1% £

Jyvaskylan yliopiston julkaisuarkisto I
Jywiskyld University Digital Archive UNIVERSITY OF JYVASKYLA

This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s): Zolotukhin, Mikhail; Hdmaldinen, Timo

Title: Support Vector Machine Integrated with game-theoretic approach and genetic
algorithm for the detection and classification of malware

Year: 2013

Version:

Please cite the original version:

Zolotukhin, M., & Hamalainen, T. (2013). Support Vector Machine Integrated with
game-theoretic approach and genetic algorithm for the detection and classification
of malware. In IEEE Globecom 2013 Conference Proceedings : Big Security 2013,
First International Workshop on Security and Privacy in Big Data (pp. 211-216). IEEE.
IEEE Global Telecommunications Conference.
https://doi.org/10.1109/GLOCOMW.2013.6824988

All material supplied via JYX is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that
material may be duplicated by you for your research use or educational purposes in electronic or
print form. You must obtain permission for any other use. Electronic or print copies may not be
offered, whether for sale or otherwise to anyone who is not an authorised user.

Globecom 2013 Workshop - First International Workshop on Security and Privacy in Big Data

Support Vector Machine Integrated with
Game-Theoretic Approach and Genetic Algorithm
for the Detection and Classification of Malware

Mikhail Zolotukhin, Timo Hiamaéldinen
Department of Mathematical Information Technology
University of Jyviaskyld, Jyvaskyld, Finland,
email: {mikhail.m.zolotukhin, timo.t.hamalainen} @jyu.fi

Abstract—In the modern world, a rapid growth of mali-
cious software production has become one of the most signifi-
cant threats to the network security. Unfortunately, widespread
signature-based anti-malware strategies can not help to detect
malware unseen previously nor deal with code obfuscation tech-
niques employed by malware designers. In our study, the problem
of malware detection and classification is solved by applying a
data-mining-based approach that relies on supervised machine-
learning. Executable files are presented in the form of byte and
opcode sequences and n-gram models are employed to extract
essential features from these sequences. Feature vectors obtained
are classified with the help of support vector classifiers integrated
with a genetic algorithm used to select the most essential features,
and a game-theory approach is applied to combine the classifiers
together. The proposed algorithm, ZSGSVM, is tested by using a
set of byte and opcode sequences obtained from a set containing
executable files of benign software and malware. As a result,
almost all malicious files are detected while the number of false
alarms remains very low.

I. INTRODUCTION

Malicious software, or malware, remains a significant threat
to the Internet and today’s computing community [1]. The
recent growth in high-speed internet connections and internet
network services has led to an increase in the creation of
new malicious code, mainly for the theft of personal informa-
tion and recruitment of computers to botnets [2]. Moreover,
malware designers apply sophisticated techniques to hide the
presence of their creations in a computer system, making the
problem of malware detection even more difficult [3].

A dramatic increase in malware production has resulted
in the development of new tools and strategies to detect
malicious software. Despite this, signature-based approach of
malware detection remains the most widespread commercial
anti-malware solution. As a rule, software based on such ap-
proach searches for a specific signature inside a file analyzed.
The signature can contain a specific sequence of bytes or a
portion of a machine language instruction. Unfortunately, a
malware signature cannot be extracted until an instance of this
malware has damaged several computers or networks. Thus,
the signature-based approach cannot detect previously unseen
malicious software. Furthermore, this approach cannot cope
with code obfuscation techniques such as garbage insertion,
code reordering and variable renaming, which are employed
by malware designers to hide the actual behavior of their
malicious creations [4], [5], [6].

978-1-4799-2851-4/13/$31.00 ©2013IEEE 211

Data-mining-based approach can be used to deal with the
problem caused by code obfuscation. This approach involves
the analysis of a dataset that includes several characteristic
features extracted from malicious samples and benign software
to build a classification tool that is able to detect undocumented
malware [13]. Data mining approaches rely on machine-
learning algorithms that can be classified into three different
types: supervised learning [7], unsupervised learning [8] and
semi-supervised learning [9].

