
Deploy ent of XML for Of e
Do ents in Organizations

Eliisa Jauhiainen

JYVÄSKYLÄ LICENTIATE THESES IN COMPUTING

16

JYVÄSKYLÄ LICENTIATE THESES IN COMPUTING 16

Eliisa Jauhiainen

Deployment of XML for Office
Documents in Organizations

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2014

Deployment of XML for Office
Documents in Organizations

JYVÄSKYLÄ LICENTIATE THESES IN COMPUTING 16

Eliisa Jauhiainen

Deployment of XML for Office
Documents in Organizations

UNIVERSITY OF JYVÄSKYLÄ

JYVÄSKYLÄ 2014

Editor
Mauri Leppänen
Department of Computer Science and Information Systems, University of Jyväskylä

URN:ISBN:978-951-39-5600-4
ISBN 978-951-39-5600-4 (PDF)

ISBN 978-951-39-5599-1 (nid.)
ISSN 1795-9713

Copyright © 2014, by University of Jyväskylä

Jyväskylä University Printing House, Jyväskylä 2014

ABSTRACT

Jauhiainen, Eliisa
Deployment of XML for office documents in organizations
Jyväskylä: University of Jyväskylä, 201 , 63 p. (+ four included articles)
(
ISSN)

 (nid.), 978-951-39-5600-4 (PDF)
Licentiate Thesis

Majority of the content in organizations is stored as documents. Structured
documents, like XML documents, allow the structure definitions, document
instances, and layout specifications to be handled as separate entities. This is an
important feature to realize from a document management point of view. A
class of similar documents with the same structure constitutes a document type.
The documents are built from components that are logical units of information
within the context of the document type.

Office documents are typically authored using word-processing software,
they are relatively short in length, and intended for human consumption. The
development of open office standards brought XML to organizations’ office en-
vironments and changed the capabilities of using document content in ways
that were previously impossible or difficult. The aim of this research is to ex-
plore possible benefits of using custom XML schemas in office documents and
factors influencing the design of such schemas.

This study reports findings from two action research studies. Both cases
involved designing custom XML schemas for office documents with the case
organizations. The research resulted in the increased understanding of real-life
requirements and challenges of XML schema design for office documents and
provided insights of XML-based office document use after implementation.

The research area changed significantly since the study was started. When
the research began in 2005, the open XML standards for office documents were
still under development, yet office suites available had already XML support
enabling the use of custom XML schemas. The longevity of the study has pro-
vided an opportunity to closely observe the use of an XML-based office docu-
ment authoring system using custom XML schemas in a case organization
through the years. The contributions of this study are the insights to schema
design efforts. The two cases revealed issues motivating organizations to con-
sider custom XML schemas for their office documents and how XML document
management can be analyzed and described. The use of schema design meth-
ods was observed to be beneficial in both cases.

Keywords: document management, document analysis, schema design, office
document

Author’s address Eliisa Jauhiainen

Department of Computer Science and Information
Systems
University of Jyväskylä, Finland

Supervisors Airi Salminen

Department of Computer Science and Information
Systems

 University of Jyväskylä, Finland

 Anne Honkaranta
 Digia Plc

Jyväskylä, Finland

Reviewers Jari Multisilta
 CICERO Learning

University of Helsinki, Finland

Tero Päivärinta
Department of Computer Science, Electrical and Space
Engineering
Luleå University of Technology, Sweden

ACKNOWLEDGEMENTS

I would like to thank both of my supervisors, Professor Airi Salminen and Anne
Honkaranta, for their insightfulness, guidance and patience. It’s been a long
road, but luckily filled with light and many opportunities to grow. I would also
like to express my warmest thanks to the reviewers of this thesis, Jari Multisilta
and Tero Päivärinta, for their contribution and insightful comments.

This thesis marks an end of an interesting journey. Luckily I have shared it
with the best travelling companions possible, a group of very near and dear
ones in the Department of Information Systems and Computer Science. The la-
dies known as the Tricksters (i.e. “huiputtajat”) - Maritta Pirhonen, Minna Sil-
vennoinen, Irja Kankaanpää, and Marjo Silvennoinen - all of you made this
road more fun to travel. Thanks for the laughs, shoulders to cry on, sympathetic
ears, and many great discussions. Sharing thoughts, ideas and a wide spectrum
of feelings with you on research and life in general has been both enlightening
and empowering experience for me. I would also like to thank Reija Nur-
meksela, my “partner in crime”. Writing research articles with you is always a
pleasure. Your insightfulness never ceases to amaze me.

Some people enjoy afternoon tea at five o'clock, but Seija Paananen and I
enjoy our seven o’clock coffee in the morning. Seija is without a doubt the heart
of the Department of Information Systems and Computer Science, and one of
the most significant supporters for me throughout these years. Your positivity
is truly inspiring!

I would also like to express my gratitude to the hardworking people in the
Faculty Office. If I have done anything to make your everyday work even a lit-
tle bit easier, I’ll take that as one of the most important accomplishment of these
past years. Don’t ever forget how important and valuable work you do for the
faculty staff every day.

Jyväskylä 31.5.2013
Eliisa Jauhiainen

LIST OF FIGURES

FIGURE 1 XML element tree ... 13
FIGURE 2 Components of a content management environment 18
FIGURE 3 XML document conforming to the DocBook DTD 20
FIGURE 4 Research process of the thesis .. 33
FIGURE 5 Example of component list for memo document type 35
FIGURE 6 Document hierarchy model .. 36
FIGURE 7 Document component model ... 38
FIGURE 8 Top-level analysis of four document types .. 40
FIGURE 9 Simple example of reuse map for four document types 40
FIGURE 10 Example of an information model ... 41

LIST OF TABLES

TABLE 1 Summary of the characteristics of XML documents 14
TABLE 2 Interpretations of components identified from memo
 document type ... 16
TABLE 3 Comparison of standards ... 23
TABLE 4 Comparison of methods ... 43

CONTENTS

1 XML FOR OFFICE DOCUMENTS .. 11
1.1 XML documents .. 12
1.2 Data-centric vs. document-centric XML .. 13
1.3 XML document components ... 15
1.4 Document management in offices .. 17
1.5 Standard schemas for XML documents ... 19

1.5.1 DocBook .. 19
1.5.2 OpenDocument Format .. 20
1.5.3 The Office Open XML ... 21
1.5.4 Comparison of the standards .. 22

1.6 Office document standardization ... 23

2 RESEARCH GOAL AND METHODOLOGY .. 25
2.1 Research objectives ... 25
2.2 Research approach and research process .. 26

2.2.1 Action research .. 26
2.2.2 Case 1: The MemoX system ... 27
2.2.3 Case 2: RAKE project .. 30

2.3 Research process .. 32

3 SCHEMA DESIGN METHODS ... 34
3.1 The Maler and El Andaloussi method ... 34
3.2 Document Engineering Approach .. 37
3.3 Unified Content Strategy ... 39
3.4 Comparison of the methods .. 42

4 SUMMARY OF THE INCLUDED ARTICLES .. 44
4.1 Article 1: “Two Methods for Schema Design for Intelligent XML

Documents in Organizations” .. 44
4.1.1 Research objectives and methods ... 44
4.1.2 Content and results ... 45

4.2 Article 2: “Aspects on XML Document Content Reuse in
Organizations” .. 46
4.2.1 Research objectives and methods ... 46
4.2.2 Content and results ... 46

4.3 Article 3: “XML Document Implementation: Experiences from Three
Cases” ... 47
4.3.1 Research objectives and methods ... 47
4.3.2 Content and results ... 47

4.4 Article 4: “A Life Cycle Model of XML Documents” 48
4.4.1 Research objectives and methods ... 48
4.4.2 Content and results ... 49

4.5 About the Joint Articles .. 49

5 RESULTS AND IMPLICATIONS .. 51

5.1 Contributions ... 51
5.2 Implications .. 53

6 CONCLUSION ... 55

REFERENCES ... 57

YHTEENVETO (FINNISH SUMMARY) .. 63

LIST OF INCLUDED ARTICLES

1 Honkaranta, A., Jauhiainen, E. (2007). Two Methods for Schema Design
for Intelligent XML Documents in Organization. In Witold Abramowicz,
Heinrich C. Mayr (Eds.). Technologies for Business Information Systems.
Dordrecht, Netherlands: Springer, 173-182.

2 Jauhiainen, E., Honkaranta, A. (2007). Aspects on XML Document Content

Reuse in Organizations. In Weide Chang, James B.D. Joshi (Eds.). Proceed-
ings of the 2007 IEEE International Conference on Information Reuse and
Integration (IEEE IRI-07), Las Vegas, 588-593.

3 Nurmeksela, R., Jauhiainen, E., Salminen, A., Honkaranta, A. (2007). XML

document implementation: Experiences from three cases. In Youakim
Badr, Richard Chbeir, Pit Pichappan (Eds.). Proceedings of the Second In-
ternational Conference on Digital Information Management. Los Alamitos,
CA: IEEE, 224-229.

4 Salminen, A., Nurmeksela, R. and Jauhiainen, E. (2013). A Life Cycle Mo-

del of XML Documents. Submitted to the Journal of the American Society
for Information Science and Technology (JASIST). Accepted October 2,
2013.

1 XML FOR OFFICE DOCUMENTS

A document is a unit of recorded information meant for human consumption
(Levien, 1989). Today a great deal of documents are digitally created, stored
and displayed. Documents are used as information carriers between people and
software modules, and they are produced and exchanged in organizational pro-
cesses (Sprague, 1995). According to Klischewksi (2006), documents function as
representation of organization’s administrative knowledge. In this thesis an of-
fice document has the following characteristics:

− It is composed with office suite software (typically word-processing

software).
− It is relatively short in length, or assembled from documents that are rel-

atively short in length (in contrast to book-like documents like theses,
manuals, etc.).

− Most, if not all, of the document content consists of natural language (i.e.
written text).

− A person authors it.
− It is targeted for human consumption.
− It functions as a record in an administrational process or business trans-

action.
− It may have an organization-specific document template.
− It may receive some of its content from an external content source, such

as database.

XML (Extensible Markup Language) (Bray, Paoli, Sperberg-McQueen, Maler
and Yergeau, 2008) has been introduced to office documents via standardiza-
tion of open document formats. Using XML-based file formats instead of appli-
cation dependent binary formats introduced office environments as a new area
for XML research.

12

1.1 XML documents

XML is a restricted form of SGML (Standard Generalized Markup Language)
(Goldfarb, 1990), which is a metalanguage for structured documents. In struc-
tured documents structure definitions, document instances and layout specifi-
cations can be separated from each other and therefore processed separately.
The roots of SGML are in publishing industry where the need to establish ge-
neric typesetting codes for document manipulation in different text processing
systems emerged in the late 1960s (Fierz and Grütter, 2000). The most widely
used and known SGML-based language is HTML (HyperText Markup Lan-
guage), the markup language for web pages. The rules of SGML were, however,
too complicated to define languages needed in Internet communication.

XML was developed to meet the needs of representing information of var-
ious application domains on the Internet. A design goal of XML was to be sim-
pler than SGML, yet compatible with it. Unlike with HTML, which provides a
fixed set of element types to use, the users of XML may create and name ele-
ment types of their own. The names may not necessarily indicate anything
about document presentation, but about the information of document content
instead.

Every XML document has a logical structure and physical structure. The
physical structure consists of one or many entities. On the logical level an XML
document is composed of declarations, elements, comments, character refer-
ences, and processing instructions, which are indicated by explicit XML markup.
Each XML document contains elements, which are delimited by start and end
tags. Elements may contain other elements, text, or a mixture of both. XML
documents can be perceived as hierarchical tree-structured collections of nodes
where each node of the tree corresponds to an element in the XML document.

An XML document begins in the root of a document. The element tree
branches to the “leaves”, which consist of character data. Figure 1 illustrates a
simplified example of an element tree where the rectangles represent individual
elements. The root of the document tree is the root element Memo. Therefore, a
memo document starts with the <Memo> tag and ends with the </Memo> tag.
The lines between the rectangles illustrate the child-parent relationships be-
tween the elements. The element Contents for instance, contains child ele-
ments Paragraph, Motion and Decision These elements do not have child
elements of their own and therefore they may contain the actual text content of
the memo document, i.e. “the leaves”. Elements can also have attributes. For
example, the element Memo may have an attribute date containing the date in-
formation of the memo document. An XML document is well-formed if it meets
all of the well-formedness constraints given in the XML Recommendation. XML
processor takes care of inspecting if a document is well-formed.

13

FIGURE 1 XML element tree

A schema is a set of rules describing the structure and other constraints for a
class of XML documents. A class of similar documents by their content and
purpose is considered as a document type. Typical document types in offices are,
for instance, memos, reports and invoices. If an XML document has an associat-
ed schema and the constraints defined in the schema are also met, the XML
document is valid.

There are a number of languages developed to express schemas. DTD
(Document Type Definition) is defined in the XML specification and provides
capabilities to define a grammar for a class of XML documents. DTDs describe
the structure of a class of documents via element and attribute-list declarations.
XML Schema (Fallside and Walmsley, 2004), also known as XSD, was intro-
duced in 2001 and unlike DTD, XSD is declared by using XML-based syntax.
RELAX NG (Regular Language for XML Next Generation) (Clark and Murata,
2001) is a schema language developed by a working group at the OASIS organ-
ization and it is considered to be the challenger of XSD. A major goal of RELAX
NG is that it should be easy to learn and easy to use (Clark, 2001). RELAX NG
has both XML-based syntax and another, more compact syntax, which is not
based on XML.

When documents are authored in XML form, document content consists of
the XML markup and character data. It is always readable by XML software.
Marked up document can also be easily transformed to other formats such as
HTML (HyperText Markup Language) or PDF (Portable Document Format).
XSLT (The Extensible Stylesheet Language Transformations) (Clark, 1999) is a
language for expressing human perceivable transformations. The external rep-
resentation is often defined by a style sheet associated with the document.

1.2 Data-centric vs. document-centric XML

“XML shall support a wide variety of applications”, is one of the design goals
written in the XML specification (Bray et al., 2008). As XML has spread to mul-
tiple types of application domains, the variety of different kinds of XML docu-

14

ments is wide. In literature a typical way to classify XML documents is to di-
vide them into data-centric and document-centric XML documents, based on
their purpose and type of use. Office documents may have both data- and doc-
ument-centric properties. Table 1 summarizes the common characteristics of
data- and document-centric XML documents identified in XML research.

TABLE 1 Summary of the characteristics of XML documents

Characteristic DATA-CENTRIC DOCUMENT-CENTRIC
Typical use Data exchange, data for-

mat in databases
Electronic publishing, docu-
ment content reuse

Schema characteristics Use of attributes and data
types

Number of elements is greater
than number of attributes,
mixed element content,
deep document hierarchies

Element order Unimportant Significant

Typical research areas Data integration, transfer
format between databases

Document standardization,
structured/modular writing,
 e- publishing, information re-
trieval

Data-centric XML documents are common, for instance, in the field of e-business
where data exchange between systems enables efficient business transactions.
XML can also be used to manage XML data in relational and object-oriented, or
object-relational databases (Elmasri, Wu, Hojabri, Li and Fu, 2002). Another ex-
ample domain is web service messaging, which is machine-to-machine interac-
tion over a network. Messages are usually XML documents that follow the
SOAP (Simple Object Access Protocol) (Mitra and Lafon, 2007) standard.

Typically data-centric XML documents are regular in structure and homo-
geneous in content (Bertino and Catania, 2001). Elements in data-centric XML
documents typically contain either character data or other elements, but not a
mixture of both. The order of sibling elements is not necessarily important as
long as the character data is correctly marked up. The use of attributes in order
to provide additional information about elements may be common as well as
constraining element content with data types. For example, an element price
may be defined to contain numerical data, like integer, instead of textual data.
Data-centric XML documents are also referred to as transactional documents
(Glushko and McGrath, 2005), record-like documents (Harold and Means, 2004),
or database-oriented documents (Megginson, 1998). Office documents like invoices,
for instance, may have content that is retrieved from an external system like a
database or a web service. Such content is more data- than document-centric.

Document-centric XML documents are meant for human consumption and
therefore there is typically a layout attached to them. Typical examples of doc-
ument-centric XML documents are books, manuals, and journal articles. In
technical documentation XML may be used in structured writing, which involves

15

developing categories of document content that can be “single sourced” or re-
used in various documents. Benefits of single sourcing result in more consistent
layouts as well as to the possibility of multiple document authors to work in
parallel (Rockley, 2001). Single sourcing approach has also been utilized for
modular e-learning content, which involves XML-based document authoring
(Bubenik, Hanke, & Juhnke, 2005). A great deal of office documents lean heavi-
ly towards this end of an XML document spectrum. Documents like letters,
memos, and reports may have more document-centric properties than data-
centric ones.

Commonly document-centric XML documents are a mixture of content
and layout components, such as paragraphs, headers, lists, and formatting.
(DuCharme, 2004) Document-centric XML documents, unlike their data-centric
counterparts, are strict on the element order within a document type, i.e. the
order of sibling elements is significant (Nambiar, Lacroix, Bressan, Lee, and Li,
2002). Significant amount of document content consists on natural language.
Document-centric XML documents are also called as narrative documents
(Glushko and McGrath, 2005), narrative-like documents (Harold and Means, 2004)
or book-oriented documents (Megginson, 1998).

1.3 XML document components

XML document structures can be perceived from different perspectives. In gen-
eral, XML documents have both logical and physical structures. Physically XML
is built from units called entities. Entities are storage units of content and they
are identified by an entity name. Each XML document has at least one entity,
which is called document entity. Document entity may contain the whole XML
document. Logical structure of an XML document is composed of declarations,
elements, comments, character references, and processing instructions, all of
which are indicated in the document by explicit mark-up.

As explained earlier, a set of XML documents similar by their arrangement
of document can be defined as a document type. The ISO 8879 defines a docu-
ment type as a class of documents that have similar characteristics (ISO, 1986).
For example, memorandum is a typical document type in any organization.
Therefore, memorandum’s document instances can be, for instance, “a memo of
Monday’s meeting” and “a memo of Thursday’s meeting”.

Documents of a type are built from document components. In other words,
components are building blocks of the document types. A component is a part
of the document containing unique information compared to other parts within
the same document. Where the line of uniqueness goes may be determined in
document analysis, during which document components are identified. An im-
portant characteristic of a component may also be its size. The size of a compo-
nent depends on granularity, which refers to the level of detail of a component.
(Rockley, Kostur and Manning, 2002) For example, there could be a “Meeting
information” component identified from memorandum document type.
Whether this component ends up as a single element in an XML schema for the

16

memorandum depends on granularity. Meeting information could be consid-
ered as a single element, or alternatively as a container element, which has, for
example, child elements Date and Location.

The concept of a component is not unambiguous, because both the struc-
ture as well as the use of components can be perceived from different perspec-
tives. Rockley et al. (2002) see components as reoccurring pieces of information
in document types and granularity determines the smallest piece of information
(i.e. component) that is reusable. Granularity can change within a document
and therefore components do not define how documents should be authored;
they simply define how content within documents is handled with XML
markup. For example, a memorandum document type may have a reusable
component Item that occurs in all memo instances.

Maler and El Andaloussi (1996) classify document components into three
kinds; content-based components, structural components, and presentational
components. Content-based components contain information that has specific in-
ternal organization, but the appearance of the information may vary. For exam-
ple, address information usually indicates what it contains; it has a specific in-
ternal structure that consists of a street name, zip code, country name, etc.
However, in different document instances the appearance of address infor-
mation may vary.

Structural components rely on the presentational traditions of print-based
publishing. For example, paragraphs and lists can be seen as structural compo-
nents. Their structure is explicit, but nothing is known about the contents of the
components. Therefore, structural components can be seen domain independ-
ent – they occur similarly regardless of a domain document types belong to.

Presentational components are bound to the visual formatting of a docu-
ment. They describe how information should appear in published documents.
For example, there may be phrases or regions of text in a document, which are
formatted with special font or size.

According to Maler and El Andaloussi (1996), schema designers interpret
components in any of the three ways, which can lead to the identification of
different components. Therefore, schema designers must define components
carefully and make the definitions explicit. Table 2 provides alternative inter-
pretations for four components.

TABLE 2 Interpretations of components identified from memo document type

Content-based Structural Presentational
Title Heading Bolded, font-size 12 pt

Item Paragraphs Font alignment always justi-

fied, font-size 10 pt.

Motion Paragraph or list The word “Motion” on its
own line, bolded

Decision Paragraph or list The word “Decision” on its
own line, bolded

17

Megginson (1998) uses the term logical unit when referring to components. His
classification of components is based on their use. Depending on the complexity
of a document type, components in a DTD fall into following three categories:
- components that document authors must use to create useful documents
- components that are not mandatory, but are visible to authors neverthe-

less, and
- components that are not required by the document authors nor are visi-

ble to them.

There are also other terms used to refer to components. For example, a concept
of Learning Object refers a component in e-learning contexts. According to Pol-
sani (2003), the Learning Object contains an idea or a self-standing portion of
text or multimedia. Also terms content block, content item and content units are
used (Boiko, 2002; Hackos, 2002). According to Hackos (2002), content units de-
scribe chunks of content that are used to build document types. This study
adopts the term component. The term component is also used by Maler and El
Andaloussi (1996), Rockley et al. (2002), and Fiala, Hinz and Wehner (2003).

A document type may be formally defined in a schema. On the level of
XML markup this means that the elements, attributes and their allowed occur-
rence and ordering are identical in all document instances of the same type.
Identifying and understanding components is important for both schema de-
signers and document authors. Same information may be marked up in many
different ways; with new elements, with existing elements made available in
new contexts, or with attribute values, for instance. The attribute values and
novel contexts of elements are part of understanding schemas properly.

1.4 Document management in offices

The personal computer revolution in early 1980s altered drastically work con-
ducted in organizations’ offices. This technical cataclysm resulted also in the
birth of a new research area known as office automation. According to Olson
and Lucas (1982), the term office automation referred to the use of integrated
computer and communications systems to support administrative procedures
in an office environment. Office automation was expected to improve the
productivity of office personnel. From technical point of view such systems
were based on individual workstations connected to a local network in an office.

Text processing capabilities of automated office systems provided features
for handing documents electronically. Word processing software encoded doc-
uments in a binary form at computers to process and render. Documents like
this were strictly vendor dependent and if the word processing software was
changed, there was no certainty of the future accessibility of the information in
the documents as the capabilities for processing document content in other
software were limited.

