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ABSTRACT

Ewald summation, which has become the de facto standard for computing electrostatic interactions in biomolecular

simulations, formally requires that the simulation box is neutral. For non-neutral systems the Ewald algorithm

implicitly introduces a uniform background charge distribution that effectively neutralizes the simulation box.

Because a uniform distribution of counter charges typically deviates from the spatial distribution of counterions in

real systems, artifacts may arise, in particular in systems with an inhomogeneous dielectric constant. Here we derive

an analytical expression for the effect of using an implicit background charge instead of explicit counterions, on

the chemical potential of ions in heterogeneous systems, which (i) provides a quantitative criterium for deciding if

the background charge offers an acceptable trade-off between artifacts arising from sampling problems and artifacts

arising from the homogeneous background charge distribution; and (ii) can be used to correct this artifact in

certain cases. Because the artifact is due to the difference in charge density between the non-neutral system with a

uniform neutralizing background charge and the real neutral system with a physically correct distribution of explicit

counterions, our model quantifies the artifact in terms of this difference. We show that for inhomogeneous systems,

such as proteins and membranes in water, the artifact manifests itself by an overstabilization of ions inside the lower

dielectric by tens to even hundreds kilojoules per mole. We have tested the accuracy of our model in molecular

dynamics simulations and found that the error in the calculated free energy for moving a test charge from water



into a hexadecane/water slab at different net charges of the system and different simulation box sizes, is correctly

predicted by the model, confirming that the incorrect distribution of counter charges in the simulation box is solely

responsible for the errors in the PMFs.
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Introduction

Molecular dynamics (MD) simulations have come of age. Since the first applications of MD on protein

systems more than three decades ago,1,2 advances in computer power, algorithmic developments and

improvements in the accuracy of the applied interaction functions have established MD as an important

predictive technique to study dynamic processes at atomic resolution.3,4 An important improvement

in accuracy is achieved by the use of lattice summation methods for the evaluation of the Coulombic

interactions in simulation boxes subject to periodic boundary conditions. In such approaches the Coulomb

interactions between all pairs of charged particles are accounted for, including interactions between the

charges in the central box and their periodic images,

V =
1

2

N∑
i,j=1

∑
n∈Z3

′ qiqj
rij,n

, (1)

where we used Gaussian units, as in the remainder of this article. Here N is the number of charged

particles in the central simulation box, n = (nx, ny, nz) is the box index vector. The prime indicates that

if i = j the term n = 0 should be omitted. The distance rij,n is the real distance between the charges and

not the distance to the nearest periodic image. Due to the long-range nature of the Coulomb interaction,

this sum is only conditionally convergent,5 and it converges very slowly. By using the decomposition

1/r = erfc(αr)/r + erf(αr)/r, the Ewald summation speeds up the convergence by transforming the

slowly converging series (1) into a short-range term that converges quickly in real space, a long-range

smoothly varying term that converges quickly in reciprocal space, and a correction term:6–8

V = Vdir + Vrec + V0 (2)

Vdir =
1

2

N∑
i,j=1

∑
n∈Z3

′qiqj
erfc(α rij,n)

rij,n
(3)

Vrec =
1

2Vbox

∑
k 6=0

4π

k2
e−k

2/4α2 |ρ̃(k)|2 (4)

V0 = − α√
π

N∑
i=1

q2i , (5)
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where Vbox is the volume of the unit cell, α the Ewald splitting parameter that determines the relative

contributions of the direct and reciprocal sums, and k = (kx, ky, kz) a vector in Fourier space. The Fourier

transform of the real-space charge density ρ(r) =
∑N

i=1 qiδ(r− ri) is given by

ρ̃(k) =

∫
Vbox

dr ρ(r)e−ik·r =

N∑
i=1

qi e
−ik·ri . (6)

Here, we only consider the case of so-called tinfoil boundary conditions, that is, our periodic lattice is

surrounded by a conducting medium. Otherwise, also a correction term for the box dipole would be

required.9. Although originally introduced as a means to compute the energy of a infinite ionic crystal,6

the Ewald technique is commonly used for simulations of non-crystalline systems as well.

If the real and reciprocal sums are sufficiently converged the electrostatic energy is independent of α

for neutral simulation boxes. If the simulation box is not neutral, an additional correction term is required

to guarantee that the electrostatic energy does not dependent on the choice of α, which is discussed below.

In practice both sums are truncated such that the overall accuracy is below a given threshold. If, on the

one hand, α is chosen such that the real space contribution vanishes at half the simulation box length,

the direct sum includes all minimum image pairs and scales as N2. In this situation, the number of terms

needed in the reciprocal sum is of order N . If, on the other hand, α is chosen such that the real-space

contribution vanishes at a pre-defined cut-off, which is typically much shorter than half the box length,

the direct sum is of order N , but now the reciprocal sum is of order N2. The optimal scaling, which

can be achieved by varying α, is of order N
3
2 ,10 which precludes the application of the standard Ewald

approach in simulations of large systems. As a consequence, wide-spread use of the Ewald summation

technique had to await the development of more efficient grid-based approaches with N lnN scaling, such

as the particle-particle-particle-mesh (PPPM),11 particle-mesh (PME),12 smooth particle-mesh Ewald

(SPME),13 or Fast Fourier Poission methods.14 Although originally developed for point charges, these

methods have since then been extended to treat also point dipoles,15 higher order multipoles,16 continuous

charge distributions and quantum mechanics/molecular mechanics (QM/MM) potentials.17,18 In addition,

alternative approaches for treating long range electrostatic interactions in molecular simulations have been

developed, such as tree code,19 fast multipole,20 or isotropic sum methods.21 As the Ewald summation

has remained the most popular method in biomolecular simulations, we have only analysed artifacts
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associated with this method. All simulations in this work were conducted with the SPME method for

computational efficiency, but the conclusions are valid for all variants of the Ewald technique.