The extraction of features to build a model for malware
detection is usually carried out by analyzing byte sequences
of executable binaries. Study [10] proposes a method to
analyze binary content of files by using n-gram analysis and
efficient statistical modeling techniques in order to determine
the validity of file type in network traffic flows or on a local
disk. In [11], a byte-frequency based detection model to deal
with the problem of malware variants detection is proposed.
In addition, recent studies have investigated the ability of
operational codes (opcodes) to detect malicious software [12].
An opcode is the portion of a machine language instruction
that specifies the operation to be performed. In studies [13]
and [14], detection of malicious code is based on previously
seen examples and carried out with the help of opcode n-gram
representation and several well-known classifiers.

After a malicious software or a file already infected by that
software has been detected, the anti-malware system performs
a specific action depending on the malware characteristics.
A proper determination of the malware type allows detect-
ing the emergence of new threats and assesses the risk in
quarantine and cleanup. There are several researches that are
devoted to automated classification and analysis of malicious
software. Paper [2] presents an effective algorithm, which
uses a diversity of static feature selection methods to identify
and classify malware families and distinguish malware from
goodware. Study [15] proposes a classification method based
on function level similarity comparison, which is founded on
the observation that most malware variants are generated with
metamorphic engines or malware generating tools and that
those originated from the same program share most of their
components.

In this research, we apply the data-mining-based approach
for both the detection of malware and its classification. Let
us assume that there is a quite big set of properly labeled
executable files. This allows us to apply supervised machine-

Globecom 2013 Workshop - First International Workshop on Security and Privacy in Big Data

learning leaving the analysis of unsupervised malware detec-
tion methods for a future work. Files of this set are presented in
the form of byte and opcode sequences and n-gram models are
employed to extract essential features from these sequences.
A classification model is then built with the help of support
vector machines, which are well-known binary classifiers. The
problem of the classifiers combination is considered as a
decision-making task and game theory methods are applied to
predict the class or to estimate class probabilities. A genetic
algorithm is used to select the most essential features and,
therefore, cope with the high dimensionality of the problem.

The rest of the paper is organized as follows. Feature ex-
traction based on applying n-gram models to byte and opcode
sequences is considered in Section II. In Section III, we present
the classic support vector machine, genetic algorithm and some
basics of game theory. Section IV introduces a model which
is built with the help of feature vectors extracted and used to
detect malware. In Section V, we present several simulation
results to evaluate the algorithm proposed and compare it with
some analogues. Finally, Section VI draws the conclusions and
outlines future work.

II. FEATURE EXTRACTION

Executable files can be presented in the form of byte or
opcode sequences [11], [12]. An opcode is the portion of
a machine language instruction that specifies the operation
to be performed: arithmetic or data manipulation, logical
operation or program control. Opcodes reveal significant sta-
tistical differences between malware and legitimate software
and even single opcodes are able to serve as the basis for the
detection of malicious executables [12]. Opcodes can be used
with one or more operands which show upon what data the
operation should act. Since the operands strongly depend on
CPU architecture and can be used by malware designers to
hide malicious code [14], we analyze only the sequence of
opcodes without taking into consideration opcode parameters.

An n-gram word model is applied to transform all byte and
opcode sequences extracted from executable files of a training
set to sequences of n-grams. An n-gram is a sub-sequence of n
overlapping items (characters, letters, words, etc) from a given
sequence [16]. N-gram sequences are then used to construct
n-gram frequency vectors, which express the frequency of
appearance of every n-byte and n-opcode. To obtain such
vector for opcode n-grams, we find all unique n-opcodes
contained in the executables of the training set and build the
frequency vector by counting the number of occurrences of
each such n-opcode entry in the analyzed sequence. In the
same manner, a frequency vector for byte n-grams can be
extracted. Thus, each executable file is transformed to two
numeric vectors of lengths N,. and N, equal, respectively,
to the number of unique opcode and byte n-grams found in
the training set.

III. MATHEMATICAL BACKGROUND

The algorithm proposed to build a classification tool that
is able to detect malicious executable files relies on a genetic
algorithm (GA) to select the most essential features, support
vector machines (SVMs) to classify executable files and the
solution of a zero-sum game (ZSG) to combine classifiers

212

together. These mechanisms are explained in more detail in
the next subsections.

A. Genetic Algorithm

Genetic algorithms belong to a class of stochastic optimiza-
tion algorithms in which the principles of organic evolution
are used as rules in optimization. They are often applied to
optimization problems when specialized techniques are not
available or standard methods fail to give satisfactory answers.
GAs are also used to automatically determine the relative
importance of many different features and to select a good
subset of features available to the system [17], [18].