When the amount of electronic documents increased, the management of
such documents became a relevant issue for organizations. In the late 1980s

18

structured documents and their authoring tools were mostly SGML-oriented.
The research carried out at the time resulted, for example, to a few SGML-based
document production tools for structure documents (Quint and Vatton, 2004).
A significant change in document management in offices took place early 2000’s
as the nature of the most current office applications gradually changed. Com-
mon office suites, like OpenOffice.org and Microsoft Office suite, began to use
XML as the native data format of documents. XML was seen to have many be-
nefits over binary formats, such as smaller document file sizes, better data reco-
very, and better integration possibilities with other documents as well as bu-
siness information stored in external data sources. (Garfinkel and Migletz, 2009;
Petride, Tarachandani, Agarwal and Idicula, 2011) XML provided a mechanism
for both systems and people to identify different parts of documents. This was a
significant change from document management perspective as documents were
earlier considered as sets of unstructured data objects (Blumberg and Atre,
2003). More recent studies have focused on interactive office documents, for in-
stance. Boyer (2008) has examined how interactive office documents may evolve
as tools for creating content on Web 2.0 applications. Office documents on such
applications are perceived as a client side of a web application, providing a fa-
miliar interface for document authors.

In the following the typical characteristics of an XML-based office docu-
ment management environment are described within the model presented in
(Salminen, 2005) for content management environments (see Figure 2).

FIGURE 2 Components of a content management environment (Salminen, 2005, p.5)

The model contains two types of entities: activities depicted by an ellipse and
resources depicted by rectangles. An activity is a set of actions performed by
one or more actors in a process. The resources are divided into three types, con-
tent items, actors, and systems. The arrows represent information flow between
the activities and resources.

From the viewpoint of this thesis, relevant activities are document pro-
duction and XML schema design. Content items are created and used in activi-
ties. Document templates and individual document instances created on them
are all relevant content units. If XML is deployed, relevant content items may
also include schemas, XML document instances and style sheets. Actors are

19

people and organizations performing activities. In office document manage-
ment document authors are relevant actors on the domain. Document creation
may be a collaborative effort of many authors. Also schema designers are rele-
vant actors on the domain, if custom XML schemas are designed in order to
deploy XML-based document production.

Systems are used in document management activities. For example, office
automation aimed to improve activities related to document production by in-
troducing new systems, like electronic document management systems, in of-
fice environments. Nowadays XML and open standards may also be seen as
part of relevant systems used in office document management. According to
Lappin (2010), new systems and applications, however, may not make the old
ones disappear. For example, new open document formats have introduced
XML in office document management, yet they do not necessarily ensure the
new format would automatically replace older formats entirely. If XML is de-
ployed, relevant systems also include XML and its related standards.

1.5 Standard schemas for XML documents

Despite of the standardization of open formats for office documents, research
carried out of the deployment of XML in organizations’ offices has been scarce.
This chapter presents the main characteristics of the three standard schemas for
office documents. DocBook schema (Walsh, 2008) is a standard schema for pub-
lishing structured documentation. Open Document Format (ODF) (ISO, 2006)
and Office Open XML (OOXML) (ISO, 2008) are both standards for office doc-
ument formats.

1.5.1 DocBook

DocBook (OASIS, 2006) is a markup language that was created in the early 90’s
for documentation authored with a document processing system called Troff.
(Walsh and Muellner, 1999) The first versions of DocBook schemas were SGML
DTDs. Nowadays XML DTD is still the normative DocBook schema, but the
schema is also available in XSD and RELAX NG schema languages.

According to Megginson (1998), DocBook was designed to encompass
many different structures inside a set of book-like document types. The root
element of a DocBook document is typically book, or article. There are dif-
ferent types of chapters and sections defined in the schema, such as glossaries,
synopses, listings, and footnotes. Sections consist of paragraph-level elements
(Walsh and Hamilton, 2010).

Figure 3 shows an example of a DocBook document. The root element of
the document is book. The document consists of a title and one chapter, which
has one section. The section contains a formal paragraph with title and element
para for the paragraph content. The paragraph is followed by the list, which
has two list items. The element representing a list item is member.

20

FIGURE 3 XML document conforming to the DocBook DTD

In the DocBook schema each element declaration is associated with attribute
declarations. There are 19 common attributes defined, including the attributes
annotations and version, which are also illustrated in Figure 3.

The elements defined in the DocBook schema are general enough to be
used in many contexts. Elements like para and simplelist,
not bind the markup with any specific context of use. The elements are equally
applicable for technical manuals and e-learning content, among others. For ex-
ample, DocBook schema has been deployed in the context of e-learning online
course content supporting multiple output formats of the content. (Molloy, 2003;
Martínez-Ortiz, Moreno-Ger, Sierra, and Fernández-Manjón, 2006.) As an open
standard DocBook schema is not bound to any specific authoring tool.

1.5.2 OpenDocument Format

The OpenDocument Format (ISO, 2006), also known as ODF, is an ISO standard
for XML-based office document. An OpenDocument file consists of a set of
XML documents and associated binary data within a zip package. The XML
documents in the OpenDocument zip package are:

- content.xml
- meta.xml
- settings.xml
- styles.xml, and
- manifest.xml.

21

content.xml contains the actual document content, excluding the binary data
like images. meta.xml contains the metadata of the document, like creation date
and editing cycles, for instance. settings.xml contains information about the
document authoring tool settings. For example, information of view settings
can be found from settings.xml. styles.xml contains most of the document styl-
ing information, though font style declarations and automatic office styles are
also included in content.xml. Finally, manifest.xml contains information of all
the XML documents and other files within the zip package it is a part of as well.
Overall, there are three types of RELAX NG schemas in the ODF standard:

1. OpenDocument schema,
2. normative schema for the manifest.xml, and
3. strict schema for office documents.

The OpenDocument schema is the main schema of the ODF specification. It is
defined for text documents, charts, spreadsheets, and graphical documents. The
OpenDocument schema is extensive and relatively complex as it contains all the
necessary definitions for text documents to spreadsheets and charts. The nor-
mative schema for manifest.xml defines necessary elements for manifest.xml.
The strict schema is used when OpenOffice document is stored as one XML
document instead of set of multiple XML documents in an OpenDocument
package. However, this method is not supported in OpenOffice directly.

1.5.3 The Office Open XML

Office Open XML (OOXML) (ISO, 2008) is another XML-based file format for
office documents. Microsoft originally developed the format for word-
processing documents, spreadsheets, charts, and presentations. Therefore, the
OOXML standard includes the following three markup languages:

 WordProcessingML for text and graphics in MS Word document,
 SpreadsheetML for information in a MS Excel workbook, and
 PresentationML for presentation related data in MS PowerPoint slides.

The schemas in OOXML specification are declared in both XSD and RELAX NG
schema languages. The schema that defines WordProcessingML is called the
WML schema (wml.xsd).

22

Primary document content is stored in document.xml. Document’s primary
content (written text) appears within sections and its presentational features are
controlled by section's properties. For example, each section can have its own
headers and footers. (ISO, 2008)

1.5.4 Comparison of the standards

The DocBook schema differs significantly from the OpenDocument schema in
ODF standard, and from the WML schema in OOXML standard. XML markup
is mainly structural; there are elements for book-like document types such as
sections and paragraphs. Document authors may use a syntax-directed XML
editor to author documents and therefore they should have know-how about
XML and the document structure DocBook schema defines.

The ODF and OOXML standard schemas provide necessary definitions
and declarations for documents. The purpose of the XML markup in this con-
text is to store and describe document content (i.e. text), document metadata,
application settings data and presentational information of documents (ISO,
2006; ISO, 2008). All this information is described within XML elements, which
are defined in an open XML schema. For document’s primary content there are
elements for text paragraphs and lists, for instance, but on the level of markup
there are no means to tell whether a text in a paragraph is associated with a do-
cument type of memo or report. Document authors have freedom to compose
any kind of documents they please. Therefore, these two standard schemas are
not meant for specific document types, but to store documents in XML format.
Table 3 summarizes the characteristics of the three open standard schemas.

23

TABLE 3 Comparison of standards

 DOCBOOK ODF OOXML
Schema Schema for book-like

document types, books
and articles.

Elements for sections,
chapters, paragraphs
and inline-elements

Normative schema is
an XML DTD schema.

Schema for a text doc-
ument (not for specific
document type).

Elements for text con-
tent like headings, text
paragraphs, lists, and
table.

Normative schema is a
RELAX NG schema.

Schema for a text docu-
ment (not for specific
document type).

Elements for paragraphs,
runs and texts. Each para-
graph and run is associat-
ed with properties. No
separate elements for
headings, and lists.

Normative schema is a
XSD schema.

Docu-
ment
author-
ing

Content written with a
syntax-directed XML
editor with immediate
validation against the
DocBook schema.

XML markup describes
document structure,
not presentation.

Document content is created and modified with an
authoring tool providing a WYSIWYG interface for
document authoring.

XML markup is not visible for document authors.

No means to add or remove specific elements
and/or attributes defined in a schema. Modifying
XML markup necessitates editing XML documents
inside a document package manually.

The authoring tool generates XML markup during
document authoring.

Where DocBook schema defines a document type, like a book or an article,
OpenDocument schema in ODF standard and WML schema in OOXML stand-
ard are defined for the document format. Therefore, document author may not
even be aware of the schemas whereas with DocBook the schema guides docu-
ment author to produce valid documentation.

1.6 Office document standardization

Problems in document management may involve an insufficient way of reuse
document content. When XML was first introduced to MS Word in the Office
2003 version, a specific kind of document template called SmartDocs was intro-
duced alongside other templates. The idea of SmartDocs was to support collab-
orative document production and efficient content reuse via snippets, which
were document files containing reusable document. This indicates that docu-
ment content reuse in office documents is commonly an essential characteristic
of office document management. Reusable document content may be searched

24

from the set of old documents, copied and pasted into new novel ones, which
can be a time-consuming task.

If there are multiple document authors involved in the production of same
document types, similar content may be created simultaneously and saved as
separate documents. This may lead to a situation where there are many differ-
ent versions available of the same document. Rockley et al. (2002) call a phe-
nomenon of this sort as content silo trap, which can be problematic from the
document management viewpoint. Computer storage space, time and money
are wasted, when the amount of similar and potentially unnecessary document
types and instances increases.

To solve aforementioned kinds of problems in office environments, stand-
ardization of document types is required. Document standardization involves
agreeing upon the rules how information is clustered and presented in docu-
ments as well as practices involved in document management (Nurmeksela,
Jauhiainen, Salminen and Honkaranta, 2007). Document standardization is not
about identifying documents and their structures only, but also identifying oth-
er entities of the document environment. (Salminen et al., 2000).

With OpenOffice.org and Microsoft Office applications it is possible to de-
sign document templates for different document types. Document templates
provide a unified layout and structure for documents and XML-based file for-
mat supports integration to other data sources. In addition, relying on macros,
for instance, can provide means to control document structures of office docu-
ments. This approach may be, however, expensive to develop and prone to er-
rors. (Sefton, 2007) Furthermore, XML-based standards for office documents
support the accessibility to document content in future, but these standards do
not, however, necessarily change or improve activities related to document au-
thoring.

Defining custom-made XML schemas may support retrieving document
content from an external system as well as multi-channel publishing of office
documents. The design and deployment of custom XML schemas is a document
management initiative based on the needs and requirements of organization in
contrast to adopting standards.

The benefits from the deployment of custom-made XML schemas in offic-
es are not, however, well known. According to Scifleet and Williams (2009), de-
signing digital documents have remained unexamined or under-theorized re-
search area. Design of documents has often been viewed as a technological chal-
lenge, even though in practice schema designers are faced with the complexity
of the domain including work tasks related to document production, document
life cycles, and the people who produce them. Therefore, more research is need-
ed to understand benefits and challenges of XML deployment in offices.

This thesis focuses on the design and deployment of XML for office doc-
uments. The rest of the thesis is organized as follows. Chapter 2 introduces the
research goal and methodology of the study. Schema design methods are intro-
duced in Chapter 3. Chapter 4 provides an overview of the joint articles of the
thesis by summarizing the research objectives, methods, content, and results for
each article. Chapter 5 presents the results of this study and Chapter 6 con-
cludes the thesis.

2 RESEARCH GOAL AND METHODOLOGY

In this chapter the research goal, research methodology and the research pro-
cess of the thesis are introduced, and the cases involved are described. The
MemoX project was carried out in the Faculty of Information Technology in the
University of Jyväskylä and it resulted in an XML-based system for Faculty
Council agenda production. The RAKE project was a feasibility study at the
Finnish Centre of Pensions (FCP) concerning administrative documents. Both
cases involved designing custom XML schemas for office documents.

2.1 Research objectives

Research on document-centric XML documents has covered technical documen-
tation (Broberg, 2004) and modular e-learning content (Bubenik, Hanke, and
Juhnke, 2005). Also XML standardization initiatives in e-government cases have
been reported (Salminen et al. 2001; Salminen, 2003). In academic sector struc-
tured document management initiatives have included cases involving produc-
tion of dissertations and journals (Müller, Klatt, Dobratz, and Bahnik, 2006; Sef-
ton, 2007). Studies involving open documents have focused on the use of
OpenDocument-compliant software and tools, and describing standardization
process of open documents. Also reasons for the adoption of open document
format in public sector have been studied (for example, Shah, Kesan, and Ken-
nis, 2007). Karjalainen (2010) has made an innovation adoption study of the mi-
gration into the open-source OpenOffice.org software suite in the Finnish Min-
istry of Justice and its administrative sector. The default document format in the
suite is ODF. Yet design and adoption of XML documents has remained as a
scarcely studied area of XML research.

The goal of this study is to explore possible benefits of using custom XML
schemas in office documents and factors influencing the design of such schemas.
Because there are not many studies reported on this specific area of XML de-
ployment, the objective of this study is to make discoveries through design ac-

26

tivities involving schema design. The focus of this thesis is defined by the fol-
lowing questions:

1. What kinds of objectives motivate organizations to deploy custom XML schemas for

their office documents?
2. What kinds of guidelines schema design methods provide for designing custom XML

schemas?
3. How can XML document management in an organization be analyzed and described?

This study aims to report relevant findings both for researchers and practioners
in the field of XML document management. Findings are gathered by designing
custom XML schemas for office documents and observing an XML document
management case over the years after XML implementation.

The first research question is covered in the articles 2, 3 and 4. The second
research question is covered in the articles 1 and 4, but also in the following
chapter 3, which complements the article 1. Finally the third research question
is discussed in detail in article 3 and in article 4. The empirical settings for the
included articles contain participation in two real-life projects concerning sche-
ma design and XML implementation.

2.2 Research approach and research process

This study is qualitative in nature. The research is conducted by participating in
two document management development projects. The two projects were car-
ried out with action research approach.

2.2.1 Action research

Action research is about making discoveries through action taking (Baskerville,
2008). Action research produces knowledge to guide practice and it aims at an
increased understanding of an immediate social situation. (Järvinen, 2007) Ac-
cording to Iivari (2007), action research is more focused on adopting technology
than building it. Both MemoX project and RAKE project provided “lesson
learned” types of findings from XML schema design efforts for office docu-
ments. Therefore, the dominant research approach in this thesis is action re-
search.

Action research is seen as a method, which contributes to practical con-
cerns of people in an organization. The approach emphasizes the utility aspect
of the future system for people in case organization. (Järvinen, 2007) Like de-
sign science, also action research typically results in the building and evaluating
of an artifact. (Järvinen, 2001) According to Baskerville (1999), the ideal domain
of the action research method contains the following:

1. the researcher is actively involved, with expected benefit for both re-
searcher and organization,

27

2. the knowledge obtained can be immediately applied, there is not the
sense of the detached observer, but that of an active participant wishing to
utilize any new knowledge, and
3. the research is typically a cyclical process.

The following five stages are often regarded essential in an action research cycle:
1) diagnosing stage, 2) action planning, 3) action taking, 4) evaluating, and 5)
specifying learning. (Kock, McQueen & Scott, 1997)

The diagnosing stage includes the identification and definition of a general
problem to be solved in the client organization. Action planning concerns the
consideration of alternative courses of action to solve the problem identified.
The action taking stage involves the selection and realization of one of the cours-
es of action considered in the previous stage. The evaluating contains the study
of the outcomes of the selected course of action. Finally, the specifying learning
stage includes the study of the outcomes of the evaluating stage. (Kock,
McQueen & Scott, 1997)

Participating in two cases was beneficial for both the researcher and the
target organizations. The action research approach was appropriate, because
there are not many real-life cases involving XML schema design for office doc-
uments reported in academic literature. Next the two cases are described as an
action research processes. The whole research process is then summed up in
Section 2.3.

2.2.2 Case 1: The MemoX system

MemoX is an XML-based document authoring system for the IT Faculty Coun-
cil meeting agendas and minutes in the University of Jyväskylä. The Faculty
Council meetings are held 11-14 times each year and typically an agenda con-
tains 5-15 pages of text. Information for agenda items is received from various
sources. For example, faculty departments, Administrative Office, HR Services,
and Communication Services are relevant information sources for agendas. In-
formation may be also received from job or student applicants, and some other
external sources. The creation of meeting agendas and minutes is regulated by
the rules concerning the decision-making process in the faculties and depart-
ments. In addition, the university has official guidelines how to carry out meet-
ings related to administrative issues and what information agendas and meet-
ing minutes should contain.

Before XML implementation agendas and meeting minutes were pro-
duced with MS Word and they were stored in the MS Windows file system in
the network drive of the Faculty Office. Problems in document production,
publishing, and delivery were the main motivations for starting the design of
an XML-based solution for agendas and meeting minutes in 2004. A group of
five majoring students in the IT faculty carried out the MemoX project where
the author of this thesis was a member of the project group. Therefore, the case
involved participatory observation. Data was also collected via end-user inter-
views and workshops.

28

The research was carried out in two action research cycles. The first cycle
was carried out from September 2004 to March 2005. The second cycle was car-
ried out between May 2005 and April 2013.

Cycle 1: Analysis and design 2004-2005

(1) Diagnosing. The IT Faculty Office personnel had problems in agenda pub-
lishing. Publishing agendas as paper copies was slow and web publishing of
meeting minutes almost nonexistent. Despite of shared principles and recom-
mendations for document styles, collaborative nature of the document author-
ing resulted in inconsistent layouts. Occurrence of identical content was typical
in agendas and meeting minutes, and copying and pasting text portions from
old documents into new ones was the method of document content reuse. This
was a time-consuming and tedious task for the office personnel.

(2) Action planning. Based on literature on the subject area as well as experi-
ences of previous document management projects, XML was seen as a promis-
ing technique to reuse document content more systematically as well as to sup-
port multi-channel publishing of agendas and meeting minutes. The task of de-
signing a new XML-based document production for agendas was introduced to
a student project group.

(3) Action taking. The RASKE methodology (Salminen, 2003) was adapted to
carry out document analysis including the analysis of the agenda authoring
process, the information sources connected to agendas, and the relevant roles
related to the agenda production. Hierarchic content models formed the basis
for XML schema design. MS InfoPath was chosen as the authoring tool of XML-
based agendas. The design of custom XML schemas and InfoPath form design
followed document analysis. These two tasks were carried out in parallel as
schemas needed to meet the requirements of InfoPath’s functionalities. Also
preliminary XSL transformations for HTML output were created. The goal was
to publish agendas with similar layout as used previously with MS Word doc-
uments.

(4) Evaluating. One of the most significant findings was that XML document
production could be implemented with existing office applications without a
need to invest to new and potentially expensive software or hardware. In 2005
this was a significant find, because XML format was not yet a native data for-
mat in common office applications. The timeframe of the project (six months)
allowed the design of 16 preliminary XML schemas, InfoPath form templates,
and XSL transformations for HTML outputs. (Jauhiainen, 2005) However, defin-
ing and testing final schemas required more work in future.

(5) Specifying learning. Before the MemoX project started, the RASKE meth-
odology had been used in larger scale document management initiatives. There-
fore, the document analysis phase had to be adapted to meet the needs of the
smaller scale project. Document analysis provided means to gain understand-

29

ing of the document processing in the IT Faculty. However, defining schemas
that were appropriate with MS InfoPath and testing the functionalities of the
authoring tool by composing sample XML documents required more time.
Nevertheless, MS InfoPath showed a great promise for XML-based office doc-
ument production.

Cycle 2: Re-design, implementation and use 2005-2013

(1) Diagnosing. The work carried out in the first MemoX project remained in-
complete and therefore there was a need to continue the work in order to con-
struct an implementable XML-based agenda production in the IT Faculty Office.
It was quickly realized that XML schema design in cycle one had been carried
out insufficiently.

(2) Action planning. The earlier defined schemas for meeting agendas and
minutes were re-examined. Similarities in schemas were identified, and places
for schema component reuse discovered. This resulted in the conclusion that
there were initially too many similar schemas defined for the similar items in
agendas, and a plan to define one generic schema for similar InfoPath forms
emerged. Furthermore, plans were made to finalize the preliminary techniques
for document assembly as well as XSLT transformations for HTML and PDF
outputs. These were seen essential before the system would be ready to be im-
plemented in the Faculty Office.

(3) Action taking. A generic schema for agenda items was designed and tested
in the InfoPath form. As a result, the number of required schemas decreased
from 16 to four. This decision also decreased the number of the required Info-
Path form templates and the XSLT files for HTML and PDF outputs. Because
InfoPath did not provide WYSIWYG user interface, HTML and PDF outputs
required careful design. The document layout had to remain similar with the
MS Word document layout used before XML deployment. These requirements
guided decisions on how elements were defined in the schemas.

The code for running document assembly was developed, and user guide-
lines were written and delivered for the end users in the IT Faculty Office. A
training session for the office personnel was carried out after which the imple-
mentation of the new system was soon carried out in October 2005.

(4) Evaluating. It was observed that document layout had an effect on element
definitions in schemas for agendas and meeting minutes. In addition, form-
based user interface set its requirements on schema design and therefore sche-
mas were further modified. In the end, the user interface was considered easy
to use and the system overall beneficial. The MemoX system benefited the per-
sonnel of the IT Faculty Office by making the publishing of agendas and meet-
ing minutes quicker and easier.

When identifying problems in the preliminary design of the solution that
was carried out during cycle 1, it was concluded that document analysis should
have revealed potential places of schema component reuse more efficiently in-

30

stead of focusing merely on the document structures. It was also concluded that
the amount of schemas should be kept as small as possible in order to upkeep
them efficiently as well as creating a maintainable system in general.

After the MemoX system had been used for three years, its potential bene-
fits were evaluated in 2008 as new student project. The project analyzed agenda
production in four faculties in the University of Jyväskylä. The XML-based
agenda production was compared to more traditional word-processing docu-
ment production. The ability of the MemoX system to produce both HTML and
PDF outputs with consistent layouts was seen beneficial in environments where
more than one person contributed in document production. Further evaluation
of MemoX was carried out via interviews of the faculty’s chief of administrative
issues in 2011 and 2012. The questions aimed at discovering possible changes in
the activities related to the document production, and the archival of the meet-
ing minutes. Because of the MemoX system, the meeting agendas and minutes
were now both delivered and archived digitally, in both HTML and PDF for-
mats. Most faculty council members prefer the digital PDF version of meeting
minutes to the paper version.

