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Abstract: This thesis studies the use of automated reasoning in speeding up the

process of converting vehicle routing problem data into data that is understood by

a system that optimises them. The vehicle routing problem is a combinatorial opti-

misation problem, and we call the optimising system a solver for short. In this the-

sis, we consider a solver a program that functions using the software-as-a-service

paradigm: problem descriptions are entered into the system, and the solver pro-

duces an optimised version of the problem.

Traditionally, solvers require the problem descriptions to be in a particular data for-

mat. Such data usually exists in other formats, and a great effort must be put in

converting them to the accepted format. This is usually done manually by opera-

tions researchers, and such conversion can be onerous and time-consuming. In light

of this, we study the use of machine learning in creating a system that can under-

stand a variety of input data formats and convert the source data into one target

format, letting operations researchers shift their focus away from demanding data

processing tasks.

To this end, we implement such a framework, titled fleet inference, using machine

learning. The former finds links between data files, usually column oriented CSV or

Excel R© files, and the latter pairs source data entities into target entities.
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This thesis implements fleet inference using two separate modules—join inference

and attribute classification. The framework consists of an automated classifier that

is shown how optimisation problem data is structured, after this training the clas-

sifier can be used to understand structure in an otherwise seemingly unstructured

data set. After a structure in these files has been obtained, we try to match data in

them to data a vehicle routing problem solver needs—e.g., the capacities of vehicles

available in the problem.

This system was implemented using a variety of classification techniques, and we

present careful evaluations and introduce readers to the concepts of classification

and data integration, all the while showing the apparent benefits of what automated

reasoning can produce when faced with onerous data processing scenarios.

Keywords: fleet inference, join inference, data integration, machine learning, vehi-

cle routing problem, data exchange, attribute classification, operations research

Suomenkielinen tiivistelmä: Tämä pro gradu -työ tutkii automaattisen päättelyn

hyödyntämistä reitinoptimointiongelmien ratkaisemisessa. Reitinoptimointiongelma

on kombinatorinen optimointiongelma, jonka ratkaiseminen edellyttää nk. ratkaisu-

järjestelmän luontia. Ratkaisujärjestelmä toimii ratkaisupalveluna, johon syötetään

ongelman tiedot ja järjestelmä tuottaa ongelmasta optimoidun version.

Tämä toimintaketju alkaa ongelman tietojen tulkitsemisella. Tässä työssä esitellään

menetelmä tämän askeleen nopeuttamiseksi. Koneoppimisella luodaan järjestelmä,

jolle opetetaan esimerkkejä näyttäen miltä reitinoptimointiongelman data näyttää.

Menetelmä on kaksiosainen: datasta etsitään rakenne sisäisten viittauksien ym-

märtämiseksi ja kun datan rakenne on tulkittu, yhdistetään datassa löytyvä tieto

vastaamaan varsinaisen optimointiongelman tietoja.

Aiemmin tämä askel on sisältänyt paljon käsityötä. Lisäksi optimointiympäristöt

ovat edellyttäneet, että optimointiongelmat syötetään ratkaisijoihin tietyssä ja vain

tietyssä muodossa. Datan muuntaminen tähän muotoon on vaivalloista. Siksi tässä

gradussa esitellään tapa, joka automaatiota käyttäen säästää aikaa ja vaivaa operaa-

tiotutkijalta.
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Tämän ratkaisemiseksi gradussa tutkitaan kalustopäättelyä koneoppimista käyttäen.

Kalustopäättely koostuu liitospäättelystä ja attribuuttiluokittelusta. Liitospäättely

analysoi hajautetussa muodossa olevan datan, esimerkiksi useassa Excel R© tai CSV-

tiedostossa sijaitsevan datan, keskinäiset viitteet ja muodostaa näistä rakenteen.

Rakenteen muodostamisen jälkeen datasta löydetään se tarvittava tieto, jota opti-

mointiin edellytetään—esimerkiksi datasta tarvitaan kalustoon kuuluvien autojen

kapasiteetit, jotta ajoneuvot voidaan järjestellä oikein optimoinnissa.

Ratkaisu koostuu pitkälti menetelmästä, jossa algoritmia opetetaan näyttämällä es-

imerkkejä siitä, miten liitospäättelyssä liitokset muodostuvat ja miltä kohdeattribuu-

tit näyttävät attribuuttiluokittelussa. Toisin sanoen, algoritmi opetetaan ymmärtämään

miten datan sisäiset viitteet toimivat ja miten nämä kuvautuvat reaalimaailmaan eli

lopputulokseen.

Esitelty ratkaisu on toteutettu erilaisin koneoppimisen menetelmin. Tässä työssä

käymme läpi ratkaisun ymmärtämäisen vaadittavan teorian sekä testaamme kalus-

tonpäättelyä konseptina läpikotaisesti. Tutkimme ensisijaisesti sitä, miten automaat-

tisella datan käsittelyllä voidaan helpottaa vaativien optimointiongelmien ratkaisemista

ja miten sellainen järjestelmä toteutetaan.

Avainsanat: kalustopäättely, liitospäättely, dataintegraatio, datansiirto, koneoppimi-

nen, reitinoptimointiongelma, attribuuttiluokittelu, operaatiotutkimus
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1 Introduction

“Begin at the beginning,” the King said, gravely, “and go on till you come

to an end; then stop.”

– Lewis Carroll, Alice in Wonderland

This thesis presents a data importation techniques for simplifying the optimisation

of the vehicle routing problem (VRP). The vehicle routing problem is a NP-hard

(Lenstra and Kan 1981) combinatorial optimisation problem. Much work has been

done for developing algorithms for its optimisation; this thesis does not concern it-

self with that particular research problem. In this thesis, I make the assumption of

the existence of an environment, in which a solver or a vehicle routing system, a com-

puter software that can process vehicle routing problems and generate optimised

results based on certain input, with the added capability of processing different vari-

ants of this problem.

What I attempt to solve in this thesis is, is fundamentally a problem about data.

Generally, optimisation solvers work much like a pipeline: problem descriptions go

in, optimised results come out. (Puranen 2011; Drexl 2012) While this sounds like a

gross simplification, the crux of it is that problems need to be modelled with data,

bits of information that describe the problem itself. This data is then analysed and

the solver churns this data into a result.

This process of data analysis always begins with understanding the format in which

the data is represented. This data is usually in a structured format, the simplest of

which being a tabular text file or a spreadsheet. This format is known a priori to the

problem describer and the solver—the data can be relied to be in a certain format.

As a result, strict requirements are imposed: the data must adhere to a certain logical

structure for the solver software to work.

What if one were to provide a solver which could process data in a wide variety of

formats, to induce a certain softness into the requirements? Of course, a solver could
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be built in such a way it merely understands a wide range of formats. This shifts the

question towards effort and quantity: in that scenario, the solver would be required

to be able to understand a multitude of different file formats and structures, and

the more generalised the solver becomes, and the larger its usage context (e.g. the

number of users wanting to use it) becomes, complexity increases, rendering the

task difficult and laborious to maintain and develop.

As a result, what if the requirements were loosened, so that a potential data provider

would need to merely adhere to the requirements in terms of content, but not struc-

ture? That is, what if the actual structure, e.g., the order in which data is presented,

of the data would be regarded as secondary, as long as the data is there in a locally

consistent format? If one were to develop techniques to automatically infer such

structures, the data could be processed, and then analysed without having to check

whether the data conforms with the desired input format or not.

The described scenario here is a classical data exchange problem. While our scenario

is highly specialised into a certain domain, importing VRP descriptions into a solver,

the theoretical underpinnings of this problem have been widely studied in literature.

However, the highly specialised nature also means that little research has been done

in scenarios like this. To my knowledge, data exchange has not been researched or

used in the context of optimisation software.

To this end, my aim is not to construct an original data exchange technique, but to

study the generic application of data integration and exchange techniques in a new

context, the optimization of vehicle routing problems, and combining data exchange

technologies to facilitate problem data processing. The study from this perspective

has not been done before, and it is in this particular novel context that I present my

contributions:

1. A self-contained formal characterisation of the join inference problem, using ref-

erential integrity concepts and relational algebra. I also provide a implemen-

tation for its computation, and to the classification problem of it I develop new

features and improve existing ones.

2



2. A formal definition of the attribute classification problem in a domain-specific

context using abstract formulations as mappings. Like above, I provide ma-

chine learning methods and entirely new features for classifying the attributes.

3. Unification of the attribute classification problem and join inference into fleet in-

ference, and presenting it as a machine learning problem.

4. A new formal description of a case model, a mathematical construct of the VRP

fleets.

We now start with the background associated with this thesis, where I explain my

motivations for developing the above contributions.

1.1 Background

This section provides an informal introduction to our research setting. Our aim is

to articulate the goals and ends we are after. In other words, this section presents

arguments why we are interested in problems described later on, to justify the effort

and work spent in this thesis.

Subsection 1.1.1 describes a new concept of Optimisation as a Service and we highlight

one key aspect thereof that we think is a problem worth solving, which is further

elaborated upon in Subsection 1.1.2. Later sections then describe the context in which

we operate, to properly characterise the different parts that establish our research

problem.

1.1.1 Scenario: Vehicle Routing Optimisation as a Service

The notion of offering optimisation as a service further clarifies our purpose. Of-

fering optimisation services means roughly that an entity is offering a service of

optimising VRP instances for any user—in a consultant–consultee relationship. The

consultant, the software provider, provides a service for the user (the consultee),

which uses the service from an endpoint. This endpoint can be any interface, a web

browser, an application. The implementation of the protocol with which the service

provider and user communicate is a technicality. Another key characteristic is that

3



traditionally the service provider hosts the service on its own computer platform,

e.g., a cloud platform, the user needs only the client software to use the service.

This scenario or paradigm is uncommon in the VRP industry. Traditionally, VRP

software are provided as costly and complex standalone applications, meaning, that

the user has to hostthe software himself and pay a license fee for the software.

The optimisation-as-service model provides a stark contrast: the user has only to

acquire a license to use the service, but there is no need for installing any com-

plex software—which, given the complex nature of VRP, also requires computing

power—only the client software is necessary.

The term software-as-a-service is a loose definition; the anything-as-a-service paradigm

is a broad term that characterises an entity offering something in a service-oriented

manner. Much research has spawned in the past few decades over concepts such

as software as a service, platform as a service or even infrastructure as a service (for all

definitions see Mell and Grance (2009)). A general review of the x-as-a-service can be

obtained by referring to the works in any of the reference given above.

Thus, our scenario implies that we are offering the optimisation of VRP as a service.

The optimisation back-end (call it a solver) takes in VRP instances as an input and

produces results as an output. The format or the form of the input need not be

defined strictly here—we are satisfied with the simple notion of the whole process

acting like a pipeline. The pipeline concept can be seen as a metaphor for things

going in on one end of the pipe and the results coming out from the other end. One

might agree that such exuberance in metaphors can be detrimental to our purposes.

However, this generalisation provides, in our view, an elegant simplification of the

problem itself. As we will see later on, our language will eschew such informal

nomenclature and move on to favour rigorous formalisms.

The data for a VRP instance is usually stored in a textual format. This format is then

interpreted by the solver program using whatever information parsing technique

available to it. Curiously, VRP is usually studied and experimented with in such a

manner the structure of the input data is usually a casual afterthought. The different
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algorithms for optimising VRP are tested on standardised benchmarks, examples of

which are available on online. The formatting of the benchmarks is given with their

associated documentation. As a result, the whole field of VRP research has agreed

on one global benchmark format. What if we are to offer optimisation as a service,

wherein no predetermined formats exist, or if they did, imposing them on a service

user would be counterproductive. Could we forgo such formats completely for the

sake of usability?

The arising question is that we must have some kind of a definition of the struc-

ture of the problem data for the solver to be able to function, as elaborated in the

introduction. Would it not serve our purposes better if the format definitions were

defined with a certain degree of softness to them? This is indeed a pertinent question,

and we need to consider the structuring of input data a bit further.

1.1.2 A Flexible Source File Format Is Necessary

“The essence of soft computing is that unlike the traditional, hard com-

puting, soft computing is aimed at an accomodation with the pervasive

imprecision of the human mind.”

– Lofti A. Zadeh, Neuro-Fuzzy and Soft Computing

The need for a flexible file format, as argumented in this subsection, is glaringly

obvious when inspecting the service from a user’s perspective. If the service is not

as strict when it comes to file formats, or softer, the user needs to invest less time in

preparing his data so that it would conform to the format requirements. In a way,

this is optimisation of optimisation, or meta-optimisation.

Descending further down the ladder into the problem domain, the input data, when

supplied in a VRP service scenario (not to be confused with an optimisation-as-a-

service scenario, a software architecture paradigm), judging by past experience in

our research group1 is usually structured in a tabular format, e.g, Microsoft Excel R© or

1. Computational Logistics Group at University of Jyväskylä
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comma-separated-values (CSV).

The tables contain data separated—visually, in the case of Excel R© by a grid—or

by commas, as in CSV. No relationships between each table exist, and these are

inferred by hand, using key rules of thumb or format agreements. For example,

there might be a table A which contains a list of vehicles accross rows, each row

identified by an unique identifier, that describes the details of each vehicle available

in the problem instance. Another table B might describe the places where we need

to travel within the instance, and another table C might describe additional speed

profiles for a specific vehicle type. The vehicles in A may reference the identified

rows in the table C to indicate that, for any given vehicle in A, the vehicle has a

specific speed profile detailed in table C.

Furthermore, each table contain some information about each vehicle, task, location,

and so on. These are sometimes identified by column headers to mean some kind

of an attribute for each entity it describes—as an example, the maximum speed col-

umn in C might say that, the vehicle type Lorry can travel at a maximum speed of

80 km/h. This vehicle type is then attached an unique identifier, say the number 1,

that the vehicles in A can reference. Each vehicle in A that has a profile identifier 1

is then associated semantically of being a Lorry type of vehicle.

The next part is deciding in which context and purpose each attribute resides in. A

maximum speed is usually given as a kilometre-per-hour unit, so this column is easy

to understand. By looking at the data the service provider manually determines the

specific context of it. As an example, to get speed limitations for each vehicle type,

we need only to look for columns the values of which are specificed in a kilometre-

per-hour unit. This process of classification is then repeated for each attribute until

no attribute remains classified (or are discarded as redundant), and the data is then

fit into a proper problem instance description in the language of the solver.

In summary, what the service provider has to do is to (i) manually infer relationships

accross tables and (ii) identify the context an purpose of each column in the table.

This two-step process is sometimes a very daunting task; indeed, could the service
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provider benefit from automating parts, if not everything, of this process?

The answer is a resounding yes. By simplifying this process—understanding the

source format—even if the source format is already strictly agreed upon, we speed

up the optimisation-as-a-service process by a great deal. We now on move to a more

accurate description of the two-step process described in the above paragraphs.

1.2 Research Problem

This section is a slightly more concise rewording of the above section, and also

presents the research problem itself. Suppose we have a VRP instance that consists

of several different flat, tabular-oriented files, e.g., several Excel R©sheets or tables.

Our objective is to find a set of vehicles and a set of orders called tasks from this

data. To do this, we must find some way to connect the sheets. For example, if the

first table in the set of sheets contains a list of locations that ought to be visited and

the addresses thereof; the second table contains descriptions of each location and

the amount of cargo to be delivered or picked up from each location, and then the

third table contains a list of vehicles ready for use, a capacity for each vehicle, and

so on. In a problem like this, it is obvious that there is a connection between the first

and second table.

This is called a reference, or a referential relation. Each tuple in the first table con-

tains a value that points to an identical value in the second table, which indicates

a link between the two rows. This is generally called a referential constraint since

the values of the first table effectively restrict the values of the second table to take

a particular form—in this case, to match those of the list of values in the first table.

After the referential constraints have been calculated, or to put in another way, all

the tables have been linked to two distinct tables—one table for vehicles, one for

tasks—we must properly classify each column in each table. For example, we must

determine that a capacity column indicates a vehicle capacity for a vehicle in the

fleet, or that address is mapped as an address for each task in the fleet.
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Thus our research problem is more succinctly: ” Given a set of data tables repre-

senting a VRP, using some method, partition these tables into two subsets, such that

the data of one subset pertains to vehicles, and the other to tasks. Then use this

information to parse the data set into a VRP solver. ”

1.3 Structure of this thesis

This thesis is structured as follows. This chapter provided an introduction to the

general topic and presented an informal problem formulation in the previous sec-

tion. The next chapter, Chapter 2, gives a formal introduction to the theory sur-

rounding the topic. Chapter 3 presents our actual contributions as the fleet infer-

ence problem and methods for solving it; Chapter 4 benchmarks our results and

tests its performance and accuracy. We analyse the implementation and its useful-

ness in Section 4.4; Chapter 5 concludes the thesis with reflection and opens topics

for future exploration.

“Journalists say that when a dog bites a man, that is not news, but when

a man bites a dog, that is news. Thanks to the mathematics of combina-

torics, we will never run out of news.”

– Steven Pinker

“Outside of a dog, a book is a man’s best friend. Inside of a dog, it’s too

dark to read.”

– Groucho Marx
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2 A Theoretical Background

“Theory is the first term in the Taylor series expansion of practice.”

– Thomas M. Cover (1997)

This chapter presents a formal introduction to the theory surrounding the presented

problem. The chapter begins with a short introduction to the Vehicle Routing Prob-

lem (VRP) and its relevance to our work in Section 2.1. The basic formulation is

presented and some relevant variations of the problem are also explained; methods

for solving it on the other hand are left out. Section 2.2 puts the research problem

into a theoretical context, and explores fields that are closely related to it. We move

on to defining the join inference in Section 2.3 and attribute classification in Section 2.4

problems and review methods for their solving, through studying relational alge-

bra, we give formal representations of these as well. The chapter concludes with a

general introduction to machine learning in Sections 2.5 and 2.6.

Compared to the previous chapter, this chapter is heavy on formalisms. I con-

sciously selected a strong formal approach to problem definition, as it enforces a

certain quality of correctness. To understand the notation no deep mathematical

understanding is necessary; basic set theory principles and formal logic is sufficient,

Section 2.1 deals with some basic graph theory concepts. Some sections deal with

relational algebra and database theory, but these chapters are mostly self-contained

and the material is kept concise. Section 2.5 delves more into probability and statis-

tics as machine learning is strongly connected to both. As such, a brief understand-

ing of probability theory and basic linear algebra will help, but is by no means

mandatory.