As usual, GA starts with an initial set of feasible solutions
(called population) and tends to an optimal solution using
processes similar to evolution: crossover and recombination.
Crossover is a genetic operator that combines two solutions
(parents) to produce a new solution (offspring). The idea
behind crossover is that the new solution may be better than
any of the parents if it takes the best characteristics from each
of the parents. Recombination produces spontaneous random
changes in various solutions of the current population and
that might improve those solutions. Crossover and recom-
bination contribute new solutions to the population. During
each iteration of the algorithm (generation) all members of
the current population are evaluated: better solutions have
a higher probability to be selected for the new population.
The algorithm stops when some stopping criterion is fulfilled:
usually, a maximal number of generations is reached or a
maximal number of function evaluations is made.

Genetic algorithms where the best individuals survive with
the probability of one are usually known as elitist genetic
algorithms. Elitism guarantees survival of the best element of
the population and therefore guarantees that at least the fitness
of the population measured as the fitness of the best individual
does not decrease after the next iteration. The elitist genetic
algorithm and theoretical estimation for its convergence are
considered in study [19].

B. Support Vector Machine

Support vector machines are supervised learning models
with associated learning algorithms that analyze data and
recognize patterns. Over the last decade, SVMs have been
applied for many classification problems because of their
flexibility and computational efficiency. As a rule, during the
training an SVM takes a set of input points, each of which
is marked as belonging to one of two categories, and builds a
model representing the input points in such way that the points
of different categories are divided by a clear gap that is as wide
as possible. Thereafter, a new data point is mapped into the
same space and predicted to belong to a category based on
which side of the gap it falls on.

SVM models can efficiently perform linear and non-linear
classification by mapping input vectors into high-dimensional
feature spaces. A linear SVM model separates data belonging
to different categories by using a hyperplane so that the
distance from it to the nearest data point on each side is
maximized. In case such a hyperplane does not exist, the
algorithm chooses a hyperplane that splits input points as
cleanly as possible. For mislabeled points, a penalty function

Globecom 2013 Workshop - First International Workshop on Security and Privacy in Big Data

which measures the degree of misclassification of the data
points is introduced. Thus, the model is built to maximize
the distance from the separating hyperplane to the nearest
data point on each side, taking into account the penalties
caused by mislabeled data points. The kernel trick allows the
SVM algorithm to become nonlinear to separate points by a
hyperplane in a transformed feature space.

A regular SVM model classifies data belonging to two
different categories. Let us consider a classification problem
where m samples belong to two categories: if sample x;
belongs to the first category then it has label y(z;) = 1, and
otherwise y(z;) = —1. In this case, the hyperplane (w,b)
for the SVM model can be found after solving the following
optimization problem:

1 u
g O e
i=1 (1)
y(@)(wh¢(z:) +b) > 1 -«
€ >0, Vi={1,...,n},
where ¢; is the slack variable, which measures the degree of
misclassification of x;, C'is the penalty parameter and function

¢(x) maps x to a higher dimensional space. Once optimal
hyperplane (w,b) is found, a new sample x is classified as

follows: ()
1, if s(x) > 0,
y(z) = {—1, if s(z) <0, @

subject to {

where function s(z) is calculated as

s(z) = wh é(z) +b. 3)

However, in many classification problems feature vectors
belong to more than two different classes. One well-known
strategy to deal with this case is to build (np)(ny — 1)/2
binary classifiers, where ny, is the number of different labels
in the training set. Each such classifier is trained on data
belonging to two different categories L; and L; and returns

the corresponding function s;;(z), where i,j € {1,...,np}
and 7 # j. Let us notice, that
sij () = —si(2).)

A new sample = goes through all functions s;;(z), and it is
defined either belonging to the i-th (s;;(z) > 0) or the j-th
(sij(x) < 0) category. Finally, the category of z is defined as
the one which collects the most votes [22].

C. Zero-sum Matrix Game

The normal form of two-person zero-sum game [20] is
given by triplet (S*, 52,), where S! and S? are sets of strate-
gies available for the 1-st and 2-nd player correspondingly and
7 is a real-valued function 7 : S* x §? — R which associates
the first player payoff (equal to the second player loss) with
every pair of strategies. The goal of the first player is to select
the strategy maximizing his payoff, whereas the goal of the
second player is to select the strategy minimizing his loss.

