, Z., and Sarkar, V. 2012. Practical Permissions for
Race-Free Parallelism. In ECOOP 2012 — Object-Oriented Programming. Ed.
by Noble, J. Vol. 7313. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 614-639. DOI: 10.1007 /978-3-642-31057-7_27 (cit. on pp. 76,
85, 89, 180).

Wexelblat, R. L., ed. History of Programming Languages 1981. ACM monograph
series. New York, NY: Academic (cit. on p. 34).

Wheeler, D. J. 1992. The EDSAC Programming Systems. IEEE Annals of the His-
tory of Computing 14 (4), 34—40. DOI: 10.1109/85.194053 (cit. on p. 20).

White, G. 2004. The Philosophy of Computer Languages. In The Blackwell Guide
to the Philosophy of Computing and Information. Ed. by Floridi, L. Malden,
MA: Blackwell, 237-247 (cit. on p. 17).

Whitehead, A. N. and Russell, B. 1910. Principia Mathematica. Vol. I. Cambridge:
University Press. (URL: http:/ /name.umdl.umich.edu/AAT3201.0001.001)
(cit. on p. 32).

Whiting, P. W. and Pascoe, R. S. V. 1994. A History of Data-Flow Languages. IEEE
Annals of the History of Computing 16 (4), 38-59. DOI: 10.1109/85.329757
(cit. on p. 34).

147

Whitley Jr., B., Kite, M. E., and Adams, H. L. 2013. Principles of Research in Be-
havioral Science. 3rd ed. New York: Routledge (cit. on pp. 50, 51).

Wiedenbeck, S. and Ramalingam, V. 1999. Novice comprehension of small pro-
grams written in the procedural and object-oriented styles. International
Journal of Human-Computer Studies 51 (1), 71-87. DOI: 10.1006 /ijhc.1999.
0269 (cit. on pp. 76, 180, 181).

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., and Corritore, C. 1999. A com-
parison of the comprehension of object-oriented and procedural programs
by novice programmers. Interacting with Computers 11 (3), 255-282. DOI:
10.1016/50953-5438(98)00029-0 (cit. on pp. 76, 180, 181).

Wijngaarden, A. van, Mailloux, B. J., Peck, J. E. L., Koster, C. H. A., Sintzoff, M.,
Lindsey, C. H., Meertens, L. G. T., and Fisker, R. G., eds. Revised Report on
the Algorithmic Language Algol 68 1976. Berlin: Springer. DOI: 10.1007 /
978-3-662-39502-8 (cit. on p. 28).

Wilkes, M. V., Wheeler, D. J., and Gill, S. 1951. The Preparation of Programs for an
Electronic Digital Computer. With special reference to the EDSAC and the
use of a library of subroutines. Cambridge 42, MA: Addison-Wesley (cit. on
p. 20).

Wirth, N. 1974. On the Design of Programming Languages. In IFIP Congress 74,
386-393 (cit. on p. 34).

Wirth, N. 1976. Algorithms + Data Structures = Programs. Englewood Cliffs:
Prentice-Hall (cit. on p. 18).

Wohlin, C., Runeson, P, Mota Silveira Neto, P. A. da, Engstrom, E., Carmo
Machado, I. do, and Almeida, E. S. de 2013. On the reliability of mapping
studies in software engineering. Journal of Systems and Software 86 (10),
2594-2610. DOI: 10.1016/j.js5.2013.04.076 (cit. on pp. 40, 45).

Volos, H., Welc, A., Adl-Tabatabai, A.-R., Shpeisman, T., Tian, X., and
Narayanaswamy, R. 2009. NePaLTM: Design and Implementation of Nested
Parallelism for Transactional Memory Systems. In Proc. ECOOP 2009 Euro-
pean Conference on Object-Oriented Programming. Lecture Notes in Com-
puter Science 5653, 123-147. DOI: 10.1007 / 978-3-642-03013-0_7 (cit. on
pp- 70, 76, 180).

Yin, R. K. 2009. Case Study Research. Design and Methods. 4th ed. Los Angeles:
Sage (cit. on pp. 49, 90).

Zhang, H. and Ali Babar, M. 2013. Systematic reviews in software engineering. An

empirical investigation. Information and Software Technology 55 (7), 1341-
1354. DOI: 10.1016/j.infsof.2012.09.008 (cit. on p. 40).

Zhang, H., Ali Babar, M., Bai, X., Li, J., and Huang, L. 2011. An Empirical Assess-
ment of a Systemati Search Process for Systematic Reviews. In Proceedings
of the 15th Annual Conference on Evaluation & Assessment in Software En-
gineering (EASE 2011), 56-65. DOI: 10.1049 /ic.2011.0007 (cit. on pp. 44, 49).

148

Zhang, H., Ali Babar, M., and Tell, P. 2011. Identifying relevant studies in software
engineering. Information and Software Technology 53 (6), 625-637. DOI: 10.
1016/j.infs0£.2010.12.010 (cit. on pp. 44, 45, 49, 62, 63, 94).

APPENDIX1 RECORD KEEPING AND TOOLS USED

APPENDIX 1.1 Database format

All data collection was recorded in a semistructured, human-readable database
consisting of files committed to a Git! repository, with commits made generally
at least once per day, on those days that data was collected. A public copy of the
repository is available at https:/ /yousource.itjyu.fi/antti-juhani-kaijanaho-s-licentiate- thesis-materials /collected-data.

The use of Git provides several advantages. Most importantly, it preserves
data collection history. The sequence of data collection, including any corrections
made, is available for examination in that history data. Further, Git uses cryp-
tographical checksums to provide a chain of trust from the most recent version
to all historical versions: so long as one trusts that one has the correct current
version (and so long one trusts the cryptography in Git), one can equally trust
its history as Git reports it. Accidental history editing is completely prevented,
and deliberate editing of the history would be reflected in the identity metadata
of the current version. The current version that this thesis reports on is identified
by 3cd0098c89debac9laddd9feb26e5dfeed5f0£fcs.

APPENDIX 1.1.1 General syntax

The general format of most files in the database resembles the format of the
header of an Internet mail message (Pogran et al. 1977; Crocker 1982; Resnick
2008) and the format used in many Debian package control files (The Debian Pol-
icy Manual 2013, Section 5). I originally chose this format in order to be able to use
my dctrl-tools toolset,? which was designed to handle the Debian control file
format. This format is also human-readable and easy to write using a text editor,
which is a significant advantage.

Every line in a file conforming to this syntax is either a field-beginning line, a
field-continuation line or an empty line. Every field-beginning line starts with a non-
whitespace character and contains at least one colon; every field-continuation
line starts with a whitespace character and contains at least one non-whitespace
character.

It is a syntax error for any line to consist solely of whitespace, and for a
line starting with a non-whitespace character to lack a colon. It is also a syntax
error for a field-continuation line to occur anywhere except immediately after a
field-beginning line or after another field-continuation line.

A field starts with a field-beginning line and contains all immediately fol-
lowing field-continuation lines. The name of the field consists of everything on the
field-beginning line up to and not including the first colon on the line. The content
of the field starts with the first non-whitespace character following the first colon

! Git is a version control software suite, originally developed by Linus Torvalds. Its principal

web site is http:/ /git-scm.com/.

2 https:/ /packages.debian.org/unstable/dctrl-tools

150

on the field-beginning line, and extends to the last character of the last line of
the field, not including the final line terminator character, if any. Any period that
occurs as the first non-whitespace character of a field-continuation line is ignored
for the purposes of field content; this special treatment, sometimes called dot-
stuffing, allows a field to include empty lines (represented as field-continuation
lines consisting of a single period).

A record begins with a field-beginning line that either is the first line of a file
or directly follows an empty line. It ends with the first subsequent field-beginning
or field-continuation line that is immediately followed by either an empty line or
the end of the file.

APPENDIX 1.1.2 Search records

Each search performed in this mapping study, with one exception, was recorded
as a file in the subdirectory searches/. Only the snowball search has no separate
record. Each file was named with a short tag indicating the search venue followed
by a dash and an ordinal number distinguishing between multiple searches in the
same venue. For example, the file searches/popl-4 records the fourth manual
search in the Proceedings archive for the ACM SIGACT-SIGPLAN Symposia on
Principles of Programming Languages Proceedings (POPL). That file has the fol-
lowing content:

Search: popl-4

Protocol-Version: 3

Date: 2011-09-01

Description: Manual scan of the ASM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL) proceedings for the years
2008-2011, as recorded at ACM Digital Library. Any work that might
satisfy one of the following criteria is recorded for further study:

1. The work is a primary study that attempts to determine the efficacy
of a programming language design decision.

2. The work is a literature review that attempts to summarise or
consolidate research on the efficacy of a programming language
design decision.

The formal level of scrutiny is that "obviously fails both" implies
"do not record". In practice, when I believe a work fails both
criteria, I still record it if I feel I need to explain the decision
(which I leave to Phase Two).
Metadata-Used: Title and author; abstract and keywords if available and
needed to resolve undecidedness.

These files contain exactly one record comprising the following fields:

Search: the name of the file

Protocol-Version: the version number of the study protocol in force at the time
of the search

Date: the dates of the search, in the International Standard format YYYY-MM-
DD

151

Description: a verbal description of the search, including the venue searched; I
also often paraphrased the selection criteria as they were applicable in the
search phase

Metadata-Used: a verbal description of the metadata that were used to evaluate
selection criteria during the search; unfortunately, this field did not always
accurately describe the actual practice

SearchTerm: for automatic searches, the search term verbatim, as input to the
search engine; for example, gs-9 contains

SearchTerm: "programming language" intitle:"case study",

all in one line

ReportedHitCount: for automatic searches, the number of hits reported by the
search engine for this particular search

YearRestriction: for automatic searches, any restriction given to the search en-
gine on which years to search

X-ISI: used only in the Web of Science searches, to record the search parameters
verbatim; for example, ws-2 contains X-ISI: Databases=SCI-EXPANDED,
SSCI, A&HCI Timespan=2011-01-01 - 2012-12-01 Lemmatization=O0n,in
two lines

Problem: used only once (in gs-2), to record a particular serious problem en-
countered in the search: PROBLEM: GOOGLE SCHOLAR REFUSES TO SHOW HITS
BEYOND THE FIRST THOUSAND!

APPENDIX 1.1.3 Publication records

I recorded every publication I found in a search and did not regard as obviously
out of scope. Each publication has its own file in the refs/ subdirectory, named
by the surname of the first author, followed by a dash and the publication year,
followed by a disambiguating letter, if necessary, and finally followed by the file-
name extension .txt. The name of the file, without the filename extension, is
used as a cross-reference identifier of the publication described by the file. For ex-
ample, the file refs/hanenberg-2010a. txt describes a publication whose cross-
reference identifier is hanenberg-2010a and contains the following:

Authors: Stefan Hanenberg

Title: Doubts about the Positive Impact of Static Type Systems on Programming
Tasks in Single Developer Projects - An Empirical Study

Booktitle: Proc. ECOOP 2010 European Conference on Object-Oriented Programming
Series: Lecture Notes in Computer Science

Number: 6183

Pages: 300-303

Year: 2010

DOI: 10.1007/978-3-642-14107-2_14

SelectionDecision: II.ajk/2011-11-23 PASSED primary:YES litrev:NO pub:YES
lang:YES priEvidence:YES

SelectionDecision: III.ajk/2012-12-04 PASSED primary:YES litrev:NO pub:YES
lang:YES priEvidence:YES; This short article reports a controlled experiment

152

with human participants evaluating the efficacy of dynamic/static type
systems.

Searches: ecoop-15/2011-08-19 gs-2/2011-09-07 gs-5/2011-09-13
cites:gannon-1977/2013-02-19 citedby:hanenberg-2010/2013-02-21
citedby:kleinschmager-2012a/2013-02-22 cites:prechelt-1998/2013-03-05
citedby:stuchlik-2011/2013-03-11

Snowballed: first.baddate/2013-04-11

SelectionDecision: final/2013-08-07 PASSED priEvidence:YES primary:YES
litrev:NO lang:YES pub:YES; [III.ajk]This short article reports a controlled
experiment
with human participants evaluating the efficacy of dynamic/static type
systems.

These files contain exactly one record. All publication records could use the
following bibliographical fields, which are mostly self-explanatory: Authors (in
BibTgX format), Title, Year, Pages, DOI, URL, URI, and Month. Journal publica-
tions used the following additional fields: Journal, Volume, Number, ISSN, and
Articleno (for journals that uses article numbers instead of, or in addition to, page
numbering). Books used the following additional fields: ISBN, ISSN, Publisher,
Address (for the publisher’s location), Series, Volume, and Number. Publications
that are a part of some book use, in addition to the book fields, the following
fields: Editor, Booktitle, Location (for conference proceedings), and Articleno.
Theses used the additional fields School and ThesisType. Departmental reports
used the additional fields Institution, ReportType and ReportID.

All publications also made use of the following process-related fields:

SelectionDecision: describes a particular selection decision made with regard to
this publication, in the following manner:

— First, there is a tag identifying the phase in which the decision was
made (most commonly “II”, for initial decisions made based on meta-
data only, “III” for initial decisions based on full text, and “final” for
the final decision) and often also the decision-maker (affixing a period
and their nickname, most commonly “.ajk” indicating myself, to the
tag).

— Then, there is a solidus followed by the date of the decision in the
International Standard format.

— Then, there is whitespace followed by an indication of the bottom-line
decision made, either “PASSED” (the publication was not excluded)
or “EXCLUDED”.

— Then, answers to the selection criterion questions are listed, separated
by whitespace. Each answer is encoded by a tag naming the question
(Qlisprimary, Q2is litrev, Q3is pub, Q4 is lang, Q5 is priEvidence,
Q6 is secContainsEvidence, and Q7 is secDiscussEvidence) followed
by a colon and either “YES” or “NO”.

— Finally, and optionally, the answers may be followed by a semicolon
followed by a free-form explanation of the decision.

153

Sequence: indicates that this publication belongs in a named sequence and has
a particular ordinal number within that sequence; the sequence name and
the ordinal are separated by a colon; for example youngs-1974. txt contains
Sequence: selection-control-sample:92,on one line

Searches: indicates, the searches that located this publication; note that for a
borderline publication, the list may not be complete as in some searches I
may have decided that the publication obviously is off topic even though
I declined to make that decision in other searches; the searches are listed
in an arbitrary order and separated by whitespace, encoding each search as
follows:

— First, the search is named. The name is either a file name in the searches/
directory, or a snowballing reference. The latter start with either cites:
or citedby: followed by the cross-reference identifier of the publica-
tion that this publication cites or that this publication is cited by, re-
spectively.

— Then, a solidus separates the search name from the date.

— Finally, the date on which this publication was found by the search is
given in the International Standard format.

Snowballed: contains, if present, a tag and a date indicating that the publication
has been subjected to snowballing. The idea was to indicate which round of
snowballing the publication was subjected to, but since there was only one
round, and because that round was conducted before I thought of recording
this information, the tag and date are (beyond their mere presence) mean-
ingless.

SelectionNote: contains a free-form textual note made during the selection pro-
cess (for example, I commonly used it to indicate that an interlibrary loan
request was pending)

Forum: contains an identifier for the publication forum (one identifier for each
journal, conference proceedings series etc)

Disregarded-SelectionDecision: was used in rare cases to retain a record of a
selection decision that was overridden later

APPENDIX 1.1.4 Study records

I assigned a study identifier, in the form of Sn, where n is a positive integer, to
each publication finally selected for inclusion. Most publications received one
unique identifier. If two publications reported the same study, they received the
same identifier. If a publication reported more than one study, it may or may
not have received more than one identifier (typically not, but for example if one
of the studies was reported in another publication as well but another was not,
assigning more than one identifier to the publication was necessary).

For each study identifier, I created a file named after the identifier in the
subdirectory extracts/, with the filename extension .txt. The directory name
originates from that the files were at first only used to record extracted data from

154

each study; it became a misnomer later, but renaming the directory would cause
more hassle than correcting such a cosmetic issue is worth. For example, the file
extracts/S135.txt contains the following:

Study: S135

Articles: shneiderman-1975

Method: "the focus of this paper is on experiments in programming
language features, stylistic considerations and design techniques."

(p. 653)
Codes: NarrativeReview

DesignChoice: "the IF-THEN-ELSE construction and the IF(CONDITION)GOTO
statement"” (p. 654)

Efficacy: "easier to use and resulted in fewer bugs" (p. 654)

Method: "a fascinating experiment on non-programmers [...] based on a
relatively small sample size in a carefully controlled, but
artificial programming environment" (p. 654)

IdentifiedResults: "the IF-THEN-ELSE construction was easier to use and resulted
in fewer bugs, particularly with more complex problems."

PriorStudies: not indicated

IncludedStudies: sime-1973

Codes: FeatureDesign Conditionals

ProgrammingEffort ErrorProneness
NonrandomizedControlledExperiment
NonProgrammers

Each such file has at least one record, and most have at least two. The first
record contains metadata about the study identifier; the subsequent records each
document one distinct primary study reported in the publications assigned to
this identifier. To distinguish between studies as identified by the Sn identifiers
and studies as described by these records, the latter are called sub-studies (there
being usually one or more sub-study in each study).

The first record of each file in the extracts/ directory uses the following
fields:

Study: contains the study identifier of this study

Articles: lists each publication (identified by their cross-reference identifiers and
separated by whitespace) that this study identifier is assigned to

Note: contains a free-form textual note

Method: occurs only in secondary studies and carries a free-form text (usually
an attributed direct quote) describing the secondary-study method used

Codes: occurs only in secondary studies, and contains secondary-study method
codes (see Table 22 on page 175), separated by whitespace, assigned to this
study

Exclude: contains, if present, either “NO” or “YES”, the latter indicating that the
study this file describes was excluded from this mapping study after study
identifiers were assigned; such exclusions are referred to as being post hoc.

ExclusionReason: is used only if Exclude: YES is present and contains a free-
form explanation of the exclusion

155

Any study that was not post-hoc excluded will have at least one sub-study. For
primary studies, the sub-studies are usually self-contained but related separate
studies that have been reported in the same publication. For secondary studies,
the sub-studies are the primary studies discussed by the secondary study, as they
are described by the secondary study.

All sub-studies can make use of the following fields:

DesignChoice: contains free-form text (usually an attributed direct quote) de-
scribing the design decisions whose relative efficacy was under study

Efficacy: contains free-form text (usually an attributed direct quote) describing
the facets of efficacy used in the sub-study

Method: contains free-form text (usually an attributed direct quote) describing
the research method used in the sub-study

IdentifiedResults: contains free-form text (usually an attributed direct quote)
describing the result of the study as relevant to the question of the relative
efficacy of the design decisions studied and as reported in the publications
this study identifier was assigned to

PriorStudies: contains free-form text (sometimes an attributed direct quote with
bibliographical information) identifying prior studies of relevance to this
sub-study, particularly studies this sub-study replicated or followed up on

FollowupTo: contains a whitespace-separated list of publications in this database,
identified by their cross-reference identifiers, that this sub-study followed
up on

Replicates: contains a whitespace-separated list of publications in this database,
identified by their cross-reference identifiers, that this sub-study replicates

OtherPriorStudies: contains a whitespace-separated list of publications in this
database, identified by their cross-reference identifiers, that are relevant
prior studies to this sub-study in some way other than being followed up
on or being replicated.

Note: contains a free-form note

Codes: contain the design-decision (see Table 19 starting on page 169), efficacy
(see Table 20 starting on page 173), and primary-study method (see Table 21
starting on page 174) codes, separated by whitespace, assigned to this sub-
study

Sub-studies of secondary studies use the following additional fields:

IncludedStudies: contains a whitespace-separated list of publications in this data-
base, identified by their cross-reference identifiers, that the secondary study
report cites as reporting the (primary) sub-study

OtherIncludedStudy: contains a free-form bibliography entry for a publication
not in this database that the secondary study report cites as reporting the
(primary) sub-study; this field is repeated for each such publication

156

APPENDIX 1.1.5 Codes and raw themes

All codes assigned to studies are defined in the top-level directory file codes. txt
that contains one record for each code. These records use the following fields:

Code: the name of the code

Category: the category of the code (DesignDecision, Efficacy, Method, or Sec-
ondaryMethod)

SubCategory: the subcategory, if any, assigned to the code

Implies: a whitespace-separated list of codes, if any, implied by this code

Definition: a free-form definition of this code

The tables in Appendix 2 have been automatically generated from this file. The
following is one record in the file, given as an example:

Code: TypelInference
Implies: StaticTyping
Category: DesignDecision
SubCategory: Typing
Definition: The design decisions under study involve type inference
(that is, static typing where the type system infers the vast majority of
types that one would normally expect to declare explicitly).

In theme development, I have defined a number of parametrized raw themes
in the top-level directory file themes. txt. The slr-tools toolset can be used to
generate lists of studies belonging to each raw theme and the parameter values
associated with each study. Each raw theme is described by a single record in the
file, using the following fields:

Theme: the name of this raw theme

Query: a term in the query language (Section 1.2) describing the set of studies
belonging in this raw theme and any raw-theme parameters associated with
each such study

The following is one record in the file, given as an example:

Theme: FeatureDesignOrPresence
Query:
such study in studies and

@ss in study.subStudies and
feature in ss.codes

that feature.category.name == DesignDecision &&
feature.name != IndirectRelevance &&
feature.subcategory.name != Paradigm &&
feature.subcategory.name != SpecificLanguage &&
feature.subcategory.name != DecisionType &&
exists such ¢ in ss.codes that (c.name == FeatureDesign

|| c.name == FeaturePresence)

157
APPENDIX 1.2 The query language

The syntax of the query language used in raw themes and with the slr-tools
query tool, which is introduced later, is specified using the following context-free
grammar metalanguage:®> terminal symbols that stand for more than one lex-
eme as well as nonterminal symbols are written in italics, terminals that stand
for themselves are written in fixed-width bold; a set of productions starts with
a nonterminal followed by a colon, with the right-hand sides listed below, in-
dented, each on its own line. As an abbreviation, a symbol may be given the sub-
script “opt”, meaning that the symbol is optional. Similarly, if all productions of
a particular nonterminal have one-symbol right-hand-sides, those symbols may
be listed on one line, if the colon is followed by “one of”.
The starting symbol of the grammar is term.

APPENDIX 1.2.1 Lexical structure

I will employ the conventional two-level language structure in the following lan-
guage description. The valid expressions of the query language are strings of
Unicode characters. The lower (lexical) layer of the language assigns every non-
whitespace character in a syntactically valid expression into exactly one lexeme.
Lexemes are contiguous substrings of the expression that do not overlap and that
do not contain any whitespace. Every lexeme is associated with exactly one ter-
minal symbol of the context-free grammar specifying the upper (syntactic) layer
of the language. The grammar sees the expression as a sequence of terminal sym-
bols and does not care what the underlying lexemes are; but, of course, the par-
ticular lexeme underlying a particular terminal symbol has semantic significance.

Most lexemes in this language are words, which come in two forms. Simple
words start with a Unicode identifier-start character and continue with Unicode
identifier-part characters. Quoted words start with a " or a *. Within a quoted
word, backslashes are ignored, except those backslashes that themselves are pre-
ceded by an ignored backslash. A quoted word ends with the first occurrence of
its starting character that is not preceded by an ignored backslash. The starting
and ending character are not included in the quoted word; thus "foo" and foo
are the same word.

The following are the only lexemes in the language that are not words:

() =@a. ,& || =>"! ==I=
In the grammar, the symbol word is a nonterminal defined as follows:
word:

keyword
other-word

This metalanguage is substantially similar to that used by Information Technology — Program-
ming Languages — C# (2006), Gosling et al. (2014), and Information Technology — Programming
Languages — C (2011) to specify C#, Java, and C syntax, respectively, among others. The
earliest use of it I am aware of is by Ritchie (1974).

158

keyword: one of
and by count exists group in of powerset such that

The symbol other-word is a terminal symbol whose lexemes comprise those words
that are not keywords. Note that keywords are not reserved words; in contexts
where no ambiguity arises, a keyword can be used like any other-word. Any ambi-
guities caused by having a particular keyword be a word are resolved by temporar-
ily treating that keyword as if it were not a word.

APPENDIX 1.2.2 Terms

term:
powerset-term
groupby-term
countin-term
postfix-term

postfix-term:
projection-term
primary-term

primary-term:
query-term
variable
(term)

Terms are expressions that evaluate into values.

variable:
word

Variables are either free or bound. A bound variable is one that has been given a
value somewhere in the lexical environment. A bound variable, used as a term,
evaluates to its bound value. All variables that are not bound are free, and eval-
uate to string values that represent the variables themselves; thus, if for example
foo is a free variable, it evaluates to the string value foo.

query-term:
such iterators that predicate

iterators:
iterator
iterators and iterator

iterator:
qualifier,,, variable in term
qualifier,, variable = term

Query terms are basically list comprehensions, and serve the same function as
looping constructs in many languages.

Consider first a query term in which there is exactly one iterator, the iterator
is an in-iterator, and the iterator has no qualifier. The term in the iterator is first

159

evaluated; it must evaluate into a sequence value. The query term evaluates the
predicate for each value in the sequence, with the value bound to the iterator’s
variable within the predicate. The query term evaluates into a sequence value
which contains exactly those values from the iterator’s sequence that make the
predicate come out true. Thus, this special case query term acts essentially as a
sequence filter.

If a query term has at least two iterators, the behavior is different in three
main respects. First, each iterator variable is bound not just within the predicate
but also within the terms of each of the iterators on its right-hand side within
the same query term. Second, all possible bindings of iterator variables to val-
ues from their respective iterator-term evaluated sequences are tested against the
predicate. Third, the resulting sequence comprises records containing a field for
each variable, the sequence recording the variable bindings that made the predi-
cate come out true.

If an iterator is a =-iterator, the iterator’s term does not need to evaluate to a
sequence. Its value is treated as if it were the single element of a sequence value
in an otherwise equivalent in-iterator.

qualifier:
e

If an iterator is qualified by an @, that particular iterator’s variable will not have
a corresponding field in the records comprising the sequence generated by the
query term. At least one iterator in a query term must lack an @-qualifier. An
@-qualifier makes no sense in a query term containing exactly one iterator, and
such usage is prohibited.

projection-term:
postfix-term . word

A projection-term first evaluates its postfix-term. If the postfix-term evaluates to a
record containing a field named by the word, the projection-term evaluates to the
value carried by that field in the record. If the postfix-term evaluates to a sequence,
the projection-term evaluates to a sequence of the same length, each element of the
latter sequence containing the value carried by the field named by the word in the
record that is the corresponding element of the former sequence, or a null value,
if the corresponding element is not a record that contains such a field.

countin-term:
count word in term

A countin-term first evaluates its term. It is an error for the value of the term not to
be a sequence of records, each containing a field named by the word that carries
a sequence value. The countin-term evaluates to a sequence of the same length,
each element of which is a copy of the the corresponding record in the original
sequence, with the sequence carried in the word field replaced by the count of its
elements.

160

groupby-term:
group by wordlist term

wordlist:
word
wordlist , word

A groupby-term first evaluates its term. The value of the term must be a collection
of records. The groupby-term evaluates to a (usually shorter) collection of records.
The latter collection contains one record for each unique combination of values
carried by the wordlist-named fields in the former collection of records. Each such
record carries in each of its other fields a list of all values carried by that field in
all the records of the former collection that share the same combination of values
in the wordlist-named fields.

powerset-term:
powerset of term

A powerset-term first evaluates its ferm. The value of the term must be a collection.
The powerset-term evaluates to a collection of all possible subcollections of that
collection.

APPENDIX 1.2.3 Predicates

predicate:
basic-predicate & predicate
basic-predicate | | predicate
basic-predicate => predicate
basic-predicate

basic-predicate:
! (predicate)
(predicate)
exists term
term == term
term 1= term
term < term
term in term

Predicates are truth-valued expressions, which can be built using the usual short-
circuiting connectives (& and | |), an implication connective (with Pj=>P, de-
fined as syntactic sugar for ! (P;) | | P;), and the usual negation (with mandatory
parentheses) from a number of atomary predicates.

The existence predicate exists term evaluates the term, which must evaluate
to a collection value, and comes out true if the collection is nonempty (the name
is based on the expectation that the term is often a query-term, yielding the phrase
exists such...that). The membership predicate evaluates both terms, requires
that the latter evaluates to a collection value, and comes out true if the former
evaluates to a member of the collection. The equality and inequality predicates
are self-explanatory. The less-than predicate requires that the terms are string
values and comes out true if java.lang.String.compareTo returns a negative
number for the string values in question.

161

APPENDIX 1.2.4 Pre-bound variables

The following variables are pre-bound and can be used in any query, if the corre-
sponding information exists in the database:

studies: containing a collection of records, each describing a study

primaryStudies: containing a collection of records, each describing a study, lim-
ited to primary studies

secondaryStudies: containing a collection of records, each describing a study,
limited to secondary studies

codes: containing a collection of records, each describing a code (from codes. txt)

articles: containing a collection of records, each describing a publication (as de-
scribed by a file in the refs/ subdirectory)

includedArticles: containing a collection of records, each describing a publica-
tion (as described by a file in the refs/ subdirectory), restricted to those
with a final inclusion decision

searches: containing a collection of records, each describing a search

A record describing a study has the following fields:

name: a string value containing the Sn study id

secondary: a string value containing either “yes” or “no”, indicating whether
this is a secondary study

headCodes: a collection of records, each describing a code, as listed in the Codes
field of the first record in the study file; these are the secondary study codes,
if any

subStudies: a collection of records, each describing a sub-study

articles: a collection of records, each describing a publication, as listed in the
Articles field of the first record in the study file

citation: a IXTEX \cite command referring to the publications that have been
assigned this study identifier

pubYear: astring value containing the year of the earliest publication associated
with this study

A record describing a publication has the following fields:

id: a string value containing the cross-reference identifier of the publication

studies: a collection of records, each describing a study, listing the studies that
this publication has been assigned to

searches: a collection of records, each describing a search, listing the searches
that found this study

included: a string value, either “yes” or “no”, indicating whether this study is
finally included or not

forum: a string value, taken from the Forum field

year: a string value, taken from the Year field

A record describing a sub-study has the following fields:

162

id: astring value containing Sna, where Sn is the identifier of the study that this
sub-study is a part of, and 7 is a letter indicating the ordinal number of this
sub-study within the study (missing if the study is a primary study and has
exactly one sub-study)

explicitCodes: a collection records, each describing a code, listing (with order
preserved) the codes that are given in the Codes field of the sub-study record
in the study file, without listing any implied codes unless they are explicitly
given in the Codes field

codes: a collection of records, each describing a code, listing all codes, even im-
plied codes, assigned to this sub-study

followupTo: a collection of records, each describing a publication that this study
follows up on

replicates: a collection of records, each describing a publication that this study
replicates

otherPriors: a collection of records, each describing a publication that is other-
wise a significant prior publication to this study

included: a collection of records, each describing a publication that has been
selected for inclusion in this mapping study and has been cited by this sub-
study

includedCites: a collection of string values, each containing a IATEX citation to a
publication, listing each publication that has been selected for inclusion in
this mapping study and has been cited by this sub-study

includedOthers: a collection of string values, each containing a IATEX citation
to a publication, listing each publication that has been excluded from this
mapping study and has been cited by this sub-study

A record describing a code has the following fields:

name: a string value containing the name of the code

category: arecord value describing a code category

subcategory: a record value describing a code subcategory

implies: a collection of records, each describing a code, listing those codes that
this code directly or indirectly implies

definition: a string value containing the definition of the code

A record describing a code category has the following fields:

name: a string value containing the name of the category
subcategories: a collection of records, each describing a subcategory of this cat-

egory
A record describing a code subcategory has the following fields:

name: a string value containing the name of the category

category: a records describing the category that this subcategory belongs to

codes: a collection of records, each describing a code, listing those codes that
belong to this subcategory

163

A record describing a search has the following fields:

v 1// “
4

type: a string value, either “automatic”, “manua
cating the type of the search

cites”, or “citedby”, indi-

name: (only if type is “automatic” or “manual”) a string value containing the
name of the search

baseName: (only if type is “automatic” or “manual”) a string value containing
the name of the search, excluding the last dash it contains and everything
after it (if any)

key: (only if type is “cites” or “citedby”) a string value containing the cross-
reference identifier of the publication that this search snowballed

APPENDIX 1.3 The slr-tools toolset

During the course of this mapping study, I wrote a set of programs, in Java, to au-
tomate parts of the study. * I call this toolset s1r-tools mainly for convenience;
I am aware that the name is not particularly original or unique. It should be
noted that these tools are specific to this study, and they cannot be used without
changes on other studies. Note also that more recent versions of the toolset do
not work with early versions of the database due to format changes; one should
generally use the same vintage of both the toolset and the database. The toolset
is written in Java 7 and comprises about 8.500 lines of code (counted using David
A. Wheeler’s ‘SLOCCount’).®

APPENDIX 1.3.1 General usage

There is one entry point, the fi. jyu.antkaij.S1lrTools.main method. Each tool
is called up by giving particular command-line arguments to this entry point.
The top-level directory of the database (containing such files as codes.txt and
themes. txt) is assumed to be the current directory, unless another is indicated
by giving -dir DIR as the first two command-line arguments to the entry point.

In the subsequent examples, I will be calling this entry point using the fol-
lowing Unix shell script with the name s1r-tools:

#!/bin/sh

exec java -ea -cp /home/ajk/research/mapping-tools/tools/class:$CLASSPATH \
fi.jyu.antkaij.S1lrTools "$@"

This script assumes, of course, that the toolset classes have been compiled
into the directory /home/ajk/research/mapping-tools/tools/class.

The validate tool, invoked as slr-tools validate, reads the database,
checks all files for syntax errors, and performs a number of cross-checks between

Itis pubhcly available at https:/ /yousource.itjyu.fi/antti-juhani-kaijanaho-s-licentiate- thesis-materials /slr- tools.

5 http:/ /www.dwheeler.com/sloccount/

164

the files (such as that all publications cross-referenced actually have a descriptive
file in the refs/ subdirectory). Many of the other tools perform these checks as
well before performing their main function.

APPENDIX 1.3.2 Recording search results

New publications can be added to the database by hand, or by using

slr-tools import SEARCHNAME BIB-URI

where SEARCHNAME is the name of an existing search recorded in the searches/
directory or, in the case of snowballing, a valid cross-reference identifier of an
existing publication preceded by cites: or citedby:; and BIB-URI is a local file
name or an URI for a BibTEX record for the publication to add; the standard input
(System.inin Java terminology) can be indicated by giving - as the BIB-URI. The
import tool will try to determine if the publication already exists in the database,
and if so, only amends its Searches field. If no existing record is found, the
import tool converts the BibTgX record into a record suitable for a file in the refs
subdirectory, and opens a Swing-based text editor allowing the user to edit the
record. Once the user is satisfied, they can ask it to be saved, in which case the
import tool checks that the record does not cause validation errors and saves it. If
there were validation errors, those are pointed out to the user and they are given
an opportunity to re-edit the record.