(5) Specifying learning. The end-user involvement in the projects was essential.
Because the end-users were involved in the development process since the be-
ginning, they had opportunities to influence on the user interface design.

From the schema design point of view, the MemoX development provid-
ed discoveries about relevant factors influencing design activities. Content re-
use was seen as an essential objective. Therefore, content reuse issues should be
considered during document structure modeling already. In principle, the XML
document structure and external presentation can be managed as separate enti-
ties. However, it was observed during the case that layout design had a greater
influence on schema design than expected. Also form-based user interface of
the chosen authoring tool InfoPath set limitations on schema design decisions.

2.2.3 Case 2: RAKE project

The Finnish Centre for Pensions (FCP) is an organization that acts as a central
body for private pension institutions in Finland. There are close to 400 employ-
ees at FCP and it functions under supervision of The Ministry of Social Affairs
and Health. (FCP, 2013) FCP has been active in developing its document man-
agement practices (Jauhiainen and Honkaranta, 2007) and the RAKE project
was one of the initiatives concerning document management development at
FCP. Documents at FCP are handled as MS Word documents, but form-like
documents are processed and stored in PDF format. A number of rules and
regulations in Finland, EU and other countries affect on pension provisioning
and therefore they also have an effect on document structures.

The RAKE project was a feasibility study on the administrational docu-
ment types. The project was carried out during 2005 – 2006, but the develop-
ment of document management has continued at the FCP after RAKE. The
RAKE project group consisted experts from FCP and researchers from the Uni-
versity of Jyväskylä.

31

(1) Diagnosing. Management of document templates, document processing and
content reuse at FCP was not effective. The main issue was the amount of doc-
ument templates, which were created to support reuse of identical content in
different document types. Furthermore, document templates were named un-
clearly and they were used from different locations (network drives, work-
station hard drives), which resulted in multiple variations of same document
templates and made the search of the appropriate template challenging, if not
impossible. The main question in the RAKE project was to examine if the client
organization could benefit from structured document management. The goal
was to investigate how MS Word and MS InfoPath meet the needs of structured
document authoring.

(2) Action planning. There were approximately a hundred form-like document
types at FCP and their upkeep was kept separately from the document-like
document types. First, candidate document types were chosen. Workshops for
analyzing document types were planned. In addition, identifying the need for
document content reuse and redesigning document types was carried out.

Four document types were selected, from which one was form-like. Two
document types were chosen with the criteria of them having very static con-
tent, as their content and layout remained similar in all document instances.
One document type contained reusable phrases, which were imported to a doc-
ument from an external database, and for this reason it was chosen as a part of
the analysis.

Previous document management cases were studied in order to review the
central findings from them. It was decided to adapt the Maler and El Andalous-
si method for document component identification before defining schemas.

(3) Action taking. The four document types were analyzed and their logical
structures were modeled from the basis of existing document layout features.
Instead of modeling document hierarchies in Elm diagrams, MindMap dia-
grams were used because the MindMap software was available and in use in
the client organization. Also components and information sources connected to
the documents, as well as the requirements for content reuse were analyzed.

XML schemas were designed for the selected four document types. XML
schemas for the same document types were created for both MS Word 2007
documents and MS InfoPath 2007 forms and tested. Testing also required in-
stalling extension to the document management system that was used at FCP.
Demonstration of XML document production for both form-based (MS InfoPath)
and WYSIWYG (MS Word) user interfaces were prepared.

Schema design and schema testing was carried out in parallel, as compos-
ing a sample document against the designed schema with chosen document
authoring tools fully reveals the places that may require re-defining. Because
the project was a feasibility study, no real intervention was carried out in the
target organization. As a result, findings from XML schema compatibility with
office applications were reported and recommendations provided.

32

(4) Evaluating. It was concluded that the amount of document types at FCP
could be decreased, if reusable document content was stored and managed as
their own content units instead of managing multiple similar document tem-
plates containing identical content. Multichannel publishing is easier with XML,
but XML deployment would require profound design before implementing so-
lutions in case organization. It was also learned that retrieving data from exter-
nal data sources, like databases, is possible with office software.

It became evident that schema design requires profound understanding of
the document management environment including document content and op-
erational requirements for documents. To carry out XML schema design project
successfully, both XML experts and people with domain knowledge are re-
quired.

(5) Specifying learning. The RAKE project provided insights into the document
types in real-life organization and the requirements for XML schemas for office
documents. Following the document analysis steps of the Maler and El Andal-
oussi method was useful to identify document structures. Form-like document
type required more detailed schema than document-like document types. Also
user interface design influences how elements should be defined in custom
schemas. What works in form-based documents may not be an optimal defini-
tion in document-centric document types and vice versa. Therefore, designing
schema for form-based user interface differs from designing schema for
WYSIWYG user interface, even for the same document type. Form-like office
documents typically require more content-based schemas with detailed, docu-
ment type specific element definitions whereas document-like documents may
be defined with relatively generic schemas with structural element definitions
such as elements for document heading, text paragraphs, and lists. These were
findings that were not found in previous XML studies.

2.3 Research process

This study consists of examining existing literature on XML research, document
management cases and schema design methods, as well as three empirical re-
search cycles in two collaborative organizations. The research process is illus-
trated in Figure 4.

The ellipses in the figure present the main activities during the research
process. Control flow arrows from up to down indicate the order of the activi-
ties. The arrows pointing right illustrate the outcomes of the activities as re-
search articles and chapters of the thesis.

The research reported in this thesis was started with the MemoX devel-
opment in September 2004. The development required two separate cycles. The
work in the project was followed by a literature review.

The second case study involving XML schema design was carried out in
2005-2006. Combining the findings and empirical evidence from both cases led

33

to the article 2. The cases together with a more extensive literature review pro-
vided observations and findings for articles 3 and 4.

FIGURE 4 Research process of the thesis

Even though the MemoX project ended in 2005, its use and upkeep in the IT
Faculty Office has been ongoing over the years. The possibility to observe sys-
tem’s use and evolution in a long-term scale has provided insights that were not
initially expected when the study began in 2005. When MemoX project began,
the standardization of ODF and OOXML was still unfinished. In addition, new
versions of the office application were released during this study. The version-
ing had effects on the MemoX system. The longevity of the research has provid-
ed insights for the article 4 in particular. Therefore, the last activity phase in
Figure 4 represents a period of time that is significantly longer than the earlier
ones.

3 SCHEMA DESIGN METHODS

As a complimentary part of research question two this chapter introduces three
methods containing guidelines for custom XML schema design. Schema design
is seen as an activity taking place during document analysis, involving concep-
tual modeling of relevant document types, and resulting in physical XML
schemas. The presented methods are the Maler and El Andaloussi method for
DTD design (Maler and El Andaloussi, 1996), the Document Engineering Ap-
proach (Glushko and McGrath, 2005), and the Unified Content Strategy (Rock-
ley et al., 2002). There are also other methods for document management devel-
opment, such as the RASKE methodology (Salminen, Kauppinen, Lehtovaara
1997; Salminen, et al., 2000). The three methods chosen in this chapter were se-
lected on the basis of difference in their primary application domains as well as
the differences in modeling document structures.

3.1 The Maler and El Andaloussi method

The book “DTD design for SGML documents” of Maler and El Andaloussi
(1996) has been considered as “the bible on mark-up language encoding rules”
(Glushko and McGrath, 2005). The method presented in the book has even been
considered as the best practice on the field of schema design (Thompson, 2000).
The method contains five main phases from which first three are dedicated to
document analysis and the latter two to design. The four phases are as follows:
- Document type needs analysis
- Document type modeling
- Mark-up design
- Validation and testing

Document type needs analysis focuses on the identification and classification
of potential components (see chapter 1.3, p. 15) of document types. The aim is to
find structural similarities in documents in order to find the potential compo-
nents of each document type. Once components are identified, component clas-

35

sification may clarify possible misunderstandings schema designers may have
about them. Sorting components into classes may also help to eliminate unnec-
essary components. The method guides schema designers construct component
lists on which all identified potential components should be documented (Fig-
ure 12). It’s also recommended that DTDs for similar document types should be
examined after the component identification, if such documentation exists and
is available. It is important to carry out this step after the components are iden-
tified, so that the earlier work won’t bias the result of the current analysis work.

Figure 5 provides a simple example of a component list containing four
components for a document type Memo. On a component list each component
is given a definition and a short description. Potential components should also
be organized in classes, which are based on schema designers’ sense of the simi-
larities between components.

FIGURE 5 Example of component list for memo document type

The phase of document type modeling focuses on the production of document
hierarchy models, which visualize the characteristic “shape” of a document
type. Document modeling in the Maler And El Andaloussi method is based on
the Elm (enables lucid models) tree diagram notation. During document type
modeling the relevant components are selected from the already composed
component list. Figure 6 on the following page illustrates a document hierarchy
model.

36

FIGURE 6 Document hierarchy model

In a document hierarchy model components are represented as rectangles and
lines connecting them to each other represent the relationships between the
components. Three dots underneath a component indicate that the structure of
it is represented in another Elm tree diagram. The symbol “+” indicates that the
component has to occur at least once, but it can also occur repeatedly, while “?”
means that component is optional. The symbol “*” would represent an optional
component, which occur several times. The sequence of components is written
from left to right. Hierarchy ends where “text” visualized by cloud figures
begin to appear. Unspecified text stands for the document content. Since each
document instance is unique, the contents of these cloud figures vary. Hence
the label “text”.

Once document type modeling is carried out, there may still be compo-
nents left on the list of potential components, which may be useful in organiz-
ing and composing the main content of documents. The remaining components
may be information units, data-level components, or both.

Information units can to some degree “stand alone” in order to be under-
stood by a reader. For example, a picture with caption may be identified as an
information unit. Internal structures of information units should be modeled by
using Elm tree diagrams. By contrast, data-level components are small infor-
mation bits that need to be processed differently as the surrounding data. For
example, a unit of measurement may be a data-level component. Data-level
components should be mapped to elements and attributes in a schema.

If there are still components left outside of document hierarchy models,
they may be potential link components. Some links, like references, may serve
as instructions in document content assembly. There may also be links that
connect two or more pieces of information (within same document type or not),
like textual cross-references. Producing the document analysis report finalizes
the document analysis phase of the method. In document analysis report all the
documentation produced during the analysis from component lists to Elm tree
models is assembled as one report.

37

After analysis phase schema development begins with mark-up model
design. The number of required schemas should be decided. Mapping docu-
ment hierarchy models into XML schemas is not, however, unambiguous task
as some components in a document hierarchy model may end up as elements,
others as attributes. There may even be a component, which is broken down in
multiple elements and attributes. If there is a need to reuse document content,
this should be taken into the consideration as well. Maler and El Andaloussi
(1996) state that modularizing schemas into smaller schema components sup-
ports both document content reuse and customization of documents.

The phase of validation and testing involves reviewing the document
analysis report. In addition, creating sample documents and validating them
against defined schemas will test how well the markup design has been carried
out.

3.2 Document Engineering Approach

Document Engineering Approach (Glushko and McGrath, 2005) is a method for
analyzing, designing, and implementing documents in e-business software ap-
plications. One of the central goals of the approach is to support data and doc-
ument exchange in business transactions on web. The main phases of Docu-
ment Engineering Approach are the following eight:
- Analysis of the context of use
- Analysis of business processes
- Designing business processes with patterns
- Document analysis
- Document components analysis
- Assembling document components
- Assembling document models
- Implementing process and document models

Analysis of the context of use includes identifying relevant requirements for
both documents and processes. Such requirements are typically rules for docu-
ment exchange. There may be usage requirements as well as presentational re-
quirements (i.e. how information should appear) attached to documents. Anal-
ysis of business processes involves examining business transactions between
business partners. Designing business processes with patterns involves identi-
fying and choosing appropriate patterns, which may set requirements for XML
schema design. Patterns are general models of how processes are usually car-
ried out. For example, if there is a pattern of how staff meeting memo is pro-
duced in an organization, generalizing pattern may lead to a common practice
of how all memo types should be produced.

Document analysis covers the identification of relevant sources from
which documents and their components may be found. This is typically an iter-
ative task. Tasks carried out in a document life cycle should be identified in or-
der to understand how documents are used. The goal of document component

38

analysis is to find the relevant components from the sources that were identi-
fied in the previous phase. Components may have both presentational and se-
mantic structures, from which semantic structures are perceived more relevant
in the context of e-business. However, separating semantic meaning from its
presentation necessitates that also presentational components are recognized.
Candidate components are listed in “harvest tables”. Each identified compo-
nent should be named meaningfully and semantic descriptions of them should
be provided. This promotes common understanding about the components be-
tween schema designers and to encourage the use of reusable components.

The phase of assembling document components involves constructing
document component models. Document component models are network models
that provide a “domain view” of the relevant components and their associations
(Figure 7). If components are more data-centric, classical data analysis approach
including normalization is recommended when constructing the models. Nor-
malization involves analyzing the associations between components and as a
result, components may be generalized. For example, if there was address in-
formation included in two components, like Attendee and Approval, it could
indicate a common pattern, which should be modeled as its own component in
a document component model. In such case there’re could be a component
“Contact” present in the document component model.

Analysis may also include identification of primary key components
which values are unique in every document instance. Also functional depend-
encies between components should be identified. For example, if a value of
component “Price” changes because of a value of “Quantity” component has
changed, there is a functional dependency between the two components.

FIGURE 7 Document component model

39

According to Glushko and McGrath (2005), document component model is a
generalized conceptual model defining all the necessary components to maxim-
ize reuse and minimize redundancy. Figure 7 illustrates a simplified version of
a document component model, where components of a Minutes document type
and their associations are presented. Components are modeled as rounded rec-
tangles and one component in the model may represent entire document type
or part of it. In Figure 7 there are five document components; Meeting Infor-
mation, Memo, Approval, Attendee and Item. The model illustrates the cardi-
nalities between components as well as the nature of the association between
components. For example, Memo has to contain at least three items and each
individual item is part of a Memo.

Assembling document models involves creating hierarchical document
assembly models. This means that each component in document component
model (Figure 7) is modeled in more detailed level. Recommended notations
are Elm tree diagrams (Figure 6), UML class diagrams, and tables. If document
assembly models share common structures, it may indicate places for document
content reuse.

Implementing process and document models follows the design, and it
covers encoding the created logical document models into physical schemas.
The utilization of XML is recommended. According to Glushko and McGrath
(2005), reusing schema components should be carried out whenever possible.

3.3 Unified Content Strategy

Unified Content Strategy (Rockley et al., 2002) is an approach for content man-
agement. Its goal is to create a strategy that enables an efficient content reuse.
The method consists of five phases:
- Analyzing the content life cycle
- Performing a content audit
- Information modeling
- Designing metadata, dynamic content and workflow
- Implementing design

Analyzing content life cycles from creation to content delivery helps to identi-
fy the areas in current content management practices requiring improvement.
In order to gain understanding of content itself, a content audit is performed. The
purpose of content audit is to reveal the state of content use, and reveal re-
quirements for more efficient content reuse. During top-level analysis content
units, like documents, are examined to find common pieces of information, and
the repeatable pieces of content are listed on a table. For example, if contact in-
formation occurs on multiple document types, it constitutes a repeatable piece
of content. The findings of top-level analysis are compiled in a table. Figure 8
illustrates a simple table example that could be seen resulting from a top-level
analysis. The table contains four document types: Agenda, Memo, Order and
Invoice.

40

FIGURE 8 Top-level analysis of four document types

In figure 8, both company logo and contact information appear in all document
types on the table. Product description, however, occurs only in two document
types, Order and Invoice.

In content audit’s in-depth analysis repeatable pieces of content found on
top-level analysis are further examined in order to find out, if they are reused
identically, or with minor differences. For example, if organization’s contact
information occurs differently on memos and invoices, it should be determined,
if there is a valid reason for the differences between them, or if such inconsist-
encies should be corrected. Finally a reuse map is created, which illustrates po-
tential reuse of content components as well as the types of reuse, these being
identical and derivative.

Figure 9 presents a reuse map containing four document types; Agenda,
Memo, Order and Invoice. The letter I sands for Identical reuse, the letter D for
Derivative reuse. For example, the letter I for Logo in all document types indi-
cates that logo occurs identically in all document types. Also the contact infor-
mation of the organization is a typical content component, which is being re-
used identically. However, in the case of Invoice, the contact information is re-
used derivatively. Derivative reuse means that the document author may edit
the component’s contents. Derivative reuse allows changes in component’s con-
tents, like ordering the content differently, inserting emphasis, etc.

FIGURE 9 Simple example of reuse map for four document types

Design phase in the Unified Content Strategy includes information modeling.
Figure 10 provides an example of information model for Minutes document
type that corresponds to the earlier Minutes examples.

41

FIGURE 10 Example of an information model

In Figure 10 the first column lists the components of a Minutes document type.
The name of the document type is not visible in the model. The first column
illustrates the semantic information that defines the structure of a document
type. The second column, labeled as ‘Element type’, presents element types for
components these being either “element” or “container” in XML terms. Base
information guides schema designers to map logical structures with a chosen
authoring tool. Base elements are listed for both XML documents and word-
processing templates. For example, component Attendee may end up as con-
tainer element in a XML schema, or as Heading 2 style in a word processing
software. Architectural information gives details about the type of reuse as well as
guidelines how component should be defined in a schema. For example, all
components are marked as “Semantic” indicate that semantic tags should be
used in an XML schema. This means that an element should be given an under-
standable name. Product information is provided for the creation of style sheets,
for instance. Product information may contain information about how certain
component should be presented on web or on paper prints.

The goal of information modeling is to identify the structure of a docu-
ment type, because it unifies the content, regardless of who is composing it. The
level of detail these models have depends on the granularity. Tables or work-
sheets are utilized during the modeling.

In addition to information modeling, the design phase of the method
may involve designing appropriate metadata, dynamic content, and workflows.
Implementing the design follows the design activities. If XML is used, custom
XML schemas for document types are required. The information models pro-
duced during design are “XML-ready”, so therefore binding information mod-
els from logical level of abstraction into physical models (i.e. schemas) is sup-
ported. The selection of schema language, however, depends on the need of
data typing as well as the tool used in content authoring.

42

3.4 Comparison of the methods

The Maler and El Andaloussi method is targeted for publishing industry
whereas the Document Engineering Approach is targeted for developing auto-
mated e-business processes. The Unified Content Strategy is directed to the or-
ganizations content management practices. Despite the different application
domains, the methods share a common goal: creating XML-based solutions
with custom XML schemas. In this chapter the three methods are compared
against the following three features of office documents:
- Office document is authored by a person for human consumption.
- Office document functions as a record of an administrational process, or

business transaction.
- An office document may receive part of its content from an external con-

tent source, such as database.

Table 4 summarizes the characteristics of the three methods via three identified
features for office documents. The features are presented in the three rows.
M&A stands for the Maler and El Andaloussi method, DEA for the Document
Engineering Approach, and UCS for the Unified Content Strategy.

Office documents have document-centric properties as they are mainly
targeted for human consumption. Therefore, there is a layout attached to them.
Examining document layout is the key task in component identification in all
three methods. Process analysis is covered only in the Document Engineering
Approach. This is a clear distinction between the Document Engineering Ap-
proach and the two other methods. The Unified Content Strategy emphasizes
identification and utilization of reusable content more than the Maler and El
Andaloussi method and the Document Engineering Approach. Both of these
methods have adapted principles from the Maler and El Andaloussi method to
identify and model components that constitute a document-centric document
type.

More research and especially findings from case studies involving XML-
based production of office documents is needed to reveal what needs to be tak-
en into consideration when designing schemas for office documents. In addition,
there may also be unique characteristics and/or requirements to be found from
the context of office documents, which are not included into the existing meth-
ods and approaches containing guidelines for XML schema design.

43

TABLE 4 Comparison of the methods

 Feature 1.
Office documents are
authored by people for
human consumption.

Feature 2.
Office documents function
as a record in an admin-
istrational process, or busi-
ness transaction.

Feature 3.
Office documents may
receive some part of their
content form external
data source, like database.

M&A The basis of the analy-
sis is on how people
perceive document
content. Components
reflect information
about document con-
tent’s meaning and
about its formatting, or
both. Therefore, analy-
sis is based on how
people understand
document content.

The method focuses on how
to carry out schema design
project. As a result of doc-
ument analysis, documents’
hierarchical structures are
identified. Processes are not
seen to influence on docu-
ment type modeling.
Hence, there are no guide-
lines to examine processes.

If such content exists, it is
imported to documents
by using entity declara-
tions in DTDs. The possi-
bility of such content is
not, however, explicitly
expressed in Elm tree
diagrams.

DEA Some documents in e-
business context may
be targeted for people
instead of systems.
Therefore, the method
includes component
identification and
modeling from docu-
ment-centric document
types, too.

Business processes are ana-
lyzed and components may
be identified during this
phase. Process analysis may
also reveal documents that
are relevant in the context.
The models presenting
document structures are
constructed after processes
are analyzed.

Some components may
not come in traditional
document form, but from
an external data source.
Data-centric components
may come in a form of
labeled data entry fields,
or as source code of an
application processing
documents. Document
component models do not
exclude the possibility of
this feature, yet they
don’t explicitly illustrate
the feature either.

UCS Documents are meant

for human consump-
tion by default. The
goal is to make content
as reusable as possible
and content life cycles
as effective as possible.
Therefore, components
that are identified from
document-like infor-
mation sets are in the
scope of analysis and
design.

Schema designers should
analyze existing content life
cycles in the target organi-
zation and identify possible
issues in them. Document
life cycles reveal the
lifespans of documents, yet
this has only little impact
on the analysis and design
goals of the method; effec-
tive content reuse. There-
fore, processes do not influ-
ence on document structure
modeling.

The method focuses on
components that are iden-
tified from document-like
information sets. The pos-
sibility of documents con-
taining data outside of
traditional document set
is not, however, neces-
sarily excluded.

4 SUMMARY OF THE INCLUDED ARTICLES

This chapter describes the research objectives, methods, and results of the four
included articles. Three of the articles are published in conference proceedings
and the fourth article is submitted to a journal. Three of the four articles are
based on case studies on schema design and implementation of XML document
production. Each of the articles published in conference proceedings reflect the
theme of each conference, yet their connection to XML schema design and the
research of this thesis is indisputable.

4.1 Article 1: “Two Methods for Schema Design for Intelligent
XML Documents in Organizations”

Honkaranta, A. & Jauhiainen, E. (2007). Two Methods for Schema Design for
Intelligent XML Documents in Organizations. In Technologies for Business In-
formation Systems. Dordrecht, Netherlands: Springer.