When S' and S? are finite sets the function 7 can be
represented as a payoff matrix © = [m;;], where the value
m;; 1s the first player gain (the second player loss) in the case
when the first player selects the ¢-th strategy and the second

213

player selects the j-th strategy. The point (¢*, j*) is called the
saddle point of the game and 7;+ ;= is the value of the game
if for any strategies ¢ and j of the first and second player
correspondingly the inequality m;;» < e« < 7y« holds.
The matrix game has a saddle point (i*,;*) if and only if
min; max; m;; = max; min; m;; = m;«;=. In this case, the
matrix game has a solution in pure strategies.

In the case a game does not have a saddle point, there are
two options: the best guaranteed result solution and solution in
mixed strategies. The best guaranteed result solution is defined
as argmax; min; 7;; and arg min; max; m;; for the first and
the second players respectively. The set of mixed strategies
Q' of the I-th player (I € {1,2}) may be represented as a
set of probability vectors: Q' = {¢' = (¢},...,q},) : ¢} >
0, ZZil qr = 1, where qfc is a probability that the [-th player
selects the k-th pure strategy and m; is the number of such
strategies available for the [-th player. For a two-person game
with payoff matrix 7 and sets of mixed strategies Q' and Q?,
mixed strategies ¢'* € Q' and ¢*>* € Q? are optimal mixed
strategies if (¢1)Tng®* < (¢"*)Tng®* < (¢¥*)Tng? for all
¢t € Q' and ¢> € Q2. The point (¢**,¢?*) is called the
saddle point for mixed strategies and the value (¢'*)T7q?* is
called the value of the game in mixed strategies. It was proved
that every matrix game has a solution in mixed strategies [20].

IV. ALGORITHM

The application of n-gram models returns high-dimensional
feature vectors even for small values of n. To reduce time
and computing resources when classifying those vectors, a
dimensionality reduction technique is supposed to be em-
ployed. Despite the development of supervised dimensionality
reduction methods [21], feature selection based on a genetic
algorithm remains one of the most powerful means to escape
from high dimensionality in a classification problem [18].

Let us denote the size of feature vectors obtained after
applying n-gram models as N, where N = N,. or N = N,.
First, we choose the number N of the most essential features
to be selected. This number should not be high to allow the
classifiers work fast, but high enough to classify malware
properly. After Ny is chosen, an initial population for GA is
formed. Each individual in this population is a binary vector
of length N in which one is placed in the ¢-th position if
the i-th feature is selected. Zeros correspond to non-selected
features. The initial population is constructed randomly with
just the restriction that the number of features selected does
not exceed Ny.

Recombination and crossover are used to generate new
individuals. To perform recombination, one individual is ran-
domly selected, and half of its values, which are ones, is
changed to zeros. Further, taking into account that the total
number of units can not exceed Ny, some zero values become
units. A simple two-point crossover is performed next. Two in-
dividuals I* = (I},...,1%) and I? = (I%,..., I%,) are chosen
randomly and act as parents. Then a number k: 1 < k < N is
picked randomly, and new individual [is formed as follows:
I=({,...,I},1%,,,...,I%). If the number of units in the
vector obtained is greater than Ny, several values become
ZErO0Ss.

Globecom 2013 Workshop - First International Workshop on Security and Privacy in Big Data

After crossover and recombination have been performed,
some individuals which correspond to highest values of fitness
function are selected for the next generation. In this study,
classification accuracy is chosen as the fitness function. Clas-
sification accuracy is calculated by using the k-fold validation
approach. In k-fold cross-validation, the training set is ran-
domly partitioned into k equal-size subsets. Of the k subsets,
a single subset is retained as the validation data for testing the
model and the remaining & — 1 subsets are used as training
data. The cross-validation process is then repeated £ times,
with each of the k subsets used exactly once as the validation
data. Therefore, for features corresponding to the individual
I, k classification accuracy values are calculated. The fitness
function value f(I) is then calculated as follows:

k
A,
F(1) = 2271)

where A, is malware classification accuracy for the v-th subset
of the training set when only features corresponding to the
individual [are selected. The rest of the algorithm description
is devoted to the malware classification scheme.

