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Abstract 
 
We developed a classification workflow for boreal forest habitat type mapping. In object-
based image analysis framework, Fractal Net Evolution Approach segmentation was 
combined with random forest classification. High-resolution WorldView-2 imagery was 
coupled with ALS based canopy height model and digital terrain model. We calculated 
several features (e.g. spectral, textural and topographic) per image object from the used 
datasets. We tested different feature set alternatives; a classification accuracy of 78.0 % was 
obtained when all features were used. The highest classification accuracy (79.1 %) was 
obtained when the amount of features was reduced from the initial 328 to the 100 most 
important using Boruta feature selection algorithm and when ancillary soil and land-use GIS-
datasets were used. Although Boruta could rank the importance of features, it could not 
separate unimportant features from the important ones. Classification accuracy was bit lower 
(78.7 %) when the classification was performed separately on two areas: the areas above and 
below 1 m vertical distance from the nearest stream. The data split, however, improved the 
classification accuracy of mire habitat types and streamside habitats, probably because their 
proportion in the below 1 m data was higher than in the other datasets. It was found that 
several types of data are needed to get the highest classification accuracy whereas omitting 
some feature groups reduced the classification accuracy. A major habitat type in the study 
area was mesic forests in different successional stages. It was found that the inner 
heterogeneity of different mesic forest age groups was large and other habitat types were 
often inside this heterogeneity. 
 
Keywords 
 
habitat type mapping; multispectral imagery; ALS; object-based image analysis; random 
forest classifier; feature selection  
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1 Introduction 
 
In boreal forests, habitat type mappings are widely used in forestry purposes but they are also 
valuable in conservation. In forestry, habitat type maps and other thematic maps are used e.g. 
for strategic analysis in forest management planning (Tomppo et al., 2008). In conservation 
perspective, habitat type maps can be used e.g. in mapping biodiversity patterns (e.g. Kerr & 
Ostrovsky, 2003; Turner et al., 2003). Habitat type mapping is often based on land use/land 
cover remote sensing data classification. Land cover and land use refer to biophysical surface 
characteristics of the Earth and land utilization respectively (e.g. Kerr & Ostrovsky, 2003; 
McDermid et al., 2005). Habitats, though, do not equate land cover and thus a specific 
approach is needed for habitat classifications (Lucas et al., 2011; McDermid et al., 2005). 
 
Habitats are usually defined as the resources present in an area that are needed by organisms. 
On the other hand, habitat type is defined as a mappable land unit in which vegetation and 
environmental factors are fairly homogenous. However, the terms habitat and habitat type are 
also used interchangeably (Corsi et al., 2000). In some of the previous mapping approaches, 
habitat types have been mapped using only single-date satellite imagery. Yet, it has been 
acknowledged that mapping of detailed habitat types using only satellite imagery is 
challenging, since the spectral differences between different habitat types are often minor 
(Díaz Varela et al., 2008). To tackle this problem, multi-temporal imagery and ancillary data, 
such as soil map, existing land-use dataset, and digital terrain model (DTM), have been 
included in some of the approaches (Bock et al., 2005; Lucas et al., 2011).  
 
For more than a decade, object-based image analysis (OBIA) has been used in constructing 
habitat type or other thematic maps from remotely sensed data. It has been acknowledged that 
OBIA gives more robust information and higher classification accuracies than pixel-based 
analyses (e.g. Bock et al., 2005; Díaz Varela et al. 2008; Whiteside et al. 2011; Yan et al. 
2006).. OBIA combines pixels into meaningful objects which ideally mimic human 
perception of the analyzed image and are better representations of the landscape features. One 
major benefit of OBIA is that several different factors can be included into the OBIA 
workflow more easily and efficiently than into pixel-based analyses. These factors include 
several different types of data, contextual and textural information and multi-scale analysis 
(Benz et al., 2004; Blaschke, 2010; Bock et al., 2005). Finally, OBIA has become 
increasingly popular, because very high spatial resolution remote sensing data and software 
tools for doing OBIA have become more common (Blaschke, 2010).  
 
So far, the main data sources in OBIA have been aerial or satellite images (Blaschke, 2010). 
From the spectral images, several different layers and several derived features have been used 
in the OBIA analyses. For instance, the usage of textural features such as the Gray-Level Co-
occurrence Matrix (GLCM, Haralick, 1979; Haralick et al., 1973) is almost a standard in the 
OBIA analyses (e.g. Han et al., 2012; Johansen et al., 2007; Kim et al., 2009, 2011; Murray et 
al., 2010; Sasaki et al., 2012; Yu et al., 2006). Additionally, the promise of the wavelet 
features in the texture analysis has been noted also when combined with the GLCM 
(Arivazhagan & Ganesan, 2003; Ouma et al., 2008; Ruiz et al., 2004; Su et al., 2012; Wang et 
al., 2012). Wavelets have also been used in the data pattern or structure analysis (Falkowski 
et al., 2008; James et al., 2011; Strand et al., 2006). In this manner, Morgan et al. (2010) note 
that the GLCM is mainly used for a fine-scale textural analysis, whereas wavelets can extract 
coarse-scale patterns from the spectral images. The inclusion of different textural features in 
classification has produced higher classification accuracies (Han et al., 2012; Kim et al., 2009, 
2011; Murray et al., 2010; Ruiz et al., 2004). 
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In addition to the multispectral images, several types of data have been used in the OBIA 
analyses. Especially, the usage of airborne laser scanning (ALS) data has become more 
popular (Blaschke, 2010). Yet, studies that combine ALS and spectral images in OBIA are 
still rather few (e.g. Arroyo et al., 2010; Breidenbach et al., 2010; Geerling et al., 2007, 2009; 
Ke et al., 2010; Sasaki et al., 2012; Wang et al., 2012). From ALS, the vertical and horizontal 
structure of vegetation or buildings, and a high-resolution DTM can be accurately quantified. 
Hence, ALS complements spectral images by revealing details that cannot be seen visually 
from above (Lefsky et al., 2002; Vierling et al., 2008). Mostly, ALS has been used for 
vegetation structure quantification (Antonorakis et al., 2008; Bar Massada et al., 2012; 
Breidenbach et al., 2010; Ke et al., 2010; Sasaki et al., 2012) but also an ALS based DTM has 
been in use (Bar Massada et al., 2012; Ke et al., 2010). 
 
From the DTM, several different topographic features can be calculated, and features such as 
slope, aspect and curvature, are widely used in OBIA (Ke et al., 2010; Morgan & Gergel, 
2010; Thompson & Gergel, 2008; Thompson et al., 2008; Yu et al., 2006). Moreover, from 
the DTM, different hydrological features can be calculated. One of the most used 
hydrological features has been topographical wetness index (TWI), originally proposed by 
Beven & Kirkby (1979), which has also been used in the OBIA studies (Ke et al., 2010; 
Morgan & Gergel, 2010; Thompson & Gergel, 2008; Thompson et al., 2008). Although many 
different features have been included in the OBIA studies, thorough tests of the importance of 
different features in classifying different habitat types are few. 
 