2.1 The Vehicle Routing Problem

The Vehicle Routing Problem (VRP) is a combinatorial optimisation problem ini-

tially presented by Dantzig and Ramser (1959) as an extension of the Travelling

9



Salesman Problem (TSP). TSP is a problem where the objective is to find, given a

set of points and the distances between them, starting from one point called the

starting point, find the shortest route such that each point is visited exactly once and

the route returns to the starting point. The name traveling salesman then signifies

a travelling salesman that visits each city (i.e. the points) only once and seeks to

calculate the shortest way of doing so to minimise travel costs.
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Fig. 1: A VRP instance.

VRP is a generalisation of the TSP in that there

are multiple salesmen1. The salesmen are called

vehicles and the central starting point is called a

depot, from which each vehicle departs. The typ-

ical objective is to find a shortest set of routes

for each vehicle such that each order is visited

exactly once and all vehicles return to the de-

pot. This can be described more formally as

follows. A VRP instance is a complete directed

graph G = (V, E) where V = {0,1, · · · ,n} is the

set of vertices to be visited and E is the set of

edges. The vertex 0 is the depot. A positive travel

cost cij is given to each edge (i, j) ∈ E where i 6= j. The edge costs are symmetrical:

cij = cji. The cost matrix c satisfies a triangle inequality: cik + ckj ≥ cij for all i, j,k ∈V,

so the direct link i — j is the shortest route between each vertex. The problem ob-

jective is to find a minimum number of k Hamiltonian cycles, the cost or weight of

each cycle defined as the sum of each edge. Each vertex is visited only once in each

cycle and the cycles start and end at the depot.

Keen readers might have noticed straight away that this problem is too abstract to

be applied in the real world. Typical real world scenarios include a much richer

set of constraints, for example, the fleet of vehicles might be heterogeneous, each

vehicle type can carry only a certain type of cargo, the cargo capacity of each vehicle

1. One could also say that TSP is a special case of VRP in that there is only one vehicle and no

depot.
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might be limited, each vertex (or point) has a demand to be picked up or delivered.

Moreover, each vertex might have a certain time window wherein it can be visited

. . . and so on. The most basic of these models are the capacitated VRP (CVRP) and

VRP with Time Windows (VRPTW). We present the formulations for each of these.

CVRP issues a demand di for each vertex vi ∈ V \ {0}. The order might be a cargo

delivery or picking up, for the purposes of our formulation this difference is not

relevant. Let Γ be a finite fleet of n vehicles and γi ∈ Γ denote a vehicle in this fleet

and each vehicle has a capacity Qi ≥ 0. A route can be given for each vehicle as a

sequence of vertex indices, that is ri = (v0, · · · ,vn), where v0 and vn represent the

depot, satisfies the capacity constraint if ∑n−1
j=1 d(vj)

≤ Qi for each vehicle γi ∈ Γ.

VRPTW extends CVRP by adding the concept of travel times, time windows, and

service times. Each vertex must be visited within these service times; this is con-

strained by the travel time for each edge. Each edge e ∈ E has a positive travel time

τe ≥ 0 and each vertex vi ∈ V \ {0} has a service time σi, that is, the duration which

the visit to vertex vi will last. Lastly, the visit has to occur within a time window

[ai,bi].

Usually, from a model perspective, we will use the term task over vertex. We will

use this shorthand from now on since it nicely characterises the notion of orders,

places and requirements.

These formal requirements are but the most basic ones. The above two variants

can be extended, modified and generalised into an infinite mix of different problem

models; a comprehensive list of these can be found in Toth and Vigo (2002). For the

purpose of this thesis we will limit ourselves to deal with VRPTW, and as a result,

CVRP.

In general, the complexity of solving VRP and its variants is a computationally com-

plex task, in fact, it is a NP-hard problem (Lenstra and Kan 1981). A multitude of

methods have been developing for solving it, these range from exact algorithmic

methods, heuristics and metaheuristics. We omit the discussion of VRP solving

completely and instead refer the reader to the book by Toth and Vigo (2002) for a
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complete study of the field.

Typically, these algorithms are implemented in such a manner that the input source

of the problem is in a predetermined format, to be used in somewhat standardised

benchmarks. This is particularly useful for measuring the efficacy of an algorithm

since it allows for an easy comparison between algorithm implementations as the

input is guaranteed to be in one format. However, for real world applications, the

usefulness of such a format is abysmal. Not only are the benchmark instances noth-

ing like real world data, their complexity is far inferior to the richness of real world

VRP instances. Usually, benchmark data is synthetic and mimics some sort of a ge-

ometrical structure, as in the case of the symmetrical benchmarks first examined in

Christofides, Mingozzi, and Toth (1979).

Recall from previous sections that based on our empirical studies in client–provider

interactions, VRP instances are usually delivered to the service provider, i.e., problem

solver, in a tabular format. Thus any approach used to handle benchmark data so far

in scientific literature is rendered useless for us. We must develop our own, which

we will call fleet inference.

2.2 Discovering Fleet Data

This section presents a formal introduction to the fleet inference problem. We start

by describing the case model and move on to describing methods for its discovery,

first starting with the introduction of data exchange and integration. We then move

on to a related field of schema matching and then finally conclude why the tools

developed in neither data exchange nor schema matching are fit for our purposes.

To begin with, we must first define what a fleet actually is. Generally, a fleet of

vehicles in a VRP instance is a set of vehicles V each to be assigned to a set of tasks T.

The goal of the optimisation process is to find which task is best assigned to which

vehicle. Furthermore, each vehicle V can have different constraints, e.g., capacities

as in the capacitated VRP. The same applies to tasks as well, in that each task can

have a specific time window associated with it, as in the VRP with time windows.
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Additional formalisations are given for the case model later in Chapter 3, where

we present a formal case model and problem formulations for the whole discovery

process.

The goal of the fleet discovery is to take a source of data, e.g., tabular CSV filer, and

produce a cohesive case model. The process is two-fold. First, we find the referential

constraints between each flat file in order to produce one singular relation. Second,

now that our data resides within one relation in a cohesive format, the data in this

relation is then extracted using attribute classification, and fitted to our case model.

Loosely speaking, we are interested in finding the vehicles and tasks from any

source set of data. This section presents a formal introduction to each problem and

also develops some key theory associated with each. The first part consists of iden-

tifying in which research domain our fleet discovery problem resides. We begin by

describing the related fields of data exchange and schema matching.

2.2.1 Models And Data Exchange

Our data discovery problem in this case is fundamentally a kind of a data exchange

problem. In data exchange, the aim is to take data from different sources and as-

similate it into a target that provides an accurate representation of the source data.

(Kolaitis 2005; Fagin et al. 2005) In our context, the sources are different VRP opti-

misation problem data sources and the target is the cohesive case model we seek to

fill.

Data exchange differs from data integration in that data exchange deals with mate-

rialised data transformations, from sources into target instances, whereas in data

integration the target schema is only virtual. A data integration system provides in-

terfaces for querying the source instances through an abstract global view. In data

exchange the target instance tries to represent the source instances as accurately as

possible. (Lenzerini 2002; Calì et al. 2006)

Schemas are a familiar term in database environments. We use the term in a broader

sense to refer to not only database schemas, but abstract models and ontologies as
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well, as defined by Bellahsene (2011). Generally speaking, a schema is an abstract

list of constraints in some formal language for any structured data. We give the

following definition:

Definition 1. Schema. A schema S is a tuple S = (Σ,∆) where Σ is an alphabet of predicate

symbols in some logic L over ∆ and ∆ is a set of integrity constraints expressed in Σ..

Each predicate symbol s ∈ Σ has a fixed arity, the number of arguments associated with it.

A schema can be used to express integrity constraints between different relations (or

tables) in a database DB. We say that a relational database DB is constrained under

a schema S if all its database relations R satisfy the constraints in S.

The notion of a schema provides another characteristic for the context in which our

problem resides. In data exchange problems we try to assimilate data from mostly

heterogeneous sources, in that the sources are usually in different formats and varying

schemas. Our fleet discovery usually operates within the following constraints:

• the data usually resides in flat, tabular formats (e.g. comma-separated-values,

CSV), in different files,

• no integrity constraints between these files exist, that is, we do not know how

they relate to each other, and

• once the integrity constraints have been created, can we start pairing attributes.

Given that there are no source schema to work from, this separates us very clearly

from the worlds of data exchange and data integration. As we will later find out, our

method is somewhat orthogonal to the classical data exchange approach. However,

our problem is related to the schema matching and mapping problem, and we will

first introduce the meanings behind those two terms.

2.2.2 Schema Matching And Mapping

The related fields of schema matching and mapping are important fields of their

own, and they have been intensely studied. It should be noted that these terms are

often used interchangeably, and we feel like there is a need to point out the semantic
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differences between the two terms mapping and matching.

Schema matching can be seen as the act of reconciling two different relational schemas

together. The foundational goal is to find correspondences between attributes for

purposes of, e.g., exchanging data between two databases. (Acar and Motro 2009).

A multitude of methods have been developed for schema matching, Bernstein, Mad-

havan, and Rahm (2011) provide an excellent and recent review of the state-of-the-

art.

Schema mapping is the act of using the information gained in the schema matching

process to map elements between two schemas. The distinction is clear: in schema

matching, we are interested in finding the correspondences, that is, to answer the

question, whether two schema elements resemble each other; in schema mapping,

we are interested in using the resemblance information to provide the transforma-

tion between these schema elements. In other words, a schema matching opera-

tor Match would identify semantic correspondences and a mapping operator Map

would use these correspondences to map one schema element to another.

As an example, consider a situation where a source schema contains a price in one

currency (e.g. dollars) and the source schema has one in another, e.g. pounds. A

matching operator will identify that these items correspond to each other. A mapping

operator will specify the exchange multiplication (from dollars to pounds) in the

actual transformation. A generic survey on evaluating both methods can be found in

Bellahsene (2011).

Caveat lector. We made the above distinction because it highlights the difference

between the two steps that are usually contained within either definition. That is,

sometimes schema matching is used to refer to both matching and mapping, and

conversely mapping is used to refer to both matching and mapping. Bernstein,

Madhavan, and Rahm (2011) and Rahm and Bernstein (2001) use schema matching

to produce mapping. In a later, more abstract model matching framework, Bernstein

(2003) describes mappings in that contexts as a way to ”[...] describe how two mod-

els are related to each other” (Bernstein 2003), where model is are formal descriptions
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of different artifacts, e.g., a relational schema.

Conversely, data exchange settings usually define schema mappings as an integral

part of the process. This is exemplified by Kolaitis (2005) and Fagin et al. (2005).

These conflicts in terminology might appear slightly confusing. To remedy this,

we reconcile the differences between by always referring to the whole process as

schema mapping. In our goal of fleet discovery we are interested in mappings as

a mathematical concept, not as plain data correspondences, as schema matching

would imply.

In general, these two terms work on a metadata level, and we work on the data level.

This is further corroborated by Rahm and Bernstein (2001): “[schema matching]

operates on metadata (schema elements) and joins on data (table rows)”. This means

that our problem of fleet inference is not contained within these fields, as we target

the actual data contents in our schema mapping inference. According to Bernstein,

Madhavan, and Rahm (2011), such schema matching is considered “extensional”,

because it tries to extend the very bare-bones schema into a coherent one. We can

conclude that our problem intersects with these fields.

Clearly, the join inference problem does not reside within either of these two fields.

What is more, the attribute classification problem is a more specific instance of

schema matching because in schema matching we usually have both the target and

source schema as variables. In our scenario the target schema is a fixed domain

model. This does not mean the tools in schema matching are of no use to us—on the

contrary, the toolsets of schema matching will be of great use to us, as will be seen

in Section 2.4.

As a conclusion, the processes of schema mapping or matching are strongly related

to our field. We differ in the sense that our scenario has no source schema to work

with, it must be created. Thus level at which we operate is intuitively at the data

level. Schema mapping works on the metadata level. Only later on in our process, in

attribute classification, does the problem become a form of schema mapping. The

other bit that separates us from traditional schema mapping is that usually we work
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with only a single relation with very domain specific data. Our process begins with

the discovery of schema-like constraints, such as foreign keys, which we call join

inference.

2.3 Join Inference

This section introduces the concept of join inference. We start by defining some key

characteristics of dependencies Subsection 2.3.1, starting from very fundamental re-

lational axioms, after which we proceed to joins in Subsection 2.3.2 and finally move

on to a formal characterisation of the problem as join inference. The focus of this

section is to formalise join inference.

Common terminology. In the following subsections we talk about relations, tuples

and attributes. These terms are often seen in contexts involving relational databases,

but we use them here in a more general sense. Building upon the definitions by

(Silberschatz 2006), we characterise the terms as follows:

• A relation (or a table) R within a databaseDB is a collection of unique n-tuples

(µ1[Xi], . . . ,µm[Xn]) where m ≥ 0 and n ≤ |A|. We say µ[X] where X is some

subset of the attributes A of R, i.e., the list of values in the for each attribute

in A. The cardinality of A is defined as |A| and is equal to the number of

attributes in the relation, this is also called the arity of the relation.

• A domain is the set of permitted values for each attribute, e.g., a numerical

attribute might be restricted to an integer domain. A mathematically inclined

person would say that relations are Cartesian products between domains D1×
D2 × · · · × Dn (Silberschatz 2006).

• In traditional relational database texts tuple is used interchangeably with row

and relation is with table. In this thesis, we shall use the former definitions as

they provide a higher level of abstraction.

To properly define what functional dependencies, primary keys, and foreign key

are, we must first start with some basic formal definitions of dependencies, starting

from functional dependencies.
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2.3.1 Constraints and Dependencies

This subsection presents a basic characterisation of relational dependencies. The

first one are functional dependencies (FD), which form the fundamental concept of

database keys. Another dependency class, inclusion dependencies (IND), are used

to characterise foreign key constraints between two relations. To properly distin-

guish the two, we start by defining them formally, starting from basic relational

axioms.

Functional dependencies state that for a functional dependency to occur between

two attributes A and B in a relation, for each tuple for the attribute A there must

be only one tuple for the attribute B. These dependencies are useful for assigning

unique identifiers for tuples in a relation, because it lets us state, e.g., that given a

FD with two attributes id→ person, it states that for each id there exists only one

person. This property is useful in determining key constraints. The concept of FD

can be stated more formally as follows, adapted from Aho, Beeri, and Ullman (1979)

and Casanova, Fagin, and Papadimitriou (1984):

Definition 2. Functional dependencies. A functional dependency A→ B for a relation

R, where for an attribute set A⊆ R and an attribute B ∈ R, signifies that for all tuples of the

attribute set A there exists only values of attribute B. The functional dependency is satisfied

if for all tuple pairs µ,ν ∈ R that are equal on attribute A: µ[A] = ν[A], are also equal on

attribute B: µ[B] = ν[B]. We say that the tuples µ and ν agree on A and B.

Given a FD A→ B, we say that B is functionally dependent on A.

As we spoke about key constraints earlier in Section 2.2, using functional depen-

dencies, we can now characterise those definitions even further, building upon the

definitions given by Huhtala et al. (1999) and Bernstein (1976). An attribute set X of

relation R is a superkey if and only if no tuples in R agree on X (see Definition 2), as

a result, a superkey can be used to uniquely identify tuples.

The attribute set X is said to be a key of R, expressed as K(R) = X if it is a superkey

and no subset of X are superkeys. More formally, for every attribute A ∈ R, if X is a
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key, it holds that

A /∈ X⇔ X→ A.

A minimal superkey is the minimal set of attributes, i.e., the superkey with the least

number of attributes, that can be used for identification—dropping any attribute

would destroy the functional dependency. A minimal superkey is also called a can-

didate key. Lastly, only one of these candidate keys can be the primary key of a relation.

Finally, this lets us characterise the difference between primary keys and a foreign keys.

A foreign key in another relation references the primary key in another. A foreign key

constraint (FKC from now on) is a statement

R[A] ⊆ S[B]

where A is a set of attributes of R and B is the set of attributes of S, where B is the

primary key of S. A FKC is satisfied if each tuple µ1 in R there exists a tuple ν1 in S

such that µ1[A] = ν1[B]. (Calì et al. 2006)

From this characterisation it follows that foreign keys are semantic relationships. This

is because, unlike primary keys, they cannot be reduced to functional dependencies,

and among other reasons, can occur by pure chance. Attributes with coinciding

tuple values (for each tuple) does not constitute a primary–foreign key relation in

itself. Hence, foreign keys are fundamentally a form of inclusion dependency.

Inclusion dependencies. Inclusion dependencies (IND) are another kind of rela-

tional dependency. Loosely stated, inclusion dependencies indicate that there is

a connection between two different database relations. An inclusion dependency

might be that every manager residing in one relation might also reside in the em-

ployee relation, logically, every manager is also an employee. More formally, given

two relations R and S, each tuple in R might also be in the relation S. (Casanova,

Fagin, and Papadimitriou 1984)

Definition 3. Inclusion dependencies. An inclusion dependency (IND) between two re-

lations R and S, when, R[A1, . . . , An] ⊆ S[B1, . . . , Bn], i.e., all the tuples in the relation

R[A1, . . . , An] are also present in S[B1, . . . , BN], where Ai and Bi are attribute names.
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It is now apparent that FKC are actually a form of inclusion dependencies! How-

ever, the terms come from different directions. Foreign keys are semantic references

to primary keys, which themselves originate from FD. Figure 2 demonstrates this

abstraction chain. Each arrow // indicates a higher degree of generalisation, and

a wobbly line // indicates a semantic relation.

Foreign Key // Primary Key // Candidate Key // Superkey // FD

Fig. 2: The abstraction chain from primary keys to functional de-

pendencies.

Furthermore, whenever there exists a FKC there also exists a IND, but not necessar-

ily vice versa. The question becomes, is an inclusion dependency enough proof to

characterise a proper primary–foreign key relation? In other words, does the mere

existence of an IND imply that the values are semantically related?

The semantic problem of FKC becomes relevant in its definition. Recall that a FKC

between two relations R and S states that all tuples present in R, which contains the

foreign key, are also present in S, which contains the primary key. As a result, thus

the tuples in R are dependent on the tuples of S. The similarity between an IND is

apparent, but it is worth noting that a FKC is a semantic relation. (Rostin et al. 2009)

point that an IND may occur by pure chance due to the subset precondition from

Definition 3, as a result, the presence of an IND is not a valid reason to classify the

relation as FKC. They further state that “foreign keys are semantic relationships and

cannot be inferred with certainty from an instance of schema alone.”