Let us assume that the training set consists of benign
software executables and different types of malware which
belong to n, categories. After extracting byte or opcode
sequences, applying an n-gram model and selecting features
by using GA, the set of labeled vectors is obtained, where a
label is equal to a; € {1,...,n,} for a malware file and zero
for a benign software. The aim is to build a model which is
trained on the basis of this set and allows to detect malware
executable files and define to which malware categories they
belong to. For this purpose, we train n,(n, + 1)/2 binary
SVMs using the data belonging to two different categories. As
described in the previous section, the SVM trained with the
data from categories ¢ and j returns the function s;;.

Let us consider a new executable file which is supposed
to be classified. After the n-gram model has been applied and
the most essential features have been selected, we denote the
resulting vector as x. For this vector, the matrix zero-sum game
(81,82, m(x)) is constructed, the strategies corresponding to
different SVM classifiers, ie. S* = S%2 = {0,1,...,n.}.
The payoff matrix 7(z) = [m;(x)], 4,57 € {0,1,...,n.} is
calculated as follows:

(1, ifi=,
= {is (e, 15 ©

According to the statement about the saddle point in
a matrix game, the game (S',S% m(z)) has a solution in
pure strategies (:*,j*) if and only if min; max; m;;(z) =
max; min; m;; (x) = i+ (z), where i,5 € {0,1,...,n,}. It
is obvious, that min; max; 7;;(z) = 1, because m;; (z) = 1 and
mij(x) < 1,1if ¢ # j. On the other hand, Vi min; m;;(x) <1
and consequently max; min; 7;;(x) = 1 only in the case when
F* : min; me(z) = 1 or equivalently 3i* : mi(z) =
1, V5 €{0,1,... n.}.

Let us also notice, that the game (S*, S, 7(x)) can have
several saddle points, but in this case all of them are placed in
the same row. Assume, that there are two saddle points (i1, j1)
and (i3, j2), such that i; # ia. As we proved earlier, it is re-
quired that m;, ;(z) = 1 and m;,;(z) =1, Vj € {0,1,...,n4}.

214

In particular, it means that 7;, 4, (z) = 1 and 7, ;, (x) = 1, and
consequently s;,4, () > 0 and s;,;, (x) > 0, which contradicts
the definition of the SVM function s;;(x) in equation (4).

In terms of classification of new vector x, the existence of
one or several saddle points means, that one class is winning,
because all saddle points are located in the same game matrix
row. Thus, if the game (S!,S? m(z)) has a saddle point
(i*,7*), we assign to z the label a;(x) which corresponds
to the 7*-th row.

However, usually a matrix game can not be solved in pure
strategies, i.e. it does not contain any saddle point. As proposed
in the previous section, one variant to solve the game in this
case is to find the best guaranteed result solution. For the game
(81,82, m(x)), this solution can be defined as

mj(z) = max (min

i€{0,1,mmq } je{o,l,...,na}(wij(55))),

max (m;(z))),

min
J€{0,1,...,;nq} i€{0,1,...,nq}

(N

Ty () =

for the first and the second player correspondingly. This
solution is equivalent to the solution that can be found with
the help of fuzzy multi-class SVM [23]. Fuzzy SVM classifies
the vector x as follows:

" = argmazic(o,1,....n,ymi(T),
where m;(x) = min 1,s;i(x)). ®)
(z) je{0,1,...na}, j;éi(i)
As we can see, the label assigned to x by fuzzy SVM is the
same as the label assigned by the solution which guarantees
the best result for the first player in the game (S*, S?, 7(x)),
ie.

(mi(®))). (9

Nevertheless, in this study, we use another approach to
classify vector x when the matrix game (S*, S?, 7(x)) does
not have any saddle point. This approach is based on the use of
mixed strategies of players. Every matrix game has a solution
in mixed strategies, For the game (5!, S?, (z)) optimal mixed
strategies p* = (pj,pi,---,py,) and ¢* = (45,47, .-, ;)
for the first and for the second player correspondingly can
be found by solving the following two linear programming
problems:

maxuv
v< S opimii(z), je€{0,1,...,n.},
subject to ¢ > p; =1,
pi >0, i€{0,1,...,n.}
(10)
and
min w
wzz?ioﬂu('r)q]v 1€ {0717"'77?'(1}5
subject to >7% ¢ = 1,
QJzov je{oalv"'ana}a
(11)

where v and w are auxiliary variables introduced to get rid
of non-linearity of the problems objective functions. Linear
programs (10) and (11) can be easily solved, e.g. by standard
simplex method [24].