If a publication is known to exist in the database in the file REF-FILE, a new
search (named SEARCHNAME) can be added to its Searches field by using

slr-tools add-search SEARCHNAME REF-FILE

A Snowballed field carrying a particular TAG can be added to a particular publi-
cation’s record in the file REF-FILE by using

slr-tools add-snowball TAG REF-FILE
APPENDIX 1.3.3 Selection decisions

A tag must be given for each selection phase so that slr-tools can keep track
of which publications have been selected and which have not. In this mapping
study, the main tags I have used are II.ajk, indicating a main selection round
based on metadata only, and III.ajk, indicating a main selection round based on
the full-text of the publications. The special tag final indicates the final decision.
I'have used other tags to record validation exercises.

If a selection phase tagged SELECTOR-ID should go through all recorded
publications, ordinarily one would begin a day’s work of selection by invoking

slr-tools select SELECTOR-ID

If it should go through only those publications that have been PASSED in an earlier
round tagged FILTER-ID, the ordinary invocation would be

slr-tools select SELECTOR-ID FILTER-ID

165

The FILTER-ID can also be a Sequence tag preceded by seq:. If one wants to
record a decision regarding a specific set of publications (the refs/-subdirectory
file names of which are REF-FILEs, the ordinary invocation would be

slr-tools select-this SELECTOR-ID REF-FILE...
In all cases, the select tool creates an internal set of publications that need to be

given a SELECTOR-ID selection decision, picks one at random, and then presents
the user with a Swing form, like the one depicted in Figure 12, allowing the user

Select publications (1956) x

Martin Hitz & Marcus Hudec (1995): Modula-2 versus C++ as a first programming language—some empirical
results. SIGCSE Bulletin 27 (1). Pages 317-321. Link

Is this a primary study that attempts to determine the efficacy of a programming) Maybe) No
language design decision?

Is this a literature review that attempts to summarise or consolidate research on) Maybe) No
the efficacy of a programming language design decision?

Can you find a complete written and published report about this study?) Maybe i No
Is the study reported in English, Finnish or Swedish?) Maybe) No
Does this primary study present scientific empirical evidence about their claims?) Maybe) No
Does this secondary study include any primary studies that present scientific) Maybe) No

empirical evidence?

Does this secondary study discuss scientific empirical evidence in the primary 1 Maybe) No
studies under review? :

| Decide | _skip_]

FIGURE 12 The slr-tools select form

to answer the selection criteria questions. Some of the questions are disabled ini-
tially or in response to answers given to other questions, if the questions do not
make sense in light of the other answers given. The “Decide” button is disabled as
long as the questions do not dictate a bottom-line decision. Once they determine
a decision, the button is enabled and its text changed to “Pass” or “Exclude”,
based on the decision determined by the current answers. The form also contains
two text boxes: the upper one is linked to the publication’s SelectionNote field,
and the latter will be used as the free-form explanation for the selection decision
that will be entered using the form. Once a decision has been made, or the “Skip”
button pressed, the publication is removed from the internal set and another ran-
domly selected publication from the internal set is presented for decision.

All selection decisions under a tag OLD-TAG can be copied over to another
tag NEW-TAG by invoking

166

slr-tools copy-selection OLD-TAG NEW-TAG
APPENDIX 1.3.4 Selection evaluation support

A random sample of N publications, selected from those publications that have
been PASSED in the selection round FILTER-ID, can be created using

slr-tools random-sample TAG N FILTER-ID

This lists the sample, in a random order, to standard output, and also saves the
sample as a Sequence under the name TAG. For example:

$ slr-tools random-sample example 10 final
Sample size 10, population 180
0. hertz-2005
dolado-2003
bartsch-2008
gannon-1975a
. walker-1999
gannon-1975
. nanz-2010
. walker-1998
iselin-1988
9. qi-2010
$ grep Sequence refs/iselin-1988.txt
Sequence: example:8
$

00 N OV WN

The FILTER-ID may be omitted, in which case the sample is created from
the full population of all publications in the database.

The Cohen kappa statistic of strength of agreement between two selection
rounds SEL-ID-1 and SEL-ID-2, restricted to those publications for which both
rounds have a decision and restricted to comparing only the bottom-line deci-
sions, can be computed using

slr-tools kappa SEL-ID-1 SEL-ID-2

A similar Fleiss kappa statistic between an arbitrary number of selection rounds
named by SEL-IDs, again similarly restricted, can be computed using

slr-tools fleiss-kappa SEL-ID...

A CSV-format table of bottom-line decisions of two or more SEL-IDs can be ob-
tained using

slr-tools ratings-csv SEL-ID...
APPENDIX 1.3.5 Report dumps

A number of data dumps, for report-generation purposes, can be generated. The
command

slr-tools code-frequencies

167

reports the frequency of assignment to studies for each of the defined codes.
The command

slr-tools export-html DIR

writes to the DIR directory a set of static web pages describing most of the database,
including pages detailing codes and their assignments, as well as raw themes and
their contents.

The command

slr-tools dump DECISION SEL-ID

generates a IATEX list (without the enclosing begin and end commands) of all pub-
lications for which a particular bottom-line DECISION (either PASSED or EXCLUDED)
has been made in the selection round SEL-ID. For example, the list in Appendix 5
was generated using the command

slr-tools dump EXCLUDED final

The command

slr-tools dump-bib DECISION SEL-ID

generates a BibTgX database of all publications for which a particular bottom-
line DECISION (either PASSED or EXCLUDED) has been made in the selection round
SEL-ID. For example, the BibTgX database of all included studies, which is used
in this thesis, was generated using the command

slr-tools dump-bib PASSED final

The command

slr-tools dump-studies N

generates content usable in a IXIEX tabular environment that contains all studies
that have an assigned Sn identifier and their dump-bib compatible citations in N
columns. The main content of Table 9 was generated using

slr-tools dump-studies 3

The command

slr-tools dump-sample FMT SEQ

can be used to generate a bibliography of the publications in the sequence SEQ in
the format FMT (which is either text, LaTeX or HTML).

168

APPENDIX 1.3.6 Queries

Finally, slr-tools supports queries using the language described above in Ap-
pendix 1.2. Queries can be executed on the command line using

slr-tools query QUERY-TERM

which outputs the query in a human-readable but unformatted style,

slr-tools query -table QUERY-TERM

which outputs a fixed-width-font textual table of the results,

slr-tools query -table=COLUMN,... QUERY-TERM

which outputs a similar table but with the specified COLUMNs in the specified or-
der, or

slr-tools query -latex=COLUMN,... QUERY-TERM

which outputs the result in a format usable in a IXTEX tabular environment, with
the specified COLUMNs in the specified order. The QUERY-TERMs above are syntac-
tically terms, not necessarily query-terms.

For a complicated example, the meat of Table 19 was generated using

slr-tools query -latex=study,cite,ddcodes,effcodes,metcodes \
’such @st in primaryStudies and
@ss in st.subStudies and
study = ss.id and
cite = st.citation and
ddcodes = (such c¢ in ss.explicitCodes

that c.category.name == DesignDecision) and
effcodes = (such c in ss.explicitCodes
that c.category.name == Efficacy) and

metcodes = (such ¢ in ss.explicitCodes
that c.category.name == Method)
that a==a ’

APPENDIX2 CODES USED IN THEMATIC SYNTHESIS

The following tables enumerate all the codes used in the thematic synthesis. The
definitions are working ones, used to indicate the limits of the codes for the pur-
poses of coding in this mapping study. In some cases they may be somewhat
idiosyncratic. Most codes have been assigned a subcategory as a part of and as a
tool in the raw theme formation; they are recorded here for completeness.

Some codes imply other codes; any such implications are indicated at the
end of the definition.

TABLE 19 Design-decision codes

Code Subcategory Definition

C SpecificLanguage The design decisions under study involve the 'C (tick-C) language.

AJ SpecificLanguage The design decisions under study involve the AJ language.

AOP Paradigm The study explicitly calls out the aspect-oriented paradigm as one aspect

involved in the design decision under study. The aspect-oriented paradigm
here refers to the paradigm of programming where cross-cutting concerns
are modularized by removing scattered code implementing each such con-
cern into its own module (an aspect).

APL SpecificLanguage The design decisions under study involve the APL language.

AWK SpecificLanguage The design decisions under study involve the AWK language.

Actors Multiprocessing The design decisions under study involve features for the actor model. Iin-
plies InterprocessMessagePassing.

Ada SpecificLanguage The design decisions under study involve the Ada language.

Advice AOP The design decisions under study involve advice in aspect-oriented pro-
gramming, Implies AOP.

AggregateOperations NonVonNeumann The design decisions under study involve language constructs that express
aggregate operations over collections of data.

ArchJava SpecificLanguage The design decisions under study involve the ArchJava language.

ArgumentTypeChecking Typing The design decisions under study involve static checking of subroutine ar-
gument types. Implies StaticTyping.

AspectC++ SpecificLanguage The design decisions under study involve the AspectC++ language.

Aspect] SpecificLanguage The design decisions under study involve the Aspect] language.

AssignmentSyntax Syntax The design decisions under study involve the syntax for expressing variable
assignment (in many languages, either ":=" or '=").

BooleanQueries Syntax The design decisions under study involve features for expressing Boolean
queries.

Bristlecone SpecificLanguage The design decisions under study involve the Bristlecone language.

C SpecificLanguage The design decisions under study involve the C language.

C# SpecificLanguage The design decisions under study involve the C++ language.

Ct+ SpecificLanguage The design decisions under study involve the C++ language.

C++/CORBA SpecificLanguage The design decisions under study involve the C++ language with CORBA.

C++/UDP SpecificLanguage The design decisions under study involve the C++ language with the UDP
and ICI protocol libraries.

C+MPI SpecificLanguage The design decisions under study involve the C+MPI language.

CCured SpecificLanguage The design decisions under study involve the CCured language.

COBOL SpecificLanguage The design decisions under study involve the COBOL language.

Caesar] SpecificLanguage The design decisions under study involve the Caesar] language.

CallSyntax Syntax The design decisions under study involve the syntax for expressing subrou-

tine (including object method) calls (in many languages, a parenthesized list
of arguments after the subroutine name).

ClassInheritance OOFeature The design decisions under study involve class inheritance as that term is
used in the object-oriented context. The boundary between this code and
OOPolymorphism is fuzzy, although this term typically focuses on the use
of inheritance as a structuring and reuse tool.

Comments Syntax The design decisions under study involve language features for code com-
menting.

CommonLisp SpecificLanguage The design decisions under study involve the Common Lisp language.

CompensationStacks Exceptions The design decisions under study involve compensation stacks.

Concurrency Multiprocessing The design decisions under study involve features for concurrency. Note

that concurrency is distinct from parallelism: the former is a program struc-
turing tool (primarily to make the program clearer), the latter is a tool for
implementing algorithms (primarily to improve performance).

ConditionalCompilation ProgrammingTechniqueSupport The design decisions under study involve language features for conditional
compilation.
Conditionals Syntax The design decisions under study involve the conditional statement or some

other language features for expressing data-directed choice. Loops are not
included in this code.

Cyclone SpecificLanguage The design decisions under study involve the Ruby language.

DRuby SpecificLanguage The design decisions under study involve the DRuby (Diamondback Ruby)
language.

DataCentricSynchronization Multiprocessing The design decisions under study involve features for designating a set of

memory locations as an atomic set and program units as atomic with respect
to one or more such atomic sets. Implies SharedMemoryCommunication.

DataQueries NonVonNeumann The design decisions under study involve language constructs for express-
ing queries directed to collections of data.

(continues)

170

TABLE 19 (continues)

Code Subcategory Definition

DeclarativeParadigm Paradigm The study explicitly calls out the declarative paradigm as one aspect in-
volved in the design decision under study. The declarative paradigm here
refers collectively to the paradigms of programming in which the program
is predominantly written by expressing declarative properties required of
the program. This includes logic programming and functional program-
ming, but this code should only be used when the study uses the term
"declarative" explicitly to describe the paradigm.

DeterministicParallelJava SpecificLanguage The design decisions under study involve the Deterministic Parallel Java
language

DeterministicParallelism Multiprocessing The design decisions under study involve features for deterministic paral-
lelism. Implies Parallelism.

DynamicFaultDiagnosis SafetyFeature The design decisions under study involve the diagnosis of dynamic faults
(such as array bounds violations).

DynamicTyping Typing The design decisions under study involve dynamic typing (that is, language
features that make distinctions between types and enforce those distinctions
dynamically by diagnosing those type errors in a program that are about to
occur in a particular execution, and preventing the type error from occur-
ring usually by diverting the control flow or by aborting the program).

EJFlow SpecificLanguage The design decisions under study involve the E[Flow language.

EJP AOP The design decisions under study involve explicit join points in aspect-
oriented programming. Implies AOP.

ES] SpecificLanguage The design decisions under study involve the Eventful Session Java lan-
guage.

ET SpecificLanguage The design decisions under study involve the ET (Energy Types) language.

Eiffel SpecificLanguage The design decisions under study involve the Eiffel language.

EnergyAwareness ApplicationArea The design decisions under study involve features for controlling energy
usage.

EqualitySyntax Syntax The design decisions under study involve the syntax for expressing equality
testing (in many languages, either '==" or '=’).

Erlang SpecificLanguage The design decisions under study involve the Erlang language.

EventDrivenProgramming
ExceptionHandling

F#
FP

FamilySharing

FeatureDesign

FeaturePresence

Fixity

Focus

Forth

Fortran
FourthGeneration

GOTO

GRAIL
GarbageCollection

GdH
GenerationComparison

Griffin
Groovy
H]

Hjp

Haskell

Hypertalk

ITD

IndirectRelevance
InterprocessMessagePassing
Tterators

J&

J&h
JPred

ProgrammingTechniqueSupport
Exceptions

SpecificLanguage
Paradigm

OOFeature

DecisionType

DecisionType

Syntax

SpecificLanguage
SpecificLanguage
SpecificLanguage
LanguageGeneration

Syntax

SpecificLanguage
MemoryManagement

SpecificLanguage
DecisionType

SpecificLanguage
SpecificLanguage
SpecificLanguage
SpecificLanguage
SpecificLanguage

SpecificLanguage
AOP

Multiprocessing
ProgrammingTechniqueSupport
SpecificLanguage

SpecificLanguage
SpecificLanguage

The design decisions under study involve features for event-driven pro-
gramming.

The design decisions under study involve features, such as try..catch, for
handling exceptional situations outside the normal control flow.

The design decisions under study involve the F# language.

The study explicitly calls out the functional paradigm as one aspect in-
volved in the design decision under study. The functional paradigm here
refers to the paradigm of programming where programs are predominantly
composed from existing functions by the aid of functionals (higher-order
functions); often the functions are pure (that is, lack side effects).

The design decisions under study involve features for family sharing of in-
terface types. Implies StaticTyping.

A study in which multiple mutually exclusive design choices for a particu-
lar language feature are compared, or otherwise the design of a particular
feature is at issue.

A study in which the design decision is the presence or absence of a partic-
ular set of features.

The design decisions under study involve the fixity of operators (not just
in evaluable expressions but possibly also in commands and statements).
Fixities include prefix (operator before operands), infix (operator between
operands), and postfix (operator after operands).

The design decisions under study involve the Focus language.

The design decisions under study involve the Forth language.

The design decisions under study involve the Fortran language.

A study that explicitly calls out the fourth programming language genera-
tion as one of the objects of the study.

The design decisions under study involve the unconditional, unresticted
jump statement (GOTO). This does not include studies in which a GOTO
statement’s use is restricted (such as studies of IF...GOTO, which should be
coded as Conditionals.)

The design decisions under study involve the GRAIL language.

The design decisions under study involve automatic memory management
via garbage collection.

The design decisions under study involve the Glasgow Distributed Haskell
(GdH) language.

A study that explicitly calls out programming language generations as the
objects of the study.

The design decisions under study involve the Griffin language.

The design decisions under study involve the Groovy language.

The design decisions under study involve the Habanero Java language.
The design decisions under study involve the Habanero Java With Permis-
sions language.

The design decisions under study involve the Haskell language.

The design decisions under study involve the Hypertalk language.

The design decisions under study involve intertype declarations in aspect-
oriented programming. Implies AOP.

The study has no explicit or implicit programming language design decision
under study, but its results are transferable.

The design decisions under study involve features for interprocess commu-
nication via message-passing

The design decisions under study involve iterators (a set of language fea-
tures for expressing traversal algorithms for specific data structures, to be
used in directing a foreach-style loop).

The design decisions under study involve the J& language.

The design decisions under study involve the J&h language.

The design decisions under study involve the JPred language.

(continues)

171
TABLE 19 (continues)

Code Subcategory Definition

Jumr SpecificLanguage The design decisions under study involve Sime et al’s JUMP microlanguage.

JUMP-M SpecificLanguage The design decisions under study involve Vessey and Weber’s JUMP-M mi-
crolanguage, which is based on Sime et al’s JUMP.

Java SpecificLanguage The design decisions under study involve the Java language.

JoinCalculusFeatures Multiprocessing The design decisions under study involve features derived from the join
calculus (e.g. chords in Polyphonic C#)

KAILSelector Syntax The design decisions under study involve the KAIL selector.

Klerer-May SpecificLanguage The design decisions under study involve the Klerer-May language.

LOGO SpecificLanguage The design decisions under study involve the LOGO language.

Lambda FPFeature The design decisions under study involve lambda expressions (that is ex-

pressions evaluating to function values, where the function’s parameters
and body are included in the expression itself).

LanguageComparison DecisionType A study in which two full languages are compared. This code should not
be used if the languages in question were designed as research vehicles and
have no use in actual programming (the paradigmatic cases being Sime et
al’s languages JUMP, NEST, etc).

Loops Syntax The design decisions under study involve looping statements such as while
statements.

ML SpecificLanguage The design decisions under study involve the ML language family (includ-
ing SML and OCaml but excluding Haskell).

MPI SpecificLanguage The design decisions under study involve the MPI library.

ManualDelete MemoryManagement The design decisions under study involve manual memory management,
specifically manual deletion of unused memory objects.

MemoryLocking Multiprocessing The design decisions under study involve features for in-memory locks (in-
cluding semaphores, mutexes and MVars). Implies SharedMemoryCommu-
nication.

Microprogramming ApplicationArea The design decisions under study involve microprogramming.

Modula-2 SpecificLanguage The design decisions under study involve the Modula-2 language.

Morph] SpecificLanguage The design decisions under study involve the Morph] language.

Multithreading Multiprocessing The design decisions under study involve features for managing multiple

threads of control (that is, multiple simultaneous but independent control
flows with a shared memory).

NEST SpecificLanguage The design decisions under study involve Sime et al’s NEST microlanguage.

NEST-BE SpecificLanguage The design decisions under study involve Sime et al’s NEST-BE microlan-
guage.

NEST-INE SpecificLanguage The design decisions under study involve Sime et al’s NEST-INE microlan-
guage.

NLC SpecificLanguage The design decisions under study involve the NLC system for natural lan-
guage programming.

NameOverloading ProgrammingTechniqueSupport The design decisions under study involve features for the programmer to

introduce new meanings to existing names with multiple meanings being
available at the same time, disambiguated by the context of each use. Also
called ad hoc polymorphism.

NestedIntersection OOFeature The design decisions under study involve features for nested intersection of
interface types. Implies StaticTyping.
NestedParallelism Multiprocessing The designg decisions under study involve the ability to use parallelism

within a single thread to implement parallel algorithms. Implies Parallelism,
STM, SharedMemoryCommunication.

NestedSubroutines ProgrammingTechniqueSupport ~ The design decisions under study involve the ability to define subroutines
within subroutines (like in Pascal but unlike in C).

NeverNullReferences SafetyFeature The design decisions under study involve features for declaring and enforc-
ing the non-nullity of reference variables.

NondeterministicParallelism Multiprocessing The design decisions under study involve features for nondeterministic par-
allelism. Implies Parallelism.

oor Paradigm The study explicitly calls out the object-oriented paradigm as one aspect in-

volved in the design decision under study. The object-oriented paradigm
here refers to the paradigm of programming where the program is decom-
posed into objects possessing identity, behaviour and state, and potentially
related by some sort of incremental modification device such as inheritance,
and they are composed to form the program by having the objects invoke
each others” methods. Support for classes is not a requirement, but it is
common.

OOPolymorphism OOFeature The design decisions under study involve polymorphism as that term is
used in the object-oriented context. This typically includes subtype poly-
morphism via class inheritance and dynamic binding of class methods and
typically focuses on the ability to treat objects of inheritance-related classes
as interchangeable, resulting in differences in run-time behaviour based on
the run-time classes of the involved objects. Note that the word "poly-
morphism” has a different meaning in the type-theoretic and functional-
programming context.

oT1/] SpecificLanguage The design decisions under study involve the ObjectTeams /Java language.

ObjectConstructors OOFeature The design decisions under study involve features for the programmer to
customize object construction.

Objectimmutability OOFeature The design decisions under study involve features in which an object, once
created, cannot change its attributes.

ObjectPascal SpecificLanguage The design decisions under study involve the Object Pascal language.

Objective-C SpecificLanguage The design decisions under study involve the Objective-C language.

PL/C SpecificLanguage The design decisions under study involve the PL/C language.

PLTScheme SpecificLanguage The design decisions under study involve the PLT Scheme language.

ParadigmComparison DecisionType A study in which two programming or language paradigms are compared,
by intent if not in fact (usually operationalized into LanguageComparison)

Parallelism Multiprocessing The design decisions under study involve features for parallelism. Note that

parallelism is distinct from concurrency: the former is a tool for implement-
ing algorithms (primarily to improve performance), the latter is a program
structuring tool (primarily to make the program clearer).

Pascal SpecificLanguage The design decisions under study involve the Pascal language.

(continues)

172

TABLE 19 (continues)

Code Subcategory Definition

Perl SpecificLanguage The design decisions under study involve the Perl language.

PermissionTypes Typing The design decisions under study involve static typing features for access
permission control. Implies StaticTyping.

Pointcuts AOP The design decisions under study involve point-cuts in aspect-oriented pro-
gramming. Implies AOP.

PredicateDispatch ProgrammingTechniqueSupport ~ The design decisions under study involve predicate dispatch (choosing
which definition of a named function to apply based on predicates on pa-
rameters attached to each definition).

ProceduralParadigm Paradigm The study explicitly calls out the procedural paradigm as one aspect in-
volved in the design decision under study. The procedural paradigm here
refers to the paradigm of programming where the program is functionally
decomposed into subroutines that are invoked by name and that may take
parameters and may also return a value and in which side-effects are possi-
ble and accepted.

ProgramIndentation Syntax The design decisions under study involve indentation of programs to make
program structure visible.

Prolog SpecificLanguage The design decisions under study involve the Prolog language.

Proteus SpecificLanguage The design decisions under study involve the Proteus language.

Python SpecificLanguage The design decisions under study involve the Python language.

Quorum SpecificLanguage The design decisions under study involve the Quorum language.

RTS] SpecificLanguage The design decisions under study involve the RTS] (Real-Time Specification
for Java) language.

Randomo SpecificLanguage The design decisions under study involve the Randomo language.

Rapide SpecificLanguage The design decisions under study involve the Rapide language.

RelationalLisp SpecificLanguage The design decisions under study involve the RelationalLisp language.

Rexx SpecificLanguage The design decisions under study involve the Rexx language.

Ruby SpecificLanguage The design decisions under study involve the Ruby language.

RuntimeCodeGeneration ProgrammingTechniqueSupport The design decisions under study involve features for runtime code gener-
ation.

SIMONE SpecificLanguage The design decisions under study involve the SIMONE language.

SJ SpecificLanguage The design decisions under study involve the Session Java language.

SML SpecificLanguage The design decisions under study involve the SML language. Implies ML.

STARS SpecificLanguage The design decisions under study involve the STARS (Scoped Types and
Aspects for Real-Time Systems) language.

ST™M Multiprocessing The design decisions under study involve software transactional memory
features. Implies SharedMemoryCommunication.

STRUM SpecificLanguage The design decisions under study involve the STRUM language.

Scala SpecificLanguage The design decisions under study involve the Scala language.

ScopeDelimiters Syntax The design decisions under study involve scope-delimiting constructs (such
as begin..end).

ScriptingParadigm Paradigm The study explicitly calls out scripting languages as one aspect involved in
the design decision under study.

SecuritylssuePrevention SafetyFeature The design decisions under study involve features intended to prevent se-

SelfAdjustingComputation

SharedMemoryCommunication
SideEffectingExpressions

StatementSequencingSyntax

StaticTyping

Streamlt
StreamProgramming
StringConcatenationSyntax
StringLiteralSyntax
StructuralSubtyping

StructuredProgramming

SystemProgrammingParadigm

TOPPS
TRANSLANG
TaskSpecificConstructs

Tel
ThirdGeneration

ProgrammingTechniqueSupport

Multiprocessing
SafetyFeature

Syntax

Typing

SpecificLanguage
Paradigm

Syntax

Syntax

Typing

Paradigm

Paradigm

SpecificLanguage
SpecificLanguage
NonVonNeumann

SpecificLanguage
LanguageGeneration

curity holes or other security issues.

The design decisions under study involve self-adjusting computation fea-
tures — ways to allow the programmer to write a batch algorithm while hav-
ing it be translated to incremental computation, that is, computation that is
able to modify its output given changes to input with less effort than recom-
puting from scratch.

The design decisions under study involve features for interprocess commu-
nication via a shared memory with some kind of synchronization discipline.
The design decisions under study involve expressions which have side ef-
fects.

The design decisions under study involve the syntax for expressing state-
ment sequencing (in many languages, the semicolon, either as a terminator
as in C or as a separator as in Pascal).

The design decisions under study involve static typing (that is, language
features that make distinctions between types and enforce those distinctions
statically by diagnosing all type errors in a program before any execution
starts, usually at compile time).

The design decisions under study involve the StreamlIt language.

The design decisions under study involve stream programming.

The design decisions under study involve the syntax for expressing string
concatenation.

The design decisions under study involve the syntax for expressing literal
strings (in many languages, enclosure in quotes).

The design decisions under study involve static typing features for struc-
tural subtyping. Implies StaticTyping.

The study explicitly calls out the structured programming paradigm as one
aspect involved in the design decision under study. The structured pro-
gramming paradigm here refers to the paradigm of programming where
programs are structured using block-structuring constructs such as while
loops, if-then-else-constructs and parameter-passing subroutines. Nor-
mally, this code is used without the ParadigmComparison code, as there
is usually no defined paradigm as control.

The study involves system programming languages, which are defined as
the complement of scripting languages. This code should only be used in
conjunction with the ScriptingParadigm code.

The design decisions under study involve the TOPPS language.

The design decisions under study involve the TRANSLANG language.

The design decisions under study involve language constructs specifically
designed to embody task-specific algorithms such as sorting or searching.
The design decisions under study involve the Tcl language.

A study that explicitly calls out the third programming language generation
as one of the objects of the study.

(continues)

173
TABLE 19 (continues)

Code Subcategory Definition

TupleType Typing The design decisions under study involve tuple types (that is, finite hetero-
geneous sequences in which the length of the sequence and the types of the
individual sequence members are fixed by the tuple type). Implies Static-
Typing.

TypeCasting Typing The design decisions under study involve type casting (that is, explicit type
conversions, usually requiring either dynamic checking or a change of rep-
resentation at runtime). Implies StaticTyping.

Typelnference Typing The design decisions under study involve type inference (that is, static typ-
ing where the type system infers the vast majority of types that one would
normally expect to declare explicitly). Implies StaticTyping.

TypeQualifiers Typing The design decisions under study involve type qualifier features.

TypedScheme SpecificLanguage The design decisions under study involve the Typed Scheme language.

TypelessLanguage Typing The design decisions under study involve a typeless language (that is, a
language that makes no type distinctions and in which therefore type errors
are a meaningless concept). Do not confuse this with” DynamicTyping.

urc SpecificLanguage The design decisions under study involve the UPC language.

Umple SpecificLanguage The design decisions under study involve the Umple language.

VBA SpecificLanguage The design decisions under study involve the Visual Basic for Applications
language.

ValueNotIgnorable FPFeature The design decisions under study include the overall principle that the
value of an expression cannot be ignored (like one does in, for example,
C’s expression statements).

X10 SpecificLanguage The design decisions under study involve the X10 language.

XAML SpecificLanguage The design decisions under study involve the XAML language.

XMTC SpecificLanguage The design decisions under study involve the XMTC language.

occam SpecificLanguage The design decisions under study involve the occam language.

TABLE 20 Efficacy codes

Code

Subcategory

Definition

AnnotationOverhead

ClozeTestPerformance

Effort

ProgramComprehension

In a FeaturePresence study, a program written without the feature can often
be annotated to exploit the presence of the feature. This code indicates that
the study measures the annotation overhead (typically as the percentage of
added lines of code) of the feature.

Efficacy is measured in the study by having participants fill holes left in an
otherwise complete program.

DebuggingEffort Effort Debugging (locating and fixing errors) effort is measured in the study.

DesignStability QualityAttributes This study measures design stability over maintenance periods.

ErrorProneness Correctness This study measures error proneness of the design decisions at stake. In-
cludes studies where correctness of participant-written programs is mea-
sured.

FeaturePrevalence ActualUsage The study examines how much a particular feature is used in the existing
code base. This may indicate a post-hoc EXCLUDE candidate (since this is
not really an efficacy measure).

Learnability Learnability It is measured in the study, how easy or hard the design choices involved
are to learn.

LinesOfCodeComparison Effort Efficacy is measured, in part or in full, by comparing the lines-of-code sizes
of different programs representing the different design choices involved.

MaintenanceEffort Effort Maintenance effort (including reengineering or refactoring) is measured in
the study.

Modifiability QualityAttributes Program modifiability is measured in the study.

Modularity QualityAttributes This study measures program modularity.

PerceivedComplexity Subjective This study measures language complexity as perceived by the participants.

PerceivedIntuitivity Subjective This study measures the intuitivity of the design decision at issue as per-
ceived by the participants.

PerceivedValue Subjective The study examines perceptions of the value of the design decisions at issue.

ProgramComprehension

ProgramComprehension

Program comprehension is measured in the study, usually by proxy via
scores attained by experiment participants in a comprehension test.

ProgramQuality QualityAttributes This study measures program quality. This usually means the use of Quali-
tyMetrics.

ProgramTranslationEffort Effort The effort to manually translate programs from one design choice to another
is measured in the study.

ProgrammingEffort Effort Programming effort is measured in the study, usually by proxy via either

RetrofittingOpportunity

ActualUsage

wall-clock time or lines of code.

The study examines how well the usage of the language in the existing code
base for a language would allow retrofitting the design decision to the lan-
guage.

Reusability QualityAttributes Code reusability is measured in the study.

RuntimePerformance Performance Runtime performance (typically runnning time, memory usage, or scalabil-
ity) is measured in the study.

Security VulnerabilityProneness Correctness This study measures the proneness for security vulnerabilities of the design
decisions at stake. Implies ErrorProneness.

Testability QualityAttributes Program testability is measured in the study.

UnspecifiedEfficacy Efficacy is not specified in the report. This code will generally only be used

for coding secondary studies’ recounting of primary studies, which some-
times neglect to discuss the primary study in detail. If this code occurs in a
primary study, the study ought to be given a post-hoc EXCLUDE.

174

TABLE 21 Method codes for primary studies

Code

Subcategory

Definition

AdvancedProgrammingStudents

ArtifactEncoding

BeginningProgrammingStudents

BenchmarkPrograms

BetweenSubjects

BugHistory

CaseStudy

CodeHistory

ControlledExperiment

CorpusAnalysis

EndUserProgrammers

Experiment

GroundedTheory

HistoricalControl

HumanParticipants

Interviews

LanguageShootout

MetricsCollectionAnalysis

NonProgrammers

NonrandomizedControlledExperiment

OpenCoding

ParticipantClass

DataAnalysis

ParticipantClass

PrimaryMethod

ExperimentDesign

DataSource

PrimaryMethod

DataSource

ExperimentDesign

PrimaryMethod

ParticipantClass

PrimaryMethod

PrimaryMethod

DataSource

DataSource

DataSource

ExperimentDesign

DataAnalysis

ParticipantClass

ExperimentDesign

DataAnalysis

The participants in the study are students of programming taking advanced
programming courses, in the late stages of an undergraduate degree in com-
puter science (CS) or software engineering (SE), or pusuing a graduate de-
gree in CS or SE. Information Systems (IS) students commonly do not get
enough programming training to qualify even in the postgraduate level.
Implies HumanParticipants, Programmers, ProgrammingStudents.

A particular program correctness analysis method, similar to how exams
would be graded.

The participants in the study are students of programming who are taking
or have completed basic programming courses but no advanced courses in
programming and no (other) courses in which programming skill is exer-
cised. Implies HumanParticipants, Programmers, ProgrammingStudents.

A number of programs are adopted from the literature or folklore to serve as
specimens demonstrating the efficacy of the design decisions under study.
The programs may be modified or even completely rewritten for the study,
but the point is to demonstrate the language’s capabilities, not to measure
the human-induced contingencies involved in the modification or rewrit-
ing activity. Studies marked with this code are candidates for post-hoc EX-
CLUDE decisions for lack of empiricity (such studies have a strong analyt-
ical feel). Contrast to CorpusAnalysis, in which a large number of existing
applications are selected (usually with a rational and explicit set of selection
criteria) and analyzed as they are, without any rewriting or modification
Contrast to ProgramRewriting, in which the act of rewriting programs is
the main interest. Implies ResearcherParticipates.

In a controlled experiment, results are obtained by comparing the perfor-
mance of subjects to one another (usually by comparing the aggregated
performance of the various groups). Implies ControlledExperiment, Experi-
ment.

Study that examimes the recorded history of bugs in a particular program,
usually via a bug tracking system’s historical records.

Study that examines an entity (program, organization etc.) that exists inde-
pendently of the study without experimental manipulation and within the
entity’s own context. Note that many studies label themselves as case stud-
ies even though they do not fit this definition, and thus should not be coded
CaseStudy.

Study that examines the recorded history of a particular program, usually
via version control logs or via a sequence of public releases.

An experiment in which experimental subjects or specimens (called par-
ticipants, if they are persons) allocated into different groups based on the
values of independent variables imposed to or inherent in the experimental
subjects as well as the possible sequences in which the independent vari-
ables are manipulated within a single group, in such a way that all relevant
distinctions of the values of the independent variables and manipulation se-
quences are accounted for in the allocation. Results are typically obtained
by statistical analysis, treating the experimental units as having been ran-
domly sampled from some population (whether this is actually true or not
varies). Implies Experiment.

Study is centered around analyzing a (usually large) set of programs written
for other purposes than the study in question Contrast to BenchmarkPro-
grams, in which a number of existing programs are modified or even rewrit-
ten to suit the analysis. Contrast to ProgramPairAnalysis, in which related
pairs of programs are analyzed. Contrast to ProgramRewrite in which ex-
isting programs are rewritten to produce data.

The participants in the study are people who are neither students of pro-
gramming nor professional programmers nor serious programming hobby-
ists but who do program to accomplish their (non-programming-related)
tasks, mostly only for a limited audience. Implies HumanParticipants, Pro-
grammers.

Study in which the relationship of one or more (dependent) variables to
one or more (independent) variables is investigated in a setting controlled
by the researchers, by manipulating the independent variables and observ-
ing the dependent variables and attempting to keep all other (confounding)
variables constant.