To conclude, we give the final final characterisations for functional and inclusion

dependencies:

• Functional dependencies occur within one single relation, and can be strictly

defined as attribute dependencies that preserve uniqueness. They can be fur-

ther constrained into their most relevant form of primary keys.

• Inclusion dependencies are inter-relational references, which simply state that

an attribute set of a relation may be contained within another. At face value,
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this does not provide enough information to confirm whether it is a foreign

key constraint, because the containment (subset precondition) may occur by

pure chance. As a result, finding inclusion dependencies becomes a much

more complex problem—semantic relations can be hard to infer without care-

ful scrutiny.

Given the problem of semantic inference, we now move to the methods used in

finding the semantic relationships automatically, by first defining the source of the

problem: relational joins between tables.

2.3.2 Computing Joins

In this subsection we review some basic relational algebra operations, in order to

define the concept of a relational join operation on. To begin with, we define the fol-

lowing relational operations, building on the definitions given in Silberschatz (2006,

Sections 2.2 and 2.3):

The select operator σp selects tuples from a relation according to a given predicate p.

Given a relation T1 in Figure 4, the following select operation

σType=Lorry(T1) (2.1)

would return all the tuples in relation T1 that satisfy the predicate condition Type =

Lorry.

The project operator Πs projects all the tuples from a relation with the attributes

listed in the expression s, with the attributes not in s left out. This is useful if we

want to select only some of the attributes from a relation, for example, in T2, to

select only the RegNumber attribute from T2 (Figure 4) we would write

ΠRegNumber(T2)

to get all tuples in T2 with only the attribute RegNumber.

We also define three additional operators, the Cartesian product R× S and the union

operation R ∪ S, and the intersection operation R ∩ S:
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VEH_ID TYPE

2 Lorry

3 Car

4 Truck

5 Tractor

6 Lorry

(a) T1

REGNUMBER ID

XYZ-123 2

SSY-313 3

BCE-132 4

QQA-312 5

AEA-141 6

(b) T2

Fig. 3: Two relations T1 and T2

• The Cartesian product R× S produces tuples that are concatenated such that

for each tuple c ∈ C, where C = R× S, there is a tuple µi in R for which c[R] =

µi[R] and νi ∈ S for which c[S] = νi[S]. If R contains n1 tuples and S contains

n2 tuples, then C will contain n1 × n2 tuples.

• The union operation R ∪ S produces tuples that appear in either or both rela-

tion, as in set theory, but with the following restrictions: (i) the relations must

have the same arity, i.e., the same number of attributes and (ii) their attributes

domain must match . Duplicate tuples (rows) are removed.

• The set intersection operation R∩ S which produces all the tuples with the same

attributes.

Basic binary operators are allowed in the predicate expression p: basic comparison

operators =, 6=,<,≤,>,≥ and common first-order logic operators used to combine

predicates into larger ones, AND ∧, OR ∨ and not ¬. Using the operators σ and Π,

we can now define the natural join operation.

The methods described in the previous subsection gives us means for creating join

plans, unifications of different relations into a single relation via a join operation. A

(natural) join operation between two relations R1 and S using two attributes A, B is

expressed as R1 onA=B S. This means that all tuples relations R1 and S are projected

into a single relation using the attribute equivalence as a key constraint, such that

a tuple should be created whenever the equivalence A = B holds. In Figure 4 the
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join operation is done using the attribute equivalence ID = VEH_ID. In relational

algebra, the join can be expressed more formally as follows. Let A be an attribute of

R and B be an attribute of S. Their natural join is the projection

R on S = ΠR∪S(σR.A1=S.A1∧···∧R.An=S.An R× S) (2.2)

where R ∪ S = {A1, . . . , An}, this can be read as project all attributes that exist in

both relations (ΠR∪S) from the relation given by selecting all the tuples with equal

attributes from the Cartesian product R× S.

The equi-join operation is a shorthand for a join operation R onA=B S where attributes

or attribute sets A and B are equal. Thus the join operation referenced from now on

will always be an equi-join unless otherwise stated.

ID TYPE REGNUMBER

2 Lorry XYZ-123

3 Car SSY-313

4 Truck BCE-132

5 Tractor QQA-312

6 Lorry AEA-141

Fig. 4: The join T1 onID=VEH_ID T2. The

choice of ID and VEH_ID as attributes is

obvious: all the tuples for both attributes

are equal.

Joins can be chained together, e.g., R1 onA=B R2 onB=C R3 is a join of three relations

using the attributes A, B and C.

A note on conventions. Because the attribute names in relations might sometimes

be very lengthy to write, for a shorthand we simply use attribute numbers when

expressing joins, such that a join operation oni=j means to join two relations with an

equivalence of the ith and jth attributes of their respective relations, starting from

the attributes A1 . . . An, ordered and read from left-to-right in graphical representa-

tions. For example, the join operation in Figure 4 becomes on1=2, because VEH_ID

in Figure 3a is the first attribute in that relation and ID is the second attribute in Fig-

ure 3b from left-to-right. Thus in the future with a relation R, R[1] will simply mean

the set of tuples for the first attribute, and so on. If the relations R and S have no
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attributes in common, R ∩ S = ∅, then the join operation is simply their Cartesian

product R× S; or if R = S, their join is the set union R ∪ S.

The optimal method for joining these relations is to use joins based on foreign keys

(Acar and Motro 2009; Rostin et al. 2009; Lopes, Petit, and Toumani 2002). We can

formulate the problem of join inference as defining it as an inference problem over a

join dependency. A join dependency for a relation R means that R can be recreated

by joining other relations together, and that the join is lossless, i.e., any relation that

satisfies the join dependency can be decomposed into distinct relations and then be

joined back together without any loss of information.

Definition 4. Join dependency. (Silberschatz 2006; Deutsch 2009) A join dependency for

a schema R(U) is an expression

R :on [X1, X2, . . . , Xn] (2.3)

where 1≤ i ≤ n, Xi ⊆ U, such that the lossless-join decomposition
⋃n

i=1 Xi = U holds. An

instance r of schema R(U) satisfies a join dependency if

r = ΠX1(r)on ΠX2(r)on · · ·on ΠXn(r) =
n
on
i=1

ΠXi(r). (2.4)

Here, ΠXi(r) is the projection of r on the attributes of Xi. The dependency is trivial if any

Ri is R.

Example 1. (Adapted from Deutsch 2009) Let there be two relations V : {truck,driver}
and T : {truck, cargo}. In these relations, driver and cargo are not correlated together for

obvious reasons. To produce a relation that entails a list of tasks for each truck called tasks,

we require that the projection of tasks on V and T produces the tasks relation:

tasks :on [{truck,driver},{truck, cargo}].

Definition 4 efficiently gives us a precise restriction for our problem of join inference.

Our task is to find some set of constraints such that produces the best possible join

such that the join dependency between its relations is satisfied. This process is called

join inference. (Acar and Motro 2009; Hristidis and Papakonstantinou 2002)
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Definition 5. Join inference. Let R be a relation such that there exists a set of n rela-

tions R1, . . . , Rn that approximate the lossless-join decomposition of R. The task of join

inference is to find a conjunctive set of constraints c such that

σc(R1 × R2 × · · · × Rn)

is maximally equivalent to R. The conjunctive terms in c are equality constraints between

two attributes of differing relations Ri.

Maximally in Definition 5 means that the constructed join plan yields a representa-

tion of the data that is the closest match to it, e.g., the maximum number of retained

attributes per the decomposition. Thus, the problem is now how to infer the con-

junctive set of foreign key constraints c, constraints that are good enough to provide

the maximal solution. Finding such constraints can be tricky. As stated before, an

inclusion dependency can happen by pure chance. Since this chance is non-trivial,

we must develop robust and efficient methods for finding proper FKC to our end.

2.3.3 Finding Foreign Keys

The basic method for inferring these foreign keys is by first looking for IND and

further promoting them into FKC using automated reasoning. The name of this

procedure has a multitude of different names in literature. Rostin et al. (2009) talk

of finding FKC but Acar and Motro (2009) talk of finding join plans and join inference.

While these two terms are seemingly distinct, they fall under the general category

of dependency inference, in which the ultimate goal is to find foreign keys for creating

a join plan. In this thesis when we shall from now on refer to foreign key inference

when talking about computing joins using inferred foreign keys.

Historically, the study of join plans dates back to the universal relation model (Maier

and Ullman 1983), where database schemas are traversed automatically through

join dependencies. In other words, the universal relation creates a transparent layer

through which a database can be explored. A problem arises when join dependen-

cies are cyclical, when two schemas reference each other in a circular fashion. (Acar

and Motro 2009) The original universal relation model was improved on by Maier,
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Ullman, and Vardi (1984), introducing the notion of maximal objects. Maximal ob-

jects are partitions of the graph-based representation of join plans, partitioning it

into acyclic subgraphs—eliminating the chance of cyclical references from occur-

ring.

Otherwise, not much of the existing work in schema matching, mapping and data

integration has dealt with finding FKC. Much more work can be found in the field

of finding IND. This can be partly attributed to the fact that, as stated above, the

inference of FKC is not as simple as of inferring IND. On the other hand, FD, the

most famous of database integrity constraints (De Marchi, Lopes, and Petit 2009),

have been widely studied in literature. Contrary to IND, their automatic discov-

ery (see Kantola et al. 1992; King and Legendre 2003)) has seen greater interest (De

Marchi, Lopes, and Petit 2002; Rostin et al. 2009). De Marchi, Lopes, and Petit (2002)

argue that this due to two things: (i) the discovery of IND is difficult due to its com-

plexity (Casanova, Fagin, and Papadimitriou 1984) and (ii) they lack popularity, as

functional dependencies have traditionally been studied a lot more.

To this end, we found a handful of approaches in existing literature. The one closest

to our application is using automatic classification, as suggested by the work done

in Rostin et al. (2009), who suggest using classification methods for inferring FKC.

For classifying attributes as foreign keys, Rostin et al. (2009) considered a handful

of features, built by “careful observations and common sense”. According to Zhang

et al. (2010), the most important of them for a foreign key candidate are:

1. Cardinality. A foreign key should usually consist of mostly distinct values

and contain a significant number of them.

2. Coverage. Because a foreign key is an IND, it should cover most of the primary

key it refers to, and they should belong to the same domain.

3. Uniqueness. Foreign keys should not be primary keys to other relations, i.e.,

they should not have foreign keys themselves.

4. Unary dependence. A foreign key should reference only one primary key at a

time.

5. Length difference. The difference between the average length of values for
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foreign–primary attribute pairs should more or less be of the same length.

6. Completeness. The foreign keys should contain a minimal number of values

not in the primary key.

7. Name similarity. The names of the primary and foreign keys should be simi-

lar.

In their classification methods Rostin et al. (2009) found that features 2, 7, 5 and 6

to be consistently the most discriminative features. Their method for implementing

feature 7 was just by checking for exact matches or containment of two attributes.

They state that using more advanced measures for this particular feature would be

an “obvious improvement”. As we will see later on in Chapter 3, we improved this

method by using string distances.

Note that some of these characteristics in the above list have been used in the schema

matching problem (see Subsection 2.2.2) for example in Kang and Naughton (2003).

For non-machine learning approaches Acar and Motro (2009) suggest a method that

constructs a connected graph of all possible join relations, called a join graph and

then transform this graph into a maximum weight spanning tree, where edge weights

are governed by their suitability as join plans. Figure 5 shows that the number of

edges in the join graph is equal to the number of attributes in the Cartesian product

R× S.

T1

T2

VehID=RegNumber

VehID=ID

Type=RegNumber

Type=ID

Fig. 5: Join graph for the rela-

tions T1 and T2. The number of

edges is equivalent to the num-

ber of attributes in the Cartesian

product T1 × T2.

Acar and Motro (2009) also use the fact that foreign keys, as referential attributes

towards other primary keys, usually have functional dependencies within their own

relation. This fact can be used to further identify foreign keys. The first item in the

list on page 26 is an example of such a feature.

27



Other methods include using SQL statements for finding FKC, e.g., Lopes, Petit,

and Toumani (2002). For finding plain INDs, Bauckmann, Leser, and Naumann

(2006) use similar SQL statement based methods. A lot of previous work based on

automatic reasoning for schema matching has been done in Bernstein, Madhavan,

and Rahm (2011) and Doan, Domingos, and Halevy (2001), but as stated in Subsec-

tion 2.2.2, in our context the schema is decidedly unknown.

Furthermore, our context is entirely data-driven—there is no schema to work from.

As a result, methods commonly used in schema matching are of little use for us (Ros-

tin et al. 2009). Bauckmann, Leser, and Naumann (2006) underline this succinctly

by stating that “instance-driven [...] approaches directly analyse the data of a given

database instance” and point out that work is shifting towards instance-driven ap-

proaches, instead of the classical schema-based approach. Acar and Motro (2009)

agree and also point out that there is a shift towards semi-schemaless data where,

e.g., one primary key is known but no foreign keys are. Examples of such methods

are BHUNT (Brown and Hass 2003) and CORDS (Ilyas et al. 2004). The similarity

between our work and the latter two works has been noted.

Zhang et al. (2010) consider the problem of foreign key discovery in a multi-column

context. Recall that foreign keys are defined as attribute sets, and that multiple at-

tributes can act as a foreign key. Such a key is usually called a composite key. For the

discovery, Zhang et al. (2010) describe an algorithmic method called Randomness.

They compared it to the method proposed by Rostin et al. (2009), with the result of

Randomness having an overall F-measure of 1 versus the F-measure of 0.95 for the

method of Rostin et al. (2009), making their approach slightly more reliable. Since

it was not a machine learning method, no training was needed. Like Rostin et al.

(2009).

To summarise, we have seen several attractive approaches for FK inference in schema-

less or semi-schemaless data. This thesis will focus on using machine learning

methods for finding these foreign keys, as exemplified by the work of Rostin et al.

(2009). We think that the presented machine learning method will be quite robust

and adaptable, and by extending it with more features, such as functional depen-
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dencies, we will improve upon that framework even further.

In general, machine learning methods have the ability to exploit existing data, and

unlike most of the approaches that have been mentioned above, machine learning

methods do not have to rely on fixed methods—these can be inferred on an instance

basis. (Rostin et al. 2009) This allows us to build flexible systems that after some

refinement can infer many semantic relationships which might otherwise be a very

onerous task, which may or may not include developing a sophisticated algorithm

for FKC detection.

In summary, join inference is a rather complex problem. This section served as

an introductory definition thereof, and we also introduced the reader to the func-

tional and inclusion dependencies, and formally defined foreign key constraints.

The terms were introduced in a mostly self-contained manner using basic relational

algebra. Now that we have methods for constructing joins using join inference, let

us move onto detailing the process that takes place afterwards—attribute classifica-

tion.

2.4 Classifying Attributes

“The most important property of a program is whether it accomplishes the

intention of its user.”

– C. A. R. Hoare

This section presents the final pièce de résistance of our fleet inference problem: at-

tribute classification. We introduce some key concepts of attributes and attribute

domains, then move on to describe the case model in the context of routing, and fi-

nally explore some methods for finding the correct data domains for each attribute—

which, in learning terms, is called classification.

Attribute classification can be loosely stated as the finding of attribute correspon-

dences between two data domains. Generally a data domain is a specific space of

values that is distinct from other data domains in the data domain set D. For exam-
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ple, an attribute speed might be represented as an integer data type, and allowed to

have a range of 0 to infinity, disallowing negative speeds.

Associating data types with each attribute is a common pattern in schema creation

(Doan, Domingos, and Halevy 2001; Naumann et al. 2002). A data type allows

the discrimination of attributes based on their values. In a reverse context, when

the attribute domain is not known, the values can be of great help to determine in

which domain they belong. If dealing in a domain-specific context, e.g., VRP, we

can attach some key features to a certain data type: for example, we know to expect

certain constraints for individual vehicles such as its speed or capacity. The second bit

is that we also know that both of those constraints are usually expressed as natural

numbers.

Attribute domain inference thus becomes the second part of our fleet inference prob-

lem. Our goal is, given a finite set of attributes A1, A2, . . . , An, to find the target cor-

respondence from the attributes of the domain schema of a case C. We now move

on to formally describing what this case model actually is.

2.4.1 The Case Model

A fleet of vehicles is generally an set of vehicles. The fleet is assigned a set of orders,

to be divided among the vehicles. The semantic combination of both can be referred

to as a case from the sense that each problem scenario is typically unique and could

typically be dealt on a case-by-case basis. Using the models described in Section 2.1,

we can list some key features of each.

Vehicle

• a registration number, or another unique identifier

• a maximum capacity (CVRP)

Task

• a demand for each task

• a location for the task

• a time window (VRPTW)
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Recall from Section 2.1 that these features are in accordance with the VRP with Time

Windows (VRPTW), which incorporates a time window for each task, on top of the

constraints for the capacitated VRP. Using these basic constraints, we can charac-

terise a fleet F to be a tuple F = (V, T), where V is an unordered set of vehicles and

T is an unordered set of tasks. Of the fleet we define the following:

• Each vehicle vi ∈ V is unique, thus a vehicle v is a tuple v = (i,∆), where vk

indicates that it is the vehicle in V with its identifier i ≡ k; ∆ is a set of unique

constraints δ, e.g., capacity δc, for each vehicle.

• Each task ti ∈ T is a quintuple t = (l,d, si,wa,wb), where l is some location in

some data type, e.g., Cartesian co-ordinate on a map or a string denoting an

address; d ≥ 0 is a real-valued demand of that task; the time window (wa,wb) is

the time window in which the task must be completed. wa is the start of the

time window and wb is the end; usually described in a time stamp format or

some absolute numeric measure of time, and it holds that wa ≺ wb, where ≺
indicates that wa precedes wb. Finally, a service time si associated with ti ∈ T, it

must hold that |wb − wa| ≥ si

We could extend this model a lot further for much more complicated VRP instances,

using additional characterisations. Generally, in the field of operations research,

VRP models are described in their linear programming standard form, but these de-

scribe the optimization problem itself, not the domain model. Examples of much

richer VRP models can be found in Toth and Vigo (2002). Generic case domain mod-

els like the one above are scarce in literature; but an example formulation using Z

notation can be found in Puranen (2011).