4.1.1 Research objectives and methods

The aim of this article was to review and compare schema languages for XML
documents and compare methods on how to design custom XML schemas for
intelligent documents in organizations. By intelligent documents we refer to
textual office documents, which utilize domain-oriented XML schemas with
meaningful element names.

The three schema languages chosen for the comparison were DTD, RE-
LAX NG and XSD, because they are the most widely used on different applica-
tion domains. Therefore, they were seen potential languages for office docu-
ment design as well. From the guidelines for designing document-oriented
XML documents the guidelines of Maler and El Andaloussi (1996) and Kennedy
(2003) were selected for comparison. Maler and El Andaloussi (1996) was se-
lected because the method they have developed is considered as the best prac-
tice on the field of document analysis and DTD design. Kennedy (2003) was

45

chosen because it provided predefined steps for designing document-centric
RELAX NG schemas. The goal was to compare guidelines in order to find simi-
larities in them, even though they were targeted for different schema languages.
The article addresses the research question 2

4.1.2 Content and results

A comparison of schema languages was provided with an example XML
markup that was validated against corresponding schemas in DTD, XSD and
RELAX NG. DTD and RELAX NG are primarily meant for document-centric
XML use whereas XSD supports both document- and data-centric use.

The guidelines for schema design carrying out document analysis and doc-
ument type modeling in Maler and El Andaloussi (1996) are originally devel-
oped for DTD design. Document components are identified and classified be-
fore modeling them in Elm tree diagrams. The diagrams show how element
content should be organized in XML documents.

Kennedy’s guidelines for schema design can be seen as a revisited version
of the Maler and El Andaloussi guidelines, but Kennedy targets his guidelines
for RELAX NG schemas. Like Maler and El Andaloussi, Kennedy recommends
carrying out data analysis first, which corresponds to component identification
and classification tasks by Maler and El Andaloussi. Kennedy recommends
leaving any presentational elements to style sheets and his recommendation to
use collection elements is also based on style sheet design. He also encourages
avoiding mixed element content, as such definitions would make schemas too
general, and avoiding deep element hierarchies. Maler and El Andaloussi do
not make similar suggestions. They simply introduce a set of different modeling
considerations on how to convert Elm diagrams into DTDs without recom-
mending any type of element declaration over another.

The comparison of the methods revealed many similarities. Both
acknowledge the importance of document components and modeling them in
Elm tree diagrams. Elm diagrams provide a visual representation of the docu-
ment structures, which are seen easy to convert into corresponding schemas.
Both acknowledge defining schemas as an iterative task because schemas can
truly be tested only after content has been authored with a defined schema. Al-
so, defining meaningful element names is recommended as they make schemas
more human-readable. The similarities in the two introduced guidelines sug-
gest that both of them are adoptable for office documents. In addition, the DTD
syntax makes the language easy to learn and adapt. As the modern XML editors
provide a quick and easy conversion from one schema language to another,
DTD is a relevant schema language for office documents, even though author-
ing software would support XML-encoded schema languages.

46

4.2 Article 2: “Aspects on XML Document Content Reuse in Or-
ganizations”

Jauhiainen, E., Honkaranta, A. (2007). Aspects on XML Document Content Re-
use in Organizations. In Weide Chang, James B.D. Joshi (Eds.). Proceedings of
the 2007 IEEE International Conference on Information Reuse and Integration
(IEEE IRI-07), Las Vegas, 588-593.

4.2.1 Research objectives and methods

This article aimed to discover ways document content is reused in office docu-
ments. The article is based on an empirical data derived from two case organi-
zations described earlier in chapter 2.2. The two cases involved designing cus-
tom XML schemas for office documents. Both authors of the article were in-
volved in the design in both cases. Participatory observations were made from
design activities and schemas resulting from them. Overall, six document types
were involved in schema design; two document types in the MemoX case
(called case of FIT in the article) and four document types in the RAKE case
(called FCP in the article). This article addresses the research questions 1 and 2.

4.2.2 Content and results

Designing schemas for the document types in the two projects provided the
basis for the findings presented in the article. The findings from the two cases
strongly suggested that document content reuse is an essential goal in XML de-
ployment in office documents. It was observed that there were different ways to
reuse document content, which also guided how schemas were designed.

Four types of document content reuse types were identified from the two
cases: 1) A document may be reused as a part of another document. 2) Some
reusable components are utilized to modify content for a certain medium. 3) In
organizational domain there might be repeatable phrases and/or text portions,
which may be reused across multiple documents. 4) There may be both internal
and external databases or services that provide content to documents. As the
reuse types were identified and explained, the effect they had on designing cus-
tom XML schemas for office documents were also described. If custom XML
schemas for office documents are designed for effective document content reuse,
the schema modularization has to be carefully considered.

Properties of software used in XML document authoring may set re-
quirements and limitation for document content reuse. Document layout may
indicate reusable components as the same document instance may have more
than one layout depending on delivery medium. In order to gain understand-
ing of factors influencing schema design for office documents, and their de-
pendencies, a model was constructed. The four factors of schema design were
identified as 1) schema, 2) component, 3) layout, and 4) the software used in
XML document production. For example, the granularity of a component and
document layout has an influence on a custom schema. The software used in

47

document production sets its own requirements on how content reuse can be
realized, and user interface dictates how much emphasis should be placed on
document layout design. The findings suggest that each of these four aspects
may guide schema design and therefore they should be included in analysis
work.

4.3 Article 3: “XML Document Implementation: Experiences from
Three Cases”

Nurmeksela, R., Jauhiainen, E., Salminen, A. & Honkaranta, A. (2007). In
Youakim Badr, Richard Chbeir, Pit Pichappan (Eds.). Proceedings of the Second
International Conference on Digital Information Management. Los Alamitos,
CA: IEEE, 224-229.

4.3.1 Research objectives and methods

This article compared the findings from three cases involving re-engineering of
document management by implementing SGML/XML documents production.
The goal of the comparison was to discover motivators behind SGML/XML
adoption. Furthermore, possible changes in document production as well as
how XML adoption process was realized were on the scope of comparison.

Case 1 concerned legislative documents within and between organizations.
The document types of case 2 were meeting agendas and memos. In both of
these cases the document types were considered as document-centric docu-
ments. In case 3 the document type involved was an invoice, which had both
data- and document-centric properties. Nevertheless, invoice can be seen as an
office document as well.

Data was collected via participatory observations and project work via
which real-life experiences of schema design and XML document authoring
were obtained. Nurmeksela and Salminen were involved in case 1. Honkaranta
and Jauhiainen were involved with case 2. Nurmeksela was involved with case
3. Comparing cases was carried out in co-operation with all the contributors of
the article. This article addresses the research questions 1, 2 and 3.

4.3.2 Content and results

The paper first described the characteristics and types of document production.
A model of XML standardization process was then described and used as a
framework for the comparison of the cases. Also information about the content
types of the cases was given.

Our findings suggest that implementing production of XML documents is
a domain-specific task that involves co-operation between schema designers
and organizations involved. The motivation to implement included inconsist-
encies in content management, content reuse issues and automating processes
related to document use. If XML document production can be embedded in ex-

48

isting processes or systems within organizations, the need to change work prac-
tices related to document production decreases.

Document layout formed a significant aspect of the schema design in all
three cases. In Cases 1 and 2 documents were primarily targeted for human
consumption and therefore document layout was an important part of the
standardization process. In Case 3, the invoice as the document type had both
document- and data-centric characteristics. Nevertheless, layout was important
in this case as well, because a unified layout was required for all parties in-
volved.

The analysis of cases revealed that schema design was an iterative process
in all the cases. In Case 1, document schemas were designed incrementally
within two years. In Cases 2 and 3, document schemas were designed within
months. In Cases 1 and 3 usability requirements for the authoring tool impacted
on schema design. In both cases layout requirements were strict and therefore
document’s presentational properties had to be kept in mind during schema
design. In both cases XML markup was hidden from the document authors,
which made adapting new type of document production easier for the end-
users and decreased user resistance. In fact, if there is many document authors
involved, a major emphasis has to be given to the usability of authoring tools.

4.4 Article 4: “A Life Cycle Model of XML Documents”

Salminen, A., Nurmeksela, R. and Jauhiainen, E. (2013). A Life Cycle Model of
XML Documents. The Journal of the American Society for Information Science
and Technology (JASIST). Accepted October 2, 2013.

4.4.1 Research objectives and methods

The main objective for the article was to provide a framework for analyzing and
describing XML document management in organizations throughout their life
cycles. The design science method was followed in the creation of this article.
Data was collected in a number of different ways. An extensive literature re-
view was carried out covering document management, records management,
and content management. Empirical data was collected by means of observa-
tion, expert interviews and literal sources from two cases. One of them con-
cerned the State Budget Proposal of the Finnish Government, the other the Fac-
ulty Council Meeting Agenda at the University of Jyväskylä. The cases were
also used to demonstrate how the framework introduced in the paper could be
used to describe XML document management in an organization. The author of
this thesis was responsible for the analysis and description of the Faculty Meet-
ing Agenda case. The case in question has also been utilized in other joined arti-
cles of this thesis, but in this article the viewpoint was shifted from XML sche-
ma design to XML document management. This was because of the timeframe;
analyzing the case after years of implementing XML in the case environment
enabled making observations from XML document management perspective

49

instead of evaluating the design of XML deployment only. Interviewing the
end-users in the case organization provided updated data and insights from the
case. This article addresses the research questions 2 and 3.

4.4.2 Content and results

First, the concepts related to XML document management were introduced.
Four methods available for analyzing and describing structured document
management were briefly described and compared. The comparison showed
differences in the application domains and modeling methods of the methodol-
ogies. All of the methodologies were seen to lack support for the analysis of
XML document management throughout document life. The main contribution
of the paper was provided as a new life cycle model of XML documents. The
model consisted of five phases: design, content production, capture and dissem-
ination, use, and finally retention. For each of the phases the typical activities,
actors, systems, and types of content items related to the management of XML
documents were described. The model utilized the concepts of the RASKE
methodology and can therefore be seen as an extension of the methodology.
The life cycle model together with the earlier introduced RASKE components
provides a framework to analyze and describe XML document management
from different perspectives.

The applicability of the framework was demonstrated by two case descrip-
tions. The benefits of the framework were evaluated by informal argumentation
as well as by utilizing the feedback from the developers and decision makers
involved in the cases.

4.5 About the Joint Articles

The four articles included in the thesis are a result of co-operation of digital
media study line staff at the University of Jyväskylä. The articles 1 and 2 were
co-authored with Anne Honkaranta, a supervisor of this thesis. Article 1 is a
book chapter based on a conference paper. Article 2 reports research findings
from two projects – MemoX and RAKE projects. Article 3 combines research
findings from three case environments: the Finnish Parliament, the Faculty of
Information Technology at the University of Jyväskylä, and an international
ICT service provider, which was the employer of one of the contributed re-
searchers of the article. Article 4 combines results from long-term RASKE de-
velopment efforts and experiences from two cases: the State Budget Proposal of
the Finnish Government and the Faculty Council Meeting Agenda at the Uni-
versity of Jyväskylä.

In article 1 both Eliisa Jauhiainen and Anne Honkaranta conducted the liter-
ature review of existing schema languages and methods. Anne Honkaranta con-
tributed in organizing the paper as well as providing significant insights in the
introduction and discussion parts of the article. In article 2 Eliisa Jauhiainen was

50

the responsible author while the iterative writing process as well as profound
discussions on the topic took place with Anne Honkaranta.

Article 3 was a result of co-operation between four digital media study line
researchers – Reija Nurmeksela, Eliisa Jauhiainen, Airi Salminen, and Anne
Honkaranta. The responsible author was Reija Nurmeksela who came up with
the idea of the paper. Eliisa Jauhiainen analyzed and described the second case
of the article. The evaluation of the cases and conclusions were written co-
operatively with all authors. Article 4 was co-authored with Airi Salminen and
Reija Nurmeksela. Airi Salminen was the main author of the paper. Eliisa Jauhi-
ainen contributed on methodology comparison and in particularly in the analy-
sis and description of case 2 presented in the article.

5 RESULTS AND IMPLICATIONS

This chapter summarizes the contributions of this study. The researcher took
part in two research studies from which data was collected. In addition, three
methods for XML schema design were reviewed and compared. The focus of
the study was characterized by three research questions, which are revisited in
this chapter of the thesis. The discussion of the implications and shortcomings
of the study finalizes the chapter.

5.1 Contributions

The objectives of this study were to explore factors influencing the design of
custom XML schemas for office documents, and to identify possible benefits of
using such schemas.

What kinds of objectives motivate organizations to deploy custom XML
schemas for their office documents?

In the case organization deploying custom XML schemas for their office docu-
ments the main motivators were improvements related to document publishing
and content reuse. In the MemoX case collaborative document authoring lead to
incoherent document layout. Each document author had used, at least occa-
sionally, her freedom to style her documents in her own way. In addition, pub-
lishing documents on intranet in HTML format was a challenge for document
authors. These were issues that were seen resolvable with the adoption of XML.
For example, XML-based document authoring enabled publishing document
content in both HTML and PDF formats, and reusing document content more
efficiently with XML was achieved. After implementation these were regarded
as the main benefits achieved.

Reusing content more efficiently was seen as an important goal in both
MemoX and RAKE project. Content in office documents can be reused in differ-
ent ways. For example, a document author may retrieve manually the piece of

52

content and add it to the document. Content can also be reused automatically
by a system. (Jauhiainen and Honkaranta, 2007)

Content reuse may also involve reusing schema components. Maler and El
Andaloussi (1996) call this approach as schema modularization, which means that
element and attribute declarations in a single schema component are applicable
for more than one document type. Schema modularization has its benefits. For
example, updating definitions in reusable schema components may be more
efficient than making modifications to multiple schemas for different document
types containing similar schema definitions.

What kinds of guidelines schema design methods provide for designing cus-
tom XML schemas?

This thesis reviewed three methods for schema design:

− the Maler and El Andaloussi method (Maler & El Andaloussi, 1996),
− the Document Engineering Approach (Glushko & McGrath, 2005) and
− the Unified Content Strategy (Rockley et al., 2002).

The Maler & El Andaloussi method (1996) provides a solid approach to identify
and classify components from document types. Documents’ presentational fea-
tures are seen as the starting point of document analysis in each three methods.
Document analysis involves identification of document components, which are
modeled in document structure models.

Document content reuse issues are addressed in all methods. The Unified
Content Strategy emphasizes the importance of reuse the most. There may be
content in office documents that is imported from external systems. The Docu-
ment Engineering Approach is the only method from the three reviewed that
includes the possibility of such content explicitly.

To summarize, the methods reviewed in this study provided following
guidelines for designing custom XML schemas:

− Schema design involves identification of components that build a docu-
ment type.

− Components may be derived from the external presentation of existing
documentation, but also from sources outside of a document set, if doc-
ument has data-centric properties.

− Gaining understanding of processes related to document use may reveal
essential characteristics of document content and document use.

− Document type modeling provides a good basis for designing custom
XML schemas.

− Document content reuse is a central goal in schema design. Therefore,
reusable content should be identified during document analysis and
modeling.

− Schema design is an iterative task and schemas should be tested by end-
users before deploying them.

53

− People creating and using documents have know-how on both domain
and document use and therefore they should be included in the process
of schema design.

How can XML document management in an organization be analyzed and
described?

In article 4 we developed a framework to analyze and describe the management
of XML documents throughout their life, from design to retention. The frame-
work provided models to depict the core components of the document man-
agement environment and the life cycle of documents. In the article the man-
agement of the Faculty Council Meeting Agenda of the MemoX case of the the-
sis is used.

From the activities of an XML document management environment,
schema design is in the focus of this thesis. XML schema design can be per-
ceived as an activity that takes place in an environment including three kinds of
information sources; content items, actors, and systems. Therefore, XML sche-
ma design is an activity that
- involves analysis of existing documents and other information sources relat-

ed to them,
- should acknowledge the people who use documents as sources of infor-

mation as well as end-users to whom schemas are designed, and
- identifies existing systems and possible new systems in XML deployment.

The life cycle model of article 4 provides means to consider the whole life cycle
of XML documents already at the schema design phase. Schema design initia-
tives may address the document life cycle phases only until publishing, even
though upkeep and archival issues might also need consideration. In the re-
viewed methods of this study the archival and retention of documents is left
outside their scope.

5.2 Implications

The two reported cases suggest that document layout has a significant role in
designing custom XML schemas. Layout requirements for office documents
might be very strict. Nurmeksela et al. (2007) have stated that in situations
where traditional, binary file documents are transformed into XML documents,
a typical requirement is to keep document layout similar to that before XML
deployment. Both MemoX and RAKE projects proved that document layout is
important for end-users and layout design has an effect on schemas. Roisin and
Vatton (1993) stated already 20 years ago that style properties of documents are
related to the logical structure of documents. Also Walsh (2002) has stated that
a perfect separation of content and presentation is not always possible in all
cases, even though it is often possible to come very close. Therefore, schema

54

design and layout design are both essential parts of XML schema design for
office documents.

None of the compared methods in this thesis discusses the role of author-
ing software. The two cases revealed, however, that software used in document
authoring may set restrictions on how schemas are defined. For example, if the
chosen authoring tool provides form-based user interface, recursive element
declarations may be difficult to deploy. On the other hand, deep and detailed
document hierarchies may not be ideal for WYSIWYG interfaces, which typical-
ly allow document authors type document content relatively freely.

The two cases and the three compared methods imply that the following
phases are necessary in schema design efforts for office documents.

1. Begin with document analysis during which relevant document components

are identified. Principles of the Maler and El Andaloussi method are appli-
cable.

2. Model document structures; hierarchical structure of a document type pro-
vides a preliminary idea of the schema that is required for a document type.

3. Remember content reuse. Study your document structure models and look
for similarities. They may suggest places of reuse. Reusable content may also
be identified when examining existing documents; the principles of the Uni-
fied Content Strategy are applicable.

4. If a part of document content is retrieved from external systems, identify
them. In what form is data imported to documents? Is XML used? Can XML
be adopted? The principles of the Document Engineering Approach may be
applicable to analyze such content.

5. Define your schema. The authoring tool used for XML document production
may guide the choice of schema language as well as how elements should be
defined. Keeping the number of schemas as low as possible may be benefi-
cial from the document management viewpoint.

6. Test your preliminary schemas with the selected authoring tool, preferably
with the end users. This may reveal places in schemas that require modifica-
tion. This phase may require multiple iterations.

7. Do not ignore the layout requirements. Does the chosen software used pro-
vide the layout directly (WYSIWYG user interface), or is there a need to
provide a print view for document authors? Is there a need for multiple
views? Are the documents going to be published on more than one media?
Be ready to re-design schemas to meet the requirements of layout(s).

6 CONCLUSION

This study focused on designing custom XML schemas for office documents.
XML and its related standards and tools support data interoperability, content
manipulation, content sharing and reuse, document assembly, document secu-
rity, document filtering, and document formatting for all types of devices and
applications (Adler, Cochrane, Morar, and Spector, 2006). Office documents are
one of the latest big application areas for XML use as the open standards ODF
and OOXML have brought XML to office environments by replacing the earlier
binary file formats.

Office documents are typically composed with word-processing software
and they are relatively short in length for human consumption. From the view-
point of XML use and XML document management, office documents may
have both technical requirements familiar from data-centric XML use, yet they
also contain requirements for human consumption that are typical in docu-
ment-centric XML use. Despite of XML being the default format in the latest
office applications, document management issues are not resolved by adoption
of the default XML. In fact, document standardization may be needed in order
to get the most out of the possibilities that XML has to offer. Document stand-
ardization may require designing and deploying custom XML schemas for of-
fice documents. The main motivators to utilize custom XML schemas have a lot
to do with making activities related to document creation and handling quicker
and easier. The main motivators are:
- content reuse, and
- document publishing.

The research area itself underwent significant changes since this study was
started. In 2005, when the research initially began, the open XML standards for
office documents were still under development. The knowledge of such stand-
ards becoming part of office suites was already acknowledged, yet there was no
means to predict what kind of impact these standards would have on the re-
search topic of this study. However, in 2005 there were already office suites
available, which supported the use of XML. For example, using custom XML
schemas in MS Word and MS InfoPath was possible.

56

The two cases of this study – MemoX and RAKE - involved analyzing of-
fice documents and designing custom XML schemas for them. Both cases were
carried out as an action research study. Action research is an ideal research
method to gain more accurate understanding of the XML deployment in office
environments. By studying XML schema design via action research method,
understanding of what is really taking place in real organization was gained.

The initial scope of this research was to focus on schema design for office
documents specifically and research papers based on these projects reflect the
scope, too. However, as the time went by the focus of the research shifted. In-
stead of focusing merely on the design phase of office document standardiza-
tion involving schema design, the scope expanded to the use and management
of such documents, too. Especially the MemoX project provided an opportunity
to make such observations. After its implementation in 2005 it has been contin-
uously used in the IT Faculty at the University of Jyväskylä and a few updates
have been done. The work has also continued at the FCP after the RAKE project.
MemoX observations were reported in article 4.

The first research question of this study considered about possible motives
organizations may have to deploy custom XML schemas for their office docu-
ments. The articles 2, 3 and 4 provided answers to this question. The second
research question focused on schema design methods and how they guide de-
signing custom XML schemas. Answers to this question were provided in the
introductory part of this thesis and article 1.

The third research question focused on the description of XML document
management in an organization. This question was answered in articles 3 and 4.
It was concluded that document management should be considered beyond the
implementation of XML-based solution. How XML documents are maintained
and how they will be archived, for instance, may have an effect on schemas on
the element definition level. The introduced methods in this study do not take
this viewpoint into consideration.

The contributions of this study are the insights and identified character-
istics of custom XML schema design for office documents. More empirical evi-
dence of the real-life XML schema design cases is needed to reveal more specific
details about the subject.

57

REFERENCES

Adler, S., Cochrane, R., Morar, J. F., Spector, A. (2006). Technical context and
cultural consequences of XML. IBM Systems Journal, 45(2), 207-223.

Baskerville, R. L. (1999). Investigating information systems with action research.
Communications of the AIS, 2, 1-32.

Baskerville, R. (2008). What Design Science Is Not. In the European Journal of
Information Systems, 17, 441-443.

Bertino E., Catania B. (2001). Integrating XML and Databases. Internet
Computing, IEEE, 5(4), 84-88.

Blumberg, R., Atre, S. (2003). The Problem with Unstructured Data. DM
Review. Accessed 14.11.2012. Available at: http://soquelgroup.com
/Articles /dmreview_ 0203_problem.pdf.