Globecom 2013 Workshop - First International Workshop on Security and Privacy in Big Data

The vector z is classified based on optimal mixed strategies
p* and ¢* as follows:

o If
Ng Mg Na
k ok k ok * ok
E DPoq; + E Pido = E DPidj,
j=0 i=1 i,j=1
jisij(x)=20 is;5(x)20 1,418 (2)=20

12)
then the executable file corresponding to the vector z
is classified as a benign software.

e If the inequality (12) is not fulfilled, then the exe-
cutable file corresponding to the vector x is classified
as a malware, and the type of this malware a;(x) is
defined as follows:

i*, if Sjx j* (I) > 07
_ 1
ai(z) {j*, if 5,45+ (x) <0,)
where
T aTgmaxie{l,...,na}(p:% (14)

If the game (S!, 52, 7(x)) has several saddle points in mixed
strategies, then we select one of them randomly. Let us also
notice that the scheme described above is applied in the case
when the game (S',S% m(z)) can not be solved in pure
strategies.

V. NUMERICAL RESULTS

We tested the algorithm proposed using opcode and byte
sequences extracted from real executable files, some of which
are infected with malware. Each malware belongs to one of
twenty different categories. The set of files is divided into the
training set (600 entries) and the testing set (489 entries). We
assume that the testing set does not contain malware types not
presented in the training set. The extraction of features from
opcode and byte sequences is carried out by employing 1-gram
and 2-gram models. For 2-gram models, GA is used to reduce
the dimensionality to less than 1000. For GA, 500 generations
are used, the size of each population being equal to 100. For
binary SVM classifiers, linear and Gaussian kernels are used,
and optimal classifiers parameters are defined with the help of
the k-fold validation technique.

To evaluate the performance of the proposed technique, the
following characteristics are calculated in our test:

e True positive rate: the ratio of the number of correctly
detected malware to the total number of malware in
the testing set;

e False positive rate: the ratio of the number of normal
files classified as malware to the total number of
normal files in the testing set;

e Detection accuracy: the ratio of the total number of
normal files detected as normal and malware detected
as malware to the total number of files in the testing
set;

e (lassification accuracy: the ratio of the total number
of normal files detected as normal and malware of a

215

category classified as malware of this category to the
total number of files in the testing set;

The dependence between false positive and true positive
rates for different n-gram models applied to opcode and byte
sequences is shown in Figure 1. Detection and classification
accuracies for different Gaussian kernel parameter values used
in SVMs are presented in Figure 2. As one can see, 2-gram
models are much more accurate. In addition, the proposed
algorithm applied to byte sequences shows better results in
terms of the true positive rate, while in case of 1-gram model
opcode sequences allow to obtain fewer false alarms.

1001
R
80
R
g
S 60r
L
>
=
g 4of
g
= —— | —gram, opcodes
20F —8— | -gram, bytes
——2—gram, opcodes
—¥—2-gram, bytes
0 L I J
0 5 10 15
False positive rate, %
Fig. 1. Dependence between false positive rate and true positive rate for

different n-gram models applied to opcode and byte sequences

(a) Detection accuracy

(b) Classification accuracy

Fig. 2. Dependence of the accuracy on Gaussian kernel parameter for different
n-gram models applied to opcode and byte sequences.

We compared the performance of the algorithm proposed
with well-known classifying techniques: Artificial Neural Net-
work (ANN), Data Tree (DT), K-Nearest Neighbors (KNN),
Semi-supervised Density-Based Spatial Clustering of Applica-
tions with Noise (SSDBSCAN) [25], major voting multi-class
SVM (MVSVM) [22] and fuzzy multi-class SVM (FSVM)
[23]. In order to extract features 2-gram model is applied to op-
code and byte sequences. To escape from the high dimensional-
ity of the problem, several dimensionality reduction techniques
were applied : Linear Discriminant Analysis (LDA), Principal
Component Analysis (PCA) plus Neighborhood Components
Analysis (NCA) and Large Margin Nearest Neighbor metric
learning (LMNN) and RELIEF [21]. Comparison results based
on the analysis of opcode and byte sequences are listed,
correspondingly, in Tables I and II, where malware detection
and classification accuracies are shown. All optimal classifiers
parameters are found with the help of k-fold validation during
the training stage, and accuracy is calculated when applying
those classifiers to the testing set. As one can notice, SVM

Globecom 2013 Workshop - First International Workshop on Security and Privacy in Big Data

integrated with ZSG (ZSGSVM) and GA outperforms all other
techniques in terms of the classification accuracy.