Thus the goal in attribute classification is to look at the attributes in a source relation,

first formed by join inference, then decide which one of these attributes correspond

to a target attribute in the case model. We begin the definition of this process by

concentrating on attribute domains.
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Table 1: Data Domains Of Attributes In A VRPTW Case Model

Variable Domain Attribute Description Primary Domain Secondary Domain Entity

i Id A unique identifier string N

Vehicle
δc Capacity Maximum vehicle capacity N

l Location Task location string R2


Task
d Demand Task cargo demand R

wa WindowStart Task Time Window Start string N

wb WindowEnd Task Time Window End string N

2.4.2 Attribute Domains

We say that an attribute belongs to a certain data domain if its values are restricted

to some type of data. What this actually means requires additional clarifications.

Generally, we can say that a data domain is any set of values allowed to a certain

attribute. As with age, we can say that an attribute gender can belong to the binary

domain of male or female, or that a continuous attribute such as temperature may

belong to the domain of R.

Common data types encountered in any sort of computerised data are integers Z,

floating point numbers, strings of characters, or boolean values {0,1}. These basic

types serve as data domain data types. In general, values can be continuous or dis-

crete, they can also be categorical in the sense that their allowed values belongs to a

certain discrete set of values.

To generalise even further, we can use the terms developed by Sekhavat and Parsons

(2012), that themselves originate from the Bunge–Wand–Weber ontology in Wand

and Weber (1990). We can say that an instance i of a domain is any existence of a

particular domain, e.g., 60 might be an instance of the domain N. In the context of

attributes, we say that an instance is a manifestation of a domain using the following

definitions, adapting the definitions given in the former reference:

Definition 6. Manifestation. Let D be the domain of values for any property p. A mani-

festation of p is a value v∈D of p assigned to that property p, denoted by a tuple µ := 〈p,v〉.

Intuitively, we see the connection between properties and attributes. We can say that
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a tuple in a relation R is a set of manifestations of the attributes A ⊆ R. Example 2

demonstrates this using a simple numerical attribute.

Example 2. Let a domain D1 be a subset of integers D1 ⊆Z and A1 an attribute with this

domain named capacity. A tuple µi = (capacity,5000) is manifestation of this attribute

A.

For example, any attribute age (in the context of a Person relation) is restricted to be

in the domain of natural numbers N. The concept of a data domain gives us one

tool: we can say that attributes are always bound to a certain domain, because it

would be illogical to have tuples of the same attribute with differing data domains.

This allows us to put some constraints or restrictions on the values of an attribute

A.

This realisation also provides us a useful way of inferring whether two attributes

are equal. Intuitively, two attributes A and B share a domain D if all of their mani-

festations belong to the same data domain.

2.4.3 Schema Matching Revisited

Using the concepts developed in the previous subsection, we can now further char-

acterise the problem of finding pairings between two attributes A and B. Obviously,

if attributes have incompatible domains, the mapping does not make sense. In gen-

eral, we are interested given a set of attributes A and B we are interested in finding a

mapping A→ B that maps each attribute A ∈ A to a corresponding attribute B ∈ B.

A similarity between A and B is indicated by A∼= B. The similarity score sim(A, B) is

an arbitrary number that measures the goodness of the similarity, it is usually a value

between [0,1].

Example 3. Let a target schema T be the domain schema that defines the following at-

tributes:

{VehicleType, Capacity}.

Consider a source schema S with the following attributes: {Type, Volume, Manu f acturer}.
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The goal is to find a mapping c that correctly maps Type 7→ VehicleType and Volume 7→
Capacity.

S : Source Schema T : Domain Schema

Type
--

Capacity

Volume

11

VehicleType

Manu f acturer

Fig. 6: A visualisation of the sample mapping sought in the above example.

In our case domain model, the target schema is a schema D. The schema matching

process can be now further specialised into the following definition:

Definition 7. Domain Schema Matching. Let D be a domain schema with a defined

set of m attributes D. Given a set of n attributes of a source instance S, find a matching

operator that is an injective mapping M : S→ D× D. The resulting match set

{(S1, D1), (S2, D2), . . . , (Sn, Dm)}

consists of attribute pairs Si ∈ S and Dj ∈ D. The domains of attributes must be equal:

dom(Si) ≡ dom(Dj). Finally, for each pair (Si, Dj) it holds that

Si
∼= Dj⇔ argmax

i,j
sim(Si, Dj).

We could have also specified it as a mapping of f : N→N, where f (i) = j where i

is the ith attribute of S and j is the jth attribute in D. The codomain S×D is used in

Definition 7 for expository purposes.

Given this definition, the aim in domain schema matching is to find a mapping that

using some similarity metric finds a pairing between two attributes with the highest

similarity score. This mapping problem is later defined as a classification problem

in Section 2.5.

Example 4. The match set of Figure 6 can defined as

{(Type, VehicleType), (Volume, Capacity)}
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using attribute names instead of numerical indices in match set, or,

Type ∼= VehicleType

Volume ∼= Capacity

using similarities. The attribute Manu f acturer is left out because no mapping was found.

2.4.4 Similarity Features

In the previous subsection, we presented the problem of finding a mapping scheme

that can map source attributes to specific target attributes. In this subsection we

seek to answer the question of what kind of similarity features can be used to devise

such a mapping. It quickly turns out that a lot of different features exist, and the

same applies to the number of mapping generation algorithms, i.e., schema match-

ing methods.

Learning algorithms employ some kind of a learning process (defined later in Sec-

tion 2.5) to produce accurate prediction. This requires prior knowledge in the form of

teaching data. Non-algorithmic versions use prior knowledge embedded into the

inference model—they use pre-calculated inference rules to establish heuristics or

exact methods for determining whether some property holds. We will begin this

subsection with a review of works that use learning methods.

The problem of finding a proper mapping is characterised as being automatic: we are

interested in algorithms that produce the best kind of matches automatically. In the

past decade, a lot of work has been done in the world of automatic schema match-

ing and mapping. Good surveys of the field as a whole include Rahm and Bernstein

(2001) and Bernstein, Madhavan, and Rahm (2011). We refer to those studies for a

thorough review of the different methods used in schema matching; here we focus

on the different features used to calculate similarities. However, Rahm and Bern-

stein use the term matching criteria but we will prefer the more abstract term feature.

Features. In general, a feature is a trait or property that describes the target. This

concept is put into a proper context later on in the next section, but for now, we shall
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contend with this definition. Since often the choice of features is more important

than the choice of classifier (Hastie, Tibshirani, and Friedman 2001), this section will

focus on the actual features used, instead of the classification methods, which are

only mentioned by name.

Calculating a similarity measure between two attributes A and B means that we

need to identify an inherent likeness between the attributes. Consider two attributes

whose domain are strings of characters. The general idea is that if the values or this

attribute, of these attributes are more or less similar, we can probably derive a kind

of likeness measure between them; or if two attributes share the same name—or the

names resemble each other to a certain degree—we can also say that these attributes

may mean the same thing.

Note that the implied similarity may be a false positive in that the attributes may

appear to be similar, yet they are not. Numerical features that share the same domain

may contain the same numbers, yet their semantic meaning is entirely different; or

attribute names may be similar by coincidence (Kang and Naughton 2003).

The choice of correct features is a fortiori an important step in the whole process of

constructing a classification method for schema matching; even more so due to the

fact that usually a feature set determines the efficacy of a classifier. As such, we look

on to examples in the field to see what kind of features have been considered. We

return to the problem of choosing actual classifier features in Subsection 3.3.2.

Some example features. Probably the earliest systematic evaluation of features to

be used in automatic schema matching is Li and Clifton (1993). They listed the fol-

lowing features useful: (1) synonym dictionaries for comparing similarities between

attribute names, (2) schema metadata, e.g., key constraints and data type specifica-

tions and (3) the data values themselves . They used the features listed in item (2) to

develop different probability coefficients for measuring similarities.

The work by Li and Clifton eventually led to the development of the SemInt tool (Li

and Clifton 1994, 2000). SemInt is an automatic schema matching tool built using

neural networks. The methods presented in the first paper are further developed
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and contrary to the original work, the algorithm looks at the data values for features.

For example, string patterns such as the present of a whitespace between two words

can indicate a person’s name; or for numerical fields, similar statistical measures—

variance, mean and coefficient of variation—can indicate a strong similarity.

Another machine learning approached called LSD, or Learning Source Descriptions,

(Doan, Domingos, and Halevy 2001) combines a number of learning techniques to

infer matches. The system is trained by combining several methods to form a kind

of an ensemble method. They considered word frequencies of domain-specific words

in instance (e.g. the word great in description fields within real estate databases),

value distributions and integrity constraints (e.g. foreign keys).

Comparing value distributions is particularly useful. In our domain, we could say

that a vehicle capacity is logically a higher number than the individual cargo of a task,

or that the speed of a vehicle is a much smaller number than its capacity—yet, their

data types may all be similar. As a result, by using domain-specific data and known

data distributions, we can derive some key hypotheses about what kind of features

each attributes have.

A note on categorical attributes. Attributes with no meaningful distance metric

within their values are hard to map together (Andritsos et al. 2004). This is the

case with categorical values; a string attribute such as color with values such as red

or green has no adequate distance measure, thus computing a similarity measure

between them is hard. To this end, Andritsos et al. (2004) present a clustering al-

gorithm that use information entropy to cluster attribute values into groups. This

clustering information can be then used as a similarity measure between attributes.

Similar measures using entropy for attribute compatibility can be found in Acar and

Motro (2009, 2010, 2008). Berlin and Motro (2002) use the concept of information en-

tropy for feature selection, in a machine learning framework. In that framework, a

Naïve Bayes classifier is used to look for information gain when pairing attributes.

In general, the strongest coefficient between attribute similarity is data domain com-

patibility. The next similarity coefficient is the similarity of the data itself. We say
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that a domain compatibility is the first similarity metric S0 between two attributes, S1

are value pattern similarities and then the final one S2 is the value similarity. Pattern

similarity roughly means that the attributes tend to look like each other—in strings

this can be interpreted as having a language that can, to some degree of fuzziness,

recognise both strings, or for numerical values, a similar normal distribution.

In summary, this section presented the latter part of our fleet inference, attribute

classification. Attribute classification can be generalised into schema matching, be-

cause in both we are interested in finding attribute correspondences. Our scenario

fixes a certain target schemaD to which we want to map attributes, and the methods

for doing this involve using some kind of similarity or correspondence measures.

We broached the topic of features in this subsection and further elaborated what

kind of features have generally seen as been useful. The contexts in which these fea-

tures are used are in the learning and classification phase. Features form a key aspect

of machine learning, which is the topic of the next section.

2.5 A Primer On Machine Learning

“A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P, if its performance at

tasks in T, as measured by P, improves with experience E.”

– Tom M. Mitchell, Machine Learning

This section introduces the reader to the domain of machine learning. This is by no

means a small task; thousands of technical papers have been written on the subject

for over fifty years. The goal of this section is to provide a brief introduction to ma-

chine learning in a general environment, and in particular, to the abstract concept of

learning. This is to elaborate on the techniques and terms mentioned in the previous

sections.

The introduction is intentionally kept short and concise. The field of machine learn-

ing is vast, its roots go deep and intersect at the peculiar boundary of statistics, prob-
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Fig. 7: A machine learning problem. (a) Illustrates the set of points we wish to

classify into two categories. (b) A line that splits the set of points into two based on

their color.

ability theory, computer science and software engineering. For the presented intro-

duction to be sufficiently informative, only one particular part of machine learning—

classification—is covered, due to its relevance to the rest of this thesis. For further

reading, we provide the reader a list of material, both practical and theoretic, in

Subsection 2.5.5.

The principal sources of this section are Mohri, Rostamizadeh, and Talwalkar (2012),

Bishop (2006), Mitchell (1997) and Hastie, Tibshirani, and Friedman (2001) and Schapire

and Freund (2012).

2.5.1 Introduction

The goal of machine learning is to use computational methods to give accurate

predictions using experience gained by training. This could be, for example, face

recognition, optical character recognition, stock market prediction, spam detection,

computer-aided diagnosis, control theory, and so on. The list of different applica-

tions of machine learning is vast. There are a multitude of sub-problems within

machine learning, some of the most notable of which are:

• Regression is using training data to be able to predict the value of a function,

such as the stock market index. In regression, accuracy can be easily measured

as the difference between the correct value of the predicted function and the
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predicted value.

• Classification is using training data to classify a set of items into distinct cat-

egories. Optical character recognition is an example of this, where images are

assigned target characters in some alphabet, or spam recognition, where the

goal is to predict whether an email is spam or not.

• Clustering is the task of dividing a set of values into distinct groups. An ex-

ample goal is to find some connection between data values.

Other important purposes of machine learning are ranking, where the goal is to find

some ranking for a set of data, e.g., movie recommendations and dimensionality re-

duction where a large set of features are reduced into more meaningful ones while

preserving accuracy. In this thesis, we will mostly focus on classification, since we

are interested in mapping a set of instances to certain categories.

Terminology. When discussing machine learning we will come accross various

terms related exclusively to different kind of entities associated with learning. These

are:

• Features: features of an attribute, e.g., in detecting an inclusion dependency,

this could be any of the features described in the list Subsection 2.3.3, or in the

case of detecting spam, the presence of certain words typical to spam.

• Instance: any unit of data to be either validated or tested, i.e., classified in some

sense.

• Label: a flag indicating to which category a training instance belongs to, e.g.,

in the case of spam, this could be a Boolean value, 1 for spam, 0 for ham.

• Training sample: a labeled training set consists of labeled instances given to the

learning algorithm, to produce a set of classification rule set to form a classifier

or a hypothesis.

• Validation sample: labeled instances that are used to tune the free param-

eters of the learning algorithm to prevent overfitting whereby the algorithm

constructs a model that is too complex and generalizes poorly.

• Test sample: test instances on which the learning algorithm is tested on —

this data is unlabeled and is not available in the learning process. Intuitively,
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this is generally the data which the user will want to see to know whether the

learning algorithm works or not.

A learning algorithm might make errors when tested on the training set, this is

called a training error. The fraction of the correct answers given on the test set is

called the accuracy of the algorithm; the number of errors on this set is called the

test error. We assume that the samples are drown using some random distribution

D, and we denote the probability of misclassification of this set as the generalisation

error. The concepts of learning can be generalised to a more abstract model, in these

association it is common to talk about the loss function and hypothesis set:

• Hypothesis set: a set of functions that map features to their labels Y . Y could

be {0,1}, for a binary classification problem, or a real-valued score s ≥ 0 for

spam, the higher a score, the more likely it is spam. A hypothesis is often syn-

onymous with the term classifier, see below.

• Loss function: measures the goodness of the hypothesis. It measures the dis-

tance of a predicted label from the correct label. More formally, let Y denote

the set of labels and Y ′ be the set of output labels, the loss function is defined as

a mapping L : Y ×Y ′→ R+. Given a hypothesis h, if y′ = h(x), and the correct

label y ∈ Y , the loss l = L(y,y′). If l is zero, then the prediction is correct.

Different methods exists for measuring loss (see below), usually L(y,y′) > 0.

For a binary classification problem, where Y = {0,1}, the loss function is the

indicator function 1y 6=y′ , which is defined as follows. Let x be a sample and h

the hypothesis, and y′ = h(x) the predicted label for x,

1y 6=y′ =

1 if y 6= y′

0 if y = y′.
(2.5)

• Model selection: tuning the parameters of the algorithm, that is, tuning the

parameters of the selected hypothesis itself.

In general, the hypothesis set is the set of functions a learning algorithm must form to

be able to learn. A canonical spam classification scenario is a good way to illustrate
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the process of a learning algorithm. First, we analyse a random subset of a set of

emails for relevant features. These could be the length of the email, its grammatical

accuracy, the presence of some red flags such as the word “viagra”.

After the features have been selected, we select a random subset of emails, calculate

feature vectors for them and associate labels to them—i.e., determine whether they

are spam or not spam, by hand. This forms a set of training examples. The training ex-

amples are then used to train or learn the algorithm. Using these training examples,

the learning algorithm, by fixing different values of its free parameters, will choose

from a set of hypotheses the best hypothesis that fits the training data. Finally, the

algorithm is tested on the test set (disjoint from the training set) by applying its hy-

pothesis on those instances.

In general terms, the hypothesis function is the set of values for a learning algo-

rithm’s parameters; in classification contexts, these are the fixed parameters for a

classification function. For example, a learning algorithm might set a threshold

value of some kind for the number of grammatical errors, and after training it might

fix some value δ to this parameter and whenever an instance’s grammatical error

number δ′ > δ, by the hypothesis, this will either be classified to spam or ham.

We will use the words classifier and hypothesis interchangeably. Other synonyms for

these are terms in literature are classification ruleset, predictor or classification model.

In the previous list we left out an important sample set called the validation sample.

If the training set and test sets are small, how can we know whether the learning

algorithm can generalise to an independent data set? Usually, a learning algorithm

will contain a number of free parameters, which are then used to fit a model based

on the training data. The fitting process essentially chooses the best values for its

parameters—the best hypothesis—that fits the training data. This is called model

selection.

Learning scenarios. There are different scenarios for learning. For example, there

is a learning scenario where no correct labels for features are provided, where the

learning algorithm must infer the labels itself. This is called unsupervised learning.
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A good categorisation between different learning scenarios can be found in Mohri,

Rostamizadeh, and Talwalkar (2012), which we will summarise below.

• Supervised learning. The learning algorithm receives labeled training sample

and makes predictions on unlabeled data.

• Unsupervised learning. The learning algorithm receives unlabeled training

data and makes predictions on these. Examples of these are clustering and

principal component analysis (PCA), a type of dimensionality reduction.

• Semi-supervised learning. The learning algorithm receives both labeled and

unlabeled training data, and makes predictions on unseen data. This scenario

is typical in situations where features are easy to calculate but obtaining the

correct labels is expensive.

• Transductive inference. A kind of semi-supervised learning where a learning

algorithm receives labeled training data and unlabeled test data. Unlike in

semi-supervised learning, where the objective is to make predictions on any

unseen data, in transductive inference the goal is to make predictions only for

the given test data. This is used in, e.g., learning finite automata, where the

idea is to learn a language represented a finite automaton.

• On-line learning. In on-line learning, there is no difference between the learn-

ing and training phase. The goal of on-line learning is to minimise a loss func-

tion over many iterations. For each iteration, the learning algorithm receives

an unlabeled sample and predicts it. Then it is shown the correct label and cal-

culates the loss between its own label and the correct one. The successive goal

is to eventually minimise this loss over time.