1.1 Aims of the study 
 
The main objectives in this study were: 1) Develop a working classification workflow 
applicable to boreal forest habitat type mapping. 2) Study, which features and layers are 
important in mapping different habitat types. 3) Examine the internal variation of habitat 
types and types’ similarities with each other. Finally, we used the Finnish multisource 
National Forest Inventory (MS-NFI, Tomppo & Halme, 2004; Tomppo et al., 2008; Tomppo 
et al., 2012) as a benchmark against which we compared the results of our method. 
 
2 Materials and methods 

 
2.1 Used data 
 
Our primary datasets were a multispectral 2-meter resolution WorldView-2 (WV-2) satellite 
image and ALS data. The WV-2 image was taken by Digital Globe Inc. in July 14th 2010 and 
was a subarea of one scene. The spectral range of WV-2 image was 400–1040 nm and it 
consisted of eight bands: coastal blue (center wavelength 425 nm), blue (480 nm), green (545 
nm), yellow (605 nm), red (660 nm), red-edge (725 nm), near infra-red 1 (NIR1, 835 nm), 
and NIR2 (950 nm). The ALS data was provided by the National Land Survey of Finland, 
had at least 0.5 point per 1 m2, and was collected in May 2010. The data was delivered as 
point clouds, automatically classified to ground hits, low vegetation hits, low error hits, and 
unclassified hits. The ALS point clouds were first triangulated and after that rasterized to 
construct three primary layers: a DTM, a digital surface model, and an intensity layer using 
LAStools (rapidlasso, Gilching, Germany). Additionally, we used 20 cm resolution aerial 
images (orthophotos) obtained from the city of Jyväskylä taken in 2007, a 1:10 000 resolution 
topographic database from the National Land Survey of Finland from the year 2010, a 1:20 
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000 resolution digital soil map from the Geological Survey of Finland, a 1:50 000 SLICES 
land use database from the NLS Finland, and a 20 m resolution MS-NFI from the Finnish 
Forest Research Institute from the year 2009 (Tomppo et al., 2012). Datasets and 
preprocessing are explained in more detail in Räsänen et al. (2013). 
 
2.2 Study area and field work 
 
We studied a 15 km2 rural area southwest of the city of Jyväskylä divided into three sub-areas 
(Fig. 1). A part of the study area was classified into 26 different habitat or land-use types 
(Table 1) which were mapped with the help of field work and aerial imagery during June-July 
2011. Three meadows that were mapped during the summer of 2010 were included into the 
analysis as well as a sand pit that was digitized using visual interpretation of WV-2 imagery. 
These data were included into the analysis since they were extremely close to the training 
dataset and because there were few meadows inside the training dataset. The field work 
covering in total 7 km2 consisted of 632 patches in three contiguous sub-areas inside our 
study area (Fig. 1). The field work area was used for the training of the classifiers and for the 
classification accuracy assessments. The study area and the field work are explained in detail 
in Räsänen et al. (2013). 
 
2.3 Habitat type classification system 
 
Our habitat type classification system included natural, semi-natural and man-made habitat 
types. The classification system was based on the work by Rossi and Kuitunen (1996) and 
was modified to make it useful with remotely sensed data. Rossi and Kuitunen (1996) used 
habitat types as surrogates for potential species existence, and their classification was as 
detailed as it could be based on the species’ habitat type preferences given in the species 
identification literature. Habitat types followed the Finnish classification systems for forests 
(Cajander, 1949) and mires (Eurola et al., 1995). The classification system was on one hand 
rather detailed, e.g. we mapped three different forest types in different successional stages. 
On the other hand, it included some easily mappable habitat types as well, especially water 
bodies and fields. 
 
2.4 Classification approach 
 
A detailed flow chart of the used classification approach is presented in Fig. 2. The approach 
was divided into two steps: segmentation and a supervised classification using random forest 
classifier. Only parts of the data were used in segmentation. After segmentation, a feature 
vector was constructed for each segment (Table 2). The supervised classification was then 
performed and different classification alternatives, which included different sets of features, 
were compared. After classification, the usage of ancillary data in post-classification 
adjustment was evaluated. Finally, the accuracies of classifications were assessed, the 
importance of different features was analyzed, and habitat type similarities were studied 
using feature vector analyses. 
   
2.5 Segmentation data and method 
 
We segmented WV-2 bands blue, green, red, and NIR1 (bands 2, 3, 5, and 7) together with 
two ALS layers: a SAGA wetness index (SWI) and a canopy height model (CHM). The SWI 
is a modification of a standard TWI. In the SWI, the high TWI values are predicted to larger 
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areas than in the TWI (Böhner & Selige 2006). The CHM was calculated by subtracting a 
DTM from a digital surface model. A more detailed clarification of the SWI and the CHM is 
given in Räsänen et al. (2013). 
 
Data was segmented using Fractal Net Evolution Approach (FNEA) segmentation (Baatz & 
Schäpe, 2000, Benz et al., 2004) using TerraLib 4.2.0 C++ GIS-library (Câmara et al., 2008). 
The scale parameter was set to 10, whereas the weights for color and smoothness were set to 
0.5 and 0.5 respectively. This segmentation layer-method-parameter-combination was 
visually most appealing and gave the highest classification accuracy in our segmentation 
evaluation study, which was performed in the same study area using the same datasets 
(Räsänen et al., 2013). 
 
2.6 Used layers and features in the classification 
 
In the classification, we used several layers derived from ALS and WV-2 data. From the 
layers, in total 328 features (331 if ancillary data is included) were calculated (Table 2). From 
remotely sensed data layers, mean and standard deviation values for each segment were 
calculated. To ease data interoperability and analysis, all remote sensing data was in 2 m (or 
10 m) resolution which was suitable in our analysis since patches of interest were larger than 
40 m2 or ten pixels (c.f. Lechner et al., 2009). The aerial images were disregarded in the 
analysis because of the three year time difference. There exist differences in the landscape 
because of forestry actions, especially regeneration cutting. 
 
In addition to WV-2 spectral bands, a normalized difference vegetation index (NDVI) was 
calculated using bands 5 (red) and 7 (NIR1). From the ALS data we calculated an intensity 
layer, a CHM layer and several topographic or hydrological layers. 
 
Texture and wavelet features were calculated for each segment from the 2 m resolution NDVI, 
WV-2 bands and the CHM. Texture features were calculated according to a GLCM (Haralick 
et al., 1973) using the mean intensity of the pixel’s 4 neighboring pixels (0˚, 45˚, 90˚, and 
135˚) with the package EBimage 2.2.0 (Pau et al., 2010) in R 2.13.0 (R Development Core 
Team, 2012). The GLCM features estimate different features of pixel brightness value 
combinations from the neighboring pixels. Overall, 13 GLCM features given by Haralick et 
al. (1973) were calculated: angular second moment (asm), contrast (con), correlation (cor), 
variance (var), inverse difference moment (idm), sum average (sav), sum variance (sva), sum 
entropy (sen), entropy (ent), difference variance (dva), difference entropy (den), and two 
measures of correlation (f12 and f13). For the GLCM calculations, the pixel brightness values 
were quantized to 16 gray levels using equal intervals. 
 