TABLE L. MALWARE DETECTION AND CLASSIFICATION ACCURACY (IN
BRACKETS) OF THE ALGORITHM PROPOSED COMPARED TO ANALOGUES
(IN PERCENT) BASED ON THE OPCODE SEQUENCES ANALYSIS.

Algorithm LDA PCA+NCA| PCA+LMNN| RELIEF | GA
ANN 39.58 92.01 86.00 94.44 38.89
(85.76) (89.93) (82.25) (87.15) (85.42)
DT 93.06 39.24 3104 96.88 93.40
(91.67) (88.54) (78.13) (93.07) (89.24)
KNN 94.79 94.79 93.06 97.22 94.10
(92.01) (92.71) (90.63) (95.14) (92.36)
SSDBSCAN | 92.36 95.83 94.10 9132 9271
(92.01) (92.36) (90.63) (90.63) (92.01)
MVSVM 93.06 94.79 94.44 96.88 97.57
(87.15) (93.06) (93.06) (94.44) (95.83)
FSVM 93.06 94.79 9444 96.88 97.57
(87.15) (93.06) (93.06) (94.44) (95.83)
ZSGSVM 93.06 94.79 9444 96.88 97.57
(85.76) (93.06) (93.06) (95.14) (96.18)
TABLE II. MALWARE DETECTION AND CLASSIFICATION ACCURACY

(IN BRACKETS) OF THE ALGORITHM PROPOSED COMPARED TO
ANALOGUES (IN PERCENT) BASED ON THE BYTE SEQUENCES ANALYSIS.

Algorithm LDA PCA+NCA| PCA+LMNN| RELIEF | GA
ANN 92.71 39.58 8550 38.19 38.89
(86.46) (85.76) (83.50) (84.38) (87.50)
DT 95.14 91.32 36.46 96.18 94.44
(91.67) (90.28) (83.68) (94.10) (91.32)
KNN 95.49 95.14 9583 96.53 96.53
(94.79) (93.75) (94.79) (95.14) (94.44)
SSDBSCAN | 93.40 94.10 9375 92.36 9375
(89.93) (91.67) (91.67) (91.32) (91.67)
MVSVM 96.86 98.26 89.93 95.49 98.26
(95.14) (94.79) (88.89) (94.79) (95.83)
FSVM 96.86 98.26 89.93 95.49 98.26
(95.14) (94.79) (88.89) (94.79) (95.83)
ZSGSVM 96.86 98.26 89.93 95.49 98.26
(95.14) (95.49) (89.24) (94.79) (96.18)

VI. CONCLUSION

In this research, we detect and classify malware with the
help of a supervised machine-learning approach. Files of the
training set are presented in the form of byte and opcode
sequences and n-gram models are employed to extract data
from these sequences. A genetic algorithm is used to select the
most essential features and, therefore, to cope with the high
dimensionality of the problem. A classification model based on
binary support vector machines is built using feature vectors
obtained. Then binary SVM classifiers are combined by using
the game theory approach. Numerical examples carried out
show that the algorithm proposed produces good results in
terms of malware detection and classification accuracy.

Although ZSGSVM shows good results, feature selection
with GA takes long time. We are planning to continue our
research with supervised malware detection and design a
feature selection technique that would be comparable to GA
in terms of accuracy but which would work faster. In addition,
we are going to employ anomaly detection approach to detect
malicious software executables unseen previously.

REFERENCES

[1] House of Commons - Science and Technology Committee. Malware and
Cyber Crime. 12th Report of Session 2010-12. TSO (The Stationery
Office), 2012.

216

(2]

(3]

[4]

(51

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

R. Islam, R. Tian, L. Batten, S. Versteeg. Classification of Malware
Based on String and Function Feature Selection. Proc. of Cybercrime
and Trustworthy Computing Workshop (CTC), pp. 9-17, 2010.