Although the Ewald approach formally requires the system to be charge neutral, it can be applied to

a charged system as well. As directly follows from eq. 6, the k = 0 component of the density is equal to

the sum of the charges in the simulation box:

ρ̃(k = 0) =

N∑
i=0

qi (7)

Leaving this term out upon back transformation causes a uniform shift in the (real-space) charge density:

ρ′(r) = ρ(r)−
N∑
i=0

qi/Vbox (8)

Thus, if the total charge is non-zero, the omission of the k = 0 term introduces a uniform background

(BG) charge density ρBG = −
∑

i qi/Vbox in the box that effectively neutralizes the system. In that case,

also a correction is required to account for interactions between the point charges and the background

charge in the real space sum.22 The latter is achieved by shifting the electrostatic energy (eq. 2) by a

constant that depends on the Ewald splitting parameter:

V cor
n = −

π(
∑

i qi)
2

2α2Vbox
(9)

such that when averaged over the box volume, the Ewald potential is zero. This correction also ensures

that the potential energy of the charges system becomes independent of a specific choice for α.

Because the background charge is uniformly distributed, charged particles do not experience a direct

gradient. The background charge has an effect on the energy and pressure, but these artifacts can be

corrected in homogeneous systems, either on-the-fly or a posteriori.23,24 Furthermore, it was shown that

accurate hydration free energies of ions require only corrections for the finite volume of the ion and for

interactions with the ion’s periodic images and the background charge distribution22,25–32. It may thus

seem that for a homogeneous system, the uniform background charge reflects a fully converged distribution

of counterions and therefore offers a realistic and desirable setup. Indeed, several simulation studies have

been reported in which the system was not neutralized by adding a suitable number of ions with opposite
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charge, but with the uniform background charge instead. In some cases the use of the background charge

distribution to neutralize the system may even be essential, as for instance (i) when calculating absolute

solvation free energies of charged species by means of free energy perturbation techniques, (ii) if the

ion parameters are not compatible with the protein or lipid forcefield,33 or (iii) if the ion distribution

converges too slowly.

The practice of neutralizing charged systems by the implicit background charge has not been limited

to homogeneous systems with a single dielectric, but also heterogenous systems with a non-homogeneous

dielectric constant, such as lipid bilayers in water have been simulated this way.33 However, for systems

with a non-homogeneous dielectric constant, a uniformly distributed counter charge density is unphysical,

because in reality the counter ions would be found mostly inside the higher dielectric. Therefore, in con-

trast to homogeneous systems, artifacts may arise if a uniform background charge is used to neutralize the

system. To decide whether also for non-homogeneous systems the background charge offers a reasonable

trade-off between sampling problems and accuracy, we have investigated the distribution of a charged

particle in non-neutral inhomogeneous systems and compared the distributions to the situation in which

explicit ions were added to neutralize these systems. As the partitioning of charges affects many impor-

tant properties, such as protein stability, binding free energies or pKa’s, we consider the partitioning of

ions a crucial test for the validity of using a background charge to neutralize a system in MD simulations.

In the first part of this work we introduce a theoretical model that quantifies the effect of a uniform

background charge on the distribution of a test charge in a non-neutral heterogeneous system. The model,

which is based on an analytical solution of the Poisson equation, demonstrates that the background charge

may artificially cause the charged particle to favor the lower dielectric. The model can also quantitatively

predict the effect of this artifact in realistic simulation systems, such as solvated lipid bilayers and proteins.

In the second part, we tested the model with atomistic MD simulations. In these simulations we have

computed potentials of mean force (or free-energy profiles) associated with moving a charged particle from

water with a high dielectric into a hexadecane slab with a low dielectric, using different numbers of positive

and negative ions in the simulation boxes to create a net overal charge. The results of these simulations

show that the uniform background charge distribution artificially changes the potential of mean force

and that our theoretical model correctly quantifies this artifact. We have performed thermodynamic

integration as well in order to validate this observation. Our simulations furthermore confirm that the
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artifact is not due to a direct interaction of the test particle with the background charge, but due to an

incorrect distribution of the charge in the box. Because the error in the partitioning of charged particles

can be up to tens or even hundreds of kilojoules per mole, we recommend to neutralize the simulation box

with explicit ions. We realize that the latter may not always be possible, for instance if the total charge

of the system changes during the simulation, or if sampling the ions is computationally prohibitive. In

these cases, however, our model not only provides a quantitative criterium to decide whether using the

background is reasonable, but also offers a means to correct for the artifacts a posteriori.

Methods

Potentials of Mean Force (PMF) for moving a test particle from water into a hexadecane slab were

computed using the technique of umbrella sampling.34 For that purpose, a hexadecane/water simulation

system box was taken from previous research,35 which contained 80 n-hexadecane and 1104 TIP4P water

molecules36 (Figure 1A). The system was equilibrated for 5ns and simulated for another 15 ns under

equilibrium conditions. In order to investigate the effect of the box size of a non-neutral system, the

hexadecane/water box was extended in z-direction (perpendicular to the hexadecane layer) and filled

with additional water, yielding systems containing 2348 and 4175 water molecules (Figures 1B/C). These

systems were equilibrated for another 500 ps. The hexadecane molecules were modeled with the aliphatic

atom types of the Berger et al. lipid force field.37 For the test particle we used a potassium ion with e/4

charge (σ = 0.49463 nm, ε = 1.37234× 10−3 kJ/mol). The fractional charge was chosen to avoid that the

ions drags water molecules into the hexadecane slab, as frequently occurs for ions with integer charge.

