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Erilaiset kieliteknologiasovellukset ovat olleet jo vuosikymmeniä arkipäiväises-
sä käytössä. Esimerkiksi ennustava tekstinsyöttö ja automaattinen korjaus ovat 
olleet käytössä jo vuosikymmeniä. Puheen tunnistus ja kielen automaattinen 
kääntäminen ovat puolestaan hieman uudempia sovelluksia. Tieteenalana kieli-
teknologia on vuosikymmeniä vanha, mutta silti koneilla on vielä monesti vai-
keuksia ymmärtää luonnollisia kieliä. Tämän tutkimuksen tavoite on kartoittaa 
koneiden kykyä annotoida tekstiä automaattisesti kun käsiteltävä aineisto sisäl-
tää slangia. Tutkimus sisältää empiirisen kokeen automaattisten annotointialgo-
rimien toiminnasta. Kielen prosessointi on myös nykyään käytössä olevilla al-
goritmeilla verrattain raskasta. Osa sovelluksista voidaan kuitenkin suorittaa 
pilvipalveluissa. Eurooppalaisten kielien prosessointi nykyalgoritmeilla on koh-
tuullisen hyvällä tasolla verrattuna moniin muihin kieliin. Tähän syynä on 
huomattavasti laajempi taustatyö. Vaikka monet sovellukset onnistuisivat usein 
ymmärtämään luonnollista yleiskieltä, niin slangin prosessointi on huomatta-
vasti hankalampaa. Pääsyyt slangin prosessoinnin haasteellisuudelle ovat slan-
gitutkimuksen vähäisyys kieliteknologioihin liittyen sekä slangin monesti 
kompleksisempi luonne. Automaattinen simultaanitulkkaus on jo jossain mää-
rin mahdollista nykyaikaisilla kieliteknologiasovelluksilla. Yksi tapa arvioida 
tiettyä kieliteknologiaa on analysoida taustalla olevaa sanaluokkajäsentäjää, 
jonka tehtävä on annotoida tekstifragmentteja. Tämän tutkimuksen tutkimus-
ongelmana on selvittää n-gram algoritmin suorityskyky muihin käytössä ole-
viin algoritmeihin nähden slangia annotoitaessa. Tilastollisia lähestymistapoja 
käytettäessä myös taustalla oleva manuaalisen jäsentämisen laajuus vaikuttaa 
merkittävästi sanaluokkajäsentäjän toimintaan. Eurooppalaiset kielet voidaan 
prosessoida monesti luotettavammin tilastollisilla menetelmillä, kun taas esi-
merkiksi Etelä-Intian kielet, kuten Hindi, ovat monesti luotettavampia proses-
soida sääntöihin perustuvilla menetelmillä. Englanninkieli voidaan luonnolli-
sessa muodossaan annotoida automaattisesti 97% tarkkudella; englanninkieli-
sen slangin automaattinen annotointi saavuttaa puolestaan vain 93% tarkkusta-
son. Tutkimustuloksista voidaan todeta, että vaikka algoritmin valinta vaikut-
taa osaltaan annotoinnin tarkkuuteen, niin sääntöihin perustuvat menetelmät 
ovat tärkeä lisä slangin annotoinnissa. Tärkein sääntöihin perustuva lisämene-
telmä on sanojen klusterointi. 

Asiasanat: Automaattinen sanaluokkajäsennys, Markovin piilomalli, Luonnol-
listen kielten käsittely, Algoritmit, Koneoppiminen, Kieliteknologiat 



ABSTRACT 

Korolainen, Valtteri 
Part-of-Speech Tagging in Written Slang 
Jyväskylä: University of Jyväskylä, 2014, 76 p. 
Information Systems, Master’s Thesis 
Supervisor: Puuronen, Seppo 

Contemporary computers have different capabilities to process natural lan-
guages. For example speech recognition and machine translation are both due 
to study of natural language processing (NLP). Still, machines have some prob-
lems of understanding a natural language since words can be ambiguous. Most 
of the time machines are able to understand the single words. Complete sen-
tences are causing more problems. As well, a part of the actual language proc-
essing is moved to cloud from local machines due to heavy algorithms that 
have a high time or space compelexity. English and other European languages 
have better success rate in NLP solutions than other languages. Mainly this is 
because of the amount of work and prior analysis done around the language. 
Even though variety of different NLP solutions exists, they are mainly focused 
on standard language. Our research contains empirical study which goal is to 
describe n-gram algorithm suitability in automatic slang annotation context. 
Slang processing is more problematic than processing standard language, 
which can be seen in lower accuracy rates. Some of the problems are caused 
lack of extensive slang analysis when on the other hand some problems are due 
to complexity of slang. Simultaneous interpreter is one possible solution of up-
coming NLP innovations but it has limitations since slang processing is still 
partly under a development. One way to analyze lingual capabilities of a ma-
chine is to evaluate the success rate of Part-of-Speech (POS) tagging. The re-
search problem is how n-gram algorithms are performing in slang tagging 
compared to previously experimented algorithms. As a result of this study it is 
been found that tagging algorithm selection is in major part of tagger accuracy. 
In statistical approaches corpus size is remarkably affecting the accuracy as well. 
Languages are performing differently with different algorithms. For instance, 
statistical tagging algorithms are mostly having better accuracies in European 
languages while rule based tagging algorithms are outperforming statistical 
taggers in South Indian languages. From the POS tagging point of view English 
slang can be considered as different language from Standard English. While 
Standard English text can be automatically tagged with success rate of 97% the 
slang taggers are only fairly reaching 93% success rate. As a conclusion for re-
search findings, rule-based approaches are important addition for slang POS 
taggers. Most important of these kinds of tools is word clustering.  

Keywords: Part-of-Speech tagging, Hidden-Markov Model, Natural Language 
Processing, Algorithms, Machine Learning, Language Technologies 
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1 INTRODUCTION 

This chapter describes the scope of this study, why the study is made and what 
are the focus points. The chapter describes the background of the domain. As 
well, this chapter introduces motivational use-cases and new technological pos-
sibilities and upcoming technologies strictly related to the topic. 

1.1 Motivation 

Machine learning has got interesting solutions and it has been applied to many 
different kinds of uses during recent years. For example phones and gaming 
devices have voice controlling abilities and computers can be used by neural 
impulses with an electroencephalography headset. As well, these inventions 
enable a lot of possibilities for technical variations. Related inventions can be 
used in gaming industry or as important feature in assistant tools. For instance 
one of these kinds of inventions already made is a mind control for an electric 
wheelchair, which is one example of neuroheadset solution developed by Emo-
tiv Systems (Emotiv.com). As well, Google has already developed and pub-
lished an eyeglass extension, which allows user to have small transparent 
screen on one’s sight and it has cell phone-like abilities (Washingtonpost.com). 
For example, the glasses are able to show on transparent screen incoming text 
messages to your headset and they enables different possibilities for augmented 
reality solutions. Further more, studies of similar technology for contact lenses 
have already started, but they are not as close to be published yet (Cnet.com). 
As Kaku (2011, p. 6) has visioned, that in the future if you meet individuals 
speaking foreign language unfamiliar to you, subtitles would appear straight 
into your contact lenses as they speak. As well, one lower step in implementing 
this kind of technology could be automatic subtitling tool for movie industry. 
This kind of technology is compilation of many different technologies on hard-
ware and software level. Still, at least the hardware level is already relatively 
near to this kind of solutions. 
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Even though the bionic contact lenses are still under development, similar 
simultaneous translator solutions might already be possible for example with 
Google glasses if some voice recognition tool would be integrated with Google 
translate for instance (Google.com). This study is related to one technology on 
software level, which would make automated interpretation possible in such 
solution. Application development and research in this field are categorized 
under a study of Natural Language Processing (NLP), which is one subcategory 
under a study of Artificial Intelligence (AI). Even though AI includes many dif-
ferent fields of studies, they still have a lot of common principles as well and 
the domains might have other overlapping parts. Many mathematical models 
and computational algorithms are applied in various differing domains. For 
instance, one key algorithm used in this study is called Hidden Markov Model 
(HMM), which is widely used in different areas of language processing. As well, 
since HMM is not originally related to language technologies, it is used in many 
other domains such as sequencing human DNA (Churbanov & Winters-Hilt, 
2008) and decoding GSM signal (Xie, Wen & Li, 2013). 

1.2 Background 

NLP is a research where natural language like English is taught for the ma-
chines (Fromm, 1998). This includes different kind of tasks like machine transla-
tion, question answering and speech recognition. One application using some of 
these NLP techniques is Apple Inc.’s mobile phone solution called Siri, which is 
voice-controlled personal assistant (Ibtimes.com, 2011). This speech recognition 
solution for instance, allows user to execute commands by speech. For example, 
the commands can be related asking the software to do calendar marks and to 
write and send emails. As well, it contains question answering ability, which is 
using question answering machine Wolfram | Alpha as a knowledge base 
(Readwrite.com). 

Even though NLP is creating possibilities for more practical machine us-
age, it is creating other financial opportunities as well. For example sentiment 
analysis is an opinion mining study under NLP. The key goal in sentiment 
analysis is to analyze different trends from current conversations on Internet 
(Pak & Paroubek, 2010). This can be a handy guidance tool for the research and 
development departments in different corporations or it can be used as a pre-
diction tool for a stock market trends (Bollen, Mao & Zeng, 2012). NLP could 
also be used to change some labor-intensive work fields towards capital-
intensive production (Friedman, Shagina, Lussier & Hripcsak, 2004). Auto-
mated customer services are good example of this kind of transition, which is 
already in use on some companies. On the bottom line, the key goal behind all 
of the solutions is machines’ capabilities to understand natural language on dif-
ferent kinds of contexts such as text or speech. 

Since technology has created different possibilities for individuals to send 
messages and publish their thoughts via Internet, different new usages of stan-
dard languages have developed. These new writing patterns can be considered 
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as a totally new language since they obey different kinds rules than standard 
language. (Gimpel et al. 2011) 

1.3 Focus Point of the Study 

The main goals in NLP are to find a way for humans to interact with machines 
with ambiguous natural language. NLP is a key technology in many advanced 
systems. For example, it is one of the key goals in human-robot interaction. (Bai, 
2009) As well, this implies to Human-Computer Interaction (HCI), which is a 
parent category of human-robot interaction. 

The intelligence behind machines is based on models and algorithms, 
which are controlling the execution process. In order to make machines and 
humans to communicate with natural language, the machines have to be taught 
the rules of a natural language. NLP is a joint study of computer science and 
linguistics. (Yang & Liang, 2010) NLP development is highly important part to 
improve HCI and machine usability. Some NLP applications requires large 
amount of processing power, which can be overwhelming for portable ma-
chines. (Chien, Chen & Lee, 1993) This is because of the wide knowledge base 
and complexity of natural language (Langanke, 2008). As our empirical study 
shows on chapter 5.4.1, this is still true in HMM based n-gram annotation used 
with large background data. Main challenges of NLP systems are related to us-
ability, speed and accuracy (Chien et al., 1993). Even though there are working 
NLP solutions on the market, for an end user the possibilities might seem a bit 
limited if the NLP scope is not familiar. 

In most cases, solutions need Internet access if they are used from portable 
machines. This of course is depending on the final NLP application. For in-
stance, spell checkers and auto corrections are good examples of NLP applica-
tions, which are in every day use on portable machines. (Swets.com) Still, solu-
tions such as speech recognition in voice control solutions and machine transla-
tion are currently at least partly executed in cloud with computer clusters be-
cause they require more processing power. In some use cases the Internet con-
nectivity might still be an issue, but in most industrialized countries internet is 
almost everywhere e.g. in coffee shops, in public transportation and mostly in 
people’s cell phones. The local machine execution is moving towards cloud 
processing which means that heavier processing would not be an issue for a 
light weight devices (Kaku, 2011). Still, if the algorithms are too time consuming, 
it might have a huge impact on a processing cloud while multiple execution 
queries are lining up. 

Machine knowledge of a natural language or the simulation of knowledge 
is based on a prior language analysis and how the analysis is stored in different 
corpora. Still, many of the studies and language corpora are based on standard 
language. This is mainly because the most of the analysis is based on news, sci-
ence publications or books where the language is quite formal (Taylor et al., 
2003, p. 5). Still, language is used informally in many occasions. Different dia-
lects and slang are used in everyday conversations and in Internet as well. (Rit-
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ter et al., 2011) For example automated simultaneous interpreter would need to 
have knowledge of slang in order to be helpful in average conversation. As well, 
Internet is full of informal text. Internet slang is widely used in different blogs, 
forums and instant message conversations. Since text publishing in Internet is 
possible with only light computer skills, misspellings are not rare either since 
people have different written capabilities. (Owoputi et al., 2013) In order to ana-
lyze this data, NLP studies need to have some focus on slang as well. The focus 
point of this study is to describe how machines understand written slang. 

One way to describe machine interpretation of a natural language like 
English is to analyze how machines are automatically annotating text. The 
automated text annotation is done by dividing text tokens into different lexical 
groups. Lexical group labels are called Part-of-Speech (POS) tags. (Lv, 2010) 
Algorithm selection and corpus selection are important parts for POS tagger 
success (Dandapat et al., 2004). Different algorithms are proposed in certain 
use-cases. One of the most widely used algorithms for POS tagging process is 
HMM. HMM is continuously reported to have great performance on English 
language, but that does not necessarily apply well to other languages like Hindi 
for instance. (Hasan, 2007) HMM and different language model n-grams are 
widely used and compared algorithms for POS tagging because of their lan-
guage independent behavior (Morwal & Jahan, 2013). Still, most of the studies 
related to slang tagging are focused on corpus development or improving do-
main specific methods (e.g. Gimpel et al., 2011). The goal of this study is to de-
scribe the most suitable algorithm for POS tagger in slang context. The research 
problem is how n-gram algorithms are performing in slang tagging compared 
to previously experimented algorithms. 

