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Abstract

This thesis consists of an overview and four research papers. The subject is
the application of gauge/gravity dualities to strongly coupled quantum field
theories, and especially thermodynamical computations in a class of bottom-up
holographic models.

In the overview section, we first briefly review the elements of gauge/gravity
dualities. We then present in some detail a simple model, dynamic AdS/QCD,
where the effect of fermions on a holographic system is input via the running of
the quark anomalous dimension. We find that this is enough to reproduce all of
the common lore concerning walking technicolor theories.

We then review the Improved Holographic QCD (IHQCD) model for Yang-
Mills theories, and present a model of a quasi-conformal quantum field theory
based on it. We compute the phase diagram of the model, its particle spectrum,
and finally study the melting of the bound states via the spectrum of quasinormal
modes at finite temperature.

Finally, we review Veneziano QCD (VQCD), which extends THQCD with
an explicit model for fermions, and present methods for computation of the
phase diagram and various thermodynamic quantities in the model. The phase
diagram is computed at both finite temperature and finite chemical potential,
where we find a phase diagram broadly in line with expectations from field theory
approaches. We also briefly touch upon the zero temperature finite density
structure of the theory, although a more detailed investigation is left for later.

Overall, we find that the holographic method gives results that are quantitively
in line with those from other approaches to quantum field theory, while allowing
more tractable calculations in the strong coupling regime. This gives confidence
that while the holographic approach is not a controlled approximation, it will be
able to give significant insights to strongly coupled field theories. A more detailed
matching of the potentials in VQCD, together with a detailed investigation of its
zero temperature structure, is left for future work.
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Chapter 1

Introduction: Nature and strongly
coupled field theories

"What do we know ... of the world and the universe about us? Our
means of receiving impressions are absurdly few, and our notions of
surrounding objects infinitely narrow. We see things only as we are
constructed to see them, and can gain no idea of their absolute nature.
With five feeble senses we pretend to comprehend the boundlessly
complex cosmos, yet other beings with wider, stronger, or different
range of senses might not only see very differently the things we see,
but might see and study whole worlds of matter, energy, and life which
lie close at hand yet can never be detected with the senses we have.”

—H.P. Lovecraft, "From Beyond", 1920—

1.1 An overview of the fundamental theories

Since Lovecraft’s time, we have been able to extend our understanding of nature
immensely beyond that immediately available from our natural senses. The
fundamental structures that give rise to the world around us have been explained
to astonishing precision by physics. Our everyday technology is a testament
to our success in understanding the structure of matter in terms of quantum
mechanics and atomic theory. The results from collider experiments show that
in terms of individual particles the understanding is very detailed, and the
matching of particle cosmology, such as big bang nucleosynthesis, to astronomical
observations tells that even at very large scales our understanding is accurate.
We have strong reasons to believe that fundamentally all of this is nothing but
elementary particles and their interactions.

Perhaps the most obvious force in our everyday life is gravity. The physical
theory which describes gravitation well enough to explain why the reader of
this text isn’t currently floating freely, how planets, stars, galaxies and larger
structures of the universe are formed, and how all of this came about from a



near-singularity at the beginning of time, is called the general theory of relativity
(GR). Whereas all other fundamental theories of physics are descriptions in terms
of quantum fields propagating and interacting in a background spacetime, general
relativity is a theory of the structure of spacetime itself. Since all the areas
of application for GR this far concern objects that are very large compared to
the elementary particles, it is not necessary for the description to be quantum
mechanical. Probing the quantum mechanical properties of gravity is expected to
require energies on the order of the Planck scale, which is an energy scale at which
the strength of gravity becomes comparable to that of the other fundamental
forces. The Planck scale is about 10'° times greater than the highest energies
achieved in particle accelerator experiments this far. In GR, at the semi-classical
level, spacetime is assumed to be a passive background to the quantum field
theories describing elementary particles at scales that are small but still much
larger than the Planck scale, and then the classical equations of GR determine
how all these small areas of space join together to form the larger whole. As
the theory is not quantum mechanical, these equations are (partial) differential
equations, for which approximation methods are known. Therefore, while the
practical difficulties can be formidable, solutions for GR can in principle be found
to any desired accuracy, if sufficient computing power is available.

The fundamental interaction from which the structure and behavior of matter
arises, from the atomic scales upwards and in the background dictated by gravity,
is the electromagnetic interaction. At such scales, the atomic nuclei can be
considered simply as a class of charged particles coupled to the electromagnetic
field. Electromagnetism is described in physics by a quantum field theory, known
as quantum electrodynamics (QED), which is a quantum mechanical description
of charged particles that obey a special type of symmetry known as an abelian
gauge symmetry. At the fundamental level, chemistry is then simply the quantum
electrodynamics of bound states of atomic nuclei and electrons, and all properties
of macroscopic matter come from the the interactions of these bound states.

Among quantum field theories, QED belongs to a category of weakly coupled
field theories. This means that, at least at low energies, the theory can be
described by degrees of freedom which behave almost as free particles, and it
is possible to construct its solutions by a systematic expansion around the free
particle solution. This method of perturbative solutions has allowed a thorough
investigation of QED, and has given it the status of the theory with the most
accurate match between calculation and experiment in the history of science: the
match between the theoretical and experimental determination of the anomalous
magnetic moment of the electron is better than 1 part in 10°.

Nuclear reactions are not described by QED. The inner structure of the
nucleus consists of two types of particles, the electrically neutral neutron, and
the positively charged proton. The proton and the neutron are composite objects
themselves, consisting of two types of particles called the up quark and the down
quark. The quarks are believed to be elementary particles.

The strong interactions which bind them to nucleons and nucleons to nuclei,



are described by a quantum field theory called quantum chromodynamics (QCD).
The difference to QED is that now the gauge symmetry has been generalized to
a non-Abelian symmetry, which technically says that the order of the various
symmetry operations do matter, unlike in the Abelian case. This leads to the
analog of the electromagnetic field in QCD interacting with itself.

In addition to QCD, an examination of the nucleus reveals another class of
interactions, also described by a theory based on a non-Abelian gauge symmetry,
although a different one than in QCD. This so called weak interaction concerns
both the quarks and the electrons, and requires the existence of another particle,
the neutrino. The interaction is called weak, since at long ranges its effects are
exponentially suppressed, and even at nuclear scales it is less significant than the
strong force.

In terms of its consequences, QCD is very different from QED: the fact that
the quarks are confined into nucleons (or more generally, hadrons, all of which
except for the nucleons are unstable and decay to stable particles), at the low
energies which concern ordinary matter, means that the degrees of freedom that
are directly observable are nothing like the solutions of the corresponding free
field theory. Therefore it does not make sense to build up solutions to QCD by
computing corrections to the free field theory, as none of the corrections need to
be small, at least at energies where hadrons are bound.

However, in QCD the coupling constant decreases as a function of the interac-
tion energy. Such a theory is called asymptotically free. In high energy collisions,
this means that perturbation theory can actually be used to describe the process
in terms of quarks and the force carrying gluons, and our current strong belief in
QCD as the correct description of hadrons and their interactions relies mainly
on this. The mapping between the hadrons and the elementary particles still has
to be fixed by a separate measurement, but once that is done at a single energy
scale, the evolution of the mapping as a function of energy can be derived from
QCD.

Methods for describing directly the strongly coupled, low-energy part of QCD,
are needed for a more complete understanding. One such method, which can
describe static quantities such as hadron masses, lifetimes, thermodynamics and
so on, at the expense of immense computational effort, is lattice field theory!.
Another method for modeling the low-energy features of QCD are effective field
theories, which model the low energy part of the interactions by constructing field
theories with the appropriate symmetries and matching the necessary coefficients
to experiment.

In light of all this, it is clear that our understanding of nuclear interactions,
and therefore the fundamental structure of ordinary (and unordinary!) matter is
mainly limited by our capability to do calculations in strongly coupled quantum
field theories. The subject of this thesis is a method for solving certain strongly
coupled theories exactly: gauge/gravity dualities. The approximation in using

Lattice field theory can, in principle, be also extended to dynamics, but no concrete
implementations exist at the moment



this method is that while a strong coupling theory is solved, it is not possible in
general to control exactly which theory that is. When modeling QCD-like theories,
this makes it a non-controlled approximation, since the quantitative results do not
carry guaranteed error limits with them. Nonetheless there is reason to believe
that qualitative features may be well represented, and it turns out after the fact
that even the quantitative match is better than would be naively expected. In
addition to their usefulness as computational tools for strongly coupled quantum
field theories, gauge/gravity dualities have immensely interesting connections to
string theory, which is a theory that combines gravity and particle physics into a
unified theory of quantum gravity and particle interactions

1.2 The Standard Model of particle physics

The Standard Model of particle physics describes the interactions of the ele-
mentary particles by a quantum gauge field theory with the symmetry group
U(l)y x SU(2)w x SU(3). Fermion fields describe the matter particles. A
complex scalar field spontaneously breaks the electroweak U(1)y x SU(2)w to its
U(1)gym subgroup, which is responsible for electromagnetism [1]. The remaining
unbroken SU(3) is the gauge group of QCD.

There are three matter generations, which are identical except for their masses.
Before considering the Higgs vacuum expectation value, the fermions are all
massless, so they have well defined chirality. This allows for the SU(2) part of
the electroweak gauge group to act only on the left-handed components. All the
left handed fermions are SU(2) doublets, and all the right handed fermions are
singlets. All the quarks are in the fundamental representation (anti-fundamental
for the anti-quarks) of the SU(3) of QCD, which confines them to hadrons. The
gauge bosons of QCD are the eight gluons.

The Higgs field is a complex scalar weak doublet. The Higgs potential has an
unstable local maximum at zero value of the field, and a stable minimum at a
non-zero expectation value. This breaks the electroweak symmetry, making the
electroweak gauge bosons massive expect for a certain combination of one of the
SU(2)w generators, say 72, and the gauge boson of U(1)y. This combination is
the photon of electromagnetism, which generates an unbroken symmetry in the
stable vacuum. Two of the bosons corresponding to broken generators, W=, are
electrically charged, with charge £1 respectively, and one, the Z°, is electrically
neutral.

Expressing the interaction terms between the fermion fields and the photon
in terms of the eigenstates of 72 gives the electric charges of the fermions in the
stable vacuum. The eigenvalues of the doublet states are? :I:%, and that of the
singlet states is 0. Combining this with the U(1)y hypercharge assignments given

2The choice of normalization is here such that the electric charge operator is Q = 73 + Y,
where Y is the hypercharge. The normalization @ = 73 + Y/2 is also commonly used, as then
the charges of the leptons are integers.



in table 1.1 leads to the electric charges observed in nature. The left-handed

Particle | SU(3) representation SU(2)w representation U(1)y hypercharge
L 1 2 -1
QL 3 2 5
ex 1 1 ~1
dr 3 1 -3

Table 1.1: Gauge group representations and hypercharge assignments for the
first generation SM fermions.

electron e; and neutrino vy, are the —% and +% components, respectively, of the
lepton doublet Ly, and the left-handed up-quark u; and down-quark dj, are the
—i—% and —% components, respectively, of the quark doublet (). For all of these
states except the neutrino, there is a corresponding right handed SU(2)w singlet
state. Their electric charges are the same as their hypercharges. Note how the
Higgs mechanism allows the left handed electron and neutrino to have different
electric charges even though they are different states of the same particle: the
symmetry breaking identifies them by their 73 eigenvalues. The same holds for
the up and down quark.

At this stage, all the fermions are still massless. Adding explicit fermion mass
terms is not possible due to the fact that the weak interactions are chiral. The
masses are added by introducing Yukawa interactions between the fermions and
the Higgs boson, which become mass terms proportional to the Higgs vacuum
expectation value. Each of the fermions have different Yukawa couplings, which
gives them their observed masses. The couplings are also different between each
fermion generation, breaking their degeneracy.

The resulting theory is in excellent agreement with experimental tests, and
remains so after the discovery of the Higgs boson in the LHC, with no signs of
discrepancy between theory and collider experiments so far. There are, however,
some theoretically unsatisfactory features about the Standard Model, and taking
cosmological observations into account, it is clear that the Standard Model must
be extended in order to explain all of the experimental data.

1.3 Beyond the Standard Model

The Standard Model of particle physics is compatible with all known precision
measurements. However, we know with certainty that this is not the full story.
On the observational front, cosmology tells us that most of the mass of the
universe is non-baryonic and electromagnetically non-interacting, known as dark
matter, and most of the energy density in the universe is dark energy [2]. The
Standard Model has no particle state corresponding to dark matter, and it
predicts either zero or order 10"°GeV* [3] vacuum energy density, depending on



whether one considers the zero-point energies of the fields to contribute to gravity
or not. It is then clear that Standard Model must be extended to explain these
phenomena?®.

From the theory point of view, the Standard Model is not completely sat-
isfactory. For example, its structure, with three generations of leptons and
quarks, only left handed neutrinos and a non-simple gauge group, seems ad hoc.
Is there a deeper explanation than simply compatibility with measurements,
that would explain this pattern? The mass of the Higgs particle, since it is a
scalar, is subject to renormalization with terms proportional to the square of
the cutoff. In the Wilsonian view of renormalization the bare mass is to be set
at the highest accessible scale, i.e. the Planck scale, and so the Higgs particle
gains huge corrections to its mass. This requires a a very fine tuning of the mass
at Planck scale in order to achieve the observed mass at low energies. This is
known as the hierarchy problem.