Such dragging of water molecules may lead to very slowly converging PMFs.

We used two approaches to control the uniform background charge density. In the first approach,

we used the smallest simulation system 1A and varied the number of ions. In total four PMFs were

computed:

(i) with one Na+Cl− and neutralized with a counterion of −e/4 (denoted hex-neutral, total system

charge Q = 0);

(ii) with one Cl− ion water (hex-1Cl, Q = −0.75e);

(iii) with one Na+ ion (hex-1Na, Q = 1.25e); and
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Figure 1: (A) The hexadecane/water simulation system. The probe particle of charge +e/4 is shown as a green sphere. (B/C)
Larger hexadecane/water simulation systems

(iv) with two Na+ ions (hex-2Na, Q = 2.25e).

In addition, we also checked the influence of the spatial distribution of the counter charge distribution

by:

(a) mimicking the uniform background charge by adding small partial charges on all hexadecane and

water atoms in the system, compensating the total net charge and thus creating a neutral system.

For this purpose, the partial charges of all hexadecane and water atoms were changed by δqhex =

−Q/(Vboxρhex) and δqw = −Q/(Vboxρw), respectively, where ρhex and ρw denote the atom number

density in the hexadecane and water phase, respectively. Note that this configuration represents an

unphysical situation because counter charge would under realistic conditions not be expected inside

the hexadecane. We refer to this configuration as an explicit uniform background charge.

(b) creating an uniformly distributed counter charge only in the water phase by adding the partial

charge δqw = −Q/Nw to all water atoms, where Nw is the number of water atoms. We refer to this

configuration as an explicit water-only background charge.

6



By modifying the partial charges we change the force field model for the molecules. Although this might

affect several properties, including the dielectric constant, we expect the effects, if any, to be very small,

because the maximum changes in the partial charges amounts to 2 × 10−4e. Furthermore, the perfect

agreement between the simulation with the explicit background charge distribution, either on the all

atoms or on the water atoms only and the corresponding simulations with an implicit background charge

distribution or counterions suggest that the effects are indeed negligible.

In the second approach, we used the box volume to control the density of the background charge. In

these simulations, no additional ions were included, so that the background charge arises solely from the

test particle itself. We varied the box volume by changing the box height (Lz) from 8.8 nm to 13.2 nm

and 19.78 nm (Figures 1A-C). For comparison, we also computed the PMFs after neutralizing the boxes

by adding the counterion with a charge of −e/4.

All simulations were carried out using the Gromacs simulation software.38 Electrostatic interactions

were calculated at every step with the PME method, using a real-space cut-off at 1 nm, a maximum

spacing of 0.12 nm for the fast Fourier transform grid, a fourth-order (cubic) B-spline interpolation scheme,

and tin-foil boundary conditions.12,13 Short-range repulsive and attractive dispersion interactions were

described together by a Lennard-Jones potential, which was cut off at 1.0 nm. The SETTLE39 algorithm

was used to constrain bond lengths and angles of water molecules, and LINCS40 was used to constrain

all other bond lengths, allowing a time step of 2 fs. The temperature was kept constant by coupling the

system to a Nosé-Hoover thermostat (τ=2.5 ps).41,42 In the simulations that were done for comparing the

results of the PMF and TI, the volume was kept constant to facilitate convergence. All other PMFs were

derived using the Parrinello-Rahman pressure coupling scheme which was only applied in the z-direction

(τ=5 ps).43 In simulations containing a counterion of charge −e/4 to neutralize the test particle, the

charge of one randomly selected water molecule was set to −e/4 by adding −e/4 to the oxygen atom.

No atoms were restrained during the simulations (except for the test particle during umbrella samling).

Simulation snapshots were taken at random times from equilibrium simulations, and were subsequently

used as starting configurations for the umbrella sampling simulations.

The hexadecane/water system was divided into 340 sections with a distance of 0.25Å between adjacent

sections. Each section corresponded to one umbrella window. For each umbrella window, the test particle

was inserted into the structure close to the position corresponding to the minimum of the umbrella
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potential. During insertion, a distance of at least 1Å was kept to nearby atoms to ensure a successful energy

minimization. The z-coordinate (membrane normal) of the particle was used as reaction coordinate, where

z = 0 corresponds to the center of mass of all hexadecane atoms. The particle was restrained with an

harmonic umbrella potential (k = 800 kJ/mol/nm2). Umbrella simulations for different box heights were

carried out for 5000 ps, and all other umbrella simulations for 500ps. The first 100 ps of each simulation

was used for equilibration and the rest for analysis. The 340 umbrella histograms were collected from the

simulations and the PMF was computed using a cyclic implementation of the weighted histogram analysis

method (WHAM)44, as implemented in the g wham software45. The statistical uncertainty of the PMFs

were estimated using the Bayesian bootstrap of complete histograms45. That procedure does not require

the calculation of accurate autocorrelation times but considers only complete histograms as independent

data points, yielding a robust error estimate. The 67% confidence levels were typically ∼1.5 kJ/mol and

0.4 kJ/mol based on the 500-ps and 5000-ps simulations, respectively.

Thermodynamic integration (TI) was used to compute the free energy for creating a test ion of charge

e/4 (a) at the center of the hexadecane slab or (b) at the center of the water slab. Accordingly, the

position of the test ion was restrained in z direction during TI simulations (k = 500 kJ mol nm−2). Two

sets of TI simulations were done. In the first set, no counter ion was generated, and the system was

hence neutralized by an implicit background charge. In the second set, the system was kept neutral by

generating a counter charge of −e/4 on the oxygen atom of a randomly chosen water molecule. Apart

from the test ion and, optionally, the counter ion, no other additional ions were present.