1.4 Structure of the Thesis 

Chapter 1 is a motivational introduction. It describes future possibilities and 
current uses of NLP in general. Chapter 2 describes the background informa-
tion of NLP scope and basic evaluation methods used to describe efficiency of 
NLP solutions. Chapter 3 represents the computational process of POS tagging 
and how it is used to automatically analyze text. The chapter also covers previ-
ous experiments and the experiment results with different kind of use-cases. 
The chapter 3 describes background information of our experiment. POS tag-
ging is executed with different algorithms. Chapter 4 describes HMM algorithm 
since HMM solution N-grams are tested in the empirical study. Chapter 5 de-
scribes our empirical study. The empirical study of POS tagging is done by ana-
lyzing execution and processing results of Natural Language Toolkit (NLTK) 
for Python in different use-cases and with different size n-gram algorithms. The 
study compares algorithm performance by analyzing online conversational 
messages in micro-blogging service Twitter (twitter.com) written in English. 
Since messages are written with informal and noisy language, it is considered 
as Internet slang. Because of the special characteristics of the slang, additional 
Python libraries and tools are used as well, which are represented in various 
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articles. Chapter 5 also includes an analysis of the findings of the empirical 
study. Conclusions of the whole study and suggestion of future work are repre-
sented in the chapter 7. Chapter 7 also covers how the findings of the study are 
affecting the NLP scope. 

In conclusion, this study is focusing on POS tagging for written English In-
ternet slang. Even though English language is used as key base of a natural lan-
guage in this study, the focus point is still in multilingual algorithms and spe-
cial characteristics of slang, which gives an ability to use findings of this study 
in different environments. 

 



13 

2 MACHINE INTERPRETATION OF A NATURAL 
LANGUAGES 

This chapter describes the Natural Language Processing (NLP) domain and 
where it is applied in general. As well, this chapter describes basic evaluation 
techniques used in NLP systems and how the evaluations are usually counted. 
This chapter also represents an example of architecture for a commonly used 
NLP system. 

2.1 Natural Language Processing 

The key goal for NLP systems is to get machines to understand the natural lan-
guage. NLP domain contains various kinds of tasks such as information extrac-
tion, speech recognition, optical character recognition, syntactic parsing or 
spam filtering. (e.g. Momtazi & Klakow, 2010) Even tools for spelling correction 
are NLP applications. 

NLP is a layered process, which means it has various different computa-
tional subtasks depending on the actual NLP domain (Zin, 2009). Some NLP 
subtasks are general and they can be applied to solve different goals (e.g. HMM, 
or CRF), when some subtasks on the other hand are strictly related to certain 
purpose. For example lexical storages are commonly related to certain use (text 
or recordings) or to certain language1. (Derczynski et al., 2013) The basic princi-
ples for processing Internet slang are the same as processing standard language 
but there are some extensions. These differences are further discussed in chap-
ter 3.6. 

The computational language description is collected by gathering informa-
tion of language use-cases and extending it with fine-grained meta-data based 
on prior language analysis (Francis et al., 1979). These kinds of meta-data sets 
are called corpus, which are more extensively described in the chapter 3.3. Still, 

                                                 
1 Some language independent storages or storing methods exists. They are mostly used 

for languages, which do not have much data to compare for analyzing process. 
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usage of meta-data extension is not always necessary (Hasan, 2007). Contempo-
rary NLP system architecture includes cloud based data storaging and process-
ing as well. For example a cloud-based Application Programming Interface 
(API) service Mashape lists over 30 different types of NLP solution APIs, which 
it is hosting or providing. (Mashape.com, 2013)  

Using a cloud services to support NLP applications can be a handy solu-
tion if some NLP applications require a lot of processing power. The processing 
power requirements vary between different NLP systems. Still for example 
speech recognition system are relatively slow to execute. (Chien et al. 1993) In 
this case, mobile usage of the application might be challenging without cloud 
support. 

For example, Bird et al. (2009) describes different subtasks of a Spoken 
Dialogue System in architecture pipeline, which is represented in FIGURE 1. 
Simultaneous interpreter system would have quite similar pipeline and sub-
tasks, which are represented in FIGURE 1. Still, that does not apply to all NLP 
applications. The key part is still that there are many different subtasks in many 
layers ehich all have different time complexity. FIGURE 1 includes five layers 
such as phonology, morphology, syntax, semantics and reasoning. Even when 
the time consumption of each layer is relatively small, the total time execution 
time might be noticeable because of the sequential execution process. FIGURE 1 
shows that a spoken dialogue system have nine different stages. When each of 
the stages have multiple subtasks, it is not surprising that the total process 
might take time. 

 

 
FIGURE 1: Architecture pipeline for a Spoken Dialogue System (Bird et al., 2009, 32) 

2.2 Evaluation 

This chapter covers the goal of evaluation of NLP systems and how evaluations 
are generally made. There are some differences in evaluation methods depend-
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ing on the NLP scope. In general, accuracy is the largest issue in NLP system 
evaluation where accuracy represent NLP system success rate. The special 
characteristics of POS tagging system evaluation is described in chapter 3.4. 

2.2.1 Evaluating NLP Systems 

Evaluations of NLP tasks are necessary since there are accuracy problems in 
interpreting language representation whether it is speech or text. Further more, 
depending on subdomain of NLP system, there could be various numbers of 
application layers to do the processing. When the lower level processor in NLP 
pipeline is having accuracy problems it might multiply the problems to the final 
outcome in some case.  

Efficiency is a key goal for a tagger. Efficiency can be measured with time 
consumption and accuracy. The time consumption of the whole system execu-
tion can be measured and represented in seconds. Even though time consump-
tion of a NLP system is one part of the total efficiency, still the accuracy is 
mostly considered as a primary issue. NLP system accuracy is traditionally pre-
sented with two measures, which are precision and recall which are described 
in chapter 2.2.2. Evaluation methods have still occasionally some differences. 
Mainly the differences are caused by different NLP scope. (Mansouri et al., 2008) 

2.2.2 Counting the Evaluation 

Generally NLP system accuracy is described in three different values, where 
one of the values is combination of the other two. These values are called preci-
sion, recall and f-measure where the f-measure is the combinational value. The 
basic idea in counting these values is to evaluate the task outcome by categorize 
queried response to correct and incorrect matches and whether they are re-
turned from the total resultset or not. This evaluation is done by first categoriz-
ing the responses in four groups which are true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN). (e.g. Mansouri et al., 2008) In 
practice TP means number of correct responses, FP means number of incorrect 
responses, TN means number of correct responses left out from responses and 
FN means number of incorrect responses left out from responses. Still, FN is 
irrelevant value for counting precision or recall. These evaluation categories are 
used to calculate precision and recall. Precision (P) can be counted as 

   (7) 

Recall (R) on the other hand, can be counted as 

   (8) 
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Commonly precision and recall are represented in one value called F-
measure. F-measure gives good overall estimate of the accuracy. F-measure can 
be counted as 

    (9) 

F-measure is mostly used in cross-system evaluation as one weighted value. 
The measures are mainly adopted from information retrieval scope, but they 
are widely used in other tasks such as in Information Retrieval (IR) and Named-
entity Recognition (NER). (Mansouri et al., 2008) 



17 

3 PART-OF-SPEECH TAGGING 

This chapter describes POS tagging system meaning in a part of NLP system. 
The chapter describes general challenges and success factors of POS tagging 
and how POS taggers are using previous information as background knowl-
edge for tagging decision-making. 

3.1 Significance of a POS Tagger 

POS tagging is one widely used computational approach to analyze text. It is an 
important part of many natural language processing tasks. For example POS 
tagging is used in speech recognition, speech synthesis, machine translation and 
information retrieval. (Lv, 2010) POS tagging is used as one processing phase if 
tagging is required in the NLP architecture. POS tags can be considered as word 
meta-data. In practice, POS tags are word class labels attached to word such as 
nouns, verbs and prepositions. The key goal in POS tagging is to categorize the 
words in a text sequence. (Zin, 2009)  

Study of POS tagging is important part of AI as well. POS tagging is used 
in many NLP solutions, which are important part of AI field. Because POS tag-
ging is a challenging task, it has been described as bottleneck of AI. (Schubert et 
al., 2003) 

3.2 POS Tagger Pipeline 

POS tagging is done by categorizing words according to their lexical usage in 
different groups. This procedure is giving a semantical meaning for processed 
words. In this sense, POS tagging is giving machines a way to understand text. 
The actual tagging is not tied to any algorithm but still some methods are much 
more popular than the others. (Denis & Sagot, 2012) Tagging methods can be 
divided into statistical and rule-based approaches. Both approach types are us-
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ing probabilities on some level. Statistical approaches are tagging the words 
based on their lexical use while rule-based taggers are more focusing on the 
contextual use of words. (Lv, 2010) Statistical and rule-based methods perform 
really differently depending on the processed natural language. For example 
English language processing has its best performance with certain statistical 
approaches while Portuguese is having better results with rule-based ap-
proaches. (De Holanda Maia & Xexéo, 2011) Still the most effecting part for tag-
ger success is the size of the corpus (Banko & Moore, 2004). 

FIGURE 2 is a reconstructed image of POS pipeline as Zin (2009) describes 
it. The goal for POS tagger is to divide words in different lexical groups from 
raw text. As seen in the FIGURE 2 the input text is segmented first which means 
that different words are separated from each other. In English language this 
procedure is mostly just separating words on each white space. (Zin, 2009)  

 

 
FIGURE 2: Part-of-Speech tagger pipeline (based on Zin, 2009)  

For some languages like for Myanmar for instance, the segmentation is a 
bit harder process since the words are written together without white space. 
After this, the word annotation is looked up from pre-tagged corpus for each 
word. The POS tag is given for each word no matter if the word is found from 
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the corpus or not. Only different algorithm is used on either case. As well, some 
of the text token may be left without a tag if text tokens are noisy or the tags 
cannot be reasoned for some other reason. (Zin, 2009) 

3.3 Corpus 

This chapter describes meaning of text corpus and how it is used in POS tag-
ging applications. As well, this chapter describes differences between different 
corpora and how they are describing ways to use a natural language to com-
puters. The chapter also represents challenges and limitations related to corpus 
usage. 

3.3.1 Importance of a Corpus 

Tagging is always based on previous data on some level. Sometimes rule-based 
approaches do not use prior training data. In such cases language rules are 
taught to the tagger. (Brill, 1995) Different methods could still use the same data 
really differently or the stored data could have really different kind of structure 
comparing to other methods. One approach is to use lexical data sets called 
corpus, which are specifically made for POS tagging. A corpus can contain just 
untagged sentences or it can be pre-tagged as well. Corpus is a sort of data store 
of a language, which purpose is to describe a natural language.  

Corpus can be used in multiple occasions and it can be constructed for a 
specific purpose. (Zin, 2009) As well, there are different corpora or different 
corpus parts for speech and text. Different usages can be related to specific topic 
or specific domain such as speech recognition or informal text messages like 
Twitter messages (e.g. Gimpel et al. 2011). Since this study is related to written 
text, the focus point in corpus would be in text related tagging as well. Corpus 
can be pre-tagged or untagged regarding the POS tags where pre-tagged corpus 
has the linguistic definitions of each word to extend the plain text. In general, a 
corpus is wide collection of word sequences, which have been previously used 
in actual context. For example Corpus of Contemporary American English con-
tains over 450 million words from various sources, which are either spoken 
(Radio or TV), fiction, popular magazines, newspapers or academic journals. 
The larger corpus the better it describes the word usage for the NLP machine. 
(Zin, 2009) Still this applies only to a certain point since the size does not always 
guarantee higher recall rate. As the corpus size increases enough, at a certain 
point success rate of NLP system might start to decrease. Decreasing is due to 
noisy data or atypical language for the context. (Liu, 2003)  

Corpus is only a way to store previously used language to structured 
training data. In this sense corpus can be referred as predetermined training set. 
There are different models for the usage of corpus data. HMM, Support Vector 
Machines (SVM) and Conditional Random Fields (CRF) are commonly used 
models in tagging process. Chapter 4 describes the HMM in more accurate level 
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since its really commonly used for POS tagging and it provides simple solutions 
to common tagging problems and it has widely used variation as well. (Ekbal et 
al., 2007) 

3.3.2 Corpus Usage in POS tagging 

Word labeling in POS tagging is done by categorizing each word in a sentence 
to different lexical groups such as nouns or verbs. In computer processing there 
are different abbreviations for each word group. For example widely referred 
Brown Corpus that was originally composed in 1964 is marking singular or 
mass noun as NN and verb in base form as VB. (Francis et al., 1979) The exam-
ple (1) represents POS tagged sentence as Natural Language Toolkit (NLTK) 
toolkit is tagging the sentence. 

(1) DT NN VBD PRP DT NN 
A police gave me a fine. 

The example sentence contains for example a singular or mass noun (NN), 
a verb in past tense (VBD) and a determiner (DT). The example is processed 
with NLTK tool for Python using basic configuration, which is using Penn 
TreeBank tag set as corpus. Possible Penn TreeBank tags are presented in at-
tachment 1. (Taylor et al., 2003) Form of the word class tags and appearance 
amount in a single corpus varies between different corpora. For example, while 
Penn TreeBank tag set has 35 different tags, Brown Corpus uses 226 different 
kinds of tags (Francis et al. 1979). On contrary, slang corpus only uses 24 tags 
(Gimpel et al., 2011). Fine-grained corpus might be a smarter choice when POS 
tagger is used as a part of translation application for instance, since coarser tag 
set could affect the tagging accuracy (Derczynski et al., 2013). 

Pre-tagged corpora have differences in marking word classes. Corpus can 
either contain tagged sentences or they can be Treebank, which are describing 
the sentence structure on more concrete level. Penn TreeBank is one common 
example of Treebank used in POS tagging systems. FIGURE 3 shows an exam-
ple of a sentence constructed as tagged tree. The original example sentence 
stored to corpus as represented in Schubert and Tong (2003) is: 

"Rilly or Glendora had entered her room while she slept, bringing back her washed 
clothes." 