During the last four decades, there has been an immense theoretical effort to
find answers to these and many other questions posed by the Standard Model.
These efforts have produced a large array of models "Beyond the Standard
Model". Among them are supersymmetric extensions of the Standard Model,
variations of theories with a composite Higgs, and attempts at grand unification
which would explain the electroweak and strong forces via symmetry breaking
in a larger theory. With the first two years of LHC running, a number of these
models have been ruled out or at least severely constrained [4]. However, there
are many models which still remain viable, many of them with either fine tuning
of the parameters, or due to the fact that theoretical calculations are not well
under control, mostly due to strong coupling.

A proposed class of extensions of the Standard Model which purports to
solve the hierarchy problem, and also has dark matter candidates, is technicolor.
Technicolor stems from the observation that the Higgs mechanism of spontaneous
symmetry breaking has been seen before, in the theory of superconductivity.
The Ginzburg-Landau effective field theory approach describes superconductivity
as the spontaneous symmetry breaking of the gauge symmetry of electromag-
netism by a complex scalar field, quite analogously to the Higgs mechanism. In
superconductivity, a microscopic explanation for the symmetry breaking is the
Bardeen-Cooper-Schrieffer theory of superconductivity, where superconductivity
results from pairing of electrons into massive bound states. The scalar field of the
Ginzburg-Landau theory can be identified with the electron pair condensate. It
is therefore natural to assume that the Higgs mechanism is simply a low-energy
description of a BCS -like formation of a condensate which breaks the electroweak
symmetry.

A similar mechanism actually already exists in the Standard Model without
the Higgs mechanism, as the chiral condensate of QCD already spontaneously
breaks the electroweak symmetry. The breaking is, however, too weak, as the

3For the dark energy problem it is possible that some understanding of quantum gravity
will also be needed



induced gauge boson masses are smaller by three orders of magnitude compared
to the experimental values. The original technicolor then postulated another
QCD-like theory, which would have a larger value of the chiral condensate and
couple to the electroweak sector in the same way as QCD. The quarks of this
theory are called techniquarks. In the Standard Model, the Higgs field also
generates the fermion masses. In technicolor models, an extended technicolor
(ETC) theory, which adds yet another gauge group under which both the ordinary
quarks and the techniquarks are charged, is usually introduced for this purpose.
At low energies, this can be described by a four-fermion interactions, and the
term with two techniquark fields and two ordinary quark fields would play the
role of a mass term, due to the existence of the techniquark condensate.

This simple model is in conflict with observations. In order to give a large
enough mass to the heaviest quark, the top quark, the scale related to ETC
cannot be too high. The limit turns out to be too low, as the effects of the ETC
theory in terms of flavor changing neutral currents would already have been
observed.

The way out of this is to tune to the technicolor theory such that its renor-
malization group flow takes it very near, but not quite to, an infrared fixed
point. This enhances the value of the techniquark condensate, allowing larger
masses while the ETC scale can remain large and in accord with the experimental
constraints. Also the near-conformality of the field theory helps reduce the
S-parameter, which describes deviations from the Standard Model, and which is
experimentally known to be small. Since the renormalization group flow near the
would-be fixed point is very slow, i.e. the condensate walks instead of running,
these are called walking technicolor theories. [5-7|

The difficulty in analyzing such theories stems from the fact that the essential
features, such as confinement of the techniquarks and the formation of the chiral
condensate, are all strong coupling dynamics. In the case of QCD, access to
experimental results allows gaining intuition about the inherently strong coupling
features in order to study the theory and build effective models. That this is not
available for technicolor makes it difficult to compute the exact consequences of
the models. In lattice simulations of near-conformal theories, the extremely slow
evolution of the coupling constant makes extrapolation to the continuum limit
challenging [8-18]. This is why all methods applicable to strong coupling physics
are very valuable for technicolor phenomenology, and as such we will often in
this thesis consider the results obtained from the holographic models in light of
technicolor models.

1.4 Gravity

General relativity generalizes the concept of Minkowskian spacetime in special
relativity to allow curvature, resulting in a Lorentzian manifold. Generalizing the
concept of a free particle to mean an object which moves along the geodesics of



spacetime, gravitation is found to be a fictitious force resulting from the curvature
of that spacetime.

This explains the effects of gravity on matter, but it does not explain how
matter affects the gravitation, i.e. the curvature of spacetime. That connection
is given by the Einstein field equations,

1 8rG
R/J,V - §R 9uv + A Guv = C_TMV7 (11)

4
where R, is the Ricci tensor, R is the Ricci scalar, g,, is the metric tensor, A
is the cosmological constant, and 7, is the energy-momentum tensor. These
equations can be derived from the Einstein-Hilbert action
A
S = / dx4\/—_g [

167G

(R—2A) + Lo |, (1.2)

where £,, is the Lagrangian from which the energy-momentum tensor 7}, results.

With the Einstein field equations, given a classical energy-momentum tensor
for the system, the gravitational problem is fully determined, even though solving
the equations can in practice be very involved. The story of theoretical gravity
does not end here, however. First of all, the Einstein field equations predict their
own failure: they generically have solutions where the energy density diverges
and the spacetime becomes singular, such as is the case in the Schwarzschild
solution. The Penrose-Hawking singularity theorems effectively guarantee that
our universe contains areas where the Einstein field equations predict singularities,
so they cannot be banished by simply decreeing that they are not physically
acceptable [19]. The second major problem with GR is that it is incompatible
with quantum field theory, if the quantization is carried out by any of the well-
known methods. This is manifested as non-renormalizability of gravity when it
is quantized canonically as a field theory in the Arnowitt-Deser-Misner (ADM)
formalism [20].

The two problems above are most likely connected: whenever singularities
tend to form, the volume of spacetime where the curvatures are large is small,
and in such short scales quantum effects should be significant for the gravitational
field. These are precisely the same effect which are non-renormalizable in the
naive quantization of gravity. Therefore, it is generally expected that in a correct
quantum theory of gravity these singularities are softened or even eliminated.

The quest for a consistent quantum theory of gravity has turned out to
be longer and more demanding than expected. Approaches beyond gravity
as a quantum field theory have included loop quantum gravity, which is in
essence a canonical quantization of gravity by taking background indepence as a
starting point, non-commutative geometry, which considers the geometry to have
a quantum uncertainty and causal dynamical triangulations, which attempts to
explicitly construct a model of spacetime from more primitive building blocks.
The specific theory of quantum gravity that we are concerned with here is also
the most well studied: string theory.



1.5 String theory

In the Standard Model of particle physics, the elementary objects are point
particles. While they are described by a theory quantized fields, the point
particle interpretation is deeply embedded, for example via the Fock space
representation of the field theory Hilbert space via single particle states. The
string is considered to be the elementary object of the theory. In its simplest
form, the action of a single string is taken to be its surface area that it sweeps
out as it moves in spacetime. This is the Nambu-Goto action:

Sng = —T/dA, (13)

where T is the string tension, which is in principle the only undetermined
parameter of the theory, and dA is a differential surface area of the string
world-sheet with respect to the metric of the spacetime in which the strings
move.

The degrees of freedom in classical string theory in D spacetime dimensions
are the D spacetime coordinates of the string world sheet, parametrized by
the two coordinates on the world sheet. Quantizing this theory leads to a 2
-dimensional conformal quantum field theory for the D -scalar fields. A detailed
analysis of such a theory leads to the conclusion that in order for the Lorentz
algebra to close, D must be 26. Unfortunately, in such a theory there is a tachyon
in the spectrum of the string vibrations, which cannot be consistently decoupled,
leading to an instability of the theory. Also, there are no fermions in the spectrum
of spacetime excitations, which is in conflict with observations.

Both of these problems can be cured at once by supplanting the D bosonic
fields with 2D fermionic fields, which combine to form supergravity multiplets on
the world-sheet. This allows projecting out the tachyonic states, and introduces
states which are spacetime fermions. The critical dimension, where Lorentz
symmetry is preserved on the quantum level, is now 10, and in this case, it is
actually enhanced to supersymmetry.

The various modes of oscillation give a lot of structure to string theory. It
turns out there are five different theories in which the tachyons can be projected
out. In all string theories, the low-energy spectrum of closed string excitations
contains a spin-2 boson, which gives rise to General Relativity in the classical
limit. Therefore string theory is a candidate for not only a unified theory of
particle interactions, but also a theory of quantum gravity.

The various types of string theories are connected by dualities. The current
consensus is that the dualities are actually strong enough to suggest that they
are all limits of a single theory in 11 dimensions, called M-theory. As the
string theories themselves lack a non-perturbative definition, there is no general
definition for M-theory.
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Chapter 2

Gauge/gravity dualities

"Men of broader intellect know that there is mo sharp distinction
betwixt the real and the unreal; that all things appear as they do only
by virtue of the delicate individual physical and mental media through
which we are made conscious of them; but the prosaic materialism of
the majority condemns as madness the flashes of super-sight which
penetrate the common veil of obvious empiricism.”

—H.P. Lovecraft, "The Tomb", 1917—

Gauge/gravity dualities are a class of conjectured equivalences between quantum
field theories on flat space and theories with gravity on higher dimensional
manifolds. In the best justified form of this duality the higher dimensional theory
is type IIB super string theory on an AdSs x S® background space-time, and
the conformal N' = 4 super Yang-Mills theory in 4D flat space [21]. This is
called the Maldacena duality. Since the S° in the higher dimensional space-time,
often called the bulk, is compact (and usually taken to be small), this duality is
between a 4D theory without gravity, and a 5D theory with gravity.

In addition to the remarkable connection between two theories of different
dimensionality, the correspondence of the various limits in this duality is also
very interesting. The strong coupling limit of the field theory corresponds to a
limit where all massive fields in the bulk theory become infinitely massive and
therefore decouple. That is, the limit of the field theory which is difficult to
compute, produces a considerable simplification in the bulk theory. Furthermore,
taking the number of colors in the field theory to infinity corresponds to the
classical limit of the bulk theory, allowing the computation of full quantum field
theory observables by solving a classical theory.

This is of course not only very interesting from the theoretical point of view,
but also as a computational tool for strong coupling calculations in field theory.
Unfortunately, the N' = 4 super Yang-Mills in the Maldacena duality is rather
removed from the Standard Model, and also from plausible extensions of it.
However, while the details of the duality are intimately connected to string
theory, supersymmetry and conformality, its overall structure is not. As a matter
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of fact, one can write down the so called master formula for any theory in a space
with a boundary at infinity and use it to formally define another theory on that
boundary, provided the quantum numbers of operators on the boundary and
fields in the bulk match. Of course, the question of whether the boundary theory
thus defined is consistent, and especially whether the duality works the other way
around in defining the bulk theory given the boundary, is very involved. These
issues may well spoil naive generalizations of the duality. There are, however,
indications that holography might generalize to beyond string theory, and rather
be a general property of theories of quantum gravity [22], as also suggested by
the the rather general arguments behind the holographic principle. See also [23]
for an approach to generating a 5D holographic formulation of QCD from the
worldline formalism of the field theory description.

Independent of theoretical attempts to justify dualities in more general
settings than the Maldacena duality, there have been two closely related very
active research programs: for one, trying to modify the string theory side such
that the arguments behind the original duality can be more or less applied
while introducing phenomenologically more realistic ingredients, such as breaking
supersymmetry and conformality, to the field theory. This is called the top-down
approach. The other approach has been to take the master formula and the
holographic dictionary from the Maldacena duality, and apply it to bulk theories
chosen by fiat to reproduce some desired features in the boundary field theory,
and leaving the justification of this procedure to the results. This is called the
bottom-up approach.

In the rest of this chapter we will introduce some of these concepts in more
detail (see for example [24, 25] for pedagogical introductions to string theory
and AdS/CFT, respectively), and in the last section we will present a specific
bottom-up model which has also been the subject of the work done in paper [I11]
of this thesis.

2.1 The holographic principle

A precursor to gauge/gravity dualities is the holographic principle of quantum
gravity. In its more restricted form, the holographic principle says that a black
hole can be entirely described in terms of the degrees freedom on its horizon.
In a more general form, it claims that quantum gravity and all quantum field
degrees of freedom in a general spacetime volume can be described by a theory
on the boundary of that volume [26].

The roots of the holographic principle go back to the black hole information
paradox. According to Hawking’s famous semi-classical quantum gravity argu-
ment |27, 28|, black holes emit Hawking radiation, which is thermal radiation
with an almost black body spectrum. As the intensity of the Hawking radiation is
inversely proportional to the mass of the black hole, this means that a black hole
in vacuum will eventually evaporate to nothing but black body radiation. This
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poses a problem for unitarity in quantum gravity: suppose a particle in a pure
state enters a black hole. The black hole gains a certain amount of mass, and
continues its evaporation. If no more particles enter the hole, it will eventually
evaporate entirely, leaving only thermal radiation behind. The original pure state
has now been transformed into a mixed state, which has destroyed information
and broken unitarity [29]. Which is wrong: Hawking’s argument, or the very
structure of quantum mechanics when applied to quantum gravity?