TI calculations were conduced in two steps; (i) turn on Lennard-Jones interactions between the test ion

and all other atoms; (ii) turn on the Coulomb interactions. TI was carried out along an alchemical reaction

coordinate λ, where λ = 0 and λ = 1 correspond to the initial (A) and final states (B), respectively. The

potential energy function was linearly interpolated between these states: V (λ) = (1−λ)VA+λVB. Step (i)

and (ii) were decomposed into 64 equally spaced λ-steps, and each λ-step was simulated for 2000 ps. The

volume was kept constant, while all other simulation parameters were chosen as explained above. Free-

energy differences were subsequently computed by integrating 〈∂V/∂λ〉λ from λ = 0 to λ = 1. Here, 〈·〉λ

denotes the average computed from the respective trajectory run at λ, after removing the first 200 ps for

equilibration. Statistical errors for 〈∂V/∂λ〉λ were computed using binning analysis46, which subsequently

yield the error for ∆G via Gaussian error propagation.
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Results

Analytical model for the effect of the charge distribution on the PMF of a test charge

First, we derive an expression to quantify the effect of omitting explicit counterions on the potential of

mean force (PMF) of a single test charge in a model system composed of a high and a low dielectric.

Typical examples in a biological context would be a protein or a lipid bilayer solvated in water. We

considered two situations. In the first situation, the test charge was neutralized by adding explicit ions

inside the higher dielectric. In the second situation, a uniform background charge was used for neutralizing

the system. We varied the position x0 of the test charge and computed the total electrostatic energy of

these systems. Our calculations show that the Poisson equation or, equivalently, Gauss’ law, can be used

to quantify the background charge effect in terms of the difference in charge density between these two

systems. Because Gauss’ law is sufficiently simple, it allows one to gain intuitive insight and to derive

analytic expressions for the background charge effect for simple geometries.

For the charge densities of these two systems we take

ρ1(x; x0) = ρc,1(x) + ρt(x; x0) (10)

ρ2(x; x0) = ρc,2(x) + ρt(x; x0) (11)

Here, the test charge density ρt(x; x0) is localized around x0, and, for a point-like test charge q considered

here, it is given by ρt(x; x0) = qδ3(x − x0). The densities ρc,1(x) and ρc,2(x) denote the counter charge

distributions (including the background charge) that neutralize the systems, so that the total charge of the

box is zero:
∫
Vbox

d3x ρ1,2(x; x0) = 0. Although ρ1,2(x; x0) are kept general in the following calculation,

ρc,1(x) and ρc,2(x) are typically the counter charge density of the implicitly and explicitly neutralized

systems, respectively. Our key approximation is that the counter charge densities ρc,1 and ρc,2 do not

depend on the position (x0) of the test particle. We believe this assumption is valid, because the mobile

charges that adapt to the position of the probe charge are inside the high-dielectric, where such charges

do not build up a strong ionic atmosphere, due to shielding. We also do not consider the presence of

an ionic atmosphere inside the lower dielectric, because of the high free energy penalty for transferring

multiple ions from the higher into the lower dielectric medium. These assumptions are also validated
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below by comparing the result to the computed potentials of mean force (PMFs).

Next, the difference between the two systems in terms of charge density, electrostatic potential, and

potential energy of the test charge is considered. We introduce the charge density difference,

δρ(x) := ρ1(x; x0)− ρ2(x; x0) = ρc,1(x)− ρc,2(x), (12)

which is independent of the test charge position x0. Furthermore, by concentrating on differences between

the two systems, self-interaction effects due to periodicity will cancel, which facilitates the comparison.

The difference between the electrostatic potentials of the two systems is

δΦ(x) := Φ1(x; x0)− Φ2(x; x0). (13)

Using the linearity of the Poisson equation, we can write δΦ(x) as

∇ · [ε(x)∇(δΦ(x))] = −4πδρ(x), (14)

where ε(x) denotes the position-dependent permittivity. The difference in the electrostatic energy per

unit cell between the two systems is

δV (x0) = V1(x0)− V2(x0) (15)

=
1

2

∫
Vbox

d3x
[
ρ1(x; x0)Φ1(x; x0)− ρ2(x; x0)Φ2(x; x0)

]
, (16)

= C +
1

2

∫
Vbox

d3x
[
ρt(x; x0)δΦ(x) + δρ(x)Φt(x; x0)

]
(17)

= C +

∫
Vbox

d3x ρt(x; x0) δΦ(x). (18)

For the second to last equality, eqs. 12 and 13 were used, as well as the linearity of the Poisson equation,

allowing one to introduce the potential Φt(x; x0) generated by the charge density ρt(x; x0). The constant

C is independent of x0 and can therefore not be detected when comparing the PMFs of the two systems.

The two terms in the integral of eq. 17 are equal, as can be shown using eq. 14 and two times integration

by parts.

Equation 18 has important consequences: First, the effect of an implicit background charge, as intro-
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duced by the Ewald equations for a non-neutral system (equations 3 and 9), is determined solely by the

difference in charge densities between a non-neutral system with a neutralizing background charge, and a

net neutral system with a realistic distribution of explicit counterions. Second, the effect on the electro-

static energy in the box (δV (x0)) can be computed from the electrostatic potential (δΦ(x)) generated by

the difference between the two charge distributions (δρ(x); see eq. 14). For a point-charge test particle,

which we considered here, eq. 18 reduces to

δV (x0) = C + q δΦ(x0). (19)

Since we are only interested in the change of electrostatic energy as a function of the position x0 of the

probe particle, the undetermined constant C can be set to a convenient value (see below).