As it the sentence is formatted to a Treebank form it contains information about 
the sentence structure. The basic idea is that the basic sentence (S) contains 
smaller sentence fragments (POS classes), which again might contain other 
fragments. The lowest level of the tree contains tag connections to actual words, 
as can be seen on FIGURE 3. When there is enough information about sentence 
structures, statistical tagging algorithms are able to reason the most possible 
tags for given text based on previous word and tag connections. (Schubert et al., 
2003) 
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FIGURE 3: An example of a sentence in a Treebank (Schubert et al., 2003) 

3.3.3 Challenges in Corpus Usage 

The relation of a corpus to a specific domain implies that corpora are 
mostly language dependent. This includes usage of slang words and different 
dialects, which might cause erroneous tagging or some words might be left 
without a tag. This is the reason why corpus should have similar writing style 
than the processed text. As well, for example Brown Corpus is categorized in 
different text styles, which increases the tagging accuracy while used with simi-
lar annotation problems. Another problem is correctness of the processed text. 
Since the processed texts are mostly written by humans it creates the possibility 
for source based human error. (Gupta et al., 2013) These kinds of errors are 
commonly considered as noise. The term noise is used since it causes similar 
problems as processing noisy sounds from a voice. There are techniques to 
avoid noise related problems. One solution is to detect and correct spelling mis-
takes by using corpus, which contains common errors. (Agarwal et al., 2007) 
Spelling correction is still its own topic under NLP and it is left out since it is 
only a minor issue in this study.  

In some cases it is possible that there are errors in corpus. After all the an-
notation is done at least partly by humans, which creates an opportunity to 
human error. (Loftsson, 2009) For example according to Nguyen (2011) some 
parts of Penn TreeBank n-grams have incorrect labels. This is effecting to ma-
chine representation of language and it might cause problems in later use in 
NLP system. In slang context, corpora used in annotation are known to be noisy, 
since the usage scope is much more informal than a standard language. Even 
though there are methods to mitigate this problem, it decreases the accuracy on 
a minor level (Owoputi et al. 2013).  
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3.4 POS Tagging Evaluation 

Evaluating success of a POS tagger has some differences comparing to evaluat-
ing methods used in other NLP systems. Precision value is considered to be the 
most useful factor in POS tagger evaluation and typically recall value is ruled 
out. (Dandapat et al., 2004) Since, the F-measure is not typically counted for 
POS tagging systems, different sources are referring to precision value with dif-
ferent names or they are simply referring to accuracy rate. Sometimes recall rate 
is referred to as the precision value (Gimpel et al. 2011). In conclusion, POS tag-
ger accuracy is in general counted as number of correct responses divided by 
number of all possible responses, which directly refers the precision value 
(Mansouri et al., 2008). In practice, accuracy testing needs manual work with 
corpus which can be separate in training data and test data. Testing practices 
are described in chapter 3.6 and in chapter 5.3. 

3.5 Previous Work 

This section represents previous studies related to POS tagging. The chapter 
focuses to describe annotation differences under different domains. As well, 
this chapter describes current issues in slang annotation. 

3.5.1 Standard Natural Language Annotation 

Traditionally POS tagging methods are divided in rule-based approaches and 
statistical approaches which both have their own pros and cons (Lv, 2010). Usu-
ally statistical methods can be directly applied to other languages but prior 
training data is required. (Denis & Sagot, 2012) In most cases in statistical ap-
proaches prior manual tagging for training data should be really extensive 
which requires months of manual labor. For example HMM does not perform 
well with a small amount of training data. (Ekbal et al., 2007) On the other hand, 
rule-based approaches might not need any prior annotation but the language 
rules have to be taught to the tagger. (Brill, 1995) 

Tagging formal English language has not gained much accuracy since the 
mid 1990’s. Brill’s (1995) rule-based tagger already had near 97% of success rate. 
As well, statistical approaches got similar results around at the same time. (Jung 
et al., 1996) English language and most of the other European languages (Ekbal 
et al., 2007) along with Chinese (Banchs & Codina, 2009) have extensive prior 
studies in POS tagging. European languages have been mostly reported to have 
great accuracy with statistical approaches. For example French (Denis & Sagot, 
2012) and English (Jung et al., 1996) tagging has been reported to have 96-98% 
accuracy with statistical approaches. 

Still, POS tagging studies during latest decades have extended the knowl-
edge of the domain since studies have focus point in other languages as well. 
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(e.g. Zin, 2009) Even though English language POS tagging is not solved prob-
lem yet (Manning, 2011), the extensive prior work around English language 
have given a good ground to be used in other domains (Banchs & Codina, 2009). 
For example Amazigh POS taggers are already getting 99.97% accuracy rate 
(Outahajala, 2013). 

This is a good direction for NLP development since it creates more possi-
bilities for translingual or translation softwares and tools. In general, even 
though accuracy of POS tagging systems has increased, the execution times 
have still decreased. (Owoputi et al. 2013) 

3.5.2 Slang Annotation Experiments 

As a comparison between English and other languages, English slang POS tag-
gers are reaching similar accuracy rates as some formal language taggers. For 
instance, statistical approaches for Marathi language are reaching accuracies 
from 77% to 93% depending on the selected algorithm (Singh et al., 2013), 
whereas contemporary English slang taggers have accuracy rates between 90% 
and 93% (Owoputi et al., 2013). 

HMM has been applied to various languages. For instance, it has been 
used in European languages like English (Banko & Moore, 2004), French (Denis 
& Sagot, 2012) and Portuguese (de Holanda Maia & Xexéo, 2011), as well it has 
been used for Asian languages such as Hindi, Telegu, Bangla (Hasan, 2007), 
Punjabi (Sharma, 2011), Marathi (Singh et al., 2013) and Myanmar (Zin, 2009). 
Still, HMM and its n-gram solutions are performing really differently in differ-
ent languages. For example HMM on the Telegu is reaching only 56.6% accu-
racy rate (Hasan, 2007), while English (Banko & Moore, 2004) and Myanmar 
(Zin, 2009) are reaching over 96% accuracy rates. On the other hand, some lan-
guages like Portuguese performs better with rule-based approaches (de Ho-
landa Maia et al., 2011). 

In conclusion algorithm selection is an important part of POS tagger accu-
racy. Since different algorithms perform better under different domains, the 
algorithm suitability should be studied in each case. Even though rule-based 
approaches outperform statistical approaches in some cases, still the perform-
ance differences are quite small. Mostly used statistical approach HMM per-
forms relatively well in most languages comparing to other approaches if the 
prior manually annotated data collections are large enough. Automatic annota-
tion faces lack of performance in languages with loose word ordering (Hasan, 
2007). 

3.6 Special Characteristics of Internet Slang Tagging 

Recently the usage of written slang has notably grown because of different so-
cial media platforms. This creates different possibilities for NLP solutions be-
cause services like Twitter (twitter.com) are offering their data for mining pur-
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poses (Huberman, Romero, & Wu, 2009). Some NLP solutions are already made 
using the platform such as sentiment analysis services. (Kouloumpis et al., 2011) 

Key differences with formal text and Internet slang are the fact that slang 
contains noisiness and informal writing style. Internet slang is mostly used in 
social media status updates, blog posts or instant messages. Considering the 
whole NLP perspective, slang processing is hard since sometimes messages are 
quite short, and message context is really hard to figure out. English have nota-
ble differences between slang and formal language. As well, English slang has 
context dependent characteristics. For example some times some words are 
dropped out and services like Twitter have their own feature markup such as 
hashtags and emoticons. (Ritter et al., 2011) 

When the use of grammar is not strict, it creates lot of new ambiguity 
problems compared to standard language. One solution to resolve noisy data 
for tagging purposes is to cluster words in groups and to look correspondence 
for word and tag in each cluster. Clustering is done by grouping words with the 
same meaning into a single cluster. FIGURE 4 shows an example of a cluster for 
a word ”tomorrow”. (Ritter et al., 2011) If we look at the example cluster 
FIGURE 4, it can be easily seen that written forms of a slang word might cause a 
lot of new polysemy problems. For instance, the word ”tomorrow” can be writ-
ten as ”tmw” which as well can be an abbreviation from something else de-
pending on the context. Still the idea of word clustering is only to be used as an 
additional tool to help tagger in decision-making process (Owoputi et al., 2013). 

 

 
FIGURE 4: An example of a word cluster (Ritter et al., 2011) 

Gimpel et al. (2011) are detecting additional spelling related issues, which 
are more fine-grained problems than considering all spelling mistakes as noise. 
Phonetic normalization is one of their methods to detect different writing forms 
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of a single word. Still, Owoputi et al.’s (2013) updates Gimpel et al.’s (2011) 
study with a couple of ways related to test data processing and data collection. 
One solution is to cluster the possible spelling errors from the input data. An-
other improvement is in data collection method. Practically all the messages 
with uncommon words are filtered out. These updates seem to cover all the is-
sues related to spelling. Another issue in automatic slang annotation is a proper 
noun detection. Gimpel et al. (2011) are solving this problem by listing all nouns 
occurring in the test data and comparing unrecognized word tokens to the list. 

One problem for automatically annotating slang is currently how the lan-
guages are developing. Languages and more closely slangs might be develop-
ing faster than words are being annotated to corpus. Since Internet has made 
updating and sharing information popular in short messages such as status up-
dates and microblog posts, it gives a fast ground to spread new words or ab-
breviations which can be based on current news or technologies etc. (Bird et al., 
2009) 

3.7 Challenges 

This chapter describes the most common challenges of POS tagging. The chap-
ter covers challenges related to tag ambiguity, accuracy problems of longer sen-
tences and special characteristics of slang. 

3.7.1 Ambiguity 

The major problem in POS tagging is ambiguity of the words. This is due to 
synonyms, homonyms and other polysemy in general. The example (2) contains 
a word ”fine” as previous examples but this time the meaning of the word is 
different and so is the categorization of the word, which in this case is tagged as 
adjective (JJ). 

(2) PRP VBP NN 
Everything is fine. 

With basic settings NLTK toolkit faces the problem in the word ambiguity 
in given example sentence (2). Without configuration the word fine is tagged as 
noun (NN) even though it is obvious that in this context sentence the 
word ”fine” should be tagged as adjective. The simple solution to this is to look 
at the surrounding words. This means that the example (2) is tagged with uni-
gram model. Simple solution is to look surrounding words and use bigram 
model for tagging instead. Example (3)  shows bigram tagging for the same sen-
tence. A bigram tagger considers occurrence probabilities based on two token 
queues where unigram is considering only the probability of a single word oc-
currence. 
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(3)  PN BEZ JJ 
Everything is fine. 

The higher the n-gram level the slower the tagging is to execute on a com-
puter. The same applies for a larger corpus and it is affecting significantly the 
memory requirement as well. This is why it is encouraged to detect only local 
relations on a sentence. (Chien et al., 1993) The n-gram principles are more ac-
curately described in chapter 4.2. 

Some of the key tasks in NLP do not produce 100% accurate results. In 
most cases this is caused by ambiguity of the words but as an extension there 
are different minor issues as well to effect the language processing. Idioms and 
other language related linguistic phenomenons are affecting the interpretation 
of given issue. As well, author’s vocabulary might differ from target audience. 
(Kowalski, 2011, p. 3) This is not only a machine related problem since human 
communication is also based on the idea that message receiver is trying to fig-
ure out the best probable interpretation of the message from the sender. One 
minor issue affecting the final interpretation of a message is noise, which can be 
for example regular noise on a speech and mispronounced or miswritten word. 
(Derczynski et al., 2013) 

3.7.2 Sentence Accuracy 

It have been reported in many studies that current POS taggers are tagging 
words in English texts with over 97% of accuracy. In most cases, correct tagging 
is counted only by looking at word tagging. Complete sentences are still a bit 
problematic since they are mostly reaching accuracies of only 55-57%. This is 
aligned with accuracy of tagging one word if we assume 20-word sentence. 
Then the probability for whole sentence to be tagged correctly would 
be .9720^20 ≈ 54% . In some cases this could mean that POS tagger are missing 
the key meaning of the tagged sentence. Tagging slang is even more difficult 
since the best taggers are reaching accuracy only 93%. In a 20 word sentence 
this would mean that the probability for to get the whole sentence with correct 
tags is only .9320 ≈ 23% . The difference is partly caused by the way to count 
the correctness since punctuation marks and special characters are getting 
tagged as well, which are quite unambiguous. (Manning, 2011) 

Related to formal text written in English, Manning (2011) notes that hu-
man annotators disagrees more often about tagging decisions made by other 
human annotators than tagging decisions made by automatic taggers. This of 
course gives a perspective of the possible performance of a tagger. Even though 
the success rate might sound good, the problems might sum up later on in the 
NLP system. For example, when POS tagging is used in machine translation, 
the incorrect tagging is directly affecting the translated outcome and it might 
cause unexpected results. 
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3.7.3 Informal Data 

Even if formal text tagging is quite insufficient for complete sentences, the tag-
ging of informal conversation could be even more insufficient than actual re-
ported results. Currently highest slang tagging accuracy has been reported to be 
near 93%. On the upside slang taggers are using additional methods, which are 
improving the accuracy for the particular use-case (Derczynski et al., 2013). As 
well, slang sentences in conversations tend to be shorter than in informal texts, 
which might increase the success rate. The basic idea of a tagger is to annotate 
words based on the probability, how likely it is for a word to have certain tag 
with given surrounding words having counted or given tagging. This is one 
reason why the probabilities that taggers are counting are only fractions of a 
percentage. In a way, if we consider the whole sentence to be context for a cer-
tain tag, the accuracy of tagging sentence with 55% is relatively good. 

Even though POS tagging is problematic, the success level could be good 
enough depending on the final application. Even though some POS tags might 
be incorrect, it can be still helpful in decision making for other applications. For 
example Named Entity Recognition (NER), which is part of information extrac-
tion, is trying to find useful information from unstructured text by classifying 
nouns in a document as person name, location name, organization name etc. 
(Biswas, 2009). NER is trying to resolve text content by trying to answer ques-
tions such as “who”, “where” and “when”. Under this domain, NER has its 
own methods but still POS tagging can be used as a lower level tagger to anno-
tate text and help NER in decision-making (Biswas, 2009). Considering slang 
especially in microblogs or in instant messages the annotation is even more 
problematic than on formal text. The messages are usually short, and compar-
ing to formal English some words are missing. As well the rest of the words 
commonly have a lot of spelling mistakes or they are intentionally written in 
different form than they should in a formal context. Despite the problems, dif-
ferent methods are proposed to fix these problems (Ritter et al., 2011). 