A maximum overlap discrete wavelet analysis was performed in R 2.13.0 using the package 
waveslim 1.7.1 (Whitcher, 2012). The wavelets calculate texture in larger neighborhoods 
than the GLCM and quantify local frequency, i.e. if same kind of orderliness is seen in the 
changes of image brightness values as in the wavelet function. The base function was 
Daubechies orthonormal compactly supported wavelet of length L = 8 (Daubechies, 1992). 
The wavelets were calculated in horizontal, vertical and diagonal directions in four 
decomposition lengths. 
 
In the hydrological and topographic analysis, the DTM was filled to remove uncertainties, 
missing values and incorrect values from the data. We modeled a stream network using a D∞ 
flow direction method and a threshold value of 20 000 m2 for shaping a stream with TauDEM 
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tools (Tarboton, 2012). From all locations in the area, a vertical distance to the nearest stream 
was calculated. The vertical distance to a stream was not used as a feature in the classification, 
but it was used in the clipping of the study area into two parts as described in Sections 2.7 
and 2.11. 
 
In addition to a percentage slope raster and the SWI, following raster layers were calculated 
from the filled DTM. In a distance to water (DTW) layer, a cost distance from each pixel to 
the nearest stream or water body is calculated with the slope raster as a cost surface (Murphy 
et al., 2007, 2009, 2011). A terrain ruggedness index (TRI) calculates the sum of change in 
altitude locally (Riley et al., 1999), a topographic position index (TPI) measures the relative 
altitudinal position of a pixel, i.e. if it is below or above the average local altitude (Guisan et 
al., 1999) and a multiresolution index for valley bottom flatness (MRVBF) calculates a 
probability that a pixel is in the bottom of a valley (Gallant & Dowling, 2003). The TRI was 
calculated using 3 different window sizes, the TPI was calculated with 4 different radiuses, 
and in the MRVBF, the initial threshold for slope was given two values: the default value 16, 
and 75 as suggested by Gallant & Dowling (2003). The other parameters were kept as default. 
TRI, TPI and MRVBF were calculated in SAGA-GIS and other topographic layers in ArcGIS 
9.3.1 (Esri, Redlands, CA, USA). 
 
All segments which were inside field work blocks were used in the training phase if they had 
at least 60 percent coverage of one habitat type. In the training dataset, each segment was 
given a feature vector which included the features given in Table 2. 
 
2.7 Random forest classification 
 
We classified the data with random forest (Breiman 2001) in R with the package 
randomForest (Liaw & Wiener, 2002). Random forest is an ensemble classifier, in which a 
majority vote over several bootstrapped classification trees is made. When each tree is built, 
approximately 2/3 of the data is used for training the classifier and the rest is called out of bag 
(OOB) data. Because of the OOB, independent test data or cross-validation is not required 
when random forest is used (Breiman, 2001; Breiman & Cutler, 2007). 
 
Random forest has given good classification accuracies in remote sensing studies (Duro et al., 
2012; Lawrence et al., 2006; Rodriguez-Galiano et al., 2012; Smith, 2010). However, it has 
been noted that when data is imbalanced, random forest can underestimate rare observations 
(Breidenbach et al., 2010) and that there should be abundant training data for all classes 
(Smith, 2010). To get the data more balanced, we tested splitting the data into two parts: 
areas that were inside or outside a 1 m vertical distance to the nearest stream. This was 
performed especially to map mire habitat types more effectively. While mires are much rarer 
than forests on mineral soils in our area, the percentage of mire cover is much higher close to 
the streams. 
 
In random forest classification, two parameters can be modified: the number of trees built and 
the number of features tested at each split (mtry). Different values for the both parameters 
were tested. 
 
2.8 Feature importance and selection 
 
Random forest gives two different feature importance measures. In the first measure, 
permutation importance, the OOB error rate is compared to an OOB error rate when the focal 
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feature is not used. The second measure, gini importance, calculates the overall decrease in 
gini impurity when the focal feature is used as a split. The feature importance measures were 
used in analyzing which layers and features are useful in our purposes and what features were 
important in mapping each habitat type. 
 
In feature selection, we used the R package Boruta (Kursa & Rudnicki, 2010) which tests if 
the features are significant or not. Boruta is a wrapper algorithm in which several runs of 
random forest classification are performed. Before each run, a shadow feature is created for 
each feature. The values of the shadow feature are derived by shuffling the values of the 
original feature across data items, which are segments in our case. After each random forest 
run, each feature’s importance is tested against the shadow feature with the highest 
importance. All the features which have significantly lower importance than the shadow 
feature with the highest importance are classified unimportant and removed from the 
following runs. The attributes that have significantly higher importance are classified as 
important. These features are included in the following runs but their importance is not tested 
anymore. Boruta ends when all features are classified either as unimportant or important or 
when a specified limit of random forest runs is reached. If some variables are left tentative, a 
tentative rough fix test can be taken. In this test, all those features that have higher median 
ZScore than the median ZScore of maximal shadow attribute are set confirmed. The rest of 
the features are deemed rejected (Kursa & Rudnicki, 2010). In Boruta, we used 0.999 
confidence level, “z-scores of mean decrease accuracy measure” i.e. permutation importance 
and we did not set a limit for random forest runs. 
 
2.9 Classification accuracy assessment 
 
When the final classification map was derived, its classification accuracy was calculated 
using cross tabulation matrices. We decided not to use Kappa indices, since the use of them 
has been sometimes criticized. The main critique is that Kappa compares observed accuracy 
with an expected accuracy due to randomness, although randomness is an unimportant 
baseline in remote sensing tasks (Foody, 2008; Pontius & Millones, 2011). Instead, in 
addition to the user’s accuracy (the error of commission) and the producer’s accuracy (the 
error of omission), we quantified allocation and quantity disagreement as suggested by 
Pontius and Millones (2011). These two measures quantified if the amount of predicted 
habitat types differs from the reference or if the habitat types were allocated to different 
locations than in the reference. The accuracy assessment was performed cross-tabulating 
pixel based classification data in raster format and field work data in vector format. Segment 
based classification accuracy was not calculated, since many segments were divided between 
different training data classes. 
 