Boiko, B. (2002). Content Management Bible. New York: Hungry Minds, Inc.
Booch, G., Rumbaugh, J., Jacobson, I. (1997). The Unified Modeling Language

User Guide. (1st Edition). Massachusetts: Addison-Wesley.
Boyer, J.M. (2008). Interactive Office Documents: A New Face for Web 2.0

Applications. In Bulterman & L.F. Gomes Soares (Eds.). Proceeding of the
Eighth ACM Symposium on Document Engineering, DocEng '08, 8-17.
New York, ACM.

Bray T., Paoli J., Sperberg-McQueen C.M, Maler E., Yergeau, F. (Eds.). (2008).
Extensible Mark-up Language (XML) 1.0 (Fifth Edition), W3C
Recommendation. Available at: http://www.w3.org/TR/REC-xml/

Broberg, M. (2004). A Succesful Documentation Management Systems Using
XML. The Journal of the Socitey for Technical Communication. 51(4), 537-
546.

Bubenik, W., Hanke, I., Juhnke, N. (2005). XML-Based Authoring: From
Concepts, via Compromises to Applications. ELPUB2005 Conference on
Electronic Publishing, 51 - 56. Accessed 14.11.2012. Available at:
http://elpub.scix.net/data/works/att/210elpub2005.content.pdf

Clark J. (1999). XSL Transformations (XSLT) Version 1.0. W3C Recommendation
16 Nov. 1999. W3C Consortium. Available at: http://www.w3.org/
TR/xslt

Clark J. (2001). The design of RELAX NG. Accessed 10.5.2010. Available at:
http://www.thai open source.com/relaxng/ design.html

Clark J., Murata M. (2001). RELAX NG Specification, OASIS Specification
Available at: http://www.oasis-open.org/committees/relax-ng/spec-
20011203.html

DuCharme B. (2004). Documents vs. data, schemas vs. schemas. XML 2004,
1554–4648.

Elmasri R., Wu Y-C., Hojabri B., Li C., Fu J. (2002). Conceptual modelling for
customized XML schemas. In 21st International Conference on Conceptual
Modelling (ER 2002), 429–443. Springer Berlin Heidelberg.

Fallside D.C., Walmsley P. (2004). XML Schema Part 0: Primer Second Edition.
W3C Recommendation 28 October 2004. W3C Consortium. Accessed
12.4.2006. http://www.w3.org/TR/xmlschema-0/

58

Fiala Z., Hinz M., Wehner F. (2003). A Component-based Approach for

Adaptive, Dynamic Web Documents. Journal of Web Engineering, Rinton
Press, 2(1&2), 58–73.

Fierz, W., Grütter, R. (2000). The SGML Standardization Framework and the
Introduction of XML. In Journal of Medical Internet Research, 2(2).

FCP. (2013) The Finnish Centre for Pensions. Accessed: 7.3.2013. Available at:
http://www.etk.fi/en/ service/about_us/1222/about_us

Garfinkel, S.L., Migletz J.J. (2009). New XML-based Files; Implications for
Forensics. In IEEE Security & Privacy, 7(2), 38–44.

Glushko R.J., McGrath T. (2005). Document Engineering; Analyzing and
designing documents for business informatics & Web services.
Massachusetts: The MIT Press.

Goldfarb C.F. (1990). The SGML handbook. Oxford: Oxford University Press.
Hackos, J. (2002). Content Management For Dynamic Web Deliver.

Indianapolis: Wiley Publishers.
Harold, E.R., Means, W.S. (2004). XML In A Nutshell (Third Edition).

Sebastopol, CA: O'Reilly Media.
Honkaranta, A., Jauhiainen, E. (2007). Two Methods for Schema Design for

Intelligent XML Documents in Organization. In Technologies for Business
Information Systems, 173-182. Dordrecht, Netherlands: Springer.

ISO (1986). 8879:1986 Information processing -- Text and office systems --
Standard Generalized Markup Language (SGML). International
Organization for Standardization, Geneva, 1986.

ISO (2006). ISO/IEC 26300:2006 Information Technology – Open Document
Format for Office Applications (OpenDocument) v.1.0, ISO/IEC
International Standard.

ISO (2008). ISO/IEC 29500-1 Information Technology – Document Description
and Processing Languages – Office Open XML File Formats – Part 1:
Fundamentals and Markup Langauage Reference. ISO/IEC International
Standard Under Construction.

Iivari, J. (2007). A Paradigmatic Analysis of Information Systems as a Design
Science. Scandinavian Journal of Information Systems, 19(2), 39-64.

Jauhiainen, E. (2005). RASKE-menetelmän soveltaminen: Havaintoja kahdesta
Jyväskylän yliopiston opiskelijaprojektista. Master’s Thesis. University of
Jyväskylä.

Jauhiainen, E., Honkaranta, A. (2006). A Review on XML Document Schemas
and Methods for Schema Design. In Abramowicz, W., Mayr, H.C. (Eds.).
9th International Conference on Business Information Systems (BIS 2006),
201-214. Bonn, Germany: Köllen Druck+Verlag GmbH.

Jauhiainen, E., Honkaranta, A. (2007). Aspects on XML Document Content
Reuse in Organizations. In Weide Chang, James B.D. Joshi (Eds.).
Proceedings of the 2007 IEEE International Conference on Information
Reuse and Integration (IEEE IRI-07), 588-593. Las Vegas, CA: IEE
Computer Society.

Järvinen, P. (2001). On Research Methods. Tampere: Opinpajan kirja.
Järvinen, P. (2007). Action Research Is Similar With Design Science. Quality and

Quantity 41(1), 37–54.

59

Karjalainen, M. (2010). Large-scale migration to an open source office suite: An
innovation adoption study in Finland. Dissertation. University of
Tampere.

Kennedy D. (2003). Relax NG with XML data structures. In Mann, S.,
Williamson, A (Eds.). Proceedings of the 16th Annual NACCQ, 91-102.
New Zealand: Palmerson North.

Klischewski, R. (2006). Ontologies for e-document management in public
administration. Business Process Management Journal, 12(1), 34-47.

Kock N.F., McQueen R.J., Scott J.L (1997). Can action research be made more
rigorous in a positivist sense? The contribution of an iterative approach.
Journal of Systems & Information Techonology, 1(1), 1-24.

Lappin L. (2010). What Will Be The Next Records Management Orthodoxy?
Records Management Journal, 20(3), 252-264.

Levien, Roger E. (1991). The civilizing currency: documents and their
revolutionary technologies. In Derek Leebaert (Eds.). Technology 2001,
205-239. Cambridge, MA: MIT Press.

Maler E., El Andaloussi J. (1996). Developing SGML DTDs. From text to model
to mark-up. Upper Saddle River NJ: Prentice Hall.

Martínez-Ortiz I., Moreno-Ger P., Sierra, J.L., Fernández-Manjón B. (2006).
Using DocBook and XML Technologies to create adaptive learning content
in technical domains. International Journal of Computer Science and
Applications, 3(2), 91–108.

Megginson, D. (1998). Structuring XML Documents. Charles F. Goldfarb Series
on Open Information Management. [Subseries:] The Definitive XML Series
from Charles F. Goldfarb. Upper Saddle River, NJ: Prentice Hall PTR.

Mitra N., Lafon Y. (2007). SOAP Version 1.2 Part 0: Primer (Second Edition).
W3C Recommendation 27 April 2007. W3C Consortium. Accessed
13.12.2007. Available at: http://www.w3.org/TR/2007/REC-soap12-
part0-20070427/

Molloy, D. (2003). Single-source Interactive And Printed Content Publishing
Using the DocBook XML Standard. Proceedings of the 2nd International
Conference on Multimedia and Information & Communication
Technologies in Education, 1800-1804. Badajoz, Spain.

Müller, U., Klatt, M., Dobratz, S., Bahnik, S. (2006). Electronic Publishing at
Humboldt University Berlin: Concepts, Tools and Services. Proceedings of
ELPUB2006 Conference on Electronic Publishing, 219-228. Bansko,
Bulgaria.

Nambiar, U., Lacroix, Z., Bressan, S., Lee, M.L, Li Y. (2002). Current approaches
to XML management. In IEEE Internet Computing, 6(4), 43-51.

Necasky M. (2006). Conceptual Modelling for XML: A Survey. TR 2006-3,
Department of Software Engineering, Faculty of Mathematics and Physics,
Charles University, Prague, 2006. Accessed 7.1.2008.Available at:
http://www.cs.cas.cz/ semweb/download.php?file=06-09-necasky3&
type=pdf

Necasky, M. (2007). XSEM - A Conceptual Model for XML. Fourth Asia-Pacific
Conference on Conceptual Modelling (APCCM2007), 37–48. Ballarat,

60

Australia. Accessed 19.10.2012 Available at: http://crpit.com/
complete/Vol67.pdf

Nurmeksela, R., Jauhiainen, E., Salminen, A. & Honkaranta, A. (2007). XML
document implementation: experiences from three cases. In Y. Badr, R.
Chbeir, P. Pichappan (Eds.). Proceedings of the Second International
Conference on Digital Information Management, 224–229. Los Alamitos,
CA: IEEE Computer Society.

OASIS. (2006). DocBook v 5.0 [OASIS 200101]. Accessed 30.10.2012. Available
at: http://www.oasis-open.org/specs/

Olson, M.H., Lucas H.C. Jr. (1982). The Impact of Office Automation on the
Organization: Some Implications for Research and Practice.
Communications of the ACM, 25(11), 838 – 847.

Petride, S., Tarachandani, A., Agarwal, N., Idicula, S. (2011). Managing and
Processing Office Documents in Oracle XML Database. The Third
International Conference on Advances in Databases, Knowledge, and Data
Applications, 89-95. Redwood Shores CA: Oracle Inc.

Polsani, P.R. (2003). Use and Abuse of Reusable Learning Objects. Journal of
Digital Information. 3(4), article 164. Available at: http://journals.tdl.org
/jodi/index.php/jodi/article/viewArticle/89/88.

Quint, V., Vatton, I. (2004). Techniques for Authoring Complex XML
Documents. In Jean-Yves Vion-Dury (Eds.). Proceedings of DocEng’04,
115-123. Milwaukee, Wisconsin, USA: ACM Press.

Raggett D., Le Hors A., Jacobs I. (1999). HTML 4.01 Specification. W3C
Recommendation, 24. December 1999. Accessed 7.5.2010 Available at:
http://jamsb.austms.org.au/courses/CSC2406/semester3/resources/
html/html40.pdf

Rockley, A. (2001). The Impact of Single Sourcing and Technology. Technical
Communication, 48, 189-193.

Rockley, A., Kostur P., Manning S. (2002). Managing Enterprise Content: A
Unified Content Strategy. Indianapolis: New Riders.

Roisin, C., Vatton I. (1993). Merging logical and physical structures in
documents. In Electronic publishing, 6(4), 327-337.

Salminen, A. (2000) Methodology for document analysis. In Encyclopedia of
Library and Information Science, 67(30), 299-320.

Salminen, A. (2003). Document analysis methods. In C.L. Bernie (Eds.).
Encyclopedia of Library and Information Science, , 916-927. NY, USA:
Marcel Dekker, Inc.

Salminen, A. (2005). Building digital government by XML. In R.H. Sprague, Jr.
(Ed.), Proceedings of the Thirty-Eighth Hawaii International Conference
on System Sciences. Los Alamitos, CA: IEEE Computer Society.

Salminen, A., Kauppinen, K., & Lehtovaara, M. (1997). Towards a methodology
for document analysis. Journal of the American Society for Information
Science. Special Issue on Structured Information/Standards for Document
Architec-tures, 48(7), 644-655.

Salminen, A., Lyytikäinen V., Tiitinen P. (2000). Putting documents into their
work context in document analysis. Information Processing and
Management, 36(4), 623-641.

61

Scifleet, P., Williams, S.P. (2009). Practice theory & the foundations of digital
document encoding. Proceedings of the 27th Annual ACM Conference on
Design of Communication, 213-220. Bloomington, Indiana: ACM.

Sefton, P. (2007). An Integrated Approach to Preparing, Publishing, Presenting,
and Preserving Thesis. Proceedings of the 10th International Symposium
on Electronic Thesis and Dissertations. Uppsala, Sweden.

Shah, R., Kesan, J., Kennis, A. (2007). Lessons for open standard policies: A case
study of the Massachusetts experience. Journal of Information Technology
& Politics, 5 (4), 387–398.

Sprague, R.H. (1995). Electronic document management: challenges and
opportunities for information systems. MIS Quarterly, 19(1), 29-49.

Thompson, H. S. (2000). XML schema types and equivalence classes
reconstructing DTD best practice. XML Europe 2000 Conference.

Walsh, N. (2008). The DocBook Schema Version 5.0. Accessed 20.11.2012
Available at: http://www.docbook.org/

Walsh, N., Hamilton, R. (2010). DocBook 5: The Definitive Guide. O'Reilly
Media. Accessed 30.10.2012. Available at http://www.docbook.org/tdg5/
en/html/docbook. html/

Walsh, N., & Muellner, L. (1999). DocBook: The Definitive Guide (Vol. 1).
Sebastapol, CA: O'Reilly Media, Inc.

YHTEENVETO (FINNISH SUMMARY)

Merkittävä osa organisaatioissa tuotetusta sisällöstä on tallennettuina dokumenttei-
hin. Rakenteiset dokumentit mahdollistavat rakennemääritysten, dokumentti-
instanssien sekä ulkoasumääritysten hallinnoinnin omina sisältöyksiköinään. Tämä
on dokumenttien hallinnan näkökulmasta oleellinen rakenteisten dokumenttien
ominaisuus.

Samanlaisten dokumenttien joukkoa kutsutaan dokumenttityypiksi. Doku-
menttityypit rakentuvat komponenteista, jotka ovat dokumenttityypin rakenneosia.
Dokumenttityyppi voidaan määritellä formaalisti skeemassa.

Avointen toimistostandardien kehitys toimistodokumenteille toi XML-kielen
käytön organisaatioiden toimistoihin. Tämän tutkimuksen tavoitteena oli tutkia toi-
mistodokumentteja ja löytää niille suunniteltujen XML-skeemojen suunnittelutyöstä
yhtenäisiä piirteitä.

Skeemojen suunnittelua toimistodokumenteille voi tukea tarkoitukseen sovel-
tuvan menetelmän käyttö. Tässä tutkielmassa esitettiin menetelmiä, jotka sisältävät
skeemasuunnittelua. Lisäksi tutkielmassa raportoitiin havaintoja kahdesta tapaus-
tutkimuksesta, joissa tehtiin skeemasuunnittelua toimistodokumenteille. Tutkimuk-
sen empiirinen osuus suoritettiin toimintatutkimuksena. Ensimmäisessä tapaustut-
kimuksessa suunniteltiin skeemat IT-tiedekunnan tiedekuntaneuvoston esittelylis-
talle ja pöytäkirjalle, sekä luotiin kohdeorganisaatiossa käyttöönotettu XML-
pohjainen toimistodokumenttijärjestelmä edellä mainittujen dokumenttien laadin-
taan ja julkaisuun. Tutkimuksen pitkäaikaisuudesta johtuen tapauksen seuranta tar-
josi mielenkiintoisia näkymiä XML-kielen käyttöönottoon toimistoympäristössä.
Näin ollen tutkimuksen painopiste muuttui ajan myötä tarkastelemaan skeema-
suunnittelun lisäksi myös XML-dokumenttien käytön analysointia ja kuvailua toi-
mistoissa. Toisessa tapaustutkimuksessa eläketurvakeskuksen neljälle dokumentti-
tyypille laadittiin XML-skeemat ja niitä testattiin kahdessa erilaisessa asiakirjojen
laadintaan tarkoitetussa toimisto-ohjelmassa, joista toisessa oli WYSIWYG-
käyttöliittymä ja toinen oli XML-kieltä tukeva lomake-editori.

Merkittävimmät syyt kohdeorganisaatioissa tapahtuneeseen skeemasuunnite-
luun olivat ongelmat toimistodokumenttien sisällön uudelleenkäytössä sekä doku-
menttien julkaisussa. Tutkimus osoitti, että XML-skeemojen suunnittelu toimistodo-
kumenteille vaatii dokumenttien sisältökomponenttien tunnistamista, luokittelua
sekä niiden mallintamista. Nämä vaiheet ovat keskeisiä myös referoiduissa ja vertail-
luissa skeemasuunnittelumenetelmissä. Skeemasuunnittelun nähtiin myös sisältävän
dokumenttien ulkoasusuunnittelua sekä dokumenttien laadintaan käytettävän työ-
kalun käyttäjäystävällisyyden huomioon ottamista. Skeemasuunnittelumenetelmien
käyttö koettiin hyödylliseksi molemmissa tapauksissa.

ORIGINAL PAPERS

I

TWO METHODS FOR SCHEMA DESIGN FOR INTELLIGENT XML
DOCUMENTS IN ORGANIZATION

by

Anne Honkaranta & Eliisa Jauhiainen, 2007

In Witold Abramowicz, Heinrich C. Mayr (Eds.). Technologies for Business Infor-
mation Systems. Dordrecht, Netherlands: Springer, 173-182.

Reproduced with kind permission by Springer.

15 Two Methods for Schema Design for
Intelligent XML Documents in Organizations

Anne Honkaranta, Eliisa Jauhiainen

University of Jyväskylä, Finland
anne.honkaranta@it.jyu.fi, raelurja@cc.jyu.fi,

XML markup language provides means for incorporating semantics, i.e.
“meaning” of logical content parts residing within documents and other kinds of
mainly textual data. Therefore it has become the lingua franca for Semantic Web,
e-Business applications and for application integration. In order to realize novel,
intelligent XML-based document applications in organizations schemas defining
the domain-oriented semantics for markup are needed. So far, the potential of
XML has not bee fully utilized in organizational documents, due to lack of XML
support in common and inexpensive office software. Due to the arrival of XML
support on common software such as Microsoft Office 2007 and Open Office 2.0
organizations need knowledge about schema languages and methods by which
they may design intelligent XML documents for their needs of document content
reuse, content integration across documents, and document content retrieval from
Web Services and other source. This paper introduces three schema languages and
features of two potential methods for document-oriented schema design.

15.1 Introduction

XML (Bray 2006) was initially developed as a mark-up language for documents
for electronic publishing and technical documentation – for managing the reuse,
management and publishing of broad and complex collections of documents and
publications. XML is becoming a standard to represent any kind of content in any
application domain, because it is able to represent any kind of structured or semi-
structured documents (Psaila 2000). XML has been widely adapted to enterprise
system integration, as e-Business format, and for Web Services. XML is becoming
increasingly used for storing and exchanging all kinds of data on the Internet as
well (Elmasri 2002).

The use of XML for common organizational documents has been limited due to
the fact that XML-capable software has until now been quite specialized and

15 Two Methods for Schema Design for Intelligent XML Documents 174

expensive. Introduction of new XML software for office use also requires training,
and may be resisted by users who are used to their common-purpose, sophisticated
office tools. Along with the introduction of XML into common-purpose office
software such as Microsoft Office 2007 (Microsoft 2006) and OpenOffice 2.0
(Open Office Org 2006) the future office documents are already stored as XML
documents, providing a base for developing intelligent XML document
applications based on organizational requirements.

Realization of intelligent, domain-oriented document applications relies on the
possibility to develop and utilize domain-oriented schemas for XML documents.

This chapter is focused on the XML schema languages and schema design for
organizational documents. It presents updated and revised findings based on the
paper presented at the BIS 2006 conference (Jauhiainen and Honkaranta 2006).
Section 2 introduces three commonly known schema languages – DTD (Maler and
El Andaloussi 1996), XMLSchema (Bray 2000) and RelaxNg (Clark 2001).
Section 3 introduces two schema design methods; the Maler and El Andaloussi
method (Maler and El Andaloussi 1996), and the Kennedy method (Kennedy
2003). The Maler and El Andaloussi method (1996) is generally recognized as the
“best practice” for DTD design (Thompson 2000). It has also been incorporated
into the RASKE document management methodology (Salminen 2003) and it has
clearly influenced the schema design methods developed for the Document
Engineering (Glushko and McGrath 2005) and the Unified Method for Content
Management (Rockley et al. 2003) approaches. Section 4 discusses the findings
and sums up the chapter.

15.2 Schema languages

A schema, such as DTD (Maler and El Andaloussi 1996) or XML Schema schema
(Fallside and Walmsley 2004) describes the names of elements and their order for
a document type, an attributes adding incremental information about the elements
(Bokottaya et al. 2004)

Following subsections introduce the most popular schema languages, the DTD
(Bray et al. 2006), and the XML Schema (Fallside and Walmsley 2004) schema
for intelligent XML documents. A possible schema language replacing DTDs in
future – RelaxNG – is also described. The three aforementioned schema languages
are grammar-based languages providing context-free grammar according to top-
down production rules in a specified form..

15.2.1 DTD

DTD (Document Type Definition) is a part of XML language definition itself, and
perhaps the most commonly known schema language at the time (Marinelli et al.
2004). Figure 1 illustrates the DTD syntax by giving an example of a XML
document considering Addressbook and the DTD schema defining markup rules
for it.

175

XML Document (Addressbook) A DTD for Addressbook document type

<Addressbook>
<Card>
<Name>Jane Doe</Name>
<Email>jane.done@arganization.org</
Email>
</Card>

<Card>
<Name>Tom Smith</Name>
<Email>tom.smith@company.com</E
mail>
<Phonenumber>+358 14
123456</Phonenumber>
</Card>

</Addressbook>

<!ELEMENT Addressbook (Card+)>
<!ELEMENT Card (Name, Email,
Phonenumber?)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Email (#PCDATA)>
<!ELEMENT Phonenumber
(#PCDATA)>

Fig.1. And Addressbook XML document and a DTD schema for it

DTDs provide a sophisticated regular expression language for defining
elements, their ordering and attributes for a document type. It has its own syntax
for declaring content models. DTD schema was designed for textual documents
and is therefore rather limited by its capabilities to control the values of attributes
and elements (Marinelli et al. 2004) In other words, the built-in set of data types
for elements in DTD are limited in practice to three: an element contains either
parseable data (PCDATA), non-parseable data (NDATA) or no content at all, i.e.
element is EMPTY. DTD provides 7 data types for restricting the attribute content.
All together DTD supports 10 data types.

15.2.2 RelaxNG

RelaxNG (Clark 2001) schema language is built on two preceding schema
languages, TREX (Tree regular expression for XML) and RELAX (Regular
language of description for XML).

While the DTD’s content model is an expression over elements, the RelaxNG
schema defines patterns as expressions over elements, text nodes and attributes.
RelaxNG schemas may be declared by XML syntax or by using compact non-
XML syntax (Clark and Murata 2001).

The RelaxNG schema defines patterns that a document must match. Patterns
may appear as components of the main schema or reside separate from the content
model declarations (Clark and Murata 2001). In RelaxNG attribute lists are
declared apart from element an pattern which enables the specification of
dependencies between elements and attributes and between their values. This
feature is a significant difference between RelaxNG and any other schema
language. (DuCharme 2004) One of the limitations of the RELAX NG is its
inability to define default values for element and attributes (Marinelli 2004).