Accuracy rates of slang annotation in different studies are notably lower 
than in formal language. Studies during recent years have took huge steps in 
English slang tagging. In some cases English slang tagging reaches better accu-
racies than some formal languages. Still slang tagging has its own challenges as 
well. Even though word ambiguity causes some accuracy problems, another 
issue is to detect common and proper nouns. As well, since Internet slang is 
used differently in different places, there are domain related issues to be solved 
as well, such as specific mark-up. (Owoputi et al., 2013) 

3.8 Conclusion 

In conclusion, POS tagging is one important application layer in NLP system 
(Bird et al., 2009). The goal of POS tagging is to automatically annotate words 
(Zin, 2009). Different algorithms are used for tagging process and they can be 
divided into statistical and rule-based approaches (Lv, 2010). POS tagging algo-
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rithms are not 100% accurate, but with a right algorithm selection taggers can 
reach over 95% accuracy rate (Manning, 2011).  

Written conversational slang has own characteristics and different addi-
tional methods have been applied to slang tagging to gain more tagging accu-
racy. One successful tool for slang POS tagging is to use word clusters, which 
are libraries of words with many different writing styles. (Gimpel et al., 2011) 
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4 HIDDEN MARKOV MODEL 

This chapter describes HMM algorithm’s working principle and how the algo-
rithm is counting tagging probabilities. As an addition, this chapter describes 
popular HMM implementation called Viterbi algorithm and how it is used to 
count probabilities based on HMM. As well, this chapter describes more closely 
how and why HMM is used as POS tagging algorithm. This is due to experi-
mental part in chapter 5, where different size HMM-based N-grams experi-
ments are described. 

4.1 HMM in General 

HMM is one widely used statistical annotation algorithm, which have high per-
formance with different natural languages such as Standard English (Banko & 
Moore, 2004). Viterbi algorithm is one successful implementation of HMM 
(Forney, 1979). HMM is used under many different domains. It is used partly in 
sequencing human DNA (Churbanov et al., 2008), decoding GSM signals (Xie et 
al., 2013) and in different language processing tasks (e.g. Alpaydin, 2010). 
HMM is a mathematical model to define transition probabilities from unob-
servable state changes. In other words, HMM is a layered stochastic process 
having non-observable layer, which can be only defined with another set of sto-
chastic processes, where the second layer is defined by observations. (Rabiner & 
Juang, 1986) For example, it is possible to count word occurrence probabilities 
from a certain text, as well it is possible to define how likely two words are ap-
pearing together or within a certain group. Further more, words have different 
likelihoods to appear with certain kinds of words meaning certain kinds of 
word classes. Even though these kinds of occurrences and connections can be 
counted, it is impossible to see or count the state transitions behind the whole 
writing process. This is why most of the compared probabilities are relatively 
low numbers and connections are usually considered within one sentence. 
Nevertheless, the key idea for HMM is to observe language usage patterns 
which in NLP context can be used to define rules in a natural language. These 
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patterns in HMM context are referred to as states and state transitions. The 
transitions are listed in lexical libraries called corpus, which are used to count 
statistical information based on transition between different word classes or 
based on tag-to-word connections. (Alpaydin, 2010) 

4.2 Operating Principle 

Even though HMM is its own model, it is also used to refer to a collection of 
different models since they all have a common operating principle. Likewise, 
HMM it self is adopted from Markov chains with the extension of usage of hid-
den states. (Kuo, 2006) Even though HMM is widely used in NLP systems, it 
has been applied in many other different areas such as bioinformatics (Alpay-
din, 2010) and gesture recognition (Takano, 2012). Most commonly used HMM 
related models are Bayesian networks, CRF and Maximum-Entropy Hidden 
Markov Model (MEHMM). Overall, shortly to describe related models, HMM 
algorithms can be represented as Bayesian network while counting transition 
probabilities between unobservable groups. (Kuo, 2006)  

CRF is partly similar model than HMM with many common principles but 
CRF is more linear model (Awasthi et al., 2006) and performs better on certain 
scope. (Wen-qiu, 2012) MEHMM, which is as well referred later, combines 
HMM and maximum-entropy model by using observed states as well when 
counting probabilities. Where HMM probability depends on the current state, 
MEHMM depends on previous states as well, which increases the performance 
on precision and recall. (McCallum et al., 2000) With N states and T transitions 
counting MEHMM might be time complexity especially when the source is 
large and the time consumption is counted as TNT. MEHMM decreases the time 
consumption of the reasoning algorithm since it rules out many recursive itera-
tions and changes the running time to TN2. (Allen, 1995) 

HMM is widely used in many different NLP applications. For example Liu 
(2003) lists the following NLP domains where HMM is in important role: part of 
speech tagging, speech recognition, tag segmentation, topic detection and in-
formation extraction. Even though the basic Markov chain has been developed 
in the early 20th century and the groundwork of NLP is based on the theories 
and studies created on 1960s, 1970s and 1980s (Rabiner & Juang, 1986). Still, it 
has been only recently applied to practical use because of limited computational 
processing power (Kuo, 2006). For instance, in the early 1990s sentence recogni-
tion from speech took time from couple of seconds to dozens of seconds even 
though lexicons and unigram bases in use were relatively small (Chien et al., 
1993). 

As mentioned, HMM contains Markov chain where the states are hidden 
and state transitions are estimated from visible observations. FIGURE 5 shows a 
possible HMM reasoning where X represents state, Y represents the observed 
outcome, a12 and a23 are representing possibilities for each transition and b1,…, 
b3 represents unigram probabilities for a state to become the related outcome. 
Compared to example (1) Y1, Y2 and Y3 could represent words in the sen-
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tence ”Everything is fine”. In this example the states and the transitions are 
hidden as it is assumed in HMM, since the sentence construction process is un-
known. 

 

 
FIGURE 5: Hidden Markov Model Process 

Language model N-gram taggers, such as bigram tagger for instance, as-
sumes that word class depends only on the word it is bound to and on a previ-
ous tag. Traditionally HMM is tagging words in the same way since N-gram 
algorithms are HMM implementations in a limited environment. Compared to 
n-grams, HMM has been extended to consider future tags as well. (Banko & 
Moore, 2004) 

Even though the HMM states are hidden at the start, the state transitions 
can be counted from observations. It is assumed that the hidden states are ac-
tual word classes. In other words, tags are assumed to be hidden states in HMM. 
FIGURE 6 describes hidden state transitions. As corpus contains manually 
tagged word to tag connections, it is possible to connect the words to actual 
states. (Forney, 1973) 

 

  
FIGURE 6: POS tags placed in Hidden Markov Model with transition and unigram prob-
abilities with visible transition states 

Still some words are ambiguous, since they might have multiple meanings 
used in different context. Since corpus contains word tagging, it is easy to count 
likelihood of a different tag for each word. This probability is the same, which is 
generating the node from connected state. In practice, counting the likelihood 
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means listing all possible unigram tags for each word. After the possible tags 
are listed for each word, the state transition probabilities are be fetched from a 
corpus. This can be done since observable state transitions can be counted, 
which can be used to estimate the state transitions behind the words, since dif-
ferent word classes have different likelihoods to appear with other classes. 
(Forney, 1973) 

Finally, the most probable route for different state transitions can be 
counted by using transition and unigram probabilities. FIGURE 7 shows an ex-
ample listing of possible tags for each word and possible state transitions. The 
transition probabilities are shown as examples of possible transitions in a possi-
ble corpus. The tags are based on NLTK tagger using Brown Corpus. Circles are 
representing possible states, in this case word class tags, which each are linked 
to observed together appearing words below. Even though FIGURE 7 is a sim-
plified example with only four observation words and with two possible tag 
states, still there are already sixteen possible ways to construct the tagging se-
quence. Possible number of sequences grows exponentially as possibilities of 
tags grow. As well, with four word class possibilities for each word, the amount 
of possible routes would be 256. This explains the non-linear time consumption 
of the algorithm. 

 

  
FIGURE 7: A forward trellis of tagging possibilities with example transition probabilities 

As a comparison to language modeling, general HMM is continuously re-
ported to have slightly better accuracy than unigram, bigram or trigram taggers 
even tough the basic principle of n-gram algorithms are based on HMM. (Singh 
et al., 2013) Even though HMM gives more accurate tagging results with Eng-
lish language, it has inefficiency problem considering exponential time com-
plexity because of the algorithm as described earlier in chapter 4.2. (Kuo, 2006) 
In this sense, n-gram tagging algorithms might have notably smaller time con-
sumption. As well, it has been studied that in some point growing the maxi-
mum n-gram size does not give more accurate results. Even some accuracy de-
creasing might happen as the n-gram size increases, which is mostly fault of 
noisy text and word ambiguity. De Holanda Maia and Xexéo (2011) suggest 
that the accuracy does not grow after the maximum n-gram size has grown to 
five. The n-gram size impact on the accuracy is described in the attachment 2. In 



33 

some use cases, faster algorithm might be preferred over more accurate tagging 
algorithm especially when the accuracy differences are relatively small. This 
efficiency difference is tested more closely on the chapter 5. As well, Owoputi et 
al. (2013) notes that efficient algorithms are highly important in slang POS tag-
ging context since at least in slang context the amount of annotatable data is all 
the time rapidly increasing and real time result for the final system might be 
needed. 

4.3 Viterbi Algorithm 

In extensions for HMM there are different algorithm implementations to calcu-
late the most probable sequence word class transitions. The most common 
HMM extension is called Viterbi algorithm, which considers only the most pos-
sible transitions from each state in given context before continuing to next 
stages. (Chao, 1993) The Viterbi algorithm is one supervised-learning algorithm, 
which needs corpus for tagging background data. Based on HMM, Viterbi de-
coding considers full sentences to be annotatable paths instead of limited 
amount of transitions like n-grams. As well, there are HMM-based unsuper-
vised tagging algorithms such as Baum-Welch, which can train HMM from 
without prior knowledge of tagging statistics (Hasan, 2007). 

Viterbi algorithm is trying to find the most probable path from trellis 
graph. Running the HMM with Viterbi is less time consuming since it only con-
siders unbreakable chain structure. FIGURE 8 is Forney’s 1973 Viterbi algorithm 
example with a modification that the algorithm tries to find most probable 
route from trellis. The first stage (a) is an example description of full reasoning 
trellis with all possible transition routes. Numbers between transitions de-
scribes the cost of a transition, which in this case means probabilities where 
lower number means a higher probability. Originally the numbers are describ-
ing the cost of transition. On the stage (b) the previous stage (a) is divided in 
five parts where each part describes a transition. On each transition only the 
most probable transition are taken into account. (Forney, 1973)  

As an addition, Viterbi algorithm has been efficiently used with MEHMM 
as well. MEHMM is optimizing the Viterbi trellis path better than plain HMM. 
Even though this affects slightly to the accuracy, it is notably less time consum-
ing option, because of the greedy decoding of MEHMM. (Owoputi et al., 2013) 

4.4 Counting HMM Likelihood 

HMM is based on counting probabilities of hidden states based on linked ob-
servations. For to be able to explain HMM and also N-grams, the probability 
calculations behind word classes and word class transition should be under-
stood as well. As stated earlier, HMM can be interpreted as Bayesian network 
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which enables to use Bayes’ theorem to count the probability of each tag for 
given word. (Kuo, 2006)  

 
FIGURE 8: Viterbi algorithm reasoning (Forney, 1973) 

Let  
 = Sequence of tags (t1..tn) and  
 = Sequence of observed words (w1 .. wn). 

A word can have different tag depending on their lexical meaning. Since 
some words are ambiguous there are many different possible solutions to con-
struct the tag sequence based on the word sequence. The main goal is to find 
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the most likely tag sequence τ( ) with given word sequence  by using cor-
pus as background knowledge. More formally 

   (1)  

Probability for a tag is depending on a given word, which can be pre-
sented with Bayes’ theorem. Kuo (2006) represents the problem applied to the 
Bayes’ theorem as 

   (2) 

Since the word sequence is already known, the normalizing factor P( ) 
in Bayes’ theorem can be assumed as constant. In practice, the normalizing fac-
tor can be ruled out, which means that 

   (3) 

No matter what the constant would be, it would not change the final out-
come since the effect of the constant to each compared path is the same. As ap-
plied to Bayes’ rule, now 

  (4) 

As Jurafsky and Martin (2006) states Markov assumed that based on equa-
tion (4) 

 (5) 

Finally as Huang et al. (2009) describes, the Markov assumptions can be mod-
eled into previously simplified Bayes’ theorem. This means that the most prob-
able sequence τ ( ) can be counted when 

  (6) 

More practically this means that a probability for a tag depends on the 
current word and on the previous tags and tag transition probabilities. On the 
beginning transitions are hidden, but this changes as the counting proceeds. 
(Singh et al., 2013) 
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4.5 Conclusion 

In conclusion, HMM is a collection of algorithms operating with same principle 
to count transition probabilities from unobservable states (Kuo, 2006). HMM is 
widely used in POS tagging. Viterbi algorithm is one popular solution to im-
plement the HMM. The time consumption of basic HMM is exponential, which 
makes it slow to execute. Still the accuracy of HMM in POS tagging context is 
high compared to other approaches. (Kuo, 2006) 
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5 EXPERIMENTAL STUDY 

This chapter describes experimental study covering background information, 
the goal of the study, data gathering, preparation and experiment results. As 
well, this chapter contains comparison of the results between this study and 
previous similar studies. Suggestions for future work are more discussed in 
chapter 7.6. 

5.1 Experiment Background 

POS tagging in Internet slang is quite a new field of study compared to the fact 
that standard language is still sometimes tagged with corpuses developed on 
1960’s (Francis et al., 1979). Since the field is quite new studies in the field are 
not quite comprehensive yet. Still, slang tagging is helping tremendously in 
data mining from Twitter message stream. Real time data has already been 
proven to be beneficial in various situations such as detecting spread of epi-
demics. (Culotta, 2010) 

Gimpel et al. (2011) are describing good ground level work for POS tag-
ging from Twitter blog posts (tweets). The most important part is that the study 
is taking care of noisy text problem by clustering the words with same meaning 
into separate groups. Owoputi et al. (2013) have later updated the study with 
slightly more accurate algorithm. Among word clustering, both of the studies 
are containing large sets of manually annotated data, which is really important 
since there are no previous corpora covering different slang expressions. Be-
cause of the large background information those two studies are used as a 
background work for this study as well. The key difference in this study is to 
analyze POS tagging in slang with different algorithm than previous studies. As 
early mentioned in chapter 3.5 the success of a tagger depends mostly on the 
selected tagging algorithm. This difference can already been seen comparing 
results between Gimpel et al.’s (2011) and Owoputi et al.’s (2013) researches 
which both are using different tagging algorithms. 