A particular research method. In this study, we take the researchers” word
for it: code GroundedTheory iff the researchers claim to have used it in a
relevant way.

A study, usually a controlled experiment, in which the control group’s data
are gathered from past measurements not connected with the present study.
Study in which the behaviour of humans, usually specifically recruited by
the researchers for the study, is observed, with or without influence from
the researchers.

Study in which one or more human participants are interviewed. Implies
HumanParticipants.

The same programming task is handed out to different programmers or pro-
gramming teams, each implementing it in a particular language. Implies
BetweenSubjects, ControlledExperiment, Experiment, HumanParticipants.
Study is centered around analyzing a (usually large) set of program or
project metrics collected for some other purpose than this particular study.
The participants in the study are people who have no programming back-
ground and are not studying programming at the time of the study. Implies
HumanParticipants.

A controlled experiment in which the experimental subjects are allocated to
groups using a non-random process. Implies ControlledExperiment, Exper-
iment.

Codes (labels, tags) for particular meanings that emerge from the data are
assigned by the researcher. Similar to what is being done here.

(continues)

TABLE 21 (continues)

175

Code

Subcategory

Definition

OtherExperiment
ProfessionalProgrammers

ProgramPairAnalysis

ProgramRewrite
ProgrammerObservation
Programmers

ProgrammingStudents

QualityMetrics

RandomizedControlledExperiment

ReAnalysis
RegressionTesting
ResearcherParticipates

SimulatedMaintenance
SingleSubjectExperiment

SoftwareScience
StaticAnalysis

Survey

UnspecifiedMethod

WithinSubjects

ExperimentDesign
ParticipantClass

PrimaryMethod

PrimaryMethod
DataSource
ParticipantClass

ParticipantClass

Metrics
ExperimentDesign

PrimaryMethod
DataSource
DataSource

DataSource
ExperimentDesign

Metrics
DataSource

PrimaryMethod

ExperimentDesign

An experiment that is not a controlled experiment. Implies Experiment.

The participants in the study are professional programmers. This includes
professional testers and teachers of programming (preparing students for
professional programming). It also includes hobbyist programmers with
extensive experience comparable to those of professionals. Implies Human-
Participants, Programmers.

Study is centered around analyzing one or more (usually no more than a
handful of) pairs of programs written for other purposes than the study in
question, such that the programs in each pair are related in some relevant
manner (for example, they implement the same spec but are written in dif-
ferent languages). It is distinguished from CorpusAnalysis by the use of
related pairs, and by the usually small number of pairs. It is distinguished
from ProgramRewrite by the fact that the programs are preexisting.

An existing program (or a handful of such) is rewritten from an established
language to a new language.

A study in which the behaviour of programmers during actual work is ob-
served. Implies HumanParticipants, Programmers.

The participants have some training or experience is programming, how-
ever minimal or extensive. Implies HumanParticipants.

The participants in the study are students of programming pursuing an un-
dergraduate or graduate degree in Computer Science or Software Engineer-
ing, or are otherwise taking training designed to prepare its students for
professional programming. Implies HumanParticipants, Programmers.
Published code quality metrics are used to measure efficacy.

A controlled experiment in which the experimental subjects are allocated to
groups using a random process. Inplies ControlledExperiment, Experiment.
Data collected for a previous study is analyzed anew. Any other method
codes accompanying this code relate to the original study.

Study that uses automated regression testing to identify problems in a par-
ticular program.

One of the researchers is a significant participant in the activity under study
(for example, writing a program).

Maintenance tasks are given to the participants.

An experiment where a single subject functions as the only experimental
unit. Obviously, none of the idependent variables can be inherent in the
unique subject. Usually, such experiments are designed so that each rele-
vant combination of independent variables is applied to the subject in se-
quence, sometimes more than once, and the dependent variables are mea-
sured for each such application. Such experiments cannot be coded as Con-
trolledExperiments, as it is not possible to create groups that try out the
various orderings of the applications. Implies Experiment.

Study explicitly invokes the "software science” body of work, and uses its
metrics in a significant way.

The programs under study are fed to a static analyzer embodying the lan-
guage design choices at issue.

Study in which a group of human participants are asked to fill a question-
naire. Results are typically obtained by statistical analysis, treating the par-
ticipants as having been randomly sampled from some population (whether
this is actually true or not varies), but qualitative analyses are sometimes
employed. Implies HumanParticipants.

Method is not specified in the report, or it is so badly described that it cannot
be meaningfully coded. This code will generally only be used for coding
secondary studies’ recounting of primary studies, which sometimes neglect
to discuss the primary study methodology. If this code occurs in a primary
study, the study ought to be given a post-hoc EXCLUDE.

In a controlled experiment, results are obtained by measuring the perfor-
mance of each subject more than once, with independent variables being
manipulated in between, and comparing these repeated measures within
each subject. Implies ControlledExperiment, Experiment.

TABLE 22 Method codes for secondary studies

Code

Subcategory

Definition

NarrativeReview
SearchDatabasesSpecified

SearchTermsSpecified

A literature review in which the review method is not specified (except to
the extent indicated by other SecondaryMethod codes).

The literature databases in which keyword searches were conducted are re-
ported.

The terms used to search literature in keyword searches are reported.

APPENDIX 3

CODE ASSIGNMENTS FOR INCLUDED

STUDIES

TABLE 23 Primary studies and their assigned codes

Study Citation Design decision codes Efficacy codes Method codes

S1 Ahmad and Talha 2002 LanguageComparison, Prolog, ProgrammingEffort CorpusAnalysis, SoftwareScience
C++, ParadigmComparison,

ProceduralParadigm, Declara-
tiveParadigm

S2 Ahsan et al. 2009 LanguageComparison, C, C++, ErrorProneness CaseStudy, CodeHistory, BugHistory
Java

S3 Aldrich et al. 2002 LanguageComparison, ~ Java, ProgramTranslationEffort, Line- ~ ProgramRewrite, ResearcherParticipates
ArchJava sOfCodeComparison

S4 Andreae et al. 2006 LanguageComparison, STARS, RuntimePerformance ProgramRewrite, ResearcherParticipates

TSJ
S6 Badreddin, Forward, et al. LanguageComparison, Java, ProgramComprehension NonrandomizedControlledExperiment,
2012; Badreddin and Leth- Umple HumanParticipants
bridge 2012
S7 Badreddin and Lethbridge LanguageComparison, Umple, PerceivedComplexity Survey, Interviews, GroundedTheory
2012 Java

S8 Badri et al. 2012 LanguageComparison, Java, Testability ProgramPairAnalysis, QualityMetrics
Aspect], ParadigmComparison,

OOP, AOP

S9 Barnes and Welch 2001 FeaturePresence, occam, Inter- RuntimePerformance BenchmarkPrograms
processMessagePassing

S10 Bartsch and Harrison 2008 ParadigmComparison, AOP, MaintenanceEffort, ~ Program- RandomizedControlledExperiment, Pro-
OOP, LanguageComparison, Comprehension, Modifiability fessionalProgrammers, BetweenSubjects
Java, Aspect]

Slla Benander and Benander LanguageComparison, Pascal, Learnability Survey, BeginningProgrammingStu-

1997 C dents

S11b Benander and Benander LanguageComparison, Pascal, ErrorProneness NonrandomizedControlledExperiment,
C BeginningProgrammingStudents

S12 Benton et al. 2004 FeaturePresence, C#, JoinCalcu- RuntimePerformance BenchmarkPrograms
lusFeatures

S13 Biermann et al. 1983 LanguageComparison, ~ NLC, ErrorProneness NonrandomizedControlledExperiment,
PL/C WithinSubjects, BeginningProgram-

mingStudents

S14 Bocchino et al. 2011 FeaturePresence, Deterministic- AnnotationOverhead, LinesOf- BenchmarkPrograms
ParallelJava, Nondeterministic- CodeComparison
Parallelism

S17 Burckhardt et al. 2011 FeaturePresence, Deterministic- RuntimePerformance BenchmarkPrograms
Parallelism, SelfAdjustingCom-
putation, C#

S18 Cacho et al. 2009 LanguageComparison, Java, As- ProgrammingEffort, Error- RandomizedControlledExperiment,
pect], EJFlow, ExceptionHan- Proneness, ProgramCompre- BetweenSubjects, ~AdvancedProgram-
dling hension mingStudents

520 Cartwright 1998 FeaturePresence, ClassInheri- MaintenanceEffort, ~ Program- RandomizedControlledExperiment,
tance Comprehension BetweenSubjects, AdvancedProgram-

mingStudents

S21 Castor, Cacho, et al. 2009 LanguageComparison, Aspect], ProgramQuality, Reusability ProgramRewrite, QualityMetrics, Re-
Java, ParadigmComparison, searcherParticipates
AOP, OOP, ExceptionHandling

S22 Castor, Oliveira, et al. 2011 FeatureDesign, SharedMem- ErrorProneness, Programming- RandomizedControlledExperiment, Ad-
oryCommunication, Haskell, Effort, LinesOfCodeCompari- vancedProgrammingStudents, Between-
STM, MemoryLocking son Subjects

523 Cesarini et al. 2008 LanguageComparison, Erlang, LinesOfCodeComparison, Run- CorpusAnalysis
Java, C#, Python, Ruby timePerformance

S24 Chalin and James 2007 FeaturePresence, NeverNullRef- RetrofittingOpportunity ProgramRewrite, ResearcherParticipates
erences

S25 Champeaux et al. 1992 ParadigmComparison, ~ OOP, PerceivedValue, PerceivedCom- CaseStudy, ResearcherParticipates, Pro-
ProceduralParadigm, Lan- plexity fessionalProgrammers
guageComparison, C++, C

526 Charles et al. 2005 LanguageComparison, X10, MaintenanceEffort BenchmarkPrograms
Java

S27 Chen and Vecchio 1992 FeatureDesign, Conditionals ProgramComprehension OtherExperiment, ~ BeginningProgram-

mingStudents

528 Cherry 1986 FeatureDesign, Fixity, Indirec- ProgrammingEffort, Error- RandomizedControlledExperiment, Be-
tRelevance Proneness tweenSubjects, NonProgrammers

529 Coelho et al. 2008 ParadigmComparison, ~ AOP, ErrorProneness ProgramPairAnalysis
OOP, LanguageComparison,

Aspect], Java, ExceptionHan-
dling

S30 Cohen et al. 2012 LanguageComparison, Java, ET, ~ ProgramTranslationEffort, Run- ~ ProgramRewrite, ResearcherParticipates
FeaturePresence, EnergyAware- timePerformance
ness, FeatureDesign, StaticTyp-
ing

S31 Condit et al. 2003 LanguageComparison, C, RuntimePerformance, Program- ProgramRewrite, ResearcherParticipates
CCured, StaticTyping, Securi- TranslationEffort
tylssuePrevention

S33 Daly et al. 1995; Daly et al. FeatureDesign, ClassInheritance MaintenanceEffort RandomizedControlledExperiment, Pro-

199 grammingStudents, WithinSubjects

S34 Daly, Sazawal, et al. 2009 FeatureDesign, StaticTyping, DebuggingEffort RandomizedControlledExperiment,

DynamicTyping, Language- WithinSubjects, ~ ProfessionalProgram-

Comparison, Ruby, DRuby

mers, OpenCoding

(continues)

TABLE 23 (continues)

177

Study Citation Design decision codes Efficacy codes Method codes
S36 Demsky and Dash 2008 LanguageComparison, Bristle- ErrorProneness, LinesOfCode- BenchmarkPrograms
cone, Java Comparison
S37 Dolado et al. 2003 FeaturePresence, SideEffecting- ProgramComprehension NonrandomizedControlledExperiment,
Expressions AdvancedProgrammingStudents, ~ Pro-
fessionalProgrammers, WithinSubjects
S38a Dolby et al. 2012 LanguageComparison, AJ, Java, ProgramTranslationEffort, An- ProgramRewrite, ResearcherParticipates
FeaturePresence, DataCentric- notationOverhead
Synchronization
S38b Dolby et al. 2012 LanguageComparison, AJ, Java, AnnotationOverhead ProgramRewrite, ResearcherParticipates
FeaturePresence, DataCentric-
Synchronization
S38¢ Dolby et al. 2012 LanguageComparison, AJ, Java, RuntimePerformance BenchmarkPrograms
FeaturePresence, DataCentric-
Synchronization
S39 Doscher 1990 LanguageComparison, Ada, C ErrorProneness, LinesOfCode- ProgramPairAnalysis
Comparison, ProgramQuality
S41 Dyer et al. 2012 ParadigmComparison, ~ OOP, ProgramQuality QualityMetrics, OtherExperiment,
AOP, FeatureDesign, Pointcuts SimulatedMaintenance, ResearcherPar-
ticipates

542 Ebcioglu et al. 2006 LanguageComparison, C+MPI, ProgrammingEffort NonrandomizedControlledExperiment,

UPC, X10 ProgrammingStudents, BetweenSubjects

543 Embley 1978 FeatureDesign, ~ Conditionals, ProgramComprehension NonrandomizedControlledExperiment,

Loops, KAILSelector WithinSubjects, BeginningProgram-
mingStudents

S44 Endrikat and Hanenberg ParadigmComparison, ~ OOP, MaintenanceEffort RandomizedControlledExperiment,

2011 AOP, LanguageComparison, WithinSubjects, AdvancedProgram-
Java, Aspect] mingStudents

545 Engebretson and Wieden- FeaturePresence, TaskSpecific- MaintenanceEffort RandomizedControlledExperiment, Be-

beck 2002 Constructs, Hypertalk tweenSubjects, EndUserProgrammers
S46 Ertl 1999 LanguageComparison, Forth, LinesOfCodeComparison, Run- CorpusAnalysis
Prolog, Perl, Python, Modula-2, timePerformance
ML, C

S47 Ferrari et al. 2010 ParadigmComparison, ~ AOP, ErrorProneness ProgramPairAnalysis, CodeHistory, Re-
OOP, LanguageComparison, gressionTesting
Aspect], Java, FeaturePresence,
Pointcuts, Advice, ITD

548 Ferrett and Offutt 2002 ParadigmComparison, ~ OOP, Modularity CorpusAnalysis
ProceduralParadigm, Lan-
guageComparison, Fortran, C,
C++, Java

549 Figueiredo et al. 2008 FeaturePresence, AOP, Condi- DesignStability OtherExperiment, SimulatedMainte-
tionalCompilation, ~Language- nance, AdvancedProgrammingStudents
Comparison, Java, Aspect]

S50 Flanagan et al. 2008 FeaturePresence, SharedMem- AnnotationOverhead BenchmarkPrograms, StaticAnalysis
oryCommunication, Feature-
Design, StaticTyping

S51 Foster et al. 2006 FeaturePresence, TypeQuali- RetrofittingOpportunity CorpusAnalysis, StaticAnalysis

fiers, FeatureDesign, StaticTyp-
ing

S54 Fahndrich and Leino 2003 FeaturePresence, NeverNullRef- AnnotationOverhead BenchmarkPrograms, StaticAnalysis

erences

S55 Gannon and Horning LanguageComparison, TOPPS ErrorProneness RandomizedControlledExperiment,

1975a,b; Gannon 1976 BetweenSubjects, ~ AdvancedProgram-
mingStudents

556 Gannon 1977 FeatureDesign, StaticTyping, ~ ErrorProneness NonrandomizedControlledExperiment,

TypelessLanguage WithinSubjects, AdvancedProgram-
mingStudents

S57 Gil and Shragai 2009 FeatureDesign, ObjectConstruc- RetrofittingOpportunity CorpusAnalysis, StaticAnalysis

tors

S58 Gil and Lenz 2010 FeaturePresence, ~ NameOver- FeaturePrevalence CorpusAnalysis

loading

S59 Gilmore and Green 1984 FeatureDesign, Conditionals ProgramComprehension RandomizedControlledExperiment, Be-
tweenSubjects, NonProgrammers

S60a Green 1977 JUMP, NEST-INE, NEST-BE, ProgramComprehension OtherExperiment, ProfessionalProgram-

FeatureDesign, Conditionals mers
S60b Green 1977 JUMP, NEST-INE, NEST-BE, ProgramComprehension OtherExperiment, ProfessionalProgram-
FeatureDesign, Conditionals mers
562 Greenwood et al. 2007 ParadigmComparison, ~ OOP, DesignStability CaseStudy, CodeHistory
AOP, LanguageComparison,
Java, Aspect], Caesar]

S63 Halverson 1993 FeatureDesign, Conditionals ErrorProneness RandomizedControlledExperiment,
WithinSubjects, BeginningProgram-
mingStudents

S64 Hanenberg, Klein- ParadigmComparison, ~ AOP, MaintenanceEffort SimulatedMaintenance, ~ Randomized-

schmager, and Josupeit- OOP, LanguageComparison, ControlledExperiment, ~ AdvancedPro-
Walter 2009; Klein- Java, Aspect] grammingStudents, WithinSubjects
schmager 2009
S65 Hanenberg 2009, 2010a,b FeatureDesign, StaticTyping, ProgrammingEffort, Error- NonrandomizedControlledExperiment,
DynamicTyping Proneness BetweenSubjects, ProgrammingStudents
566 Harel and McLean 1985 GenerationComparison, Third- ProgrammingEffort ProfessionalProgrammers, Nonrandom-
Generation, FourthGeneration, izedControlledExperiment, Between-
LanguageComparison, COBOL, Subjects
Focus
S67 Harrison, Smaraweera, et ParadigmComparison, FP, OOP, ErrorProneness, PerceivedCom- SingleSubjectExperiment, HumanPartic-
al. 1996 LanguageComparison, ~ SML, plexity, Reusability, Debugging- ipants
C++ Effort

(continues)

178
TABLE 23 (continues)

Study Citation Design decision codes Efficacy codes Method codes
S68 Harrison, Counsell, et al. FeaturePresence, ~ ClassInheri- Modifiability, ProgramCompre- RandomizedControlledExperiment,
2 tance, C++ hension BetweenSubjects, ~ AdvancedProgram-
mingStudents
569 Henry and Humphrey ParadigmComparison, Pro- MaintenanceEffort RandomizedControlledExperiment,
1988; Henry and ceduralParadigm, 0O0P, WithinSubjects, AdvancedProgram-
Humphrey 1990; Henry LanguageComparison, C, mingStudents
and Humphrey 1993 Objective-C
S70 Hertz and Berger 2005 FeatureDesign, GarbageCollec- RuntimePerformance BenchmarkPrograms
tion, ManualDelete
S71 Hicks et al. 2004 FeatureDesign, GarbageCollec- RuntimePerformance BenchmarkPrograms
tion, ManualDelete, Cyclone
S72 Hitz and Hudec 1995 LanguageComparison, Modula- ErrorProneness NonrandomizedControlledExperiment,
2, C++ HistoricalControl, BeginningProgram-
mingStudents, BetweenSubjects
S74 Hochstein and Basili 2006; FeatureDesign, Parallelism, ErrorProneness, Programming- NonrandomizedControlledExperiment,
Hochstein, Basili, et al. InterprocessMessagePassing, Effort BetweenSubjects, ~ AdvancedProgram-
2008 SharedMemoryCommunica- mingStudents
tion, LanguageComparison,
XMTC, MPI, C++, Fortran
S75 Hoffman and Eugster 2008 FeaturePresence, EJP, Aspect] ProgramQuality, Reusability QualityMetrics, ProgramRewrite, Re-
searcherParticipates
S76 Hu et al. 2010 FeaturePresence, EventDriven- RuntimePerformance BenchmarkPrograms
Programming, Multithreading,
LanguageComparison, ES], S]
S77 Huang and Smaragdakis ~ LanguageComparison, Morph], LinesOfCodeComparison BenchmarkPrograms
2011 Java
S78 Hudak and Jones 1994 LanguageComparison, Haskell, LinesOfCodeComparison, Pro- ProfessionalProgrammers, Lan-
Ada, C++, AWK, Rapide, Grif- grammingEffort guageShootout
fin, Proteus, RelationalLisp
S79 Iselin 1988 FeatureDesign, ~ Conditionals, ~ ProgramComprehension RandomizedControlledExperiment,
Loops, COBOL AdvancedProgrammingStudents, ~ Pro-
fessionalProgrammers, BetweenSubjects
S80 Jim et al. 2002 LanguageComparison, C, Cy- LinesOfCodeComparison, Pro- ProgramRewrite, ResearcherParticipates
clone gramTranslationEffort
582 Kesler et al. 1984 FeaturePresence, ~ ProgramIn- ProgramComprehension RandomizedControlledExperiment, Ad-
dentation, Pascal vancedProgrammingStudents, Between-
Subjects
S83 Kleinschmager et al. 2012; ~ FeatureDesign, StaticTyping, =~ ProgrammingEffort RandomizedControlledExperiment, Pro-
Kleinschmager 2012 DynamicTyping, Language- grammingStudents, WithinSubjects
Comparison, Java, Groovy
S84 Klerer 1984 LanguageComparison, ProgrammingEffort RandomizedControlledExperiment, Be-
Klerer-May, Fortran ginningProgrammingStudents, Within-
Subjects
S85 Kosar et al. 2010 LanguageComparison, XAML, ProgramComprehension UnspecifiedMethod
C#
S86 Kulesza et al. 2006 ParadigmComparison, ~ AOP, ProgramQuality QualityMetrics, ~ProgramPairAnalysis,
OOP, LanguageComparison, SimulatedMaintenance
Aspect], Java
S88 Leblanc and Fischer 1982 FeaturePresence, Dynamic- ErrorProneness CaseStudy, ProgrammerObservation,
FaultDiagnosis ProgrammingStudents
S89 Lee et al. 2003 FeaturePresence, StructuralSub- FeaturePrevalence CaseStudy, CodeHistory
typing, FeatureDesign, Static-
Typing
S90 Lewis et al. 1991, 1992 ParadigmComparison, ~ OOP, ProgrammingEffort, Reusability =~ RandomizedControlledExperiment, Ad-
ProceduralParadigm, Lan- vancedProgrammingStudents, Between-
guageComparison, C++, Pascal Subjects
S91 Lima et al. 2011 LanguageComparison, ~ OT/], Modularity CorpusAnalysis
Java
592 Liu et al. 2006 FeatureDesign, Iterators LinesOfCodeComparison, Pro- ProgramRewrite, ResearcherParticipates
gramTranslationEffort
S93 Lucas and Kaplan 1976 FeaturePresence, GOTO ProgrammingEffort, ~ Mainte- RandomizedControlledExperiment,
nanceEffort SimulatedMaintenance, ~BeginningPro-
grammingStudents, BetweenSubjects
594 Luff 2009 FeatureDesign, ~ Concurrency, ProgrammingEffort, LinesOf- NonrandomizedControlledExperiment,
STM, MemoryLocking, Actors CodeComparison, — Perceived- WithinSubjects, ProgrammingStudents
Complexity
595 Madeyski and Szala 2007 ParadigmComparison, ~ AOP, Modularity, LinesOfCodeCom- LanguageShootout, AdvancedProgram-
OOP, LanguageComparison, parison, ProgrammingEffort mingStudents
Aspect], Java
596 Malayeri and Aldrich 2009 FeaturePresence, StructuralSub- RetrofittingOpportunity CorpusAnalysis
typing, FeatureDesign, Static-
Typing
597 Mayer et al. 2012b; Mayer FeatureDesign, StaticTyping, ProgrammingEffort RandomizedControlledExperiment,
etal. 2012a DynamicTyping, Language- WithinSubjects, AdvancedProgram-
Comparison, Java, Groovy mingStudents
598 McCaffrey and Bonar 2010 FeaturePresence, Typelnference, PerceivedValue Survey, ProfessionalProgrammers
TupleType, Objectimmutability,
Lambda, ValueNotIgnorable, F#
599 McEwan et al. 2010 LanguageComparison, ~ VBA, RuntimePerformance ProgramRewrite, ResearcherParticipates
C++
5100 Mclver 2000 LanguageComparison, GRAIL, ErrorProneness NonrandomizedControlledExperiment,
LOGO BetweenSubjects, ~ BeginningProgram-
mingStudents
5101 Miara et al. 1983 FeaturePresence, ~ ProgramIn- ProgramComprehension NonrandomizedControlledExperiment,
dentation, Pascal ProgrammingStudents

(continues)

TABLE 23 (continues)

179

Study Citation Design decision codes Efficacy codes Method codes
5102 Millstein 2004; Millstein et FeaturePresence, PredicateDis- LinesOfCodeComparison, ProgramRewrite, ResearcherParticipates
al. 2009 patch, LanguageComparison, ProgramTranslationEffort,
JPred, Java ProgramQuality, Reusability
5103 Mortensen et al. 2012 ParadigmComparison, ~ AOP, ProgramTranslationEffort, Line- ProgramRewrite, CodeHistory
OOP, LanguageComparison, sOfCodeComparison
AspectC++, C++
5104 Myers, Giuse, et al. 1992 LanguageComparison, ~Com- ProgrammingEffort, ~LinesOf- LanguageShootout, ProfessionalPro-
monLisp, ObjectPascal, C++ CodeComparison grammers
5105 Myrtveit and Stensrud LanguageComparison, C, C++ ProgrammingEffort MetricsCollectionAnalysis
2008
5106 Nanz et al. 2010; Nanz et LanguageComparison, Eiffel, ProgramComprehension, Error- RandomizedControlledExperiment,
al. 2011b,a Java, FeatureDesign, Concur- Proneness, DebuggingEffort BetweenSubjects, ~ AdvancedProgram-
rency mingStudents
5107 Necula et al. 2005 LanguageComparison, CCured, RuntimePerformance, Annota- ProgramRewrite, ResearcherParticipates
C tionOverhead
5108 Norcio 1982 FeaturePresence, ProgramlIn- ClozeTestPerformance RandomizedControlledExperiment, Pro-
dentation grammingStudents, BetweenSubjects
S110 Nystrom et al. 2006 FeaturePresence, NestedInter- ProgramTranslationEffort ProgramRewrite, ResearcherParticipates
section, FeatureDesign, Static-
Typing, LanguageComparison,
J&, Java
S111 Nystrom et al. 2007 LanguageComparison, LinesOfCodeComparison, Pro- ProgramRewrite, ResearcherParticipates
GdH, Erlang, C++/CORBA, grammingEffort
C++/UDP
S114 Pankratius, Adl-Tabatabai, FeatureDesign, STM, Memory- LinesOfCodeComparison, Pro- RandomizedControlledExperiment,
and Otto 2009; Pankratius ~ Locking grammingEffort BetweenSubjects, ~ AdvancedProgram-
and Adl-Tabatabai 2011 mingStudents
S115 Pankratius, Schmidt, et al. LanguageComparison, Scala, ProgrammingEffort, LinesOf- RandomizedControlledExperiment,
2012 Java CodeComparison AdvancedProgrammingStudents, ~ Pro-
fessionalProgrammers, WithinSubjects
S116 Patel and Gilbert 2008 LanguageComparison, C+MPI, ErrorProneness, LinesOfCode- ReAnalysis, NonrandomizedCon-
urC Comparison, ProgrammingEf- trolledExperiment, AdvancedProgram-
fort, RuntimePerformance mingStudents, WithinSubjects
S117 Patterson 1981 LanguageComparison, LinesOfCodeComparison, Run- LanguageShootout, ResearcherPartici-
TRANSLANG, STRUM, Mi- timePerformance pates
croprogramming
5118 Perrott et al. 1980 LanguageComparison, Fortran, ProgramTranslationEffort, De- ProgramRewrite, ResearcherParticipates
SIMONE buggingEffort, ErrorProneness
S119 Poletto et al. 1999 FeaturePresence, RuntimeCode- RuntimePerformance BenchmarkPrograms
Generation, LanguageCompari-
son, 'C,C
5120 Prechelt and Tichy 1996, FeaturePresence, Argument- ErrorProneness RandomizedControlledExperiment,
1998 TypeChecking, FeatureDesign, WithinSubjects, ProfessionalProgram-
StaticTyping, C mers
S121 Prechelt 2000; Prechelt ParadigmComparison, Script- LinesOfCodeComparison, LanguageShootout
2003 ingParadigm, SystemProgram- ErrorProneness, Programming-
mingParadigm, LanguageCom- Effort
parison, C, C++, Java, Perl,
Python, Rexx, Tcl
S122 Prechelt, Unger, et al. 2003; FeaturePresence, ClassInheri- ErrorProneness, Maintenance- SimulatedMaintenance, Random-
Unger and Prechelt 1998 tance Effort izedControlledExperiment, ~ Program-
mingStudents, BetweenSubjects
5123 Przybytek 2011 ParadigmComparison, ~ AOP, ~ Modularity CorpusAnalysis
OOP, LanguageComparison,
Aspect], Java
S124 Qi and Myers 2010 FeaturePresence, FamilyShar- LinesOfCodeComparison ProgramRewrite, ResearcherParticipates
ing, FeatureDesign, StaticTyp-
ing, LanguageComparison, J&h,
Java
S125 Ramalingam and Wieden- ParadigmComparison, ~ Proce- ProgramComprehension NonrandomizedControlledExperiment,
beck 1997 duralParadigm, OOP, C++ WithinSubjects, BeginningProgram-
mingStudents
S127 Rossbach et al. 2009, 2010 FeatureDesign, MemoryLock- ProgrammingEffort, Error- RandomizedControlledExperiment,
ing, STM Proneness AdvancedProgrammingStudents, With-
inSubjects
5128 Saal and Weiss 1977 LanguageComparison, ~ APL, FeaturePrevalence CorpusAnalysis, HistoricalControl
Fortran
5130 Sawadpong et al. 2012 FeaturePresence, Exception- ErrorProneness CorpusAnalysis, BugHistory
Handling
5131 Scholte et al. 2012 FeaturePresence, StaticTyping, SecurityVulnerabilityProneness CorpusAnalysis
SecurityIssuePrevention
5132 Seixas et al. 2009 FeatureDesign, StaticTyping, ~ SecurityVulnerabilityProneness CorpusAnalysis, HistoricalControl
DynamicTyping
S134 Sheppard et al. 1979 StructuredProgramming, Fea- ProgramComprehension, Main- RandomizedControlledExperiment, Pro-
turePresence, Comments, tenanceEffort fessionalProgrammers, WithinSubjects
Fortran
5136 Shneiderman 1976; Shnei- FeatureDesign, Conditionals ProgramComprehension NonrandomizedControlledExperiment,
derman and Mayer 1979 ProgrammingStudents, WithinSubjects
5137 Sime et al. 1973, 1999 FeatureDesign, ~ Conditionals, ProgrammingEffort, Error- NonrandomizedControlledExperiment,
JUMP, NEST Proneness NonProgrammers
S138 Sime et al. 1977 FeatureDesign, ~ Conditionals, ErrorProneness NonrandomizedControlledExperiment,
JUMP, NEST-BE, NEST-INE NonProgrammers
5140 Smith and Dunsmore 1982 StructuredProgramming, ~ Fea- ProgramComprehension OtherExperiment, ~BeginningProgram-
tureDesign, Conditionals, mingStudents

Loops, Fortran

(continues)

180

TABLE 23 (continues)

Study Citation Design decision codes Efficacy codes Method codes
S141 Soloway et al. 1983 FeatureDesign, Loops ErrorProneness NonrandomizedControlledExperiment,
ProgrammingStudents, BetweenSubjects
S142 Stefik, Siebert, et al. 2011 LanguageComparison, Quo- ErrorProneness RandomizedControlledExperiment, Be-
rum, Randomo, Perl tweenSubjects, NonProgrammers, Arti-
factEncoding
5143 Stefik and Gellenbeck 2011 FeatureDesign, Loops, Boolean- PerceivedIntuitivity Survey, NonProgrammers, Advanced-
Queries, AssignmentSyntax, ProgrammingStudents
CallSyntax, StringLiteralSyntax,
StringConcatenationSyntax,
Conditionals
S144 Stuchlik and Hanenberg FeatureDesign, StaticTyping, ProgrammingEffort RandomizedControlledExperiment,
2011 DynamicTyping, TypeCasting, WithinSubjects, AdvancedProgram-
LanguageComparison, Java, mingStudents
Groovy
5145 Taveira et al. 2009 ParadigmComparison, ~ AOP, Reusability ProgramRewrite, ResearcherParticipates
OOP, LanguageComparison,
Aspect], Java
S146 Tenny 1985 FeaturePresence, ~ NestedSub- ProgramComprehension NonrandomizedControlledExperiment,
routines, Comments AdvancedProgrammingStudents, Be-
tweenSubjects
5147 Thies and Amarasinghe FeatureDesign, StreamProgram- FeaturePrevalence CorpusAnalysis
2010 ming, StreamIt
5148 Tobin-Hochstadt and LanguageComparison, Typed- ProgramTranslationEffort, Line- ProgramRewrite, ResearcherParticipates
Felleisen 2008 Scheme, PLTScheme sOfCodeComparison
5149 Tonella and Ceccato 2005 ParadigmComparison, AOP, MaintenanceEffort, ~ Program- SimulatedMaintenance, =~ Randomized-
oor Comprehension, LinesOfCode- ControlledExperiment, ~WithinSubjects,
Comparison, Modularity AdvancedProgrammingStudents, ~ Pro-
fessional Programmers
5150 Valente et al. 2010 ParadigmComparison, ~ AOP, ProgramQuality QualityMetrics, ProgramPairAnalysis
oor
S151 Vessey and Weber 1984a FeatureDesign, ~ Conditionals, ProgrammingEffort, Error- NonrandomizedControlledExperiment,
FeaturePresence, ~ ProgramIn- Proneness BetweenSubjects, NonProgrammers
dentation, JUMP-M, NEST,
NEST-BE, NEST-INE
5153 Volos et al. 2009 FeatureDesign, STM, Memory- RuntimePerformance BenchmarkPrograms
Locking, NestedParallelism
S154 ‘Walker, Bamassad, et al. ParadigmComparison, AOP, DebuggingEffort, Maintenance- NonrandomizedControlledExperiment,
1998; Walker, Baniassad, et OOP, LanguageComparison, Effort AdvancedProgrammingStudents, ~ Pro-
al. 1999 Aspect], Java fessionalProgrammers, BetweenSubjects,
ProgrammerObservation
5155 ‘Walker, Lamere, et al. 2002 LanguageComparison, Java, C RuntimePerformance ProgramRewrite, ResearcherParticipates
5156 ‘Weimer and Necula 2008 FeaturePresence, ~ Compensa- ProgramTranslationEffort, Run- ProgramRewrite, ResearcherParticipates
tionStacks timePerformance
5157 Westbrook et al. 2012 FeaturePresence, Permis- ProgramTranslationEffort ProgramRewrite, ResearcherParticipates
sionTypes, FeatureDesign,
SharedMemoryCommunica-
tion, LanguageComparison, HJ,
HJp
5158 Wiedenbeck and Rama- ParadigmComparison, ~ OOP, ProgramComprehension NonrandomizedControlledExperiment,
lingam 1999 ProceduralParadigm, C++ BeginningProgrammingStudents, ~ Be-
tweenSubjects
5159 Wiedenbeck, Ramalingam, ParadigmComparison, ~ OOP, ProgramComprehension NonrandomizedControlledExperiment,
etal. 1999 ProceduralParadigm, Lan- BeginningProgrammingStudents, ~ Be-

guageComparison, C++, Pascal

tweenSubjects

TABLE 24 Secondary studies and their assigned method codes

Study Citation Method codes

S5 Arblaster 1982 NarrativeReview
515 Boehm-Davis 2002 NarrativeReview
S16 Briand et al. 1999 NarrativeReview
532 Curtis 1982 NarrativeReview
S35 Deligiannis et al. 2002 NarrativeReview, SearchDatabasesSpecified, SearchTermsSpecified
S52 Furuta and Kemp 1979 NarrativeReview
S53 Fyfe 1997b,a NarrativeReview
S61 Green 1980 NarrativeReview
S73 Hoc 1983 NarrativeReview
S81 Johnson 2002 NarrativeReview
S87 Laughery and Laughery 1985 NarrativeReview
S112 Pane and Myers 2000 NarrativeReview
S113 Pane and Myers 2006 NarrativeReview
5126 Roberts 1995 NarrativeReview
5129 Sadowski and Shewmaker 2010 NarrativeReview
5133 Sheil 1981 NarrativeReview
5135 Shneiderman 1975 NarrativeReview
5139 Sime, Arblaster, et al. 1977 NarrativeReview
5152 Vessey and Weber 1984b NarrativeReview