Attempts to resolve the paradox lead to the conjecture of black hole thermo-
dynamics [30, 31], according to which a black hole is a thermodynamic state with
an associated entropy and temperature. Furthermore, the entropy of a black hole
must be proportional to its horizon area rather than its volume. Interpreting
the entropy as the amount of information needed to describe the black hole, this
means that the number of degrees of freedom in the black hole must also be
proportional to the horizon area, and therefore the black hole must be describable
by a theory referring only to its surface.

Now consider a lump of matter that is just about to fall into a black hole,
and enclose both the lump and the black hole with an imaginary surface. If the
rest of the enclosed volume is empty, one can just wait for the matter to cross
the event horizon, and then shrink the surface to touch the new event horizon
everywhere. Then by the above argument the black hole, which now includes the
lump of matter, can be described by a theory on the imaginary surface. However,
if the full theory describing the black hole and the lump of matter together is
unitary, then we could time-evolve the theory in reverse to recover a description
of the black hole and the lump of matter on the original enclosing surface. Since
this thought experiment did not use any properties of the lump of matter itself,
it seems that it should extend to any system. Therefore a theory which unifies
quantum gravity and quantum field theory should be describable overall by a
theory on a surface rather than a volume. This is the holographic principle.

The above argument is of course of the handwaving kind, and while the
original arguments by t’Hooft, Susskind and others are less so, they are by
no means rigorous [26, 32|. They do not give an explicit construction for the
holographic theory nor do they prove its existence. The first concrete definition
for a holographic theory came from a setting rather different to black hole physics
in Einstein gravity: a string theory in an AdSs x S° background was suggested
to have a holographic description in terms of the four-dimensional N’ = 4 super
Yang-Mills theory. This is the Maldacena duality [21].

2.2 The Maldacena duality

Among the solutions of the low-energy theory of string theory, supergravity, there
are p-branes, which are solutions that are singular along a p-dimensional subspace
of spacetime. A O-brane is a point singularity, a 1-brane is a line singularity,
a 2-brane is a membrane (from which the term p-brane is derived) and so on.
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It turns out that these same objects appear as endpoints for open strings with
Dirichlet boundary conditions.

In addition to appearing in the low-energy approximation, p-branes can also
be identified in the full string theory as Dirichlet-branes, which are endpoints of
open strings. Due to this identification, they are called Dp-branes. Dp-branes
generate gauge theories very elegantly, essentially via a refinement of the Kaluza-
Klein mechanism. Consider a stack of N coincident Dp-branes as endpoints of
open strings. The ends of the strings appear as point-like particles from the
viewpoint of the branes, while the strings themselves are free to move in the higher
dimensional bulk spacetime. The endpoints of the strings on the brane carry
SU(N) charges, whose electrodynamics are described by the Dirac-Born-Infeld
(DBI) -action. The DBI -action gives a non-linear generalization of Yang-Mills
theories, and reduces to the ordinary Yang-Mills action at small field strengths.
Therefore, at the low energy limit, the resulting theory becomes the dimensional
reduction of D =10, N'=1 U(N) super Yang-Mills theory to p-dimensions.

This leads to a justification of the Maldacena duality in the following way
[24]: Consider N parallel coincident D3-branes in Type IIB string theory, where
5 dimensions are compactified on a sphere. As mentioned above, the low-energy
theory of the open strings on the brane is a supersymmetric gauge theory on
the world volume of the brane. In this case, the dimensional reduction leads
to N = 4 super Yang-Mills in the four spacetime dimensions of the D3-brane.
The low-energy limit of the closed string degrees of freedom is the free type I1B
supergravity. Furthermore, on the low energy limit these two degrees of freedom
become decoupled, and therefore the whole system is described by the N/ = 4
super Yang-Mills and the supergravity theory, with no interactions between them.

On the other hand, one can take the low energy limit first and get directly
type IIB supergravity with the p-branes embedded in the bulk. Considering the
low-energy, i.e. long wavelength, spectrum of excitations around this background,
it turns out that excitations which start out in the bulk do not see the brane,
since it is much smaller than their wavelength. On the other hand, excitations
which are near the brane are redshifted to long wavelength from the point of view
of an observer at infinity. These excitations are separated from the bulk by a
potential barrier, and become confined to the near-brane volume. In that volume
the metric becomes AdSs times the compact S° with the brane at the boundary
at infinity of the AdS5. Note that from the point of view of a near-brane observer,
the excitations can be of arbitrarily high energy. Therefore in this view we have
again two decoupled theories, one of which is the type IIB supergravity, and the
other is the full type IIB string theory but on an AdSs x S® background.

In order for these two limits to be consistent with each other, it is necessary
that the resulting theories are the same. Since both exhibit a free type 1IB
supergravity in flat space, the remaining parts, type IIB string theory on AdSs x S®
and N = 4 super Yang-Mills must also be equivalent. Since at the limit the
brane is at the boundary of AdSs, the spacetime background of the gauge field
theory is identified with that boundary.
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Note that while the inspiration for the duality comes heavily from string
theory physics near D3-branes, the branes do not appear in the final conjecture.
The statement is simply that the string theory on the AdSs background is
equivalent to the field theory on a lower dimensional flat spacetime, which is
conformally isomorphic to the boundary of the AdSs.

There are many features of this duality that can be immediately checked
for consistency. The most obvious are global symmetries. The SYM theory
has an unbroken conformal symmetry in four dimensions, which is isomorphic
to SO(2,4). On the other hand, the AdSs background of the string theory
is symmetric under the same group. The S° part of the background has an
SO(6) symmetry, which matches up with the R-symmetry of the field theory.
The remaining symmetries are the supersymmetries, and both sides have 32
supercharges, completing the matching of the symmetry groups.

To go further, an operational definition of the duality is needed in order to
compute quantities on both sides of the duality and compare them. Such a
definition is given by the master formula and the holographic dictionary [33, 34]:

<exp/¢0(9>SYM = Z |lim 2274p(T, 2) = ¢o(Z) : (2.1)
20 String

On the left side, the expectation value is with respect to the super Yang-Mills
theory path integral, O is an operator in that theory, and ¢q is an external field
sourcing that operator. On the right side there is the generating functional of
the string theory on-shell amplitudes, where ¢(Z, z) is a field in the string theory
bulk, z being a coordinate such that the boundary at infinity of the AdSs is at
z = 0. The exponent A is the conformal weight of the operator O.

Given a holographic dictionary, which identifies the string theory fields in the
bulk which are dual to corresponding operators in the super Yang-Mills theory,
this prescription allows computing any field theory observables given knowledge
of the string theory partition function as a function of the boundary asymptotes
of the fields.

2.2.1 The supergravity and classical limits

While the the master formula gives a concrete formulation for the duality, it is of
little computational use directly: evaluating either the string theory partition
function or the N/ = 4 SYM path integral for arbitrary sources is an unsurmount-
able problem at the moment!. The step necessary for making headway is an
analysis of the relation between the couplings of the two theories.

An analysis of the DBI -action shows that the string coupling g, is proportional
to the square of the Yang-Mills coupling. The constant of proportionality depends
on the normalization of the Yang-Mills generators, but with a certain often used
choice we have

2
Gym = 47Ys. (2.2)
L Although it is conjectured that A" = 4 SYM may actually be an integrable theory [35, 36].
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From the near-brane -limit we can read off the radius L of the AdS; as
L* = 4mwg,Na”, (2.3)

where N is the number of branes on the stack, and o/ = [2/2, where [, is the
fundamental string scale.
From Eq. (2.2) we see that the 't Hooft coupling A = g2, is just

A= dmg,V, (2.4
and combining with Eq. (2.3) we get

L4

These relations show very interesting behaviour at certain limits: let us first
of all take the limit N — oo, while keeping the 't Hooft coupling fixed. Eq. (2.4)
then shows that this leads to g — 0. That is, the string loops are suppressed,
which means that the string theory becomes classical. Here we have one of the
most striking, and useful, features of holography: the dual of large N, but fully
quantum mechanical, field theory is a classical string theory. In addition to
it’s implications on the foundations of physics, it makes it at least much more
tractable to evaluate the right side of Eq. (2.1), since now the problem is reduced
to finding the saddle points of the action, i.e. solving differential equations.

On the other hand, taking the limit A — oo while keeping L fixed, that is,
holding the geometry unchanged, corresponds to o — 0. Since the masses of
the string excitations are proportional to 1/ Vo!, this leaves only the massless
modes in the spectrum. This is the supergravity limit.

Combining these limits gives the most useful form of the duality from the
point of view of strong coupling applications. In that case the dual to the super
Yang-Mills field theory, at infinite 't Hooft coupling and infinite /V, is classical
supergravity on an AdSs background. Solving classical field theories, while still
technically non-trivial, is in principle well understood. In addition, for a classical
solution the boundary conditions in Eq. (2.1) can be straighforwardly evaluated,
yielding the expectation values of operators in the field theory dual.

2.2.2 Tests and applications of the duality

At the classical supergravity limit, some straightforward tests can be carried out
by comparing calculations on both sides of the duality. While in general, the
computations are at opposite limits, the large amount of symmetries protect some
observables, allowing a reliable comparison. For example, conformal symmetry
constrains the form of free field propagators in the super Yang-Mills theory.
Computing these propagators from the dual supergravity description one gets
precisely the required form for scalars, vectors and higher rank fields. All such
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tests which have been carried out have indeed found a match, thus supporting
the duality at least on the classical supergravity limit.

Once faith in the duality has been established, one can begin to use it to
compute field theory observables for large N, large A\, N’ = 4 super Yang-Mills.
The already classic results include the ratio of shear viscosity to entropy density,
1= 4 , which was also conjectured to be a lower limit for any field theory with a
gravitational dual [37], although exceptions to this have now been found [38, 39].
The entropy and stress-energy tensors of the field theory at finite temperature are
also simple to compute, and the results match with those of the Stefan-Boltzmann
limit of the conformal field theory, except for a factor of 3/4, which is a strong
coupling correction. While the simplicity of this correction may feel surprising,
it is actually the conformal symmetry which constrains the correction to be no

more than a constant of proportionality.

2.3 Holography and the renormalization group

From the field theory point of view the duality adds an extra dimension relative
to the usual four spacetime dimensions. This dimension can be interpreted from
the field theory point of view as a renormalization scale, and the radial evolution
of the metric under the equations of motion as a renormalization group flow.

In the bulk space, one can identify the radial coordinate with an energy scale
[40, 41]. Let r be the radial coordinate in the string metric, where the boundary
of AdS is at r = co. Given a local excitation on the boundary field theory, one
can show from the solutions of the wave equation in the bulk that the excitation
affects a transversal area of size

O ~ ng (2.6)

r
at the spacetime volume at r. This corresponds to energy F ~ r. Consider
now a four-volume at large, but finite ry. This is also a valid surface where to
set the boundary conditions, and according to Eq. (2.6), the relation between
boundary conditions of the field theory at r = oo and at ro is that point like
excitations at r = oo spread out over a region of size ~ r— Therefore the evolution
of the solution along the radial direction, according to the bulk equations of
motion, corresponds to a coarse graining of the full solution. This is precisely
the philosophy in the Wilsonian view of renormalization, recast in a holographic
form.

In the Maldacena duality the boundary field theory is conformal at the full
quantum level, so the beta functions are all identically zero. In the bulk theory,
this is borne out by the fact that the dilaton scalar, which is dual to the 't Hooft
coupling, is a constant. In theories where the geometry in the bulk differs from
pure AdS, of which we will say more in the next section, in general the bulk
dilaton field is not constant in the radial direction. At radial position r, we
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can consider the dilaton field as sourcing the same operator it sources in the
boundary, but at energy scale E ~ r. Therefore the value of the field at that
position can be considered as the coupling of the operator at that energy scale.
This allows identifying the beta function as

s = p A

B AN 2.
el (2.7)

where the renormalization scale p has been identified with the coordinate 7.
In general this identification is only up to a multiplicative constant, and for
non-conformal theories it is unambiguous only in the UV, although see [42] for
work on clarifying this in the case of general Einstein-Dilaton theories.

As all fields in the bulk are sources for operators, their values at a finite
r can be considered as factors multiplying the operator at that energy scale,
1.e. renormalizations of the coupling of that operator. Therefore to each bulk
field there corresponds a beta function, with a similar definition as in Eq. (2.7).

The analogy between renormalization in field theories and holographic duali-
ties extends even further. Just as in a field theory there are divergences related
to the UV integrals, which must be regulated and renormalized, there are also
similar divergences in the corresponding gravity duals. In the gravity theories,
the divergences come from the boundary of the AdS, where the metric diverges.
For example, in order to extract the energy-momentum tensor, which is sourced
by the metric, one must subtract the divergent background metric first. This
holographic renormalization can be matched one-to-one to renormalization in field
theory, although the exact renormalization scheme this leads to is, unsurprisingly,
not any of the usual field theory schemes. Computing the beta functions from
this renormalization is of course consistent with results from the formula above.