38 

HMM has been great choice for algorithm in many different languages. In 
fact, Owoputi et al.’s (2013) study is based on MEHMM, which is one imple-
mentation of HMM algorithm. This study is focused to describe advantages and 
disadvantages of n-gram tagging algorithm in slang processing context. Der-
czynski et al.’s (2011) notes that for example bigram algorithm can be used to 
reduce uncertainty. 

5.2 Goal of the Experiment 

Previously slang POS tagging has been studied only briefly compared to Stan-
dard English. Only couple of tagging algorithms has been experimented with 
slang. Lack of the prior available data is partly a reason for that the studies have 
started only recently. Gimpel et al. (2011) are experimenting slang tagging with 
CRF and Owoputi et al. (2013) are improving the study by using MEHMM 
coded with Viterbi algorithm. The goal of this study is to describe a suitability 
of HMM based n-gram algorithms for English slang POS tagging and to detect 
factors affecting slang tagging accuracy. 

Gimpel et al. (2011) and Owoputi et al. (2013) are suggesting different ad-
ditional tools to gain tagging accuracy. Some of the tools are reimplemented 
with basic features and they are not trying to be as comprehensive as in earlier 
studies. The idea is to generally describe possible advantages of additional tools, 
but still the main focus is to compare suitability of tagging algorithm for Inter-
net Slang. 

5.3 Experiment Preparation 

This chapter describes necessary preparations of our experiment covering data 
gathering, our experiment environment and configurations. As well, we present 
how the experiment is linked with previous studies. 

5.3.1 Gathering the Test Data 

The idea for this experiment is to annotate English slang words used in social 
media. In this research we use status updates, conversations and blog posts 
used in Twitter, since Twitter offers free and extensive API for their ongoing 
message data. Still, there is no actual data gathering done specifically for this 
study. For to able to compare the results to previous studies more accurately, 
we use previously gathered Twitter data from Owoputi et al. (2013). Another 
upside of the data selected is that the data is manually annotated. Manual anno-
tation for the test data would have been necessary in any case for the accuracy 
evaluation. 
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Gimpel et al. (2011) have manually tokenized, annotated and filtered 1,827 
tweets with 26,463 tokens. This data is divided in three parts, which are training 
data, development data and test data. The training data and development data 
are used together as slang corpus. The test data is used as-is. In practice, corpus 
and test data are both separate text files. The file contents are described in 
FIGURE 9 as they are separated in two files. Data gathering were done 27th of 
October 2013 by filtering English messages from United States’ time zone. This 
data is called as OCT27, which contains 500 tweets (7,124 tokens). As well, we 
use new version of the data collected with similar method, which is represented 
in Owoputi et al.’s (2013) study. The only exception is that different tweets were 
collected every day between 1st of January 2011 and 30th of June 2012. This new 
data is called as DAILY547 containing 547 tweets (7,707). As an addition, we 
use Penn TreeBank and Brown Corpus as well, since they are widely used cor-
pus. English language is the base for the slang used our data and it can help to 
train our tagging model more precisely than just plain slang corpus. After all, 
Owoputi et al.'s (2013) manually annotated data is relatively small compared to 
corpora sizes used for Standard English. 
 

 
FIGURE 9: Manualy annotated tweets as they are separated in different files. 

5.3.2 Experimental Environment 

We selected open source tagger called Natural Language Toolkit (NLTK) for 
Python to be used for tagging process. NLTK offers access to different corpus 
and it contains different tagging algorithms (Bird et al. 2009). Tests are run on a 
MacBook laptop having 2,4 GHz Intel Core 2 Duo processor and 3 GB of 
1067Mhz DDR3 memory. Test environment is run with built-in Python 2.7.6 on 
Snow Leopard operating system. Corpora used in test were downloaded via 
NLTK on 1st of February 2014. 

Test environment was made specifically for this research using NLTK for 
Python. The actual n-gram based tagging process is executed with NLTK. Still, 
the domain specific execution order for given source data needed to be imple-
mented. As well, Twitter-specific characteristics need special handling. An ow-
erview of our code is shown in attachment 6 containing full program code of 
actual tagging process. The system diagram of our tagger is described in at-
tachment 7. After clustering for the corpus and the test data is done, our tagger 
executes the taggin process in following order: Twitter-specific mark-up detec-
tor, number checker, bigram core tagger with clustered corpus, unigram tagger 
with clustered corpus, unigram tagger using Brown Corpus and Penn TreeBank, 



40 

name checker, emoticon detector and tokenization error detector. This 
execution order is repeated for each tweet. Our tagger execution order is 
described in FIGURE 10. 

 
FIGURE 10: Tagger core execution order 

The basic idea of our tagging implementation is to loop through each 
tweet in the test data, process the data and compare the processing results to 
training data by using NLTK n-gram tagging methods. Training data is a sepa-
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rated part from manually tagged tweets. The other part is used as test data. The 
result processing includes string comparisons to different listings such as list of 
emoticons and list of names (proper nouns). The tweets in the test data and 
training data are pre-tokenized using whitespace characters as delimiters. Be-
sides the n-gram tagging, the processing methods are considered as additional 
tools in this study since they are domain specific extension to tweet tagging and 
they are not directly related to actual tagging algorithm. Since the nature of in-
formal text differs from standard text, the additional tools are used only to de-
scribe the complexity of the total tagging problem in informal context, and how 
it may be improved comparing to standard text tagging. 

5.3.3 Arrangements 

Even though Owoputi et al.'s (2013) study is based on Gimpel et al.'s (2011) re-
search, they are using really different approaches with different additional tools 
and different tagger algorithms. For example for additional proper and com-
mon noun detection Gimpel et al. (2011) are using WSJ and Brown Corpus as-is, 
where Owoputi et al. (2013) are using lowercased Brown corpus. In this study 
we try to gain advantages of both approaches by using lowercased Brown cor-
pus and Penn TreeBank as is. This is simply done by lowercasing the words in 
NLTK's library of Brown Corpus. 

Penn TreeBank and Brown Corpus have different tag set from each other 
and from the tag set of our data. The tag set we are using is originally based on 
tag set defined by Gimpel et al. (2011) and it is more coarse-grained than tag 
sets in Penn TreeBank and Brown Corpus. Gimpel et al.'s (2011) tag set is de-
scribed in attachment 3. Because of the tagging difference between slang and 
Standard English, we modify the Standard English corpus to use different tag 
set by replacing current tags with the tags suggested in Gimpel et al.'s (2011) 
study. Attachment 4 shows how Brown Corpus tags are replaced with Gimpel 
et al.'s (2011) tags. Attachment 5 shows the replacement for Penn TreeBank tags. 
The replacement is done to our tagger application instead of directly to corpus. 
This effects the running time a bit but replacement errors are avoided when re-
placing pairs are written in a table. 

We constructed a basic tagger and different additional tools suggested in 
Gimpel et al. (2011) and Owoputi et al.'s (2013) studies. The core of our tagging 
application is n-gram tagger containing different n-gram sizes. All the higher n-
gram sizes have backup taggers with one lower n-gram size, which again have 
a backup tagger. For instance trigram tagger has a bigram backup tagger, which 
again have a unigram backup tagger. The default POS tag is marked as "None" 
if the tag cannot be reasoned. The rest of the tools are additional domain related 
improvements to the basic core since in general, n-gram taggers can be really 
efficient by themselves while used with a standard language.  

The first addition is word clustering. The cluster is the same that is used in 
Owoputi et al. (2013) research. The cluster contains 216,856 tokens where a to-
ken referres to word-to-token pair. Because of the informal nature of the slang, 
many written forms of slang words differ from standard language. Clustering 
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tool takes each text token and looks it up in the cluster data. When the word is 
found, the tool looks the cluster where the token is found and returns the 
mostly used text token from the cluster. This approach helps with spelling mis-
takes as well. In some cases this increases ambiguity, but it can help to normal-
ize the written form of words.  

An example of clustered text is described in TABLE 1. The first column 
“Cluster Identifier” describes the identifier for a cluster. The second column 
“Text Token” describes possibilities of written forms. The third column “Ap-
pearance Amount” describes the number of occurrences in different tweets. In 
this case if we look up word "meny" from the cluster, in return we get word 
"many", since it occurs more often than the misspelled comparison. After this, 
the new word "many" is more likely to be found from our corpus with a correct 
tag. 

TABLE 1: Example of a word cluster with appearance amounts 
Cluster Identifier Text Token Appearance Amount 
111111111110 somany 57 
111111111110 mant 93 
111111111110 meny 102 
111111111110 manyy 206 
111111111110 many 332160 
111111111110 mny 365 

 
 
The second additional tool is one that detects names and numbers. Plain 

numbers are easy to detect by using just built-in functions of the Python pro-
gramming language. For the name detection, Gimpel et al. (2011) have con-
structed a list of names commonly used in conversations, because they noticed 
that their tagger accuracy initially fell on proper noun detection. This list is 
combined with a list of names offered in NLTK toolkit. Name casing is lowered 
to avoid casing mismatch. These names are compared with lowercased text to-
kens. 

The third additional tool detects a specific mark-up for Twitter. This in-
cludes emoticons, URLs, retweet markings (RT), hashtags (#) and links to other 
Twitter accounts (@). This tool is using naïve method by only looking the first 
character from a text. If the first character is Twitter-specific special marking, 
the given word is tagged as RT. 

The fourth additional tool contains Brown Corpus and Penn TreeBank 
based n-gram taggers with different n-gram sizes. The idea for this addition is 
to detect possible Standard English words, which are not included in the train-
ing data. As well, since the taggers and tagging algorithms are performing dif-
ferently with each other while using Standard English, the performance of these 
taggers can be compared to previous studies. 

All the Twitter messages are annotated separately. There are three differ-
ent token sets to be processed for each message. The first set is one message 
without any modification. The second set contains same tokens in lower case. 
This is due to Gimpel et al. (2011) research finding that some of the proper 
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nouns are easier to find in all lower case mode. The third set is the lower cased 
message corrected with most likely written forms from Owoputi et al. (2013) 
token cluster. The experiment is done by varying the configuration of the tools 
and proceeding with the best results from earlier executions. 

5.3.4 Configuration 

The configuration is settled by varying the execution order of the core tagger 
and additional tools proceeding with the best results from earlier executions. As 
for the result for each run, the analysis of each tag is printed out. The format of 
the development analysis is a copy of Gimpel et al.'s (2011) accuracy table, 
which shows recall and most common confusion for each tag. Our extension to 
table shows correct and missed amounts for each token and displays the ampli-
tude of the most common error. With these extensions it is easier to monitor 
which kind of configurations should be made to the tagger. Also it is easier to 
note possible programming mistakes for our additional tool when the error is 
somewhere else than in the syntax. 

Our initial executions show some guidelines for our final execution order. 
For example tagger tends to confuse Twitter-specific mark-up to punctuation 
marks. This means that the third additional tool mentioned in chapter 5.3.2 de-
tecting Twitter-specific marks, should be used before the core tagger.  

We tried to gain tagging accuracy by trying to detect Standard English tri-
gram and bigram connections before our core tagger execution. This caused the 
tagging accuracy to fall couple of percentage points. This indicates that Internet 
slang has its own rules of sentence structure and it should primary be anno-
tated with slang corpus.  

As mentioned in earlier studies (Owoputi et al., 2013), as well our tagger 
lacks of accuracy in detecting nouns. To ease these problems, it is beneficial to 
add Standard English unigram tagger after our core slang tagger. With our se-
lected tools the most beneficial configuration to this is to use unigram tagger 
using Brown Corpus with extension of unigram tagger using Penn TreeBank. 
The accuracy is not gaining at all when using higher n-grams in this case. A 
simple explanation to this is that there are no actual language related issues to 
be fixed and as mentioned earlier written format between Standard English and 
slang is notably different. Missing nouns are only looked-up from Standard 
English corpus, which can be detected using unary rules. As well, these uni-
gram taggers are getting their highest accuracy when the given text is lower-
cased. Still after this, there are nouns without any POS tag. This is why it is 
most beneficial to set the name detection addition to the very end of the execu-
tion process. As an addition our tagger is configured to avoid annotation prob-
lems caused by tokenization. These are occurring most notably in Twitter-
specific mark-up and in Internet addresses. The correction is made only in the 
case that there is no other detectable tag to the given token. 

In conclusion, our tagger has similar configurations than Owoputi et al., 
(2013). The main differece between the taggers is the algorithm used for HMM 
based processing. As well, there are method level differences in the implemen-
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tation when comparing additional tools. Still the operating principles between 
the taggers are the same. The most important factor for our experiment to be 
comparable is still to use tha same data which was used in previous experi-
ments. 

5.4 Experiment Results 

This chapter describes all the different experiments made with our tagger de-
scribed earlier in chapter 5.3.3. In general, we tested the effect of different addi-
tional tools n-gram and corpus sizes and how they affect to the tagger accuracy.  

NLP system evaluation methods are introduced in chapter 2.2. Even 
though NLP systems are generally evaluated and compared with combinational 
evaluation value F-measure, still only precision is used to describe our experi-
ment results. 
 

5.4.1 Ablation Experiment  

TABLE 2 contains our final tagger accuracies with different configurations or as 
Owoputi et al. (2013) calls it "ablation experiment". As well, results from earlier-
studies are listed to the same table as a comparison. The tests are made with 
OCT27 data and DAILY547 data, which are used in previous studies. Our final 
tagger reaches a tolerable accuracy level slightly over 87% compare to other 
taggers.  

The main idea of the accuracy table is to compare the algorithm perform-
ance. Owoputi et al. (2013) are using MEHMM and Gimpel at al. (2011) are us-
ing CRF as the tagging algorithm. The idea in these previous experiments is to 
gain the best possible accuracy for a POS tagger. Since the approach in the tag-
ger implementation is different it has an effect to results, which can be seen 
from the TABLE 2. Previous taggers are notably more accurate when executed 
with all tagger features. With OCT27 test data Owoputi et al. (2013) are gaining 
near 92% accuracy and Gimpel at al. (2011) over 89% accuracy rate. Our addi-
tional methods have much higher impact to the final tagger than additional 
methods used in the previous studies. Still, the additional methods are rule-
based conditions, since they are not included in the statistical algorithm model. 
This means that the most comparable lines in the TABLE 2 are our tagger only 
clusters (and transitions), Owoputi et al. (2013) tagger only clusters (and transi-
tions) and Gimpel et al. (2011) base tagger. Gimpel et al.'s (2011) base tagger 
accuracy in DAILY547 column is in parenthesis, since the result describes tag-
ger accuracy while executed with development data. DAILY547 data were not 
used with Gimpel et al. (2011) base tagger.  