2.10 Feature vector analysis 
 
A feature vector analysis was used to complement the classification accuracy analysis. Mean 
values of all the features in the training dataset as well as in the final classified datasets were 
calculated. Euclidean distances between class centroids were then produced. Sammon’s 
mapping (Sammon, 1969) using all training data segments and Euclidean distance was used 
to illustrate which classes are close to each other. In the Sammon’s mapping, 
multidimensional data is reduced to fewer dimensions. Instead of using linear combinations 
as in a principal component analysis, Sammon’s mapping uses a non-linear approach. Finally, 
a random forest proximity measure, which calculates the mean distance between two cases in 
all trees, was also calculated and illustrated using a proximity image. 
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2.11 Classification alternatives 
 
We tested 16 different classification alternatives to see how different alterations influence the 
final classification accuracy (Table 3). In eight alternatives, some of the features were 
omitted from classification and Boruta feature selection was used for selecting either only 
important or the 100 highest scoring features. Additionally, in four alternatives, data was 
classified separately in two zones according to a 1 m vertical distance to the nearest stream. 
Furthermore, ancillary data was included for the classifications of full data and split data that 
had the highest classification accuracy. The forest segments whose majority soil class was silt 
were reclassified as herb-rich forests. Segments whose majority NLS topographic database 
class was fields, meadows, rocky areas, waters, or sand pits were reclassified to the respective 
class. The xeric forest segments whose majority topographic database class was mire were 
reclassified to pine mire. In a similar manner, mesic and herb-rich forests together with yards 
were reclassified as spruce mires, while open areas (water, fields, meadows, roads) were 
reclassified as open mires. All the mires that had over 50 % of their area inside a 25 m buffer 
of small streams (width < 5 m) in the topographic database were classified as drained mires. 
Segments whose majority SLICES class was yard were classified as yards. Roads were 
updated from the SLICES database. 
 
Finally, two habitat type classifications were made using only already available land use/land 
cover data. Forest and mire types as well as forest succession stage for forests were derived 
from the MS-NFI data while ancillary information was obtained from the NLS topographic 
database (mires, bare rock, lakes, meadows, fields, sand pits, partly yards and roads) and 
SLICES (yards, roads). In the first alternative, MS-NFI data was used as such. In the second 
alternative, modifying the classification according to Geneletti and Gorte (2003), such that 
for each segment a majority MS-NFI class was given. 
 
3 Results 
 
The study area was segmented into 12026 segments. When the data was split into two parts, 
the number of segments was 8969 and 3680 for the areas above and below the 1 m vertical 
distance to a stream respectively. Of the segments, 4883, 3580, and 1529 were used as the 
training data for the full area, the above 1 m proportion and the below 1 m proportion 
respectively. The numbers of segments that did not have a 60 % majority of any habitat type 
in the reference dataset were 606, 375, and 234 respectively. The rest of the segments were 
included in the classification but over 60 % of those segments were outside the area covered 
by the reference dataset. There were some differences in the number of segments belonging 
to different classes in the three different datasets (Table 4). Especially, the proportion of 
segments belonging to different mire classes, water bodies and streamside habitat was much 
higher in below 1 m data than in the two other datasets. 
 
3.1 Random forest parameterization 
 
In random forest classification, default parameter values were used but several options were 
tested. The number of trees was set to 500 and mtry to the square root of all features. The 
OOB error rate decreased up to around 100 trees and then it stabilized. Similar results have 
been obtained in other studies (Lawrence et al., 2006; Rodriguez-Galiano et al., 2012). A 
smaller parameter value for mtry increased the OOB error rate a bit and a larger value 
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decreased the error rate a bit. Nevertheless, the highest decrease in the OOB error rate 
compared to the error rate with the default mtry parameter value was not more than 1.3 
percentage points. Different mtry parameter values were not tested more thoroughly, since 
our focus was more on testing how omission or inclusion of different types of features affects 
classification accuracy. According to Rodriguez-Galiano et al. (2012), random forest is not 
sensitive to the value of mtry when enough trees are built. They even suggested giving a 
small value for mtry since it decreases the correlation between trees, although then the 
strength of each tree decreases (see also Breiman 2001). 
 
3.2 Classification accuracies 
 
In the first classification alternative, using all data and all features, a classification accuracy 
of 78 % was obtained (Fig. 3, Tables 5 and 6). The accuracy increased to 79 % with the 100 
highest scoring features by Boruta and ancillary data. This classification accuracy was further 
improved to 86 % when the misclassifications between different forest successional stages as 
well as drained and non-drained mires were not considered to be errors. Nonetheless, the 
misclassifications between different forest and mire habitat types were regarded as errors. 
The lowest classification accuracy of 73 % was obtained when only WV-2 data was used. 
Omitting the extra topographical features or the GLCM and wavelet features reduced the 
classification accuracy but omitting only either the GLCM or wavelet features did not. 
Splitting the area into two parts did not improve the overall classification accuracy but 
ancillary data increased it by 0.5 percentage points. Furthermore, all our classifications had 
higher classification accuracy compared to the accuracy of 52 % (55 % with segmentation) 
obtained using MS-NFI, the topographical database and SLICES. The classification accuracy 
of the MS-NFI based classification, however, improved to 78 % (80 % with segmentation) 
when the misclassifications between different forest successional stages as well as drained 
and non-drained mires were not considered errors. 
 
The differences in the classification accuracies of single classes had higher variations. For 
instance, clipping the area into two parts increased producer’s accuracy in mapping mires and 
streamside habitats. Ancillary data raised the producer’s accuracy especially in mapping 
yards, roads, spruce mires, and bare rock, and in lesser extent in mapping herb-rich forests, 
meadows, and fields (Fig. 3d). On the other hand, the user’s accuracy was lower for spruce 
and pine mires when the area was split and for meadows, bare rock, herb-rich forests, drained 
mires and roads when ancillary data was used. 
 
Some of the classes (springs, xeric mature forests, herb-rich natural forests) could not be 
classified at all probably due to the low amount of training data. Other low classification 
accuracies among classes were produced for herb-rich forests, spruce mires, streamside 
habitats and meadows. Common or easily separated habitat types, such as mesic forests, 
water, fields, and sand, got high classification accuracies in all classifications. The MS-NFI 
based benchmark classification had as high or nearly as high classification accuracy as other 
approaches for many of the classes. Forest habitat types were, however, more poorly 
classified both in regards of the user’s and the producer’s accuracy.  
 
In the classification with the highest accuracy, the allocation disagreement was slightly larger 
than the quantity disagreement (Table 7). Most of the total disagreement in the classification 
accuracy was caused by the classification of mesic forest classes. Although these classes were 
fairly well classified compared to some other classes, they were among the most common 
classes inside the study area. The largest total quantity disagreement was caused by mesic2 
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which was over-predicted i.e. the error of commission. Also other mesic forests were over-
predicted. Some of the classes, such as streamside habitats and spruce mires, were 
significantly under-predicted in regards to the total area. This under-prediction was lower 
though, when the area was split.  
 
When omission and commission were evaluated relative to habitat type abundance (Table 7), 
xeric and herb-rich forests, non-drained pine and spruce mires, bare rock, meadows, 
streamside habitats and some mesic forests were more under-predicted. Conversely, some 
mesic forests, open and drained mires, fields, roads, and yards were more over-predicted. The 
proportions of omission and commission were slightly different for the other classifications. 
 