15 Two Methods for Schema Design for Intelligent XML Documents 176
RelaxNG is considered to be simpler and even as technically superior to the XML
Schema language discussed on the next subsection.

15.2.3 XML Schema

XML Schema (Bray et al. 2006) schemas are themselves XML documents, which
improves the programmatic processability of the XML Schema schemas. The use
of XML syntax for a schema language is not totally a positive feature for a
schema: the XML syntax is rather verbose and makes the schemas long and rather
difficult to read on their textual form (Marinelli et al. 2004)

XML Schema language is superior to DTDs by its capability of restricting the
content types of element and attribute content. It supports even 44 different data
types such as date, integer, string, and so on, and also allows regular expression
patterns to be used for posting even more strict requirements for element content
(Bray et al. 2006). For example, our address book “Mail” element must contain the
“@”-sign. XML Schema language has other additional features over DTD
schemas, like support for namespaces and possibility to define elements as global
or local, or as reusable data types.

In practice only small amount of schemas use the advenced features provided by
XML Schema language. This means that majority of the schemas found in the
Web may be expressible by DTD schemas, even though the modeling power of the
XML Schema is notably higher. (Bex et al. 2005) Figure 2 illustrates the XML
Schema schema and its counterpart as RelaxNG schema for the Addressbook
XML document.

XML Schema RELAX NG

<?xml version=1.0” encoding=”ISO-
8859-1” ?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/
XMLSchema">

<xs:element name="Addressbook">
<xs:complexType>
<xs:sequence>
<xs:element name="Card"
maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="Name"
type="xs:string"/>
<xs:element name="Email"
type="xs:string"/>

<?xml version=1.0” encoding=”ISO-
8859-1” ?>

<element name="addressBook"
xmlns="http://relaxng.org/ns/structur
e/1.0">

<oneOrMore>
<element name="Card">

<element name="name">
 <text/>
 </element>

<element name="Email">
 <text/>
 </element>

177

<xs:element name="Phonenumber"
type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element></xs:schema>

<optional>
<element name=”Phonenumber>
<text/>
</element>
</optional>
</element>
</oneOrMore>
</element>

Fig.2. Example of XML Schema and RelaxNG schemas for the Addressbook document type

XML Schema is generally considered as complex (van der Vlist 2002).

However, XML Schema is the most widely used among all the schema languages.
Possible reason for the popularity of XML Schema language is that it is supported
by a number of popular software. Microsoft, for example, relies on XML Schema
schemas for custom schema use on its Office 2007 software. Also a number of
XML development environments provide support for XML Schema schema
design (f.ex., Altova XMLSpy; www.altova.com). More profound comparisons on
schema languages may be found in Lee and Chu (2000) and Jauhiainen and
Honkaranta (2006).

15.3 Methods for schema design

This section describes the two potential schema design methods; the Maler and El
Andaloussi (1996) method and the Kennedy (2003) method.

15.3.1 The Maler & El Andaloussi method

Maler and El Andaloussi (1996) method has been considered as a best practice on
the field (Maler & El Andaloussi 1996, Thompson 2000). The methodology
(Maler and El Andaloussi 1996) can be divided in three phases, which are:

 Document analysis
 Document type modeling, and
 Producing a document analysis report

The document analysis phase consists of the three steps that are: 1.) Identifying
potential components, 2.) Classifying components, and 3.) Validating the
requirements.

Document component is broader by its content than an individual element
consisting of text. For example, in our Addressbook a possible document
component is a Card-element. Document component should be a logical unit of
document content which may, for example, be reused from elsewhere or need to

15 Two Methods for Schema Design for Intelligent XML Documents 178
be presented to a human reader as a unit. For example, a “list of attendees” is a
potential component for a memo document type rather than a “attendee_name”.

Step 2 considers classifying the potential components with respect to their
content-based and structural similarities. For example, “list-of-attendees” and
“list-of-items” may be broadly classified as a list component types. The third step
considers studying the available schemas for similar kinds of document types and
deciding if a domain-oriented schema is needed, or if a related, existing schema or
its components may be tailored for the purpose at hand.

The document type modeling phase consists of seven steps, which are 4.)
Selecting semantic components, 5.) Building the document hierarchy, 6.) Building
the information units, 7.) Building the data-level elements, 8.) Populating the
branches of the document hierarchy, 9.) Declaring connections between elements,
and 10.) Validating the design.

In step 4 the component lists are revisited for dropping out all but necessary
components. Step 5 considers modelling the components into document hierarchy
model, which represents main components for the document type. Figure 3
illustrates a document hierarchy model as Elm-diagram for the Addressbook
document type. In the figure the components are depicted by rectangles. Three
dots underneath components depict that that the content model is represented in
another diagram. The document hierarchy ends to “cloud” symbols depicting the
portions of more-detailed level content models. “+” , “?” and “*” are occurrence
symbols indicating that a component may repeat from one to many, zero to one, or
from zero to many times.

Fig 3. An Example of document hierarchy model for an addressbook.

Steps 6 and 7 concern the design of Information unites and data-level components.
Information units are groups of logically related elements that should be modelled
as a whole; such as list heading and list item, or a figure and its caption. Data-level
elements consider markup within text, such as if concepts need to be separated
form other text in order to specify differing layout for them. Information units and
data-level elements are revisited on step 8 for populating the branches of the tree

179
diagrams with information units and data-level elements defined. Step 9 considers
the identification of requirements for cross-references and links within the
document type and across documents and other content sources.

Finally in step 10 the whole design is revisited. This step ends the second phase
of the Maler & El Andaloussi method (1996). The last phase of the method
considers producing the document analysis report.

After the schema design the actual schema is declared by using the schema
language selected for the purpose.

15.3.2 The Kennedy method

Kennedy (2003, 92-94) lists nine rules for defining XML schemas. The rules
consider:

1. Data analysis
2. Coding the data
3. Use of container elements
4. Use of group or block elements
5. Use of subelements for multi-value data
6. Avoiding mixed content
7. Use of meaningful names
8. Correct use attributes and elements, and
9. Reviewing the design.

The first rule, data analysis, follows the Maler & El Andaloussi method. It consists
of a) identifying the document components and b) classifying them into logical
groups. The data analysis in the Kennedy method covers additional tasks with
regard to the Maler and El Andaloussi method. These consider deciding upon the
recurrence or optionality of a document component, and about its importance.

The second rule is about coding the data. This rule considers if a component is
actually a logical content component or whether it is merely a presentation kind of
component, in which case the component should be considered on the style sheet
design rather than on content design.

Third rule is about using “collection” elements. By the collection element
Kennedy refers to element that may occur multiple times at the same level, such as
list items. If the aforementioned elements are identified, one should create a
container element for them. For example, we may define a “list” element s a
container for list items. Kennedy declares that use of collection elements makes
the XML more human readable and easier to process by recursive loops, such as
the “for-each” element use in the XSLT transformation language. Another
example of a collection element is the “author” element; if it repeats multiple
times within a document type, one should define container element “authors” to
group the “author” elements.

Kennedy’s fourth rule is about remembering that XML markup forms
commonly a tree structure within documents. The tree should be wide instead of

15 Two Methods for Schema Design for Intelligent XML Documents 180

tall. The fifth rule states that the best way to represent multi-valued data is via
subelements.

Sixth rule exhorts that one should avoid mixed element content and the seventh
one that the element names should be meaningful. The eight rule emphasizes the
correct use of elements and attributes. According to Kennedy, XML document
schemas commonly contain lots of elements and fewer attributes than elements
whereas schemas for data-oriented XML documents and data transfer may consist
even greater amount of attributes than elements. Therefore, the application domain
and document type may affect the schema design considerations.

The final rule is about recognizing that defining the schemas is similar to
database design in respect that the design process is commonly iterative one by its
nature. As database schemas are defined by inserting test data into table structure
defined, the XML document schemas are tested by writing example documents,
and testing de design against style sheet definitions and content manipulation
needs.

Kennedy’s method is similar to Maler and El Andaloussi method also by its
modeling notation; both of the methods use the so called “Elm” models for visual
schema design. Figure 3, the document hierarchy model provides and example of
the Elm modeling notation.

15.4 Discussion and conclusion

Although XML is currently used as a standard for any kind of content, its use on
common organizational documents has been limited by the lack of inexpensive
software with XML support. However, along the introduction of novel office
software such as OpenOffice 2.0 and becoming Microsoft 2007 the situation
changes in a radical way. Organizations may start benefiting from the use of
intelligent XML documents, which provide means for content integration, retrieval
and reuse across document collections and external content sources such as
databases or WebServices. Realization of the intelligent XML document
applications rely on the domain- and application-oriented markup. Schema
provides a base for XML processing, content filtering, and content organization.
Therefore, schema design is abase for document-oriented XML document
management and its importance should not be overlooked.

There are several schema languages for XML document schemas. Perhaps the
most common one is W3C’s XML Schema - a rich schema language with multiple
features and datatypes. However, XML Schema definition is considered as
complex. Even though many applications support the use of XML Schema, the
expressive power of DTD may be quite enough for defining narrative, document-
oriented document types. XML Schema language features and the capability to
define strict rules for XML content on a data-type level may be needed for
example for technical documentations consisting lots of measures and measure
units, or for document types that exchange content with databases or applications
with stricter requirements for data typing.

Even if an organization would not need the sophisticated features of XML
Schema schema language, many organizations may use it due to its broad support
on software tools. It remains to be seen if the RelaxNG as an “improved version”

181
of the DTD schema is capable to challenge the XML Schema language as it seems
to be gaining more software support. The technical capabilities of the RelaxNG
and the XML Schmea language in terms of expressiveness and the ability data
typing are slightly different, yet sufficient for document schemas.

This chapter reviewed the Maler and El Andaloussi (1996) method that was
originally defined for DTD design and the Kennedy (2003) method targeted for
RelaxNG schema design. There are many similarities between the Kennedy and
the Maler & El Andaloussi method. The Kennedy method adopts the first two
steps of the Maler and El Andaloussi method. The Kennedy’s method also applies
the Maler and El Andaloussi method for defining container elements, which are
typical for document-oriented XML document types. Both Kennedy and Maler
and El Andaloussi emphasize the importance of domain-oriented, meaningful
element names. Both methods also remind DTD or schema designers that schema
design is usually an iterative process and the document structures should be tested
before implementation.

It may be concluded that both the Kennedy and the Maler & El Andaloussi
method may be adoptable for organizational XML document type schema design.
More recent schema design methods, such as the one included in the Document
Engineering approach (Glushko and McGrath 2005) and the one utilized in the
Unified Content Strategy (Rockley et al. 2003) are influenced by the Maler and El
Andaloussi method. Even though the DTDs are nowadays often replaced by XML
Schema schemas the Maler & El Andaloussi method may provide a solid starting
point for organizational schema design, or one for developing methods for novel
design requirementsTherefore schema design is a base for document-oriented
XML document management and its importance should not be overlooked.

References

1. Bex G.J, Martens M., Neven F. & Schwentick T. (2005) Expressiveness of XSDs:

From Practice to Theory, There and Back Again. In Proceedings of the Fourteenth
International World Wide Web Conference, Chiba, Japan, May 2005, pp-.712–
721.

2. Boukottaya A., Vanoirbeek C., Paganelli F. & Abou Khaled O., Automating
XML documents transformations: a conceptual modelling based approach. 1st
Asia-Pacific Conference on Conceptual Modelling, ACSW 2004, Dunedin, New
Zealand, January 2004.

3. Bray T., Paoli J., Sperberg-McQueen C.M & Maler E. Extensible Markup
Language (XML) 1.0 (Third Edition) [online], W3C Recommendation.
<http://www.w3.org/TR/ 2004/REC-xml-20040204/>

4. Clark J. (2001) The design of RELAX NG. [Online]Available at
http://www.thaiopensource.com/relaxng/design.html [16.1.2006]

5. Clark J. & Murata M. RELAX NG Specification.
6. DuCharme B. Documents vs. data, schemas vs. schemas. XML 2004 conference,

Washington D.C.
7. Elmasri R., Wu Y-C., Hojabri B., Li C. & Fu J. Conceptual modeling for

customized XML schemas. In 21st International Conference on Conceptual
Modeling (ER), Tampere, Finland, volume 2503 of Springer LNCS, Springer,
2002, pp. 429–443.

15 Two Methods for Schema Design for Intelligent XML Documents 182

8. Fallside, D. C., & Walmsley, P. e. (2004, 2 May). XML Schema Part 0: Primer.
2nd Edition. W3C Recommendation, 28 Oct. 2004. Retrieved 16 June, 2005, from
http://www.w3.org/TR/xmlschema-0/

9. Glushko, R.J. & McGrath, T. (2005) Document Engineering: Analyzing and
Designing Documents for Business Informatics and Web Services. MIT Press.

10. Jauhiainen, E. & Honkaranta, A. (2006) A Review on XML Document Schemas
and Methods for Schema Design. In the Abramovicz, E. & Mayr, H. (Eds.)
Proceedings of the 9th International Conference on Business Information
Systems. Series of the Gesellschaft fyr Informatik. Bonn. Vol P-85. 201-210.

11. Kennedy D. Relax NG with XML data structures. National Advisory Committee
on Computing Qualifications, Palmerston Nth, July, 2003.

12. Lee D. & Chu W. Comparative analysis of six XML schema languages. SIGMOD
Record, 29(3):76–87, 2000.

13. Maler E., El Andaloussi J. Developing SGML DTDs. From text to markup. Upper
Saddle River NJ: Prentice Hall, 1996.

14. Marinelli P., Sacerdoti Coen C. & Vitali F. (2004). SchemaPath, a minimal
extension to XML schema for conditional constraints. In Proceedings of the 13th
International Conference on the World Wide Web (WWW13), New York City,
U.S.A. ACM, 2004.

15. Microsoft. (2006). Microsoft Office 2007. Available at
http://www.microsoft.com/office/preview/default.mspx [14.9.2006]

16. OpenOffice Org. (2006). Open Office Organization Home Page. Available at
http://www.openoffice.org/ [20.7.2006]

17. Psaila G. ERX: A conceptual model for XML documents. In In Proc. of ACM
Symposium on Applied Computing (SAC), Villa Olmo, Italy, 2000, pp. 898-903.

18. Rockley, A, Kostur, P., & Manning, S. (2003). Managing Enterprise Content: A
Unified Content Strategy. U.S.A.: New Riders.

19. Salminen A. Document analysis methods. In Bernie C.L. (Ed.) Encyclopedia of
Library and Information Science, Second Edition, Revised and Expanded. New
York: Marcel Dekker, 2003, pp. 916-927.

20. Thompson H. S. XML schema types and equivalence classes reconstructing DTD
best practice. XML Europe 2000 conference, 2000.

21. van der Vlist E. XML Schema languages. In Proceedings of XML Europe 2002,
Barcelona, Spain, May 2002.

II

ASPECTS ON XML DOCUMENT CONTENT REUSE IN ORGANI-
ZATIONS

by

Eliisa Jauhiainen & Anne Honkaranta, 2007

In Weide Chang, James B.D. Joshi (Eds.). Proceedings of the 2007 IEEE International
Conference on Information Reuse and Integration (IEEE IRI-07), Las Vegas, 588-593.

Reprinted with permission.

Abstract
Designing the reuse of information residing in documents
is more complex than for information in databases.
Document content is designed for humans and organized
with regard to communicational purposes for
organizational work. In addition, content organization
within documents is affected by the requirements of multi-
channel publishing and layout design for content
presentation. Efficient content reuse in organizational
documents requires that the ways the content is created
and stored within and across documents and other
content resources, such as databases, should be
identified. XML provides technological means for
document content reuse. The designers of XML document
production need to be aware of the requirements for
content reuse in order to facilitate reuse across XML
documents and other content sources. This paper
describes the content reuse identified in two e-
Government cases and proposes a classification of
document content reuse types. The impacts for XML
schema and document production design are also
discussed.

1. Introduction
Content reuse refers to the practice of using existing

pieces of content for developing new novel content. The
majority of reusable content in organizations is text-
based, but any type of content can be reused [1]. As
much as 80-90 % of content used and produced in
organizations may be considered as documents [2] or
similar non-structured or semi-structured text-based
content, which is primarily targeted for human
consumption [3][4]. A great deal of the organizational
content in documents is reusable. Therefore document
content reuse is an important part of organizations’
content management strategy. It may provide dramatic
improvements for organizational work.

Document content reuse in general may concern the
reuse of an existing document as a base for a novel one,
or simple copy and paste –operations of text from other
content sources into a document to be produced. Manual
copying and pasting is time-consuming and prone to
error. Content reuse may be automatized by using
computer programs, which requires a through
examination of content reuse.

XML [5] has become a standard for presenting
virtually any kind of information, from processes (e.g.,
[6], [7]) to Web Services [8], and for Enterprise
Application Integration [9]. XML documents’ logical
structure, i.e. the names of XML document content
components may be formally described by a schema such
as DTD [10] [5], or XML Schema [11]. XML documents
contain a mixture of document content and XML markup
defined by the schema, which allows the identification of
content components for content reuse. In order to support
content reuse, XML documents and their content sources
have to be analyzed for schema design.

The need for content reuse in organizational
documents is obvious, yet research on content reuse
revealing the types of content reuse across documents and
other content resources in organizations is scarce. Even
though XML has been adopted widely, research on XML
documents in organizations has largely been overlooked
due to lack of XML support in common office software.
The newest office applications such as Open Office 2.0
[12] and Microsoft Office 2007 have adopted XML as
their native data format, as Open Document Format [13]
and ECMA 376 Office Open XML [14] respectively, thus
providing the technological means for document content
reuse as XML. Research illustrating the requirements for
content reuse and its impact on XML schema design, as
well as in XML document production, is therefore
needed.

This paper describes the types of document content
reuse that were identified in two e-Government
organizations, and proposes a classification of reuse
types. In this paper we analyze the requirements for XML
schema design and XML document production. The
paper is organized as follows. Section 2 discusses related
research on content management, content reuse, and
XML. Section 3 provides examples of document content
reuse and presents a classification of reuse types in
organizations. Section 4 analyzes the requirements for
XML document production and schema design. Section 5
concludes the paper and provides avenues for further
research.

Aspects on XML Document Content Reuse in Organizations

 Eliisa Jauhiainen Anne Honkaranta
University of Jyväskylä University of Jyväskylä and SYSOPENDIGIA Plc
 raelurja@jyu.fi anne.honkaranta@[it.jyu.fi; sysopendigia.com]

2. Content reuse in organizations

2.1 Content and component
Enterprise content management (ECM) is a research

area concerned with both social and technical aspects of
managing organizational content. The “content” covers a
wide spectrum from documents to web content intended
primarily for human consumption, as well as other
content sources related to them. Content management
may be realized by utilizing files in a variety of formats,
databases, XML, and other technologies [15].

While information resource and architecture design
[16] in enterprises focuses on identifying the information
resources and describing the information landscape from
the viewpoint of logical groupings of information items,
the design of information for documents is more
complex. Rather than following a pure logic of
information itself, the documents are constructed to fulfill
communicational purposes in complex work settings [17].

Content to be managed within organizations may
come in many forms; it may be loosely or tightly
structured and it may have a large or small grain size. The
concept of grain size refers to the breadth of information
content and the physical storage space it requires. For
example, a long document, such as a paper machine
operating manual, may have a large content grain size,
and a snippet of a Web page content may have a small
grain size (e.g. [15]). There is no universal agreement on
what a reusable piece of content should be called or what
its grain size should be. In e-Learning, a reusable piece of
learning content is called a Learning Object (LO; [18]).
An LO should contain one topic as a stand-alone portion
of text or multimedia [16]. In ECM, a reusable piece of
content within a document or a web page may be called a
content block, content item or component [19].

This paper adopts the term component from Boiko
[19] and Rockley [1] as signifying a reusable piece of
content which may refer to a document or a web page, but
in most cases addresses content with a smaller grain size
than these. A class of documents that are similar in
content and purpose is considered a document type.
Content for a document may be created by picking up
existing content components and combining them in a
correct and suitable order ([20], [1]).

2.2 Document and component reuse
Document content reuse may take a number of forms.

For example, Guerrieri [21] has identified four types of
document reuse. These are 1) Document content reuse, 2)
Document structure reuse, 3) Document style reuse, and
4) Document rendering reuse. Document content reuse
concerns the reuse of document content. Document
structure reuse means that the generic structures of the
document, such as titles, paragraphs, and appendices are
reused. Document style reuse concerns the reuse of style
information, such as font size or face. Document

rendering reuse refers to reusing document content and
style for a different type of displaying media [21]. The
Guerrieri classification does not explicitly point out if
content reuse concerns document content as a whole or
only a portion of it. The classification does, however,
regard the kinds of reuse that are essential in designing
templates for document types regardless of being utilized
in a Web content management system or in office
software.

Manual copying and pasting is a common way of
reusing document content. Making reuse more effective
and automated is possible with content components. In
order to reuse content components, one must both identify
them and understand the relationships between them [21,
22]. The Unified Content Strategy by Rockley [1]
manifests the need for reuse, and presents a method for
Web content reuse by utilizing components and XML.
Boiko’s approach to Web content reuse is similar, but
relies largely on the utilization of metadata for content
composition. Yet, what constitutes a component and how
one may be identified remains largely a domain-specific
issue. To exploit the aforementioned approaches,
examples of potential components and their types in
organizational settings are required. Therefore, examples
from real life organizations and document component
types in them may help schema and reuse designers.

 XML supports content reuse in multiple ways. It
provides means for identifying content components
within documents for reuse. It also allows separating
content from layout, thus supporting the first three of the
four reuse types defined by Guerrieri [21]. XML also has
a number of companion languages, such as XSL and
XSLT that may be used for content rendering reuse and
content filtering [1].

3. An example and classification of
document reuse types in organizations

This section proposes the classification of document
content reuse types based on observations in two e-
Government organizations; The Faculty of Information
Technology (FIT) in the University of Jyväskylä and The
Finnish Centre for Pensions (FCP). At FIT the reuse was
observed as a part of a project that developed an XML
publishing system, and at FCP as a part of a feasibility
study concerning the adoption of XML for document
production.

3.1 Document components in the two
organizations

The Faculty of Information Technology (FIT) at the
University of Jyväskylä has three departments with
approximately 2200 students and 200 employees. FIT is
administered by the Faculty Council. The personnel of the
faculty office produce agendas and memorandums
(memos) for and about the council meetings. These

documents deal with numerous administrative issues,
such as study requirements, recruiting, granting diplomas
and so on. Agendas and memos were produced with
Microsoft Word but their preparation was considered
problematic. A great deal of content was copied manually
from a number of old documents. This process was time-
consuming and prone to error. In addition, printing the
agendas and memos took time because they were saved in
several different files, each agenda item and appendix in
one file. These files were stored separately to allow items
to be prepared simultaneously by several people. Also
Web publishing was laborious due to multi-phased
transformation and file transfer processes, and separate
text files. Time and resources for Web publishing were
insufficient even though it was considered important.