Even though clustering is additional tool its idea is only to ease the man-
ual annotation process, since unlabeled conversational data is easy to acquire 
from the web. From the comparable numbers mentioned, we can conclude that 
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MEHMM is way better algorithm than N-grams tested in our experiment, since 
the accuracy difference is over 8% points. Our final tagger contains bigram tag-
ger since it has slightly better accuracy than any other n-gram tagger. Our tag-
ger is still really close to Gimpel et al. (2011) tagger using CRF tagging algo-
rithm. The difference is roughly around 1% points while they both reach accu-
racy rate of 82% (± 1%). The difference is so small that we can consider CRF and 
N-gram approaches to be equally accurate.  

There are a lot of differences between our tagger and taggers used in pre-
vious experiments. One notable difference is in word tokenization. Even though 
it was assumed that the tokenization was already done by other external appli-
cation, still Owoputi et al.'s (2013) tagger is splitting some tokens into multiple 
parts. When we have a token, which cannot be tagged with our tagger we get 
an error. Owoputi et al. (2013) in the other hand is splitting the token into mul-
tiple parts which all have a possibility to be successfully tagged. This thing was 
noticed while counting the inter-annotator agreement with Owoput et al. (2013).  

In general, since the inter-annotator agreement is only 88%, it can be con-
cluded that the MEHMM and N-grams are succeeding in different areas. Still 
MEHMM is more suitable algorithm to be used with slang since the accuracy is 
way better in Owoputi et al. (2013) tagger even without taggers features, which 
more clearly shows the effect of the algorithm. Still, a notable downside using 
n-gram tagging algorithms is that they are not performing well with unclus-
tered words. As can be seen from the TABLE 2, the accuracy with unclustered 
data varies between 66% and 77% depending on whether the additional fea-
tures are used or not.  

TABLE 2: Tagging accuracies based on Gimpel et al.’s (2013) ablation experiment and com-
parison to earlier studies 

 
Even though our tagger cannot compete in tagging speed, the issue is not 

in the algorithm efficiency, since MEHMM and n-grams are both based on the 
same principle of HMM. Owoputi et al. (2013) describe how they use modified 
Viterbi algorithm for predicting tags. They also describe that the time cost of the 
basic Viterbi prediction is counted as O(|x|K2), where K is total number of tags 
and |x| describes given words. This is aligned with the HMM time consump-

Tagger OCT27 DAILY547 
Final tagger 87,25% 87,82% 

with clusters; without tagdicts, namelists 81,43% 81,98% 
without clusters; with tagdicts, namelists 76,96% 77,56% 
only clusters (and transitions) 81,39% 81,89% 
without clusters, tagdicts, namelists 66,21% 67,50% 

Inter-annotator agreement (Owoput et al., 2013) 88,05% 88,79% 
Owoput et al. (2013) all features 91,60% 92,80% 

with clusters; without tagdicts, namelists 91,15% 92,38% 
without clusters; with tagdicts, namelists 89,81% 90,81% 
only clusters (and transitions) 89,50% 90,54% 
without clusters, tagdicts, namelists 86,86% 88,30% 

Gimpel et al. (2011) all features 89,37% 89,17% 
Gimpel et al. (2011) base 83,38% (82,70%) 
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tion described in chapter 4.2. The modification of Viterbi algorithm is based on 
MEHMM greedy decoding, which makes the algorithm 3 times faster than 
normal Viterbi decoding. Still, even the slower basic Viterbi is decoded faster 
than our tagger execution. Since our most efficient tagger is bigram tagger, 
there is only one previous state transition. This means that in our case the time 
efficiency is constant since K is always 2 when modeled to Owoputi et al. (2013) 
time consumption formula. From this, we can conclude that the time consump-
tion of n-gram algorithms could be tolerable in different environment and the 
open source NLTK tagger on the other hand lacks of speed. Still the time con-
sumption of our tagger is quite close to the Gimpel et al. (2011) CRF tagger 
comparing to speed reported in Owoputi et al. (2013) study.  

MEHMM and N-grams used in this experiment are both based on HMM. 
CRF on the other hand have completely different working principles. After all, 
since this study is not focused on developing additional tools to gain the best 
possible tagger performance, the accuracy could be much higher if the features 
from previous studies would be adopted in our tagger as-is. Even though the 
tagging accuracies varied between this study and previous experiments, there is 
still another efficiency issue, which might be important for a final NLP system. 
The execution time of our tagger is around 2 minutes, which means that one 
tweet can be tagged in 4 seconds. Contrary Owoputi et al.’s (2013) tagger anno-
tates all 500 tweets in 4.4 seconds. Our tagger lacks in execution speed even 
more while using Brown Corpus or Penn TreeBank. The tagging with these fea-
tures takes over two hours. 

5.4.2 Common Tagging Errors  

Tag-specific accuracies are described in TABLE 3. The table is based on Gimpel 
et al. (2011) tag recall table on full model by using 500 tweet test data. The first 
column called "Tag" describes the tags used in our tagging experiment. Tags 
and word classes are described in attachment 3. The second column "Accuracy" 
describes the tag specific recall rate in our experiment. The third column "Gim-
pel et al. (2011)" describes recall rates of same tags in previous study. Fourth 
column "Tokens" represents the number of tokens and fifth column "Missed" 
describes how many of the tokes were tagged incorrectly. The sixth column 
"Confusion" describes the most common confusion and how likely it appeared 
in our experiment. 

In general, based on second and third column on TABLE 3, our tagger fails 
in similar places than Gimpel et al. (2011) CRF tagger. The absolute most likely 
confusions are proper (^) and common (N) nouns as Gimpel et al. (2011) earlier 
stated. These two are mostly mixed with each other and with verbs (V). Noun 
related errors covers over 40% of all tagging failures. There is similar confusion 
with pronouns (O) and determiners (D), but the absolute error amount is rela-
tively smaller. As well, possessive + nominal (S) and possessive + proper nouns 
(X) are not tagged correctly even once. Still the impact of those errors are less 
than 0,2% points, since there are only few words tagged with the word classes 
in our test data, which leaves the error quite irrelevant.  
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There are no missing tags in the last column indicating the most common 
confusion. This means that the word ambiguity is the greatest problem of our 
tagger, since most of the words can be found from the training data or from the 
clusters used in the experiment. Even when our tagger is executed without any 
features the distribution of tag specific errors is similar compared to tagger us-
ing all possible features. 

Our additional tools seem to cover missing tags quite well. After all, the 
total effect for additional tools is only around 6% points, since the most likely 
problem of our tagger without additional tools is missing tags. From this we 
can conclude that the actual problem is in the n-gram algorithm since it does 
not cope well with word ambiguity compared to MEHMM. 

TABLE 3: Tag-specific accuracies and errors based on Gimpel et al. (2011) accuracy table 

 
Based on tag specific accuracies, we counted the sentence retrieval accu-

racy, which in our tagger is around 24%. The accuracy is counted by isolating 
different tweets from each other and multiplying all the tags within a sentence. 
The calculation is done with manually tagged test data (correct tags) and with 
tag specific accuracies counted based on our tagger annotating results. With this 
counting method, the sentence retrieval accuracy is weighted with token num-
ber of occurrences, which gives more comparable sentence retrieval amount. 
This is similar compared to POS tagger proposed in Derczynski et al.’s (2013) 
study. 

 

Tag Accuracy Gimpel et al. 
(2011) 

Tokens Missed Confusion 

@ 100 % 99 % 330 0  
# 100 % 89 % 78 0  
U 99 % 97 % 117 1 ,(100%) 
, 98 % 98 % 880 18 ~(78%) 
& 95 % 98 % 127 6 V(67%) 
P 93 % 95 % 616 44 R(39%) 
O 92 % 97 % 505 38 D(58%) 
V 92 % 91 % 1053 80 N(40%) 
D 92 % 95 % 449 38 O(58%) 
L 91 % 93 % 129 11 D(45%) 
$ 91 % 89 % 85 8 #(38%) 
~ 89 % 91 % 212 23 ,(83%) 
! 83 % 82 % 186 31 O(16%) 
E 83 % 88 % 63 11 ,(27%) 
R 81 % 83 % 339 64 P(33%) 
N 81 % 85 % 981 187 ^(43%) 
A 76 % 79 % 367 88 V(25%) 
T 72 % 72 % 36 10 P(70%) 
^ 66 % 71 % 495 169 N(41%) 
Z 23 % 45 % 22 17 ^(41%) 
G 20 % 26 % 70 56 #(21%) 
X 0 % 0 % 6 6 R(50%) 
S 0 % 0 % 6 6 A(83%) 



48 

5.4.3 The Impact of the Corpus on Accuracy 

As stated earlier in chapter 3.3.1 with Standard English, the corpus size affects 
the efficiency of n-gram tagger. FIGURE 11 shows n-gram tagger accuracy de-
pendency on the corpus size as it behaves varying the OCT27 data size. This 
experiment includes six different size training data, which in this case is re-
ferred as corpus. The largest corpus contains 20,770 tokens. Other corpus sizes 
are multiples from one fifth of the original OCT27 data size. The tagger is also 
executed without any corpus data. FIGURE 11 describes that corpus size effects 
significantly on the tagger accuracy.  

 

 
FIGURE 11: Accuracy depending on the corpus size 

The proportional improvement after 5,000 tokens seems to decrease and 
after 15,000 tokens it seems to stop since there is no increase in the accuracy. In 
fact, the next test, after 15,000 tokens corpus, gives slightly lower accuracy rate. 
This accuracy decrease is caused by noisy training data as Liu (2003) described 
it. As well, when the tagger is executed without any corpus, tagger still includes 
additional tools such as twitter specific markup detector and proper noun de-
tector. These features by them selves give 30% tagging accuracy rate. Even 
though nouns cover about 20% of our total data, the rest of the accuracy per-
centage points indicates that Twitter messages contains a lot of domain-specific 
markings. That is why rule-based extensions might be beneficial improvements 
for POS tagger. 

5.4.4 N-Gram Effect  

N-gram size has effect on tagging accuracy while tagging Standard English (de 
Holanda Maia & Xexéo, 2011). This effect of the n-gram size can be seen in at-
tachment 2. Still, our experiment contains n-gram effect of tagging accuracy in 
slang context. Additional tools are used as features on the tests. According to 
our initial test they are not affecting the accuracy differences with different n-
gram sizes. FIGURE 12 describes n-gram tagger accuracy depending on the n-
gram size. All the n-gram sizes on FIGURE 12 experiment contain piled backup 

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

0	
   5000	
   10000	
   15000	
   20000	
  

A
cc

u
ra

cy
 

Number of Tokens in the Corpus 



49 

taggers meaning that each size has lower size backup taggers. This way the n-
gram taggers benefit of adding higher n-gram taggers. The experiment contains 
different configurations by varying clustering target. The different configura-
tions are as the following: clustered training data with clustered test data (CC), 
unclustered training data with clustered test data (UC), unclustered training 
data with unclustered test data (UU), and clustered training data with unclus-
tered test data (CU). According to the experiment n-gram size does not have 
significant effect on the total accuracy. There is only a slight improvement no-
ticeable between bigram tagger and other taggers. The most noticeable factor in 
FIGURE 12 is still that how clustering is effecting on the final outcome. As can 
be seen from the FIGURE 12, the most promising method is to use clustering 
with the given slang text. As well, clustering the traing data is beneficial. 

Clustering does not guarantee high accuracy rate. This can be seen in 
FIGURE 12. Our total unclustered test UU performs still better than the partly 
clustered test CU, which has clustered training data but unclustered test data. 
This differs from the full clustered test over 20% points. Since unclustered tag-
ger performs better than corpus-clustered version CU, the clustering causes 
some mismatches, which could be result of word ambiguity. There are some 
loose connections between slang words since the n-gram tagger performs better 
with size two than with size one. Still, as can be seen from the FIGURE 12, the 
tagging is mostly based on unigram rules.  

As an extension, we tested slang tagging accuracy with different size n-
gram algorithms with Standard English using Brown Corpus. The accuracy 
stayed constantly in 56%. This case is not seen in the FIGURE 12. This only indi-
cates that there are overlapping parts between English slang and Standard Eng-
lish, but they have a lot of differences as well. This already describes the impor-
tance of slang tagging studies and the fact they should be separated from the 
standard language.  

 

FIGURE 12: N-gram tagger accuracy depending on the cumulated n-gram size. CC: clus-
tered training data with clustered test data; UC: unclustered training data with clustered 
test data; UU: unclustered training data with unclustered test data; CU: clustered training 
data with unclustered test data 

60	
  

65	
  

70	
  

75	
  

80	
  

85	
  

90	
  

1	
   2	
   3	
   4	
   5	
   6	
  

A
cc

u
ra

cy
 

N-gram Size 

CC 

UC 

UU 

CU 



50 

 
Even though increasing the n-gram size is not increasing the accuracy, 

there still can be higher hidden Markov property connections between tag tran-
sitions. For to test these connections FIGURE 13 describes n-gram tagger accu-
racy without any backup taggers or any features. Experiment includes tests 
with clustered training and clustered test data; as well it includes tests with un-
clustered training and unclustered test data. 

As an extension, Standard English tagger using Brown Corpus is also 
added to chart to describe how NLTK performs with standard language. 
FIGURE 13 shows that most of the word-to-tag connections are unigram con-
nections, since unigram accuracy is between 66% and 81% depending whether 
the corpus and test data are clustered or not. Compared to this, bigram connec-
tions are already significantly dropping. This indicates that slang words have 
only loose connections with each other. With clustered corpus and clustered 
test data, the accuracy on bigram tagger drops to slightly over 14%. After this, 
higher n-gram taggers seem to stay a bit above 6% in accuracy. This indicates 
that the longer path connections exist, but there are only few distinguishable 
longer paths.  