• Reinforcement learning. The learning algorithm acts as an agent in an envi-

ronment and seeks to maximise some kind of a reward. This could be, using

an example from control theory, a robot that tries to maximise free-roaming so

that it does not bump into walls. Over time, the robot will get better at not

hitting walls. This is a key characteristic of reinforcement learning: the reward

will get successively smaller and the agent must decide whether to perform

new actions, explore, or stay in a familiar environment, exploit. This is known

as the exploration versus exploitation dilemma.
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• Active learning. Lastly, the active learning scenario is where the learning algo-

rithm actively seeks out labeled data by querying the user for them. This tries

minimise the manual labeling involved in a supervised scenario should the

manual labeling prove to be an expensive operation. The learning algorithm

selects the examples to be labeled.

In conclusion, learning scenarios are plentiful. The latter part of the above list either

falls into the first three categories, or are more special cases of them. In this thesis,

we will concern ourselves with supervised learning. This is obvious since we essen-

tially know the features of a correct classification. Unsupervised learning would be

useful in case we were not familiar with, e.g., the possible features of an inclusion

dependency.

This subsection presented key terms of machine learning and we will now move on

to a way of determining the reliability of a learning algorithm. We use the term reli-

ability in a loose sense here; in general, we are interested in how well an algorithm

can generalise or how accurate it is.

2.5.2 Cross-validation

If we select another independent set of the training samples not used in training,

called the validation sample, and test the learning algorithm on this set, it usually

turns out that the validation sample does not fit the model as well as the training

sample. This phenomenon is called overfitting, and it happens usually when the

learning algorithm is complex in its number of parameters or the training sample is

small (Bishop 2006, p. 32). Informally, it states that the algorithm does well on data

it has encountered, but does not do well on data it has not. To minimise the risk of

overfitting, a technique called cross-validation has been developed.

Cross-validation is a statistical technique for analysis the generalisation capability

of a statistical model. In this context, the model is the hypothesis, or classifier, and

we are interested in how well the classifier can generalise to an independent data

set. In machine learning contexts, we usually talk about n-fold cross-validation for
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Fig. 8: Cross-validation where

m = 5. The algorithm is trained

on m − 1 fold and tested on the

left out fold.

model selection. In cross-validation, we partition the training data into specific dis-

joint subsets: a part of the training data is used to train and another part is used to

test. Using this process we can further tune the free parameters θ of an algorithm.

This allows the assessment of the algorithm’s performance to be done entirely on

the test set; the training data can be fully used in the training phase. This can be de-

fined more formally as follows, adapting from Mohri, Rostamizadeh, and Talwalkar

(2012).

Let θ be the free parameter vector of a learning algorithm. For some fixed value of

θ, partition the sample S of m labeled samples into n sub-samples, or folds. The ith

fold is a labeled sample ((xi1,yi1), . . . , (xim,yim)) of size mi. The learning algorithm is

trained for any i ∈ [1,n] in every sample but the ith fold to generate a hypothesis hi.

The performance of hi is then tested on the ith left out fold. The parameter values θ

are then evaluated using the average error of the hypotheses hi which is called the

cross-validation error, denoted by R̂CV(θ):

R̂CV(θ) =
1
n

n

∑
i=1

1
mi

mi

∑
j=1

L(hi(xij),yij)︸ ︷︷ ︸
error of hi on the ith fold

(2.6)

Choosing the number of folds n is an important question, and much work has been

devoted to this in theoretical studies. The curious case of m = n, called leave-one-

out cross-validation (LOOCV), exactly one instance is left out with every iteration

of cross-validation. The disadvantage of cross-validation is that it can be costly to

compute. Indeed, in LOOCV, the algorithm has to be trained n times on the sample
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Fig. 9: Examples of different learnable target concepts C and learned hypotheses C′

for two categories.

size of m− 1, as evidenced by Figure 8.

2.5.3 Model Selection

The learning ability of an algorithm can be measured in two ways. The first, called

the generalisation error, is a measure of how far the current hypothesis is of the ac-

tual concept to be learned. This measure tells us how good the algorithm is using

the rules it inferred on independent data, and will tell us the expected error of the

algorithm. The empirical error is the average error of the learning algorithm on some

sample. The notable difference is that the generalisation error is not available to the

learning algorithm, since it requires knowing the target concept to be learned; the

empirical error is available as it simply requires a concept and a labeled sample to

work with.

More formally, these error concepts can be defined using the notions of concepts

and hypotheses. Adapting the formal definitions from Mohri, Rostamizadeh, and

Talwalkar (2012), we define the learning problem as follows.

LetX be the input or instance space and Y the set of target labels. We will use the binary

classification scenario of spam detection as an example here, so Y = {0,1}, where 0

is ham and 1 is spam. A concept c is a mapping c : X → Y , i.e., a mapping that maps

inputs from X to a subset of labels in Y . In general terms, this concept may be some
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Fig. 10: Another example of tar-

get concepts and learned hypotheses,

with three categories.

hyperplane in a geometric space that splits the input space into two distinct classes,

or a rectangle within R2 that contains the points belonging to a certain concept. The

objective is to learn a set of concepts C called the concept class, for example, all the

possible hyperplanes or rectangles that separate the input space. Examples of such

concepts are in Figure 9 and Figure 10.

The learning algorithm receives a set of concepts, C; and H, the set of hypothe-

ses, which may or may not coincide with the concept class C. The learning algo-

rithm is given a sample S = (x1, . . . , xn) drawn independently and identically dis-

tributed variables (i.i.d.) using an unknown distribution D and the associated labels

(c(x1), . . . , c(xn)). The task of the learner is to use the labeled sample S to select a

hypothesis hS ∈ H with the smallest generalisation error to the concept c. The gen-

eralisation error is defined as follows:

Definition 8. Generalisation error. Let h ∈ H be a hypothesis and c ∈ C some concept to

be learned. Given a distribution D, the generalisation error of h is:

R(h) = Pr
x∼D

[h(x) 6= c(x)] = E
x∼D

[
1h(x) 6=c(x)

]
(2.7)

where 1ω is the indicator function of the event ω.

Another method of defining the generalisation error would be some absolute dis-

tance measure akin to the loss function, but the probabilistic approach allows an

abstraction, which is useful in cases where the distance (e.g. mean squared error).

Using the loss function L :Y ×Y ′→R+. Some common choices for the loss function
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are

L(y,y′) =

(y− y′)2 squared error

|y− y′| absolute error.
(2.8)

The generalisation error would have then been defined as the expected value of the

loss function, but using the indicator function 1y 6=y′ (see Equation 2.7) is better suited

for binary classification.

A defining characteristic of generalisation error is that it is not known to the learn-

ing algorithm itself, as the concept c(x) is not known to the learning algorithm.

Intuitively, this is because the distribution of values D is unknown—the algorithm

has no a priori information about the data is meant to generalise to! However, the

algorithm can measure its empirical error based on seen data.

Definition 9. Empirical error. Let h ∈ H and c ∈ C like in Definition 8 and a sample

S = (x1, . . . , xn). The empirical error of h is defined as

R̂(h) =
1
m

m

∑
i=1

1h(xi) 6=c(xi)
(2.9)

The main difference between these two error measures is then that the empirical

error measures the error over a sample S and the generalisation error measures the

expected error. Indeed, if we fix some hypothesis h ∈ H, then the expected empirical

error on a sample S is equal to the generalisation error:

E
[
R̂(h)

]
= R(h). (2.10)
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The PAC learning framework. The Probably Approximately Correct (PAC) learning

framework was introduced by Valiant (1984). The PAC learning framework enables

us to define learning as an abstract minimisation problem. The agnostic PAC model

essentially sets the goal to select a hypothesis h ∈ H with a low generalisation error.

This is the minimisation problem. To clarify, the learning algorithm needs to find a

hypothesis which with high probability, which will have a low generalisation error,

that is, be approximately correct. A concept is PAC learnable when there exists an

polynomial algorithm that fits the PAC model. Generic notions and very specific

computational definitions, such as bounds for the hypothesis set H, are omitted

from this thesis; we include the PAC learning framework for the sake of exposing

the general idea of learning as a computational model.

The idea of learnability is connected to optimisation in the sense that a learning

algorithm wants to minimise its loss L. Much advances towards discovering the

intersection between optimisation and machine learning have been made in the past

decade. This in general general known as risk minimisation.

These notions of error and risk will be further visited in Chapter 3, in section where

we discuss the overall confidence measures of the learning algorithms. For further

reading about model assessment we refer the reader to Mohri, Rostamizadeh, and

Talwalkar (2012, Chapters 2 and 10) and Hastie, Tibshirani, and Friedman (2001,

Chapter 8). For information about optimisation applied to machine learning see

Sra, Agarwal, and Wright (2012).

2.5.4 Multi-class Classification

The target space Y of binary classification problems is intuitively representable as

Boolean values. As the name implies, this domain is perfectly suitable for cases

wherein categories are binary, such as spam recognition, or detecting inclusion de-

pendencies. What about cases where there are multiple categories? Consider the

attribute classification problem: for each source attribute, there are multiple possi-

ble target attributes in the domain schema. This makes the problem unrepresentable
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as a traditional TRUE–FALSE dichotomy.

In the context this thesis, the introduction of multi-classification is particularly rel-

evant. This is because we can contrast it with binary classification, as it is used in

foreign key inference. For attribute classification, we have multiple target categories,

hence the problem is a multi-classification problem.

In practice, there are two distinct ways of categorising multi-class classification: the

mono-label case Y = {0, . . . ,k} and the multi-label Y = {0,1}k. The mono-label case

refers to cases where an instance can have a single label of the label set Y and in the

multi-label case, an instance can be a part of several.

The classification scenarios found in this thesis are clearly binary classification, and

mono-label, multi-class classification. For the former, attributes can either be or not

be classified as foreign keys. For the latter, attributes can only be assigned to one

single attribute at a time. When attributes have been assigned to a data domain

attribute, no other attribute can be paired to this data domain attribute.

A multi-class classification problem is defined as follows. The learning algorithm is

given a labeled sample ((x1,y1), . . . , (xm,ym)) ∈ (X × Y) where x1 . . . xm is drawn

i.i.d. from a distribution D; yi = f (xi) for all i∈ [1,m] where f :X →Y is the classifier

function. (Mohri, Rostamizadeh, and Talwalkar 2012, p. 183)

Using multiple binary classification tasks. A multi-class classification problem can

be reduced efficiently to an aggregated set of binary classification problems. In the

first method, called one-versus-all (OVA) or one-versus-rest, using binary notation, a

sample belonging to the target label as 1 and 0 for the others. This requires then

training k separate classifiers that try to label, for a label l, try to assign 1 for this

class and 0 for all others. The hypothesis hl can be derived from a scoring function

fl : X → R, usually hl = sgn( fl). The resulting multi-class hypothesis h : X → Y is

then, for all x ∈ X :

h(x) = argmax
l∈Y

fl(x). (2.11)

In one-versus-one (OVO), each class is pitted against another. The formed pairs are
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then used as the binary dichotomy. Each pair is used in creating a classifier that

are trained only on the points labeled with the classes in that pair. This results into

training (k
2) = k(k − 1)/2 separate classifiers. The classifiers form an aggregated

hypothesis, for each pair (l, l′) ∈ Y , and for all x ∈ X :

h(x) = argmax
l∈Y

|l : hll′(x) = 1| . (2.12)

This results in a binary tournament where the winning classifier will be eventually

assigned to the label l.

The presented two techniques are the most prevalent aggregation techniques for

multi-class classification. OVA traditionally exhibits a so called calibration problem:

the scores given by the scoring function fl are not always comparable. Intuitively,

this might be because a scoring function cannot be universally calculated for each

classification sample. The OVO technique solves this by not using a scoring func-

tion, instead comparing suitability on case by case basis. Finally, a concept called

Error-Correction Codes (ECOC) has been developed to simplify the aggregation of

multi-class classification into binary classification; for more information on this we

refer the reader to Mohri, Rostamizadeh, and Talwalkar (2012, Subsection 8.4.3).

In summary, this subsection provided a brief examination of multi-class classifica-

tion. We showed the common tools and methodologies used in these situations

and also contrasted the differences between the two most popular techniques, lastly

concluding with their deficiencies. For more information about multi-class classifi-

cation, the reader is referred to Mohri, Rostamizadeh, and Talwalkar (2012, Chapter

8) which acted as a principal reference for this subsection.

2.5.5 Summary And Future Reading

The field of machine learning is vast and progress therein is even faster. This sec-

tion presented a general introduction to machine learning from a computational

perspective—rather than analysing individual algorithms—namely because under-

standing the theoretical foundations of the field is, in my view, essential for grip-

ping the possibilities and limitations of machine learning itself. For this reason, the
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analysis of individual classification algorithms and techniques is not present in this

section, nor are techniques for measuring the confidence of said algorithms listed

here.

Individual algorithms, namely decision trees and ensemble methods, are visited

further down in Chapter 3. Confidence analysis of these techniques are analysed in

Section 4.4. For further reading about the theoretical computational limits of ma-

chine learning, we refer the reader to Foundations of Machine Learning by Mohri, Ros-

tamizadeh, and Talwalkar (2012). This reference is differentiated from other classic

works by its emphasis on the computational analysis via the PAC model and an em-

phasis on proofs. For more general introductions on various ML techniques and ap-

plications, the reader is referred to Pattern Recognition and Machine Learning (Bishop

2006) and Machine Learning (Mitchell 1997). The importance of statistical methods in

the analysis of learning needs to be highlighted; for it we recommend The elements

of statistical learning (Hastie, Tibshirani, and Friedman 2001). Although not visited

upon in this section, ensemble methods and boosting are important techniques and

an recommended source for it is the new book by Schapire and Freund (2012).

This part also concludes the whole chapter. This chapter laid the theoretical frame-

work the upcoming chapters are based on.

2.6 Classifiers

In this thesis, we have talked about classifiers in a broader, hypothesis-oriented con-

text, but have so far eluded their specifics. This section discusses the various clas-

sification algorithms that we used in fleet inference. We review formal definitions

of classification algorithms and discuss decision trees, a classification algorithm. We

also look at ensemble methods, which are about combining a group of classifiers into a

single body. Then we show how these classification algorithms are trained and used

in both join inference and attribute classification.

The usage of stems from the necessity to predict categorical data. Usually, the un-

derlying question behind a classification task is whether something either belongs
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to a category or not. In the presence of multiple possible N categories, recall from

Subsection 2.5.4, we train N classifiers in an OVA scenario, and determine which

one of the classifiers is the correct one.

Using formal notation, the target space of a binary classifier is Y = {0,1}. Let X be

its input space and f : X → Y the target (concept) function. Given a hypothesis set

H of functions fromX to Y , and inputs (x1, x2, . . . , xn) drawn i.i.d. from an unknown

distribution D, a binary classifier is the task of finding a hypothesis h ∈ H that the

generalisation error is small:

RD(h) = Pr
x∼D

[h(x) 6= f (x)] . (2.13)

One can select different hypothesis sets for this part, but using the simplest hy-

pothesis is usually the best choice (Mohri, Rostamizadeh, and Talwalkar 2012). The

notion is due to Occam’s razor, which states that given a set of competing hypothe-

ses, the least parsimonious, or the least complex one, is usually the correct one. This is

true in machine learning as well, the theoretical foundations for this are based on

Vapnik–Chervonenkis dimensions (Vapnik and Chervonenkis 1971; Vapnik 2006)

and Rademacher complexities (Koltchinskii 2001; Bartlett and Mendelson 2003).

Due to the scope limitations of this thesis, we omit discussions of both VC dimen-

sions and Rademacher complexities.

x < 10

��||

x (mod 2) ≡ 0

~~ ""

f alse

true f alse

Fig. 12: An example decision tree with

two leaves testing whether a positive in-

teger x is smaller than 10 and even.

The classifier algorithms we have used

in this thesis are decision trees (Breiman

et al. 1984; Quinlan 1986), random

forests (Breiman 2001), extremely ran-

domised trees (Geurts, Ernst, and We-

henkel 2006), AdaBoost (Freund and

Schapire 1995) and gradient tree boost-

ing (Friedman 2001, 2002). Decision

trees are a graph-like decision tool that

work by making individual decisions

in nodes and arriving to a conclusion.
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Fig. 13: A decision tree and its decision surface for two features X1 and X2.

These can be used in decision making in an intuitive manner: the tree can be easily

visualised and one needs only to understand the visual representation. The lat-

ter three are ensemble methods, which combine multiple learners to form a single

hypothesis. The last two methods, AdaBoost and gradient boosting, are boosting

algorithms, which are a meta-algorithm that aim to reduce bias in learners.

2.6.1 Decision Tree Learning

“Trees sprout up just about everywhere in computer science.”

– Donald E. Knuth (2011)

Decision tree learning is a supervised learning technique that can be used for both

classification and regression. (Breiman et al. 1984) In classification, we are interested

in using trees to determine correct categories for input data; in regression, we are

trying to predict the outcome of a function using decision trees. The performance

of decision trees is not up to par with comparable methods, but using boosting and

ensemble methods, decision trees can be transformed into effective learning algo-

rithms. (Mohri, Rostamizadeh, and Talwalkar 2012, p. 194)

In decision tree learning learning, the goal is generate decision trees based on ob-
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served data. We want to infer a decision tree from the ground up. To infer the

decision tree in Figure 12, we would select a hypothesis that given an input space

Z+ would give the label true (i.e., 1) for numbers 8, 6, 4, 2, and 0. This is called

decision tree learning, which we will discuss in this subsection.

Formally, given a labeled input vector from ((x1,y1), . . . , (xn,ym)) ∈ X × Y , a deci-

sion tree is a classifier that recursively splits X such that the sample labels from Y

are grouped together. For each node n, let (Xi,qt) be a pair where Xi is some feature

and qt a question. The question can be a numerical question of the form Xi ≤ qn

where qn is some number, or a categorical question Xi ∈ {a,b, c}. The resulting leaf

nodes are the labels l ∈ Y . For any input x ∈ X , to get its predicted value, the tree is

traversed until a leaf node is encountered. The input x is associated with the label

l ∈ Y . Each leaf represents a partition of X , and no partition can intersect.