An agenda for a Faculty Council meeting consists of a
front page, a table of contents listing the items for a
meeting, and a number of separate items to be dealt with.
Each item is prepared separately, stored, and printed as
separate files. Items were gathered as an agenda order for
printing only right before the meeting, when all the items
were finished and the table of contents was updated
according to the items and their ordering for the meeting
at hand. After the meeting, the decision text was
appended to each item for producing a memo. Each item
in an agenda has its own component structure, as
visualized in Figure 1.

Figure 1. Document components of item

Each item comprises a unique component containing

item information with a standardized layout and content
structure. Item information includes the date of the
meeting and a list of council members for marking who
was present and absent when the issue was decided,
among other things. The decision component of the
document contains elements typical of memos, such as
the decisions made in the meeting.

Each item content component contains a combination
of novel and reused text previously copied from existing
pieces of legal texts. These legal texts occur repeatedly
within the agenda and memo items. For example, if an
employee of the faculty applies for absence for a leave, a
paragraph containing legal phrases related to norms of
applying for an absence is reused. These phrases were
manually copied and pasted from old agenda items. After

a meeting, the agenda was transformed into a memo by
appending meeting notes and decisions into the content,
among other modifications.

The Finnish Centre for Pensions (FCP) acts as a
central body for numerous private pension institutions in
Finland. There are nearly 400 employees working at FCP,
primarily lawyers, pension schema experts, and pension
register system experts. The FCP has been active in
developing its content management, which has also
included document redesign [22].

A myriad of administrative documents (i.e. records)
are produced at FCP, such as statements, decisions, and
directives. Similar to FIT, a number of FCP document
types involve content that is either directly copied or
derived from legal texts. For example, a decision
document may contain portions of legal texts related to
laws and norms regulating how and when a pension may
be obtained, and a directive document may contain texts
derived from normative legal texts, but re-written to
enable easier comprehension for laymen readers.

The FCP had already facilitated the reuse of legal text
portions re-formulated for laymen by collecting them into
a database. The FCP had also founded an address
database containing the names and addresses of the
organizations with which they mostly communicated. At
FCP, the address database and the legal text database
were integrated into document production by a plug-in
application which was built into Word software and the
document templates utilized in it. Since the lawyers were
very strict with pension-related communications, they had
also prepared hundreds of different document type
templates and variations of these consisting of model
texts for various standard cases to be dealt with.
Furthermore, each template contained placeholders
showing the changeable text content to be edited and
checked while preparing the legal documents. While the
documents printed on paper commonly had a header and
footer, the layout of which was prepared according to a
national layout standard, parts of the information content
in the header, and often the entire footer, was removed
when the documents were delivered via Inter- or Intranet.
One reason was that the information found in the footer
was already available on the Inter- or Intranet site.

3.2 The classification
Four different types of reuse may be identified in both

FCP and FIT documents. The four types of document
content reuse are the following:
1) Document content reuse as a whole. A document

content as a whole may be reused as a part of another
document.

2) Document component reuse for multi-channel
delivery. Reusable components are utilized to
modify content for a certain medium.

3) Reuse of repeating text portions. In an
organizational domain, there may be repeatable

phrases and/or text portions, which are reused across
multiple documents.

4) Reuse from databases. There may be both internal
and external databases or services that provide
content to documents.

The use of agendas as a base for memorandum
documents at FIT represents document content reuse as
a whole. Similar kinds of patterns may also be identified
in business contexts. For example, an order for a product
containing information about the items to be delivered
may be appended into an invoice. A number of question-
answer document pairs may share the same content
portions as well.

Document component reuse for multi-channel
delivery considers tailoring the content for multi-channel
distribution. Delivery via a different medium commonly
affects both layout and content. Both paper prints of the
document and its online equivalents need to have some
kind of layout for human consumption. However, a
document delivered via the Internet may require a slightly
different kind of layout to be more comfortably read on
the screen, and also the content might be slightly different
than in its paper counterpart. In many organizations, such
as FCP, document components such as the header and
footer are only required in the paper print versions of
documents. In addition, the header text components may
be saved in separate files and reused for multiple
documents at the advent of publication.

Reuse of repeating text portions concerns the reuse
of repeating portions of legal texts in our examples. At
FIT the legal texts for agendas and memos were
previously copied and pasted manually from one
document to another. In the novel XML publishing
system, the legal texts were collected into an XML text
database for reuse. At FCP the re-written legal texts were
stored into a relational database and accessed via the
Word plug-in.

Reuse from databases refers to the reuse of highly
structured text. Content can be imported from databases
or other external sources, as well as from other
documents. At FCP, the names and addresses of
document recipients were imported from an address
database, which was also plugged into the Word
document templates. At FCP, the imported names and
addresses already had a database structure due to which
the database delimiters had to be transformed into line
feeds or spaces when the texts were imported to a
document in the editing phase. The example illustrates
that one document type may have a number of content
sources and involve multiple types of content reuse.

4. Requirements for XML schema design
A schema is a formal model for an XML document

type. In XML schema design, analysis of the domain may
reveal connections and similarities that have not been

realized before between documents, such as the
requirements for reuse in the two case organizations.

4.1 Reuse types and their impact on schema
design

Document content reuse as a whole can be
supported by saving the schema components required in
multiple document types into one file, and defining the
document components which are needed for only one
document type as optional, whereas those that are needed
in all document types are defined as mandatory. This kind
of schema may be called an “interchange schema” [10].
At FIT only one schema was used to define both agenda
and memo document types; the schema components that
only belonged to the memo document type were grouped
into container elements and defined as optional in the
agenda/memo interchange schema.

Document component reuse for multi-channel
delivery may be supported through a similar approach:
by appending optional schema components to interchange
schema. Optional schema components may be grouped
into a container element that is used only for document
delivery via specific publishing media. For example, at
FCP, the footer of a document was necessary only in the
paper format; therefore the footer element may be defined
as an optional component in the interchange schema. The
interchange schema is independent from single document
types and may be efficiently reused by several document
types. This makes schema versioning and maintenance
easier, but poses a multitude of requirements for
document processing to prevent erroneous content. For
example, if the authoring software is capable of hiding
the footer part of a document when necessary, the author
cannot add text into it accidentally, even though the
schema would allow it.

Reuse of repeating text portions in our classification
concerned the reuse of pieces of legal texts that were
imported into documents. At least one container element
has to be added into a schema to hold a position to the
imported text portions. At FIT, the legal texts for agenda
items were imported from external XML document.

Sometimes the reusable content component contains a
structure itself, such as XML markup or database
delimiters. This is an example of reuse from databases.
Instead of importing some unstructured text into an
element, a group of elements may be imported into the
content reuse process. For schema design, this exhorts
the use of namespace declarations for avoiding possible
collisions in element names. For avoiding the collisions
both documents and schema components must be
analyzed. Also the host application for reuse has to have
means for import operability.

The four reuse types form the basis for two schema
design strategies. The first strategy is to design
interchange schema to cover multiple XML document
types. This schema may have optional components for

different document types and publishing purposes. The
second strategy is to assemble a schema file from a
collection of schema components either manually or
dynamically. Assembly may also be carried out by using
<import> declarations in the “host” schema file. Each
organization chooses its own strategy based on the
existing content and the needs they have.

4.2 XML document production
Schemas for XML documents must meet the

requirements set by both human consumption and
software for document authoring. Glushko and McGrath
[20] even perceive documents as interfaces. This means
that an XML is not merely a data exchange mechanism.

Software selected for document authoring may bring
about significant limitations and requirements for XML
schemas. In the case of FIT, Microsoft InfoPath was
selected as the software for XML document authoring.
Each element defined in the agenda/memo schema had a
corresponding control in the InfoPath form template. The
most common control was a text box in which the users
would type and edit texts to be stored in an element.

At FIT, the InfoPath software interface with its form
controls required several changes to the schema used for
agendas and memos. For example, the InfoPath template
did not provide a suitable control for presenting tabular
layout structures required in the document layouts in a
convenient way for the end users. Another constraint
arose from text inline formatting requirements. In the first
version of the agenda/memo schema, the text-paragraph
sections were defined by only one element which was tied
into a text box control in the InfoPath form. Therefore,
the end users could only define a bold or italic font face
to the text paragraph as a whole. The inline formatting
could have been supported by using a Rich text control in
InfoPath, but this control required for the text paragraphs
to be defined as an HTML text portion in the schema. The
optional element group used in the schema allowed one
paragraph of text to contain a text-paragraph, a list or a
table. It had to be linked to the “Optional Choice Group”
control in the InfoPath form. However, using the Optional
Choice Group control made the form look confusing and
messy from the end users’ perspective, and therefore the
schema had to be re-designed.

At FCP, document type templates utilized in Word
carried out a number of tasks related to content reuse. The
plug-in applications for importing content from the
address and the legal text databases were implemented as
a document type template which also acted as a container
for model texts. The plug-in facilitated content reuse but,
at the same time, required that the plug-in application be
updated by tailoring the template code each time the FCP
renewed its version of Word.

When people use XML documents, the XML schema
design principles for the data exchange do not apply.
Human consumption and the software used set new kinds

of requirements for the schemas. The examples show that
layout features and the host/authoring software for
document production, as well as content reuse have to be
considered in schema design.

5. Discussion and conclusion
As the majority of organizational content is stored in

documents, document content reuse is essential for
organizational work. XML supports content reuse by
providing a mechanism by which content components
may be marked up for automated reuse. Even though
many scholars, such as Boiko [19] and Rockley [1], have
emphasized document content reuse, there is a lack of
knowledge about which kind of content is reused in the
organizations and how.

Guerrieri [21] has defined four kinds of document
content reuse. These reuse types mainly concern
document reuse as a whole. This corresponds to the first
type of content reuse in our classification, “document
content reuse as a whole”. This paper proposed for reuse
to be considered more thoroughly and suggested three
additional kinds of document content reuse. The impacts
on schema design were also discussed.

Our classification of reuse types perceives both
document and schema reuse. Instead of defining one
schema for each XML document type, the schema
designer may use the interchange schema strategy or
compose a schema from several schema components.
Some of the schema components may be optional to serve
multi-channel publishing. Schema component design
requires that the document types, content reuse, and the
layout, as well as the software features be analyzed.
Therefore, schema design is a demanding and complex
task affected by the grain size of the components and
several domain-specific requirements as presented in
Figure 2.

Figure 2. Aspects of XML document production and
reuse

Software is used to support human comprehension of

documents; therefore the layout features and authoring
support for reuse must be considered. These may impact
schema use and, consequently, schema design as well. A
schema can be divided into several schema components
forming a library of small schema components or it may

be designed as an interchange schema for multiple
document types.

Experiences from the two case organizations allowed
the formulation of the four document content reuse types
introduced. All of them affect schema design and design
strategy selection, as well as the domain and software
used for document production. Unlike data-centric XML
files, XML documents are not a simple data exchange
mechanism, but also require for the layout and authoring
process to be taken into consideration.
If the amount of documents in an organization is great,
XML document implementation is not a simple task.
XML schema design must be carried out with care so that
relevant components and their interrelated connections
support effective reuse. There is a need for schema design
methods that support the identification and classification
of content components within documents and related
schemas for document types. Such a method should also
describe the process of identifying these components in a
domain. One potential avenue for future research is to
scrutinize and potentially adopt the Unified Content
Strategy [1] or the Document Engineering [20] method to
incorporate support for schema design strategies and
content reuse more thoroughly.

 Acknowledgements
This research would not have been possible without

an active collaboration with the Faculty of Information
Technology (FIT) at the University of Jyväskylä, Finland,
and the Finnish Centre for Pensions (FCP). We are
especially grateful to Mrs. Sanna Hirvola and Mrs. Eija
Ihanainen from FIT, and Mrs. Riitta Ahovaara, Mrs. Tarja
Gauriloff, Mr. Samuel Rinnetmäki and Mr. Jarkko
Nikulainen from FCP for their collaboration. Mr. Tuomo
Peltola from SYSOPENDIGIA, Plc gave his support to
the FIT XML development projects.

References
[1] A. Rockley, P. Kostur and S. Manning. “Managing

enterprise content: a unified content strategy”. Pearson
Education, 2002.

[2] R.H Sprague. “Electronic document management:
challenges and opportunities for information systems” MIS
Quarterly, Vol. 19(1), 1996, pp. 29-49.

[3] A. Salminen. “Document analysis methods”. In Bernie
C.L. (Ed.) Encyclopedia of Library and Information
Science, second edition, revised and expanded. New York,
Marcel Dekker, 2003, pp. 916-927.

[4] A. Honkaranta. “From genres to content analysis.
Experiences from four case organizations.” University of
Jyväskylä, 2003.

[5] Bray, T., et al., Extensible Markup Language (XML) 1.1
(2nd ed.). W3C Recommendation 16 Aug 2006. 2006,
W3C Consortium. Retrieved from: http://www.w3.org/TR/
2006/REC-xml11-20060816/. [2006 1 Sept.]

[6] ebXML, ebXML Consortium. 2005, OASIS (Organization
for the Advancement of Structured Information Standards).
Retrieved from: http://www.ebxml.org. [2005 10 June]

[7] RosettaNet, RosettaNet. 2005, RosettaNet Consortium.
Retrieved from: http://www.rosettanet.org/RosettaNet/
Public/PublicHomePage. [2005 10 June]

[8] R. Chrinnici, et al., Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language. W3C
Working Draft 3Aug. 2005. 2005, W3C; World Wide Web
Consortium. Retrieved from: http://www.w3.org/TR/2005/
WD-wsdl20-20050803/. [2005 10 Nov.]

[9] D. Linthicum D., Enterprise Application Integration. 2000,
Reading, Massachusetts: Addison-Wesley Longman, Inc.

[10] E. Maler and J. El Andaloussi. “Developing SGML DTDs.
From text to markup.” Prentice Hall, New Jersey, 1996.

[11] Fallside D.C & Walmsley P. (2004) XML Schema Part 0:
Primer Second EditionW3C Recommendation 28 October
2004. W3C Consortium. Retrieved from
http://www.w3.org/TR/ xmlschema-0/ [12.4.2006]

[12] OpenOffice Org., Open Office Organization Home Page.
2006, OpenOffice Org., Retrieved from:
http://www.openoffice.org/ [2006 20 July]

[13] Open Document Alliance, Open Document Format
Alliance for ODF (ISO/IEC 26300:2006 standard for
Office documents). 2006. Retrieved from:
http://www.odfalliance.org/. [2007 15 Feb]

[14] ECMA-376. Office Open XML File Formats. 2006,
European Computer Manufacturers Associations. Retrieved
from: http://www.ecma-international.org/publications/
standards/Ecma-376.htm. [15 Jan 2007]

[15] A. Honkaranta and P. Tyrväinen, Managing Converging
Content in Organizations (in print), in Encyclopedia of
Information Science and Technology., M. Khosrowpour
(ed.). 2008, Idea Group Publishing, Inc.: Hershey.

[16] R. Evernden and E. Evernden. "Third-generation
information architecture". Commun. ACM, 2003. 46(3): p.
95-98.

[17] S. Fowell. “Bridging the Gap between Information
Resource Design and Enterprise Content Management”,
Lecture Notes In CS; Vol. 2555, 2002, pp. 507-515.

[18] P.R. Polsani, "Use and Abuse of Reusable Learning
Objects". Journal of Digital Information, 2003. 3(4): p. 10.

[19] B. Boiko, Content Management Bible. 2002, New York,
U.S.A: Hungry Minds, Inc. 924

[20] R.J. Glushko and T. McGrath. “Document engineering.
Analyzing and designing documents for business
informatics & web services.” The MIT Press, Cambridge
Massachusetts, London, England, 2005.

[21] E. Guerrieri, “Software Document Reuse in XML,”
Proceeding of IEEE fifth International Conference on
Software reuse, 1998, pp. 246-254.

[22] A. Honkaranta, T. Peltola and A. Salminen. Challenges in
the Redesign of Content Management: A Case of FCP.
International Journal of Cases on Electronic Commerce,
Vol. 1(1), 2005, pp. 53-69.

III

XML DOCUMENT IMPLEMENTATION: EXPERIENCES FROM
THREE CASES.

by

Reija Nurmeksela, Eliisa Jauhiainen, Airi Salminen & Anne Honkaranta

In Youakim Badr, Richard Chbeir, Pit Pichappan (Eds.). Proceedings of the Second
International Conference on Digital Information Management. Los Alamitos, CA:

IEEE, 224-229.

Reproduced with permission.

XML Document Implementation: Experiences from Three Cases

Reija Nurmeksela Eliisa Jauhiainen Airi Salminen* Anne Honkaranta**
University of Jyväskylä, Department of Computer Science & Information Systems, Finland

* University of Toronto, Faculty of Information Studies, Canada
**SYSOPENDIGIA Plc, Finland

rekorhon|raelurja|airi.salminen@jyu.fi, anne.honkaranta@sysopendigia.com

Abstract

Implementing production of XML documents is a

rarely discussed topic in academic literature even
though it is an important issue in many
contemporary organizations. This paper describes
findings from three case organizations where
different kinds of XML documents were implemented.
Our findings suggest that the implementation is a
domain-specific task related to various kinds of
organizational activities from document authoring to
business processes. As expected, the amount and
complexity of document types as well as the number
of people and organizations involved affect the
challenges in the implementation process. Hiding the
XML format from the software users and training the
end users are important means to reduce the user
resistance against structured document authoring
and novel tools.

1. Introduction

A great deal of the information resources in
organizations consist of documents produced in
organizational business processes. Documents serve
a number of different purposes, for example, as tools
for supporting communication and decision making
and as recordings of business activities. Some
documents are information carriers meant primarily
for human readers, while some others are targeted for
software systems. Recently Extensible Markup
Language (XML) [1] has been adopted in many
organizations to support more systematic Enterprise
Content Management (ECM), i.e., the management
of information content in various kinds of assets like
documents, Web sites, intra- and extranets across the
organization and between parties involved in
business processes [2]. XML is a standard de facto
by W3C consortium. It is a metalanguage that
provides a way to exchange information between
software applications in standardized formats.

Adopting the standardized format for documents
by means of XML is motivated, for example, by the

needs for interoperability, data integration, improved
information access, and reuse of information content
[2, 3, 4, 5]. The XML standardization in an
organization refers to the adoption of XML standard
which includes agreeing upon rules for the ways
information is clustered and represented in
documents as well as those for content production
and management practices. The implementation of
standards hence requires both technical and also
organizational solutions, possibly including extensive
re-engineering of information systems and document
production practices (e.g. [3, 5]). ECM environments
of organizations are varying and thus the ways XML
is used in the environments, too. Therefore also the
efforts needed for implementing the XML documents
vary.

This paper describes and compares three XML
document implementation cases and focuses on the
changes in document production practices. The
research is conducted by using qualitative case study
method [6]. The case analysis is targeted on finding
answers to the following questions: What motivates
organizations in document standardization? How the
implementation process is realized in different kinds
of organizations? What kinds of changes the
implementation causes in the document production
practices?

 The paper is organized as follows. Section 2
describes the concepts related to the adoption of
XML in document production. Section 3 introduces
the three cases, all of which were realized in Finland.
The cases include one private sector and two public
sector organizations. In the first case the
implementation started by using the SGML (Standard
Generalized Markup Language [7]), the predecessor
to XML language, and the latter two cases were
realized using XML. Findings from the cases are
discussed in Section 4. Section 5 concludes the
paper.

2. Production of XML documents

This section introduces the core concepts related
XML documents, the various ways XML documents
are produced in organizations, and a model for XML
standardization process. The model will be used as
an analysis tool to describe the three cases in Section
3.

2.1. Characteristics of XML documents and
their use

SGML and XML documents are structured
documents where the structure definitions, document
instances, and layout specifications can be managed
as separate content items. The logical structure of an
XML document is hierarchical, the structure and
other constraints for document content are described
by an XML schema. In the document instance the
logical structure is indicated by markup which
follows the schema rules. The layout specification is
typically defined with a stylesheet.

XML documents are often divided into data-
centric and document-centric (see e.g. [8]) ones,
based on their purpose and type of use. Document-
centric XML documents are designed primarily for
human understanding, and the content of these
documents usually consists of natural language.
Data-centric XML documents are primarily designed
for software processing and data exchange. They are
typically shorter than document-centric ones and
without layout specifications. XML documents in
both categories may serve as recordings of business
activities. An alternative categorization for XML use
is proposed by [2], dividing XML into two
categories: use as information assets and use as data
interchange format. In the first case the XML use
results a persistent XML repository. The information
assets are further divided into documents and
metadata.

2.2. XML document production

XML documents may be produced in a number of
ways [9]; by human actors or by software systems.
Human authoring may be supported by multiple
ways, such as described in the following.

Using document templates with styles that may
be mapped to XML document schema by a software
application which post-processes the document after
the human authoring. For example, a Word .dot
document template may have styles “title” and
“bodytext”. The author marks the text up by using
these styles in Word. A markup application takes the
document as input and maps the style definitions into
schema elements to produce an output XML

document.
Using a generic, schema or syntax directed

XML editor such as Altova XMLSpy. This editor
allows the document to be produced as valid or well-
formed XML. The author types the text into table
view in which each cell is a placeholder for an
element content, or author types the text in between
the element start and end tags directly. The editor
may show the schema structure and provide hints of
the elements that may be added into the document
with regard to the current position in XML document
type schema structure.

Using a generic word processor with XML
support. For example Microsoft Word 2007 and
OpenOffice 2.0 support XML. Word 2007 allows a
form of schema-directed editing by using content
controls and element markers into which element
content may be typed into. Open Office 2.0 Writer
uses Open Document Format, which allows content
to be typed in a WYSIWYG-interface with styles to
produce an XML document which conforms to Open
Document Schema, and may be transformed to
another XML document markup language such as
Docbook or XHTML.

Using a custom-designed interface developed
for a certain document type separately. One may
for example define one .edd-template for each
document type schema for FrameMaker+XML,
develope a tailored form according to one’s schema
in Microsoft InfoPath (2003 or 2007), utilize
InfoPath forms and Microsoft Forms Server and
transform the InfoPath forms into Web forms, or
utilise Altova’s StyleVision to define a Web form for
each document type schema separately for document
authoring. Some of the aforementioned solutions may
be mapped with specific content controls and sources
to facilitate content retrieval and reuse from external
sources, such as databases or Web Service-interfaced
content sources on the Web. Such functionality is
provided by Altova XML Spy, Microsoft Word
2007, Microsoft Infopath and Web Forms
transformed from them, for example.