In the MS-NFI classification, allocation disagreement (38 %, with segmentation 34 %) was 
higher than quantity disagreement (10 %, with segmentation 12 %). In more detail, most of 
the forest was, also in MS-NFI, predicted as mesic forests and mesic3 was over-predicted 
(quantity disagreement 4 % of total study area). Different mesic forest classes also had 
highest allocation disagreements which were 26 % for mesic2, 17 % for mesic3, and 13 % for 
mesic4. 
 
3.3 Feature importance 
 
In the Boruta feature selection runs using all data and above 1 m vertical distance data, all 
328 features were confirmed important after 44 and 73 random forest runs respectively. For 
the below 1 m areas, 130 random forest runs were performed, and 275 features were 
confirmed important, 21 unimportant and 32 were left tentative. These features had highly 
fluctuating ZScores probably due to tricky data. For tentative features, a tentative rough fix 
test was performed using 100 last rf runs. After test, 300 and 28 features were confirmed 
important and unimportant respectively. The rejected features consisted of GLCM and 
wavelet features of WV-2 bands and NDVI together with standard deviation values of 10 m 
resolution WV-2 bands. 
 
In the feature importance analysis, it was found that many different types of features were 
regarded as important using the different measures (Table 8). There were rather large 
differences between different habitat types as well as between the permutation importance, 
the Gini importance, and the Boruta mean Z-score. The GLCM, wavelet as well as 
topographical features were among the highest ranking features. The mean features got 
almost without exception higher importance values than the standard deviation features. In a 
similar manner, the 2 m resolution features were generally more important than the 10 m 
resolution features. Of the WV-2 bands, the band number 1 (coastal blue) got the highest 
scores of all three overall measures and its mean value was among the most important 
features when all measures were taken into account. Additionally, CHM, DTW and 
MRVBF75 got high ranks from the different measures. The wavelet and the GLCM features 
got both high and low importance values. When only the WV-2 bands were taken into 
account, sum average (sav) and sum variance (sva) were the most important GLCM features. 
However, among the features derived from the NDVI and the CHM, also other GLCM 
features such as sum entropy (sen), variance (var), entropy (ent), inverse difference moment 
(idm), contrast (con) got high importance values. Furthermore, the results were quite 
contradictory. Although many wavelet features got high permutation importance values, 
omitting them from analysis increased classification accuracy by 0.1 percentage points. One 
reason could be that wavelet and GLCM features gave overlapping information. In other 
words, it is possible that wavelet features did not produce any extra information compared to 
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GLCM features, and vice versa. In addition, the randomness in random forest classification 
might also result in small changes in classification accuracies. 
 
When correlations between the different features were examined (Fig. 4), it was found that 
the WV-2 visible color bands (1-5) are strongly correlated. Also, infrared bands (6-8) are 
correlated but not as heavily as color bands. Furthermore, the GLCM and wavelet features of 
the correlating bands were correlated. All the wavelet features were giving more or less same 
information which was quite close to information given by the GLCM features. The GLCM 
features were not as heavily correlated to each other as wavelet features, and some features 
(idm, asm) correlated negatively, and some features (sav, sva) did not correlate with the other 
GLCM features. ALS and WV-2 features were not highly correlated overall. The topographic 
features with different parameter settings were again highly correlated to each other but 
different topographic features did not correlate strongly with each other. Finally, the mean 
and standard deviation features correlated usually negatively or not at all. 
 
3.4 Feature vector analysis 
 
In the Sammon’s map (Fig. 5), different mesic forests covered almost the entire plot. Notable 
exceptions were water areas and fields which both had rather clearly separable areas. Other 
classes were more or less inside the area occupied by the mesic forests. Inside the mesic 
forests, the variation seemed to be quite large and some successional stages, especially 1 and 
4, were separable from each other.  
 
In the proximity image (Fig. 6, Table 4), some classes (mesic4, water, sand) stood out 
exceptionally well and some classes (mesic0, mesic1, mesic2, mesic3, field, road) can be 
distinguished. However, it can also be seen that segments in the classes of mires, herb-rich 
and xeric forests have rather high proximities to segments of mesic forests. Although the 
proximities inside different mesic forest classes are larger than the proximities between 
classes, also some of the latter proximities are rather large. 
 
4 Discussion 

 
4.1 Mapping habitat types in boreal forests 
 
In the Finnish forest classification system (Cajander, 1949); habitat types are classified based 
on ground vegetation, nutrient status, soil permeability and soil grain size, not on tree species. 
This problem has been accounted for in making more remote sensing specific habitat type 
classification systems (e.g. Tuominen et al., 2001) but these systems are not widely used. 
 
Tree species are not, though, the only problem in habitat type mapping. In our study area, 
most of the forest is mesic spruce dominated forest. In our initial evaluations changing the 
classification basis from nutrient status to tree species did not improve classification accuracy. 
The feature vector analysis suggested that other habitat types were confused with different 
mesic forests. As well, the inner heterogeneity of mesic forests is rather large, as it was 
illustrated by the feature vector analysis. One possible explanation is that both mesic forests 
and spruce dominated forests are heterogeneous in the terms of species composition, density 
of stand, proximity to bedrock and soil types, for instance. Therefore, although other habitat 
types might be distinguishable in the field; their characteristics are often inside the variation 
of dominating classes in remotely sensed data. 
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Better training data, in which only clear examples of different classes are selected, could 
improve the classification accuracy. This kind of training data might not, on the other hand, 
represent the reality out in the forest. Furthermore, the nature itself is not easy to interpret. 
For instance, Cherrill and McClean (1995, 1999) achieved very weak accuracy rates when 
they compared habitat type maps drawn by different human mappers. Therefore, it is not 
always important to know the habitat type as such but to have a broader idea of the site. In 
this manner, Lucas et al. (2011) offered three different levels of information for their habitat 
maps. Additionally, the inner variability of the classes as well as patches can be accounted 
using feature vector analysis or fuzzy analysis (e.g. Benz et al. 2004). 
 
There are numerous reasons why the MS-NFI performed more poorly than our classifications 
in our purposes. First, our approach was local while the MS-NFI is nation-wide. We used 
training and test data, explained in Section 2.2, developed for this study locally while the MS-
NFI was only reclassified for our purposes. In the MS-NFI, one field sample plot represents 
forest area whose size is more than 3 km2 (Tomppo et al., 2012). Hence, there are 
mathematically less than five plots in our study area. The comparison is; thus, a bit unfair and 
heavily favors our classification approach. Second, there might be a slight temporal mismatch 
since the MS-NFI is a couple of years older than our field work and remotely sensed datasets. 
This should have effects, however, only on open regeneration forest areas and young forests. 
Nevertheless, the classification accuracy of the MS-NFI based classification was remarkably 
better when the misclassifications between forest successional stages as well as drained and 
non-drained mires were not regarded as errors. The difference in the classification accuracies 
between the classification with the highest accuracy and the MS-NFI-based classification 
with segmentation reduced from 24 to 6 percentage points. Third, the spatial resolution of the 
MS-NFI was coarser which might have effects on its classification accuracy. Also the fact 
that allocation disagreement was notably higher than quantity disagreement in the MS-NFI 
based classification might be partly because of its coarser spatial resolution. 
 