The connection between gauge/gravity dualities and renormalization group
flow in quantum field theories is of great importance both theoretically and from
the point of view of constructing bottom-up models in holography, and will be a
recurring theme in the following discussion of the papers [III, I, II, IV].

As a final point before getting to the core matter of this thesis, we will briefly
review the ways in which the Maldacena duality can and has been extended for
modeling more realistic theories.

2.4 Holographic modeling: top down, bottom up
and middle across

While many interesting general results can be derived from the AdSs;/CFT corre-
spondence, and some other results can be argued to apply at certain situations
for more realistic theories, from a phenomenological point of view it would be
even more interesting to have a gravity dual for QCD, or QCD-like theories
in the case of beyond the standard model physics. The arguments behind the
AdS/CFT correspondence are however heavily based on symmetry and especially
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supersymmetry, so any kind of rigorous formulation for a QCD gravity dual
seems to be out of reach at the moment. This has lead to holographic modeling,
which attempts to embed as many features of QCD as possible in the context of
holography.

In addition to interest stemming from strongly coupled field theories in particle
physics, in the recent years a lively field of modeling condensed matter problems
by holographic dualities has sprung up, see for example [43-45]. As the interest
in holographic QCD methods has also moved toward finite baryon density, the
gravity descriptions in these two applications are actually closely related, and
there has been significant dialogue between these fields.

In trying to build holographic models closer to the desired phenomenology,
whether that is QCD, BSM models or condensed matter, there are two main
approaches. The conceptually simpler, although technically more demanding,
approach is to start from what we know. That is, take the Maldacena duality as
given, and generalize it only minimally by assuming that in general, string theory
on an asymptotically AdS space is dual to a field theory on its boundary. Then
one can try to modify the string theory background and analyze the resulting
operators on the field theory boundary in order to find out the modifications
that result in the boundary theory. This is known as the top-down approach.

The major downside of the top-down method is its difficulty. The analysis of
various backgrounds in string theory or supergravity is technically very demanding,
and typically only asymptotic results can be easily achieved. Evaluating the
correlators on the boundary theory from Eq. (2.1) requires solving the equations
of motion for general boundary data, which is quite difficult for the full non-linear
equations of motion. Usually a large group of supersymmetries is needed in order
to make the bulk theory tractable, which makes it difficult to match to boundary
theories which typically only have gauge symmetry and Poincaré symmetry. All
of this of course also serves to make the top-down models more predictive. See
for example [46, 47| for reviews on top-down models for QCD, and [48, 49| for
some examples of top-down models for technicolor theories.

The other method is to generalize the AdS/CFT duality maximally, that is,
to say that any theory of gravity in the bulk is dual to a boundary theory via
the master equation, Eq. (2.1). In this way we get to select the bulk theory such
that it has tractable classical solutions and, by using the holographic dictionary
in reverse, that the duals of the fields correspond to operators that we want to
model in the boundary theory. This is called the bottom-up method.

This is of course a much bolder suggestion than the generalization needed for
top-down methods. There is however some evidence that the generalization may
not be entirely unfounded [22, 23, 44|. For one, the holographic principle comes
only from very generic considerations of semi-classical gravity and quantum field
theory. Taking this argument seriously, and further assuming that holography
appears similarly as it does in AdS;/CFT, one is tempted to claim that any
theory of classical gravity and quantum fields on an asymptotically AdSp space,
for which there is a completion to a consistent theory of quantum gravity, is dual

19



to a D — 1 dimensional quantum field theory. This would include at least any
model that is a low-energy approximation to any asymptotically AdS vacuum in
the string theory landscape. If there are other theories of quantum gravitation
that are consistent and fulfill the holographic principle, they would generate
more holographic duals for field theories.

Unless the completion of the bulk theory to quantum gravity is known, the
duality is expected to break down at the UV limit of the bulk theory. In the
usual application of holographic dualities the bulk theory is taken to be classical
and at that limit explicit bulk quantum gravity is not needed. In the AdS;/CFT
-case, this is manifest as a duality between classical string theory and large N,
SYM -theory. A plausible generalization of this to the general case would then
be that the classical limit of the bulk theory, which is well defined at the bulk
UV -limit, is dual to a field theory which has an infinite number of local degrees
of freedom. From a more explicit point of view, Marolf has recently argued [22]
that holography can be found from essentially the quantum generalization of
Gauss’s law in the bulk.

Many actual bottom-up models take the approximations further, such as
setting a fixed background. In this case they are not even classical theories of
gravitation, and are therefore certainly not exactly dual to any field theory. The
hope is however that some essential features of a field theory will be modeled.

Even if we accept the above argument about the wide-reaching generality
of gauge/gravity -dualities, there are several challenges facing the bottom-up
program. The first one is encountered in building the model, since the holographic
dictionary only fixes the boundary asymptotics, and therefore only the near
boundary action, of the bulk fields when the desired boundary operators are
given. The IR part of the action must be fixed based on arguments of simplicity,
desired IR behavior of the dual theory and whatever other information is available.
This is of course an ambiguous procedure, and usually after all possible general
knowledge has been used, we are still left with a number of free constants or even
functions of the fields. The procedure then continues by computing a number of
observables with known values (from other calculational methods, such as lattice
or effective field theories, or experiment) and matching their values by adjusting
the free parameters. After the parameters are so fixed, all new results are then
predictions of the model.

The bottom-up method defines the action in the bulk, and defines the dual
theory via Eq. (2.1), which gives the operators of the theory. Determining them
would require a solution of the full bulk theory with arbitrary sources, and even if
we could do that, we would not directly get the fields on the boundary. Therefore
in bottom-up methods we usually cannot write down the action or the equations
of motion of the boundary theory, and due to this they are not in any sense
controlled approximations. Rather we construct the model, compute with it, and
then judge its validity based on the results.

One more way to construct gauge/gravity models is a mixture of these two,
which one could call a middle across method, or string-inspired bottom-up. In
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this case, take the overall attitude of the bottom-up -program, in that the goal
is simply to construct whatever bulk action produces the correct results (by any
suitable definition of correctness), but then take heed of lessons that can be
learned from string theory constructions. For example, whereas most bottom-up
models implement fermions by linear terms in the action, dual to boundary
fermionic operators, a string inspired choice might be to instead take the DBI
-action for a space-filling brane in flat space. Then simply assume that this form
can be used, with some of the couplings promoted to potentials for the fields,
also in curved space-time. The difference to top-down models is that the correct
action for a space-filling brane in curved backgrounds is not known, and it is
this ignorance which is encoded in the potentials. The primary examples of the
string-inspired holographic method are Improved Holographic QCD [50-53| and
its extension, holographic Veneziano QCD [54-56] [II, IV]|. These models are
central to papers |I, I, IV] of this thesis.

Next we will review one family of bottom-up models, called AdS/QCD?, of
which one representative is the one considered in [III] of this paper.

2.5 AdS/QCD Models

The original AdS/QCD model [57], see also [58-61], is a bottom-up hard wall
model of low-energy QCD. We will first describe that model in some detail, and
then describe the dynamic AdS/QCD model considered in [III|, which elaborates
on the original model by introducing a running quark anomalous dimension and
a dynamic generation of the confining IR geometry.

2.5.1 Hard wall AdS/QCD

The basic setup is Einstein gravity with a positive cosmological constant in
five dimensions, leading to the AdS5 background solution. The metric is then
taken as a fixed background, that is, the back-reaction of the matter fields on
the geometry is not considered. The operators to be modeled are the left- and
right-handed chiral currents g, pv#t*q1 r, and the quark condensate q}éqi, which
is the chiral order parameter. Here t* is a generator of the adjoint representation
of the flavor symmetry, and the indices ¢, j denote the flavors themselves. In the
2-flavor model considered in [57], this means that a =1...3 and 4,5 =1...2.
The background metric is

1
ds* = g(—d% + dz*dz,,), (2.8)

where z is the extra-dimensional coordinate, and x* are the four-dimensional
spacetime coordinates.

2This name is sometimes also used for the whole program of trying to model QCD by
gauge/gravity dualities, but here we use it exclusively for the family of models deriving more
or less directly from the original hard wall AdSs -model [57].
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According to the holographic dictionary, global symmetries on the boundary
become corresponding gauge symmetries in the bulk, so the symmetry of the
chiral currents is a dual to a SU(N¢) gauge field A} g, in the bulk. The kinetic
term for a gauge field is, as usual, TrF? = iF L 1, and we add one for both
the left- and the right-handed current. The gauge fields are then sources of the
chiral current operators.

The field dual to the quark condensates must have indices ¢, 7 in the funda-
mental representation of flavor in order for the product of the source and operator
terms in the effective action to transform as a scalar. The energy dimension of
the quark operator is three, whereas a massive field with a dimensionless coupling
in AdS; is dimensionless (the metric determinant in the action cancels the di-
mensions of dPx in curved space). Since the boundary action is four-dimensional,
the dimension of the product of the source and the operator must equal four and
therefore the source should have dimension 1. Based on this, the actual source
must be 2X% where X% is a Ny x Ny dimensionless matrix field. The factor 2 is
simply conventional.

The scaling dimension A of the operator dual to a p-form field in the bulk is
related to the bulk fields mass by [33]

(A=p)(A+p—4)=m3, (2.9)

where m3 is the bulk mass of the field. We see that m% = —3,m 2 = 0 gives the
boundary operators the dimensions corresponding their naive tree-level scaling
dimension.

Giving the field X the usual kinetic and mass terms leads to the bulk action

S = /d%\/g tr []DX|2 +3|X)* - é(Ff + F2), (2.10)
5
where g is the determinant of the metric tensor, D is the gauge covariant derivative
D, = 0, — iAy, + iAg,, and the absolute value squared is ]X]Z = XX The
gauge coupling gs is a free parameter to be determined.

The remaining ingredient is modeling confinement, which requires breaking
conformal symmetry. This can be achieved most simply by imposing a hard wall:
the AdS space is considered to reach only up to some z,, in the bulk, where
boundary conditions for the fields are to be determined. The hard wall is also
called the IR brane. This introduces confinement, since now the energy density
related to a string with both endpoints on the boundary, long enough to touch
the hard wall, scales linearly with the distance of the string endpoints. These
endpoints are dual to the SU(N,) charges, and the linearly growing energy density
signifies that they cannot be separated without creating new string endpoints,
i.e. charges. The hard wall also breaks the conformal symmetry in the bulk, since
now any conformal transformation would move the hard wall. This also breaks
the conformal symmetry of the boundary theory.

The classical solutions of the field equations then determine the boundary
theory observables. First, the X -field determines the quark mass matrix M%
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and the matrix of quark condensate expectation values ¥% via its UV expansion,

lim X — 07 + Lsvis (2.11)
z—0 2 2
The simplest model is achieved by setting both matrices proportional to the unit
matrix I, M = m,I and ¥ = oll. The boundary conditions on the IR brane then
determine m, and o. In this model, it is however the condensate and mass which
are taken as inputs, and therefore remain free parameters. Once the quark mass
and condensate are set, the IR boundary condition for X is fixed.

The boundary condition for the gauge fields is F, = 0. This is not set from
a priori principles, but the computations show that the results are not very
sensitive to this term either.

The free parameters of the theory are then m,,o,z2, and gs. The gauge
coupling can be fixed by matching the vector current two-point function at large
momentums to the perturbative QCD result. That leads to the identification
gs = 2;‘,—:, where N, is the number of colors. Note that since this is the only
place where the rank of the 4D gauge group appears, we are free to pick N, = 3,
and hope that the gravity approximation is at least qualitatively reliable at
1/N,.=1/3.

Now that the action is fully fixed, one can derive the equations of motion
and solve them. The four dimensional bound state masses come from eigenvalue
equations for five dimensional linearized fluctuations around the background.
More specifically, consider a plane wave solution of the 4D theory, say a scalar
field, ¢(z) = e*»*"  where k*, z# are the 4-momentum and position. We lift this
to five dimensions as

Pz, 2) = e p(2). (2.12)
Inserting this as a fluctuation ansatz into the bulk action, and assuming ¢(z) < 1
leads to a linearized fluctuation equation. Given an IR boundary condition, in the
case of this model ¢(z,,) = 0, the other boundary condition is just a normalization.
The kinetic term in the action produces a term ~ k?¢(z) in the equations of
motion, and requiring that the wavefunction is normalizable, i.e. finite on the
boundary, makes the equation an eigenvalue equation for k? = m?. Solving
this equation then gives the dispersion relation in the 4D theory, or by setting
k123 = 0, the rest masses of the particles. There is an infinite tower of solutions
to these equations, corresponding to an infinite number of four dimensional
bound states. Taking a more general ansatz

Pz, 2) = / d* ko (k)e™ " ¢(2), (2.13)

1.e. representing the 4D field by its Fourier transform, we can also extract cor-
relators, and therefore decay constants and more from the duality. At finite
temperature, reached by considering black hole solutions in the bulk, the cor-
relators become thermal and thermodynamic variables can be computed. [62,

63]
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In the AdS/QCD -model, the gauge invariant fluctuations corresponding
to the tower of p -mesons come from vector fluctuations of the gauge fields,
V., = (AL, + Ag,)/2, and the axial mesons, a; and 7, come from the axial
vectors A, = (AL, — Agry)/2. Computing the correlators from these gives the
masses and decay constants of the hadrons as a function of the free parameters
m;,o and m,. It is also possible to extract the meson interaction couplings, for
example ¢,... Fixing the parameters from pion and rho masses and the pion
decay constant gives column A of table 2.1. A best fit to all seven observables
computed gives column B.