The algorithm for learning the decision tree works by iteratively selecting leaf nodes

and splitting them. An outline for decision tree learning can be found in Mohri, Ros-

tamizadeh, and Talwalkar (2012, p. 196). Here, we summarise the learning method

briefly. The initial state of a decision tree is when the tree only has a root node. With

each iteration, a leaf l is selected from the tree and a split is computed for it, replac-

ing the leaf node with two internal leaves. The split is computed using node impurity.

The idea of node impurity is based on the idea of reducing the so-called impurity

of the training set. A “pure” split results in the best split of the node: a pure leaf

will dominate the training set, resulting in the smallest amount of misclassification.

Splits are chosen by decreasing node impurity according to some impurity function

F.

Computing the impurity F(n) for a node n is done as follows. Let n−(qt) be the

left child of the node after the split and n+(qt) the right child of the resulting split

nodes. For a node n, let Rn be the region of points defined by n, the proportion of

observations pl(n) for the label l ∈ [1,k] is:

pl(n) =
1
K ∑

xi∈Rn

I(yi = l).

For a label l, let pl(n−) and pl(n+) be the number of points inside the region that the
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split generates, and K the amount of observations. The impurity is calculated using

the impurity function F(n):

G(n,q) =
pl(n−)

K
F
(
n−(n,q)

)
+

pl(n+)

K
F
(
n+(n,q)

)
.

The selected split θ̂ = (nt,qt) is the one that minimises impurity:

θ̂ = argmin
n,q

G(n,q).

Common choices for the impurity function F are:

F(n) =


1−maxl∈[1,k] pl(n) misclassification,

−∑k
l=1 pl(n) log(pl(n)) entropy,

∑k
l=1 pl(n)(1− pl(n)) Gini index.

(2.14)

Learning strategies. To learn a decision tree there are a two main strategies, greedy

and grow-then-prune. The greedy strategy builds a tree until no more nodes can

be feasibly split based on node impurity, as seen on the previous page; grow-then-

prune builds a gigantic tree and minimises it by pruning it to a smaller tree using

an objective function based on its size (the amount of leaves) and its empirical error.

The greedy technique was presented as the top-down induction of decision trees by

Quinlan (1986) in ID3, or Iterative Dichotomizer 3. Grow-then-prune was introduced

with CART (Breiman et al. 1984).

The most widely used decision tree algorithms are C4.5 (Quinlan 1993), C5.0 and

CART (Classification And Regression Trees, Breiman et al. (1984)). C4.5 and C5.0

are both improvements on ID3, the latter of which is a commercially licensed, less

memory and time consuming version of the former. CART differs from the C4.5

family in that it also supports regression. The decision tree classification algorithm

used in this thesis is from scikit-learn (Pedregosa et al. 2011), which uses an opti-

mised version of CART.
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2.6.2 Ensemble Methods: Random Forests and Boosting

“How is it that a committee of blockheads can somehow arrive at highly

reasoned decisions, despite the weak judgment of the individual members?

How can shaky separate views of a panel of dolts be combined into a single

opinion that is very likely to be correct?”

– Schapire and Freund, Boosting (2012)

Ensemble methods are classification methods that combine different weaker learn-

ers into one strong learner. Many ensemble methods, notably random forests and

extremely randomised trees, are tree based, i.e., they use decision trees as the un-

derlying weak learners. AdaBoost, a boosting meta-algorithm, uses decision tree

classifiers as its weak learners, and gradient tree boosting uses decision tree regres-

sors.

The types of ensemble methods described here can be divided into two categories:

methods that build a set of different learners independently and produces the best

averaged result, called averaging, and methods that iteratively train on subsamples

of the training data, called boosting. In boosting, the trees are built sequentially: each

tree is dependent on its predecessors when it comes to how it is trained.

Forests of trees. Random forests and extremely randomised trees are both averaging

methods. Their goal is to build a forest of randomised trees using varied subsamples

of the data: each grown tree is shown a slightly different sample of the training

data. For prediction, each tree is shown the input sample and the vote2 of all trees is

chosen as the prediction. This method works similarly for both random forests and

extremely randomised trees, they vary only in the way the randomisation occurs.

Additionally, to compute the tree splits at each node, the best split among a subset of

features is chosen, instead of the best split for the whole training data. This gives the

classifier an overall reduced variance, but might increase its bias.

2. The implementation provided by scikit-learn used in this thesis does not use a mode vote. In-

stead, the average of the prediction probabilities of all trees is chosen.
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In extremely randomised trees, the whole training set is used, but the splits are cho-

sen at random. Consequently, in extremely randomised trees, this extreme randomi-

sation results in reduced variance compared to random forests. (Geurts, Ernst, and

Wehenkel 2006) The increase in bias is then compensated by training on the whole

training sample, yielding a smaller increase in bias as well.

Boosting. The principle in boosting is to train weak classifiers and iteratively train

them increasingly on samples that are prone to misclassification, while decreasing

the amount of training on samples that are correctly classified. Intuitively, boost-

ing focuses subsequent training iterations on samples that are “difficult” to classify,

samples for which classification is easier are given less weight in training.

AdaBoost (Freund and Schapire 1995) uses this principle in its process. Initially, train-

ing samples are drawn with a uniform distribution D1 (recall equation (2.9)). Ad-

aBoost selects a hypothesis ht for the distribution Dt, after checking the points that

ht classified correctly or incorrectly, the weights in the subsequent distribution Dt+1

are given less and more weight, respectively. Once T training rounds are complete,

the resulting classifier H is a sign function of a linear combination of the hypotheses

weighted by their error rates αt: H(x) = sgn
(

∑T
t=1 αtht(x)

)
. (Mohri, Rostamizadeh,

and Talwalkar 2012)

Gradient Tree Boosting (Friedman 2001) and stochastic gradient boosting (Fried-

man 2002) work similarly to other boosting methods, i.e. by iteratively creating new

weak learners, but the main difference is the addition of a differentiable loss func-

tion. In other boosting methods, the loss function is usually a zero-one-loss func-

tion, but in gradient tree boosting, the loss function is minimised using gradient

descent. Stochastic gradient boosting presented an important tweak to gradient tree

boosting, by adding the notion of bootstrap aggregating (“bagging”): each learner is

trained on a subsample (without replacement) of the original training set, introduc-

ing randomness. This is analogous to the forests of trees methods. Friedman (2002)

observed that the subsample size f produces good results when 0.5≤ f ≤ 0.8. Con-

sequently, the implementation in this thesis uses a subsample rate of 0.5. It is worth

noting that if f = 1, the subsample rate is identical to regular gradient tree boosting.
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“Think of all the psychic energy expended in seeking a fundamental dis-

tinction between “algorithm” and “program”.”

– Alan Perlis

“If you automate a mess, you get an automated mess.”

– Rod Michael
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3 Implementation: Fleet Inference

“The question of whether computers can think is like the question of whether

submarines can swim.”

– Edsger W. Dijkstra

This chapter, along with the next one, presents the principal contribution of this

thesis. We present fleet inference, a novel data importing technique for route optimi-

sation systems. This chapter relies heavily on the theoretical framework presented

in the previous two chapters. While we reference some of the central concepts pre-

sented earlier, most of the definitions herein aim to be self-contained, with the intent

that this chapter (and the next) can be read independently. Chapters 1 and 2 will

help the reader to better understand the techniques used here.

Fleet inference consists of finding an efficient method for importing data for route

optimisation from a multitude of formats. Preferably, these formats should be learned;

in the sense that as little human oversight of the importing process is required. We

propose the use of the following approach, which is presented in detail in this chap-

ter:

1. finding an efficient way to link multiple data documents, e.g., CSV files, to-

gether by inferring their referential attributes, and constructing an aggregation

of them, and

2. correctly inferring the context and meaning of data within this aggregated doc-

ument.

The idea of fleet inference is to recognize a fleet from input data, using automated

reasoning. This automated reasoning framework uses machine learning, which we

discussed in the previous chapter. Generally, we aim to teach algorithms how fleets

are represented. The algorithm’s task is to learn an efficient method for inferring its

structure. Hence the name fleet inference.
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Before we discuss fleet inference thoroughly, the reader is introduced to its proper

formulation. This is done in Section 3.1, where we link the concepts of join infer-

ence (see Section 2.3) and attribute classification (see Section 2.4). An overview of the

system and the process it encapsulates is given in Section 3.2. Our learning aspect

is deconstructed in section Section 3.3, where we look at common features used for

learning the inference rules, and in Section 2.6 we look at the classification proce-

dures our learning methods use. Finally, we conclude with a theoretical analysis

on the system’s robustness, that is, how well the learned fleet inference model can

tolerate corrupted or missing data.

3.1 The Fleet Inference Problem

Fleet inference (FI) is essentially a composite of two different problems. The first

one, join inference, is fundamentally a problem about finding referential constraints

between sets of database relations. The second, attribute classification, is a schema

mapping problem where we infer and assign contexts for attributes by finding as-

sociations between attribute pairs.

At a glance, these two problems seem somewhat unrelated. As noted in their respec-

tive sections, individually, these problems have been widely studied and the studies

have intersected rarely. Only specific contexts of schema mapping broach the notion

of join inference. This is largely because schema mapping deals with complete, and

thereby joined, schemas, and join inference is usually done as a preparatory step for

the schema matching.

What follows is a brief outline of the fleet inference process. We first teach an algo-

rithm what referential constraints, i.e., foreign keys, look like. The trained algorithm

forms a hypothesis of what foreign keys between two unseen relations might look

like. The hypothesis is used on a set of relations and if a candidate foreign key is

obtained, an equi-join is performed on the attribute deemed as a foreign key. The

resulting joined relation (a combination of n possible relations) is then shown to the

attribute classifier, which has been trained using a similar approach: the classifier is
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trained using domain specific data for a finite set of attributes. The attribute classi-

fier then classifies each attribute in the joined relation. If suitable target attributes are

found, the attribute classifier produces a list of pairings based on these potentially

related attributes.

In comparison to either problem component, the FI approach differs in that we auto-

mate the whole process of finding references between relations and classifying their

attributes entirely. Our overall goal is to have little oversight of the algorithm as it

functions: inferring heuristics for what constitutes a suitable foreign key or attribute

pairing is done by the algorithm.

Some considerations. At this point, it is very important to consider whether the first

step—join inference—is at all necessary. Given that the attribute classifier could very

well operate on unrelated1 data, we simply go through each attribute and show it to

the classifier. If pairings are produced, we can one way or another obtain a suitable

case model from this data.

The answer becomes obvious when one considers the importance of context in the

classification process: although pairings by themselves can be useful, how would

one construct an algorithm that could properly infer the semantic meaning of each

attribute? The basic case model introduced in the previous chapter has a low num-

ber of attributes, so the complexity of the attribute pairing is equal to the number of

the Cartesian product of the source attribute set S and the target (domain) attribute

set T, |S× T|.

One could simply guess, and using a rather crude approach, forcibly trying to shoe-

horn source attributes into a sensible case model. Obviously, this is rather time-

consuming and inefficient. One of the advantages of join inference is that by group-

ing attributes together semantically, we can usually deduce their context and mean-

ing. Because we can group attributes such as capacity or vehicle number together, we

can understand that these attributes are related to the vehicles in the case model.

1. We use unrelated in the relation sense: attributes that are unrelated may or may not reside in the

same relation.
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One significant caveat in the proposed fleet inference model is that for the time be-

ing, the correct separation of relations that contain information pertaining to vehi-

cles and tasks must be done beforehand. That is, we must tell fleet inference that

a particular subset of R pertain to vehicles and another disjoint subset pertains to

tasks. An obvious improvement for fleet inference is the inference of attribute con-

texts while performing foreign key inference. This would reduce the complexity of

join inference since less potential foreign keys have to be analysed.

The second consideration is the usage of machine learning. It is completely possible

to create heuristics for detecting foreign keys or mapping attributes. As was noted

in Subsection 2.3.3, machine learning methods have proven to be flexible while re-

taining good generalization ability. Arguably, the lack of need for creating heuristics

for such a specialized data saves time—the learning algorithm need only be trained,

and if sufficiently sophisticated, it can construe these heuristics on its own.

3.2 Architectural Overview

The fleet inference model and its implementation are based on the case model con-

cept from earlier chapters. A case model is a mathematical construct that encap-

sulates components of fleets—vehicles and delivery tasks. The bipartite nature of

the case model translates directly to the fleet inference model. The fleet inference

model architecture consists similarly of two parts, modules. The join inference mod-

ule constitutes the first part and the attribute classifier the second. The nature of join

inference is reduction from many to one—assimilating multiple relations in R into

one; the attribute classifier is a one-to-many relation, as it can produce a multitude

of target attribute mappings for each attribute.

In describing the architecture illustrated in Figure 14, in this brief overview, we will

operate in terms of input and output. The input for the join inference module is

two sets of relations, one set for vehicle data, another for task. The separation at

this level is currently done by the user. At a later stage, semantic inference based

on neighbouring cells can be used to detect the pertinent semantic purpose of each

63



V1

Vehicle relations

Task relations

Join inference Atttribute classifierRV

Capacity Demand Location...

Merged relations

Domain attributes

...V2 Vn

T1 ...T2 Tn

RT

Fig. 14: The architecture of fleet inference.

relation, that is, whether a group of relations belong to the vehicle category or the

task category.

Once these sets are processed, i.e., inferred into relations RV and RT, join inference

sends this output to the attribute classifier. The attribute classifier uses the domain

data to detect which source relations are used in mapping domain attributes. Thus

the attribute classifier would select attributes Capacity and Speed from the vehicle

data, and Location would be mapped from the task data.

The attribute classifier produces domain data mappings for each attribute and the

process of fleet inference is thus completed. Once the domain data mapping is done,

all is left is data sanitising and parsing, and inputting the data into a solver system.

The solver receives a file format, constructed by fleet inference, that it can interpret.

In practice, I recommend that fleet inference be implemented as a separate service,

i.e., using a service-oriented architecture or SOA (Perrey and Lycett 2003), which can

be used to query an individual data sets’ file format and structure—but not be used

as a system to parse data into the solver itself.

The architecture will be further visited on in following chapters, in particular, both

modules will be scrutinised in depth. This subsection ends the abstract architectural

level, we now move on to examining the process of fleet inference at a practical level.
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Algorithm 1: Fleet inference
Data: RV and RT, domain schema D

Result: A mapping from the attributes in Data to the domain model.

foreach relation RV and RT do join inference

find primary-foreign key pairs for every relation pair;

merge relations into prime relations V′ and T′

end

foreach attribute α ∈ V′ ∪ T′ do attribute classification

foreach attribute a in the domain schema D do

calculate a similarity score sim(α, a);

end

choose the highest ranking similarity score for α;

end

use the sorted similarity scores to construct the schema mapping to D;

3.2.1 Problem Formulation

This subsection articulates the research question presented on page 8 by defining

it formally using knowledge constructed in the chapters that followed that section.

We also provide an algorithmic outline of how fleet inference works, first as a whole

followed by both halves in detail.

To properly present an outline of fleet inference in a human-readable format, we

have have to make some assumptions on the data. These assumptions may or may

not require additional work from the user. As an example, the partitioning of sub-

sets into domain-pertinent subsets (vehicle and task data) is a requirement.

We assume that the input of fleet inference is a data set representing a VRP. This

data is assumed to consist of relations. The user partitions this data set R into two

disjoint subsets, RV and RT. The former relation set pertains to vehicles and the

latter pertains to tasks. Algorithm 1 outlines the procedure of fleet inference.

Using this algorithm outline, we can now refine the research problem found in 1.2.
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Given two relation sets RV and RT, infer all the foreign key constraints

between the relations in them. For each subset, select their prime re-

lations V′ and T′, and using the foreign key constraints, merge other

relations using equi-joins into these. For each prime relation, and for

each attribute therein, find the highest ranking mapping to the domain

schema D.

This definition is notably more succinct than the one on page 8. We now move on to

examining how the individual processes, i.e., those described in the for–each loops,

work.

3.2.2 Module Overview

“An algorithm must be seen to be believed.”

– Donald E. Knuth (1968)

This subsection provides additional detail on the procedures of join inference and

attribute classification. We look closely at the requirements of both modules, join

inference and attribute classification, by examining their data inputs and outputs.

Sections of Algorithm 1 are opened and the pseudo-code lines are explained. This

subsection is still about architecture, in that we deal with the modules as an input–

output pipelines, i.e., specific components of a larger whole. Actual discussion of

how classification algorithms work, or how the features for classification are se-

lected, are discussed later on.

To begin with, join inference, due to its complexity, is a time-consuming process.

For join inference to function properly, it requires well-trained classification algo-

rithms. Recall from Subsection 2.5.3, with well-trained we mean that the algorithms

have a low generalisation error. The algorithms have to be robust, i.e., their softness

margin—how much errors in the input data are tolerated—must be sufficiently big

to accommodate for errors in the data.

In contrast, attribute classification has less information to manipulate, and its input
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is sanitised by join inference. Thus attribute classification has to make fewer as-

sumptions about its data, as the input data consists of a set of attributes with their

respective tuples (value sets).

Algorithm 2: Find pairings and classify
Data: a set of relations R for which |R| ≥ 2.

Result: a list of primary-foreign key pairings

foreach relation Ri ∈ R do find pairings

initialize list FKC[i];

foreach relation Rj ∈ R \ {Ri} do

initialize list FKC[i][j];

foreach attribute pair (an, am) ∈ Ri × Rj do

if ¬isIND(an, am) then is not IND

skip this pairing;

else

p← Classi f y(an, am);

if p==1 then is FKC

append (n,m) to the list FKC[i][j];

end

end

end

end

end

Due to these requirements, we have to make a couple of assumptions. We assume

that the join inference module has been trained properly. This training aspect is cov-

ered in the next section; for now, we assume that the training data set consists of

large normalised relational data sets residing in flat CSV files. The other assump-

tions are the following pre- and post-conditions: (1) both subsets have to have at

least 2 relations, or no join inference is performed; (2) for n relations, the output of

primary–foreign key relations must number n− 1; additionally, (3) during join in-

ference, if any relation has two (or more) foreign key candidates to a primary key,
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Algorithm 3: Pruning excess pairings.
Data: List of pairings FKC[i, j]

Result: Pruned list FKC[i, j]

foreach pair (i, j) in FKC do loop relation pairs

count← CountFKC(FKC[i]);

if count ≤ 1 then

one pairing or less, ok, one-to-one;

else

foreach pair (n,m) in FKC[i][j] do prune excess pairings

count total of pairs for n and m;

if one-to-many for n then choose best m; /* many m for n */

else if many-to-one for m then choose best n; /* many n for m */

else if many-to-many for n and m then choose best n and m;

end

end

end

excess ones must be pruned.