APPENDIX 4

INCLUDED SECONDARY STUDIES

TABLE 25 Reports included in this mapping study that are also considered by included
secondary studies

Study Citation Reports considered

S5a Arblaster 1982 Green 1977 (S60), Green 1980 (S61), Sime et al. 1973 (5137), Sime, Arblaster, et al. 1977 (5139)
S15a Boehm-Davis 2002 Ramalingam and Wiedenbeck 1997 (S125), Wiedenbeck and Ramalingam 1999 (S158)
S15b Boehm-Davis 2002 Norcio 1982 (S108)

Sl6a Briand et al. 1999 Daly et al. 1996 (S33)

S32a Curtis 1982 Green 1977 (S60), Sime, Arblaster, et al. 1977 (5139)

S32b Curtis 1982 Gannon 1976 (S55)

S32¢ Curtis 1982 Gannon 1977 (S56)

S35a Deligiannis et al. 2002 Henry and Humphrey 1990 (S69)

S35b Deligiannis et al. 2002 Lewis et al. 1991 (S90)

S35¢ Deligiannis et al. 2002 Wiedenbeck, Ramalingam, et al. 1999 (S159)

S35d Deligiannis et al. 2002 Cartwright 1998 (S19, 520), Daly et al. 1996 (S33), Harrison, Counsell, et al. 2000 (S68), Unger and Prechelt 1998 (5122)
S52a Furuta and Kemp 1979 Green 1977 (S60), Sime et al. 1973 (S137), Sime et al. 1977 (S138)

S52¢ Furuta and Kemp 1979 Gannon and Horning 1975b (S55), Gannon and Horning 1975a (S55), Gannon 1976 (S55)
s52d Furuta and Kemp 1979 Gannon 1977 (856)

S53a Fyfe 1997b,a Harrison, Smaraweera, et al. 1996 (S67)

S61b Green 1980 Green 1977 (S60), Sime et al. 1977 (S138)

S73a Hoc 1983 Green 1977 (S60), Green 1980 (S61), Sime et al. 1973 (S137), Sime et al. 1977 (S138)
S73b Hoc 1983 Shneiderman 1976 (S136)

S73¢ Hoc 1983 Embley 1978 (S43)

S73d Hoc 1983 Lucas and Kaplan 1976 (593)

S73e Hoc 1983 Sheppard et al. 1979 (5134)

S8la Johnson 2002 Lewis et al. 1992 (S90)

S81b Johnson 2002 Harrison, Smaraweera, et al. 1996 (S67)

S87a Laughery and Laughery 1985 Green 1980 (S61), Sime et al. 1977 (S138)

S126a Roberts 1995 Soloway et al. 1983 (S141)

S129a Sadowski and Shewmaker 2010 Rossbach et al. 2010 (5127)

S129b Sadowski and Shewmaker 2010 Ebcioglu et al. 2006 (S42)

S129¢ Sadowski and Shewmaker 2010 Luff 2009 (594)

5129 Sadowski and Shewmaker 2010 Hochstein, Basili, et al. 2008 (S74)

S133a Sheil 1981 Green 1977 (S60), Sime et al. 1973 (S137), Sime et al. 1977 (S5138)

S133b Sheil 1981 Lucas and Kaplan 1976 (S93)

S133¢ Sheil 1981 Gannon 1977 (S56)

5133d Sheil 1981 Gannon and Horning 1975b (S55), Gannon 1976 (S55)

S135a Shneiderman 1975 Sime et al. 1973 (5137)

S139a Sime, Arblaster, et al. 1977 Green 1977 (S60), Sime et al. 1973 (S137), Sime et al. 1977 (S138)

S152a Vessey and Weber 1984b Green 1977 (S60), Sime et al. 1973 (S137), Sime et al. 1977 (S138)

5152b Vessey and Weber 1984b Lucas and Kaplan 1976 (593)

TABLE 26 Reports considered by included secondary studies that have not been in-
cluded in this mapping study

Study

Citation

Reports considered

S5a

S5a

S5a

S5a

S15a

S15a

S16b

S32a

S52b

s52d

Sé6la

S61b

Arblaster 1982
Arblaster 1982

Arblaster 1982

Arblaster 1982

Boehm-Davis 2002

Boehm-Davis 2002

Briand et al. 1999
Curtis 1982
Furuta and Kemp 1979

Furuta and Kemp 1979

Green 1980

Green 1980

A.T. Arblaster & M. E. Sime & T. R. G. Green (1979): Jumping to some purpose. Computer Journal 22 (2), 105-109. (No
recorded exclusion decision.)

A.T. Arblaster (1977): Some measures of information about program states. International Computing Symposium 1977.
(No recorded exclusion decision.)

M. E. Sime, A. T. Arblaster & T. R. G. Green (1977): Reducing programming errors in nested conditionals by prescribing
a writing procedure. International Journal of Man-Machine Studies 9 (1). Pages 119-126. doi:10.1016/50020-7373(77)
80046-1 (Excluded from this mapping study.)

T.R. G. Green (1980): Programming as a cognitive activity. In Smith & Green (eds): Human Interaction with Computers.
London: Academic Press. (No recorded exclusion decision.)

C. L. Corritore & S. Wiedenbeck (1999): Mental representations of expert procedural and object-oriented programmers
in a software maintenance task. International Journal of Human-Computer Studies 50, 61-84. (No recorded exclusion
decision.)

Francoise Détienne (1997): Assessing the cognitive consequences of the object-oriented approach: A survey of empirical
research on object-oriented design by individuals and teams. Interacting with Computers 9 (1). Pages 47-72. doi:
10.1016/50953-5438(97)00006-4 (Excluded from this mapping study.)

S. Benlarbi and W. L. Melo (1999): Polymorphism measures for early risk detection. In Proc. ICSE'99. (No recorded
exclusion decision.)

T.R. G. Green, M. E. Sime & M. J. Fitter (1980): The problem the programmer faces. Ergonomics 23 (9), p. 893-907. (No
recorded exclusion decision.)

R. E. Mayer (1976): Comprehension as affected by structure of problem representation. Memory & Cognition 4(3), p.
249-255. (No recorded exclusion decision.)

J. D. Gannon: Data types and programming reliability: Some preliminary evidence. Presented at the Symposium
on Computer Software Engineering. Polytechnic Institute of New York (April 20-22, 1976) (No recorded exclusion
decision.)

V. G. Richards & T. R. G. Green & J. Manton (1979): What Does Problem Representation Affect: Chunk Size, Memory
Load, or Mental Process? Memo no. 319, MRC Social and Applied Psychology Unit, University of Sheffield. (No
recorded exclusion decision.)

A.T. Arblaster & M. E. Sime & T. R. G. Green (1979): Jumping to some purpose. The Computer Journal 22, p. 105-109.
(This is a review of other studies.) (No recorded exclusion decision.)

(continues)

182

TABLE 26 (continues)

Study Citation Reports considered

S73e Hoc 1983 L. Weissman (1974): Psychological complexity of computer programs and experimental methodology. ACM SIGPLAN
Notices 9. (No recorded exclusion decision.)

S87a Laughery and Laughery 1985 A. T. Arblaster & M. E. Sine & T. R. G. Green (1975): Jumping to some purpose. Computer Journal 22. (No recorded
exclusion decision.)

587a Laughery and Laughery 1985 M. E. Sime, A. T. Arblaster & T. R. G. Green (1977): Reducing programming errors in nested conditionals by prescribing
a writing procedure. International Journal of Man-Machine Studies 9 (1). Pages 119-126. doi:10.1016/S0020-7373(77)
80046-1 (Excluded from this mapping study.)

S87a Laughery and Laughery 1985 T.R. G. Green & M. E. Sine & M. Fitter (1975): Behavioral Experiments on Programming Languages. Memo 66. MRC
Social and Applied Psychology, University of Sheffield, England. (No recorded exclusion decision.)

S112a Pane and Myers 2000 Pane, J. F, & Myers, B. A. (2000). Tabular and Textual Methods for Selecting Objects from a Group. submitted for publi-
cation, http:/ /www.cs.cmu.edu/~pane/Study3.html. That URL gives the following citation: J.F. Pane and B.A. Myers,
"Tabular and Textual Methods for Selecting Objects from a Group," Proceedings of VL 2000: IEEE International Sym-
posium on Visual Languages, Seattle, WA: IEEE Computer Society, September 10-13 2000, pp. 157-164. (No recorded
exclusion decision.)

S113a Pane and Myers 2006 J. E Pane & B. A. Myers (2002): The impact of human-centered features on the usability of a programming system for
children. In CHI 2002. (No recorded exclusion decision.)

S126b Roberts 1995 Henry Shapiro (1980): "The results of an informal study to evaluate the effectiveness of teaching structured program-
ming". SIGCSE Bulletin, December 1980. (No recorded exclusion decision.)

5129d Sadowski and Shewmaker 2010 L. Hochstein, J. Carver, F. Shull, S. Asgari & V. Basili (2005): Parallel Programmer Productivity: A Case Study of
Novice Parallel Programmers. In Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005 Conference. Pages
35. doi:10.1109/5C.2005.53 (Excluded from this mapping study.)

S133e Sheil 1981 "LOVE, T. "Relating individual differences in computer programming performance to human information processing
abilities," Ph.D. dissertation, Univ. Washington, 1977." (p. 120) (No recorded exclusion decision.)

S133e Sheil 1981 "Shneiderman and McKay (reported in SHNES0)" (p. 109), where SHNES0 is "SHNEIDERMAN,B. Software psychol-
ogy, Winthrop, Cambridge, Mass., 1980" (p. 120) (No recorded exclusion decision.)

S133e Sheil 1981 "WEISSMAN, L. "A methodology for studying the psychological complexity of computer programs," Ph.D. dissertation,
Univ. Toronto, Canada, 1974." (p. 120) (No recorded exclusion decision.)

S139b Sime, Arblaster, et al. 1977 R. E. Mayer (1976): Comprehensions as affected by structure of problem representation. Mem. Cog. 4, 249-255. (No

recorded exclusion decision.)

APPENDIX 5 EXCLUDED PUBLICATIONS

The following publications were recorded during searches as not being obviously
irrelevant but were subsequently excluded from this mapping study.

Exclusion can happen two ways: either the answer to both of the selection
questions Q1 and Q2 (see page 64) was negative, or one of the selection questions
Q3-Q7 was answered negatively. The questions whose negative answer caused
the exclusion are listed for each excluded publication.

For most decisions, verbal explanations have been recorded. They are repro-
duced below, after the exclusion reason. Each explanation is preceded by a tag
indicating the phase in which the explanation was written, and the author of the
explanation. Tags starting with “II” indicate that full text was not yet retrieved
at the time of the explanation; tags starting with “III” indicate that full text was
considered. Explanations recorded during selection evaluation have been given
tags starting with either “sel-1” or “sel-2”. Post-hoc exclusions are indicated by a
“posthoc” tag. Most tags also indicate the explanation’s author: I am “.ajk”, Ville
Tirronen’s explanations (which may have been paraphrased) are tagged “.tirro-
nen”. If no author is indicated, I should be presumed to have written the expla-
nation.

1. M. Abadi, L. Cardelli, B. Pierce & G. Plotkin (1989): Dynamic typing in a statically-typed language. In Proc. 16th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL). Pages 213-227. doi:10.1145/75277.75296 Exclusion reasons: Q5 [ILajk]Elaboration of a language
construct with theoretical and compiler-development evaluation only, based on the abstract.

2. Martin Abadi, Luca Cardelli, Benjamin Pierce & Gordon Plotkin (1991): Dynamic typing in a statically typed language. ACM Transactions on Program-
ming Languages and Systems 13 (2). Pages 237-268. doi:10.1145/103135.103138 Exclusion reasons: Q5 [ILajk]Formal type-theoretic work.

3. Martin Abadi, Luca Cardelli & Pierre-Louis Curien (1993): Formal parametric polymorphism. In Proc. 20th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL). Pages 157-170. doi:10.1145/158511.158622 Exclusion reasons: Q1-2 [II.ajk]Formal theoretical work

4. Martin Abadi & Luca Cardelli (1995): On Subtyping and Matching. In Proc. ECOOP’95 European Conference on Object-Oriented Programming.
Lecture Notes in Computer Science 952. Pages 145-167. doi:10.1007 /3-540-49538-X_8 Exclusion reasons: Q1-2 [ILajk]Type-theoretical work.

5. Martin Abadi & Luca Cardelli (1996): On subtyping and matching. ACM Transactions on Programming Languages and Systems 18 (4). Pages 401-423.
doi:10.1145/233561.233563 Exclusion reasons: Q5 [Il.ajk]Formal type theoretical development.

6. Martin Abadi (1998): Protection in Programming-Language Translations: Mobile Object Systems. In ECOOP'98 European Conference on Object-
Oriented Programming Workshop Reader. Lecture Notes in Computer Science 1543. Pages 581. doi:10.1007/3-540-49255-0_70 Exclusion reasons: Q5
[TL.ajk] There is a fuller paper at doi:10.1007/BFb0055109, but neither this nor that aspires to empiricity.

7. Martin Abadi, Cédric Fournet & Georges Gonthier (2000): Authentication primitives and their compilation. In Proc. 27th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL). Pages 302-315. doi:10.1145/325694.325734 Exclusion reasons: Q1-2 [IL.ajk]Formal de-
velopment.

8. Martin Abadi & Cédric Fournet (2001): Mobile values, new names, and secure communication. In Proc. 28th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL). Pages 104-115. doi:10.1145/360204.360213 Exclusion reasons: Q1-2 [I.ajk]Formal theoretical study, no
language design issue.

9. Martin Abadi, Andrew Birrell, Tim Harris & Michael Isard (2011): Semantics of transactional memory and automatic mutual exclusion. ACM Trans-
actions on Programming Languages and Systems 33 (1). Pages 2:1-2:50. doi:10.1145/1889997.1889999 Exclusion reasons: Q5 [IL.ajk]Theoretical work,
looks like.

10. AS. Abbas, W. Jeberson & VV Klinsega (2012): A Literature Review and Classification of Selected Software Engineering Researches. International
Journal of Engineering and Technology 2 (7). http://iet-journals.org/archive/2012/july_vol_2_no_7/7565991339399989.pdf Exclusion reasons: Q1-2
[IILajk]This is a mapping study.

11. RussellJ. Abbott (1983): Program design by informal English descriptions. Communications of the ACM 26 (11). Pages 882-894. doi:10.1145/182.358441
Exclusion reasons: Q1-2 [IIL.ajk]This article does not evaluate any language design decisions.

12. Russell]. Abbott (1987): Knowledge abstraction. Communications of the ACM 30 (8). Pages 664-671. doi:10.1145/27651.27652 Exclusion reasons: Q5
[ITLajk] This article does not aspire to empiricity.

13. Soufyane Aboubekr, Gwenaél Delaval & Eric Rutten (2009): A programming language for adaptation control: case study. SIGBED Review 6 (3). Article
11. Pages 11:1-11:5. doi:10.1145/1851340.1851353 Exclusion reasons: Q5 [IIL.ajk]This article explores the implications of a particular artefact, and thus
does not aspire to empiricality.

14. S. Abrahao, E. Insfran, C. Gravino & G. Scanniello (2009): On the effectiveness of dynamic modeling in UML: Results from an external replication.
In Third international symposium on Empirical Software Engineering and Measurement ESEM 2009. Pages 468-472. doi:10.1109/ESEM.2009.5316004
Exclusion reasons: Q1-2 [I.ajk][No PL relevance.

15. Umut A. Acar, Guy E. Blelloch & Robert Harper (2002): Adaptive functional programming. In Proc. 29th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL). Pages 247-259. doi:10.1145/503272.503296 Exclusion reasons: Q5 [IILajk]This article does not aspire to
empiricity.

16. Umut A. Acar, Guy E. Blelloch & Robert Harper (2003): Selective memoization. In Proc. 30th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL). Pages 14-25. doi:10.1145/604131.604133 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

17. Umut A. Acar, Guy E. Blelloch & Robert Harper (2006): Adaptive functional programming. ACM Transactions on Programming Languages and
Systems 28 (6). Pages 990-1034. doi:10.1145/1186632.1186634 Exclusion reasons: Q5 [II.ajk]JFormal theoretical and implementation study.

18. Umut A. Acar, Amal Ahmed & Matthias Blume (2008): Imperative self-adjusting computation. In Proc. 35th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL). Pages 309-322. doi:10.1145/1328438.1328476 Exclusion reasons: Q1-2 [ILajk]Language exposition and
theoretical work.

19. Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper & Kanat Tangwongsan (2009): An experimental analysis of self-adjusting computation.
ACM Transactions on Programming Languages and Systems 32 (1). doi:10.1145/1596527.1596530 Exclusion reasons: Q1-2 [IIL.ajk]This article describes
an embedded language for describing self-adjusting computations, and reports on a benchmarking study comparing ordinary programs and their
self-adjusting counterparts with respect to speed under data loads that appear to favor self-adjusting computation. I doubt it has any relevance to
programmer-experienced efficacy of the language design.

184

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Umut A. Acar, Arthur Charguéraud & Mike Rainey (2011): Oracle scheduling: controlling granularity in implicitly parallel languages. In Proceedings
of the 2011 ACM international conference on Object oriented programming systems languages and applications. New York, NY, USA: ACM. Pages
499-518. doi:10.1145/2048066.2048106 Exclusion reasons: Q1-2 [IIL.ajk|The empirical evaluation concerns implementation efficiency only.

Eldridge S. Adams, Jr. (1958): Simple automatic coding systems. Communications of the ACM 1 (7). Pages 5-9. doi:10.1145/368873.368884 Exclusion
reasons: Q5 [I1L.ajk]This article does not aspire to empiricity.

Michael D. Adams, Andrew W. Keep, Jan Midtgaard, Matthew Might, Arun Chauhan & R. Kent Dybvig (2011): Flow-sensitive type recovery in linear-
log time. In Proceedings of the 2011 ACM international conference on Object oriented programming systems languages and applications. New York,
NY, USA: ACM. Pages 483-498. doi:10.1145/2048066.2048105 Exclusion reasons: Q1-2 [IL.ajk]This article deals with an implementation technique only.
T.R. ADDIS & J.]. TOWNSEND ADDIS (2002): An introduction to clarity: a schematic functional language for managing the design of complex systems.
International Journal of Human-Computer Studies 56 (4). Pages 331-374. doi:10.1006/ijhc.2002.0528 Exclusion reasons: Q1-2 [ILajk]The language under
consideration is not textual.

Luiz Marques Afonso, Renato F. de G. Cerqueira & Clarisse Sieckenius de Souza (2012): Evaluating Application Programming Interfaces as Communi-
cation Artefacts. In PPIG 2012. Exclusion reasons: Q1-2 [IL.ajk]No language design issues.

Edward E. Aftandilian, Samuel Z. Guyer, Martin Vechev & Eran Yahav (2011): Asynchronous assertions. In Proceedings of the 2011 ACM international
conference on Object oriented programming systems languages and applications. New York, NY, USA: ACM. Pages 275-288. doi:10.1145/2048066.
2048090 Exclusion reasons: Q5 [IIL.ajk]This article has empirical evaluation of performance only.

Ritu Agarwal, Atish P. Sinha & Mohan Tanniru (1996): The role of prior experience and task characteristics in object-oriented modeling: an empirical
study. International Journal of Human-Computer Studies 45 (6). Pages 639-667. doi:10.1006/ijhc.1996.0072 Exclusion reasons: Q1-2 [IIL.ajk]This article
studies modeling, not programming.

R. Agarwal, P. De & A.P. Sinha (1999): Comprehending object and process models: an empirical study. Software Engineering, IEEE Transactions
on 25 (4). Pages 541-556. doi:10.1109/32.799953 Exclusion reasons: Q1-2 [IILajk]This article does not does not discuss programming language matters.
Ole Agesen (1995): The Cartesian Product Algorithm: Simple and Precise Type Inference of Parametric Polymorphism. In Proc. ECOOP'95 European
Conference on Object-Oriented Programming. Lecture Notes in Computer Science 952. Pages 2-26. doi:10.1007/3-540-49538-X_2 Exclusion reasons:
Q1-2 [ILajk]Implementation technique development.

Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek & Philip Wadler (2011): Blame for all. In Proc. 38th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL). Pages 201-214. doi:10.1145/1926385.1926409 Exclusion reasons: Q5 [IILajk]|This article does not aspire
to empiricity.

Mehmet Aksit & Lodewijk Bergmans (1992): Obstacles in object-oriented software development. In conference proceedings on Object-oriented pro-
gramming systems, languages, and applications. New York, NY, USA: ACM. Pages 341-358. do0i:10.1145/141936.141965 http:/ /purl.utwente.nl/
publications /64957 Exclusion reasons: Q1-2 [IIL.ajk]This article does not evaluate any language design decisions.

Mehmet Aksit, Lodewijk Bergmans & Sinan Vural (1992): An object-oriented language-database integration model: The composition-filters approach.
In Proc. ECOOP’92 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 615. Pages 372-395. doi:10.1007/
BFb0053047 Exclusion reasons: Q1-2 [ILajk]Feature exposition.

M. M. Al-Jarrah & 1. S. Torsun (1979): An empirical analysis of COBOL programs. Software: Practice and Experience 9 (5). Pages 341-359. doi:
10.1002/spe.4380090502 Exclusion reasons: Q1-2 [IL.ajk]No comparison.

S. Alagi¢, R. Sunderraman & R. Bagai (1994): Declarative object-oriented programming: Inheritance, subtyping and prototyping. In Proc. ECOOP’94
European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 821. Pages 236-259. doi:10.1007/BFb0052186 Exclusion
reasons: Q5 [IL.ajk]Exposition, implementation.

Suad Alagi¢, Jose Solorzano & David Gitchell (1998): Orthogonal to the Java imperative. In Proc. ECOOP’98 European Conference on Object-Oriented
Programming. Lecture Notes in Computer Science 1445. Pages 212-233. doi:10.1007/BFb0054093 Exclusion reasons: Q5 [IILajk]This article does not
aspire to empiricity.

Rola Alameh, Nico Zazworka & Jeffrey K. Hollingsworth (2007): Performance Measurement of Novice HPC Programmers Code. In Proceedings of the
3rd International Workshop on Software Engineering for High Performance Computing Applications. Washington, DC, USA: IEEE Computer Society.
SE-HPC "07. doi:10.1109/SE-HPC.2007.4 Exclusion reasons: Q1-2 [ILajk]This article does not evaluate any language design decisions.

Ahmed Alardawi, Babak Khazaei & Jawed Siddigqi (2011): The influence of class structure on program comprehension. In PPIG 2011. http://ppig.org/
papers/23/25%20Alardawi.pdf Exclusion reasons: Q1-2 [IILajk]This article studies program organization and does not seem to have any language
design decision at stake,

Jonathan Aldrich, Vibha Sazawal, Craig Chambers & David Notkin (2003): Language Support for Connector Abstractions. In Proc. ECOOP 2003
European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 2743. Pages 74-102. doi:10.1007/978-3-540-45070-2_5
Exclusion reasons: Q5 Disagreement resolution result. [sel-2.kaijanaho] Analytical.

Jonathan Aldrich & Craig Chambers (2004): Ownership Domains: Separating Aliasing Policy from Mechanism. In Proc. ECOOP 2004 European
Conference on Object-Oriented Programming. Lecture Notes in Computer Science 3086. Pages 1-25. doi:10.1007/978-3-540-24851-4_1 Exclusion
reasons: Q5 [I1L.ajk]This article does not aspire to empiricity.

Jonathan Aldrich (2005): Open Modules: Modular Reasoning About Advice. In Proc. ECOOP 2005 European Conference on Object-Oriented Program-
ming. Lecture Notes in Computer Science 3586. Pages 144-168. doi:10.1007/11531142_7 Exclusion reasons: Q5 [Il.ajk]Formal theoretical work.
Jonathan Aldrich, Robert Bocchino, Ronald Garcia, Mark Hahnenberg, Manuel Mohr, Karl Naden, Darpan Saini, Sven Stork, Joshua Sunshine, FEric
Tanter & Roger Wolff (2011): Plaid: a permission-based programming language. In Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications companion. New York, NY, USA: ACM. Pages 183-184. doi:10.1145/2048147.2048197
Exclusion reasons: Q5 [IL.ajk]No empirical evaluation.

Andrei Alexandrescu & Konrad Lorincz (2002): Archjava: An Evaluation. Student project report. http://archjava.fluid.cs.cmu.edu/papers/
alexandrescu-lorincz-archjava.pdf Exclusion reasons: Q5 [IIL.ajk]This is an experience report and an analytical study.

Giora Alexandron, Michal Armoni & David Harel (2011): Programming with the user in mind. In PPIG 2011. http://ppig.org/papers/23/20%
20Alexandron.pdf Exclusion reasons: Q1-2 [IIl.ajk]The language in question is diagrammatic, not textual.

Ghazi Alkhatib (1992): The maintenance problem of application software: An empirical analysis. Journal of Software Maintenance: Research and
Practice 4 (2). Pages 83-104. doi:10.1002/smr.4360040203 Exclusion reasons: Q1-2 [IIL.ajk]This article describes a case study attempting to determine
variables that affect maintenance load. It does not evaluate any language design decisions in any nontrivial sense.

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Ondfej Lhotdk, Oege de Moor, Damien Sereni, Ganesh
Sittampalam & Julian Tibble (2005): Adding trace matching with free variables to Aspect]. In OOPSLA ‘05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications. Pages 345-364. doi:10.1145/1094811.1094839 Exclusion
reasons: Q1-2 [IIL.ajk]This article does not evaluate its design choices empirically; there’s one section that might look like it does but as the conclusion
is "[t]hese results demonstrate the feasibility of our approach”; not efficacy but feasibility.

Carl Martin Allwood (1986): Novices on the computer: a review of the literature. International Journal of Man-Machine Studies 25 (6). Pages 633-658.
doi:10.1016/50020-7373(86)80079-7 Exclusion reasons: Q1-2 [IL.ajk]Not a PL design issue.

Carl Martin Allwood & Carl-Gustav Bjérhag (1990): Novices” debugging when programming in Pascal. International Journal of Man-Machine Stud-
ies 33 (6). Pages 707-724. doi:10.1016/50020-7373(05)80070-7 Exclusion reasons: Q1-2 [IL.ajk]No language design issues.

Jay Almarode (1991): Issues in the design and implementation of a schema designer for an OODBMS. In Proc. ECOOP’91 European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science 512. Pages 200-218. doi:10.1007/BFb0057023 Exclusion reasons: Q5 [IIL.ajk]This
article does not evaluate language design decisions.

Paulo Sérgio Almeida (1997): Balloon types: Controlling sharing of state in data types. In Proc. ECOOP'97 European Conference on Object-Oriented
Programming. Lecture Notes in Computer Science 1241. Pages 32-59. doi:10.1007 /BFb0053373 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire
to empiricity.

Johan Per Fredrik Almqvist (2006): Replication of controlled experiments in empirical software engineering-A survey. . Master’s thesis. http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.117.9777&rep=rep1&type=pdf Exclusion reasons: Q7 [IIL.ajk]This Master’s Thesis does not dis-
cuss empirical evidence in the primary studies under review.

Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen Smith, Ton Ngo, John J. Barton, Susan Flynn Hummel, Janice C. Sheperd & Mark
Mergen (1999): Implementing jalapeno in Java. In OOPSLA ’99: Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications. Pages 314-324. doi:10.1145/320384.320418 Exclusion reasons: Q1-2 [ILajk]Implementation study.

Enrique Calderon Alzati (1966): AN EXPERIMENTAL PROGRAMMING LANGUAGE FOR TEACHING SYMBOLIC MANIPULATION.. at MOORE

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

185

SCHOOL OF ELECTRICAL ENGINEERING PHILADELPHIA PA. http://oai.dtic.mil/oai/o0ai?verb=getRecord&metadataPrefix=html&identifier=
AD0800050 Exclusion reasons: Q1-2 [ILajk]Language exposition.

H. Aman (2012): An Empirical Analysis on Fault-Proneness of Well-Commented Modules. In Empirical Software Engineering in Practice (IWESEP),
2012 Fourth International Workshop on. Pages 3-9. doi:10.1109/IWESEP.2012.12 Exclusion reasons: Q1-2 [ILajk]Comment usage patterns are not a
language design issue.

Pierre America & Frank van der Linden (1990): A parallel object-oriented language with inheritance and subtyping. In OOPSLA /ECOOP '90: Pro-
ceedings of the European conference on object-oriented programming and Object-oriented programming systems, languages, and applications. Pages
161-168. doi:10.1145/97945.97966 Exclusion reasons: Q1-2 [I.ajk]Language exposition.

Davide Ancona, Giovanni Lagorio & Elena Zucca (2000): Jam - A Smooth Extension of Java with Mixins. In Proc. ECOOP 2000 European Conference
on Object-Oriented Programming. Lecture Notes in Computer Science 1850. Pages 154-178. doi:10.1007/3-540-45102-1_8 Exclusion reasons: Q1-2
[ILajk]Language exposition.

Davide Ancona & Elena Zucca (2001): True Modules for Java-like Languages. In Proc. ECOOP 2001 European Conference on Object-Oriented Program-
ming. Lecture Notes in Computer Science 2072. Pages 354-380. doi:10.1007 /3-540-45337-7_19 Exclusion reasons: Q5 [IILajk]This article does not aspire
to empiricity.

Davide Ancona, Giovanni Lagorio & Elena Zucca (2003): Jam - designing a Java extension with mixins. ACM Transactions on Programming Languages
and Systems 25 (5). Pages 641-712. doi:10.1145/937563.937567 Exclusion reasons: Q1-2 [I.ajk]Exposition of a new language feature.

Davide Ancona, Giovanni Lagorio & Elena Zucca (2006): Flexible Type-Safe Linking of Components for Java-Like Languages. Volume 4228.In Lightfoot,
David and Szyperski, Clemens (ed.) Modular Programming Languages.Springer Berlin / Heidelberg. Lecture Notes in Computer Science. Pages 136-
154. doi:10.1007 /11860990_10 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

Bente C. D. Anda, Dag I. K. Sjoberg & Audris Mockus (2009): Variability and Reproducibility in Software Engineering: A Study of Four Companies
that Developed the Same System. IEEE Transactions on Software Engineering 35 (3). Pages 407-429. doi:10.1109/TSE.2008.89 Exclusion reasons: Q1-2
[IL.ajk]This article does not evaluate any language design issues.

Bruce Anderson (1980): Programming in the home of the future. International Journal of Man-Machine Studies 12 (4). Pages 341-365. doi:10.1016/
50020-7373(80)80020-4 Exclusion reasons: Q1-2 [II.ajk]No language design issue.

Christopher Anderson, Paola Giannini & Sophia Drossopoulou (2005): Towards Type Inference for JavaScript. In Proc. ECOOP 2005 European Con-
ference on Object-Oriented Programming. Lecture Notes in Computer Science 3586. Pages 428-452. doi:10.1007/11531142_19 Exclusion reasons: Q1-2
[ILajk]Theoretical and implementation work.

Zachary Anderson & David Gay (2011): Composable, nestable, pessimistic atomic statements. In Proceedings of the 2011 ACM international confer-
ence on Object oriented programming systems languages and applications. New York, NY, USA: ACM. Pages 865-884. doi:10.1145/2048066.2048132
Exclusion reasons: Q1-2 [IIL.ajk]Evaluation focuses solely on implementation performance.

Zachary Anderson (2012): Efficiently combining parallel software using fine-grained, language-level, hierarchical resource management policies. In
Proceedings of the ACM international conference on Object oriented programming systems languages and applications. New York, NY, USA: ACM.
Pages 717-736. doi:10.1145/2384616.2384669 Exclusion reasons: Q5 [IILajk]The evaluation is analytic in nature (demonstrating that this can work
reasonably well).

Gregory R. Andrews (1981): Synchronizing Resources. ACM Transactions on Programming Languages and Systems 3 (4). Pages 405-430. doi:10.1145/
357146.357149 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Gregory R. Andrews, Michael Coffin, Irving Elshoff, Kelvin Nilson, Gregg Townsend, Ronald A. Olsson & Titus Purdin (1988): An overview of the SR
language and implementation. ACM Transactions on Programming Languages and Systems 10 (1). Pages 51-86. doi:10.1145/42192.42324 Exclusion
reasons: Q1-2 [IL.ajk]Language exposition.

Nicos Angelopoulos & James Cussens (2003): Prolog Issues and Experimental Results of an MCMC Algorithm. Volume 2543.In Bartenstein, Oskar and
Geske, Ulrich and Hannebauer, Markus and Yoshie, Osamu (ed.) Web Knowledge Management and Decision Support.Springer Berlin / Heidelberg.
Lecture Notes in Computer Science. Pages 186-196. doi:10.1007/3-540-36524-9_15 Exclusion reasons: Q1-2 [IILajk]This article does not evaluate a
programming language design decision.

Ed Anson (1987): A generalized iterative construct and its semantics. ACM Transactions on Programming Languages and Systems 9 (4). Pages 567-581.
doi:10.1145/29873.30391 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Sven Apel, Christian Kastner & Salvador Trujillo (2007): On the Necessity of Empirical Studies in the Assessment of Modularization Mechanisms for
Crosscutting Concerns. In Proceedings of the First International Workshop on Assessment of Contemporary Modularization Techniques. Pages 1-7.
doi:10.1109/ ACOM.2007.7 Exclusion reasons: Q1-2 [IILajk]This article argues for, and proposes, an empirical study design; it does not actually report
such a study.

Maria Virginia Aponte (1993): Extending record typing to type parametric modules with sharing. In Proc. 20th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL). Pages 465-478. doi:10.1145/158511.158704 Exclusion reasons: Q5 [IL.ajk]Formal type-theoretical study.
W. E Appelbe & A. P. Ravn (1984): Encapsulation constructs in systems programming languages. ACM Transactions on Programming Languages and
Systems 6 (2). Pages 129-158. doi:10.1145/2993.69615 Exclusion reasons: Q5 [IILajk]This analytical article does not aspire to empiricity.