4.2 Mapping different habitat types 
 
As we discuss in our segmentation goodness evaluation (Räsänen et al., 2013); boreal forest 
habitat type classification using only OBIA does not give fully satisfactory results. Especially, 
the prediction of location of mires, riparian habitats and streams is difficult using only objects. 
It is complicated to include hydrological or topographical layers to segmentation so that 
riparian areas, for instance, could be better segmented. 
 
Delineating mires inside mineral soil forest matrix is difficult even when other methods than 
OBIA are used. The 1 meter vertical distance to stream did not delineate mires but it gave a 
zone inside which many mire patches exist. Inside this zone, data were more balanced, i.e. 
mires were not as rare, which helped in the random forest prediction (Breidenbach et al., 
2010; Smith, 2010). Data splitting also had its drawbacks in our case, however, since the 
overall classification accuracy did not improve. There exist also other methods for data 
balancing (Chen et al., 2004) which could be tested in remote sensing tasks. 
 
Our results in mire or wetland mapping are in line with previous results. It has been pointed 
out that including topographical features and other ancillary information such as soil data 
gives better results than using only satellite imagery (Corcoran et al., 2011; Maxa & Bolstad, 
2009; Ozesmi & Bauer, 2002, Tomppo & Halme, 2004; Tomppo et al., 2012; Wright & 
Gallant, 2007). It has also been discussed that it is hard to find a balance in wetland under- 
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and over-prediction. While wetlands are better mapped when their proportion in training data 
is larger, they are also more over-predicted (Wright & Gallant, 2007). We also got weak 
support that DTW is better than TWI in wetland prediction as suggested by Murphy et al. 
(2009). Yet, all topographical features seemed to be more or less important in wetland 
mapping. Therefore, they may complement each other as Murphy et al. (2011) pointed out. 
 
It became evident in our study that some fine-scale habitat types such as springs are 
demanding to map. Although they may have very distinct characteristics that can be seen in 
the field, they do not necessarily stand out easily in remotely sensed data or even in soil or 
bedrock data. Since the patches of these habitat types are small and quite rare in larger habitat 
mosaic, they are easily missed into noise in the automated approaches. Moreover, they are 
hardly present in training data. Also some not as rare habitat types, such as streamside 
habitats were difficult to map. Some of them were, however, correctly mapped and streams 
themselves can be mapped using a hydrological analysis. A more thorough visual or manual 
analysis performed by a skilled interpreter could bring better results. An expert analysis 
implemented also in an OBIA workflow has given good results in the mapping of rare habitat 
types (Thompson & Gergel, 2008). 
 
4.3 Feature importance and selection 
 
As other authors (Arroyo et al., 2010; Geerling et al., 2007, 2009; Ke et al., 2010; Sasaki et 
al., 2011) have already pointed out, coupling ALS and spectral images gives better 
classification accuracies than using only one of them. In our analysis, using only ALS data 
gave slightly better classification accuracy than using only WV-2 data. In contradiction to 
previous remote sensing studies (Ouma et al., 2008; Ruiz et al. 2004), although the GLCM 
and wavelet features separately enhanced the classification accuracy in our study, they did 
not further improve it together. Additionally, omitting some of the topographical features 
(DTW, MRVBF, TPI, TRI) decreased the classification accuracy. Topographical features 
were needed especially in mapping mires. 
 
The highest classification accuracy was achieved when the 100 highest ranked features were 
selected from the full feature set. Boruta was not, however, able to distinguish unimportant 
features from important features with the exception of the below 1 m vertical distance area. 
This may be due to the quite large variability inside habitat types and due to the quite large 
set of segments in training data compared to the number of features. The below 1 m area had 
clearly the smallest set of segments and thus also the highest feature per segment ratio (0.21). 
In a previous study when Boruta was used in remote sensing, the feature per segment ratio 
was far higher (1.65); and a large proportion of features (62 %) were confirmed unimportant 
or tentative (Duro et al., 2012). Hence, it may be questioned that does feature selection 
performed with Boruta help in situations when the feature per segment ratio is small. 
Moreover, the features were seemingly highly correlated and clearly not all of them are 
useful in classification. On the other hand, Boruta confirmed that almost all features gave 
meaningful information in our case. 
 
Gini and permutation importance highlighted different features. It has even been argued that 
the random forest feature importance calculations are biased, Gini being the most biased. The 
bias favors correlating and continuous features and features with many categories. Based on 
this, alternative methods for measuring feature importance and selecting features have been 
suggested (Hapfelmeier & Ulm, 2013; Strobl et al., 2007, 2008). The feature importance bias 
does not have an effect on random forest predictive capacity. Instead, the predictive capacity 
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might be even better when many (and possibly correlating) features are included in random 
forest (Hapfelmeier & Ulm, 2013). 
 
5 Conclusions 
 
In our study, we developed a classification workflow to map different habitat types in a 
Finnish boreal forest landscape. The classification accuracy of our approach was considerably 
higher than the classification accuracy of the MS-NFI based classification. Our study area 
was dominated by different mesic forests. Their heterogeneity was large and other habitat 
types were partly inside this heterogeneity. This was confirmed using both classification 
accuracy assessments and feature vector analyses. The feature vector analysis showed its 
usefulness in our study, illustrated the closeness of different habitat types and complemented 
information given by the classification accuracy assessments. It became evident in our 
analysis that different types of data and features are needed in a boreal forest habitat type 
classification. Finally, a working boreal forest habitat type classification should include (1) 
both spectral images and other data, (2) meaningful habitat type classes that can be classified 
based on the used data, (3) a specific approach for mapping mires and rare habitat types, (4) 
good training data, (5) a classifier that works well with the used data, and (6) segmentation or 
some other technique for habitat patch boundary delineation. 
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Table 1. Different habitat types mapped during field work and used in classification. Numbers and letters 
in parentheses refer to abbreviations used in text and other tables. 

Habitat type Number of age groups/management possibilities 
xeric (pine dominated) forests 4: open regeneration area (0), sapling  stand (1), young (2), mature (3) 
mesic (spruce dominated) forests 5: open regeneration area (0), sapling stand (1), young (2), mature (3), natural (4) 
herb-rich (mixed/deciduous) forests 4: sapling stand (1), young (2), mature (3), natural (4) 
bare rock 1 
pine mires 1 
spruce mires 2: not drained, drained (d) 
open mires 1 
water (lakes and rivers) 1 
small streams 1 
springs 1 
grasslands 1 
fields 1 
roads 1 
yards 1 
sand pits 1 
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Table 2. Different layers derived from datasets and features calculated from the layers to be used in 
classification. Layers that were used in segmentation are indicated in column titled Segmentation. 