 
FIGURE 13: N-gram tagger accuracy depending on the plain n-gram size with Standard 
English tagger using Brown Corpus, with clustered training and test data, and with unclus-
tered training and test data 

Even though higher size n-gram taggers do not have high accuracy rates, 
still the main problem is missing tags. This can be seen from the tagging results. 
The tags, which are in this case found, are tagged really accurately. The accu-
racy of the found tags is over 98% with unclustered data, and over 90% with 
clustered data. Even though unclustered tagger finds tags more accurately, still 
the absolute amount of correct annotations made is much lower. With this in-
formation, it is possible to place extra n-gram taggers first in the tagging execu-
tion order. This increases total results about 1% points. Even though this in-
creases tagger performance it does not change the fact that MEHMM is per-
forming better in tagging task than n-gram taggers. 
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6 ANALYSIS OF EXPERIMANTAL STUDY 

This chapter contains analysis of our experiment results in general and related 
to each experiment separately. Experiments cover five different areas. Tests 
cover ablation experiment, testing of tag-specific accuracies, and corpus size 
effect to tagging accuracy, and effect of n-gram size. Findings from the previous 
studies are also compared to our study results in this chapter. 

6.1 General Performance 

The idea of the empirical study is to test n-gram algorithms and their suitability 
for slang in POS tagging context. N-gram taggers are not performing as well as 
MEHMM algorithm in Owoputi et al. (2013) experiment. Even though the algo-
rithms are both based on HMM, our n-gram tagger lacks both in speed and ac-
curacy in all different ablation experiment tests. Since the features are ruled out 
in different test, it can be concluded that MEHMM is a better algorithm for 
slang tagging than any of the n-gram algorithms. Even though MEHMM on 
Owoputi et al. (2013) tagger works faster than our different n-gram algorithms, 
the slow execution speed is partly caused by the NLTK environment used in 
our experiment. Owoputi et al. (2013) and Gimpel et al. (2011) have constructed 
their whole tagging program from a scratch modeling Viterbi implementation 
of HMM. In our case, NLTK is a wide collection of different methods, which are 
not optimized for any task. This difference is one reason for the difference in 
execution speed. This difference can be seen easily from tagger execution. 
Owoputi et al.'s (2013) tagger does the total annotation process faster than 
NLTK loads its Python libraries. Owoputi et al.'s (2013) tagger was tested with 
Intel Core i5 2.4 GHz laptop. 
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6.2 Ablation Experiment 

An interesting part of the ablation experiment is inter-annotator agreement be-
tween our n-gram tagger and Owoputi et al. (2013) MEHMM tagger. The 
agreement is only 88%. This is a surprisingly low number since both algorithms 
are based on the same principle even though the implementation is a bit differ-
ent. This indicates that many of the errors taggers made differ from each other. 
As well, tagger accuracies differed nearly 20 % points when the additional fea-
tures were not used. Since the tagging results are so different, this means that 
MEHMM and n-gram should be considered and tested as different algorithms 
in the future as well. Nevertheless, n-gram approach is more naïve approach to 
implement HMM than MEHMM is. 

CRF tagger used in Gimpel et al. (2011) study performs quite similarly as 
n-grams tested in our experiment. There are no significant improvement be-
tween unigram and higher sized n-gram taggers. On the other hand with stan-
dard language increasing n-gram size is increasing the accuracy rate to certain 
point. This accuracy change can be seen from attachment 2. Since there are no 
important improvements while n-grams are used with slang, most of the tags 
can be reasoned with a simple unigram tagger. This decreases the relevance of a 
tagging algorithm if the algorithm is reasoning the tags only with unary con-
nections. 

6.3 Tag-Specific Accuracies 

There are a lot of differences in tag-specific accuracies within our study. In gen-
eral, our n-gram tagger performs similarly as CRF tagger developed by Gimpel 
et al. (2011). The total accuracies are near the same leve. This implies to tag-
specific accuracies as well. Still, there are some differences between annotation 
results. 

While n-gram tagger is executed with clusters there is no missing tag 
problem, most of the words are getting at least some kind of tagging. This 
means that our n-gram algorithms are able to reason some kind of answer for 
tagging question in most cases. The problems are mainly in incorrect tagging. 
This refers more to an algorithm related problem since most of the time the er-
rors are mistagged words rather than untagged words. Tag specific problems 
are similar whether the POS tagger is executed with word clusters or without. 
Only the amount of found tags is different. This means that most of the tagging 
problems are related to word ambiguity, which in slang context is mostly 
caused by noisy data. Partly this can be seen when tagger is executed without 
additional tools and without clusters. Even though Twitter-specific markings 
cause some missing tags, there are still many other missing tags on regular 
word classes as well. POS tagger using slang-based training data is still per-
forming lot better than tagger using Standard English. The accuracy difference 
is over 30% points. 
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As described in Gimpel et al. (2011), nouns have a lot of annotating prob-
lems. This is an issue for our tagger as well even after using additional tools 
such as word clustering and name lists. Because of this and since tagging prob-
lems are mostly related to word ambiguity, it is quite clear that even though 
algorithm selection in slang tagging is important, slang tagger cannot cover all 
the tags only with algorithm-based solutions. Higher accuracy rates are really 
hard to achieve without extending slang taggers with rule-based tools. Owoputi 
et al. (2013) have developed these tools, which have pre- and post-processing 
characteristics. Still, even though word clusters contain a lot of information how 
different slang words are written in general and name lists are quite extensive, 
some of the additional tools are mostly domain related, since Twitter-specific 
markup cover a huge part of the total data. Currently all compared taggers 
have based their algorithm related decision-making process on corpus. Still, 
since there are common confusions between certain word classes, a tool to 
guide decision-making process with these commonly confused tags could in-
crease the total accuracy of the POS tagging system. 

Different algorithms are able to annotate different word classes with dif-
ferent accuracy. This difference might be beneficial, since it creates an opportu-
nity to build a joint tagger containing different algorithms, where they could be 
used to support the core processor in decision-making. 

6.4 Effect of a Corpus 

The corpus size has the most notable effect on the tagging results. There is no 
significant improvement on the results after the corpus size is over 15,000 to-
kens. The most noticeable effect is between none and 5000 token training data 
size. One major problem is still that the training data contains a lot of noisy data. 
Owoputi et al. (2013) describes their cluster data gathering method contains 
occurrence frequency filtering. The text tokens appearing 40 times or more are 
taken into account for clustering application. Similar filtering could improve 
training data collection as well. Corpus of course should contain rare word-to-
tag connections as well to cover more different kind of data, but this filtering 
method could be used as a weighted guide in data gathering process. This dif-
ferent data gathering process might ease the noise related problem in training 
data and cover different kind of use-cases more thoroughly. 

Standard English corpus is not useful in annotating slang. It can cover 
only a few of the tag transition connections, which slang corpus is already cov-
ering. As couple of Standard English corpora were used in Owoputi et al. (2013) 
research to find missing nouns, our experiment shows that even though some 
nouns can be found with this method, it does not notably increase the total sys-
tem accuracy. Name listings instead are useful addition to total system, but they 
make a lot of annotating mistakes as well. Slang used in Twitter should be con-
sidered as different language from Standard English when considering auto-
matic text annotation. 
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6.5 N-gram Size 

Our experiment shows n-gram size does not have much effect on the final tag-
ger accuracy, no matter whether the training data or test data is clustered or not. 
This is different from Standard English since higher n-gram sizes are improving 
the tagging results (de Holanda Maia et al., 2011). With slang, some of the tag-
to-tag connections are still improving the results since bigram tagger is per-
forming better than naïve unigram tagger on cumulative tagger experiment. 
Our non-cumulative experiment on the other hand shows that even though 
cumulative n-gram tagger accuracy does not increase when the tagger increases, 
still there are some connections between tags. This means that statistical meth-
ods are considerable choice for being a slang tagger. Even after this, since most 
of the tagging decisions can be reasoned by using unary rules this means that 
the tagging decisions, which cannot be reasoned are mostly cause of noisy data. 
As well, this statement is backed up by the fact that the same tagger performs 
similarly with Standard English on varying n-gram size, but the accuracy per-
centages are only higher than with slang. This means that slang has a looser 
word ordering. Other factor could be the typical structure of Twitter messages. 
Gimpel et al. (2011) suggests that some word classes are more likely to appear 
in certain places than with certain tags. It implies that tag-to-tag connections 
might be longer than just connections between adjacent tags. As well, it partly 
explains why n-gram taggers lack on performance with higher n-gram sizes. 
This finding could be used to improve tagger decision-making. On the other 
hand, one reason for small amount of tag-to-tag connections could be noisy 
data. One solution to this could be a preprocessing tool to detect common and 
proper nouns before other tagging decision are made. 

6.6 Comparison to Previous Studies 

Only few existing studies are containing POS tagging experiments related to 
slang. Most of the studies have been published during resent years since the 
slang data have become more available than before. The results of our study 
were mostly aligned with previous studies. Still this study extends the previous 
findings to slang annotation research as well.  

As mentioned earlier, HMM does not perform well with small amount of 
training data (Ekbal et al., 2007). This is true according to our experiment as 
well. Our experiment defines the threshold of the training data amount in slang 
context, which is somewhere between 5,000 and 15,000 manually annotated to-
kens at least considering Twitter messages.  

Kouloumpis et al. (2011) presented Twitter sentiment analysis containing 
POS tagging. The tagger they were using was an n-gram tagger like the one in 
our experiment. As their tagger accuracy remains around 60%, our tagger out 
performs this over 20% points. Mostly the reason to the difference is the cluster-
ing method suggested in Owoputi et al.'s (2013) research. Without clustering 
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and other additional tools, our tagger accuracy performs really similarly as 
Kouloumpis et al.'s (2011) POS tagger. This describes the importance of addi-
tional tools for slang POS tagger and clarifies how important algorithm selec-
tion is even in slang POS tagging. Contrary to n-gram tagger Owoputi et al.'s 
(2013) MEHMM reached over 86% accuracy without clustering or other addi-
tional tools. 

Our n-gram algorithm lacks in accuracy compared to MEHMM used in 
Owoputi et al.'s (2013). This is aligned with Singh et al. (2013) statement that 
generally HMM outperforms n-gram solutions. The reason for this is in the im-
plementation difference of these two HMM solutions. While n-gram is only 
looking at nearby tags, MEHMM is considering longer path. This is beneficial 
since as Gimpel et al. (2011) described the tag relations might be longer than 
only near by tags. As well, one reason for this is frequency of ambiguous words. 
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7 CONCLUSIONS 

This chapter is covering connections to previous experiments and the conclu-
sions of empirical study are described. This chapter contains conclusions of the 
key issues, which are POS tagging, slang related methods, meaning of the ex-
periment results, and a comparison to previous similar experiments.  

7.1 Objectives and Key Findings 

The goal of this study is to describe the most suitable algorithm for POS 
tagger in slang context. The actual research problem in this study is to find out 
how n-gram algorithms are performing in automatic slang annotation com-
pared to previously experimented algorithms such as MEHMM and CRF. 

This study finds that MEHMM is the most suitable algorithm for text an-
notation in slang context. The performance is as good as using CRF algorithm. 
All of the algorithms are working with different principles and giving different 
kind of tagging results even though final accuracies between CRF and n-grams 
are close to the same. 

7.2 POS Tagging in General 

Automatic text annotation by POS tagging is a way for machines to understand 
a natural language. POS tagging is part of NLP scope, which again is a part of 
AI. POS tagging is a low level technology in many other NLP solutions. For ex-
ample it is important part in machine translation applications (e.g. Momtazi et 
al., 2010). 

Preferred POS tagging algorithm depends on the natural language in 
given text. This can be explained by differences in natural language structures. 
POS tagging methods are divided in statistical and rule-based approaches (Lv, 
2010). Both of the approaches have different algorithms to process natural lan-



57 

guage. Statistical approaches can be most of the time used in many different 
cases and they have good performance in European languages. Most common 
POS tagging algorithms are HMM, CRF and SVM. For example, HMM have 
reported to have good accuracy in many different languages especially Euro-
pean languages such as English. In fact with English language, HMM is per-
forming better than any other of the approaches. As well, HMM can be imple-
mented in different ways. N-grams, MEHMM and Viterbi algorithm are all 
HMM related algorithm, but they have different working principles. Still, some-
times rule-based approaches are giving better accuracies or they can be used as 
an extension for statistical approaches. For example Portuguese (de Holanda 
Maia & Xexéo, 2011) and South Asian language Telegu (Hasan, 2007) is suc-
ceeding much better in rule-based approaches. 

POS tagging is most likely to succeed when the style of tagged text is cor-
responding the corpus in use. Efficiency and accuracy of the POS tagging proc-
ess for given text are depending on a tagging algorithm and the size of the cor-
pus. Success of POS tagger depends on language suitability of selected tagging 
algorithm and on prior language analysis. In rule-based approaches the prior 
language analysis is included in the algorithm, but in statistical approaches 
corpus size is directly proportional to the tagging accuracy. 

7.3 Slang Tagging 

Slang tagging differs from tagging a standard language. Slang has more ambi-
guity problems than standard language and written form of a single word can 
randomly vary since misspellings are common or intentional (Ritter et al., 2011). 
In annotation perspective this ambiguity and misspelling problem is considered 
as a feature of a different language than a problem of standard language. Slang 
taggers are clustering the words with a same meaning into a single group to 
ease the tagging process, which in other case might be much slower process. 

In conclusion, POS tagging for slang is a challenging issue and it should be 
studied more. Standard language POS tagging is not completely accurate proc-
ess yet either (Manning, 2011). Even though slang tagging has its challenges; 
English written slang can already be annotated with higher accuracy than some 
standard languages. For instance English slang can be automatically annotated 
with 93% (Owoputi et al., 2013) accuracy rate while Hindi is only reaching a bit 
over 70% accuracy rate (Hasan, 2007). 

Most of the advances in slang annotation are because of the domain-
specific methods developed to identify the word classes. The ambiguity amount 
of the text tokens is too high for statistical methods to reach accuracy levels near 
100% only by themselves. Still, word clustering is a promising approach to ease 
ambiguity problem and speed up the execution process. (Owoputi et al., 2013)  
In addition clustering could be used in different purposes as well. One example 
of this could be spelling checkers in writing tools. 

POS tagging is still usually a smaller part for larger NLP system (Bird et 
al., 2009). Since there are many other system components with different execu-
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tion speeds, the total execution time of the system might rise relatively high 
(Chien et al., 1993). In some cases speed is preferred over accuracy, since time-
consuming algorithms might be crucial to the final system, if the accuracy is not 
notably affected (Owoputi et al., 2013). 