Analytic expressions for slab-like or spherical geometries

Here we provide explicit expressions for eq. 19 for (a) a low-dielectric slab surrounded by water, corre-

sponding to a lipid membrane geometry; and (b) for a low-dielectric sphere in water, resembling a solvated

globular protein or a solvated micelle.

Slab geometry Let Q denote the non-zero total charge of a slab-like model system, including the charge

of the test particle. The slab is oriented in the x-y plane. In model systems 1 and 2, Q is either implicitly

neutralized or explicitly neutralized by counterions, respectively. The explicit counterions are assumed to

be homogeneously distributed in the water phase. The counter charge densities are thus given by

ρc,1(z) = ρBG = −Q/Vbox (20)

ρc,2(z) = −Q/Vw(1−Θ`(z)), (21)

where Vw denotes the volume of the water phase, and Θ`(z) is an indicator function that equals unity in

the low-dielectric and zero in the water phase. The counter charge density difference is

δρ(z) = Q(1−Θ`(z))[V
−1
w − V −1box] + ρBGΘ`(z) (22)
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Figure 2: Effect on electrostatic potential of a unit test charge q = e due a uniform background charge of −e; (A) for two different
lipid membranes (ε = 1); (B) for three spherical protein of different radii R model (see legend, ε = 4); and (C) for a spherical
micelle or oil droplet or different radii R (ε = 1).

Applying Gauss’ law within the low-dielectric slab (of thickness 2d, centered around zc) thus yields

δVslab(z0) = 2πq ρBG [d2 − (z0 − zc)2]/ε`, if |z0 − zc| ≤ d, (23)

corresponding to the text-book equation for the electrostatic potential across a charged slab.47 Here, z0

is the position of the test charge q, and ε` denotes permittivity of the low-dielectric. The undetermined

constant C was chosen such that δVslab(zc ± d) = 0 at the water/hydrophobic interface. Because of

the much higher permittivity of water, δV ≈ 0 in the water phase. To express the energies in units

common for MD simulations, an additional factor of 1/4πε0 must be applied to eq. 23, where ε0 =

5.728× 10−4 e2/(nm kJ/mol) is the vacuum permittivity.

We now apply the above analysis to quantify the effect of omitting explicit counterions in lipid mem-

brane simulations. From eq. 23 we computed δV (x0) for a unit test charge q = e, while assuming a
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total charge of QBG = −1e for the background charge. Figure 2A presents δV (z0) for two common lipid

membrane systems, as computed from eq. 23. Here we considered membranes of pure DMPC or pure

POPE (128 lipid molecules plus 27.5 water molecules per lipid). The thickness 2d of the hydrophobic core

of the DMPC and the POPE membrane equals approximately 3.0 and 4.0 nm, respectively. Compared to

simulations with explicit counter ions, the charge is stabilized by approximately 8 and 12 kJ/mol at the

center of the membrane, respectively. Thus, if (a) multiple non-neutralized ions are present, (b) the test

particle carries multiple unit charges, or (c) a smaller lipid membrane patch is simulated, the stabilization

may readily reach tens or hundreds of kilojoule per mole. Below, we compare the results of the analytical

model to the results of the atomistic PMF calculations.

Spherical geometry Applying the analysis we used above for the slab geometry to a low-dielectric

sphere of radius R solvated in water yields

δVsphere(r0) = 2πqρBG(R2 − r20)/3ε`, if r0 ≤ R, (24)

where r0 is the distance of the test charge from the center of the sphere.

Figures 2B and C present δV (r0) for spherical low-dielectrics of radius R solvated in water, corre-

sponding to a spherical protein (Fig. 2B, ε` = 4) and to a spherical micelle or oil droplet (Fig. 2C,

ε` = 1). The curves were computed following eq. 24, and the three box dimensions were assumed to equal

2R+ 1.5 nm, such that the protein would have a distance of 1.5 nm to the next periodic image. Here, the

effect of the background charge is smaller because of the larger surface-to-volume ratio as compared to a

slab geometry. For the protein, the effect is further reduced by the higher permittivity.

Before we end our discussion of the analytical model, we remark that the expressions derived here to

quantify the artifact of the background charge for a slab and sphere geometry are related to the expressions

proposed by others for correcting solvation free energies of ions in water.22,25,27–30 The difference, however,

between our model and those correction terms is that while the correction terms were derived for a single

ion in a periodic box with a homogeneous dielectric constant (water), we include the inhomogeneity of

the system by using a position dependent dielectric constant.

13
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Figure 3: (A) PMFs of a test particle of charge +e/4 across the hexadecane/water slab. Neutralized system (black) and non-neutral
systems with one Cl− (red), one Na+ (green), and two Na+ ions (blue). (B) PMFs in explicitly neutralized systems. Solid lines:
systems neutralized by altered partial charges of water and hexadecane atoms, corresponding to an explicit uniform background
charge. Dashed lines: systems neutralized by altered partial charges of water atoms only, corresponding to a background charge
only in the water phase.

PMFs for neutral and non-neutral systems

Our analytical model predicts that the main consequence of using an implicit background charge to

neutralize a heterogeneous system is an incorrect partitioning (or distribution) of mobile ions between

high- and low-dielectric phases. To verify if this indeed occurs in MD simulations, we have computed the

PMF for a test particle of charge e/4 (e = |e|) across four hexadecane/water slab systems with varying net

charge. The PMF G(z) is directly related to the partitioning via the Boltzmann factor: exp[−G(z)/kBT ],

where kB and T denote the Boltzmann constant and the temperature, respectively. The total charges of

the simulation box was 0, -0.75e, 1.25e and 2.25e for systems (i)-(iv) (see Methods).