Data Layer Resolution Segmentation Calculated features 
WV-2 Bands 1–8 2 m Bands: 2, 3, 5, 7 Mean, standard deviation, GLCM, wavelets 
 Bands 1–8 10 m  Mean, standard deviation 
 NDVI 2 m  Mean, standard deviation, GLCM, wavelets 
 NDVI 10 m  Mean, standard deviation 

 ALS CHM 2 m X Mean, standard deviation, range, GLCM, 
wavelets 

 CHM 10 m  Mean, standard deviation, range 
 Intensity 2 m  Mean, standard deviation 
 Intensity 10 m  Mean, standard deviation 
 Slope 2 m  Mean, standard deviation 
 Slope 10 m  Mean, standard deviation 
 SWI 2 m X Mean, standard deviation 
 SWI 5 m  Mean, standard deviation 
 SWI 10 m  Mean, standard deviation 
 DTW 2 m  Mean, standard deviation 
 DTW 10 m  Mean, standard deviation 
 TRI1 2 m  Mean, standard deviation 
 TPI2 2 m  Mean, standard deviation 
 MRVBF3 2 m  Mean, standard deviation 
Digital soil map Soil type NA  Majority 

Digital map Land use 
type NA  Majority 

SLICES Land use 
type NA   Majority 

1 Window sizes: 3×3, 7×7, 11×11 

2 Radiuses: 10. 25, 50, and 100 m 
3 The initial thresholds for slope: 16 and 75  
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Table 3. Different classification alternatives tested.  

Alternative Boruta Omitted features Data split ancillary MS-NFI 
1 no no no no no 
2 no ALS no no no 
3 no WV-2 no no no 
4 no DTW, TPI, TRI, MRVBF no no no 
5 no GLCM no no no 
6 no wavelet no no no 
7 no GLCM & wavelet no no no 
8 important no no no no 
9 100 highest no no no no 

101 no no no yes no 
11 no no yes no no 
12 important no yes no no 
13 100 highest no yes no no 

141 no no yes yes no 
15 NA NA NA yes yes 
16 NA NA NA yes yes + segmentation 

1Ancillary data was added to the classifications (1–9 and 10–13) with the highest classification accuracies. 
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Table 4. Different classes used in classification and numbers of segments in each class in training data 
using whole area, above and below 1 m vertical distance to the nearest stream. Columns titled Lower and 
Upper refer to Fig. 6. 

  
 Number of segments  

  No Class Full data Above 1m Below 1m Lower Upper 
1 xeric0 21 15 5 0.000 0.004 
2 xeric1 15 15 0 0.005 0.007 
3 xeric2 119 112 19 0.008 0.032 
4 xeric3 4 3 1 0.032 0.033 
5 mesic0 50 49 9 0.033 0.043 
6 mesic1 492 471 29 0.043 0.144 
7 mesic2 1120 981 151 0.144 0.374 
8 mesic3 512 436 104 0.374 0.479 
9 mesic4 628 596 37 0.479 0.608 

10 herb-rich1 37 29 15 0.608 0.616 
11 herb-rich2 62 42 18 0.616 0.628 
12 herb-rich3 51 45 8 0.629 0.639 
13 herb-rich4 5 4 2 0.639 0.640 
14 rock 58 63 0 0.640 0.652 
15 pine_m 65 2 62 0.652 0.665 
16 spruce_m 94 19 95 0.665 0.685 
17 spruce_m_d 4 2 3 0.685 0.685 
18 open_m 16 0 16 0.686 0.689 
19 water 464 0 461 0.689 0.784 
20 stream 67 9 91 0.784 0.797 

 
spring 

 
1 0 

  21 meadow 41 18 25 0.798 0.806 
22 field 382 184 240 0.806 0.884 
23 road 236 200 56 0.884 0.931 
24 yard 206 181 35 0.931 0.973 
25 sand 134 103 47 0.973 1.000 
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Table 5. Producer’s accuracy (in percent) for different habitat classes in different classification 
alternatives. In the table, there are some classes that do not exist in training data. First, some segments 
could not be assigned to any class due to missing data. This was because features based on 10 m resolution 
data could not be calculated for all segments. Class NA is assigned to these patches. Second, mire 
drainage mapping was based on ancillary data; therefore, also drained pine and open mires were mapped 
in some classifications. 

Alternative 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 
NA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
xeric0 78 76 61 78 72 78 71 77 77 66 69 67 67 0 0 
xeric1 61 53 67 65 55 60 55 59 59 64 64 64 64 0 0 
xeric2 77 72 65 76 76 76 76 79 78 73 73 78 77 16 14 
xeric3 0 0 0 0 0 0 0 0 0 0 0 0 0 10 6 
mesic0 58 48 0 58 57 55 53 58 56 54 54 56 55 0 0 
mesic1 83 79 78 83 82 82 80 83 79 82 82 81 79 54 58 
mesic2 90 88 90 90 91 91 91 90 88 89 90 89 86 51 59 
mesic3 73 55 65 71 68 71 62 73 70 71 71 71 68 23 17 
mesic4 89 84 88 89 91 90 87 89 89 88 88 89 88 52 59 
herb-rich1 5 2 4 0 0 14 22 10 9 2 2 7 7 0 0 
herb-rich2 12 7 5 7 14 17 13 13 30 13 15 17 21 2 1 
herb-rich3 5 2 0 10 2 9 0 9 9 3 3 1 1 0 0 
herb-rich4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
bare rock 46 48 31 41 48 48 49 47 57 45 45 41 55 50 51 
pine mire 48 42 44 46 44 50 45 51 52 65 67 66 66 54 56 
pine mire d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
spruce mire 7 0 15 2 6 12 12 11 19 18 17 23 29 14 13 
spruce mire d 0 0 0 0 0 0 0 0 27 0 0 0 40 39 39 
open mire 47 10 12 22 71 64 64 75 73 39 61 73 69 61 61 
open mire d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
water 97 97 97 97 98 98 98 98 98 97 97 97 98 99 99 
streamside 4 0 1 0 4 6 6 6 6 27 28 26 25 0 0 
spring 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
meadow 20 14 11 17 18 28 23 23 35 31 31 35 32 34 34 
field 94 92 88 94 94 93 90 95 96 93 93 94 96 97 96 
road 51 48 41 50 52 48 48 51 94 50 51 49 94 91 91 
yard 54 53 31 53 57 46 41 54 69 57 57 55 69 66 64 
sand 97 94 91 96 97 97 95 98 98 97 97 97 99 75 75 
Total 78.0 73.1 73.8 77.1 78.0 78.1 76.0 78.6 79.1 77.9 78.0 78.2 78.7 51.8 54.6 
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Table 6. User’s accuracy for different habitat classes in different classification alternatives. In the table, 
there are some classes that do not exist in training data. First, some patches could not be assigned to any 
class due to missing data. This was because features based on 10 m resolution data could not be calculated 
for all segments.  Class NA is assigned to these patches. Second, mire drainage mapping was based on 
ancillary data; therefore, also drained pine and open mires were mapped in some classifications. 