7.4 Influence of the Experiment Results 

The findings of this study can be used as a guide in POS tagging experiments in 
the future, and as well to give guidelines how slang POS taggers should be con-
structed. The most important finding is that slang words do not have as strong 
tag-to-tag connection as Standard English has. More closely, some connections 
might be even to further connections than only nearby tokens. This means that 
n-gram algorithms are not the best choice for a POS tagger processing slang. As 
well, this finding creates a possibility that some other languages, which are not 
performing very well with HMM annotation, there still might be connections to 
tags located further in the sentence. 

This study points out the weaknesses of slang annotation tools, which are 
mostly related to noise and detecting nouns. In order to mitigate the noise prob-
lem, this study points out the benefit of word clustering. As well, this study 
shows the importance of rule-based additional tools in slang tagging. 

Improvement in slang POS tagging might become important in automatic 
translation tools where POS tagging is used as lower level technology. As well, 
this study represents tools for handling text-based noise. These findings might 
be beneficial for some other NLP tools, which are facing noise related problems. 

There are other fields as well, where POS tagger is used as an important 
part of larger system. One of these different systems is sentiment analyzer. It 
can be used as a prediction tool for a stock market trends (Bollen, Mao & Zeng, 
2012). If the POS tagging fails to understand the key meaning of a sentence, the 
sentiment analysis might give totally opposite answer than it should. 

7.5 Limitations of the Study 

Mostly the additional tools used in tagging process are domain-specific and 
they most likely are not transferrable to other contexts. Word clustering on the 
other hand can be directly used in other environments. Mostly additional tools 
are originally based on observations on common language usage in twitter. As 
well, Only English Language and English Slang are used in our study. Addi-
tional tools might not be transferrable to other languages or slangs. 

The actual tagging algorithm examined in the study is used with an open-
source platform NLTK, which is a toolkit for general NLP tasks. NLTK might 
cause some efficiency problems considering time efficiency. 
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7.6 Future work 

Tagging accuracy could be improved with an additional NLP tool, which 
would parse and detect the text style of the parsed text tokens. A reason for this 
is the fact that taggers are succeeding better when the corpus text styles are cor-
responding to the given text. Sometimes a single text includes different writing 
styles and each different style would have the best tagging match in different 
corpus. This kind of improvement would still need future studies since there 
are no similar tools yet. A challenge in this approach is the processing speed of 
the proposed section. POS tagging can already be relatively time-consuming 
part in NLP application. A text style detector might increase the time consump-
tion even more. 

Slang annotation is still quite a new field of study. Even though previous 
advances in automatic standard language annotation have been beneficial kick-
start for slang annotation, there is still a lot to be discovered. For instance, slang 
tagging should be tested with various different tagging algorithms and they 
should be tested with different languages to gain the knowledge of best algo-
rithms in each different use-cases. These kinds of studies would be one step to-
wards simultaneous language interpreter application, which would understand 
slang and be able to operate in everyday life. 

HMM can be implemented different ways. This study compares MEHMM 
and n-gram usage with English slang. Because of the different results, MEHMM 
and n-gram should be considered and tested as different algorithms in the fu-
ture as well. In slang context MEHMM should be used as primary option since 
it seems to outperform CRF and n-gram algorithms. Still, MEHMM should be 
applied to slang annotation in the case where the base language has a good per-
formance with HMM based tagging algorithms. 

Some word classes are causing notably more ambiguity than others. 
Mostly this is related to nouns. Additional tools for noun detection could partly 
ease this problem. This could be beneficial for study of NER. NER may also 
have some methods already, which may improve noun detection. 

One important study finding is that clustering significantly improves 
slang POS tagging. Our experiment points out that clustering can improve POS 
tagging accuracy while it is used in certain way. This indicates that closer stud-
ies for slang clustering in POS tagging context should be made related to data 
collection and usage. 
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ATTACHMENT 1 – PENN TREEBANK TAG-SET 

 
Penn TreeBank tag set (Taylor et al., 2003, p. 8) 
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ATTACHMENT 2 – N-GRAM ACCURACY 

 
HMM accuracy versus max n-gram sizes (de Holanda Maia & Xexéo, 2011, p. 162). TSc and 
TSi are referring to different tag sets. 
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ATTACHMENT 3 – GIMPEL TAG-SET 

 
“The set of tags used to annotate tweets. The last column indicates each tag’s relative fre-
quency in the full annotated data (26,435 tokens). (The rates for M and Y are both < 0.0005.)” 
(Gimpel et al., 2011) 
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ATTACHMENT 4 – BROWN CORPUS TAG REPLACEMENTS 

TABLE 4: Brown Corpus (Greene et al., 1981) POS tags (Brown) replaced with matching 
Gimpel et al. (2011) tags (Gimpel) 
Brown Gimpel Brown Gimpel Brown Gimpel 
( , EX X FW-UH G 
) , EX+BEZ Y FW-VB G 
* , EX+HVD Y FW-VBD G 
, , EX+HVZ L FW-VBG G 
-- , EX+MD Y FW-VBN G 
. , FW-* G FW-VBZ G 
: , FW-AT G FW-WDT G 
ABL X FW-AT+NN G FW-WPO G 
ABN X FW-AT+NP G FW-WPS G 
ABX X FW-BE G HV V 
AP X FW-BER G HV* V 
AP$ S FW-BEZ G HV+TO V 
AP+AP X FW-CC G HVD V 
AT D FW-CD G HVD* V 
BE V FW-CS G HVG V 
BED V FW-DT G HVN V 
BED* V FW-DT+BEZ G HVZ V 
BEDZ V FW-DTS G HVZ* V 
BEDZ* V FW-HV G IN P 
BEG V FW-IN G IN+IN P 
BEM V FW-IN+AT G IN+PPO P 
BEM* V FW-IN+NN G JJ A 
BEN V FW-IN+NP G JJ$ A 
BER V FW-JJ G JJ+JJ A 
BER* V FW-JJR G JJR A 
BEZ V FW-JJT G JJR+CS A 
BEZ* V FW-NN G JJS A 
CC & FW-NN$ G JJT A 
CD $ FW-NNS G MD V 
CD$ $ FW-NP G MD* V 
CS & FW-NPS G MD+HV V 
DO V FW-NR G MD+PPSS V 
DO* V FW-OD G MD+TO V 
DO+PPSS V FW-PN G NN N 
DOD V FW-PP$ G NN$ S 
DOD* V FW-PPL G NN+BEZ S 
DOZ V FW-PPL+VBZ G NN+HVD S 
DOZ* V FW-PPO G NN+HVZ S 
DT D FW-PPO+IN G NN+IN S 
DT$ S FW-PPS G NN+MD S 
DT+BEZ D FW-PPSS G NN+NN N 
DT+MD D FW-PPSS+HV G NNS N 
DTI X FW-QL G NNS$ S 
DTS S FW-RB G NNS+MD M 
DTS+BEZ S FW-RB+CC G NP ^ 
DTX D FW-TO+VB G NP$ Z 
TABLE 4 continues on the next page. 
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TABLE 4 continues here from the previous page. 
Brown Gimple Brown Gimpel 
NP+BEZ Z RP+IN R 
NP+HVZ Z TO P 
NP+MD Z TO+VB V 
NPS ^ UH ! 
NPS$ Z VB V 
NR N VB+AT V 
NR$ S VB+IN V 
NR+MD ^ VB+JJ V 
NRS N VB+PPO V 
OD $ VB+RP V 
PN O VB+TO V 
PN$ O VB+VB V 
PN+BEZ L VBD V 
PN+HVD L VBG V 
PN+HVZ L VBG+TO V 
PN+MD L VBN V 
PP$ S VBN+TO V 
PP$$ S VBZ V 
PPL S WDT V 
PPLS S WDT+BER V 
PPO S WDT+BER+PP V 
PPS O WDT+BEZ V 
PPS+BEZ L WDT+DO+PPS V 
PPS+HVD L WDT+DOD V 
PPS+HVZ L WDT+HVZ L 
PPS+MD L WP$ S 
PPSS O WPO O 
PPSS+BEM L WPS O 
PPSS+BER L WPS+BEZ S 
PPSS+BEZ L WPS+HVD S 
PPSS+BEZ* L WPS+HVZ L 
PPSS+HV L WPS+MD L 
PPSS+HVD L WQL P 
PPSS+MD L WRB R 
PPSS+VB L WRB+BER R 
QL P WRB+BEZ R 
QLP P WRB+DO R 
RB R WRB+DOD R 
RB$ S WRB+DOD* R 
RB+BEZ R WRB+DOZ R 
RB+CS R WRB+IN R 
RBR R WRB+MD R 
RBR+CS R   
RBT R   
RN R   
RP R   
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ATTACHMENT 5 – PENN TREEBANK TAG REPLACEMENTS 

TABLE 5: Penn TreeBank (Taylor et al., 2003) POS tags (Penn) replaced with matching 
Gimpel et al. (2011) tags (Gimpel) 
Penn Gimpel 
CC & 
CD $ 
DT D 
EX X 
FW G 
IN P 
JJ A 
JJR A 
JJS A 
LS G 
MD V 
NN N 
NNS N 
NNP ^ 
NNPS ^ 
PDT X 
POS G 
PRP O 
PRP$ D 
RB R 
RBR R 
RBS R 
RP T 
TO P 
UH ! 
VB V 
VBD V 
VBG V 
VBN V 
VBP V 
VBZ V 
WDT D 
WP O 
WP$ D 
WRB R 
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ATTACHMENT 6 – N-GRAM TAGGER CODE 

import nltk, nltk.data 
from nltk.corpus import conll2000, treebank, brown 
from nltk.tokenize import word_tokenize, wordpunct_tokenize, sent_tokenize 
from nltk.tag.sequential import UnigramTagger 
# tagger training data 
tagged_sents = conll2000.tagged_sents('train.txt')  
# tagger training data with clustered words 
clustered_sents = conll2000.tagged_sents('train_clustered.txt') 
names = {} # dict of names 
brown_replace_tags = {} # dict for replacing Brown tags with Owoputi et al. tags 
penn_replace_tags = {} # dict for replacing Penn tags with Owoputi et al. tags 
emoticons = [] # list of popularly used emoticons 
 
# Builds a dict with all possible tokens as keys where each item 
# is containing a reference to proper cluster 
class TwitterCluster: 
    clusters = {} 
    # builds clusters to attribute dict called "clusters" 
    def __init__(self): 
        ... 
     
    # Returns the most likely token in a cluster containing given token 
    def get_most_likely_token(self, token): 
        ...     
 
# This class is based on standard unigram tagger. 
# The class tags twitter specific markup. 
class TwitterTagging(UnigramTagger): 
    # Calls UnigramTagger constructor 
    def __init__(self, train=None, model=None, backoff=None, cutoff=0, \ 
        verbose=False): 
        ... 
     
    # Replaces tag chooser with tweet markup finder 
    def choose_tag(self, tokens, index, history): 
        ... 
 
# This class is based on standard unigram tagger. 
# The class is used for noun detection  
class UnigramReplace(UnigramTagger): 
    # Calls UnigramTagger constructor 
    def __init__(self, train=None, model=None, backoff=None, cutoff=0, \ 
        verbose=False): 
        ... 
     
    # Replaces tag chooser with noun finder 
    def choose_tag(self, tokens, index, history): 
        ... 
The code continues on the next page. 
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The code continues here from the previous page. 
 
# Methods to annotate single tweet 
class Tweet(object): 
    tokens = [] 
    clustered_tokens = [] 
    tagging_results = [] 
     
    # Builds list of tokens and clustered tokens with corresponding key numbers 
    def __init__(self, linestring): 
        ... 
     
    # Returns tokinzed tweet 
    def get_tokens(self): 
        ... 
     
    # Returns tokinzed tweet with clustered words 
    def get_likely_tokens(self): 
        ... 
     
    # Builds list of tagging results with same key values than given tokens 
    def set_tagging(self, tags): 
        ... 
     
    # Checks names from current tweet by comparing untagged words to tweet list 
    def check_names(self): 
        ... 
     
    # Checks whether the token is found in emoticon list 
    def check_emoticons(self): 
        ... 
     
    # Sets missing tags to have same tagging as previous correct tag 
    def check_relateness(self): 
        ... 
     
    # Compares tagger results to correct tagging 
    def compare_result(self, resultfile, tweetno): 
        ... 
 
The code continues on the next page. 
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The code continues here from the previous page. 
 
class ReadTweets(): 
    tweets = [] 
    # constructs "tweets" attribute array by iterating each line in the file and  
    # placing a tweet-object instance 
    def __init__(self):  
     
    # Actual tagging process 
    def tag(self, filename): 
        resultfile = open(filename, 'w') 
        for tw in self.tweets: 
            i += 1 
            tokenized = t.get_tokens() 
            tokenized_likely = t.get_likely_tokens() 
            basetagger = nltk.DefaultTagger('None') 
            tw_tagging = TwitterTagging (tagged_sents, backoff=basetagger) 
            tw.set_tagging(tw_tagging.tag(tokenized)) 
            # Tagger core begins 
            tagger_level_1 = nltk.UnigramTagger(tagged_sents, backoff=basetagger) 
            tagger_level_2 = nltk.BigramTagger(tagged_sents, backoff= tagger_level_1) 
            tw.set_tagging(tagger_level_2.tag(tokenized)) 
            # Tagger core ends 
            # Use of additional tools begins 
            penn_names = UnigramReplace(treebank.tagged_sents(), \ 
                proper_tags = penn_replace_tags, backoff=basetagger) 
            brown_names = UnigramReplace(brown.tagged_sents(), \ 
                proper_tags = brown_replace_tags, backoff=penn_names) 
            tw.set_tagging(brown_names.tag(tokenized_likely)) 
            tw.check_names() 
            tw.check_emoticons() 
            tw.check_relateness() 
            # Use of additional tools begins 
            # building a filen containing tagging results 
            tw.compare(resultfile, i) 
        resultfile.close() 
         
 
tweet_reader = ReadTweets() # tagger instance 
tweet_reader.tag('untagged_tweets.txt') # running the tagger 
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ATTACHMENT 7 – N-GRAM TAGGER CLASS DIAGRAM 

 