Condition 1 is straightforward: if only one relation per subset is provided, join infer-

ence is unnecessary or cannot be performed. Condition 2 restricts the prime relation

from referencing itself. Condition 3 gives the instruction on how to enforce condi-

tion 2. The method for performing 3 is currently done by hand.2

Finding all possible FKC. Finding FKC starts by creating a list of possible IND

candidates, also known as spurious IND (Rostin et al. 2009). These are created by

iterating over all attributes in a relation subset R and trying to look for IND to every

other attribute in the set of attributes.

More formally, let A = {A1, . . . , An} ∈ R be the set of attributes we work on. For

each attribute Ai, test for IND with every attribute in A \ {Ai}. The source attribute

2. This issue is noted and will be elaborated on further in Section 4.4
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Ai is called a referenced attribute, i.e., a potential primary key to a foreign key, and

the set of attributes an IND is tested to are dependent attributes. As a result, the IND

algorithm iterates over n×m attributes.

For two attributes A and B, let s(A) and s(B) be their distinct values. To satisfy

and IND, recall from Definition 3, if s(A)⊆ s(B), then |s(A)| ≤ |s(B)|, or for s(A)⊆
s(B), it must hold that |s(A)| ≥ |s(B)|. The number of subset inclusions we need to

perform is then n2−n
n (Bauckmann, Leser, and Naumann 2006).

Testing for the subset inclusion is a simple combination of the coverage and out

of range features: coverage ≥ 0 ∧ outOfRange ≤ 1.0. These are the same features as

described on page 74.

Once all IND candidates have been retrieved, features are calculated for IND can-

didates (see Section 3.3) and candidates run through the binary classifier that tells

whether the candidate is a possible FKC or not. The binary classifier algorithm re-

turns either 1 for a suitable foreign key pair, or 0 for a non-suitable one.

This IND approach is the brute force method as described by Bauckmann, Leser,

and Naumann (2006) and later used in foreign key discovery by Rostin et al. (2009).

Bauckmann, Leser, and Naumann (2006) describe an advanced, computationally

efficient mining algorithm called SPIDER which is considerably faster than the brute

force approach. I selected the former brute force approach because the training and

featuring aspect are not a significant aspect of the process. Furthermore, the number

of attributes in any data set that would be used in fleet inference is relatively low, the

only amount when the number of attributes might be high would be in the training

process.

Using found FKC. Let S, R be relations in R. If the number of FKC for a relation pair

is one-to-many, i.e., if the algorithm finds a key in S that has two (or more) possible

foreign keys in R, a FD F(A) is computed for each attribute A ∈ R. The attributes

are then ranked by their FD, and the key with the highest FD is selected. If the

result is many-to-one, then the situation is reversed. If the result is many-to-many,

then the sorting is applied on both. Algorithm 2 shows how all pairings are found,
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Algorithm 4: Classify attributes
Data: A relation union S = V′ ∪ T′, target attributes T , domain schema D,

classifier set C

Result: A mapping from S to D

initialize pairing list pairs;

foreach attribute A ∈ S do

data←ΠA(S);

foreach attribute T ∈ T do

cl f ← C[T];

if cl f (A, data) then /* classification match */

Append(pairs, (A, T))

end

end

end

return pairs

Algorithm 3 displays the pruning process in cases differing from one-to-one cases.

To find the prime relation, we select the one that has the highest number of one-to-x

mappings per attribute, where x is either one or many. This means that the primary

relation will likely be the one with its key being referenced the most by other keys.

Choosing the best relation simply sorts the pairs (n,m) for each individual element

in the pair and picks the best n or m. This can be done by sorting the attributes by

their FD within their own relations, and selecting the attribute with the best FD score

to act as the referential attribute. To compute the FD score, the TANE algorithm by

Huhtala et al. (1999) can be used.

The merging process starts by finding the prime relation. Find the i in FKC which

has the biggest number of true pairings (i.e., ones) in its list for every relation, i.e.,

sort FKC[i] by counting its js for which FKC[i][j] has a pairing. Fix the found i as

the prime relation, then loop through its js and merge iteratively using equi-joins on

the attributes that make the pairing.
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Fig. 15: An example of attribute classification. Four classifiers are trained for four

domain attributes. In this example, C2 returns true for S matching T2. The domain

classifier has been trained with domain data for each attribute.

Classifying attributes. Once the merging process is complete, we have two rela-

tions, V′ and T′. we can classify the attributes of the relations. Suppose our do-

main schema D has n attributes. Train n binary classifiers, one for each attribute.

Give each attribute A ∈ V′ ∪ T′ to every classifier. If any classifier returns 1 for an

attribute, map that attribute to the domain schema attribute corresponding to the

classifier. If multiple attributes are assigned 1, currently the algorithm relies on user

input to choose the best attribute. This could be improved by refining the classifica-

tion algorithms and using better features, but this is left as an obvious improvement.

The procedure of attribute classification is illustrated in Figure 15 and also shown in

Algorithm 4.

This concludes the architectural overview of fleet inference. In this chapter, we pre-

sented thorough design and architectural features of the implementation itself, and

demonstrated some of the details using pseudo-code algorithms. We now move to

discussing feature selection, and how the classification algorithms we mentioned

work in practice.

3.3 Feature Selection

Choosing good features is decidedly an important part of creating a classifier, in fact,

according to Hastie, Tibshirani, and Friedman (2001), it is arguably more important

than the choice of a classifier. In general, a feature is any kind of knowledge that
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pertains to a specific learnable concept. In spam classification, an example feature

might be whether a sample document contains questionable words.

Obviously, selecting the actual features that are used in classification is a crucial

step. A classification problem might have a vast number of features, yet only some

of these are relevant. In fact, ”the selection of relevant features, and the elimination

of irrelevant ones, is one of the central problems in machine learning” (Blum and

Langley 1997). There are various methods for selecting the best features for any

given problem. Guyon and Elisseeff (2003) provide a useful check list to find out

what features to select, the first in which states that if one has domain knowledge,

one can construct features in an ad hoc manner.

Conveniently, a part of our classification problem is domain-bound: attribute clas-

sification. We can construct good features just by looking at the target data to which

we are mapping. Join inference, on the other hand, is a more generic problem: it is

not data centric per se. The rules of join inference can be applied to any data set—

while attribute classification, in the scope of this thesis, are exclusively rooted in the

routing context.

Thus, for join inference, we have selected features that have been used by others in

literature, and developed some our own, by using example domain data. An im-

portant point is that the domain data used to test join inference is only exemplative

in natural. None of the features can be construed reliably based on simple observa-

tions of the data. As such, we have rely on the empirical knowledge built by others,

and using our own judgment when constructing new ones.

3.3.1 Join Inference

Features in join inference exhibit a notable lack of domain knowledge. Domain

knowledge, in short, is knowledge about the data or its environment. As mentioned

in the previous paragraph, attribute classification is directly dependant on domain

knowledge, whereas join inference is not. This is because with attributes we are

trying to look specific correspondences to our own domain data, but in join infer-
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ence, the structure and contents of the relations is unknown. The influential paper

by Acar and Motro (2009) underlines the fact that with schemaless data there is no

prior information on the domain.

While our problem is decidedly in a highly specialised context, wherein domain-

based information is abundant, we similarly lack any domain knowledge of the

structure and contents on real vehicle routing problems. With real we mean prob-

lems that are based on actual real-world transportation problems, not problems

that are relevant only in academic contexts. We should be making some educated

guesses about the data, but we have chosen to remain domain-agnostic. This is be-

cause we do not want to construct heuristics or hypotheses by ourselves. I believe

that by letting an algorithm construct inference rules, hypotheses, and heuristics,

the process results in an methodology that is more efficient, more precise and most

of all, more practical.

The domain agnostic approach is a perfect justification for a machine learning ap-

proach. Consider the fact that constructing inference rules from data first of all re-

quires that data. I have tried to mitigate the ramifications of this issue by using large

relational data sets to train the learning algorithms. Secondly, machine learning

algorithms have been expressly constructed with this goal in mind—constructing

hypotheses, as we learned in Section 2.5.

Operating method used by our machine learning approach is simple. Train a clas-

sification algorithm on big relational data sets, which results into a hypothesis of

what primary key–foreign key relations look like. After training is complete, use

the classifier in our problem domain. For our purposes, we trained the classifier on

the HetRec’11 Last.fm, IMDB and Delicio.us data sets (Cantador, Brusilovsky, and

Kuflik 2011).

This approach was also selected by Rostin et al. (2009) for foreign key discovery.

Their method was a decision-tree based classifier trained on six different data sets.

The method was then cross-validated on the other data sets. We perform a similar

measurement of join inference, where we perform LOOCV on the three data sets.
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Chosen features. The features chosen for join inference are listed below. Each fea-

ture has an literature origin labeled A for Zhang et al. (2010), B for Rostin et al.

(2009), C for Acar and Motro (2009). Items prefixed with a star (?) were modified

by me. The appropriate origins are listed in parentheses, with their source names

appearing after the colon. The features marked with † are not implemented in the

presented version.

Notes. In Rostin et al. (2009), feature 4, unary dependence, is split into two features,

MultiDependent (F4), which is the number of times the values of an attribute appear

in the set of all IND value sets, i.e., decreasing its chance of being a FKC; its antag-

onist, MultiReferenced (F5), which counts how many times the values are referenced

in the set of all IND value sets, increasing its chance to be a PK.

0. Domain compatibility. Attributes must have a similar data domain, i.e., in

programmatical terms, this means that their data types must be an exact match.

1. Cardinality. A FKC should consist mostly of distinct values. In other words,

it should contain few if any duplicates. (A, B: F1)

2. Coverage. An inclusion dependency should cover the values of the PK it refers

to. (A, B: F2)

3. Uniqueness. A FKC should not have any FKCs referring to it, i.e., a FKC is

not a PK to another FKC. (A, B: F3)

4. Unary dependence. A FKC should reference only one PK.

5. ? Name similarity. The column names should be similar. This uses string

similarity, A uses exact name matches, B did not specify. (A, B: F6)

6. Length difference. The difference of average lengths of the values as strings

for the PK–FK pairs. (A, B: F7)

7. Completeness. The amount of values in a FK that are not in the PK. (A, B: F8)

8. Typical suffixes. FKC usually end in a suffix that is characteristic of keys,

primary or foreign. Examples include “_ID”, “_KEY”, and so on. (B, F9)

9. Size ratio. Usually, a PK–FK candidate pair has similar approaching ratios. (B,

F10)

Implementations. The features listed above are relatively simple in their own right.
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Most of these features were implemented using the functions provided by the pan-

das (McKinney 2011) toolkit, and NumPy and SciPy (Jones, Oliphant, and Peterson

2001; Oliphant 2007).

We improved on feature 5 using a soft string metric using Damerau–Levenshtein

distance, a combination of Levenshtein distance (Levenshtein 1966), which is based

on edit distance, i.e., the deletion, insertion and substitution of a character; with Dam-

erau transpositions, i.e., swapping two adjacent characters with each other (Damerau

1964). The distance margins used are discussed in Chapter 4. Feature 5 was imple-

mented using Damerau–Levenshtein distances where the cost of deletion is zero. In

other words, terms such as foo and foo_id are considered equal. This is because,

as corroborated by Rostin et al. (2009), PK–FK pairs exhibit shared suffixes such as

“_KEY” or “_ID” (see feature 8). I noted that this suffix was sometimes not present

on the referenced primary key. As a result, the name similarity uses free deletion.

The distance itself is a free parameter of the classification algorithm, thus the classi-

fier itself decides what is an appropriate distance for typical columns.

Features not implemented. There were a couple of features that I did not implement

and are left as future improvements and refinements.

1. † Functional dependency. The strength of the functional dependency for a

PK–FK within their own relation, i.e., for relations R and S and attributes R.A

and S.B, the strength of their FD A→ R and B→ S. (C) Will be implemented

using the TANE partition algorithm from Huhtala et al. (1999).

2. † Information gain. Using information entropy based on the Kullback–Leibler

divergence metric (Kullback and Leibler 1951), this feature measures the infor-

mation gain when two relations are joined using the PK–FK link. Details about

this feature are given below. (C)

3.3.2 Attribute Classification

The features for attributes were built using domain knowledge. Domain knowl-

edge allowed us to construct ad hoc features that closely modelled what we would
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expect as input to a VRS. Since each attribute and its set of tuples are statistically

distributed in one way or the other, the features model their resemblance to actual

data. As Doan, Domingos, and Halevy (2001) suggest, using domain knowledge

in creating schema matching can be helpful. Our aim was not to create a general

purpose attribute classifier, hence we can restrict ourselves to the domain of vehicle

transportation.
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Fig. 16: Sample capacities in our

fleet.

Consider for example a slightly heterogeneous

fleet of vehicles for which the different classes

C = {18,38,60}, where each weight class c ∈ C is

a vehicle’s gross weight in metric tons. Suppose

we have a fleet of 20 vehicles, of which four have

a weight class of 18 tons, eleven of 38 tons, and

five of 60 tons. We know that if we plotted the

data into a histogram, the chart would peak at

x = 38, as Figure 16 shows.

In general, my observations have noted that

fleets tend to have low heterogeneity, because

vehicles fleets, even large ones, tend to consist of

only a handful of different vehicle types. These

could be lorries or articulated lorries with distinct weight limitations, categories,

and types.

Based on this brief domain excerpt, we can infer the following: first, capacity (or in

this case, gross weight) tends to have very few distinct values, and the values are in-

tegers, hence capacity might have variance. Depending on the heterogeneity of the

fleet, capacity distributions may skew to one direction on the x-axis (weight), and

may peak at one point in the distribution, at the most common vehicle weight class,

hence having high kurtosis. Although this sounds speculative, I believe that any dis-

tinctive profiles and shapes of the data can be captured with statistical moments:

mean, variance, kurtosis, and skewness.
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Obviously, it would be counterintuitive to make inferences on such small sample

sizes. Therefore, it is imperative that the training aspect is done with a significant

data volume to maximise reliability and reduce the margin of error of statistical

classification methods. This is the case with statistical moments, the mean, variance,

skewness and kurtosis; our sample size must be big enough for these shape profiles

to be used reliably. The moments allows quantitative evaluation of the shape of

domain data, but the domain data sample must be large enough for its shape profiles

to have any relevance. Another caveat is that these features can only be used with

numerical variables, hence we exclude categorical or string attributes from these

features. To qualify for quantitative measurements we exclude variables that have a

non-numerical data domain or the number of distinct values is 1.

Selected features. The following is a listing of the selected features. Each feature

operates on an attribute and its tuple, therefore, for a relation R and attribute A, the

input of the feature is ΠA(R), if the attribute is sequence-specific.

1. Average word counts. Counts the average number of words in a sequence.

Usually addresses consist of bigrams (two tokens, here, words) in Europe, e.g.,

“Streetname 2”.

2. Average value lengths. Counts the average length of values converted to

strings.

3. Average number of digits. Counts the average number of digits in the se-

quence.

4. Statistical moments. Mean, variance, skewness and kurtosis.

5. Time series. Indicates whether the sequence is a time series. Implemented

by feeding each tuple into a string-to-time parsing function and measuring

whether all of the values in the sequence evaluate to true.

6. Name similarity. Name similarities between two attributes. Implemented us-

ing the Damerau–Levenshtein distance with free deletion.

Implementation. Similarly to the features for join inference, the features here were

implemented using the same libraries (Jones, Oliphant, and Peterson 2001; Oliphant

2007). Features 1-3 are relatively easy to implement, as their implementation con-
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sisted of converting values into strings. For feature 4, which consists of four different

features, we used standard functions in the pandas library. Name similarities were

implemented using Damerau–Levenshtein edit distances.

In summary, this section presented the practical aspects of this thesis. We focused

on describing the different tools and methodologies that were used in building fleet

inference. We used the theoretical knowledge presented in Chapter 2 and built on

existing work to create fleet inference. We now on move to the experimental section,

where we present the experiments and the results, and analyse the performance and

quality of the presented implementation.

“Maybe the only significant difference between a really smart simulation

and a human being was the noise they made when you punched them.”

– Terry Pratchett, The Long Earth

78



4 Experiments & Benchmarks

In this chapter, we test our implementation on real data, and where applicable, com-

pare our results to the ones found in other academic publications. We provide em-

pirical evidence to show that (a) join inference and attribute classification can be eas-

ily done via machine learning (b) their combination, fleet inference, actually works in

practise. The methodologies for proving both points are relatively simple, but they

require different evaluation metrics. The reason for this is that while join inference

and attribute classification have been researched in conjunction and separately. Fleet

inference as a problem is new, and existing methods for solving it are nonexistent.

For join inference, finding comparable benchmarks and training data was not prob-

lematic. We reviewed the literature and used some of the influential papers and

performed tests similar to them. This included finding data sets for which we could

provide comparable results. For attribute classification, the task was harder: as at-

tribute data is heavily domain specific, finding comparable benchmarks proved to

be impossible. This extends to fleet inference: as a new problem, with little data to

draw influence from, we had to resort to synthetic data sets when evaluating the

whole system.

For attribute classification, the experiments relied on synthetic example data that

would in a real situation represent input data for an optimisation problem. The

attribute sets were kept simple, since likely use cases will contain only a relatively

small set of attributes.

This chapter is divided into three sections: training, in which we show how the

learning algorithms were trained; feature selection, where less relevant features

from the training sets are pruned; performance, where we test the classifiers on

actual data and tweak the classifiers using hyperparameter tuning.
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4.1 Training Data

As was discussed previously, classification algorithms depend heavily on the data

used for their training. With larger training sets we can increase their accuracy. This

section details five data sets we used on training the join inference module of fleet

inference, as well as presenting the synthetic data set and case model data that we

used in training attribute classification.

We used different data sets for join inference and attribute classification, as they

are fundamentally two different problems. The data sets used for join inference are

shown in Table 2.

Name Tables Attributes Tuples IND FKC

IMDB 10 37 1.3M 49 11

Last.fm 5 15 334k 11 4

Delicio.us 5 18 1M 6 5

TPC-H 8 61 8.7M 147 11

SCOP 4 11 470K 11 5

Table 2: Description of the data sets used in training of the join inference classifiers.