The PMFs for systems (i) to (iv) are shown in Figure 3A. Here, the flat region at |z| > 3 nm corresponds

to bulk water, and |z| < 2 corresponds to positions inside the hexadecane. The PMFs demonstrate that

non-neutralized charges in bulk water have indeed a drastic influence on the distribution of the test charge
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Figure 4: Analytic calculation of the background charge effect on PMFs using Poisson equation. (A) Counter charge density
ρc,1(z) in the system hex-1Na, composed of the explicit Na+ ion in water (|z| > 2 nm) plus the uniform background charge. (A’)
ρc,2(z) in the neutral system hex-neutral, which is non-zero only in the water phase. (A”) Difference δρ(z) of counter charge
density between the system hex-1Na and the system hex-neutral. (B) Potential energy difference δV (z0) between the three non-
neutral systems (see legend) as compared to the neutral system. δV (z0) is plotted as a function of the test charge position z0.
Dashed lines: δV (z0) computed by applying the Poisson equation on δρ(z). Solid lines: Difference between the PMFs of the three
charged systems as compared to the neutral system.

in the hexadecane/water system. In our test system, only two unit charges are sufficient to yield a PMF

with the minimum at z = 0, indicating a preferred position of the test particle at the center of the

hexadecane slab (Figure 3A, blue curve). Comparing the PMFs shows that a charge difference of 1e in

bulk water induces a difference in the PMF by ∼15 kJ/mol. According to eq. 23, the effect will be roughly

four times stronger for a test particle that carries a full unit charge.

Effect of spatial distribution of counter charge

So far, the background charge was a purely mathematical term due to the omission of the k = 0 term

in the Ewald summation. To investigate whether indeed the uniform background charge is responsible

for the observed discrepancies in the PMFs, as well as to rationalize the effect of the implicit background

charge in more intuitive (real-space) terms, we have computed two additional sets of PMFs in which we

introduced an explicit background charge by adding small partial charges to the atoms in the system

(Methods). We considered two situations. In the first, the counter charge is added to all atoms of the

system, whereas in the second situation the counter charge is added to the water molecules only.

The PMFs for the systems with the explicit uniform background charge distributions are shown in
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Figure 3B as solid lines. The PMFs are nearly identical to the PMFs of the non-neutral systems in Figure

3A, demonstrating that non-neutralized ions in the bulk water (Fig. 3A) lead to similar results as an

unphysical uniform distribution of the counter charge (Fig. 3B, solid lines).

In contrast, the PMFs for systems in which an explicit background charge is present only inside the

water phase (Fig. 3B, dashed lines) are essentially identical to the PMF of the neutral system hex-neutral

(Fig. 3B, black). Taken together, the PMFs in figures 3A/B demonstrate that the spatial distribution of

the counter charge (whether it is uniformly distributed over the whole box, or only over the water phase)

has a large influence on the distribution of the charged test particle. In systems with an inhomogeneous

dielectric constant, such as the hexadecane/water slab shown here, the uniform background charge there-

fore represents an unphysical counter charge distribution that causes severe artifacts on the partitioning

of ions in the system.

Agreement with the analytic model

To illustrate the application of eqs. 18 to 23 for our test charge, we show in Figures 4A-A” the charge

density ρc,1(z) and ρc,2(z) for the systems hex-1Na and hex-neutral, respectively, as well as the difference

between these densities, δρ(z). Via double integration of the Poisson equation (14) and using eq. 18,

we computed δV (z0) for a test charge q = e/4 as a function of test particle position z0. Here, we

used a z-dependent permittivity ε(z) = 1 + 79ρw(z)/ρw,bulk, where ρw(z) is the water density obtained

from an equilibrium simulation of the hexadecane/water box and ρw,bulk the density of bulk water (not

shown). This choice for ε(z) accounts for the permittivities of 1 and 80 inside the (non-polarizable)

hexadecane model and inside bulk water, respectively, and it yields a continuous average permittivity at

the hexadecane-water interface due to surface fluctuations. In Fig. 4B we show the computed δV (z0) as

dashed lines for the three charged systems. We note that directly applying the analytic expression for

the slab (eq. 23) yields a very similar result, yet the thickness of 2d of membrane is not very accurately

defined due to fluctuations of the water/hexadecane interface.

For comparison, we also plotted the differences between the each of the PMFs of the three non-neutral

systems and the PMF of the neutral system as solid curves in Fig. 4B. The latter were obtained by

subtracting the black curve from the colored curves in Fig. 3A. The excellent agreement demonstrates

that the Poisson equation applied to δρ(z) correctly predicts the effect of omitting explicit counterions
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Figure 5: Self-interaction of an test charge (A) PMFs for the non-neutralized systems of different box heights Lz of 8.8 nm
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water. Diamond: Free energy difference between hexadecane and water from thermodynamic integration.

on the PMFs.

The effect of the box size and self-interaction of an excess charge

We have not yet considered the situation in which there is only the charged test particle, but no other

charges around. According to the above analysis, we expect that omitting an explicit counterion would

stabilize the charge in the low-dielectric, where the stabilization is proportional to the difference in charge

density δρ(x) with respect to the explicitly neutralized system. Since the uniform density of the back-

ground charge is inversely proportional to the volume of the box, we have used the box volume as a

parameter to control δρ(x). Thus, the three simulation systems contained the same number of hexade-

cane molecules, but different number of water molecules. From a physics point of view, the PMFs for the

three systems should be identical, because the test particle should not be influenced by water molecules

far away from the hexadecane slab.