Krzysztof R. Apt & Andrea Schaerf (1997): Search and imperative programming. In Proc. 24th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL). Pages 67-79. doi:10.1145/263699.263709 Exclusion reasons: Q5 [IIL.ajk]This is a constructive-analytical study of
adding some logic programming features to an imperative programming language. It has no aspiration to empiricity.

Krzysztof R. Apt, Jacob Brunekreef, Vincent Partington & Andrea Schaerf (1998): Alma-O: an imperative language that supports declarative pro-
gramming. ACM Transactions on Programming Languages and Systems 20 (5). Pages 1014-1066. doi:10.1145/293677.293679 Exclusion reasons: Q5
[IIL.ajk] This article does not aspire to empiricity.

W. Araujo, L.C. Briand & Y. Labiche (2011): On the Effectiveness of Contracts as Test Oracles in the Detection and Diagnosis of Race Conditions and
Deadlocks in Concurrent Object-Oriented Software. In Empirical Software Engineering and Measurement (ESEM), 2011 International Symposium on.
Pages 10-19. doi:10.1109/ESEM.2011.9 Exclusion reasons: Q1-2 [IILajk]This article does not evaluate any language design decisions for efficacy.

B. Arden & R. Graham (1959): On GAT and the construction of translators. Communications of the ACM 2 (7). Pages 24-26. doi:10.1145/368370.368373
Exclusion reasons: Q5 [I11.ajk]This article does not aspire to empiricity.

Bruce Arden, Bernard A. Galler & Robert M. Graham (1961): Letter to the editor: criticisms of ALGOL 60. Communications of the ACM 4 (7). Pages
309. doi:10.1145/366622.366625 Exclusion reasons: Q5 [IILajk]This letter to the editor does not report an empirical study.

Erik Arisholm (2006): Empirical assessment of the impact of structural properties on the changeability of object-oriented software. Information and
Software Technology 48 (11). Pages 1046-1055. doi:10.1016/j.infsof.2006.01.002 Exclusion reasons: Q1-2 Disagreement resolution result. [IL.ajk]This
article does not evaluate any language design decisions.

J.L. Armstrong & S.R. Virding (1990): ERLANG - an experimental telephony programming language. Volume 3.In Switching Symposium, 1990. XIIT
International. Pages 43-48. doi:10.1109/1SS.1990.765711 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Joe Armstrong (2007): Erlang — Software for a Concurrent World. In Proc. ECOOP 2007 European Conference on Object-Oriented Programming.
Lecture Notes in Computer Science 4609 . Pages 1. doi:10.1007/978-3-540-73589-2_1 Exclusion reasons: Q1-2 [IILajk]This is a short abstract of a
language exposition.

T. N. Arvanitis, M. J. Todd, A. J. Gibb & E. Orihashi (2001): Understanding students’ problem-solving performance in the context of programming-
in-the-small: an ethnographic field study. Volume 2.In Frontiers in Education Conference, 2001. 31st Annual. doi:10.1109/FIE.2001.963676 Exclusion
reasons: Q1-2 [IL.ajk]No PL design issue.

Arvind, Rishiyur S. Nikhil & Keshav K. Pingali (1989): I-structures: data structures for parallel computing. ACM Transactions on Programming
Languages and Systems 11 (4). Pages 598-632. doi:10.1145/69558.69562 Exclusion reasons: Q5 [IIL.ajk]This analytical-constructive paper does not aspire
to empiricity.

E. A. Ashcroft & W. W. Wadge (1978): Clauses: scope structures and defined functions in Lucid. In Proc. 5th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL). Pages 17-22. doi:10.1145/512760.512763 Exclusion reasons: Q5 [IILajk]This article does not aspire to
empiricity.

Aslan Askarov & Andrei Sabelfeld (2005): Security-Typed Languages for Implementation of Cryptographic Protocols: A Case Study. Volume 3679.In
di Vimercati, Sabrina and Syverson, Paul and Gollmann, Dieter (ed.) Computer Security - ESORICS 2005.Springer Berlin / Heidelberg. Lecture Notes
in Computer Science. Pages 197-221. doi:10.1007/11555827_12 Exclusion reasons: Q5 [IILajk]This article reports a study where the investigators wrote
a program in Java and then translated it (more or less deterministically) into Jif. The study is not empirical by our definition, as there isn’t much
contingency in it (certainly not in the difference between the Java and Jif versions).

186

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

Medhat G. Assaad & Gary T. Leavens (2001): Alias-free parameters in C for better reasoning and optimization. Technical report. http://archives.
cs.iastate.edu/documents/disk0/00/00/02/55/index.html Exclusion reasons: Q5 [IILajk]|This article reports, among other things, a study in which
C/ACL is compared to C using a set of benchmark applications where the C code has been converted, presumably by the investigators, to C/ACL, with
respect to execution speed. To the extent that this measures efficacy, it merely presents "ACL can do it" style results, and thus is not empirical (despite
the use of measurements).

W. C. Athas (1985): XCPL: An experimental Concurrent Programming Language. CaltechCSTR:1985:5196-tr-85 at California Institute of Technology.
http://resolver.caltech.edu/CaltechCSTR:1985.5196-tr-85 Exclusion reasons: Q5 [IILajk]This report does not aspire to empiricity.

Russell Atkinson & Carl Hewitt (1977): Synchronization in actor systems. In Proc. 4th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (POPL). Pages 267-280. doi:10.1145/512950.512975 Exclusion reasons: Q5 [II1.ajk]This article does not aspire to empiricity.

Malcolm P. Atkinson & Ronald Morrison (1985): Procedures as persistent data objects. ACM Transactions on Programming Languages and Sys-
tems 7 (4). Pages 539-559. doi:10.1145/4472.4477 Exclusion reasons: Q5 [IIL.ajk] This analytical-constructive article does not aspire to empiricity.
Giuseppe Attardi, Cinzia Bonini, Maria Rosaria Boscotrecase, Tito Flagella & Mauro Gaspari (1989): Metalevel Programming in CLOS. In Proc.
ECOOP’89 European Conference on Object-Oriented Programming.Cambridge University Press. Pages 243-256. http://www.ifs.uni-linz.ac.at/
~ecoop/cd/papers/ec89/ec890243.pdf Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Joshua Auerbach, David F. Bacon, Perry Cheng & Rodric Rabbah (2010): Lime: a Java-compatible and synthesizable language for heterogeneous
architectures. In OOPSLA “10: Proceedings of the ACM international conference on Object oriented programming systems languages and applications.
Pages 89-108. doi:10.1145/1869459.1869469 Exclusion reasons: Q1-2 [Il.ajk]Language exposition.

M. Auguston & A. Delgado (1997): The V Experimental Visual Programming Language. NASA University Research Centers Technical Advances
in Education, Aeronautics, Space, Autonomy, Earth and Environment, 1. Pages 81-86. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.
43.2074 Exclusion reasons: Q1-2 [IILajk]This article discusses a visual language; such languages are excluded under our definition of programming
languages.

Thomas H. Austin, Tim Disney & Cormac Flanagan (2011): Virtual values for language extension. In Proceedings of the 2011 ACM international
conference on Object oriented programming systems languages and applications. New York, NY, USA: ACM. Pages 921-938. doi:10.1145/2048066.
2048136 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Enis Avdicausevi¢, Marjan Mernik, Mitja Lenic & Viljem Zumer (2002): Experimental aspect-oriented language - AspectCOOL. In Proceedings of
the 2002 ACM symposium on Applied computing. New York, NY, USA: ACM. Pages 943-947. doi:10.1145/508791.508974 Exclusion reasons: Q1-2
[I1L.ajk] This is a language exposition.

Enis Avdicausevi¢, Mitja Leni¢, Marjan Mernik & Viljem Zumer (2001): AspectCOOL: an experiment in design and implementation of aspect-oriented
language. SIGPLAN Notices 36. Pages 84-94. doi:10.1145/583960.583971 Exclusion reasons: Q1-2 [IL.ajk]No comparison.

Hassan Ait-Kaci & Roger Nasr (1986): Logic and inheritance. In Proc. 13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL). Pages 219-228. doi:10.1145/512644.512664 Exclusion reasons: Q1-2 [IL.ajk]Language exposition.

Hassan Ait-Kaci & Andreas Podelski (1994): Functions as passive constraints in LIFE. ACM Transactions on Programming Languages and Sys-
tems 16 (4). Pages 1219-1318. doi:10.1145/183432.183526 Exclusion reasons: Q1-2 [ILajk]Formal theoretical work.

Yair M. Babad & Jeffrey A. Hoffer (1984): Even no data has a value. Communications of the ACM 27 (8). Pages 748-756. doi:10.1145/358198.358204
Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti & M. Vanneschi (1995): Summarising an experiment in parallel programming language design. Volume
919.In Hertzberger, Bob and Serazzi, Giuseppe (ed.) High-Performance Computing and Networking. Pages 7-13. doi:10.1007/BFb0046602 Exclusion
reasons: Q7 [IIL.ajk]This article summarises research previously published by the authors. However, it does not discuss any empirical evidence such
studies may have provided.

G. A. Bachelor, J. R. H. Dempster, D. E. Knuth & J. Speroni (1961): SMALGOL-61. Communications of the ACM 4 (11). Pages 499-502. doi:10.1145/
366813.366843 Exclusion reasons: Q1-2 [IILajk]This is a language specification, not a study.

R.J.R. Back & R. Kurki-Suonio (1988): Distributed cooperation with action systems. ACM Transactions on Programming Languages and Systems 10 (4).
Pages 513-554. doi:10.1145/48022.48023 Exclusion reasons: Q5 [IL.ajk]Theoretical study.

J. W. Backus, F. L. Bauer, J. Green, C. Katz,]. McCarthy, A. J. Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, M.
Woodger & P. Naur (1963): Revised report on the algorithm language ALGOL 60. Communications of the ACM 6 (1). Pages 1-17. doi:10.1145/366193.
366201 Exclusion reasons: Q1-2 [IIL.ajk]This language specification does not report an empirical study.

John Backus (1978): Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs. Communications of
the ACM 21 (8). Pages 613-641. doi:10.1145/359576.359579 Exclusion reasons: Q5 [IILajk]This classic lecture does not report an empirical study.
Woongki Baek, Nathan Bronson, Christos Kozyrakis & Kunle Olukotun (2010): Making nested parallel transactions practical using lightweight hard-
ware support. In Proceedings of the 24th ACM International Conference on Supercomputing. New York, NY, USA: ACM. ICS "10. Pages 61-71.
doi:10.1145/1810085.1810097 Exclusion reasons: Q1-2 [IIL.ajk]This article evaluates an implementation technique.

Woongki Baek, Nathan Bronson, Christos Kozyrakis & Kunle Olukotun (2010): Implementing and evaluating nested parallel transactions in software
transactional memory. In Proceedings of the 22nd ACM symposium on Parallelism in algorithms and architectures. New York, NY, USA: ACM. SPAA
’10. Pages 253-262. doi:10.1145/1810479.1810528 Exclusion reasons: Q1-2 [II.ajk]This article deals with an implementation technique, not a language
design decision.

Philip R. Bagley (1959): Proposal for a feasible programming system. Communications of the ACM 2 (8). Pages 7-10. doi:10.1145/368405.368410
Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

Rajive Bagrodia (1989): Synchronization of asynchronous processes in CSP. ACM Transactions on Programming Languages and Systems 11 (4). Pages
585-597. doi:10.1145/69558.69561 Exclusion reasons: Q1-2 [ILajk]Implementation technique

P. A. C. Bailes & L. H. Reeker (1980): An experimental applicative programming language for linguistics and string processing. In Proceedings of the 8th
conference on Computational linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics. Pages 520-525. doi:10.3115/990174.990270
Exclusion reasons: Q5 [IIL.ajk]This language exposition does not aspire to empiricity

M. J. Bailey, M. P. Barnett & R. P. Futrelle (1963): Format-free input in FORTRAN. Communications of the ACM 6 (10). Pages 605-608. doi:10.1145/
367651.367658 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Michael J. Bailey (1964): More on "simple I/O" statements. Communications of the ACM 7 (5). Pages 314-315. doi:10.1145/364099.364327 Exclusion
reasons: Q1-2 [IILajk]This is a letter to the editor and does not report a study.

Jason Baker & Wilson C. Hsieh (2002): Maya: multiple-dispatch syntax extension in Java. In Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation. New York, NY, USA: ACM. PLDI "02. Pages 270-281. doi:10.1145/512529.512562 Exclusion
reasons: Q5 [IILajk]This article does not aspire to empiricity.

A. G. Bakhmurov, V. V. Voevodin, N. N. Popova, R. L. Smelyanskii & A. V. Khanov (1991): Laplace — an experimental language for parallel program-
ming of MHD-models in plasma physics. Computational Mathematics and Modeling 2 (4). Pages 467-471. doi:10.1007/BF01127968 Exclusion reasons:
Q5 [IILajk]This article does not aspire to empiricity.

T. Balafoutis, A. Paparrizou & K. Stergiou (2010): Experimental Evaluation of Branching Schemes for the CSP. In Proceedings of 2010 TRICS, 3rd
Workshop on Techniques for Implementing Constraint Programming Systems. http://users.uowm.gr/kstergiou/TRICS2010.pdf Exclusion reasons:
Q1-2 [IILajk]This paper evaluates algorithms, not language designs.

Pierre F. Baldi, Cristina V. Lopes, Erik J. Linstead & Sushil K. Bajracharya (2008): A theory of aspects as latent topics. In OOPSLA '08: Proceedings of the
23rd ACM SIGPLAN conference on Object-oriented programming systems languages and applications. Pages 543-562. doi:10.1145/1449764.1449807
Exclusion reasons: Q1-2 [IILajk]This article presents a method for mining aspects, and empirical results derived from such mining. It does not evaluate
a language design decision.

Mark B. Ballard, David Maier & Allen Wirfs-Brock (1986): QUICKTALK: a Smalltalk-80 dialect for defining primitive methods. In Conference proceed-
ings on Object-oriented programming systems, languages and applications (OOPSLA 86). Pages 140-150. doi:10.1145/28697.28711 Exclusion reasons:
Q5 [IILajk|This article includes a short section comparing Quicktalk and Smalltalk versions of programs for speed. It The only contingency in this is the
implementation; everything else is analytical.

R.M. Balzer & D. J. Farber (1969): APAREL—A parse-request language. Communications of the ACM 12 (11). Pages 624-631. doi:10.1145/363269.363606
Exclusion reasons: Q1-2 [IL.ajk]Language exposition.

Guruduth Banavar & Gary Lindstrom (1996): An application framework for module composition tools. In Proc. ECOOP'96 European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science 1098. Pages 91-113. doi:10.1007/BFb0053058 Exclusion reasons: Q1-2 [IILajk]This
paper does not evaluate any language design decisions.

114.

115.

116.

117.

118.

119.

120.

121.

122

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

187

Richard S. Bandat & Robert L. Wilkins (1967): An experimental general purpose compiler. In Proceedings of the April 18-20, 1967, spring joint computer
conference. Pages 457-461. doi:10.1145/1465482.1465554 Exclusion reasons: Q1-2 [ILajk]Discussion of implementation techniques.

Robert G. Bandes (1984): Constraining-unification and the programming language unicorn. In Proc. 11th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL). Pages 106-110. doi:10.1145/800017.800521 Exclusion reasons: Q5 [IIL.ajk]This article has no empirical
content.

Anindya Banerjee & David A. Naumann (2005): State Based Ownership, Reentrance, and Encapsulation. In Proc. ECOOP 2005 European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science 3586. Pages 387-411. doi:10.1007/11531142_17 Exclusion reasons: Q5 [IILajk]This
theoretical article does not aspire to empiricity.

Anindya Banerjee, David A. Naumann & Stan Rosenberg (2008): Regional Logic for Local Reasoning about Global Invariants. In Proc. ECOOP 2008
European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 5142. Pages 387-411. doi:10.1007/978-3-540-70592-5_17
Exclusion reasons: Q5 [ILajk]|Theoretical study.

Elisa Baniassad & Sebastian Fleissner (2006): The geography of programming. In OOPSLA “06: Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and applications. Pages 510-520. doi:10.1145/1176617.1176625 Exclusion reasons: Q1-2 [IIL.ajk]This
article does not evaluate language design decisions.

Joseph A. Bank, Andrew C. Myers & Barbara Liskov (1997): Parameterized types for Java. In Proc. 24th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL). Pages 132-145. doi:10.1145/263699.263714 Exclusion reasons: Q5 [IIL.ajk]This article’s empirical work is
concerned only with implementation cost.

Boyko B. Bantchev (1998): Putting more meaning in expressions. SIGPLAN Notices 33 (9). Pages 77-83. doi:10.1145/290229.290237 Exclusion reasons:
Q5 [IILajk|This article does not aspire to empiricity.

N. Baradaran, J. Chame, Chun Chen, P. Diniz, M. Hall, Yoon-Ju Lee, Bing Liu & R. Lucas (2003): ECO: an empirical-based compilation and optimization
system. In Parallel and Distributed Processing Symposium, 2003. Proceedings. International. doi:10.1109/IPDPS.2003.1213377 Exclusion reasons: Q1-2
[ILajk]Implementation technique development.

J. A. Barnden (1981): Nonsequentiality and Concrete Activity Phases in Discrete-Event Simulation Languages. ACM Transactions on Programming
Languages and Systems 3 (3). Pages 293-317. doi:10.1145/357139.357144 Exclusion reasons: Q5 [ITL.ajk]This article does not aspire to empiricity.

Fred Barnes, Christian Jacobsen & Brian Vinter (2003): RMoX: A Raw-Metal occam Experiment. In Communicating Process Architectures 2003. http:
//karkent.ac.uk/13917/ Exclusion reasons: Q1-2 [IILajk]This paper is essentially an operating system exposition. While it demonstrates the feasibility
of writing an operating system in Occam, this is merely the exploration of the implications of that language design, with no comparative evaluation.
M. P. Barnett (1963): Continued operation notation for symbol manipulation and array processing. Communications of the ACM 6 (8). Pages 467-472.
doi:10.1145/366707.367587 Exclusion reasons: Q5 [I1L.ajk]This article does not aspire to empiricity.

M. P. Barnett, J. M. Gerard & A. W. Sambles (1964): Comments on "a continued operation notation". Communications of the ACM 7 (2). Pages 150-152.
doi:10.1145/363958.363978 Exclusion reasons: Q5 [II.ajk] This note does not aspire to empiricity.

Michael P. Barnett & William M. Ruhsam (1969): SNAP: an experiment in natural language programming. In Proceedings of the May 14-16, 1969, spring
joint computer conference. Pages 75-87. doi:10.1145/1476793.1476815 Exclusion reasons: Q1-2 [IIL.ajk]This article is a language exposition.

Mike Barnett, Manuel Fahndrich, K. Rustan M. Leino, Peter Miiller, Wolfram Schulte & Herman Venter (2011): Specification and verification: the Spec#
experience. Communications of the ACM 54 (6). Pages 81-91. doi:10.1145/1953122.1953145 Exclusion reasons: Q5 [I1L.ajk]This article does not aspire to
empiricity.

B. M. Barry (1989): Prototyping a real-time embedded system in Smalltalk. In Conference Proceedings on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 89). Pages 255-265. doi:10.1145/74877.74904 Exclusion reasons: Q5 [IIL.ajk]This is an experience report and as
such excluded under our protocol.

Denis Barthou, Albert Cohen & Jean-Frangois Collard (1998): Maximal static expansion. In Proc. 25th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages (POPL). Pages 98-106. doi:10.1145/268946.268955 Exclusion reasons: Q5 [IIl.ajk]This article does not aspire to
empiricity.

V.R. Basili & Jr. Reiter, R. W. (1981): A Controlled Experiment Quantitatively Comparing Software Development Approaches. Software Engineering,
IEEE Transactions on SE-7 (3). Pages 299-320. doi:10.1109/TSE.1981.230841 Exclusion reasons: Q1-2 [IILajk]This article reports of an experiment
evaluating hypotheses regarding the use of programming methodology. There is no PL design issue here.

Victor R. Basili & Barry T. Perricone (1984): Software errors and complexity: an empirical investigation. Communications of the ACM 27 (1). Pages
42-52. doi:10.1145/69605.2085 Exclusion reasons: Q1-2 [ILajk]No language relevance.

David Basin & Grit Denker (2000): Maude versus Haskell: an Experimental Comparison in Security Protocol Analysis. Electronic Notes in Theoretical
Computer Science 36. Pages 235-256. doi:10.1016/51571-0661(05)80141-0 Exclusion reasons: Q5 [IIl.ajk]This article is analytical in nature.

Tania Basso, Regina L. O. Moraes, Bruno P. Sanches & Mario Jino (2009): An Investigation of Java Faults Operators Derived from a Field Data Study on
Java Software Faults. Report. http://www.ceset.unicamp.br/~regina/pub/An%20Investigation%200f%20Java%20Faults%200perators.pdf Exclusion
reasons: Q1-2 [IILajk]This article reports a study in which faults in actual Java programs are described and classified. It does not evaluate language
design decisions.

Farokh B. Bastani & S. Sitharama Iyengar (1987): The effect of data structures on the logical complexity of programs. Communications of the ACM 30 (3).
Pages 250-259. doi:10.1145/214748.214760 Exclusion reasons: Q1-2 [IILajk]This article reports an experiment, with human participants, intended to
determine the effect of data structure choices to program complexity. It has no relevance to programming language design.

Daniel Bates, Adam Barth & Collin Jackson (2010): Regular expressions considered harmful in client-side XSS filters. In Proceedings of the 19th
international conference on World wide web. New York, NY, USA: ACM. WWW "10. Pages 91-100. doi:10.1145/1772690.1772701 Exclusion reasons:
Q1-2 [ILajk]This article does not evaluate any programming language design issues.

Don Batory, Clay Johnson, Bob MacDonald & Dale von Heeder (2000): Achieving Extensibility through Product-Lines and Domain-Specific Languages:
A Case Study. Volume 1844.In Frakes, William (ed.) Software Reuse: Advances in Software Reusability.Springer Berlin / Heidelberg. Lecture Notes in
Computer Science. Pages 83-153. doi:10.1007/978-3-540-44995-9_8 Exclusion reasons: Q1-2 [IILajk]This article does not evaluate a PL design decision.
Don Batory, Clay Johnson, Bob MacDonald & Dale von Heeder (2002): Achieving extensibility through product-lines and domain-specific languages:
a case study. ACM Transactions on Software Engineering Methodology 11 (2). Pages 191-214. doi:10.1145/505145.505147 Exclusion reasons: Q5
[IIL.ajk] This article reports on a software development project using certain new technologies which needed to create another new techology. However,
it does not evaluate the language design decisions in any meaningful empirical way.

F. L. Bauer & H. Wossner (1972): The "Plankalkiil” of Konrad Zuse: a forerunner of today’s programming languages. Communications of the ACM 15 (7).
Pages 678-685. doi:10.1145/361454.361515 Exclusion reasons: Q1-2 [IL.ajk]Language exposition.

Alan Bawden (2000): First-class macros have types. In Proc. 27th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL). Pages 133-141. doi:10.1145/325694.325710 Exclusion reasons: Q5 [IIL.ajk]This analytical-constructive article does not aspire to empiricit
Till G. Bay, Manuel Oriol & Bertrand Meyer (2012): Release early and often: Developing Software with Origo. Technical Report 581 at Eidgendssische
Technische Hochschule Ziirich, Department of Computer Science. doi:10.3929/ethz-a-006820313 Exclusion reasons: Q1-2 [IILajk]This article does not
evaluate any language design decisions.

Piraye Bayman & Richard E. Mayer (1983): A diagnosis of beginning programmers’ misconceptions of BASIC programming statements. Communica-
tions of the ACM 26 (9). Pages 677-679. doi:10.1145/358172.358408 Exclusion reasons: Q1-2 [IL.ajk]Study of learning; no PL design issue.

U. Becker, F. J. Hauck & J. Kleinoder (1998): D2AL-A Design-Based Aspect Language for Distribution Control. In ECOOP'98 European Conference
on Object-Oriented Programming Workshop Reader. Lecture Notes in Computer Science 1543. Pages 578. doi:10.1007/3-540-49255-0_125 Exclusion
reasons: Q5 [IILajk]|This short article does not aspire to empiricity.

Nels E. Beckman, Duri Kim & Jonathan Aldrich (2011): An Empirical Study of Object Protocols in the Wild. In Proc. ECOOP 2011 European Conference
on Object-Oriented Programming. Lecture Notes in Computer Science 6813. Pages 2-26. doi:10.1007/978-3-642-22655-7_2 Exclusion reasons: Q1-2
[IILajk] This article does not evaluate language design decisions.

Andi Bejleri, Andrew Farrell & Patrick Goldsack (2011): Cloudscape: language support to coordinate and control distributed applications in the cloud.
In Proceedings of the compilation of the co-located workshops on DSM'11, TMC'11, AGERE!"11, AOOPES’11, NEAT'11, \&\#38; VMIL'11. New York,
NY, USA: ACM. Pages 183-194. doi:10.1145/2095050.2095080 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

R. W. Bemer (1959): Automatic programming systems. Communications of the ACM 2 (5). Pages 16. doi:10.1145/368325.1064210 Exclusion reasons:
Q1-2 [IIL.ajk] This is a table, not a report of a study.

R. W. Bemer (1959): A checklist of intelligence for programming systems. Communications of the ACM 2 (3). Pages 8-13. doi:10.1145/368300.368320
Exclusion reasons: Q1-2 [IILajk]This prescriptive article does not report a study.

188

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

Alan C. Benander & Barbara A. Benander (1989): An empirical study of COBOL programs via a style analyzer: The benefits of good programming style.
Journal of Systems and Software 10 (4). Pages 271-279. doi:10.1016/0164-1212(89)90074-5 Exclusion reasons: Q1-2 [ILajk]Metrics and programming
style study. No PL design issue.

Alan C. Benander, Barbara A. Benander & Howard Pu (1996): Recursion vs. iteration: An empirical study of comprehension. Journal of Systems
and Software 32 (1). Pages 73-82. doi:10.1016/0164-1212(95)00043-7 Exclusion reasons: Q1-2 [IIL.ajk]This article reports a controlled experiment with
human participants comparing the comprehensibility of recursion and iteration in PASCAL. It does not evaluate any language design decisions.

Alan Benander, Barbara Benander & Janche Sang (2004): Factors related to the difficulty of learning to program in Java-an empirical study of non-novice
programmers. Information and Software Technology 46 (2). Pages 99-107. doi:10.1016/S0950-5849(03)00112-5 Exclusion reasons: Q1-2 [I.ajk]Studies
teaching.

Izak Benbasat, Albert S. Dexter & Paul S. Masulis (1981): An experimental study of the human/computer interface. Communications of the ACM 24 (11).
Pages 752-762. doi:10.1145/358790.358795 Exclusion reasons: Q1-2 [IILajk]This paper reports a human-subject experiment evaluating different modes
of written-command interactive user interfaces. The results, while interesting, appear not to be transferable to programming language design.

K. Benkerimi & P. Hill (1992): Object-oriented programming in Godel: An experiment. Volume 649.In Pettorossi, A. (ed.) Meta-Programming in Logic.
Lecture Notes in Computer Science. Pages 177-191. doi:10.1007 /3-540-56282-6_12 Exclusion reasons: Q1-2 [IL.ajk]No comparison.

J. P. Benson & S. H. Saib (1978): A software quality assurance experiment. In Proceedings of the software quality assurance workshop on Functional and
performance issues. Pages 87-91. doi:10.1145/800283.811105 Exclusion reasons: Q1-2 [IIL.ajk]This article reports a study in which a specific program
was modified to introduce bugs and assertions and then run to determine which bugs were detected by the assertions. This does not evaluate the efficay
of assertions from the point of view of a programmer, merely whether they can be used to detect bugs.

Nick Benton, Luca Cardelli & Cédric Fournet (2002): Modern Concurrency Abstractions for C#. In Proc. ECOOP 2002 European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science 2374. Pages 415-440. doi:10.1007/3-540-47993-7_18 Exclusion reasons: Q1-2
[ILajk]Language exposition.

David Bergantz & Johnette Hassell (1991): Information relationships in PROLOG programs: how do programmers comprehend functionality?. Inter-
national Journal of Man-Machine Studies 35 (3). Pages 313-328. doi:10.1016/50020-7373(05)80131-2 Exclusion reasons: Q1-2 [I.ajk]This article does not
seem to evaluate language design decisions.

Alexandre Bergel, Stéphane Ducasse & Oscar Nierstrasz (2005): Classbox/J: controlling the scope of change in Java. In OOPSLA "05: Proceedings of the
20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications. Pages 177-189. doi:10.1145/1094811.
1094826 Exclusion reasons: Q5 [I11.ajk]This analytical-constructive article does not aspire to empiricity (even the "case study" is analytical, as it explores
the implications of the construct).

L. Berger, A. M. Dery & M. Fornarino (1998): Interactions between Objects: An Aspect of Object-Oriented Languages. In ECOOP’98 European Con-
ference on Object-Oriented Programming Workshop Reader. Lecture Notes in Computer Science 1543. Pages 586. doi:10.1007/3-540-49255-0_126
Exclusion reasons: Q5 [IIL.ajk]This short article does not aspire to empiricity.

A. Michael Berman (1994): Does Scheme enhance an introductory programming course?: some preliminary empirical results. SIGPLAN Notices 29 (2).
Pages 44-48. doi:10.1145/181748.181758 Exclusion reasons: Q1-2 [IILajk]This article reports on a study in which a programming course was changed
from BASIC to Scheme, and its effect on self-reported student satisfaction was monitored. This does not in any meaningful way evaluate the efficacy of
the difference between the two languages.

Gerald M. Berns (1984): Assessing software maintainability. Communications of the ACM 27 (1). Pages 14-23. doi:10.1145/69605.357965 Exclusion
reasons: Q5 [I1L.ajk]This article defines and uses a code metric. It does not evaluate a language design decision.

Arthur Bernstein (1980): Output Guards and Nondeterminism in "Communicating Sequential Processes". ACM Transactions on Programming Lan-
guages and Systems 2 (2). Pages 234-238. doi:10.1145/357094.357101 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

R. E. Berry & B. A.E. Meekings (1985): A style analysis of C programs. Communications of the ACM 28 (1). Pages 80-88. doi:10.1145/2465.2469
Exclusion reasons: Q1-2 [IILajk]This article does not evaluate a language design decision.

Gerard Berry & Gerard Boudol (1990): The chemical abstract machine. In Proc. 17th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL). Pages 81-94. doi:10.1145/96709.96717 Exclusion reasons: Q1-2 [IL.ajk]Formal theory development.

G. Berry, S. Ramesh & R. K. Shyamasundar (1993): Communicating reactive processes. In Proc. 20th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL). Pages 85-98. doi:10.1145/158511.158526 Exclusion reasons: Q5 [IIL.ajk]|This article does not aspire to empiricity.
Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer & Paul Thomson (2012): GPUVerify: a verifier for GPU kernels. In Proceedings of
the ACM international conference on Object oriented programming systems languages and applications. New York, NY, USA: ACM. Pages 113-132.
doi:10.1145/2384616.2384625 Exclusion reasons: Q1-2 [IIL.ajk]This article does not have language design relevance.

Antoine Beugnard (2006): Method overloading and overriding cause encapsulation flaw: an experiment on assembly of heterogeneous components. In
Proceedings of the 2006 ACM symposium on Applied computing. Pages 1424-1428. doi:10.1145/1141277.1141608 Exclusion reasons: Q5 [IIL.ajk]Despite
the use of the term "experiment", this article is analytical in nature and does not report an empirical study.

Jean Bezivin (1987): Some experiments in object-oriented simulation. In Conference Proceedings on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA87). Pages 394-405. doi:10.1145/38765.38843 Exclusion reasons: Q1-2 [IILajk]This article does not evaluate language design
decisions (no comparison).

Karthikeyan Bhargavan, Cédric Fournet & Andrew D. Gordon (2008): Verifying policy-based web services security. ACM Transactions on Programming
Languages and Systems 30 (6). doi:10.1145/1391956.1391957 Exclusion reasons: Q1-2 [II.ajk]No comparison.

Pamela Bhattacharya & Iulian Neamtiu (2011): Assessing programming language impact on development and maintenance: a study on c and c++. In
Proceedings of the 33rd International Conference on Software Engineering. New York, NY, USA: ACM. ICSE "11. Pages 171-180. doi:10.1145/1985793.
1985817 Exclusion reasons: Q1-2 [IIL.ajk]This article reports an empirical study comparing C and C++ for various measures of efficacy. However, there
is no clear language design decision at play, since the languages are similar in many ways and different in many others, and there is no clear answer to
the question what difference is it that explains the measured efficacy differences.

Marina Biberstein, Joseph (Yossi) Gil & Sara Porat (2001): Sealing, Encapsulation, and Mutablility. In Proc. ECOOP 2001 European Conference on Object-
Oriented Programming. Lecture Notes in Computer Science 2072. Pages 28-52. doi:10.1007/3-540-45337-7_3 Exclusion reasons: Q1-2 [ILajk]Program
analysis study.

Lubomir Bic & Craig Lee (1987): A data-driven model for a subset of logic programming. ACM Transactions on Programming Languages and Sys-
tems 9 (4). Pages 618-645. doi:10.1145/29873.31333 Exclusion reasons: Q1-2 [IL.ajk]According to the abstract, this develops an implementation tech-
nique.

Michael Allen Bickel (1987): Automatic correction to misspelled names: a fourth-generation language approach. Communications of the ACM 30 (3).
Pages 224-228. doi:10.1145/214748.214756 Exclusion reasons: Q1-2 [ILajk]Based on the abstract, this is an exposition of a new technique, with no
evaluation, and relevance to programming languages is doubtful.

Kevin Bierhoff, Nels E. Beckman & Jonathan Aldrich (2009): Practical API Protocol Checking with Access Permissions. In Proc. ECOOP 2009 European
Conference on Object-Oriented Programming. Lecture Notes in Computer Science 5653. Pages 195-219. doi:10.1007/978-3-642-03013-0_10 Exclusion
reasons: Q5 [IILajk]This article reports on a series of "case studies” (as the article calls them) in which the authors have used their annotation language
to annotate existing software and their corresponding static analysis tool to statically analyze the annotated software. The investigations are analytical
in nature, and do not aspire to empiricality.

Gavin Bierman, Erik Meijer & Wolfram Schulte (2005): The Essence of Data Access in Cw: The Power is in the Dot!. In Proc. ECOOP 2005 European
Conference on Object-Oriented Programming. Lecture Notes in Computer Science 3586. Pages 287-311. doi:10.1007/11531142_13 Exclusion reasons:
Q1-2 [ILajk]Formal exposition of a language.

Gavin Bierman & Alisdair Wren (2005): First-Class Relationships in an Object-Oriented Language. In Proc. ECOOP 2005 European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science 3586. Pages 262-286. doi:10.1007/11531142_12 Exclusion reasons: Q5 [II.ajk]Formal
theoretical work.

Gavin Bierman, Matthew Parkinson & James Noble (2008): Upgrade]: Incremental Typechecking for Class Upgrades. In Proc. ECOOP 2008 European
Conference on Object-Oriented Programming. Lecture Notes in Computer Science 5142. Pages 235-259. doi:10.1007/978-3-540-70592-5_11 Exclusion
reasons: Q5 [IILajk]|This analytical presentation of a new construction does not have empirical aspirations.