Observable | Measured [MeV| AdS A [MeV] AdS B [MeV]|
Mo 139.6+0.00047 139.6" 141
m, 775.840.5 775.8* 832
Ma, 1230440 1363 1220
fr 92.4+0.35 92.4* 84.0
Fy 345+8 329 353
R 433+13 486 440
Gomn 6.030.07 448 5.29

Table 2.1: Several meson variables from the AdS/QCD model described in the
text. AdS A is the best fit to the starred observables, whereas AdS B is the best
fit to all seven.|57]

2.5.2 Dynamic AdS/QCD
Dynamic AdS/QCD expands the hard wall AdS/QCD of the previous section

by making the metric a simplified version of the brane metric stemming from
D3/probe-D7 top down models [46, 64-67|, and adding a running anomalous
dimension for the quark mass. First of all, the metric is now
dp?
2 2 2\ 1.2
§° = ——— + (p” + | X[|)dz?, (2.14)
P+ X[

where X is again the field sourcing the quark mass and condensate. This specific
form comes from the D3/D7 model. The action is

Am?
2

1
\X!2+@(F§+FZ,) . (2.15)

1
S= [d*zdpTrp® | ————|DX|?
fate o | oo +

Here Am is related to the conformal dimension of the quark condensate in a way
that we will soon elaborate, and Fy,, F4 are field strengths written here directly

9The peculiar expression 139.6 4 0.0004 comes from the results column of the table in the
original text [57]. The error limit which is much smaller than the least significant digit of the
measured value apparently serves the purpose of denoting that the measured value is coarsely
139.6, but that it is actually known to an error margin of 0.0004.
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for the vector and axial combinations of the gauge fields. The /—g -term is
written as p?, as in the D3/D7 -model, instead of (p + |X|*)2. This will turn
out to be crucial to the generation of the dynamic wall.

As in the previous section, if the field dual to the quark operators has 5D
mass —3, it will describe a field theory with no quark anomalous dimension.
However, the action in Eq. (2.15) is not in the form where X is a canonical scalar,
so this does not apply directly. Writing L = |X| and L = p¢, and integrating
the kinetic term by parts, we find that the field ¢ is a canonical scalar with mass

mi = —3 + Am?. We see then that Am controls the anomalous dimension by
mi = A(A—4)=-3+Am? (2.16)
1
= AiZQi\/1+Am2z2i(1+§Am2) (2.17)

and therefore the anomalous dimension of the condensate, which corresponds to
the positive root, is

1
vy = —§Am2 (2.18)

for small Am?. The value Am? = —1, where the square root becomes imaginary,
is the Breitenlohner-Freedman (BF) bound m, = —4 (68, 69].

Now we take Am? to be a function of the holographic energy scale j. The
scale is identified from the metric Eq. (2.14) as the overall scale of the 4D part

of the metric, which is 1/p? 4 |X|*>. The energy dependence is conjured from
perturbation theory, where the one-loop result is

3(N2 - 1)
—_xc =/ 2.1
ot iNa © (2.19)
and therefore 3(N2 )
Am?= -2 g 2.2
m IN T a (2.20)

The running of the coupling a as a function of the energy scale pu is solved
from the perturbative two-loop beta function. After plugging that in, with

1= 1/p? + | X|?, the form of Am? as a function of the fields is fixed. Notice that
we do this at the level of equations of motion, not of the action. This is because
otherwise a term oc Am? (L) would be generated, while there is no corresponding
term in gauge theory. Also in the region near the conformal window, where
this model is most interesting, the derivative is anyway not large, and therefore
ignoring it does not make a significant difference.

At this point, we have fully defined the action and the classical equations of
motion. The next step is to find a background solution to the full equations of
motion. As usual, Fyy = F4 = 0 is a solution. L = 0 is also a solution, but if the
mass squared of the scalar violates the BF bound, we expect that solution to be
unstable. With the above fixing of Am?, the bound is violated when N; < 12.
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This matches well with the results from a perturbative Schwinger-Dyson -analysis,
which is not surprising as we have taken the running of the anomalous dimension
from perturbation theory as input. In the region where the L = 0 solution is
unstable, we look for non-zero solutions to the L equation of motion, which
describes dynamic breaking of chiral symmetry. The IR boundary condition is
L'(0) =0, as in the D3/D7 model. Applying the holographic dictionary to the
canonical scalar ¢ = L/p, the UV asymptote of L is

L~m,+op > (2.21)

This allows us to set the quark mass, in practice numerically by using the shooting
method [70] to determine L(0) such that the desired m, is reached in the UV.
We have then found a stable background solution of the theory.

In order to study the fluctuations around this background, the remaining
parameter to fix is k. This can be fixed by requiring the correct masses for
vector and axial mesons in QCD. Since we will be working with massless quarks,
we take into account the two light flavors of QCD and require the match at
N; = 2, N, = 3. Requiring also a smooth restoration of chiral symmetry at
Nf ~ 12, we find that the simplest ansatz for N; dependent r is?

k* = 3.6(Nf — Ny). (2.22)

With these we are ready to compute the meson spectrum and decay constants
from the fluctuations. The fluctuation ansatz is

VE=e'Ky(p)e ™" A ="K (p)e ™", L= Lo(p)+(p)e ", (2.23)

where L is the background solution to the equations of motion. Inserting these
into to the action leads to the fluctuation equations for the mesons,

2
9, [p2a,,K}—%K =0 (2.24)

2
9,(0°0,0) — Am?ps — pLos 22| (2.25)
oL |,

where K is K4 or Ky . We find the masses and decay constants from numerical
solutions to these.

Let us review the results. First of all, the nature of the model allows us to
consider fractional values of N, and we take advantage of that freedom in order
to see behavior of the observables as we approach the conformal window. This
can also be considered to reflect, to some extent, the behavior of the model at
large N., N¢, where their ratio becomes a continuous parameter.

In the model, the onset of the conformal window is at Nf ~ 12. This is
exhibited in Fig. 2.1 in the form of Miransky, or BKT, scaling of the masses

3There is a sign error in the corresponding formula in [ITI].
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Figure 2.1: Left: The dots show numerical results for the quark condensate as a
function of Ny. The dashed line is the BKT fit a exp(—3b/(N§ — N;)Y/?) with
parameters a = 63.090 and b = 5.111. Right: Masses of scalar (dots), vector
(crosses) and axial (squares) mesons as a function of Ny. The dashed lines show
fits of the form M; = (N§ — Ny)P*L(0), where ps = 1.27, py = 0.77 and ps = 0.85.

a9
1

100 -
104 -
1000 |-

100 -

85 9.0 95 10.0 10.5 11.0 115

Figure 2.2: The quark condensate normalized by f2 vs N;.

[71]. The quark condensate, determined as the factor multiplying the p=2 -term
in the UV solution limit of Lg(p), displays the scaling in a pure form, and the
masses of the mesons display the exponential scaling corrected by slight power law
deviations, as predicted in [72]. In addition, while the dimensionful observables
go to zero when approaching the conformal window, the dimensionless ratio
(qq)/ f2 is enhanced, as shown in Fig. 2.2. This is a key prediction of walking
technicolor that allows a generation of sufficiently large fermion masses without
generating too large flavor changing neutral currents.

Another part of technicolor lore reproduced neatly here is the appearance
of a parametrically light dilaton. As shown in Fig. 2.3, the mass of the lightest
excitation dual to the scalar X becomes light compared to all other masses.
This is interpreted in the field theory as due to the fact that when we approach
the onset of the conformal window, the amount of explicit conformal symmetry
breaking decreases and a light Goldstone boson corresponding to the spontaneous
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Figure 2.3: Mass ratios: the crosses and squares show the ratio of the V' and A
masses to the S mass, respectively, revealing the Goldstone-like nature of the
scalar meson as one approaches the critical point.
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Figure 2.4: The contribution to the S parameter from the lightest vector and axial
mesons (normalized by the number of techni-doublets and to the perturbative
value from a single mass degenerate doublet).

symmetry breaking is generated. It becomes arbitrarily light as we approach the
lower limit of the conformal window, as the theory approaches an IR fixed point.

The most important constraint for walking technicolor is the S-parameter,
which has to be sufficiently small. The S -parameter is defined as

§ = 4m(ITy4(0) — Iy (0)), (2.26)

where 1144(0), IT are the axial axial and vector vector correlators, respectively.
The contribution from the lightest vector and axial mesons to the S -parameter
is shown in Fig. 2.4, where we see that it indeed goes to zero as we approach the
lower boundary of the conformal window, as expected in walking technicolor.

In summary, the model is fixed by the quark mass, the value of the coupling «,
and most importantly, by inputting the running of the quark anomalous dimension
from perturbation theory. This produces predictions for the correlators of scalar,
vector and axial mesons of the theory, and allows computing the meson masses
and their decay constants, among other observables.

The results of the computation reproduce all the expected features of walking
technicolor theories near the conformal window. This suggests that, to the extent
that this model is reliable, all of the generally desirable features of technicolor
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are already encoded in the running of the anomalous dimension of the quark
condensate.
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Chapter 3

Thermodynamics of IHQCD and
VQCD

"Of our studies it is impossible to speak, since they held so slight a
connection with anything of the world as living men conceive it."

—H.P. Lovecraft, "Hypnos", 1922—

In this chapter we will review what constitutes the main body of work done for
this thesis, first published in papers [I, II, IV|. The work is based on Improved
Holographic QCD (IHQCD) [50-53], based on which a model of quasi-conformal
field theory has been built in [73-75]. In paper [I] we have computed the
thermodynamics and finite temperature mass spectrum of the model, exhibiting
the melting of bound states as the system undergoes a phase transition.

In [IT] we exhibited the first computations of the phase diagram and vari-
ous other thermodynamic quantities in a model extended from THQCD. This
Veneziano QCD (VQCD) model [54] adds explicit quark degrees of freedom to
the THQCD description of gauge theory dynamics, producing a bottom-up model
with full backreaction between the fermionic and gauge degrees of freedom. In
paper [[V]| we extended these computations to finite quark density.

3.1 IHQCD

In the Maldacena duality, there is no running of the gauge coupling constant,
but its constant value is controlled by the expectation value of the dilaton in the
supergravity theory. It is therefore natural that when the conformality of the
gauge theory is broken, leading to a running coupling, the dual to the coupling
becomes a non-constant dilaton in the bulk. Modeling a non-conformal pure
gauge theory holographically is then up to prescribing the dynamics of the bulk
dilaton. A generic way to achieve that is to give the dilaton a canonical kinetic
term and a potential. This leads to a wide class of bottom-up models, where
various methods of fixing the potential are prescribed, varying from string theory
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considerations to perturbative matching and purely phenomenological potentials.
A sampling of such models can be found in [76-84]

3.1.1 A string inspired model for glue

Improved Holographic QCD is an Einstein-Dilaton model, and therefore its action

1s
1

S=15 /d% V=9[R — 30,0+ V()] . (3.1)
™ G5
This is the action of a scalar field ¢ coupled to Einstein gravity in five dimensions,
with a potential V' (¢) for the scalar. The peculiar normalization factor % originates
from the Weyl transformation from the string frame to the Einstein frame.
The task is to then define the potential V' (¢). Gursoy and Kiritsis argue in
[50, 51] that the form Eq. (3.1) can be justified as an approximation to string
theory, in which case the potential is a resummation of unknown higher o’
corrections. Using the duality, we can then fix the potential to results from
perturbation theory. The first step is deriving the equations of motion. A
sufficiently general metric ansatz compatible with the vacuum solution, i.e. four
dimensional translation invariance, is

ds® = €240 (dr? + n,datda”) (3.2)

where r is the five dimensional coordinate. This is known as the conformal
coordinate system. If A(r) = —log(r) this describes an AdS; spacetime with
the boundary at » = 0. Here it is however expected that A(r) will be only
asymptotically AdS, since the running of the coupling constant should generate
breaking of the conformal invariance. Inserting Eq. (3.2) to the action leads to
the equations of motion

. 4.
1242 — §¢2 — vV =0 (3.3)
.. . 4 .
6A + 6A% + §¢>2 —V = 0 (3.4)
. .3 ..dv
A+ Ser— = .
¢ +3A¢p+ ce ¥ 0, (3.5)

where A and ¢ are taken to be functions of r only due to 4D Poincaré symmetry,
and the overdot denotes a derivative with respect to r.