However, as shown in Figure 5A, the barrier height at the center of the hexadecane slab decreases

with decreasing box size. The difference with respect to the explicitly neutralized system can again be

rationalized by equations 18 and 23: The smaller the box, the higher the density of the background charge

inside the slab and, hence, the stronger the stabilization of the test charge in the low dielectric hexadecane
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∆Gw ∆Ghex ∆∆G

counter ion -54.9(2) -32.8(1) 22.0(2)
background charge -3.97(1) 14.0(1) 18.0(2)

Table 1: Solvation free energies in kJ/mol for the test charge.

slab. Application of eq. 23 for the different box sizes yields δV (z0) of the test particle due to the omission

of a counterion (Fig. 5A, dashed lines). At the center of the membrane, the test particle is spuriously

stabilized by 3.7, 2.4, and 1.6 kJ/mol for the three box sizes, respectively, in good agreement with the

differences between the PMFs. Theses findings demonstrate that the test particle is indeed artificially

stabilized by its own background charge, and that the Poisson equation applied to δρ(r) again predicts

the strength of this effect. Note that since ρBG = −q/Vbox the effect is quadratic in the charge of the

particle. Thus, for a test particle carrying one unit charge instead of e/4, the effect would be 16 times

stronger, causing a stabilizing potential between 26 and 59 kJ/mol.

For comparison, we have also computed the PMFs for the three box sizes with a counter charge −e/4

on one of the water molecules. As shown in Figure 5B the respective PMFs are independent of the box

volume, if the box is neutralized explicitly. Moreover, we have repeated the computation of the PMFs

with an explicit background charge smeared out uniformly only over the water phase, as before. As shown

in Figure 5C, these PMFs are also independent of the box size.

Agreement to thermodynamic integration (TI)

The PMF calculations reported so far did not require to change the total charge of the system during the

simulation. This is in contrast to simulations that aim to compute ionic solvation free energies or pKa

values using, for instance, TI or free-energy perturbation. In such simulations, the system may either be

kept neutral by generating a counter ion, or by relying on the implicit background charge. Generating a

counter ion during TI obviously precludes the direct determination of the absolute solvation free energy

of the sinlge test charge. However, it does allow to compute differences in the chemical potential between

different parts of the simulation system. Employing the implicit background charge, in contrast, allows

the calculation of absolut solvation free energies in homogeneous dielectrics because corrections for the

artifacts are available.22,25,27–30

Here, we tested whether our analytical model holds equally for simulations that involve changing the
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net charge of the system. Using TI, we computed the solvation free energy of the test charge (+e/4)

in the small simulation system. The test charge was either restrained at the center of the water phase

(giving ∆Gw) or at the center of hexadecane slab (giving ∆Ghex). The results are listed in Table 1. When

employing (a) a counter ion or (b) the implicit background charge, TI yields 22.0(2) and 18.0(2) kJ/mol,

respectively (Fig. 5A/B, diamonds), in excellent agreement to the PMFs (Fig. 5A/B, black curves). The

agreement demonstrates that our analytic model is applicable to TI calculations that require a change of

the total net charge.

Discussion

We have derived an expression to quantitatively estimate the artifact due to the implicit background charge

in Ewald simulations. With our model we have addressed the question whether the background charge

offers a realistic alternative for explicit counterions in MD simulations of charged systems. Although

counterions offer a more realistic description, sampling problems associated with counterions have often

been used to justify the use of the background charge instead. However, so far it has been difficult to

predict or correct the effect of the background charge on the results of the simulation, unless a single

ion in a homogeneous box of solvent is considered.22,25,27–30 We found that the background charge affects

the partitioning of charged particles in the simulation box if the system is not homogeneous. The cause

of this artifact is the difference in the charge distribution between the real system, in which the counter

ions populate exclusively the higher dielectric, and the model system, in which the counter charge is

uniformly distributed across the box. We derived an expression that quantifies the artifact in terms of

this difference.

With our analytical expression the effect of omitting explicit counterions can be computed analytically

for simple geometries. The difference in charge density depends on both the total charge and box volume,

as well as the relative volumes and geometries of the different dielectrics. For a typical lipid membrane

simulation system containing 128 lipids plus water, our model predicts that a unit test charge would be

artificially stabilized within the bilayer by ∼10 kJ/mol for each non-neutralized unit charge in the system.

In smaller systems such as the hexadecane/water slab simulated here, or in systems containing many

non-neutralized ions, the artificial stabilization can easily reach tens or even hundreds of kilojoules per
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mole.

Compared to lipid membrane simulations, the impact of the background charge for non-neutral protein

simulations is smaller (i) because of the larger surface to volume ratio, and (ii) because of the higher

permittivity of proteins. For a spherical protein with ε = 4 we estimate that a unit test charge is affected

by 1 to 1.5 kJ/mol at the center of the protein for each non-neutralized unit charge in the system. Our

model thus provides a quantitative criterium for deciding if the background charge offers an acceptable

trade-off between artifacts arising from sampling problems and artifacts arising from the homogeneous

background charge distribution.