Join inference. The classifiers trained on the HetRec’11 (Cantador, Brusilovsky, and

Kuflik 2011), TPC-H (Transaction Processing Performance Council 2013), and SCOP

(Conte et al. 2002) data sets. The first three data sets consisted of three database

dumps from the Last.fm, IMDB and Delicio.us websites. The IMDB data set is based

on the MovieLens10M data set, which is a data set of movies combined with links

to their IMDB1 and Rotten Tomatoes2 review websites. The Last.fm dataset is a

dump of users and their tags of favourite artits from the Last.fm website3. Lastly, the

Delicio.us is a data set from the Delicio.us link sharing website (http://www.delicio.

us). The TPC-H is a transaction processing performance benchmark, a synthetic

database used in measuring database performance. We selected it for convenience,

1. http://www.imdb.com
2. http://www.rottentomatoes.com
3. http://last.fm
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as it contained a relatively large number of tuples, tables and FKC. The SCOP dataset

is a protein database, which served as an additional training set.

These data sets were chosen because of their use in other academic publications:

in real world fleet inference, we would combine a multitude of different data sets,

iteratively improving its accuracy. Due to fleet inference being at very early stages,

and the limited amount of available fleet data to train on, we used these data sets to

gain initial insight on the performance of the system.

Testing was conducted using data-set based cross validation: for 5 data sets, train

the classifier on 4 data sets and evaluate its performance on the left out data set.

Actual testing of fleet inference was then used on a synthetic database consisting of

three tables, representing a rudimentary fleet of vehicles.

4.2 Feature Selection

Which one of the features we listed earlier are actually relevant? Which one is more

relevant: column name similarity or value length similarity? Are some of these fea-

tures completely insignificant? Questions like these arise in feature selection, where

the problem is selecting the relevant features of a feature set.

Feature selection (also known as variable selection) has its benefits: reducing the num-

ber of features reduces model complexity and training time, thereby speeding up the

classification process. According to Meinshausen and Bühlmann (2010), it is notably

a difficult problem when the feature space has a high dimensionality. The reason we

incorporate feature selection in this thesis is to study its methods and impact: we can

show that for some of the classifiers, feature selection actually improves its accuracy

(see the next section).

We used feature selection only for join inference, and not for attribute classification.

The reason for this was that attribute classification has a total of N classifiers (for N

attributes), for which the features used are usually a subset of all the attribute classi-

fication features, performing feature selection would not yield anything consistent
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Fig. 17: Feature importances for the four different tree-based classifiers used in join

inference, after training on all data sets. Features ColumnName, MultiReferenced, and

TableSizeRatio were consistently among the most important features. For the en-

semble methods, the blue error bars show a confidence intervals in which 95% of

the estimators’ values are distributed.

or something that we could generalise for all classifiers. The same reason applies for

a per classifier basis: useful individual features are so few in number for each fea-

ture and the total number of features per classification task is already small. We may

consider feature selection for join inference to be extraneous itself for such a small

number (10) of features, hence replicating the same effort for attribute classification

would generate an unneeded amount of work.

But for the rest, the variance was too broad and the importances non-applicable. As

such, feature selection is only done for join inference, and for attribute classification
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Method RLR Anova χ2

Coverage

ColumnName x x x

DistinctValues x

MultiDependent x x x

MultiReferenced

DependentAndReferenced

TableSizeRatio x x

OutOfRange x x

ValueLengthDiff x

Table 3: Feature selection for all features. For Anova F-values and χ2 we selected

the K best features.

it is omitted. It should be noted that a quick observation of a set of eight attributes in

the target domain produced a heightened importance for attribute name similarity,

but other features were not as consistent.

For join inference, we can begin at looking at the feature importances as a visual

representation reported by each classifier trained on all data sets in Figure 17. For

decision trees, it seems that only MultiRef and ColumnName trump all others; for forest-

based ensemble methods MultiDep, DepAndRef, Cardinality and OutOfRange are impor-

tant too. Gradient boosting reports a mixture of the two models, whereas AdaBoost

ranks all methods rather equally.

Feature selection for join inference was done with three different methods: selecting

k best features (where k = 4) using either χ2 ranking or Anova F-value based rank-

ing, and randomised logistic regression (Meinshausen and Bühlmann 2010) (RLR). RLR

is an effective method for sparse features in particular, that is, features only a small

subset of which is important. As we can see from Figure 17 and Table 3 that for

most classification methods, only up to four features are most discriminating. The

results of randomised logistic regression can be seen in Table 3. The tree methods of
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Test set DT GTB AdaBoost ExtraTrees RF

Last.fm 0.62 0.62 0.62 0.62 0.62

IMDB 0.47 0.47 0.47 0.85 0.84

Delicio.us 1.0 1.0 1.0 1.0 1.0

SCOP 0.77 0.77 0.77 0.75 0.77

TPC-H 0.65 0.65 0.65 0.60 0.65

Average 0.7 0.7 0.7 0.76 0.77

Table 4: F1 measures for cross validated data sets in join inference. The data set

in the leftmost column is the test set and the training sets are all the other data sets

except this set. DT = Decision Trees, GTB = Gradient Tree Boosting, RF = Random

Forests. As can be seen, all classifiers predicted all results correctly for the Delicio.us

data set, while Random Forests came as the most accurate predictor.

the scikit-learn library also provide a built-in feature analysis. The built-in feature

selection algorithms were used in obtaining the results of Table 3 and Figure 17.

4.3 Performance

Measuring the performance of the join inference classifier was done by testing its F1

measures using cross-validated data sets. Because training and testing on the same

data sets can be misleading (see Subsection 2.5.2 and Subsection 2.5.3), using the

example benchmarks of Rostin et al. (2009), for training, the data was split using a

leave-one-out cross-validation. This means that when evaluating the performance of

each algorithm, for total of N data sets, we select N − 1 data sets for training and

test it on the left out data set. In other words, the benchmark loops over each data

set and excludes that data set from training at each step.

The F1 measure is the harmonic mean of precision and recall: precision is the number

of true positives divided by the sum of true positives and false positives, i.e., the

fraction indicating the quantity of true positives out of all positives; recall is the
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number of true positives divided by the sum of true positives and false negatives,

i.e., the number of true positives that could have been retrieved. To paraphrase,

precision is ability to classify correctly across its findings, recall is the ability to find

correct classifications.

Labeling the number of true positives with TP, false positives with FP; true nega-

tives with TN and false negatives as FN, precision is defined as

precision =
TP

TP + FP

and recall is given by

recall =
TP

TP + FN
.

The F1 measure is calculated as the harmonic mean:

F1 = 2
precision ∗ recall
precision + recall

.

Evaluating the algorithm using F1 measures provides insight on its ability to gener-

alise. The F1 measure has a maximum at 1 and a minimum at 0, when the algorithm

is at its best or at its worst, respectively. We can observe the effect on F1 measures

when tuning an algorithm by adjusting its set of parameters θ. This is a form of

hyperparameter tuning or as previously mentioned, more broadly, and more com-

monly, referred to as model selection.

4.3.1 Model Selection: Hyperparameter tuning

An algorithm can be measured by its generalisation performance, which is deter-

mined by its ability to predict correctly on independent data (Hastie, Tibshirani,

and Friedman 2001). This practise is called model selection, which is the general se-

lection of a learning model based on its generalisation quality. The techniques and

common methods used in model selection have been elaborated in Subsection 2.5.3.

Tuning the free parameter set θ of a learning algorithm greatly adjusts the learn-

ing algorithm itself, consequently, the prediction outcome is adjusted as well. To

illustrate, let us consider decision trees. When limited to a tree depth of one, a de-

cision tree will be prone to misclassification. Conversely, not limiting this depth at
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Fig. 18: Decision tree depth. Measurements of the effects of decision tree depth,

where depth is x = [1,15]. (a) measures the effects on the cross-validated scores as

seen previously, where each data set is tested on and all the others are trained on.

In (b), we measure the general training versus test error by training on all data sets

using cross-validation where 20% of the tuples of the data set is tested on and the

remaining 80% acts as training data.

all might result into overfitting and similarly poor generalisation. With a huge data

set, the tree might reproduce itself at one node and continue this an infinite amount

of times. This applies more generally to most learning algorithms that have some

free parameters. For decision trees a common parameter, as mentioned above, the

tree depth; for gradient boosting it might be the subsample size f and for AdaBoost

the number of training rounds.

The effects of tuning the tree depth and measuring generalisation capability via F1

measures can be seen in Figure 18. It can be seen that the F1 measures of decision

tree stabilises after tree depth d of 10. Model selection by using the built-in model

selection methods of scikit-learn and using their default values for all algorithms

where available. Only for decision tree learning did we see some notable variation
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4.4 Analysis

This section is about comparing fleet inference to other similar methods and evalu-

ating its performance based on its competition. The next section revolves around a

qualitative analysis on its ability to solve the problem it was meant to; this section

gives an indicator whether the technologies that form fleet inference could compete

with other similar problems.

avg_len <= 14.8320
error = 0.235537190083

samples = 22
value = [ 19.   3.]

error = 0.0000
samples = 19

value = [ 19.   0.]

error = 0.0000
samples = 3

value = [ 0.  3.]

Fig. 19: Decision tree for the location at-

tribute. The learned tree found only name

difference to be significantly discriminat-

ing for task locations.

Finding comparable benchmarks and

experiments proved to be difficult. This

was due to the to the high domain speci-

ficity of our problem. Anything resem-

bling fleet inference was not found in

an extensive literature review, therefore,

we omit any quantitative analysis of the

whole method, and instead focus on

evaluating its parts, join inference and

attribute classification. For join infer-

ence, we found quite a few attempts at

tackling the problem, which belatedly

proved to be a lot better than our im-

plementation. The comparisons can be

found below.

Attribute classification showed similar difficulty: the domain specific nature of fleet

inference removes any ability to produce any general results. Some example tech-

niques were retrieved from influential work in schema matching, e.g., Sekhavat and

Parsons (2012) and Naumann et al. (2002), but no comparable results were found.

Comparison of join inference. Evaluating the join inference classifier shows that

its performance is sub par compared to the work of Rostin et al. (2009), who show

consistent F1 measures of 1 across all cross-validated data sets. Their method relied

on machine learning, the problem was to correctly classify IND into FKC, which join
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inference is very similar to. Their classification method was a modified version of

the C4.5 decision trees. Their reported learned decision tree was very similar to ours

and feature selection also showed the same features, yet our results show that using

similar experiment methods produced worse results. We used some, but not all, of

the data sets, this could have affected the outcome.

domain_compat <= 0.5000
error = 0.444444444444

samples = 12
value = [ 8.  4.]

error = 0.0000
samples = 7

value = [ 7.  0.]

kurt <= 3.0270
error = 0.32
samples = 5

value = [ 1.  4.]

error = 0.0000
samples = 4

value = [ 0.  4.]

error = 0.0000
samples = 1

value = [ 1.  0.]

Fig. 20: Decision tree for the capacity at-

tribute, showing how leaves were created

for domain compatibility and kurtosis.

Similarly, comparing the results to Acar

and Motro (2009) shows that their algo-

rithmic approach is more reliable and

scalable compared to ours. Machine

learning methods always rely on train-

ing, the method used by Acar and

Motro does not require any—which can

be advantageous in some cases.

Another algorithmic approach is by

Zhang et al. (2010), who produce a

method called Randomness that detects

single and multi-column foreign keys.

Their performance also trumps the pre-

sented methodology by join inference.

Their method proves effective and also

surpasses our implementation of join

inference due to its ability to detect multi-column foreign keys. It begs the ques-

tion of why not using their method. Thus far, the algorithmic solutions we have

encountered seem to satisfy our needs, when considering performance. The answer

is that I deliberately chose machine learning methods as an item of study, instead

of using the best method available. Hence the implementation of, and benchmark

comparisons, to the methods described by Zhang et al. (2010) and Acar and Motro

(2009) were been omitted intentionally.

Thus, it can be safely said, that our implementation of join inference does not match

that of the state-of-the-art. However, it should be noted that our purpose was not to
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implement the best join inference method that could compete with the other prob-

lems, but to implement a robust, working method that could infer relationships

within data sets, in order to speed up the element of input processing.

Improvements on join inference could be reached in a multitude of ways: (a) creat-

ing new, better features and developing existing ones (b) finding more and adding

more suitable data sets, based on the problem domain, and (c) increasing the num-

ber of data sets and fine-tuning the algorithms with hyperparameter tuning even

further to produce an even better classifier . Although item (b) carries the risk of

overfitting (training the classifier too much will reduce its ability to generalise!), the

other items provide clear points to work upon.

Attribute classification comparisons. Attribute classification itself was tricky to

combine as comparable work did not exist at the time of writing. What is more, test-

ing had to be done with synthetic data that, to a degree, closely resemble real-world

transportation data. For testing purposes entirely, we implemented two features:

capacity and name similarity, based on the previously developed attributes. Train-

ing the two classifiers on these two data sets produced the decision trees seen in

Figure 19 and Figure 20.

Testing the implementation. For fleet inference, as I was not aware of any existing

solutions similar to it, no comparative testing was produced. Therefore, a simple

implementation test case that can offer a glance into how fleet inference functions

once implemented follows.

Using a synthetic case data set, we constructed the fleet inference module using

two sets of classifiers, for join inference and attribute classification respectively. We

built the join inference classifier by using all the testing data presented earlier (all

five data sets) to generate one classifier. The attribute classification module was

built using the two attribute classifiers (location and capacity) presented above. The

synthetic data set was external in the sense that its contents did not intersect with

any of the training data. Once the case data was constructed, it was split into its

corresponding vehicle and task subsets. For vehicles, the fleet inference classifier was
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able to correctly to link two tables referenced by a primary–foreign key relation, and

was able to locate the column for the capacity attribute. For tasks, the same happened

with locations.

The above describes but the simplest use case of fleet inference and is rather simple.

Join inference classification was robust until a third table was added, after which it

stumbled on too many primary–foreign key relations and couldn’t accurately clas-

sify INDs from FKCs. Upon creating a third table, attribute classification did not

yield any false positives but no additional true negatives were found despite adding

a corresponding capacity column for the third task table.

It is apparent that fleet inference shows promise, but it falls short on its robust-

ness. In the upcoming section we will discuss the shortcomings and strengths from

a more holistic perspective: while these comparisons provide great insight in the

defects and strengths of join inference, I maintain it not be the final word, as the

implementation of fleet inference should be analysed as a whole.

“When Rutherford showed that atoms were mostly empty space, did the

ground become any less solid?”

– Greg Egan, Quarantine (1992)

“One should never mistake pattern. . . for meaning.”

– Iain M. Banks, The Hydrogen Sonata (2012)
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5 Conclusion

This thesis presented a way to automatically discover references between a set of

column-oriented documents, and a way to automatically recognize the nature of

each column within those documents to match a particular target domain. In this

case the domain was the vehicle routing problem, for which a certain set of columns

is required, e.g., vehicle capacities and task locations. The first part, the discovery

of references, is called join inference; the second part, the discovery of attribute na-

tures, is called attribute classification.

The two-part method was implemented using machine learning classifiers. The idea

of the presented solution is to train an algorithm to recognize references between

or how to recognize attributes from a certain domain. The first part is called join

inference was mostly implemented using knowledge gained from existing literature

but for the latter knowledge was scant and thus the method was implemented with

a similar approach to the first.

What stands out from this thesis is the proper characterisation of the fleet infer-

ence problem and its subproblems, notably that of join inference. The formulation

was built from scratch by assimilating pieces of existing formulations, but the thesis

provides, for the first time, a comprehensive characterisation of the join inference

problem, using basic relational algebra as a foundation.

The performance of the join inference portion did not measure to existing research.

There are multiple possible culprits for this. The first is the selection of proper train-

ing data, as machine learning algorithms are only as good as their training data sets.

I showed that in comparison to existing methods of join inference, my presented

solution did not attain a similar level of accuracy. For attribute classification such

a measurement was not possible to conduct because I found no existing work with

that particular application.

As a whole, however, the merits of this work as evidenced by the results show

promise. The principal point I will state as the contribution of this thesis is this:
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using fleet inference for speeding up VRP data processing works. By improving

the algorithms, choosing the right approach—machine learning or heuristic—will

almost certainly make the process more accurate. Building on this work will pro-

duce an accurate data integration system for optimisation systems—the data need

not be for VRP. Theoretically, any data domain model can be constructed, as long as

the source data is somehow relational.

As such, the presented work will hopefully serve as a basis for implementing future

data processing elements inside optimisation systems. The important caveats iden-

tified at the end of Chapter 4, to mention a few, a proper training of the algorithms

and selecting quality data sets, should be taken into account when building such a

system based on machine learning.

When it comes to implementation, it would seem that, based on literature, in some

cases it is more viable to not use machine learning methods for implementing join

inference. We saw that some existing algorithms were capable of solving the prob-

lem heuristically with near-perfect accuracy. However, the strengths of machine

learning lie in its robust nature and ability to produce heuristics from training data.

Another factor that had an effect on the quality of the presented solution was its

considerable breadth and difficulty. As far as I know, there have been no attempts at

solving data importing issues in optimisation softwares in this manner, hence much

of the theoretical work had to be assembled from existing pieces. Obtaining real-

world testing sets for attribute classification proved to be impractical. However,

the theoretical foundation, along with the unpolished implementation, are the main

contributions of this thesis.

The future development would undoubtedly consist of amending the implementa-

tion, e.g., by improving its training algorithms, or to consider changing its method-

ology from learning-based to heuristic, developing tests to determine the robust-

ness of said algorithms and creating ways of generating synthetic testing sets for

the attribute classification algorithms. Obtaining working data sets from the target

domain, and showing how to integrate it into an existing optimisation framework,
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would definitely provide insight on whether the solution is able to solve the prob-

lem effectively, and would definitely be required to ensure the capabilities of the

proposed data import scheme.

To conclude, the presented work is a fundamentally a proof-of-concept. Now a pos-

sibility exists for operations researchers to spend less time in curating data in opti-

misation scenarios. This work lays the groundwork for inferring the optimisation

model. When data parsing and problem modelling are unified into one, an immense

amount of time could be saved if optimisation models, i.e., the problem types and

scenarios, could be recognized from the data. Instead of carefully constructing com-

plex formulas, constraints could be inferred from the data, and the problem type

could be recognized from source data. The first step of recognizing source data is

understanding its structure and purpose, and to this end, we present fleet inference.
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