The form of the potential in the UV can then be fixed by considerations of the
running of the renormalization scale. First, since QCD is conformal in the UV,
we expect the gravity dual to be also asymptotically AdS;, as mentioned above.
Let us fix a part of the radial reparametrization invariance by fixing the position
of the UV AdS at r = 0. We therefore expect that A(r) = — log(r) + corrections.
We identify the dilaton field ¢ with the logarithm of the 't Hooft coupling, as in
the usual AdS/CFT duality:

A= A(r) = Nee. (3.6)
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From here on, we suppress the factor N, which amounts to just a redefinition of
the potential. Then we need to consider the identification of the energy scale. In
the UV, where the metric is near AdS, the identification of the energy scale with
the conformal factor of the metric holds based on the same arguments as in the
Maldacena duality, that is

E =™, (3.7)

This identification is taken to hold at all scales, not just in the UV. With these
identifications, the holographic beta function is

dA dA 1 dA

B(A) :m:d_fl:%a' (3.8)

This is identified with the perturbative beta function, which in an asymptotically
free gauge theory is

B(A) = —bpA* — b1 A* + O (A, (3.9)

where by > 0. This is our constraint for the potential in the UV.

Defining a variable X = 3%, it is possible to rewrite the equations of motion
Eq’s. (3.3, 3.4, 3.5) as a first order system. Especially we have

dx (8X+3dlog(V)) X2 -1 (3.10)

do do 6X

This is a differential equation for V(¢) as a function of X. From the definition
of X, we see that it is closely related to the beta function:

B(A)
= — 3.11
L2y (3.11)
and this allows us to express the dilaton potential as a function of the beta
function: .
B BA)? 8 / BA)
Vig) =Vo (1 92 exp 3 3—)\d¢ ) (3.12)

where we substitute A = e?. This will actually turn out to be very important in
its own right, but for now, the main point to note is that the expansion of this
with respect to A, inserting the perturbative beta function, is

V(A) = Vo(l+ViA+ TN +..0), (3.13)

2«
where V) = gbo and Vo = 23b°8136b1. In the zeroth order approximation, where
A = const., this is just a constant potential, which generates an AdSs -spacetime,

as expected. The presence of a ~ \ -term is the first correction. It generates
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logarithmic corrections to the AdS space, the conformal factor to the first non-
trivial order being

L? 8 log(log /)
24(r) — Z_ |1 O =2 7/ 3.14
¢ r2 + 9log(rA) * ( (logrA)? )1 ’ ( )

where L is the AdS -radius, related to Vj by V, = %, and A is an integration
constant which essentially gives the scale where the conformal invariance is
broken.

In this way the UV potential of the model can be related to the perturbative
beta function. The 't Hooft coupling displays the logarithmic running A oc 10; =
expected for an asymptotically free theory.

From the string theory point of view, the A\ -term in the potential, which
is crucial in matching to asymptotically free field theories, seems puzzling. In
a system of D3 -branes, the dilaton potential is a constant plus a A\? -term.
However, as analyzed in detail in [50], the series of higher o’ -corrections to
the leading order string theory picture generates a full series of A\ -corrections,
producing precisely the form of the regular expansion in Eq. (3.13). In many
other ways, this construction passes some very non-trivial consistency checks,
and has several features which suggest that it may be a better approximation
than it superficially seems to be. The beta function coefficients only appear in
combinations b;y1/b?(byA)", which are independent of rescalings of the 't Hooft
coupling. Stringy corrections to the identification of 't Hooft coupling from brane
physics only enter together with b;,2 > 1. This means that the two lowest order
coefficients of the beta function, which are renormalization scheme independent,
do not get corrections, and a similar result holds for the identification of the
energy scale. This suggests that it may be valid to take these identifications as
exact by fixing the renormalization scheme such that the stringy corrections are
canceled. This is called the holographic renormalization scheme. Encouraged by
this, the model is treated as an approximate dual to QCD not only in the strong
coupling regime, but over the full range of energies.

Confinement is a key input for fixing the IR form of the potential. Still
following the detailed analysis in [50], it turns out that the model is confining if
the asymptotic behavior of the conformal factor is

A=—Cr+..., (3.15)

where C' is a constant and o > 1. Using Eq. (3.12), this leads to the asymptotic
form of the potential
4 a—1
V(A) ox As(log \) = . (3.16)

This general form of the IR potential produces confinement and a discrete glueball
spectrum. As shown in [53|, choosing further o = 2 gives a linear spectrum, and
this is therefore the relevant value for modeling QCD-like theories.

Given the aforementioned UV and IR asymptotics, IHQCD reproduces most
of the qualitative expectations for a pure Yang-Mills -theory [52]. Confinement
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in the vacuum solution turns out to be in one-to-one correspondence with the
existence of a finite temperature Hawking-Page -transition between a compactified
vacuum solution and a black hole phase. The requirement for the potential to
confine is also the same condition that leads to the existence of a mass gap
[51]. The UV asymptotics of thermodynamic observables at high temperatures
approach logarithmically the Stefan-Boltzmann -limit, up to a normalization
which can be used to fix the 5D gravitational constant, i.e. the holographic model
actually reproduces the correct thermodynamics at the limit of weak coupling, in
support of taking the model seriously at all values of \.

An explicit model giving the interpolation between the IR and UV limits is
presented in [53]. The model describes N. = 3 lattice data quantitatively after
matching two free parameters to a subset of the data.

In summary, the IHQCD model is string inspired, in the sense that the overall
structure can be tentatively related to string theory origins, but it is also a
phenomenological model, since the potentials are not computed from any string
theory construction, but rather fixed to observables. It is also not a controlled
approximation, since the stringy arguments used in its construction do not offer
a way to compute corrections to the results or to estimate their magnitude. The
model is therefore between the top-down and bottom-up approaches, although
certainly closer to the bottom-up approach.

After having now presented the original IHQCD model, we are ready to
start discussing paper [I], which uses essentially that model, but with a different
philosophy for fixing the potentials.

3.1.2 A quasi-conformal beta function

The overall method of the IHQCD -model is applicable, at least phenomeno-
logically, to other gauge theories than QQCD. The actual input that determines
the specific gauge theory is the perturbative beta function. In addition, the
original brane construction relies heavily on the fact that a stack of N Dp -branes
produces, at the low energy limit, an SU(N) gauge theory with the fermions in
the fundamental representation. Since the model only considers the pure gauge
part, the fermion representation is not expected to appear at this level of approx-
imation, and therefore it is plausible to model any SU(N) -theory by IHQCD,
given the beta function of the gauge theory. Stretching the model even further,
one can take the beta function of a theory with fermions, and use that as an
input to the IHQCD -construction. This is in essence a quenched approximation,
where the fermions are treated as non-dynamical degrees of freedom.

In [73-75], the THQCD -approach is applied to study the thermodynamics
of a class of field theories which have an IR fixed point, or which come close to
an IR fixed point, i.e. are quasi-conformal. While this is not true for any pure
gauge theory at the two-loop level, it is believed that the most important effects
of the fermions can be captured in their effect on the renormalization group flow.
The approach also differs from the original IHQCD in the sense that instead
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of matching the scheme-independent coefficients only, the full beta function is
used to determine the potential via Eq. (3.12). This typically does not have the
correct IR asymptotics, for which a further correction has to be implemented.
Since, at finite temperature above the deconfinement transition, the horizon of
the black hole hides the deep IR, the effect of this is reasonably small as long as
the black hole horizon is not at too large r. As it turns out, black holes with a
horizon in the deep IR correspond to a thermodynamically unstable branch of
solutions, so such solutions are not relevant for the thermodynamics.
In [75] the approach is specifically applied to the beta function

c)\2(1 - A% +e

AN = - 1+ a)3

(3.17)
which has the form needed for walking technicolor at small to intermediate A,
when e is small but non-zero. The parameters e and ¢ allow tuning to potential
in order to see the effects of approach to conformality, whereas the ratio ¢ is
fixed by confinement. The specific analytical form is inspired by the exact beta
function ansatze of Ryttov and Sannino, and Antipin and Tuominen [85, 86].
In [I], we continue from [75], and compute, in addition to the thermodynamics,

the mass spectrum at finite temperature.

Thermodynamics in holography

We consider with some detail the way thermodynamics are computed from a
holographic dual in the context of IHQCD -like models, using the setup in [I]
as an example. There are two classes of bulk configurations which are dual to
thermodynamic states. The simplest is the vacuum configuration of the bulk
theory, which can be Euclinianized and compactified to any temperature. This
state is essentially dual to a thermal gas of hadrons [52|. The more interesting
class of bulk configurations are those with a black hole. The black hole has
an associated Hawking temperature and a Bekenstein-Hawking entropy. Since
the states of the bulk and boundary theories are assumed to be in one-to-one
correspondence, the boundary theory must have this same temperature and
entropy. It is necessary then to find the vacuum and all black hole solutions to
the theory, and for any set of solutions that correspond to the same temperature,
compute their free energies in order to find the thermodynamically preferred
state. This gives the phase diagram, and allows computing thermodynamic
variables as a function of temperature.
For black hole solutions, the metric ansatz is generalized to

dr?

fr ]

where b(r) = eA("). The function f allows for inhomogenous scaling between the
timelike and the radial directions. If f has a zero at r},, then there is a horizon

ds? = b*(r) | —f(r)dt* + da* +

(3.18)
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Figure 3.1: An example of temperature as a function of the value of the 't Hooft

coupling at the horizon. A is a constant which determines the units of energy in
the boundary theory.

at 7, and this is a black hole solution. In order to have the usual Minkowski
metric at 7 = 0, we require the boundary condition f(r =0) = 1.
With this setup, the equations of motion become

¥ ob b b

6ﬁ+35+33;=7w«@, (3.19)
»oob 4.,

6b_2 — 35 — §¢ 7 (3.20)
foab

?+35_0 (3.21)

This is a set of three second order differential equations, so there are six inde-
pendent boundary conditions. After fixing horizon regularity and coordinate
symmetries, the only physically significant boundary condition is A,. Therefore
An determines a family of physically inequivalent black hole solutions, and also
all such solutions are found by going through all possible values of A.

In practice then, for all but the most simplified potentials, the solutions are
generated numerically. The boundary conditions are set at the black hole horizon
and the solution is evolved in the radial direction by a numeric integrator. For
each solution we can then compute the temperature and entropy, which are given
as a function of \j,. The temperature plot, such as in Fig. 3.1, then shows the
potential phase structure of the theory. In the example, at large temperatures
there are two black hole phases, one at small )\, and the other at large \;. At a
temperature range 1" ~ 0.6...1.0 there are three black hole phases. There are
no black hole phases at temperatures below ~ 0.001.

In order to decipher the thermodynamically dominant phases, it is necessary
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Figure 3.2: Pressure as a function of temperature. The energy density e is also
plotted. The right panel shows an enlargement of the boxed area in the left
panel.

to compute the free energy or, equivalently, the pressure of each solution. This
could be done in principle directly by evaluating the value of the action at the
solution, but that is technically demanding, due to the need to subtract the
vacuum background and the slow convergence of the logarithmic corrections to
the AdS -background. A more practical method is to define the zero of energy
in the boundary theory such that the vacuum solution has zero pressure or
free energy. Then the pressure of the black hole solutions can be computed by
integrating 4 o

dp = sdT = d_)]\)h = s()\h)d—)\h (3.22)
over a range of black hole solutions. The resulting plot of pressure vs. temperature
in the example case is displayed in Fig. 3.2. The phase diagram can be read from
the plot as follows. At temperatures which the pressure curve does not reach,
or where it is negative, the vacuum phase, dual to a thermal gas, is dominant.
Where the pressure function is positive, the black hole solutions are dominant,
and if it is multi-valued, the branch with the largest temperature is dominant.

In the case at hand, this leads to the following phase structure

e At low temperature, 7' < 0.000977, there are no corresponding black hole
phases, and the theory is in the thermal gas phase.

e At temperatures between T = 0.000977 and T" = 0.653, the theory is in
a deconfined black hole phase, with the smaller A, of the two possible
black hole branches. The branch with larger )\, black holes is mechanically
unstable.

e At T = 0.653, there is a first order transition to another branch of black
hole solutions.

3.1.3 Glueball spectrum

As a baseline for understanding the spectrum at finite temperature, we need to
compute the spectrum at 7" = 0. The principle is the same as described in section
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2.5, although since the metric in this model is dynamical, not only the dilaton
but also the metric fluctuates around its vacuum solution. There are actually
two kinds of gauge invariant fluctuations: the tensor fluctuations of the metric,
I = g,(f)y) + h,., where g,(f)y) is the background solution and the fluctuation h,,
satisfies

.l = 0, htt = 0. (3.23)

These are dual to tensor glueball states in the boundary theory. The other gauge
invariant fluctuation is that of the dilaton, which mixes with those components
of the metric that is not involved in the tensor fluctuations. These are scalar
glueball states in the boundary theory.

The fluctuation equations can be cast in the form of a Schrédinger-like
equation,

—"(u) + VO (u)ip(u) = W (u), (3.24)
where u is a specific reparametrization of the radial coordinate,
[ dr
u(r) = —. 3.25
0=/ 7 (3.25)

At T = 0, u = z. The potentials V®, § = S T are determined from the
background solutions and correspond to the scalar and tensor fluctuations,
respectively. The advantage of this form is that it allows applying intuition
concerning bound states in quantum mechanics to the spectrum of particles in
the boundary theory. The potentials for the scalar and tensor modes at 7' = 0 is
shown in Fig. 3.3.