Alternative 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 
NA 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 
xeric0 91 88 92 91 92 90 92 91 91 93 93 92 92 100 100 
xeric1 90 96 93 88 94 89 96 92 92 92 92 89 89 0 0 
xeric2 84 82 85 82 85 90 86 83 84 86 86 85 85 22 30 
xeric3 100 100 100 100 100 100 100 100 100 100 100 100 100 1 0 
mesic0 91 86 100 89 89 88 90 89 91 88 86 87 91 0 0 
mesic1 81 75 67 80 81 80 79 81 84 81 81 80 83 61 68 
mesic2 70 64 68 69 70 71 69 71 75 72 72 72 76 49 50 
mesic3 64 59 60 62 64 65 60 65 67 66 66 66 69 17 14 
mesic4 88 80 85 87 87 88 84 88 90 88 88 88 89 55 57 
herb-rich1 100 100 74 100 100 98 84 71 29 100 67 100 36 0 0 
herb-rich2 66 69 59 50 84 66 60 66 72 74 74 68 54 6 4 
herb-rich3 62 93 100 79 100 58 100 74 76 85 85 66 5 100 100 
herb-rich4 100 100 100 100 100 100 100 100 100 100 100 100 0 100 100 
bare rock 91 83 87 87 87 86 83 89 76 89 89 91 78 68 46 
pine mire 75 66 69 82 69 72 62 72 71 58 57 63 64 57 56 
pine mire d 100 100 100 100 100 100 100 100 0 100 100 100 100 0 0 
spruce mire 55 0 42 46 58 57 54 50 43 42 44 39 38 22 35 
spruce mire d 100 100 100 100 100 100 100 100 19 100 100 100 25 42 42 
open mire 55 71 38 58 60 62 57 61 57 62 66 66 61 34 35 
open mire d 100 100 100 100 100 100 100 100 0 100 100 100 0 0 0 
water 99 98 95 99 99 99 98 99 99 99 99 99 99 97 98 
streamside 50 100 28 100 42 50 37 52 53 34 36 44 45 100 100 
spring 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 
meadow 67 73 57 72 74 75 70 75 46 88 80 81 45 45 45 
field 87 84 84 85 88 87 87 87 89 88 89 90 89 86 94 
road 70 68 62 69 69 66 63 67 55 67 66 66 55 46 48 
yard 55 50 50 54 58 49 50 60 59 56 56 56 58 61 60 
sand 97 94 95 98 97 98 95 100 100 99 99 99 100 100 100 
Total 78.0 73.1 73.8 77.1 78.0 78.1 76.0 78.6 79.1 77.9 78.0 78.2 78.7 51.8 54.6 
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Table 7. Some extra classification accuracy calculations for the classification with the highest accuracy 
(all data, 100 features, ancillary data adjusted). In the table, there are some classes that do not exist in 
training data. First, some patches could not be assigned to any class due to missing data. This was because 
features based on 10 m resolution data could not be calculated for all segments.  Class NA is assigned to 
these patches. Second, mire drainage mapping was based on ancillary data; therefore, also drained pine 
and open mires were mapped in some classifications. 
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72 9 23 

xeric1 0.5 0.3 0.2 0.2 0.0 0.3 0.0 0.2 
 

56 8 41 
xeric2 4.0 3.8 1.5 0.3 1.2 3.2 0.6 0.9 

 
68 16 22 

xeric3 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.1 
 

0 0 100 
mesic0 0.8 0.5 0.4 0.3 0.1 0.4 0.0 0.3 

 
53 9 44 

mesic1 8.8 8.3 3.2 0.5 2.7 7.0 1.3 1.8 
 

69 16 21 
mesic2 26.0 30.4 10.9 4.4 6.5 22.8 7.6 3.2 

 
68 25 12 

mesic3 11.1 11.6 7.1 0.5 6.6 7.8 3.8 3.3 
 

52 33 30 
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herb-rich1 0.7 0.2 0.8 0.5 0.3 0.1 0.2 0.6 
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43 29 48 
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spruce mire 2.6 1.2 2.8 1.5 1.3 0.5 0.7 2.1 

 
15 57 81 
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13 81 73 
open mire 0.3 0.3 0.2 0.1 0.1 0.2 0.1 0.1 
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0 100 0 
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97 1 2 
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0 0 100 

meadow 0.6 0.4 0.6 0.1 0.5 0.2 0.2 0.4 
 

25 54 65 
field 6.4 7.0 1.0 0.5 0.5 6.2 0.8 0.2 

 
86 11 4 

road 2.4 4.1 2.0 1.7 0.3 2.2 1.8 0.2 
 

53 45 6 
yard 1.9 2.2 1.5 0.3 1.2 1.3 0.9 0.6 

 
47 41 31 

sand 1.4 1.4 0.0 0.0 0.0 1.4 0.0 0.0 
 

98 0 2 
TOTAL 100 100 20.9 7.6 13.3 63.0 18.4 18.4     18 18 
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Table 8. Important features based on random forest run for all data and Boruta. Three most important 
features of all habitat classes that could be mapped are shown. Habitat class numbers are given in Table 3. 
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Figure 1. Our study area located in Central Finland. On the left side is a false color WorldView-2 image 
(red channel: band 7/NIR1, green: band5/red, blue: band3/green) from our study area. Study area is 
divided into three sub-areas which are marked with black rectangles. Field work reference polygons 
inside sub-areas are drawn in black. 

 
Figure 2. A flow chart of the used classification approach, in which Fractal Net Evolution Approach 
(FNEA) segmentation was coupled with random forest classification. 
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vectors for each 
segment 
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Post-classification 
adjustment using 
ancillary data 

Feature importance 
analysis 
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Figure 3. Classification example inside easternmost sub-area. a) WV-2 imagery (Red: band 7, G:  band 5, 
B:  band 3) shown with segmentation boundaries. b) Field work reference polygons shown with 
segmentation boundaries. c) Classification output with 100 features selected with Boruta. d) Classification 
output with data split and 100 features selected by Boruta and ancillary data. Also mapped stream 
network and 1 m vertical distance to the nearest stream are shown. 
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Figure 4. Correlation image of the different features used in classification. Features are in the same order 
as in Table 2. WV-2 layer mean and std values are between values 0 and 0.05, GLCM features between 
0.05 and 0.366, and wavelet features between 0.368 and 0.66. WV-2 10 m features are between 0.66 and 
0.71, NDVI features are between 0.71 and 0.796, CHM features between 0.798 and 0.89, and topographic 
features between 0.9 and 1. 
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Figure 5. Sammon’s map of all segments in training data using 100 features in whole study area. 
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Figure 6. Proximity image of random forest classification using training data of the whole area and 100 
features selected by Boruta algorithm. Values show how close to each other different segments are. Value 
1 means high proximity and 0 low proximity. Different segments are in x and y axes as clarified in Table 4. 
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