N. Kuzurin, A. Shokurov, N. Varnovsky, V. Zakharov. On the Concept of
Software Obfuscation in Computer Security, Lecture notes in computer
science, 2007.

D. Bruschi, L. Martignoni, M. Monga, Detecting self-mutating malware
using control-flow graph matching, Lecture Notes in Computer Science,
2006.

M. Chouchane, A. Lakhotia. Using engine signature to detect metamor-
phic malware. Proc. of the 2006 ACM workshop on Recurring malcode,
ACM New York, NY, USA, pp. 73-78, 2006.

Q. Zhang, D. Reeves. Metaaware: Identifying metamorphic malware.
Proc. of the 2007 Annual Computer Security Applications Conference
(ACSAC), pp. 411-420, 2007.

S. Kotsiantis. Supervised Machine Learning: A Review of Classification
Techniques. Proc. of the 2007 conference on Emerging Artificial Intel-
ligence Applications in Computer Engineering: Real Word Al Systems
with Applications in eHealth, HCI, Information Retrieval and Pervasive
Technologies, pp. 3-24, 2007.

S. Kotsiantis, P. Pintelas, Recent advances in clustering: A brief survey,
WSEAS Transactions on Information Science and Applications 1, pp.
73-81, 2004.

O. Chapelle, B. Sch lkopf, A. Zien, Semi-supervised learning, MIT Press,
2006.

W. Li, K. Wang, S. Stolfo, B. Herzog. Fileprints: Identifying file
types by n-gram analysis. Proc. of the IEEE Workshop on Information
Assurance and Security, 2005.

S. Yu, S. Zhou, L. Liu, R. Yang, J. Luo. Malware variants identification
based on byte frequency. Proc. of Networks Security Wireless Commu-
nications and Trusted Computing (NSWCTC), vol. 2, pp. 32-35, 2010.

D. Bilar, Opcodes as predictor for malware. International Journal of
Electronic Security and Digital Forensics, pp. 156-168, 2007.

I. Santos, F. Brezo, X. Ugarte-Pedrero, P. G. Bringas. Opcode sequences
as representation of executables for data-mining-based unknown malware
detection. Information Sciences, vol. 231, pp. 64-82, 2013.

R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman, S.
Dolev and Y. Elovici. Unknown Malcode Detection Using OPCODE
Representation. Proc. of the 1-st European Conference on Intelligence
and Security Informatics (EuroISI ’08), 2008.

Y. Zhong, H. Yamaki, H. Takakura. A Malware Classification Method
Based on Similarity of Function Structure. In Proc. of the 12th Interna-
tional Symposium on Applications and the Internet, 2012.

T. Hirsimaki, J. Pylkkonen, M. Kurimo. Importance of High-Order N-
Gram Models in Morph-Based Speech Recognition. Audio, Speech, and
Language Processing, IEEE Tran. Vol. 17, Is. 4. pp. 724-732. 2009.

W. Punch, E. Goodman. Further research on feature selection and
classification using genetic algorithms. Proc. of the Fifth International
Conference on Genetic Algorithms (1993), pp. 557-564, 1993.

T. Shon, Y. Kim, C. Lee, J. Moon. A Machine Learning framework for
network anomaly detection using SVM and GA. Proc. from the Sixth
Annual IEEE SMC, 2005.

R. Sharapov, A. Lapshin. Convergence of genetic algorithms. Pattern
Recognition and Image Analysis. Vol. 16, No. 3, pp. 392-397, 2006.

G. Romp. Game Theory: Introduction and Applications. Oxford Uni-
versity Press, 1997.

K. Kira, L. Rendell. The feature selection problem: traditional methods
and new algorithm. Proc. of Conference on Atrtificial Intelligence, 1992.

J. Friedman. Another approach to polychotomous classification. Dept.
Statistics, Stanford Univ., Tech. Rep, 1996.

S. Abe and T. Inoue. Fuzzy support vector machines for multiclass
problems. Proc. of European Symposium on Artificial Neural Networks,
pp. 113-118, 2002.

T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction
to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. Sec.
29.3: The simplex algorithm, pp. 790804.

L. Lelis and J. Sander. Semi-supervised Density-Based Clustering. Proc.

of the 2009 Ninth IEEE International Conference on Data Mining (ICDM
’09), 2009.