Solving the background and the fluctuation equations numerically gives the
lowest lying spectrum as

m® = (0.005948,0.0077235, 0.0090700, 0.010182)
m™ = (0.0069018,0.0083675,0.0095586, 0.010581), (3.26)

where m(®) are the scalar glueball masses and m(™) are the tensor glueball masses.
The pattern continues as an infinite tower of excitations, well approximated
by taking an approximate potential which can be solved analytically to yield
a spectrum m? = =%(n + 2), where = is an energy scaled determined from the
numerical solutions. This type of spectrum is generically produced by holographic
Einstein-Dilaton -models. Especially note that the two peaks at small-z only act
to slightly perturb the linear spectrum of states near the energies where the two

metastable states exist.
3.1.4 Melting the glueballs at the technicolor phase tran-
sition

Interesting things happen when we take this setup to finite temperature. The
Schrodinger -like equation keeps the same form, but now the reparametrization
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Figure 3.3: Left: The scalar (dashed line) and tensor (continuous line) potentials
in the IR large-z region. Two lowest scalar and tensor excitations are plotted, the
ordering is E(()S) < EST) < E%S) < E%T). The corresponding mass values, m? = E, are
in 3.26. Right: the same potentials in the small-z -region, where the near-conformality
generates an extra peak in both potentials. The horizontal lines show the energies of
the two states that the scalar potential binds in the approximation where there is a
hard wall just beyond the right peak, at z = 1.2.

Eq. (3.25) is non-trivial, and the potentials change slightly. Especially note that
the horizon 7, maps to u = 0o, so only the solution up to the horizon now affects
the fluctuations. The boundary condition for the fluctuation is the in-falling
condition at the horizon, which translates in u simply to a requirement that the
solution is asymptotically a plane wave propagating towards © = co. Then the
requirement that the solution is normalizable at the boundary leads to solutions
where w? is complex. These correspond to quasi-normal modes in the boundary
theory propagators, with the real part of w the mass and its imaginary part the
decay constant.

Now the role of the peaks in the potentials at small-z, which are related to
quasi-conformality, become clear. Just above the lowest T' deconfining transition,
the horizon is already to the left of the bottom of the potential around z ~ 500 in
Fig. 3.3. The right side of the potential wall is therefore dissolved, and no bound
states in the theory are stable. There are, however, metastable states, which now
correspond to the previously near-invisible perturbations caused by the small-z
peaks. Fig. 3.4 shows the disappearance of the peaks in the scalar potential
as the horizon moves closer to the boundary, i.e. the temperature is increased.
The right panel shows the corresponding movement of the quasi-normal modes
away from the real axis, which signifies that the states are becoming increasingly
short-lived.

Taking into account the phase structure presented above, the thermodynami-
cally preferred phases when heating the theory go as follows:

e Below the deconfinement transition, there is an infinite tower of bound
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Figure 3.4: Left panel: The dependence of the scalar potential V(%) (u, zp,) for A\p =
0.138, 0.329, 0.520, 0.711, 1.0, 2z, = 0.57,0.719,0.724,0.92,2.96, 7T ~ 1/zp. The peak
disappears when one is approaching the UV, where \j, decreases. Right: Corresponding
quasinormal modes. FEach color corresponds to a single value of Ay, or equivalently,

fixed temperature.

states. In terms of an interpretation as a technicolor model, these would
be the technimesons, represented here by glueballs. For a realistic theory
of technicolor, the lowest state would have to be a light dilaton playing the
role of the Standard Model Higgs, but we do not see that here.

At the deconfinement transition, this infinite tower disappear as the tech-
nicolor degrees of freedom become deconfined. However, there are now
metastable states, which are heavy compared to the low-lying states of the
vacuum spectrum, and they are long-lived at this temperature. In terms
of the technicolor interpretation, these would be extended technimesons.
This remains the case across the wide range of energy scales corresponding
to the walking regime.

At the upper first order transition, the theory jumps to the branch of black
hole solutions with a smaller \,. This transition actually skips over most
of the region where the small-z -peak in the potential dissolves, so it is
actually a transition from a state where the extended technimeson states
are very long lived to a state where they are very short lived. Increasing
the temperature further quickly washes out any trace of bound states.

This holographic model then shows an explicit and quantitative implemen-
tation of the intuitive picture when there are two strongly coupled theories
with widely separated energy scales, and they have two separate deconfining
transitions. As a novel feature, the model shows that above the first deconfining
transition, the bound states corresponding to the theory with the higher energy
scale already become metastable, albeit only slightly.
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Figure 3.5: The dependence of the IR scale Z on e at two values of the parameter ¢ in
the beta function, ¢(1 +e) =9 and ¢(1 + e) = 17, with a fit to Miransky scaling shown
by the solid line. All masses and dimensional observables behave very similarly.

3.1.5 Miransky scaling

In addition to the finite temperature quasi-normal spectrum, we verified in [I]
that as the theory approaches conformality, i.e. the parameter e — 0, the model
exhibits Miransky scaling. This is shown most clearly by the behavior of the IR
scale which appears in the vacuum mass spectrum. The scale as a function of e
is plotted in Fig. 3.5.

3.2 VQCD

In the quest for a more realistic holographic model for QCD-like theories, in-
troduction of dynamical fermions is the next logical step forward from THQCD.
As in the case of IHQCD, we can look for inspiration from string theory and
top-down holographic models. The reason for non-existence of quarks at the
string theory level is that as long as there is only a single stack of branes, all open
strings go from the stack to itself. Therefore they each carry two indices denoting
which brane their attached to, which in the duality become indices in the adjoint
representation of the gauge group. A setup is needed where only one end of a
string is attached to the D3-brane. This can be achieved by introducing more
branes, so called flavor branes, such that the local U(N) gauge symmetry on
these branes becomes dual to the global flavor symmetry of the dual field theory.
These flavor branes are often introduced in the 10-dimensional superstring theory
set up, where all but four spacetime dimensions and the single radial direction
are then compactified. [46]

For building a bottom-up -model, it is necessary to find an expression of
the flavor branes in the 5 -dimensional context. This is most easily achieved by
considering space-filling branes in five dimensions. Such an extension is presented
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by Jarvinen and Kiritsis in [54], where they introduce a bottom-up holographic
model called Veneziano QCD (VQCD).

3.2.1 Fermions from a brane-antibrane system

At the string theory level, the fermions can be introduced by adding a space-filling
D4 — D4 brane-antibrane pair. The lowest lying excitation on this pair of branes
is a tachyon, and tachyon condensation corresponds to annihilation of the branes.
The action for the tachyon is the Dirac-Born-Infeld (DBI) action. These branes
then carry the flavor dynamics in the bulk, and fermions become open strings
whose one end is on the space filling branes and other end on the stack of D3
-branes that generates the U(NV,) gauge group, and where the boundary theory
lives on.

As a bottom-up model of this scenario, Jarvinen and Kiritsis introduce the
DBI -action of the brane pair in the holographic bulk space of IHQCD [54]:

S¢ = —a; M3N? / EaVe(\, T)y/det(gu, + £(X. T)DTD,T! + w(\,T)Fy).

(3.27)
This is schematically the flat space DBI -action, but the potentials V;, x which
depend on the matter fields have been introduced. The potential V; in flat space
at large T is Vi(\, T) = %e*ﬁ, and « is a factor coming from the transformation
from string frame to the Einstein frame, which in flat space is A=%/3. Their form
is expected to change in a curved background, and we will fix them based on
phenomenological arguments. The field 7" is the tachyon, which is a bifundamental
field dual to the quark bilinears. For everything that follows, we consider the
fermion flavors to be degenerate and therefore T' = 7ly, «n,, Where 7 is a scalar
field. The derivatives are covariant with respect to the gauge fields living on the
brane, and F},, is the field strength for the gauge fields. The relative number of
flavors is determined by x; = %
The total action of the model is then the DBI action combined with the
action of IHQCD,
S = Siquep + St (3.28)

The model is to be considered on the Veneziano limit

N,
N, — 00, N; — 00, xf = Ff finite, A\ = N g2, finite. (3.29)
We immediately see that at the 't Hooft limit xy — 0 and the model reduces to
[HQCD. An appropriate metric ansatz for studying the background solutions is
the same as in Eq. (3.18),

dr?

f@ ]
where f = 1 for the zero temperature background. At zero density, the back-
ground solution for the gauge fields is F},, = 0.

ds? = 240 | —f(r)dt? + dz? + (3.30)
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After deriving the equations of motion, we find that 7(r) = 0 is one solution
to them. When 7(r) = 0, the model reduces to IHQCD with the potential

VI(A) = Vg — V(A 0), (3.31)

where V; is the potential appearing in Sigep in Eq. (3.28). We can then fix
this combination of potentials in the UV from the beta function as in IHQCD.
Considering the beta function as a function of x¢, the fixing can be done for
both parts separately. This is immediately an important result: in the context of
this model, the 7 = 0 -phase of the theory can be modeled with just the gravity
dual to the gauge degrees of freedom, and the quarks enter only through the
dilaton potential or the beta function. This actually post-justifies, at least to
some extent, our approach in section 3.1.2.

The tachyon dependence in the potential V; is assumed to enter the same
way as in the flat space DBI action,

Vi(A\, 7) = Vig(A)e @™, (3.32)
where a(\) is related to the anomalous dimension of the quark condensate. The
function x is chosen in such a way that x oc A=%? in the IR, and x = 1 in the
UV, and that it has a smooth series expansion at small .

All this leaves open a number of choices on concerning the interpolation
of a and k between their IR and UV asymptotes, and how to distribute the
confinement factor between V, and V;. These choices will need to be determined
by how well they reproduce expected features of the dual field theory.

Once a potential has been fixed, the next step is to solve the background
configuration of the model. As mentioned above, 7 = 0 is a solution, which
leads to the same solutions for the other fields as in IHQCD, with the potential
Eq. (3.31). There are also solutions with a non-zero tachyon. The requirement
that the IR singularity is "good" (see |54] for definition) fixes one of the two
boundary conditions, and the other determines the quark mass via the relation

7(r) = myrlog(r)® + or®log(r)~* at small r, (3.33)

where the coefficient of the 7® term is the chiral condensate. Fixing the quark
mass then leads to a unique solution, with a non-zero 0. We also see that the
7 = 0 solutions are all solutions with zero-mass quarks. The 7 # 0 solution
represents chiral symmetry breaking, explicit when m, # 0, and spontaneous
when m, = 0. We will concentrate on the zero mass case from here on.
Comparing the free energies between the two m, = 0 vacuum solutions, it
turns out that the chiral symmetry breaking solution is dominant below a critical
value x¢ = x.. At larger x¢, the chiral symmetry breaking solution does not exist
at all, and the system evolves to an IR fixed point. This is the conformal window,
which the model therefore predicts. The model also predicts the walking form
of the beta function at just below z., even though the two-loop beta function,
which is used as input in determining the potentials, is never of the walking form.
In this model, the walking beta function comes directly as a consequence of the
non-perturbative dynamics of the fermions, as seen in Fig. 3.6.
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Figure 3.6: The beta function as a function of x¢. The red curves are the input beta
functions used in determining the potentials, whereas the blue curves are the beta
functions computed from the holographic model.

3.2.2 The general phase structure

In [II], we computed the phase diagram, and a few other select thermodynamic
variables in the VQCD model, in order to try to pin down the most reasonable
potentials. The principles behind the thermodynamics are the same as in IHQCD,
but there are now a few added complications. At zero quark density, we can
take F),, = 0. Then the only new field is the tachyon 7. Both the 7 = 0 and
non-trivial 7(r) solutions persist in the finite temperature background, with
the IR singularity constraint replaced by horizon regularity for the 7-field. Our
analysis of the boundary conditions for IHQCD still holds for the other fields,
so at fixed m, there are no new free parameters. At m, = 0 there are then two
separate branches of black hole solutions, both parametrized by A, among which
we must select the thermodynamically preferred one for each temperature. At
mg # 0, the tachyon field must be non-trivial, and there is only one branch of
black hole solutions.

In order to compute the tachyonic solutions, we must determine the value 7
of the tachyon at the black hole horizon from the desired quark mass. Defining
a function m,(7,; Ap), we must find roots of my(m,; A\r) = m, and therefore
construct a function 7,(Ay;m,). At non-zero m,, this always has a solution.
When m, = 0 it turns out that at small );, there are no roots. Above a certain
limiting value, Aenq, there is one solution. As A, increases, more roots appear!.
However, all but the one at largest 73, are unstable Efimov vacuums, and therefore
the procedure of computing the tachyonic solutions at m, = 0 involves specifically
finding the largest root of my(m,) = 0.

IThis also happens at small mg, but at large enough m, the solution is unique.
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In order to define the pressure by integrating the thermodynamic relation,
as in THQCD, we have to fix the relative integration constants between the
solutions. This can be done at a special value of A..q, since there the function
Th(An; my) goes continuously to zero as A\, — Aena. This means that the tachyonic
background configuration also goes continuously, although not with continuous
derivatives, to the non-tachyonic background configuration. Therefore all ob-
servables which depend on the solution locally, i.e. can be determined without
computing derivatives with respect to \,, must also be the same for the two
solutions at that point. This includes the pressure, so we have the pressure
matching condition

pb()\end> - pu()\end>7 (334)

where py is the pressure in the tachyonic phase, where b stands for broken chiral
symmetry, and p, is the pressure in the non-tachyonic phase, where u stands for
unbroken chiral symmetry.