Gavin Bierman, Erik Meijer & Mads Torgersen (2010): Adding Dynamic Types to C#. In Proc. ECOOP 2010 European Conference on Object-Oriented
Programming. Lecture Notes in Computer Science 6183. Pages 76-100. doi:10.1007/978-3-642-14107-2_5 Exclusion reasons: Q5 [I.ajk]|Type-theoretical
development.

Ted Biggerstaff (1998): A perspective of generative reuse. Annals of Software Engineering 5 (1). Pages 169-226. doi:10.1023/A:1018924407841 Exclusion
reasons: Q6 Q7 [I1L.ajk]This article is essentially a review and a position statement, advocating and evaluating the use of code-generation techniques for

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

204.

205.

206.

189

handling reuse. There is one point where empirical evidence is discussed, but it’s presented as motivation, not as bearing on the article’s main point.
Brian Billard (1981): Polynomial manipulation with APL. Communications of the ACM 24 (7). Pages 457-465. doi:10.1145/358699.358716 Exclusion
reasons: Q1-2 [IL.ajk]No PL design issue.

Tim Bingham, Nancy Hobbs & Dave Husson (1993): Experiences developing and using an object-oriented library for program manipulation. In
OOPSLA "93: Proceedings of the eighth annual conference on Object-oriented programming systems, languages, and applications. Pages 83-89. doi:
10.1145/165854.165872 Exclusion reasons: Q5 [IILajk]This article reports on an application developed in C++. The article makes a claims as to the
efficacy of the use of object-orientation in lieu of traditional programming techniques, but those claims are, in the article, bare assertions with no
support.

Davey Binkley, Marcia Davis, Dawn Lawrie & Christopher Morrell (2009): To CamelCase or Under_score. In Program Comprehension, 2009. ICPC
'09. TEEE 17th International Conference on. Pages 158-167. doi:10.1109/ICPC.2009.5090039 Exclusion reasons: Q1-2 [ILajk]This article studies naming
conventions which are usually not regarded as language design issues.

Stefano Bistarelli & Francesca Rossi (2001): Semiring-based constraint logic programming: syntax and semantics. ACM Transactions on Programming
Languages and Systems 23 (1). Pages 1-29. doi:10.1145/383721.383725 Exclusion reasons: Q5 [IL.ajk]Theoretical work.

Sandip K. Biswas (1995): Higher-order functors with transparent signatures. In Proc. 22nd ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL). Pages 154-163. doi:10.1145/199448.199478 Exclusion reasons: Q5 [IL.ajk]Formal theoretical study.

M.Z. Bjelica, B. Mrazovac & N. Teslic (2011): Evaluation of the available scripting languages for home automation networks: Real world case study.
Volume 2.In Telecommunication in Modern Satellite Cable and Broadcasting Services (TELSIKS), 2011 10th International Conference on. Pages 611-
614. doi:10.1109/TELSKS.2011.6143187 Exclusion reasons: Q5 [IILajk]The test scripts in this study are prewritten presumably by the investigators
themselves. This seems to make the efficacy aspect of this work analytic — what can these languages do instead of what these languages actually do in
the hands of the intended programmers.

Andrew Black, Norman Hutchinson, Eric Jul & Henry Levy (1986): Object structure in the Emerald system. In Conference proceedings on
Object-oriented programming systems, languages and applications (OOPSLA ’86). Pages 78-86. doi:10.1145/28697.28706 Exclusion reasons: Q1-2
[IL.ajk]Language exposition.

Andrew P. Black & Mark P. Immel (1993): Encapsulating Plurality. In Proc. ECOOP’93 European Conference on Object-Oriented Programming. Lecture
Notes in Computer Science 707. Pages 57-79. doi:10.1007/3-540-47910-4_5 Exclusion reasons: Q1-2 [I.ajk]Language feature exposition.

Alan Blackwell & Rob Hague (2001): Designing a Programming Language for Home Automation. In PPIG 2001. (Found in
http://ppig.org/workshops/13th-programme.html.) Exclusion reasons: Q1-2 [IILajk]This article discusses design of two specific languages with no
apparent evalative intent.

Alan F. Blackwell (2003): Cognitive Dimensions of tangible programming techniques. In PPIG 2003. (Found in http://ppig.org/workshops/15th-
programme.html.) Exclusion reasons: Q1-2 [IIL.ajk]This article does not discuss matters relating to programming language design.

Alan Blackwell & Nick Collins (2005): The Programming Language as a Musical Instrument. In PPIG 2005. (Found in
http://ppig.org/workshops/17th-programme.html.) Exclusion reasons: Q5 [[Lajk]This article does not report an evaluative empirical
study.

Alan E. Blackwell (2006): Psychological Issues in End-User Programming. Volume 9.In Lieberman, Henry and Paterno, Fabio and Wulf, Volker (ed.)
End User Development.Springer Netherlands. Human-Computer Interaction Series. Pages 9-30. doi:10.1007/1-4020-5386-X_2 Exclusion reasons: Q7
[IILajk]This article provides an overview of research but does not discuss the empirical evidence involved.

Alan F. Blackwell, Jennifer A. Rode & Eleanor F. Toye (2009): How do we program the home? Gender, attention investment, and the psychology of
programming at home. International Journal of Human-Computer Studies 67 (4). Pages 324-341. do0i:10.1016/j.ijhcs.2008.09.011 Exclusion reasons:
Q1-2 [IILajk]This article does not discuss programming languages.

Edwin Blake & Steve Cook (1987): On Including Part Hierarchies in Object-Oriented Languages, with an Implementation in Smalltalk. In Proc.
ECOOQP’87 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 276. Pages 41-50. doi:10.1007/3-540-47891-4_5
Exclusion reasons: Q5 [II.ajk]This is an analytical study with no aspirations to empiricity (despite using the word "experiment" to describe exploration
of the implications of the concept at hand).

John M. Blatt (1960): Comments from a FORTRAN user. Communications of the ACM 3 (9). Pages 501-505. doi:10.1145/367390.367404 Exclusion
reasons: Q5 [IILajk]This article does not aspire to empiricity.

Martin Blom (2006): Empirical Evaluations of Semantic Aspects in Software Development. Karlstad University, Faculty of Economic Sciences,
Communication and IT. Karlstad University Studies 2006:26. http://kau.diva-portal.org/smash/record jsf?pid=diva2:6529 Exclusion reasons: Q1-2
[I1L.ajk] This thesis does not evaluate any language design decisions — it focuses mostly on development methodology.

Bard Bloom, John Field, Nathaniel Nystrom, Johan Ostlund, Gregor Richards, Rok Strnisa, Jan Vitek & Tobias Wrigstad (2009): Thorn: robust, concur-
rent, extensible scripting on the JVM. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and
applications. New York, NY, USA: ACM. OOPSLA "09. Pages 117-136. doi:10.1145/1640089.1640098 Exclusion reasons: Q5 [ILajk]The abstract does not
divulge any empirical evaluation.

Edward K. Blum (1988): The semantics and complexity of parallel programs for vector computations. Part I: A case study using ADA. BIT Numerical
Mathematics 28 (3). Pages 530-551. (10.1007/BF01941132.) doi:10.1007/BF01941132 Exclusion reasons: Q1-2 [IILajk]|This article does not evaluate a
language design decision.

A. Bobkowska (2003): Cognitive Dimensions questionnaire applied to visual languages evaluation — a case study. In PPIG 2003. (Found in
http:/ /ppig.org/workshops/15th-programme.html.) Exclusion reasons: Q1-2 [ILajk]Visual languages are excluded from our definition of program-
ming languages.

Daniel G. Bobrow & Bertram Raphael (1964): A comparison of list-processing computer languages: including a detailed comparison of COMIT, IPL-V,
LISP 1.5, and SLIP. Communications of the ACM 7 (4). Pages 231-240. doi:10.1145/364005.364057 Exclusion reasons: Q5 [IILajk]This article presents an
analytical comparison of several languages.

Daniel G. Bobrow (1980): Managing Reentrant Structures Using Reference Counts. ACM Transactions on Programming Languages and Systems 2 (3).
Pages 269-273. doi:10.1145/357103.357104 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Daniel G. Bobrow, Kenneth Kahn, Gregor Kiczales, Larry Masinter, Mark Stefik & Frank Zdybel (1986): CommonLoops: merging Lisp and object-
oriented programming. In Conference proceedings on Object-oriented programming systems, languages and applications (OOPSLA ’86). Pages 17-29.
doi:10.1145/28697.28700 Exclusion reasons: Q1-2 [Il.ajk]Language exposition

Robert L. Bocchino & Vikram S. Adve (2011): Types, Regions, and Effects for Safe Programming with Object-Oriented Parallel Frameworks. In
Proc. ECOOP 2010 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 6813. Pages 306-332. doi:
10.1007/978-3-642-22655-7_15 Exclusion reasons: Q5 [IILajk]The evaluation in this article is purely analytical, with no aspiration to empiricity.

G. V. Bochmann (1973): Multiple exits from a loop without the GOTO. Communications of the ACM 16 (7). Pages 443-444. doi:10.1145/362280.362300
Exclusion reasons: Q5 [IIL.ajk]This short article does not aspire to empiricity.

S{\"e}bastien Bocq & Koen Daenen (2012): Molecule: using monadic and streaming I/O to compose process networks on the JVM. In Proceedings of
the ACM international conference on Object oriented programming systems languages and applications. New York, NY, USA: ACM. Pages 315-334.
doi:10.1145/2384616.2384640 Exclusion reasons: Q1-2 [IILajk]This article uses only performance measures as evaluation.

Eric Bodden, Laurie Hendren & Ondiej Lhotak (2007): A Staged Static Program Analysis to Improve the Performance of Runtime Monitoring. In
Proc. ECOOP 2007 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 4609. Pages 525-549. doi:10.1007/
978-3-540-73589-2_25 Exclusion reasons: Q1-2 [IILajk]This article reports a study of a static analysis; there is no PL design issue here.

Eric Bodden, Patrick Lam & Laurie Hendren (2012): Partially Evaluating Finite-State Runtime Monitors Ahead of Time. ACM Transactions on Pro-
gramming Languages and Systems 34 (2). Pages 7:1-7:52. doi:10.1145/2220365.2220366 Exclusion reasons: Q1-2 [IILajk]It is questionable whether the
constructs in this work amount to language design options; in any case, the evaluations are not comparative and thus there is no design decision efficacy
issue here.

Rastislav Bodik, Satish Chandra, Joel Galenson, Doug Kimelman, Nicholas Tung, Shaon Barman & Casey Rodarmor (2010): Programming with angelic
nondeterminism. In Proc. 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL). Pages 339-352. doi:10.1145/
1706299.1706339 Exclusion reasons: Q5 [I11.ajk]This article does not aspire to empiricity.

B. W. Boehm (1981): An Experiment in Small-Scale Application Software Engineering. Software Engineering, IEEE Transactions on SE-7 (5). Pages
482-493. doi:10.1109/TSE.1981.231110 Exclusion reasons: Q1-2 [ILajk]This empirical study of software development process does not present a PL
design issue.

B.W. Boehm (1981): Developing small-scale application software products: Some experimental results.. SOFTWARE WORLD 12 (1). Pages 2-

190

207.

208.

209.

210.

211

212.

213.

214.

215.

216.

217.

218.

219.

220.

221.

222,

223.

224.

225.

226.

227.

228.

229.

231

232.

233.

234.

235.

237.

8. http://md1l.csa.com/partners/viewrecord.php?requester=gs&collection=TRDé&recid=0395525CI&q=intitle%o3 Aexperimental+%22programming +
language%22&uid=788456873&setcookie=yes Exclusion reasons: Q1-2 [IILajk]This article appears to be an earlier version of boehm-1981, containing
largely the same verbatim text. There does not appear to be any reference from one to the other, though. Decision copied from that article.

Hans-J]. Boehm, Robert Cartwright, Mark Riggle & Michael J. O’Donnell (1986): Exact real arithmetic: a case study in higher order programming. In
Proceedings of the 1986 ACM conference on LISP and functional programming. New York, NY, USA: ACM. Pages 162-173. doi:10.1145/319838.319860
Exclusion reasons: Q5 [IILajk]This article has very little programming language design relevance; what relevance it has (the feasibility of an exact real
number type) is not empirical, rather it is analytical-constructive.

Hans-J. Boehm (2003): Destructors, finalizers, and synchronization. In Proc. 30th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL). Pages 262-272. doi:10.1145/604131.604153 Exclusion reasons: Q5 [III.ajk]This article is analytical, not empirical.

Deborah A. Boehm-Davis, Sylvia B. Sheppard & John W. Bailey (1982): An empirical evaluation of language-tailored PDLs. Human Factors and
Ergonomics Society Annual Meeting Proceedings 26 (11). Pages 984-988. doi:10.1177/154193128202601117 http:/ /pro.sagepub.com/content/26/11/
984.abstract Exclusion reasons: Q1-2 [ILajk]Studies program design languages, not programming languages.

Deborah A. Boehm-Davis, Sylvia B. Sheppard & John W. Bailey (1987): Program design languages: How much detail should they include?. International
Journal of Man-Machine Studies 27 (4). Pages 337-347. doi:10.1016/50020-7373(87)80002-0 Exclusion reasons: Q1-2 [IL.ajk]Design languages are not,
by definition, programming languages.

Deborah A. Boehm-Davis & Lyle S. Ross (1992): Program design methodologies and the software development process. International Journal of Man-
Machine Studies 36 (1). Pages 1-19. doi:10.1016/0020-7373(92)90050-U Exclusion reasons: Q1-2 [I.ajk]No language design issue.

Deborah A. Boehm-Davis, Robert W. Holt & Alan C. Schultz (1992): The role of program structure in software maintenance. International Journal
of Man-Machine Studies 36 (1). Pages 21-63. doi:10.1016/0020-7373(92)90051-L Exclusion reasons: Q1-2 [IILajk|Evaluates programming styles, not
language design decisions.

C. Bogart, M. Burnett, A. Cypher & C. Scaffidi (2008): End-user programming in the wild: A field study of CoScripter scripts. In Visual Languages
and Human-Centric Computing, 2008. VL/HCC 2008. IEEE Symposium on. Pages 39-46. doi:10.1109/VLHCC.2008.4639056 Exclusion reasons: Q1-2
[IIL.ajk]This article presents a study in which the actual use of a particular lagnuage is examined. It does not evaluate any design decisions.

Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz & Alan Schmitt (2008): Boomerang: resourceful lenses for string data.
In Proc. 35th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL). Pages 307-419. doi:10.1145/1328438.1328487
Exclusion reasons: Q5 [IIL.ajk]This article presents and analyzes a new construction. It also briefly discusses the authors’ experience. There were no
empirical aspirations.

Mikolaj Bojanczyk, Laurent Braud, Bartek Klin & Slawomir Lasota (2012): Towards nominal computation. In Proceedings of the 39th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. Pages 401-412. doi:10.1145/2103656.2103704 Exclusion reasons: Q5
[IIL.ajk] This article does not aspire to empiricity.

Boris Bokowski & Markus Dahm (1998): Poor Man’s Genericity for Java. In ECOOP’98 European Conference on Object-Oriented Programming Work-
shop Reader. Lecture Notes in Computer Science 1543. Pages 587. doi:10.1007/3-540-49255-0_182 Exclusion reasons: Q5 [IIL.ajk]|This study does not
aspire to empiricity.

Jeffrey Bonar & Elliot Soloway (1983): Uncovering principles of novice programming. In Proc. 10th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL). Pages 10-13. doi:10.1145/567067.567069 Exclusion reasons: Q1-2 [IILajk]This article describes the results of a
qualitative study trying to understand the sources of novice bafflement in programming. It has little direct relevance to language design evaluation.
Viviana Bono, Jarek Kusmierek & Mauro Mulatero (2012): Magda: A New Language for Modularity. Volume 7313.In Noble, James (ed.) ECOOP 2012
— Object-Oriented Programming.Springer Berlin / Heidelberg. Lecture Notes in Computer Science. Pages 560-588. doi:10.1007/978-3-642-31057-7_25
Exclusion reasons: Q1-2 [IILajk|This article does not aspire to empiricity.

Grady Booch & Michael Vilot (1990): The design of the C++ Booch Components. In OOPSLA /ECOOP '90: Proceedings of the European conference on
object-oriented programming and Object-oriented programming systems, languages, and applications. Pages 1-11. doi:10.1145/97945.97947 Exclusion
reasons: Q1-2 [IL.ajk]No comparison language.

Simon P Booth & Simon B Jones (1996): Are Ours Really Smaller Than Theirs?. In Proc. 1996 Glasgow Workshop on Functional Programming.
http:/ /ftp.des.glasgow.ac.uk/fp/workshops/fpw96/Booth.pdf Exclusion reasons: Q1-2 [IILajk]This article does not evaluate any language design
decisions.

E. Borger & W. Schulte (2000): A practical method for specification and analysis of exception handling-a Java/JVM case study. Software Engineering,
IEEE Transactions on 26 (9). Pages 872 -887. doi:10.1109/32.877847 Exclusion reasons: Q5 [ILajk|Formal development

1. Borne & S. Despres (1993): A Weighted Pattern Matching to Help Smalltalk Class Creation . In PPIG 1993. (Found in http://ppig.org /workshops/5th-
programme.html.) Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

Alan Borning (1981): The Programming Language Aspects of ThingLab, a Constraint-Oriented Simulation Laboratory. ACM Transactions on Program-
ming Languages and Systems 3 (4). Pages 353-387. doi:10.1145/357146.357147 Exclusion reasons: Q1-2 [IIL.ajk]This article is a system exposition.

Alan H. Borning & Daniel H. H. Ingalls (1982): A type declaration and inference system for smalltalk. In Proc. 9th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL). Pages 133-141. doi:10.1145/582153.582168 Exclusion reasons: Q1-2 [ILajk]Language exposition.
Alan Borning & Tim O’Shea (1987): Deltatalk: An Empirically and Aesthetically Motivated Simplification of the Smalltalk-80 Language. In Proc.
ECOOP’87 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 276 . Pages 1-10. doi:10.1007 /3-540-47891-4_1
Exclusion reasons: Q3 [IILajk]This article provides guidelines for language design based on empirical studies reported at reference 15. Reference 15
(Tim O’Shea’s position paper to the panel "The Learnability of Object-oriented Programming Systems", at page 502 of OOPSLA 1986 proceedings, not
available online) is a short summary of the studies and lacks sufficient detail to evaluate their quality. A more detailed report has not been identified.
Jan van den Bos, R. Plasmeijer & Jan W. M. Stroet (1981): Process Communication Based on Input Specifications. ACM Transactions on Programming
Languages and Systems 3 (3). Pages 224-250. doi:10.1145/357139.357141 Exclusion reasons: Q5 [ITL.ajk]This article does not aspire to empiricity.

Jan Van Den Bos (1988): Abstract interaction tools: a language for user interface management systems. ACM Transactions on Programming Languages
and Systems 10 (2). Pages 215-247. doi:10.1145/42190.42191 Exclusion reasons: Q5 [IIL.ajk]|This article has no aspiration to empiricity.

Edwin Bos (1996): The use and acquisition of artificial language: Some insights from psycholinguistics. Computers in Human Behavior 12 (3). Pages
425-447. doi:10.1016/0747-5632(96)00017-9 Exclusion reasons: Q1-2 [IL.ajk]This article does not evaluate any programming language design decisions.
A. Bossi, M. Bugliesi, M. Gabbrielli, G. Levi & M. C. Meo (1993): Differential logic programming. In Proc. 20th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages (POPL). Pages 359-370. doi:10.1145/158511.158689 Exclusion reasons: Q1-2 [ILajk]Formal semantics
development.

Raymond Boute (2005): Functional declarative language design and predicate calculus: a practical approach. ACM Transactions on Programming
Languages and Systems 27 (5). Pages 988-1047. doi:10.1145/1086642.1086647 Exclusion reasons: Q5 [II1.ajk]This article does not aspire to empiricity.

A. Bowles, D. Robertson, W. Vasconcelos, M. Vargas-Vera & D. Bental (1994): Applying Prolog programming techniques. International Journal of
Human-Computer Studies 41 (3). Pages 329-350. doi:10.1006/ijhc.1994.1062 Exclusion reasons: Q1-2 [ILajk]This article appears not to evaluate any
language design decisions.

Chandrasekhar Boyapati, Barbara Liskov & Liuba Shrira (2003): Ownership types for object encapsulation. In Proc. 30th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL). Pages 213-223. doi:10.1145/604131.604156 Exclusion reasons: Q5 [IILajk|This article
does not aspire to empiricity.

Raymond F. Boyce, Donald D. Chamberlin, IIl W. Frank King & Michael M. Hammer (1975): Specifying queries as relational expressions: the SQUARE
data sublanguage. Communications of the ACM 18 (11). Pages 621-628. doi:10.1145/361219.361221 Exclusion reasons: Q1-2 [ILajk]Language exposi-
tion.

John Boyland, James Noble & William Retert (2001): Capabilities for Sharing: A Generalisation of Uniqueness and Read-Only. In Proc. ECOOP 2001
European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 2072. Pages 2-27. doi:10.1007 /3-540-45337-7_2 Exclusion
reasons: Q5 [IL.ajk]Formal development.

John Tang Boyland & William Retert (2005): Connecting effects and uniqueness with adoption. In Proc. 32nd ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL). Pages 283-295. doi:10.1145/1040305.1040329 Exclusion reasons: Q1-2 [ILajk]Formal type-theoretic
development.

Gilad Bracha, Martin Odersky, David Stoutamire & Philip Wadler (1998): Making the future safe for the past: adding genericity to the Java programming
language. In Proceedings of the 13th ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications. New York,
NY, USA: ACM. OOPSLA "98. Pages 183-200. doi:10.1145/286936.286957 Exclusion reasons: Q5 [IL.ajk]This article does not aspire to empiricity.

Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox & Eliot Miranda (2010): Modules as Objects in Newspeak. In

238.

239.

240.

241.

242

243.

244.

245.

246.

247.

248.

249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

259.

260.

261.

265.

266.

267.

268.

269.

270.

271.

191

Proc. ECOOP 2010 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 6183. Pages 405-428. doi:
10.1007/978-3-642-14107-2_20 Exclusion reasons: Q1-2 [IL.ajk]Language exposition.

Walt Brainerd (1978): Fortran 77. Communications of the ACM 21 (10). Pages 806-820. doi:10.1145/359619.359621 Exclusion reasons: Q1-2
[IL.ajk]Language exposition.

Seren Brandt & Jorgen Lindskov Knudsen (1996): Generalising the BETA type system. In Proc. ECOOP'96 European Conference on Object-Oriented
Programming. Lecture Notes in Computer Science 1098. Pages 421-448. doi:10.1007/BFb0053072 Exclusion reasons: Q5 [IILajk]This article does not
aspire to empiricity.

P. Branquart, J. Lewi, M. Sintzoff & P. L. Wodon (1971): The composition of semantics in Algol 68. Communications of the ACM 14 (11). Pages 697-708.
doi:10.1145/362854.362874 Exclusion reasons: Q1-2 [IL.ajk]Language exposition

John Brant, Brian Foote, Ralph E. Johnson & Donald Roberts (1998): Wrappers to the rescue. In Proc. ECOOP'98 European Conference on Object-
Oriented Programming. Lecture Notes in Computer Science 1445. Pages 396-417. doi:10.1007/BFb0054101 Exclusion reasons: Q1-2 [I.ajk]No compar-
ison language.

Harvy Bratman, Julien Green, John Stockman & Albert R. Watson (1959): Recommendations of the SHARE ALGOL Committee. Communications of
the ACM 2 (10). Pages 24-26. doi:10.1145/368453.1127875 http:/ /dl.acm.org/citation.cfm?id=1127875 Exclusion reasons: Q1-2 [IILajk]This language
design note does not evaluate its recommendations.

Martin Bravenboer & Eelco Visser (2004): Concrete syntax for objects: domain-specific language embedding and assimilation without restrictions. In
OOPSLA "04: Proceedings of the 19th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications. Pages
365-383. doi:10.1145/1028976.1029007 Exclusion reasons: Q5 [IIL.ajk] This constructive-analytical paper has no empirical aspirations.

Jean-Pierre Briot & Akinori Yonezawa (1987): Inheritance and Synchronization in Concurrent OOP. In Proc. ECOOP’87 European Conference on Object-
Oriented Programming. Lecture Notes in Computer Science 276 . Pages 32-40. doi:10.1007/3-540-47891-4_4 Exclusion reasons: Q5 [IIL.ajk]This article
does not aspire to empiricity.

J.-P. Briot & P. Cointe (1989): Programming with explicit metaclasses in Smalltalk-80. In Conference Proceedings on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 89). Pages 419-431. doi:10.1145/74877.74921 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire
to empiricity.

Jean-Pierre Briot (1989): Actalk: A Testbed for Classifying and Designing Actor Languages in the Smalltalk-80 Environment. In Proc. ECOOP’89 Eu-
ropean Conference on Object-Oriented Programming.Cambridge University Press. Pages 109-129. http:/ /www.ifs.uni-linz.ac.at/~ecoop/cd/papers/
ec89/ec890109.pdf Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

E. Brito e Abreu & W. Melo (1996): Evaluating the impact of object-oriented design on software quality . In Software Metrics Symposium, 1996., Pro-
ceedings of the 3rd International. Pages 90-99. doi:10.1109/METRIC.1996.492446 Exclusion reasons: Q1-2 [IILajk]If I understand this article correctly,
all the groups used OO. Thus, there was no real efficacy evaluation of OO as a design decision, nor do I see any other design decisions at play.

W. R. Brittenham, K. Clark, G. Kuss & H. Thompson (1959): SALE, a simple algebraic language for engineers. Communications of the ACM 2 (10).
Pages 22-24. doi:10.1145/368453.368464 Exclusion reasons: Q5 [IILajk]This language exposition does not aspire to empiricity.

Niklas Broberg & David Sands (2010): Paralocks: role-based information flow control and beyond. In Proc. 37th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL). Pages 431-444. doi:10.1145/1706299.1706349 Exclusion reasons: Q5 [IL.ajk]Theoretical work.
Antonio Brogi & Paolo Ciancarini (1991): The concurrent language, Shared Prolog. ACM Transactions on Programming Languages and Systems 13 (1).
Pages 99-123. doi:10.1145/114005.102807 Exclusion reasons: Q5 [IIL.ajk]This language exposition does not aspire to empiricity.

Antonio Brogi, Paolo Mancarella, Dino Pedreschi & Franco Turini (1994): Modular logic programming. ACM Transactions on Programming Languages
and Systems 16 (4). Pages 1361-1398. doi:10.1145/183432.183528 Exclusion reasons: Q5 [IIL.ajk]This analytical-constructive paper does not aspire to
empiricity.

Ruven E. Brooks (1980): Studying programmer behavior experimentally: the problems of proper methodology. Communications of the ACM 23 (4).
Pages 207-213. doi:10.1145/358841.358847 Exclusion reasons: Q1-2 [IILajk]This article discusses methodological issues in programmer behaviour
experimentation. As such, it is out of scope of this mapping study. However, its reference list appears very useful for snowballing.

Ruven Brooks (1983): Towards a theory of the comprehension of computer programs. International Journal of Man-Machine Studies 18 (6). Pages
543-554. doi:10.1016/S0020-7373(83)80031-5 Exclusion reasons: Q1-2 [II.ajk]No language design decision evaluation.

Ruven Brooks (1990): Categories of programming knowlege and their application. International Journal of Man-Machine Studies 33 (3). Pages 241-246.
doi:10.1016/50020-7373(05)80118-X Exclusion reasons: Q1-2 [IILajk]This article does not report an evaluative study.

A. Brooks, J. Miller, M. Roper & Wood M. (1992): Criticisms of an Empirical Study of Recursion and Iteration. Technical report EFoCS-1-92 at Department
of Computer Science, University of Strathclyde.. http://staff.unak.is/andy/ResearchPapers/EFoCS-1-92.pdf Exclusion reasons: Q1-2 [IIL.ajk]This
article is a critique of sinha-1992 and does not report a study.

RUVEN BROOKS (1999): Towards a theory of the cognitive processes in computer programming. International Journal of Human-Computer Stud-
ies 51 (2). Pages 197-211. doi:10.1006/ijhc.1977.0306 Exclusion reasons: Q1-2 [IILajk]This article does not evaluate any language design decisions.
Gerald Brose (1998): Towards an Access Control Policy Language for CORBA. In ECOOP’98 European Conference on Object-Oriented Programming
Workshop Reader. Lecture Notes in Computer Science 1543. Pages 587. doi:10.1007/3-540-49255-0_60 Exclusion reasons: Q5 [IIL.ajk]This one-page
abstract does not describe empirical research.

S. A. Brown, C. E. Drayton & B. Mittman (1963): A description of the APT language. Communications of the ACM 6 (11). Pages 649-658. doi:
10.1145/368310.368322 Exclusion reasons: Q1-2 [Il.ajk]Language description only, based on the abstract.

P.J. Brown (1967): The ML /I macro processor. Communications of the ACM 10 (10). Pages 618-623. doi:10.1145/363717.363746 Exclusion reasons: Q1-2
[ITL.ajk] This language exposition does not report a study.

P. J. Brown (1972): Levels of language for portable software. Communications of the ACM 15 (12). Pages 1059-1062. doi:10.1145/361598.361624
Exclusion reasons: Q1-2 [ILajk]Implementation technique study.

T. Brown & M. Klerer (1975): The effect of language design on time-sharing operational efficiency. International Journal of Man-Machine Studies 7 (2).
Pages 233-247. doi:10.1016/5S0020-7373(75)80008-3 Exclusion reasons: Q5 [ILajk]No empirical evaluation; doubtful that there is an actual language
design issue.

Peter Brown (1984): Languages: three interviews. Communications of the ACM 27 (4). Pages 352-355. doi:10.1145/358027.358046 Exclusion reasons:
Q5 [IILajk|This article does not report an empirical study.

Manfred Broy & Greg Nelson (1994): Adding fair choice to Dijkstra’s calculus. ACM Transactions on Programming Languages and Systems 16 (3).
Pages 924-938. doi:10.1145/177492.177727 Exclusion reasons: Q1-2 [IL.ajk]Theoretical development of a specification language.

Kim Bruce & John C. Mitchell (1992): PER models of subtyping, recursive types and higher-order polymorphism. In Proc. 19th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL). Pages 316-327. doi:10.1145/143165.143230 Exclusion reasons: Q5 [II1.ajk] This article does
not aspire to empiricity.

Kim B. Bruce (1993): Safe type checking in a statically-typed object-oriented programming language. In Proc. 20th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL). Pages 285-298. doi:10.1145/158511.158650 Exclusion reasons: Q1-2 [ILajk]Language exposition.
Kim B. Bruce, Angela Schuett & Robert van Gent (1995): PolyTOIL: A Type-Safe Polymorphic Object-Oriented Language. In Proc. ECOOP’95 European
Conference on Object-Oriented Programming. Lecture Notes in Computer Science 952. Pages 27-51. doi:10.1007/3-540-49538-X_3 Exclusion reasons:
Q5 [ILajk]Formal exposition of a single language.

Kim B. Bruce, Leaf Petersen & Adrian Fiech (1997): Subtyping is not a good "match" for object-oriented languages. In Proc. ECOOP’97 European
Conference on Object-Oriented Programming. Lecture Notes in Computer Science 1241. Pages 104-127. doi:10.1007/BFb0053376 Exclusion reasons:
Q1-2 [ILajk]Language exposition.

Kim B. Bruce, Martin Odersky & Philip Wadler (1998): A statically safe alternative to virtual types. In Proc. ECOOP’98 European Conference on Object-
Oriented Programming. Lecture Notes in Computer Science 1445. Pages 523-549. doi:10.1007/BFb0054106 Exclusion reasons: Q5 [IILajk]This article
does not aspire to empiricity.

Kim B. Bruce, Angela Schuett, Robert van Gent & Adrian Fiech (2003): PolyTOIL: A type-safe polymorphic object-oriented language. ACM Transactions
on Programming Languages and Systems 25 (2). Pages 225-290. doi:10.1145/641888.641891 Exclusion reasons: Q5 [Il.ajk]Formal theoretical basis, no
empirics.

Kim B. Bruce & J. Nathan Foster (2004): LOOJ: Weaving LOOM into Java. In Proc. ECOOP 2004 European Conference on Object-Oriented Programming.
Lecture Notes in Computer Science 3086. Pages 390-414. doi:10.1007/978-3-540-24851-4_18 Exclusion reasons: Q5 [IILajk]This article discusses a new
construct in theoretical terms, with no aspiration for empiricity.

Achim D. Brucker & Burkhart Wolff (2008): Extensible Universes for Object-Oriented Data Models. In Proc. ECOOP 2008 European Conference on

192

272.

273.

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

300.

301.

302.

Object-Oriented Programming. Lecture Notes in Computer Science 5142. Pages 438-462. do0i:10.1007/978-3-540-70592-5_19 Exclusion reasons: Q5
[ITLajk] This study has no aspiration for empiricity.

Ciarén Bryce, Chrislain Razafimahefa & Michel Pawlak (2002): Lana: An Approach to Programming Autonomous Systems. In Proc. ECOOP 2002
European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 2374. Pages 281-308. do0i:10.1007/3-540-47993-7_13
Exclusion reasons: Q1-2 [IL.ajk]Language exposition.

D. Budgen & A. Pohthong (1999): Component reuse in software design: an observational study. In Software Technology and Engineering Practice, 1999.
STEP 9. Proceedings. Pages 63-72. doi:10.1109/STEP.1999.798480 Exclusion reasons: Q1-2 [ILajk]This article does not evaluate any language design
issues.

Francisco Bueno, Maria Garcia de la Banda & Manuel Hermenegildo (1999): Effectivness of abstract interpretation in automatic parallelization: a case
study in logic programming. ACM Transactions on Programming Languages and Systems 21 (2). Pages 189-239. doi:10.1145/316686.316688 Exclusion
reasons: Q1-2 [IIL.ajk]This article evaluates techniques for automatic improvement of programs, which is not a language design matter.

Michele Bugliesi & Giuseppe Castagna (2001): Secure safe ambients. In Proc. 28th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL). Pages 222-235. doi:10.1145/360204.360223 Exclusion reasons: Q1-2 [IL.ajk] Type-theoretic work.

P. A. Buhr & C. R. Zarnke (1988): Nesting in an Object Oriented Language is NOT for the Birds. In Proc. ECOOP’88 European Conference on Object-
Oriented Programming. Lecture Notes in Computer Science 322. Pages 128-145. doi:10.1007/3-540-45910-3_8 Exclusion reasons: Q5 [IILajk]This is an
analytical study with no aspiration to empiricality.

Peter A. Buhr & Ashif S. Harji (2005): Implicit-signal monitors. ACM Transactions on Programming Languages and Systems 27 (6). Pages 1270-1343.
doi:10.1145/1108970.1108975 Exclusion reasons: Q5 [IILajk]This article presents extensive historical and analytic arguments of the efficacy of providing
implicit-signal monitors. It also contains an arguably empirical performance comparison of three ways to actually simulate implict signaling using
explicit signaling. That comparison has no bearing on the efficacy question, as far as I can tell; it is concerned more on whether implicit signaling is
useful even without language support.