Several groups have documented artifacts in simulations using Ewald summation and suggested correc-

tions. Some of these artifacts are due to the periodicity constraint and occur even in neutral systems,48,49

while other artifacts are found only if the system is charged.22,25,27–30 Ions in water are among the best

studied cases and a number of corrections have been derived to correct the results of free energy calcula-

tions using Ewald summation. The first of these corrections removes the so-called self-energy,25 i.e. the

electrostatic interactions of the ion with its own periodic copies and the background charge:

Eself =
1

2

∑
i

q2i ξEw (25)

with ξEw a constant that depends on the box shape and dimension.23 The second correction is a Born

or Poisson-Boltzmann term to represent the missing polarization in a finite and periodic simulation

box.24,26,28,30 The third correction corrects for the finite size of the ion.27,30

After correction, ionic hydration free energies obtained from simulations are in good agreement with

experiment. However, these corrections have been derived only for the situation of a single (small) ion

in water and therefore cannot be applied if the dielectric is not uniform throughout the simulation box.

In addition, none of the correction terms contains an explicit dependency on the position of the charges.

Therefore, including these corrections can only cause a uniform shift of the whole free-energy profile.

Extending the corrections to inhomogeneous systems and including a dependency on the ion’s position is

not straightforward, but should contain terms that are similar to the ones derived here for a point charge

in a low dielectric slab or sphere (eq. 23 and 24, respectively).

Brooks and co-workers have proposed to correct Ewald artifacts in charged systems by subtracting
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the energy of a single particle carrying the total charge of the system and located in the same periodic

box as the complete all-atom system.24 However, since this correction also does not depend on the ion’s

position, it cannot correct for the artifact in our free energy profiles, which we have shown to be strongly

position dependent (eq. 23).

Finally, Morgan and Massi have proposed a scheme to avoid contributions from the self-energy in free

energy calculations that involve changing the charge of the system.50 In this scheme, transformations are

constructed that conserve the norm of the total charge, as opposed to the total charge itself. Indeed,

because the self-energy contributions depend quadratically on the total charge (eq. 25), these contributions

cancel. However, in this approach it is essential to sample a charged system, which can lead to an incorrect

partitioning of charged particles, as we have shown here. Therefore, also in this approach the background

charge will artifically compromise free energy calculations.

The model that we derived here can in principle also be used as a correction to improve the results of

free energy computations that involve changing the charge of a single species inside the lower dielectric

(e.g. protein or membrane), provided that any remaining ions remain inside the higher dielectric. As an

example of the latter, we consider calculating the deprotonation free energy of an amino acid inside a

protein by means of thermodynamic integration. The artificial stabilization of the deprotonated amino

acid due to the background charge, that will overestimate the stability of the deprotonated state, can be

estimated with eq. 24 and subtracted from the final result. Alternatively, the sampling can be corrected

if the analytical expressions for the excess energy due to the background charge are used to reweigh each

configuration in an MD trajectory by a corrected Boltzmann factor.32

Our approach of adding a background charge only to the water phase may also provide an alternative

solution to neutralize the system. The presented examples show that such strategy can provide PMFs that

are in much better agreement with simulations that have explicit counter ions as compared to simulations

with an implicit uniform background charge. To make this approach more rigorous, one would first

solve the Poisson-Boltzmann equation for the system, and use the result to distribute the neutralizing

background charge. Note, however, that by changing the partial charges on the water atoms, one changes

the water force field. Therefore, the validity of this approach needs to be carefully verified by comparing

the properties of the modified water model to those of the original model.
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Conclusion

Simulating net charged systems is technically possible due to the omission of the k = 0 term in the recip-

rocal contribution of the Ewald sum. However, whether a uniform background charge is an appropriate

model for a converged distribution of counterions depends on the dielectric composition of the system.

For heterogenous systems with different dielectrics, such as proteins or membranes solvated in water, the

uniform background charge can lead to strong artifacts in the chemical potential of charged particles. We

traced the origin of this artifact to the difference in the charge distribution in the simulation box between

the systems with a uniform background charge and with explicit counterions. Because a uniform charge

density introduces no electrostatic gradient, it may seem paradoxical that the background charge can

stabilize a non-neutralized charge inside the lower dielectric. However, because in reality counterions are

always inside the higher dielectric, the counter charge distribution is non-uniform and therefore generates

electrostatic gradients. The absence of such gradients when relying on the background charge to neu-

tralize the system thus causes the artifact. We also derived an expression to quantify the impact of the

background charge on the free energy profile of charged particles, which allows one to determine whether

the use of background charge is appropriate, or whether explicit counterions are required to neutralize

the simulation box.
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[25] Hummer, G.; Pratt, L. R.; Garćıa, A. E. The Journal of Physical Chemistry 1996, 100, 1206–1215.

23



[26] Figueirido, F.; DelBueno, G.; Levy, R. J. Phys. Chem. B 1997, 101, 5622-5623.

[27] Hummer, G.; Pratt, L.; Garcia, A. J. Chem. Phys. 1997, 107, 9275-9277.

[28] Hummer, G.; Pratt, L.; Garcia, A. J. Phys. Chem. A 1998, 102, 7885-7895.

[29] Sakane, S.; Ashbaugh, H.; Wood, R. J. Phys. Chem. B 1998, 102, 5673-5682.

[30] Hünenberger, P.; McCammon, J. J. Chem. Phys. 1999, 110, 1856-1872.

[31] Hunenberger, P.; McCammon, J. Biophys. Chem. 1999, 78, 69-88.

[32] Kastenholz, M.; Hunenberger, P. J. Phys. Chem. B 2004, 108, 774-788.

[33] Herce, H.; Garcia, A. Proc. Natl. Acac. Sci. USA 2007, 26, 20805–20810.

[34] Torrie, G. M.; Valleau, J. P. Chem. Phys. Lett. 1974, 28, 578-581.

[35] Hub, J. S.; de Groot, B. L. Proc Natl Acad Sci U S A 2008, 105, 1198–1203.

[36] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79,

926-935.
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