Computing the temperature as a function of A\, and pressure as a function of
T, we get, for a certain choice of potentials, Fig. 3.7. This shows us the generic
phase structure of the theory:

e At low temperatures, the vacuum hadron gas solution dominates, since the
pressure of all phases is negative there.

e At a certain temperature T}, there is a first order transition to the tachyonic
chiral symmetry breaking black hole phase. This is a deconfined, but chiral
symmetry breaking phase in the bulk theory. For some other potentials
than the example shown here, the pressure of the chiral symmetry breaking
black hole phase may also be everywhere less than that of the chirally
symmetric black hole phase, in which case the transition is directly to the
chirally symmetric phase.

e When the previous transition is to the chiral symmetry breaking phase, as
in the example case, there is another transition at 7.,q, where the theory
transitions to the chirally symmetric black hole phase. This happens at the
configuration corresponding to Aenq, and as described above, all observables
are continuous across this transition, while their derivatives are not, making
this a second order transition.

e At a much higher temperature, of order 10?7,,q4, there is a peak in the
interaction measure, which can be interpreted to correspond to a crossover
from a walking near-conformal phase to the UV conformal phase. This
transition is generic in this class of models, and the crossover becomes
stronger when approaching the lower edge of the conformal window, that
is, xr — x.. This model therefore displays behaviors expected of a quasi-
conformal theory without any fine tuning.

Being able to compute the thermodynamics given the set of potentials V¢, Vg, &,
the question is then how to fix the details of the potentials. In [II], we computed
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Figure 3.7: Examples of the Tonq, Th and Terossover transitions with the potential
termed potential IT SB in [II], with zf = 3. The red curves correspond to the phases
with zero tachyon, and the blue curves to phases with non-zero tachyon. Upper: The
temperature T'(Ay) . The inset shows the minimum of Tj(\;,), which causes py, to be
positive between T, and T,,q. For comparison, we also plot T'(\;,) for IHQCD with
xy = 0. Lower left: p / T4 in a close-up around the region of the T}, and T4 -transitions.
Lower right: an overview of the pressure in the same case, also showing the interaction
measure, the peak of which determines the position of T ossover- LThe black curve shows
the vacuum beta function, scaled to fit, as a function of temperature in the symmetric
phase, so that S(T") = B(Au(T)), where A, (T") is the inverse function of T, (\). The
walking maximum of the beta function clearly coincides with the plateau related to
Terossover, confirming that the p/T4 ~ constant phase below T ossover 1S indeed the
quasi-conformal phase related to walking dynamics.

the phase diagram in the x¢, T-plane for 11 combinations of the various choices.
We found that the behaviors outlined above are generic, with the main variation
being whether the chiral symmetry breaking deconfined phase is stable at any
temperature and x;. As a function of z¢, we find a smooth variation of the tran-
sition temperatures, and at the edge of the conformal window, the temperatures
scale according to Miransky scaling for all potentials. Also at certain extremes
of potentials and x; ranges, some extra phases appear, which are likely to be
artifacts of a poorly chosen potential (although studying how these phases appear
may be an interesting exercise in holography). We were able to narrow in on
a single potential, which’s phase diagram is displayed in Fig. 3.8, out of those
studied in the paper, as a best candidate for modeling QCD-like theories on the
Veneziano limit. Some further refinements to the potentials have been suggested
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Figure 3.8: The phase diagram for the best candidate potential found in [II].
in [56].

3.2.3 Finite chemical potential

A net charge, i.e. quark density, in the boundary theory is dual to a non-
zero charge in the bulk theory. The charge lives on the flavor branes, so the
corresponding gauge field is the field in the DBI action. The charge needs a
source, and an appropriate object sourcing the charge is a black hole. Using
the charged black hole solutions, we studied VQCD at finite temperature and
chemical potential in [IV]. Our goal in that paper was to develop the methods
and technology to the computations, so we concentrated on the example case of
the preferred potential found in the previous paper, m, = 0 and x; = 1.

The first step is then turning on the gauge field F),, in Eq. (3.27). Since we
are considering degenerate quark flavors, this is a U(1) gauge field, which allows
us to use gauge transformations to set all other components of the bulk gauge
field except Ag to zero, and to decouple it from the covariant derivative. From
the computational point of view then, the only change is the introduction of a
new field Ag, and it also generates a new boundary condition. This boundary
condition can be exchanged for an integration constant n, which is essentially
the charge of the black hole. We can then generate solutions corresponding to
pairs A,, n, and for each solution the values of the thermodynamic observables
can be computed.

The ranges of the parameter \,,n are not unlimited. In the u = 0 case
we had the lower limit \.,q for the existence of the tachyonic solution, and an
upper limit A, for the existence of the non-tachyonic solution. Now both of these
become regions in the A,,n -plane, plotted in Fig. 3.9.

This diagram of the physical region has some very interesting features. At a
generic point in the plane, where a solution exists, the solution has both a finite
temperature and a finite chemical potential. All of the solutions corresponding
to zero temperature but finite chemical potential live at the upper of two points
marked AdS,. At that point, the horizon of the black hole becomes non-analytic,
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Figure 3.9: The physical region on the Ay, plane for chirally symmetric (red region)
and chirally broken (blue region, unbounded above) solutions. The chirally symmetric
region is bounded from above by the curve A.(n) along which 7= 0 up to the point
AdSsy at n = 12.295, A, = 1.108, then from the right by a segment of the curve Vg =0
up to the second AdSy point at 7 = 10.223, A\, = 0.0873 and finally by a segment to
n = 10.457, A\, = 0. Tachyonic chiral symmetry breaking solutions exist only above
the blue curve Agpq(7). This curve has a discontinuity at 7 = fe ~ 8 at which it
breaks into two branches, Aeng = Ay and Ays. Below 7, the symmetric and broken
phases are in thermal equilibrium along Acnq, above nie, the states on Ay, and A, are
in equilibrium.

and a new degree of freedom, which translates to the value of the chemical
potential in the boundary theory and the size of the non-analytic terms in the
bulk, emerges. The curve bounding the existence of the chirally symmetric phase
has T'= 0, ;= 0 at all points above the AdS, point, T'= 0, u = oo below that
point, and again T = 0, 4 = 0 below the lower AdS, point. Also note how the
lower boundary of the tachyonic region has a derivative discontinuity: this point
maps to a critical point on the phase diagram.

3.2.4 Phase diagram as a function of 7', i

The phase diagram Fig. 3.10 that results from computing the dominant solutions
at each 7', 1 shows a first order deconfining transition at small x4, which goes from
the hadron gas phase to the deconfined, but chiral symmetry breaking phase.
Slightly above that, there is a second order transition to the chirally symmetric
UV phase. Interesting things happen at slightly larger p: the second order chiral
symmetry restoring transition becomes a first order transition. This is visible
also in the parameter plane in Fig. 3.9, where the A\.q splits into two. The
higher branch in the chirally broken phase turns upward, and another branch,
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denoted A, in the figure, emerges and continues to the chirally symmetric phase.
Between these two curves there is an equilibrium, that is, given a point with a
certain temperature and chemical potential on one curve, there is a point with
the same temperature and chemical potential on the other, and these two points
also have the same pressure. The model produces a first order transition in
a very non-trivial way. At finite but small quark mass, the phase diagram is
essentially the same, except that the second order chiral symmetry restoring
transition becomes first order. The critical point at m, = 0 is therefore also a
tricritical point.

T/A
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Figure 3.10: Chemical potential dependence of transition temperatures of the decon-
fining (7} (1)) and chiral (7, (u)) transitions at mg = 0. The dashed line corresponds to
a second order phase transition while the solid lines correspond to first order ones. The
critical point shown in the figure is tricritical. If finite quark mass is turned on, the
second order transitions become smooth crossovers and the tricritical point becomes
a critical endpoint of the line of first order transitions. The T = 0 lines in the xgp
plasma phase as well as the chirally symmetric phase correspond to a new quantum
critical semilocal phase at finite density.

The T = 0 axis is also very interesting. As mentioned above, the T" = 0
chirally symmetric solutions all map to a single point in the parameter space. A
new parameter emerges, which describes the non-analytic near-horizon structure
of the black hole, and controls the chemical potential. This is dual to a new
quantum critical phase at finite density. For the chiral symmetry breaking phase,
we have not yet been able to construct the exact 7' = 0 -solutions, but there also
the structure of the finite temperature solutions strongly suggests the existence
of a similar, but chiral symmetry breaking, phase. A closer study of these finite
density but zero temperature phases is currently underway.

The chiral symmetry restoring transition in our phase diagram is broadly in
agreement with the modern expectations from other methods? [87]. The fact
that our chiral symmetry restoration becomes a crossover at finite quark mass

2 Although modern agreement overall on the QCD phase diagram is on the level where most
people in the field agree only on that there is a T' axis and a p axis!
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is what is expected for QCD at physical quark mass, and similarly we find a
critical point at a certain chemical potential. The exact structure of the phases
at T'= 0 in our model requires further study, and it will be very interesting to
compare those phases to physical observables such as dense stars.

The deconfining transition that the model produces is somewhat suspect in
terms of a physical interpretation. When quarks in the fundamental representa-
tion are involved, the center symmetry of SU(N) gauge theories is lost, and there
is no order parameter for deconfinement. Also, the pressure in the hadron gas
phase should, based on simple field theory arguments, scale with the number of
degrees of freedom, which is N?. In the holographic model, pressure is constant
in the hadron gas phase. In the deconfined phase, the field theory number of
degrees of freedom is 2N? + %NfNC, and the ratio of this to the field theory
expectation in the hadron gas is

2
_ (3.35)
2+ §xf

The same ratio is 0 in the model. At z; = 1, the field theory value is %, but
at xy = 4, around the beginning of the conformal window, it is 1. This means
that either the holographic model of the hadron gas phase breaks down near the
conformal window, or there are some very novel features emerging from strong

coupling and quasi-conformality.
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Chapter 4

Summary and outlook

"The dream-narratives and cuttings collected by the professor were,
of course, strong corroboration; but the rationalism of my mind and
the extravagance of the whole subject led me to adopt what I thought
the most sensible conclusions.”

—H.P. Lovecraft, "The Call of Cthulhu", 1926—

Holographic dualities are a new way to study quantum field theories at strong
coupling, originating from string theory constructions where a superconformal
gauge theory living on a D3-brane is found to be dual to string theory in the near-
brane AdSs -background. The two main approaches for modeling gauge theories
with less symmetry are top-down and bottom-up. The top-down approach
attempts to find string theory constructions whose dual is as close as possible to
the desired theory, whereas the bottom-up approach is based on constructing
directly an action and field content in the higher dimensional bulk that hopefully
captures phenomenologically some salient features of the theory to be modeled.
Neither method produces controlled approximations to the dual field theory.
The top-down duals are not controlled approximations because the differences
between the dual theory and the theory to be modeled are typically qualitative,
such as the existence of a Kaluza-Klein -tower of excitations not present in
the desired field theory. The bottom-up models are not controlled because the
theory is defined in the bulk, and exact correspondence between the bulk and
the boundary theory is not typically known.

In this thesis, we have considered a number of holographic models. We
presented Dynamical AdS/QCD, which gives a model of chiral symmetry breaking
in QCD-like models, given the running of the anomalous dimension of the quark
condensate as input. At the limit where running is near-conformal, i.e. the model
is walking, the model corroborates all the main expectations accrued over the
years, during the study of walking technicolor models, concerning quasi-conformal
field theories.

We exhibited the Improved Holographic QCD model, which is a string inspired
bottom-up model. Here the main input from the field theory side is the running
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of its gauge coupling constant, which we used again to study the effects of
quasi-conformality, this time in finite temperature. We found a pattern of phase
transitions, with a detailed description of the melting of bound and quasi-normal
states during these transitions.

An extension of the IHQCD model, Veneziano QCD, which includes an explicit
model for the quark degrees of freedom, was studied at finite temperature and
chemical potential, and as a function of x;. As a function of x; in the quasi-
conformal region, we again find many of the features expected to be present in
such theories. Interestingly though, a light dilaton nor a vanishing S-parameter
is not found in this limit [55]. Overall, we find a pattern of phase transitions
matching well with field theory expectations. At finite chemical potential, we
find a phase diagram with a second order chiral symmetry restoring transition
at small p, and a first order transition at larger pu. There is a tricritical point
connecting these two transition curves.

The zero temperature phases of Veneziano QCD are a subject which we
did not give too much attention to yet. A further study of these is likely to
give interesting insights into the behavior of holographic dense matter at strong
coupling. A detailed matching of the potentials to QCD and lattice results will
also allow deriving quantitative predictions from the holographic models.

The Dynamic AdS/QCD -model is simpler than VQCD, and has less free
parameters, which makes it more predictive and easier to compute, although
perhaps less realistic. It will be interesting to put this model also to finite
temperature and finite chemical potential.
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