Sebastian Burckhardt, Alexandro Baldassin & Daan Leijen (2010): Concurrent programming with revisions and isolation types. In OOPSLA "10:
Proceedings of the ACM international conference on Object oriented programming systems languages and applications. Pages 691-707. doi:
10.1145/1869459.1869515 Exclusion reasons: Q5 [IIL.ajk]This article’s evaluative work is analytical in nature.

Sebastian Burckhardt, Manuel Fihndrich, Daan Leijen & Benjamin Wood (2012): Cloud Types for Eventual Consistency. Volume 7313.In Noble, James
(ed.) ECOOP 2012 - Object-Oriented Programming.Springer Berlin / Heidelberg. Lecture Notes in Computer Science. Pages 283-307. doi:10.1007/
978-3-642-31057-7_14 Exclusion reasons: Q5 [IL.ajk]No empirical evaluation.

Kenneth Burkhardt (1976): EMPP: An extensible multiprogramming system for experimental psychology. Behavior Research Methods 8 (2). Pages
239-244. doi:10.3758/BF03201784 Exclusion reasons: Q1-2 [IL.ajk]Language exposition.

Rachel Burrows, Fabiano C. Ferrari, Otavio A. L. Lemos, Alessandro Garcia & Frangois. Taiani (2010): The Impact of Coupling on the Fault-Proneness
of Aspect-Oriented Programs: An Empirical Study. In Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Symposium on. Pages
329-338. doi:10.1109/ISSRE.2010.33 Exclusion reasons: Q1-2 [ILajk]Metrics study; no PL design issue.

R. M. Burstall, D. B. MacQueen & D. T. Sannella (1980): HOPE: An experimental applicative language. In Proceedings of the 1980 ACM conference on
LISP and functional programming. Pages 136-143. doi:10.1145/800087.802799 Exclusion reasons: Q1-2 [I.ajk]Language exposition.

F. Warren Burton (1990): Type extension through polymorphism. ACM Transactions on Programming Languages and Systems 12 (1). Pages 135-138.
doi:10.1145/77606.214515 Exclusion reasons: Q5 [IILajk]This brief paper does not aspire to empiricity.

Raymond P.L. Buse, Caitlin Sadowski & Westley Weimer (2011): Benefits and barriers of user evaluation in software engineering research. In Proceed-
ings of the 2011 ACM international conference on Object oriented programming systems languages and applications. New York, NY, USA: ACM. Pages
643-656. doi:10.1145/2048066.2048117 Exclusion reasons: Q1-2 [IIL.ajk]This article does not evaluate nor summarise or consolidate papers evaluating
language design decisions.

Pauli Byckling (2004): Roles of variables and strategic programming knowledge. In PPIG 2004. (Found in http://ppig.org/workshops/16th-
programme.html.) Exclusion reasons: Q1-2 [IILajk]|This article summarizes ongoing research on teaching of programming. There is no PL design
issue present.

Pauli Byckling, Petri Gerdt & Jorma Sajaniemi (2005): Roles of variables in object-oriented programming. In OOPSLA "05: Companion to the 20th annual
ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications. Pages 350-355. doi:10.1145/1094855.1094972
Exclusion reasons: Q1-2 [IILajk|This article studies a conceptual teaching aid and has no PL design relevance.

A. P. W. Bshm & R. R. Oldehoeft (1994): Two issues in parallel language design. ACM Transactions on Programming Languages and Systems 16 (6).
Pages 1675-1683. doi:10.1145/197320.197325 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

Kai Bollert (1998): Aspect-oriented programming case study: System management application. In Aspect-Oriented Programming Workshop 1998.
(Position paper for Aspect-Oriented Programming Workshop 1998.) http://trese.cs.utwente.nl/aop-ecoop98/papers/Boellert.pdf Exclusion reasons:
Q5 [IMLajk]This paper does not aspire to empiricity.

Egon Borger & Robert Stark (2004): Exploiting Abstraction for Specification Reuse. The Java/C# Case Study. Volume 3188.In de Boer, Frank and
Bonsangue, Marcello and Graf, Susanne and de Roever, Willem-Paul (ed.) Formal Methods for Components and Objects.Springer Berlin / Heidel-
berg. Lecture Notes in Computer Science. Pages 42-76. doi:10.1007/978-3-540-30101-1_3 Exclusion reasons: Q5 [IILajk]This article presents a formal
theoretical study of these languages; there is no empiricality involved.

Martin Biichi & Wolfgang Weck (2000): Generic Wrappers. In Proc. ECOOP 2000 European Conference on Object-Oriented Programming. Lecture
Notes in Computer Science 1850. Pages 201-225. doi:10.1007/3-540-45102-1_10 Exclusion reasons: Q5 [Il.ajk]Conceptual and theoretical work.

Bruno Cabral & Paulo Marques (2007): Exception Handling: A Field Study in Java and .NET. In Proc. ECOOP 2007 European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science 4609 . Pages 151-175. doi:10.1007/978-3-540-73589-2_8 Exclusion reasons: Ql1—
2 [IIL.ajk] This article examines empirically the actual usage of exception handling in .NET and Java programs. While this study undoubtedly would be
informative to a programming language designer, it does not evaluate design decisions.

J. Cai & R. Paige (1987): Binding performance at language design time. In Proc. 14th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (POPL). Pages 85-97. doi:10.1145/41625.41633 Exclusion reasons: Q1-2 [IILajk]This theoretical article does not evaluate language
designs.

Jiazhen Cai & Robert A. Paige (1991): Look ma, no hashing, and no arrays neither. In Proc. 18th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL). Pages 143-154. doi:10.1145/99583.99605 Exclusion reasons: Q1-2 [IILajk]This article has no relevance to language
design.

Paul Calder & Mark Linton (1992): The object-oriented implementation of a document editor. In OOPSLA '92: conference proceedings on Object-
oriented programming systems, languages, and applications. Pages 154-165. doi:10.1145/141936.141950 Exclusion reasons: Q1-2 [IILajk]This article
has no PL design relevance.

Brad Calder, Dirk Grunwald & Benjamin Zorn (1994): Quantifying behavioral differences between C and C++ programs. Journal of Programming Lan-
guages 2 (4). http://cseweb.ucsd.edu/users/calder/abstracts/C++Study.html Exclusion reasons: Q1-2 [ILajk]This article discusses implementation
concerns only.

Oscar Callati, Romain Robbes, Eric Tanter & David Rothlisberger (2011): How developers use the dynamic features of programming languages: the
case of smalltalk. In Proceedings of the 8th Working Conference on Mining Software Repositories. New York, NY, USA: ACM. MSR “11. Pages 23-32.
doi:10.1145/1985441.1985448 Exclusion reasons: Q1-2 [ILajk]This article studies actual language usage and does not evaluate any language design
decisions.

Robert D. Cameron (1989): Efficient high-level iteration with accumulators. ACM Transactions on Programming Languages and Systems 11 (2). Pages
194-211. doi:10.1145/63264.63401 Exclusion reasons: Q5 [II1.ajk]This paper does not aspire to empiricity.

A. Caracciolo (1966): Some preliminary remarks on theoretical pragmatics. Communications of the ACM 9 (3). Pages 226-227. doi:10.1145/365230.
365273 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

L. Cardelli (1988): Structural subtyping and the notion of power type. In Proc. 15th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL). Pages 70-79. doi:10.1145/73560.73566 Exclusion reasons: Q5 [IILajk]This analytical paper has no aspiration to empiricity.

L. Cardelli, J. Donahue, M. Jordan, B. Kalsow & G. Nelson (1989): The Modula-3 type system. In Proc. 16th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL). Pages 202-212. doi:10.1145/75277.75295 Exclusion reasons: Q1-2 [IL.ajk]Language exposition.

Luca Cardelli (1995): A language with distributed scope. In Proc. 22nd ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL). Pages 286-297. doi:10.1145/199448.199516 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

Luca Cardelli (1997): Program fragments, linking, and modularization. In Proc. 24th ACM SIGACT-SIGPLAN Symposium on Principles of Program-

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.

325.

326.

327.

328.

329.

330.

331.

332.

333.

334.

335.

336.

193

ming Languages (POPL). Pages 266-277. doi:10.1145/263699.263735 Exclusion reasons: Q5 [IIL.ajk|This analytical-constructive paper does not aspire to
empiricity.

Luca Cardelli & Andrew D. Gordon (1999): Types for mobile ambients. In Proc. 26th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages (POPL). Pages 79-92. doi:10.1145/292540.292550 Exclusion reasons: Q5 [II1.ajk]This article does not aspire to empiricity.

Jacques Carette (2006): Gaussian Elimination: A case study in efficient genericity with MetaOCaml. Science of Computer Programming 62 (1). Pages
3-24. doi:10.1016/j.scico.2005.10.012 Exclusion reasons: Q1-2 [IL.ajk]No comparison.

T. T. Carey & M. M. Shepherd (1988): Towards empirical studies of programming in new paradigms. In Proceedings of the 1988 ACM sixteenth annual
conference on Computer science. Pages 72-78. doi:10.1145/322609.322618 Exclusion reasons: Q1-2 [IILajk]This article describes ongoing empirical
studies on programmer learning, and presents no PL design issue.

T. A. Cargill (1986): Pi: a case study in object-oriented programming. In Conference proceedings on Object-oriented programming systems, languages
and applications (OOPSLA ’86). Pages 350-360. doi:10.1145/28697.28733 Exclusion reasons: Q1-2 [IL.ajk]No comparison.

Denis Caromel & Julien Vayssiére (2001): Reflections on MOP s, Components, and Java Security. In Proc. ECOOP 2001 European Conference on Object-
Oriented Programming. Lecture Notes in Computer Science 2072. Pages 256-274. doi:10.1007/3-540-45337-7_14 Exclusion reasons: Q5 [IILajk]This
article is analytical, with no empirical aspirations.

Denis Caromel, Luis Mateu & Eric Tanter (2004): Sequential Object Monitors. In Proc. ECOOP 2004 European Conference on Object-Oriented Program-
ming. Lecture Notes in Computer Science 3086. Pages 317-341. doi:10.1007/978-3-540-24851-4_15 Exclusion reasons: Q5 [IILajk]This article has no
aspiration to empiricity.

John W. Carr, TIT (1959): Recursive subscripting compilers and list-type memories. Communications of the ACM 2 (2). Pages 4-6. doi:10.1145/368280.
368281 Exclusion reasons: Q5 [II1.ajk]This article does not aspire to empiricity.

Nicholas Carriero, David Gelernter & Jerrold Leichter (1986): Distributed data structures in Linda. In Proc. 13th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL). Pages 236-242. doi:10.1145/512644.512666 Exclusion reasons: Q5 [IILajk]This article does not aspire
to empiricity.

Manuel Carro, José F. Morales, Henk L. Muller, G. Puebla & M. Hermenegildo (2006): High-level languages for small devices: a case study. In Proceed-
ings of the 2006 international conference on Compilers, architecture and synthesis for embedded systems. New York, NY, USA: ACM. Pages 271-281.
doi:10.1145/1176760.1176794 Exclusion reasons: Q1-2 [IL.ajk]No PL design issue.

Bernard Carré & Jean-Marc Geib (1990): The point of view notion for multiple inheritance. In OOPSLA/ECOOP '90: Proceedings of the European
conference on object-oriented programming and Object-oriented programming systems, languages, and applications. Pages 312-321. doi:10.1145/
97945.97983 Exclusion reasons: Q5 [II1.ajk]This article does not aspire to empiricity.

Robert Cartwright, Robert Hood & Philip Matthews (1981): Paths: an abstract alternative to pointers. In Proc. 8th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL). Pages 14-27. doi:10.1145/567532.567534 Exclusion reasons: Q5 [IILajk]This article does not aspire to
empiricity.

M. Cartwright & M. Shepperd (2000): An empirical investigation of an object-oriented software system . Software Engineering, IEEE Transactions
on 26 (8). Pages 786-796. doi:10.1109/32.879814 Exclusion reasons: Q1-2 [IILajk]This article reports a study in which a large existing system was
described using various metrics. It does not discuss language design decision efficacy issues.

Francisco Heron de Carvalho Junior & Cenez Aratjo de Rezende (2012): A case study on expressiveness and performance of component-oriented par-
allel programming. Journal of Parallel and Distributed Computing. doi:10.1016/j.jpdc.2012.12.007 Exclusion reasons: Q5 [IILajk]It is not clear whether
the construct being evaluated is a programming language, but in any case the evaluation is analytical despite containing performance evaluations.
Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Stefanie Chiras & Siddhartha Chatterjee (2008): Software transactional
memory: why is it only a research toy?. Communications of the ACM 51 (11). Pages 40-46. doi:10.1145/1400214.1400228 Exclusion reasons: Q1-2
[IIL.ajk] This article discusses implementation efficiency issues.

P. Caspi, D. Pilaud, N. Halbwachs & J. A. Plaice (1987): LUSTRE: a declarative language for real-time programming. In Proc. 14th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL). Pages 178-188. doi:10.1145/41625.41641 Exclusion reasons: Q1-2
[IL.ajk]Language exposition with theoretical emphasis.

Paul Caspi, Grégoire Hamon & Marc Pouzet (2007): Synchronous Functional Programming with Lucid Synchrone. In Nicolas Navet and Stephan Mertz
(ed.) Real-Time Systems: Models and verification: Theory and tools.ISTE. http://www.di.ens.fr/~pouzet/bib/chap_lucid_synchrone_english_iste08.
pdf Exclusion reasons: Q5 [I1L.ajk]This tutorial does not report a study.

Giuseppe Castagna (1995): Covariance and contravariance: conflict without a cause. ACM Transactions on Programming Languages and Systems 17 (3).
Pages 431-447. doi:10.1145/203095.203096 Exclusion reasons: Q5 [IL.ajk|This theoretical article does not aspire to empiricity.

Giuseppe Castagna, Nils Gesbert & Luca Padovani (2009): A theory of contracts for Web services. ACM Transactions on Programming Languages and
Systems 31 (5). doi:10.1145/1538917.1538920 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Vincent Cavé, Zoran Budimli¢ & Vivek Sarkar (2010): Comparing the usability of library vs. language approaches to task parallelism. In Evaluation
and Usability of Programming Languages and Tools. New York, NY, USA: ACM. PLATEAU "10. Pages 9:1-9:6. doi:10.1145/1937117.1937126 Exclusion
reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

José Juan Canas, Maria Teresa Bajo & Pilar Gonzalvo (1994): Mental models and computer programming. International Journal of Human-Computer
Studies 40 (5). Pages 795-811. doi:10.1006/ijhc.1994.1038 Exclusion reasons: Q1-2 [ILajk]No language design issues.

Mariano Ceccato, Paolo Tonella & Filippo Ricca (2005): Is AOP code easier or harder to test than OOP code. In On-line Proceedings of the First Workshop
on Testing Aspect-Oriented Programs (WTAOP 2005). http://selab.fbk.eu/tonella/papers/wtaop2005.pdf Exclusion reasons: Q5 [IIl.ajk]This article
does not aspire to empiricity.

Henry Cejtin, Suresh Jagannathan & Richard Kelsey (1995): Higher-order distributed objects. ACM Transactions on Programming Languages and
Systems 17 (5). Pages 704-739. doi:10.1145/213978.213986 Exclusion reasons: Q1-2 [IIL.ajk]This article does not evaluate the efficacy of its design
decisions.

S. Ceri & G. Gottlob (1986): Normalization of relations and PROLOG. Communications of the ACM 29 (6). Pages 524-544. doi:10.1145/5948.5952
Exclusion reasons: Q1-2 [ILajk]Program exposition.

Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones & Simon Marlow (2005): Associated types with class. In Proc. 32nd ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL). Pages 1-13. doi:10.1145/1040305.1040306 Exclusion reasons: Q5 [II.ajk]Formal
type-theoretic work.

Bradford L. Chamberlain, Steven J. Deitz & Lawrence Snyder (2000): A comparative study of the NAS MG benchmark across parallel languages
and architectures. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing (CDROM). Washington, DC, USA: TEEE Computer Society.
Supercomputing ‘00. Article 46. http://dl.acm.org/citation.cfm?id=370049.370452 Exclusion reasons: Q1-2 [IILajk]This article reports a study that
compares multiple languages. There are no identifiable design decisions at play.

Craig Chambers (1992): Object-oriented multi-methods in Cecil. In Proc. ECOOP’92 European Conference on Object-Oriented Programming. Lecture
Notes in Computer Science 615. Pages 33-56. doi:10.1007/BFb0053029 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Craig Chambers (1993): Predicate Classes. In Proc. ECOOP’93 European Conference on Object-Oriented Programming. Lecture Notes in Computer
Science 707. Pages 268-296. doi:10.1007/3-540-47910-4_15 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

Craig Chambers & Gary T. Leavens (1995): Typechecking and modules for multimethods. ACM Transactions on Programming Languages and Sys-
tems 17 (6). Pages 805-843. doi:10.1145/218570.218571 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Craig Chambers, Bill Harrison & John Vlissides (2000): A debate on language and tool support for design patterns. In Proc. 27th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL). Pages 277-289. doi:10.1145/325694.325731 Exclusion reasons: Q1-2Q5
[ITL.ajk] This article contains position statements and responses; no research is reported.

A. T. Chamillard, Lori A. Clarke & George S. Avrunin (1996): An Empirical Comparison of Static Concurrency Analysis Techniques. Technical Report.
http://laser.cs.umass.edu/techreports /96-84.pdf Exclusion reasons: Q1-2 [IIL.ajk]This article does not evaluate any language design decisions.

Ashok K. Chandra (1981): Programming primitives for database languages. In Proc. 8th ACM SIGACT-SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL). Pages 50-62. doi:10.1145/567532.567537 Exclusion reasons: Q1-2 [ILajk]Theoretical study.

S. K. Chang, G. Polese, S. Orefice & M. Tucci (1994): A methodology and interactive environment for iconic language design. International Journal of
Human-Computer Studies 41 (5). Pages 683-716. doi:10.1006/ijhc.1994.1078 Exclusion reasons: Q1-2 [IIL.ajk]Visual languages are specifically excluded.
Arthur Charlesworth (1987): The multiway rendezvous. ACM Transactions on Programming Languages and Systems 9 (3). Pages 350-366. doi:
10.1145/24039.24050 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

Baudouin Le Charlier & Pascal Van Hentenryck (1994): Experimental evaluation of a generic abstract interpretation algorithm for PROLOG. ACM

194

337.

338.

339.

340.

341.

342.

343.

344.

345.

346.

348.

349.

350.

351.

352.

353.

354.

355.

356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

Transactions on Programming Languages and Systems 16 (1). Pages 35-101. doi:10.1145/174625.174627 Exclusion reasons: Q1-2 [ILajk]Program analy-
sis technique.

Sarah Chasins (2011): Efficient implementation of the plaid language. In Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion. New York, NY, USA: ACM. Pages 209-210. doi:10.1145/2048147.2048211
Exclusion reasons: Q1-2 [IILajk]This article does not evaluate a language design decision for efficacy.

S. Chatel & F. Détienne (1993): Transfer Among Programming Languages: An Assessment of Various Indicators. In PPIG 1993. (Found in
http:/ /ppig.org/workshops/5th-programme.html.) Exclusion reasons: Q1-2 [IILajk]This article reports a study of transfer effect from a familiar pro-
gramming language to an unfamiliar one. Although the experimental setup could be used to answer PL design issue questions, the reported results are
not transferable to that domain.

Sophie Chatel & Frangoise Détienne (1996): Strategies in object-oriented design. Acta Psychologica 91 (3). Pages 245-269. doi:10.1016/0001-6918(95)
00058-5 http:/ /www.sciencedirect.com/science/article/pii/0001691895000585 Exclusion reasons: Q1-2 [IL.ajk]This article does not evaluate any lan-
guage design decisions.

Jarnie Chattratichart & Jasna Kuljis (2000): An assessment of visual representations for the flow of control’. In PPIG 2000. (Found in
http:/ /ppig.org/workshops/12th-programme.html.) Exclusion reasons: Q1-2 [IIL.ajk]|This article deals with nontextual programming, which is ex-
cluded under our protocol.

Jarinee Chattratichart & Jasna Kuljis (2000): A Comprehensibility Comparison of Three Visual Representations and a Textual Program in Two
Paradigms. Paper in Citeseer. http:/ /citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.87.434 Exclusion reasons: Q1-2 [IIL.ajk]This article compares
a textual program to visual programs. Since visual languages are excluded, there is no admissible language design decision at play.

B. D. Chaudhary & H. V. Sahasrabuddhe (1985): A study in dimensions of psychological complexity of programs. International Journal of Man-Machine
Studies 23 (2). Pages 113-133. doi:10.1016/50020-7373(85)80028-6 Exclusion reasons: Q1-2 [IL.ajk]Based on the abstract, this article does not evaluate
language design decisions.

T. E. Cheatham, Jr. (1963): Programming languages. Communications of the ACM 6 (7). Pages 391-395. doi:10.1145/366663.383390 Exclusion reasons:
Q5 [ILajk] This article does not aspire to empiricity.

Marina C. Chen (1986): A parallel language and its compilation to multiprocessor machines or VLS. In Proc. 13th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages (POPL). Pages 131-139. doi:10.1145/512644.512656 Exclusion reasons: Q1-2 [ILajk]Language exposition.

H. Chen (1995): Application of Object-oriented Programming in Simulation: A Simulation of Case Study Using Microsoft Visual C++. Technical Report
at Miami University Computer Science and Systems Analysis. http://hdlhandle.net/2374.MIA /258 Exclusion reasons: Q1-2 [ILajk]No language or
construct comparison; no PL relevance.

Yaofei Chen (2003): Programming Language Trends: An Empirical Study. . PhD at New Jersey Institute of Technology College of Computer Science.
http://library1.njit.edu/etd /2000s /2003 /njit-etd2003-106 /njit-etd2003-106.html Exclusion reasons: Q1-2 [ILajk]Stdies language evolution, does not
evaluate efficacy.

Yaofei Chen, R. Dios, A. Mili, Lan Wu & Kefei Wang (2005): An empirical study of programming language trends. Software, IEEE 22 (3). Pages 72-79.
doi:10.1109/MS.2005.55 Exclusion reasons: Q1-2 [ILajk]No PL design issue.

James Cheney & Christian Urban (2008): Nominal logic programming. ACM Transactions on Programming Languages and Systems 30 (4). doi:
10.1145/1387673.1387675 Exclusion reasons: Q1-2 [IL.ajk|[Formal theoretical study.

Wan-Hong S. Cheng & Virgil E. Wallentine (1989): DEBL: a knowledge-based language for specifying and debugging distributed programs. Commu-
nications of the ACM 32 (9). Pages 1079-1084. doi:10.1145/66451.66455 Exclusion reasons: Q1-2 [I.ajk]No PL design issue.

Yoonsik Cheon & Gary T. Leavens (2002): A Simple and Practical Approach to Unit Testing: The JML and JUnit Way. In Proc. ECOOP 2002 European
Conference on Object-Oriented Programming. Lecture Notes in Computer Science 2374. Pages 231-255. doi:10.1007/3-540-47993-7_10 Exclusion
reasons: Q1-2 [IIL.ajk]This article does not evaluate a language design decision, nor does it aspire to empiricity.

D. R. Cheriton & M. E. Wolf (1987): Extensions for multi-module records in conventional programming languages. In Proc. 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL). Pages 296-306. doi:10.1145/41625.41652 Exclusion reasons: Q5 [IILajk]This
paper has no aspiration to empiricity.

Shigeru Chiba (2000): Load-Time Structural Reflection in Java. In Proc. ECOOP 2000 European Conference on Object-Oriented Programming. Lecture
Notes in Computer Science 1850. Pages 313-336. doi:10.1007/3-540-45102-1_16 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.
Shigeru Chiba & Rei Ishikawa (2005): Aspect-Oriented Programming Beyond Dependency Injection. In Proc. ECOOP 2005 European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science 3586. Pages 121-143. doi:10.1007/11531142_6 Exclusion reasons: Q5 [IILajk]This
analytical-constructive paper does not aspire to empiricity.

SC Chiemeke, KC Ukaoha & SOP Oliomogbe (2006): An empirical comparison of Qbasic, FORTRAN, C, Pascal, C++, Visual Basic and Visual C++. The
Information Technologist 3 (1). Pages 63-75. http://www.ajol.info/index.php/ict/article/view /31964 Exclusion reasons: Q5 [IILajk]This article styles
itself as reporting an "empirical" comparison of several programming languages. In the study, a single well-defined algorithm has been implemented
(presumably once, presumably by one of the researchers) in each of the languages, and the resulting programs are compared. As the algorithm is well
specified, there isn’t much freedom left to the implementor, and thus this study is more about the implications of the languages in question (and thus
analytical) than about the contingent aspects of the world given the existing designs of the languages. The article is, thus, not empirical as that word is
used in this mapping study.

Brian Chin & Todd Millstein (2006): Responders: Language Support for Interactive Applications. In Proc. ECOOP 2006 European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science 4067. Pages 255-278. doi:10.1007/11785477_17 Exclusion reasons: Q5 [IIL.ajk]This
article includes two analytic-constructive "case studies" that are not empirical in nature.

Ruzanna Chitchyan, Phil Greenwood, Americo Sampaio, Awais Rashid, Alessandro Garcia & Lyrene Fernandes da Silva (2009): Semantic vs. syntactic
compositions in aspect-oriented requirements engineering: an empirical study. In Proceedings of the 8th ACM international conference on Aspect-
oriented software development. New York, NY, USA: ACM. Pages 149-160. doi:10.1145/1509239.1509260 Exclusion reasons: Q1-2 [IILajk]This article
deals with requirements, not programming.

Woojin Choi & J. Draper (2011): Unified Signatures for Improving Performance in Transactional Memory. In Parallel Distributed Processing Symposium
(IPDPS), 2011 IEEE International. Pages 817-827. doi:10.1109/IPDPS.2011.81 Exclusion reasons: Q1-2 [ILajk]This article does not evaluate any language
design decisions.

R. Christ, S. L. Halter, K. Lynne, S. Meizer, S.]. Munroe & M. Pasch (2000): San Francisco performance: A case study in performance for large-scale Java
applications. IBM Systems Journal 39 (1). Pages 4-20. doi:10.1147/5j.391.0004 Exclusion reasons: Q1-2 [Il.ajk][No PL comparison.

Aske Simon Christensen, Anders Moller & Michael I. Schwartzbach (2003): Extending Java for high-level Web service construction. ACM Transactions
on Programming Languages and Systems 25 (6). Pages 814-875. doi:10.1145/945885.945890 Exclusion reasons: Q5 [IILajk]This is a largely analytic-
constructive paper. The only part that is arguably empirical evaluates the implementation with no comparison. With respect to language design, the
paper has no aspiration to empiricity.

Yaohan Chu (1965): An ALGOL-like computer design language. Communications of the ACM 8 (10). Pages 607-615. doi:10.1145/365628.365650
Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Luke Church, Chris Nash & Alan Blackwell (2010): Liveness in Notation Use: From Music to Programming Spreadsheet Users?. In PPIG 2010. (Found
in http://ppig2010.org/index.php?title=Program.) http:/ /ppig.org/papers/22nd-UX-1.pdf Exclusion reasons: Q1-2 [IIL.ajk]This article does not eval-
uate language design decisions.

Douglas W. Clark & C. Cordell Green (1977): An empirical study of list structure in Lisp. Communications of the ACM 20 (2). Pages 78-87. doi:
10.1145/359423.359427 Exclusion reasons: Q1-2 [IL.ajk]Study of data patterns Lisp programs.

Lawrence Clark (1984): A linguistic contribution to GOTO-less programming. Communications of the ACM 27 (4). Pages 349-350. doi:10.1145/358027.
358043 Exclusion reasons: Q1-2 [IILajk]This article is a satirical exposition of a purported language feature.

Keith Clark & Steve Gregory (1986): PARLOG: parallel programming in logic. ACM Transactions on Programming Languages and Systems 8 (1). Pages
1-49. doi:10.1145/5001.5390 Exclusion reasons: Q1-2 [Il.ajk]Language exposition.

Tony Clark & Laurence Tratt (2009): Language factories. In OOPSLA “09: Proceeding of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications. Pages 949-955. doi:10.1145/1639950.1640062 Exclusion reasons: Q1-2 [ILajk]Abstract
indicates this is a position paper about how to develop DSLs more systematically than currently.

David G. Clarke, James Noble & John M. Potter (2001): Simple Ownership Types for Object Containment. In Proc. ECOOP 2001 European Confer-
ence on Object-Oriented Programming. Lecture Notes in Computer Science 2072. Pages 53-76. doi:10.1007/3-540-45337-7_4 Exclusion reasons: Q5
[IT.ajk]Formal discussion.

367.

368.

369.

370.

371.

372.

373.

374.

375.

376.

377.

378.

379.

380.

381.

382.

383.

384.

385.

386.

387.

388.

389.

390.

391.

392.

393.

394.

395.

396.

397.

398.

399.

195

Steven Clarke (2001): Evaluating a new programming language. In PPIG 2001. (Found in http://ppig.org/workshops/13th-programme.html.) Exclu-
sion reasons: Q3 [IILajk]This article reports a study evaluating a language evaluation method. Evaluating language design decisions is a part of that
but not the focus, and viewed as a language design decision evaluation, it is insufficiently reported here.

Dave Clarke & Tobias Wrigstad (2003): External Uniqueness Is Unique Enough. In Proc. ECOOP 2003 European Conference on Object-Oriented
Programming. Lecture Notes in Computer Science 2743. Pages 176-201. doi:10.1007/978-3-540-45070-2_9 Exclusion reasons: Q5 [IIL.ajk]This analytical-
constructive paper does not aspire to empiricity.

Jens Clafen, Viktor Engelmann, Gerhard Lakemeyer & Gabriele Roger (2008): Integrating Golog and Planning: An Empirical Evaluation. In Maurice
Pagnucco and Michael Thielscher (ed.) Proceedings of the Twelfth International Workshop on Non-Monotonic Reasoning. Pages 10-18. http://www.
cse.unsw.edu.au/~kr2008/NMR2008/ Exclusion reasons: Q1-2 [IILajk]If I understand this article correctly, it is comparing implementation techniques
for a single language, not language design alternatives.

Romain E. Cledat, Tushar Kumar & Santosh Pande (2011): Efficiently speeding up sequential computation through the n-way programming model.
In Proceedings of the 2011 ACM international conference on Object oriented programming systems languages and applications. New York, NY, USA:
ACM. Pages 537-554. doi:10.1145/2048066.2048109 Exclusion reasons: Q1-2 [IILajk]This article only evaluates performance with no relevance to efficacy.
Geoffrey Clemm & Leon Osterweil (1990): A mechanism for environment integration. ACM Transactions on Programming Languages and Sys-
tems 12 (1). Pages 1-25. doi:10.1145/77606.77607 Exclusion reasons: Q1-2 [IL.ajk]No PL design issue.

Curtis Clifton, Todd Millstein, Gary T. Leavens & Craig Chambers (2006): MultiJava: Design rationale, compiler implementation, and applications.
ACM Transactions on Programming Languages and Systems 28 (3). Pages 517-575. doi:10.1145/1133651.1133655 Exclusion reasons: Q3 [IIL.ajk]This
article does include in Section 5 a report of usage in the wild and received user feedback, which could be generously interpreted as an empirical study
on efficacy; however, the methodology of that study is not described at all.

Curtis Clifton, Gary T. Leavens & James Noble (2007): MAO: Ownership and Effects for More Effective Reasoning About Aspects. In Proc. ECOOP 2007
European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 4609. Pages 451-475. doi:10.1007/978-3-540-73589-2_22
Exclusion reasons: Q3 [IILajk]This article includes a self-styled "case study” that claims to provide "preliminary indications" in favour of the efficacy
of the proposed construct. What was done, exactly, remains unclear to me, especially considering that the data files linked to in the article have
disappeared from the web.

W. D. Climenson (1963): RECOL - a retrieval command language. Communications of the ACM 6 (3). Pages 117-122. doi:10.1145/366274.366342
Exclusion reasons: Q1-2 [ILajk]Language exposition only.

William Clinger & Jonathan Rees (1991): Macros that work. In Proc. 18th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL). Pages 155-162. doi:10.1145/99583.99607 Exclusion reasons: Q5 [II1.ajk]This article does not aspire to empiricity.

Cristian Coarfa, Yuri Dotsenko, Jason Eckhardt & John Mellor-Crummey (2004): Co-array Fortran Performance and Potential: An NPB Experimental
Study. Volume 2958.In Rauchwerger, Lawrence (ed.) Languages and Compilers for Parallel Computing.Springer Berlin / Heidelberg. Lecture Notes in
Computer Science. Pages 177-193. doi:10.1007/978-3-540-24644-2_12 Exclusion reasons: Q1-2 [ILajk]implementation issue.

Richard Cobbe & Matthias Felleisen (2005): Environmental acquisition revisited. In Proc. 32nd ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL). Pages 14-25. doi:10.1145/1040305.1040307 Exclusion reasons: Q5 [IL.ajk]Formal theoretical work.

E. E Codd, E. S. Lowry, E. McDonough & C. A. Scalzi (1959): Multiprogramming STRETCH: feasibility considerations. Communications of the
ACM 2 (11). Pages 13-17. doi:10.1145/368481.368502 Exclusion reasons: Q5 [I1L.ajk]This article does not aspire to empiricity.

Roberta Coelho, O Lemos, F Ferrari, A Staa & P Masiero (2009): On the robustness assessment of aspect oriented programs. In Proceedings of Third
Workshop on Assessment of Contemporary Modularization Techniques, Co-located with the 24th ACM Conference on Object-Oriented Program-
ming Systems and Applications, Orlando, Florida, USA. http://www.comp.lancs.ac.uk/~greenwop /ACoM.09/coelho.pdf Exclusion reasons: Q1-2
[IIL.ajk] This article does not evaluate any language design decisions.

Kenneth Cohen & J. H. Wegstein (1965): AXLE2: an axiomatic language for string transformations. Communications of the ACM 8 (11). Pages 657-661.
doi:10.1145/365660.365669 Exclusion reasons: Q5 [II.ajk]This article does not aspire to empiricity.

Jacques Cohen & Carl Zuckerman (1974): Two languages for estimating program efficiency. Communications of the ACM 17 (6). Pages 301-308.
doi:10.1145/355616.361015 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

Jacques Cohen & Timothy J. Hickey (1987): Parsing and compiling using Prolog. ACM Transactions on Programming Languages and Systems 9 (2).
Pages 125-163. doi:10.1145/22719.22946 Exclusion reasons: Q1-2 [ILajk|Language usage tutorial, no PL design relevance.

Jacques Cohen (1988): A view of the origins and development of Prolog. Communications of the ACM 31 (1). Pages 26-36. doi:10.1145/35043.35045
Exclusion reasons: Q1-2 [IIL.ajk]This article does not report a design-evaluative study.

Jacques Cohen (1990): Constraint logic programming languages. Communications of the ACM 33 (7). Pages 52-68. doi:10.1145/79204.79209 Exclusion
reasons: Q1-2 [IIL.ajk]This tutorial article does not report an evaluative study.

Tal Cohen & Joseph (Yossi) Gil (2004): Aspect]2EE = AOP + J2EE: Towards an Aspect Based, Programmable, and Extensible Middleware Framework.
In Proc. ECOOP 2004 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 3086. Pages 221-245. doi:10.1007/
978-3-540-24851-4_10 Exclusion reasons: Q5 [IILajk]This article introduces and discusses a new construction; it has no aspiration for empiricity.

Jerald D. Cole (1991): WHILE loops and the analogy of the single stroke engine. SIGCSE Bulletin 23 (3). Pages 20-22. doi:10.1145/126459.126466
Exclusion reasons: Q5 [I11.ajk]This article does not aspire to empiricity.

Christian Collberg, Clark Thomborson & Douglas Low (1998): Manufacturing cheap, resilient, and stealthy opaque constructs. In Proc. 25th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL). Pages 184-196. doi:10.1145/268946.268962 Exclusion reasons: Q1-2
[IIL.ajk] This article does not evaluate any language design decisions.

Trevor Collins & Pat Fung (1999): Evaluating Hank. In PPIG 1999. (Found in http://ppig.org/workshops/11th-programme.html.) Exclusion reasons:
Q1-2 [IIL.ajk] The language under evaluation is a visual language, and is excluded under our definition of PLs.

Melvin E. Conway (1958): Proposal for an UNCOL. Communications of the ACM 1 (10). Pages 5-8. doi:10.1145/368924.368928 Exclusion reasons: Q5
[IIL.ajk] This article is a language proposal with no empirical evaluation.

Melvin E. Conway (1961): Letters to the editor: ALGOL 60 comment. Communications of the ACM 4 (10). Pages 465. doi:10.1145/366786.366810
Exclusion reasons: Q5 [IILajk]This letter to the editor does not report an empirical study.

R. W. Conway & W. L. Maxwell (1963): CORC - the Cornell computing language. Communications of the ACM 6 (6). Pages 317-321. doi:10.1145/
366604.366651 Exclusion reasons: Q1-2 [I11.ajk]This is a language exposition together with a report of experience. It does not evaluate design decisions.
R. W. Conway, J. J. Delfausse, W. L. Maxwell & W. E. Walker (1965): CLP-the Cornell list processor. Communications of the ACM 8 (4). Pages 215-216.
doi:10.1145/363831.363840 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Robert P. Cook & Nitin Donde (1982): An experiment to improve operand addressing. In Proceedings of the first international symposium on Architec-
tural support for programming languages and operating systems. Pages 87-91. doi:10.1145/800050.801830 Exclusion reasons: Q1-2 [IIL.ajk]This article
discusses a language meant for automatic generation and thus is excluded under our protocol.

Curtis Cook, William Bregar & David Foote (1984): A preliminary investigation of the use of the cloze procedure as a measure of program understand-
ing. Information Processing & Management 20 (1-2). Pages 199-208. doi:10.1016/0306-4573(84)90050-5 Exclusion reasons: Q1-2 [ILajk]This article
investigates comprehension measurement and does not evaluate any language design decisions.

R. P. Cook (1989): An empirical analysis of the Lilith instruction set. Computers, IEEE Transactions on 38 (1). Pages 156-158. doi:10.1109/12.8740
Exclusion reasons: Q1-2 [IIL.ajk|The language studied is not intended for manual writing, and hence is excluded under our definition of programming
languages.

Daniel E. Cooke, Brad Nemanich & J. Nelson Rushton (2006): The Role of Theory and Experiment in Language Design-A 15 Year Perspective. In Tools
with Artificial Intelligence, 2006. ICTAI “06. 18th IEEE International Conference on. Pages 163-168. doi:10.1109/ICTAIL2006.112 Exclusion reasons: Q6
Q7 [IILajk]This retrospective article does not deal with empirical evidence. Although it does throw the word "experiment" around, those "experiments"
appear to be analytical-constructive explorations of the implications of an existing construct and thus not empirical in our sense.

Daniel E. Cooke, J. Nelson Rushton, Brad Nemanich, Robert G. Watson & Per Andersen (2008): Normalize, transpose, and distribute: An automatic
approach for handling nonscalars. ACM Transactions on Programming Languages and Systems 30 (2). doi:10.1145/1330017.1330020 Exclusion reasons:
Q1-2 Disagreement resolution result. [sel-2 kaijanaho]No empiricity. [sel-2.tirronen]Presents a language, does not measure other than by telling authors
experiences. Experiences only.

M. J. Coombs, R. Gibson & J. L. Alty (1982): Learning a first computer language: strategies for making sense. International Journal of Man-Machine
Studies 16 (4). Pages 449-486. doi:10.1016/5S0020-7373(82)80051-5 Exclusion reasons: Q1-2 [ILajk]This article does not evaluate language design deci-
sions.

J. Cordsen, J. Nolte & W. Schroder-Preikschat (1998): Experiences developing a virtual shared memory system using high-level object paradigms.

196

400.

401.

402.

403.

404.

405.

406.

407.

408.

409.

410.

411.

412

413.

414.

415.

416.

417.

418.

419.

420.

421.

422.

423.

424.

425.

426.

427.

428.

429.

In Proc. ECOOP’98 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 1445. Pages 285-306. doi:10.1007/
BFb0054096 Exclusion reasons: Q1-2 [ILajk]No PL relevance.

Antonio Corradi, Letizia Leonardi & Franco Zambonelli (2001): Parallel object allocation via user-specified directives: A case study in traffic simulation.
Parallel Computing 27 (3). Pages 223-241. doi:10.1016/S0167-8191(00)00105-8 http://www.sciencedirect.com/science/article/pii/S0167819100001058
Exclusion reasons: Q1-2 [IILajk]In this study, there is no comparison design.

C. L. Corritore & S. Wiedenbeck (2000): Direction and scope of comprehension-related activities by procedural and object-oriented programmers: an
empirical study. In Program Comprehension, 2000. Proceedings. IWPC 2000. 8th International Workshop on. Pages 139-148. doi:10.1109/WPC.2000.
852488 Exclusion reasons: Q1-2 [I.ajk]No PL design issue.

CYNTHIA L. CORRITORE & SUSAN WIEDENBECK (2001): An exploratory study of program comprehension strategies of procedural and object-
oriented programmers. International Journal of Human-Computer Studies 54 (1). Pages 1-23. doi:10.1006/ijhc.2000.0423 Exclusion reasons: Q1-2
[ILajk]This article seems not to evaluate language design decisions.

Corinna Cortes, Kathleen Fisher, Daryl Pregibon, Anne Rogers & Frederick Smith (2004): Hancock: A language for analyzing transactional data streams.
ACM Transactions on Programming Languages and Systems 26 (2). Pages 301-338. doi:10.1145/973097.973100 Exclusion reasons: Q1-2 [IIL.ajk]This
language exposition paper does not evaluate its construct.

John Corwin, David F. Bacon, David Grove & Chet Murthy (2003): MJ: a rational module system for Java and its applications. In OOPSLA "03:
Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented programing, systems, languages, and applications. Pages 241-254.
doi:10.1145/949305.949326 Exclusion reasons: Q5 [IIL.ajk]This article contains an “experiment" (as the article calls it) which consists of the authors
applying their new system to an existing program. That is exploration of the implications of the construct and therefore not empirical.

Thomas Cottenier, Aswin van den Berg & Tzilla Elrad (2007): Joinpoint Inference from Behavioral Specification to Implementation. In Proc. ECOOP 2007
European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 4609. Pages 476-500. doi:10.1007/978-3-540-73589-2_23
Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Neal S. Coulter & Norman H. Kelly (1986): Computer instruction set usage by programmers: an empirical investigation. Communications of the
ACM 29 (7). Pages 643-647. doi:10.1145/6138.6148 Exclusion reasons: Q1-2 [IILajk]This article reports an empirical study about usage patterns of
assembly language opcodes in actual human-written code. It does not evaluate a design decision.

S. Counsell & P. Newson (2000): Use of friends in C++ software: an empirical investigation. Journal of Systems and Software 53 (1). Pages 15-21.
doi:10.1016/50164-1212(00)00004-2 Exclusion reasons: Q1-2 [II.ajk]Feature usage study, no language or feature comparison.

Michael A. Covington (1984): A pedagogical disadvantage of repeat and while. SIGPLAN Notices 19 (8). Pages 85-86. doi:10.1145/988241.988247
Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Anthony Cox, Maryanne Fisher, Diana Smith & Josipa Granic (2004): Learning and using formal language. In PPIG 2004. (Found in
http://ppig.org/workshops/16th-programme.html.) Exclusion reasons: Q1-2 [IIL.ajk]This article does not evaluate a language design decision.

S. Crespi-Reghizzi & R. Morpurgo (1970): A language for treating graphs. Communications of the ACM 13 (5). Pages 319-323. doi:10.1145/362349.
362366 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

S. Crespi-Reghizzi, M. A. Melkanoff & L. Lichten (1973): The use of grammatical inference for designing programming languages. Communications of
the ACM 16 (2). Pages 83-90. doi:10.1145/361952.361958 Exclusion reasons: Q1-2 [ILajk]Grammar discovery; no PL design issue.

Cyrus .J. Creveling (1968): Experimental Use of A Programming Language (APL) at the Goddard Space Flight Center.. at National Aeronautics and
Space Administration, Goddard Space Flight Center. http://eric.ed.gov/ERICWebPortal /detail?accno=ED067251 Exclusion reasons: Q1-2 [IL.ajk]No
comparison.

Adrienne Critcher (1979): The functional power of parameter passage mechanism. In Proc. 6th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL). Pages 158-168. doi:10.1145/567752.567767 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.
Adrienne Critcher (1982): On the ability of structures to store and access information. In Proc. 9th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL). Pages 366-378. doi:10.1145/582153.582191 Exclusion reasons: Q5 Q7 [IIL.ajk]This is an analytic paper with no
aspiration to empiricity.

Lobel Crnogorac, Anand S. Rao & Kotagiri Ramamohanarao (1998): Classifying inheritance mechanisms in concurrent object-oriented programming.
In Proc. ECOOP’98 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 1445. Pages 571-600. doi:10.1007/
BFb0054108 Exclusion reasons: Q5 [IL.ajk]Formal theoretical study.

Joseph W. Croghan, Myron L. Cramer & Joan Hardy (1990): Implementing advanced artificial intelligence concepts in Ada: a case study of a prototype
expert system for a real-time electronic warfare application. In Proceedings of the seventh Washington Ada symposium on Ada. New York, NY, USA:
ACM. Pages 255-259. doi:10.1145/327011.327115 Exclusion reasons: Q1-2 [IILajk]This article reports on a software project; there was no PL design issue
involved.

D. Crookes & J. W. G. Elder (1984): An experiment in language design for distributed systems. Software: Practice and Experience 14 (10). Pages 957-971.
doi:10.1002/spe.4380141006 Exclusion reasons: Q3 [IIL.ajk]This article is a language exposition with an analytical approach. There is a brief section
about evaluation but it contains few details as to its actual methodology. No fuller report has been identified.

M. E. Crosby & J. Stelovsky (1990): How do we read algorithms? A case study. Computer 23 (1). Pages 25-35. doi:10.1109/2.48797 Exclusion reasons:
Q1-2 [ILajk]Study of programmer behaviour. No PL design issue.

Martha E. Crosby, Jean Scholtz & Susan Wiedenbeck (2002): The Roles Beacons Play in Comprehension for Novice and Expert Programmers. In PPIG
2002. (Found in http://ppig.org/workshops/14th-programme.html.) Exclusion reasons: Q1-2 [IILajk|This article does not evaluate any language
design decisions.

L. A. Crowl (1988): Shared memory multiprocessors and sequential programming languages: a case study. Volume 2.In System Sciences, 1988. Vol.Il.
Software Track, Proceedings of the Twenty-First Annual Hawaii International Conference on. Pages 103-108. doi:10.1109/HICSS.1988.11795 Exclusion
reasons: Q1-2 [IL.ajk]No comparison.

Lawrence A. Crowl & Thomas J. LeBlanc (1994): Parallel programming with control abstraction. ACM Transactions on Programming Languages and
Systems 16 (3). Pages 524-576. doi:10.1145/177492.177584 Exclusion reasons: Q5 [IIL.ajk]This article contains two empirical sections. The first is Section
4.2, in which performance measurements are made regarding an example program. Given its nature as an example, it does not bear on the efficacy
question. The second is Section 5.3 evaluating the implementation discussed in Section 5; its stated goal is to evaluate the implementation, and thus
also does not bear on the efficacy question.

José A. Cruz-Lemus, Marcela Genero, M. Esperanza Manso, Sandro Morasca & Mario Piattini (2009): Assessing the understandability of UML statechart
diagrams with composite states—A family of empirical studies. Empirical Software Engineering 14 (6). Pages 685-719. doi:10.1007/510664-009-9106-z
Exclusion reasons: Q1-2 [ILajk]A graphical language is not within our PL definition.

David E. Culler, Seth Copen Goldstein, Klaus Erik Schauser & Thorsten von~Eicken (1992): Empirical Study of a Dataflow Language on the CM-
5. In Proc. of the Dataflow Workshop, 19th Int'l Symposium on Computer Architecture. Pages 187-210. http://www.cs.cmu.edu/~seth/papers/
culler-wdc92.pdf Exclusion reasons: Q1-2 [IILajk|Evaluated based on http:/ /reference kfupm.edu.sa/content/e/i/eicken__empirical_study_of_a_-
dataflow_la_97680.pdf — this article is concerned with implementation efficiency on a particular machine type, only.

Joseph E. Cunningham (1963): COBOL. Communications of the ACM 6 (3). Pages 79-82. doi:10.1145/366274.366290 Exclusion reasons: Q5 [IIl.ajk]This
article does not aspire to empiricity.

Tom Van Cutsem, Alexandre Bergel, Stéphane Ducasse & Wolfgang De Meuter (2009): Adding State and Visibility Control to Traits Using Lexical
Nesting. In Proc. ECOOP 2009 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 5653. Pages 220-243.
doi:10.1007/978-3-642-03013-0_11 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Krzysztof Czarnecki & Ulrich W. Eisenecker (1999): Synthesizing Objects. In ECOOP'99 European Conference on Object-Oriented Programming.
Lecture Notes in Computer Science 1628. Pages 18-42. doi:10.1007/3-540-48743-3_2 Exclusion reasons: Q1-2 [IL.ajk]Uses the language as a tool, not as
an evaluee.

Ole-Johan Dahl & Kristen Nygaard (1966): SIMULA: an ALGOL-based simulation language. Communications of the ACM 9 (9). Pages 671-678.
doi:10.1145/365813.365819 Exclusion reasons: Q1-2 [I.ajk]Language exposition.

J. Dalbey & M. C. Linn (1985): The demands and requirements of computer programming: A literature review. Journal of Educational Computing
Research 1 (3). Pages 253-274. doi:10.2190/BC76-8479-YMOX-7FUA Exclusion reasons: Q1-2 [IILajk]This article summarizes research on teaching
programming.

J. Daly, J. Miller, A. Brooks, M. Roper & M. Wood (1996): An empirical evaluation of object-oriented practioners’ experiences. In Empirical studies of
programmers: sixth workshop.Ablex. Pages 267. Exclusion reasons: Q1-2 [IILajk]More detail about the study is avallable in refs Daly et al 1995a and
Daly 1995b (both available via http:/ /personal.cis.strath.ac.uk/~murray/efocswww / reports.html). The study focuses on object-oriented programming

430.

431.

432.

433.

434.

435.

436.

437.

438.

439.

440.

442.

443.

444.

445.

446.

448.

449.

450.

451.

452.

453.

454.

455.

456.

457.

458.

459.

197

at a fairly abstract level. Although specific languages are mentioned, the study does not present a PL design issue.

Scott Danforth & Ira R. Forman (1994): Reflections on metaclass programming in SOM. In OOPSLA "94: Proceedings of the ninth annual conference
on Object-oriented programming systems, language, and applications. Pages 440-452. doi:10.1145/191080.191149 Exclusion reasons: Q5 [IIL.ajk]This
article does not aspire to empiricity.

Daniel S. Dantas & David Walker (2006): Harmless advice. In Proc. 33nd ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages (POPL). Pages 383-396. doi:10.1145/1111037.1111071 Exclusion reasons: Q3 Q5 [IILajk]|This article mostly does not aspire to empiricity, and the
"case studies" are reported very vaguely.

Daniel S. Dantas, David Walker, Geoffrey Washburn & Stephanie Weirich (2008): AspectML: A polymorphic aspect-oriented functional programming
language. ACM Transactions on Programming Languages and Systems 30 (3). doi:10.1145/1353445.1353448 Exclusion reasons: Q1-2 [ILajk]Language
exposition.

F. Dantas (2011): Reuse vs. maintainability: revealing the impact of composition code properties. In Software Engineering (ICSE), 2011 33rd Interna-
tional Conference on. Pages 1082 -1085. doi:10.1145/1985793.1986001 Exclusion reasons: Q1-2 [I1L.ajk]This article presents a research proposal and does
not report a (completed) study.

Jared L. Darlington (1990): Search direction by goal failure in goal-oriented programming. ACM Transactions on Programming Languages and Sys-
tems 12 (2). Pages 224-252. doi:10.1145/78942.78946 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

Eva Darulova & Viktor Kuncak (2011): Trustworthy numerical computation in Scala. In Proceedings of the 2011 ACM international conference on
Object oriented programming systems languages and applications. New York, NY, USA: ACM. Pages 325-344. doi:10.1145/2048066.2048094 Exclusion
reasons: Q1-2 [IILajk]A library can sometimes seen as a language extension; it is quite true of numerical types that could easily be built in a language
and are only left out for prudential reasons or because the types in question are newer than the language. For that reason, this article concerns itself
with a language design decision, but it does not evaluate its efficacy in any meaningful way; the only evaluations are about technical performance, with
no control comparison provided.

John M. Daughtry & John M. Carroll (2010): Perceived Self-Efficacy and APIs. In PPIG 2010. (Found in http://ppig2010.org/index.php?title=Program.)
Exclusion reasons: Q1-2 [IILajk]This article does not evaluate language design decision efficacy.

Cristina David & Wei-Ngan Chin (2011): Immutable specifications for more concise and precise verification. In Proceedings of the 2011 ACM in-
ternational conference on Object oriented programming systems languages and applications. New York, NY, USA: ACM. Pages 359-374. doi:
10.1145/2048066.2048096 Exclusion reasons: Q1-2 [IlLajk]This article evaluates its construct only by verification overhead measurements; there is
no efficacy question presented.

Simon P. Davies (1993): Models and theories of programming strategy. International Journal of Man-Machine Studies 39 (2). Pages 237-267. doi:
10.1006/imms.1993.1061 Exclusion reasons: Q1-2 [ITL.ajk]|This article reviews empirical literature on program comprehension and generation strategy
but has no direct relevance on language design evaluation.

J. Steve Davis (1989): Usability of SQL and menus for database query. International Journal of Man-Machine Studies 30 (4). Pages 447-455. doi:
10.1016/5S0020-7373(89)80027-6 Exclusion reasons: Q1-2 [ILajk]Both SQL and menus are excluded from being considered programming languages
here.

Kei Davis, Yannis Smaragdakis & Jorg Striegnitz (2002): Multiparadigm Programming with Object-Oriented Languages. In ECOOP 2002 European
Conference on Object-Oriented Programming Workshop Reader. Lecture Notes in Computer Science 2548. Pages 154-159. doi:10.1007/3-540-36208-8_
13 Exclusion reasons: Q1-2 [III.ajk] This workshop summary does not report a study.

Arnab De & Deepak D’Souza (2012): Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates. Volume 7313.In Noble, James (ed.)
ECOOP 2012 - Object-Oriented Programming.Springer Berlin / Heidelberg. Lecture Notes in Computer Science. Pages 665-687. do0i:10.1007/
978-3-642-31057-7_29 Exclusion reasons: Q1-2 [IILajk]While sensitivity improvements may have efficacy relevance, the connection is too weak to
serve as a basis for inclusion.

Antonio Wendell De Oliveira Rodrigues, Frédéric Guyomarc’h & Jean-Luc Dekeyser (2011): Programming Massively Parallel Architectures using
MARTE: a Case Study. In 2nd Workshop on Model Based Engineering for Embedded Systems Design (M-BED 2011) on Date Conference 2011. http:
//hal.inria.fr/inria-00578646 /en/ Exclusion reasons: Q1-2 [IILajk]The language being (perhaps) evaluated is a variant of UML and thus not textual.
Adrienne Decker (2003): A tale of two paradigms. Journal of Computing Sciences in Colleges 19 (2). Pages 238-246. http://dl.acm.org/citation.cfm?
1d=948785.948820 Exclusion reasons: Q1-2 [IILajk]This article studies teaching strategy, not language design decisions.

Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D'Hondt & Wolfgang De Meuter (2005): Ambient-oriented programming. In OOPSLA
’05: Companion to the 20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications. Pages 31-40.
doi:10.1145/1094855.1094867 Exclusion reasons: Q1-2 [ILajk]Exploration of the design space; no evaluation.

Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo D'Hondt & Wolfgang De Meuter (2006): Ambient-Oriented Programming in AmbientTalk.
In Proc. ECOOP 2006 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 4067. Pages 230-254. doi:10.1007/
11785477 _16 Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Pierpaolo Degano, Corrado Priami, Lone Leth & Bent Thomsen (1997): Analysis of Facile programs: A case study. Volume 1192.In Dam, Mads (ed.)
Analysis and Verification of Multiple-Agent Languages.Springer Berlin / Heidelberg. Lecture Notes in Computer Science. Pages 345-369. doi:10.1007/
3-540-62503-8_16 Exclusion reasons: Q5 [II.ajk]Formal theoretical work.

Markus Degen, Peter Thiemann & Stefan Wehr (2007): Tracking Linear and Affine Resources with Java(X). In Proc. ECOOP 2007 European Conference
on Object-Oriented Programming. Lecture Notes in Computer Science 4609. Pages 550-574. doi:10.1007/978-3-540-73589-2_26 Exclusion reasons: Q5
[ILajk]Formal development of a feature.

Anthony H. Dekker (1994): The game of life: a CLEAN programming tutorial and case study. SIGPLAN Notices 29 (9). Pages 91-114. doi:10.1145/
185009.185032 Exclusion reasons: Q5 [II.ajk]This tutorial article has no empirical content.

D. P. Delorey, C. D. Knutson & S. Chun (2007): Do Programming Languages Affect Productivity? A Case Study Using Data from Open Source Projects.
In Emerging Trends in FLOSS Research and Development, 2007. FLOSS ‘07. First International Workshop on. Pages 8. doi:10.1109/FLOSS.2007.5
Exclusion reasons: Q1-2 [IILajk]This article reports a study that aims to determine whether the choice of a programming language affects programmer
productivity. It has no relevance to programming language design, except so far as it motivates it.

Daniel P. Delorey, Charles D. Knutson & Mark Davies (2009): Mining Programming Language Vocabularies from Source Code. In PPIG 2009. (Found
in http:/ /ppig.org/workshops/21st-programme.html.) Exclusion reasons: Q5 [IILajk]This empirical study is concerned with language usage patterns,
and does not evaluate design decisions.

Alan Demers, James Donahue & Glenn Skinner (1978): Data types as values: polymorphism, type-checking, encapsulation. In Proc. 5th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL). Pages 23-30. doi:10.1145/512760.512764 Exclusion reasons: Q5 [IILajk]This
article does not aspire to empiricity.

Alan Demers & James Donahue (1980): "Type-completeness” as a language principle. In Proc. 7th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL). Pages 234-244. doi:10.1145/567446.567469 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.
Camil Demetrescu, Irene Finocchi & Andrea Ribichini (2011): Reactive imperative programming with dataflow constraints. In Proceedings of the
2011 ACM international conference on Object oriented programming systems languages and applications. New York, NY, USA: ACM. Pages 407-426.
doi:10.1145/2048066.2048100 Exclusion reasons: Q5 [IIL.ajk]Empirical evaluation focuses on performance only.

Linda G. DeMichiel & Richard P. Gabriel (1987): The Common Lisp Object System: An Overview. In Proc. ECOOP’87 European Conference on
Object-Oriented Programming. Lecture Notes in Computer Science 276. Pages 151-170. doi:10.1007/3-540-47891-4_15 Exclusion reasons: Q1-2
[IL.ajk]Language exposition.

Rick DeNatale, Charles Irby, John LaLonde, Burton Leathers & Reed Phillips (1990): OOP in the real world. In OOPSLA/ECOOP '90: Proceedings
of the European conference on object-oriented programming and Object-oriented programming systems, languages, and applications. Pages 299-302.
doi:10.1145/97945.97981 Exclusion reasons: Q1-2 [II.ajk]This article does not report a study.

S. V. Denisenko (1988): Quantitative evaluation of the efficiency of static semantic program verification. Programming and computer software 14 (3).
Pages 143-150. Exclusion reasons: Q5 [IILajk]This article does not aspire to empiricity.

Pierre-Malo Deniélou & Nobuko Yoshida (2011): Dynamic multirole session types. In Proc. 38th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages (POPL). Pages 435-446. doi:10.1145/1926385.1926435 Exclusion reasons: Q5 [Il.ajk]Formal type theory development, and
some implementation discussion.

B. T. Denvir (1979): On orthogonality in programming languages. SIGPLAN Notices 14 (7). Pages 18-30. doi:10.1145/954245.954246 Exclusion reasons:
Q5 [IILajk]This article does not aspire to empiricity.

F DETIENNE (1989): A REVIEW OF PSYCHOLOGICAL STUDIES ON THE COMPREHENSION OF COMPUTER-PROGRAMS. TSI-TECHNIQUE ET

198

460.

461.

462.

463.

464.

465.

466.

467.

468.

469.

470.

471.

472.

473.

474.

475.

476.

477.

478.

479.

480.

481.

482.

483.

484.

485.

486.

487.

488.

489.

SCIENCE INFORMATIQUES 8 (1). Pages 5-20. Exclusion reasons: Q4 [ILajk]In French despite the English title returned by Web of Science.

A.van Deursen (1997): Domain-Specific Languages versus Object-Oriented Frameworks: A Financial Engineering Case Study. In Proceedings Smalltalk
and Java in Industry and Academia, STJA’97. Pages 35-39. http:/ /homepages.cwi.nl/ ~arie/papers/stja97.pdf Exclusion reasons: Q5 [IIL.ajk]This article
is analytical and has no empirical aspirations.

Robert B. K. Dewar, Ronald R. Hochsprung & William S. Worley (1969): The IITRAN programming language. Communications of the ACM 12 (10).
Pages 569-575. doi:10.1145/363235.363257 Exclusion reasons: Q1-2 [IIL.ajk]This is a language exposition.

Robert B. K. Dewar, Arthur Grand, Ssu-Cheng Liu, Jacob T. Schwartz & Edmond Schonberg (1979): Programming by Refinement, as Exemplified by
the SETL Representation Sublanguage. ACM Transactions on Programming Languages and Systems 1 (1). Pages 27-49. doi:10.1145/357062.357064
Exclusion reasons: Q1-2 [ILajk]Language exposition

Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida & Sophia Drossopoulou (2006): Session Types for Object-Oriented Languages.
In Proc. ECOOP 2006 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 4067. Pages 328-352. doi:10.1007/
11785477_20 Exclusion reasons: Q5 [IL.ajk]Formal theoretical study.

Mohan Dhawan, Chung-chieh Shan & Vinod Ganapathy (2012): Enhancing JavaScript with Transactions. Volume 7313.In Noble, James (ed.)
ECOOP 2012 — Object-Oriented Programming.Springer Berlin / Heidelberg. Lecture Notes in Computer Science. Pages 383-408. do0i:10.1007/
978-3-642-31057-7_18 Exclusion reasons: Q1-2 [IIL.ajk]The evaluations in this paper mostly try to show that the technology does what it’s supposed to
do with modest performance cost. There’s no insight into efficacy.

Dinakar Dhurjati, Sumant Kowshik & Vikram Adve (2006): SAFECode: enforcing alias analysis for weakly typed languages. In Proceedings of the
2006 ACM SIGPLAN conference on Programming language design and implementation. New York, NY, USA: ACM. PLDI '06. Pages 144-157. doi:
10.1145/1133981.1133999 Exclusion reasons: Q1-2 [IILajk]This article studies something that could be characterised as an implementation technique or
a static analysis technique but does not really qualify for a language design decision.

Ricardo Dias, Dino Distefano, Joao Seco & Joao Lourengo (2012): Verification of Snapshot Isolation in Transactional Memory Java Programs. Volume
7313.In Noble, James (ed.) ECOOP 2012 - Object-Oriented Programming.Springer Berlin / Heidelberg. Lecture Notes in Computer Science. Pages
640-664. doi:10.1007/978-3-642-31057-7_28 Exclusion reasons: Q1-2 [II.ajk]The (arguably) empirical evaluation focuses only on verification overhead,
with no efficacy implications.

Sylvia Dieckmann & Urs Holzle (1999): A study of the Allocation Behavior of the SPECjvm98 Java Benchmarks. In ECOOP’99 European Conference
on Object-Oriented Programming. Lecture Notes in Computer Science 1628. Pages 92-115. doi:10.1007/3-540-48743-3_5 Exclusion reasons: Q1-2
[IL.ajk]Program behaviour study, no PL design issue.

Larry Ramon Diesen (1968): Some Applications of an Experimental Language for Doing Symbolic Mathematics. at The American University. Exclusion
reasons: Q1-2 [IIL.ajk]This article does not aspire to empiricity; its evaluation of the language is merely analytic in nature.

Werner Dietl, Sophia Drossopoulou & Peter Miiller (2007): Generic Universe Types. In Proc. ECOOP 2007 European Conference on Object-Oriented
Programming. Lecture Notes in Computer Science 4609 . Pages 28-53. doi:10.1007/978-3-540-73589-2_3 Exclusion reasons: Q1-2 [ILajk]Type theory
formal development, based on the abstract.

Werner Dietl, Michael D. Ernst & Peter Miiller (2011): Tunable Static Inference for Generic Universe Types. In Proc. ECOOP 2010 European Conference
on Object-Oriented Programming. Lecture Notes in Computer Science 6813. Pages 333-357. doi:10.1007/978-3-642-22655-7_16 Exclusion reasons: Q1-2
[ILajk]Implementation issue.

Suzanne W. Dietrich (1992): Shortest path by approximation in logic programs. ACM Transactions on Programming Languages and Systems 1 (2). Pages
119-137. doi:10.1145/151333.151377 Exclusion reasons: Q5 [IIL.ajk|This paper discusses algorithm issues in light of changes in language semantics.
However, the approach is analytical, not empirical.

Jens Dietrich, Catherine McCartin, Ewan Tempero & Syed Shah (2010): Barriers to Modularity - An Empirical Study to Assess the Potential for Modu-
larisation of Java Programs. Volume 6093.In Heineman, George and Kofron, Jan and Plasil, Frantisek (ed.) Research into Practice — Reality and Gaps.
Lecture Notes in Computer Science. Pages 135-150. doi:10.1007/978-3-642-13821-8_11 Exclusion reasons: Q1-2 [IIL.ajk]This article does not evaluate
any language design decisions.

Danny Dig, John Marrero & Michael D. Ernst (2011): How do programs become more concurrent: a story of program transformations. In Proceedings of
the 4th International Workshop on Multicore Software Engineering. New York, NY, USA: ACM. IWMSE "11. Pages 43-50. doi:10.1145/1984693.1984700
Exclusion reasons: Q1-2 [IL.ajk]This article examines program evolution, not any language design decisions.

E. W. Dijkstra (1961): Letter to the editor: defense of ALGOL 60. Communications of the ACM 4 (11). Pages 502-503. doi:10.1145/366813.366844
Exclusion reasons: Q1-2 [IILajk]|This letter to the editor does not report a study.

E. W. Dijkstra (1965): Programming Considered as a Human Activity. In Proc. IFIP Congress I. Exclusion reasons: Q5 Q6 [IIL.ajk]This article does not
aspire to empiricity.

Edsger W. Dijkstra (1968): Letters to the editor: go to statement considered harmful. Communications of the ACM 11 (3). Pages 147-148. doi:10.1145/
362929.362947 Exclusion reasons: Q5 [IILajk]This famous letter to the editor does not aspire to empiricity.

Edsger W. Dijkstra (1975): Guarded commands, nondeterminacy and formal derivation of programs. Communications of the ACM 18 (8). Pages
453-457. doi:10.1145/360933.360975 Exclusion reasons: Q1-2 [ILajk]Language exposition, theoretical discussion

A. A. diSessa & H. Abelson (1986): Boxer: a reconstructible computational medium. Communications of the ACM 29 (9). Pages 859-868. doi:10.1145/
6592.6595 Exclusion reasons: Q1-2 [IIL.ajk]This article introduces a programming system. The language discussed in it is in essential respects graphical
and thus misses our definition of a PL..

W. B. Dobrusky & T. B. Steel (1961): Universal computer-oriented language. Communications of the ACM 4 (3). Pages 138. doi:10.1145/366199.366220
Exclusion reasons: Q5 [IILajk]This very brief report does not appear to describe empirical research.

Simon Dobson & Brian Matthews (2000): lonic Types. In Proc. ECOOP 2000 European Conference on Object-Oriented Programming. Lecture Notes in
Computer Science 1850. Pages 296-312. doi:10.1007/3-540-45102-1_15 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

Mahesh Dodani & Chung-Shin Tsai (1992): ACTS: A type system for object-oriented programming based on abstract and concrete classes. In Proc.
ECOOP’92 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 615. Pages 308-328. doi:10.1007/BFb0053044
Exclusion reasons: Q5 [IL.ajk]Formal type-theoretical work.

Jesse Doherty, Laurie Hendren & Soroush Radpour (2011): Kind analysis for MATLAB. In Proceedings of the 2011 ACM international conference on
Object oriented programming systems languages and applications. New York, NY, USA: ACM. Pages 99-118. doi:10.1145/2048066.2048077 Exclusion
reasons: Q1-2 [IILajk]|This article deals with static analysis (for automatic program comprehension) of a single language; there is no issue regarding
language design decisions.

Norihisa Doi, Yasushi Kodama & Ken Hirose (1988): An Implementation of an Operating System Kernel using Concurrent Object Oriented Language
ABCL/c+. In Proc. ECOOP’88 European Conference on Object-Oriented Programming. Lecture Notes in Computer Science 322. Pages 250-266. doi:
10.1007 /3-540-45910-3_15 Exclusion reasons: Q5 [IIL.ajk]This article describes a study in which an operating system is rewritten in another language, in
order to show that the target language is capable of such use. This is clearly exploration of the language design’s implications and thus is not empirical
in our sense.

James Donahue & Alan Demers (1985): Data types are values. ACM Transactions on Programming Languages and Systems 7 (3). Pages 426-445.
doi:10.1145/3916.3987 Exclusion reasons: Q5 [IIL.ajk]This article does not aspire to empiricity.

Christophe Dony (1988): An Object-oriented Exception Handling System for an Object-oriented Language. In Proc. ECOOP’88 European Conference on
Object-Oriented Programming. Lect