In all of the cases above the document schema sets
constraints to the authoring, and the author must be
more or less familiar with the schema for the
document type. In traditional document authoring the
document content is strictly tied to the external
presentation visible to the author. The authors may
find the schema-guided authoring too restrictive and
feel uneasy about the separation between the logical
structure and layout [10]. Therefore new solutions for
XML editing have been developed (e.g. [11, 12]).

2.3. Standardization process

XML document implementation in an organization
results from an XML standardization process. For
our case analyses we use the standardization model
depicted in Figure 1. The model has been adapted
from [13]. The circles represent process phases and
the arrows show the order for starting the activities.
The small black circle indicates that all of the
following three activities may be started either in
parallel or in any order.

Analysis

Work process
design

Schema and layout
design

System
design

Implementation

Evaluation
and training

Figure 1. The XML standardization process.

The process starts with an analysis phase

producing descriptions of the actors, business
processes, systems, and documents of the domain as
well as a requirements analysis report. The users of
the future solutions may be involved in the process
from the analysis phase.

The design of the new solutions usually requires a
schema and layout design, carried out in parallel
with systems design and possibly with work process
design. The schema design is accompanied by layout
design for facilitating the representation of
documents to human authors and readers (e.g. [3, 5]).
The system design may include, for example,
selection of XML software products, their
customization, and designing transformations
between different data formats. Collaboration with
the future document authors during the design
facilitates reactivity to the anticipated problems in
the schema design and systems customization [3, 5,
10].

The implementation of the new XML-based
solution requires both technical and organizational
implementation of the new solutions, possibly
including major changes in document processing, as
pointed out in previously reported cases (e.g. [3, 5, 9,

10]).
Evaluation and training is an important phase for

successful adoption of new solutions. Evaluation may
lead to further redesign. For example, XML schema
design is not completed until schemas have been
used by end users [5, 10]. After some time of
operational use, standardization may continue by
iterating the process.

The type of standardization domain most
obviously affects the extent and challenges of the
standardization process and the implementation of
document production. Following section describes
the three cases and compares them.

3. XML document implementation in the
cases

In each of the cases the activities in the
organizations have been supported by one or two of
the authors of the paper. Most of the data were
originally collected by participating in the
standardization activities, interviewing people
involved, and analyzing documents and schemas.

Case 1 concerned standardization of 35
parliamentary document types in the Finnish
Parliament and 13 ministries. One of the authors was
involved in the analysis and evaluation phases of the
case. The description of the case is based on data
analyzed and reported earlier in [3], which was
updated by interviews and schema analysis for the
paper. Case 2 concerned agendas and
memorandums of the Faculty of Information
Technology in the University of Jyväskylä, in which
two of the authors were involved throughout the
standardization process. Case 3 concerned
standardization of invoice documents in an
international ICT service provider and its customers.
One of the authors participated in the design and
implementation phases of this case. Table 1
summarizes the cases and their characteristics.

The Finnish Parliament and Government (Case 1)
decrees governmental and administrative matters
with the President of the Republic. Standardization
activities took place during 1994-2007. The
standardization was motivated by incompatibilities
of systems, inconsistencies in representations,
heterogeneity in retrieval techniques, and uncertainty
of the future usability of archived digital documents.
In 1994 XML was not yet published. At the end of
the analysis phase SGML was chosen as the basis for
standardization and preliminary schemas were
designed. Redesign and implementation projects took
place 1998-2001. Iteration of the standardization for
replacing SGML and style-based authoring with
XML was started in 2004 and is still going on.

Table 1. XML standardization in the three cases.

Case 1: Finnish Parliament and
Government, 1994-2007

Case 2: Faculty of Information
Technology in the University of

Jyväskylä, 2004-2006

Case 3: An international ICT

provider company and its customers,
2000-2007

Analysis The initial analysis phase
during 1994-1998, including
extensive data gathering.
The analysis concerned the
Parliamentary documents,
people involved and the tools
used in the document
production. New analysis in the
Government during 2004-2006
for adopting XML.

Fall 2004, including interviews
and studying existing documents.
The analysis was carried out by a
student group. The analysis
concerned the people involved in
document production, the two
document types and the tools used
in document production.
The analysis was iterated in
department of the faculty 2006.

2000-2002 by the ICT provider.
The core group consisted of project
managers with support of technical
consultants. The analysis
concerned different invoice types
as well as people, organizations
and systems involved in invoicing
activities. Interchange message
standard for invoice was modeled.
Iteration of the analysis four times
during 2003-2007.

20 preliminary SGML schemas
were designed by researchers
and selected companies
designed the final SGML/XML
schemas and layouts.

Schemas for agendas and
memorandums were designed.
Strict requirements for layout.

The selected subcontractor and
later on the system analysts of the
provider developed schema and
layout for the invoice. Strict
requirements for layout.

Work processes were
redesigned.

Existing work processes were
supported by the adaptation of the
system.

Work processes were not
redesigned.

Design
Schema
and layout

Work
process

Systems

Adobe Framemaker +SGML
was selected as the authoring
tool at the Parliament,
Microsoft Word in the
Government.

Microsoft InfoPath replaced Word
as document authoring software.

Invoicing system produced XML
documents. Significant changes in
invoicing, purchase ledger and
workflow systems in the first
standardization process.

Implemen-
tation

During 1998-2000 in the
Parliament and 2000-2001 in
the Government. Transfer to
SGML production in the
Parliament, use of a word
processor with style editor in
the Government.

XML-based document production
was implemented in 2005. The
department version of the system
was implemented in 2006.

Provider implemented
incrementally exchange service for
invoices during 2000-2007.
Parallel related systems were
implemented. Implementations in
the customer organizations 2001-
2007.

Evaluation
and
Training

Gradual improvements on the
systems. Training offered to
people whose work changed.

Office personnel were trained
briefly before they started using the
novel XML application.

Training offered to users and
developers of the invoicing,
purchase ledger and workflow
systems.

Major challenges on the implementation have
been in co-operation between different organizations,
large amount of document types and instances, strict
usability requirements, and user resistance. As a
result, quality of documents has been improved.
Standardization had affected both in and out of the
organizations involved.

The initial project for the XML implementation in
the University of Jyväskylä was carried out during
2004-2005. The standardization efforts were
motivated by the need to improve content reuse and
enhance the laborious document preparation and
publishing process. Major challenges on the
implementation were caused by the limited
timetable and the lack of XML competence on the
project group. As a result, quality of documents i.e.
the consistency on the content and layout was
improved and document publishing as well as content
reuse were enhanced. The project was followed by

another standardization project at a department of the
faculty in 2006. This time the implementation was
smooth and easy, since the solution developed in the
faculty was tested and successfully implemented
before the decision for its adaptation in the
department was done.

Case 3 considered XML implementation for
invoice documents in an international ICT service
provider company and its customers. The
standardization efforts were motivated by the
need to improve data integrity between invoicing and
purchase ledger systems in small and medium
enterprises (SME), speed up the handling of invoices,
and to reduce the costs. The case was started in 2000
and a new XML-based solution was implemented for
the first customers in 2001. The implementation of a
new version of invoicing system for the first
customer organization took a few days. During 2003-
2007 the standardization process was iterated four

times, because of the need for new schema versions.
Major challenges on the implementation have
been caused by the large amount of document
instances, disagreement of identification standards
with different business partners, and importance of
layout. As a result, quality of invoice data has been
improved and the invoicing process streamlined.

4. Evaluation

The motivation for SGML/XML implementation
and standardization varied from case to case. In Case
1, standardization was activated by inconsistencies in
content management, incompatibilities of tools, and
uncertainty of the future usability of archived digital
documents. In Case 2, requirements for content reuse
and difficulties in document publishing were the
main motivations. In Case 3, automation of invoice
processing in SMEs was the key motivator.

The SGML/XML implementation in the three
cases has major differences. Case 1 was clearly the
most challenging. It started at the time before XML,
the experiences about the use of SGML in public
domain were limited, the SGML tools were
expensive, and there were not many choices for the
tools. Compared to the other cases, the number of
document types and document instances was much
bigger, as well as the number of people affected by
the standardization. The documents in question were
nationally very important and the standardization was
expected to have many impacts both in the work
environment and in the society as a whole. These
expected impacts most probably gave extra
motivation to the persons involved. Wide impacts
have also been realized as reported in [3].

In Cases 1 and 2 the XML documents were
targeted for human consumption due to which the
document layout design was an essential part of the
standardization process. The analyses conducted in
the cases focused on similar aspects; documents and
tools used as well as people involved in document
production were analyzed. In Case 3, the document
type to be standardized (the invoice) had both
document- and data-centric characteristics. Thus the
analysis was focused on the data stored in the
accounting systems and the organizations involved in
the invoicing process, instead of people as end users
of the system. In all cases the layout requirements
had a significant impact on the schema design.

In Case 1 the document schemas were designed
incrementally within years. In Cases 2 and 3 the
document schemas were designed within a few
months. In each of the cases the schema design was
an iterative process. The tools utilized for content
reuse in Case 2, and the data integration requirements

between systems in Cases 1 and 3 had effects on the
schema design. In all cases usability requirements
had an impact to schemas [e.g. 10]. For example, in
Case 2 significant requirements and limitations came
from the authoring tool, which provided the visual
layout for authors. The layout had to support the
functions and easy to use. Therefore schemas were
modified several times before the implementation. In
Cases 1 and 2 the changes in the schemas reflected
further in the authoring tools.

In each of the cases new formats were
implemented to support multi-channel publishing.
Changes in work practices vary between the cases. In
Case 1, the standardization changed significantly
work tasks of different groups of people including
new publishing practices. In Case 2, work practices
remained in essence the same, only the authoring tool
changed. Furthermore, because the process of
preparing agendas and memorandums was similar in
the Faculty of Information Technology and in
another faculty, the same XML-based system was
soon implemented in the other faculty as well. Only
minor refinements in the XML schemas were needed
and the change of the document authoring software
was not resisted due to the awareness of the user
satisfaction gained by the novel system and due to
the fact that the benefits were already manifested by
the neighboring faculty. Easy and simple launching
of new systems based on the same content is also
reported in [5].

In Case 3, the redesign of work was also avoided.
Only the new functionalities of the new versions of
the invoicing, purchase ledger and workflow systems
were introduced, together with the new invoice
exchange service. As in Case 2, the same versions of
the systems were quickly implemented in many other
organizations, because the invoicing process is
similar and also the same systems are used in those
organizations.

The case comparison reveals that if the business
process and document types involved in it are long
and complex, and the amount of documents is large,
as in Case 1, the standardization is a time-consuming
and complex task. Some of the complexity in the case
was caused by the large number of actors involved.
This was also observed in Case 3 where negotiating
the agreement of identification standards between
several organizations was one of the main challenges.
Similar findings are reported e.g. in [4].

If there is a great number of document authors
involved, a major emphasis has to be given to the
usability of authoring tools. The usability
requirements were a significant challenge in Case 1,
because the authors had to learn new ways for
authoring, guided by logical structure of documents.

Minimizing user resistance required some efforts. In
Case 2, usability remained important, but building
XML support the authoring tools helped the
implementation. The form-based user-interface hided
the logical structures from the authors. In Case 3 the
logical document structures were hidden from the
users by generating XML documents automatically
from databases.

If the production of XML documents can be
embedded in existing systems and processes within
organizations, the need to change work practices
decreases as in Cases 2 and 3. In Case 1, the
authoring tool was new and cumbersome to use.
Another major challenge was the adoption of the
novel publishing tasks. Thus implementation in Case
1 was more challenging than in Cases 2 and 3 where
corresponding changes did not occur.

5. Conclusion

The paper described three cases where the goal

was to improve enterprise content management by
the adoption of SGML/XML. Consistency in content
management practices, automation of business
processes, and more effective content reuse were
important motivators of the adoption but the
emphasis of the goals clearly differed in the cases.

The findings suggest that XML document
implementation is domain-specific task that requires
co-operation of people and organizations. Cases 2
and 3 show that it is possible to produce XML
schemas and embed XML-based production into
software and thereby lower the end-user resistance.If
the benefits of the XML document production have
been earlier demonstrated, the adoption of a novel
system may be quite fast and fluent, as demonstrated
in Cases 2 and 3. The XML standardization model by
[13] was successfully utilized as the framework for
analyzing the three cases. The framework may
therefore be utilized as an analytic tool both for XML
standardization development and for case research.

Our study focused only on document-like content
of the ECM environment [2] and neglected the use of
XML for metadata. Metadata standardization and
implementation for XML document production is a
possible avenue for further research, as well as the
comparison of the findings with other studies.

6. Acknowledgments

The research was facilitated by the active
cooperation and support of a great number of experts
in the Finnish Parliament and Government, Faculty
of Information Technology in University of
Jyväskylä, and the international ICT service provider

compary of Case 3. The authors are grateful to all of
them. Two anonymous reviewers provided invaluable
comments for improving the paper.

7. References

[1] Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler,
E., Yergeau, F., and Cowan, J. 2006. Extensible Markup
Language (XML) 1.1. (2nd Edition) W3C
Recommendation, W3C Consortium.
http://www.w3.org/TR/xml11/ [February 8, 2007]
[2] Salminen, A. 2005. “Building digital government by
XML”. In R. Sprague, Jr. (Ed.). Proceedings of the Thirty-
Eighth Hawaii International Conference on System
Sciences. Los Alamitos, CA: IEEE Computer Society,
122b- 122b.
[3] Salminen, A., Lyytikäinen, V., Tiitinen, P., &
Mustajärvi, O. (2004). ”Implementing digital government
in the Finnish Parliament”. In W. Huang, K. Siau, & K.K.
Wei (Eds.), Digital Government: Strategies and
Implementation (pp. 242-259). Hersley, PA: IDEA Group
Publishing.
[4] Nurmilaakso, J.-M., Kettunen, J. and Seilonen, I. 2002.
“XML-based supply chain integration: a case study.”
Integrated Manufacturing Systems 13 (8), 586-595.
[5] Weitzman, L., Dean, S., Meliksetian, D., Gupta, K.,
Zhou, N., and Wu, J. 2002. “Transforming the content
management process at IBM.com“, Case studies of the
CHI2002/AIGA Experience Design Forum, ACM Press,
New York, 1-15.
[6] Yin R. 1994. Case Study Research: Design and
Method, Sage, Beverley Hills.
[7] Goldfarb, C. F. 1991. The SGML Handbook. Oxford,
Oxford University Press.
[8] Smith, H., and McKeen, J. 2003. “Developments in
practice viii: enterprise content management”.
Communications of AIS 11 (33), 1-26.
[9] Braa, K and Sandahl, T. 1998. “Approaches to
standardization of documents”. In Wakayama et al. (eds.)
Information and process integration in enterprises:
rethinking documents, Kluwer Academic Publishers,
Cambridge, Massachusetts, 125-143.
[10] Sandahl, T., and Jenssen, A. 1997. “The First Steps
in Designing an SGML-Based Infrastructure for Document
Handling”. Scandinavian Journal of Information Systems,
1997, 9(2), 25–44.
[11] Müller, U., & Klatt, M. 2005. SCOPE – An XML
Based Publishing Platform. In Proceedings of the 8th
International Symposium on Electronic Thesis and
Dissertations.
[12] Sefton, P. 2007. An Integrated Approach to
Preparing, Publishing, Presenting, and Preserving Thesis.
In Proceedings of the 10th International Symposium on
Electronic Thesis and Dissertations.
[13] Salminen, A., Lyytikäinen, V., and Tiitinen, P. 2000.
“Putting documents into their work context in document
analysis”. Information Processing & Management 36 (4),
623-641.

IV

A LIFE CYCLE MODEL OF XML DOCUMENTS

by

Airi Salminen, Reija Nurmeksela & Eliisa Jauhiainen

Accepted to the Journal of the American Society for Information Science and Tech-
nology (JASIST). October 2, 2013.

A Life Cycle Model of XML Documents

Airi Salminen*
Department of Computer Science and Information Systems
University of Jyväskylä, FI-40014
P.O. Box 35 (Agora)
Jyväskylä, Finland
phone: +358 50 518 6284
fax: +358 14 260 3011
email: airi.salminen@jyu.fi

Reija Nurmeksela
Tieto Finland Oy
Mattilanniemi 6, P.O. Box 163
FI-40101 Jyväskylä, Finland
phone: +358 20 7257618
fax: +358 20 5496955
email: reija.nurmeksela@tieto.com

Eliisa Jauhiainen
Department of Computer Science and Information Systems
University of Jyväskylä, FI-40014
P.O. Box 35 (Agora)
Jyväskylä, Finland
phone: +358 40 8053094
fax: +358 14 260 3011
email: eliisa.jauhiainen@jyu.fi

* corresponding author

 1

A Life Cycle Model of XML Documents

Electronic documents produced in business processes are valuable information

resources for organizations. In many cases they have to be accessible long after the

life of the business processes or information systems where they have been created.

To improve the management and preservation of documents, organizations are

deploying the Extensible Markup Language (XML) as a standardized format for the

documents. The goal of the paper is to increase understanding of XML document

management and provide a framework to enable the analysis and description of the

management of XML documents through their life. We have followed the design

science approach. We introduce a document life cycle model consisting of five

phases. For each of the phases we describe the typical activities related to the

management of XML documents. Furthermore, we also identify the typical actors,

systems, and types of content items concerned in the activities of the phases. We

demonstrate the use of the model in two case studies: one concerning the State

Budget Proposal of the Finnish Government and the other concerning the Faculty

Council Meeting Agenda at a university.

Introduction

A great deal of the information resources in organizations consists of documents

produced in business processes. Documents serve a number of different purposes, for

example, as tools for communication and decision-making. They also serve as recordings

of business activities and have to live, in many environments, through generations of

 2

technologies, systems, users, and surrounding organizations (e.g., Volonino, Sipior, &

Ward, 2007; Borglund, 2008). Today Extensible Markup Language (XML) has become

the lingua franca of the data interchange on the Internet and its use is becoming

increasingly widespread also for representing documents produced in business processes.

In some organizations XML is adopted simply as a document format of an office

application. Standard XML-based, open formats for office documents are ODF

(OpenDocument Format for Office Applications, ISO/IEC 26300:2006) and OOXML

(Office Open XML File Formats, ISO/IEC 29500-1:2008). Today many public domain

organizations have published policies to support or enforce the use of open document

formats. Examples of them are the government of Norway (Ministry of Government

Administration, Reform and Church Affairs, 2007) and the state government of

Massachusetts in the United States (Shah, Kesa, & Kennis, 2008). An important

motivation for the adoption of open file formats is to achieve vendor-independency as

stated by Cerri and Fuggetta (2007):

The technology supplier cannot claim any right on the customers’ data and infor-

mation or impose limitations and constraints on their manipulation. The customer must

have the true possibility to switch to another supplier and to access its own

information without being anyhow limited. (p. 1936)

Especially in public sector open standards are also an important means to release data as

machine readable open data to support transparency and data sharing (see e.g. Peled,

2011).

When using an XML-based format of an office application document instances are

encoded as marked-up text where the markup shows the structures identified by the office

 3

application (like titles, paragraphs, and lists). This is not always sufficient: there may be a

need to define a domain-specific markup language to incorporate semantic information in

document markup. The definition capabilities related to XML are available for the

purpose. Semantic markup provides several possibilies, including improved accessibility,

reusability, and information integration (e.g., Bernstein & Haas, 2008; Salminen &

Tompa, 2011). An open file format together with semantic markup has also been seen as

a way to improve the persistence of information through time (Brooks, 2001).

Since the publication of XML as a W3C (World Wide Web Consortium) standard in

1998, the development and research related to XML has been extremely active. In Google

Scholar the search term XML provides over 2,000,000 results. A great deal of the

practical development concerns software development and development of XML-based

standards for particular application domains. The emphasis in the academic research has

been in the technologies used for processing and retrieving XML data. Research

considering the management of XML documents over their life, including the life after

the active processing and use of documents, is rare. This concerns document management

research also more generally. Respectively, in the information management of

organizations there often seems to be a gap between the active and passive life of

documents (Barker, Cobb, & Karcher, 2009). Our goal in the paper is to provide a model

to enable the analysis and description of XML document management over the whole life

of documents. Another goal of the paper is to increase understanding of XML document

management in organizations.

Our research approach is design science. Design science has been widely used in

many research disciplines, especially in engineering and computer science but also in

 4

information science and information systems. Design science attempts to create artifacts

that serve human purposes (March & Smith, 1995). March and Smith (1995) have

divided the artifacts into four kinds: constructs, models, methods, and instantiations. In

our case the developed artifact is the life cycle model of XML documents. We

demonstrate the use of the model in two different cases: one concerning the State Budget

Proposal of the Finnish Government and the other concerning the Faculty Council

Meeting Agenda in a university faculty. The case descriptions can also be seen as

expository instantiations used to test and help explaining the model (Gregor & Jones,

2007).

Peffers, Tuunanen, Rothenberger, and Chatterjee (2008) have derived from a number

of prior design science methodologies (e.g. Nunamaker, Chen, & Purdin, 1990; Hevner,

March, & Park, 2004; Gregor & Jones, 2007) a nominal sequence of six steps in design

science research (DSR) process: (1) problem identification and motivation, (2) defining

the objectives for a solution, (3) design and development of the artifact, (4)

demonstration, (5) evaluation, and finally (6) communication. The steps also provide a

template for the structure of research outputs. Figure 1 depicts how we have used the

process to structure the paper. The figure also shows techniques that we have adopted for

the research. Outputs of the communication phase are provided in the paper.

 5

 FIG. 1. The design science research steps of the study.

In our case, the design of the new artifact continues the earlier RASKE method-

ology development. RASKE methods and use cases have been communicated to re-

searchers in scientific articles (e.g. Järvenpää, Virtanen, & Salminen, 2006; Salminen,

Kauppinen, & Lehtovaara, 1997; Salminen, Lyytikäinen, & Tiitinen, 2000; Salminen,

2005; Salminen, Nurmeksela, Lehtinen, Lyytikäinen, Mustajärvi, 2008; Salminen, 2010;

Tiitinen, Lyytikäinen, Päivärinta, & Salminen, 2000) and to practitioners in project

reports, seminars and workshops. Before introducing the life cycle model we discuss the

concepts and methodologies related to XML document management.

XML Document Management

This section provides the background intended to support understanding of the life

cycle model and related case examples later in the paper. We first introduce the main

concepts of XML document management. Then we briefly describe and compare

 6

methods that have been proposed for the analysis and description of XML document

management. Finally we introduce the core components of an XML document

management environment.

The term document management is used to refer to the creation, storage,

organization, transmission, retrieval, manipulation, update, and eventual disposition of

documents in organizational context, to fulfill organizational purposes (Sprague, 1995).

XML document management refers to the management of documents in XML format.

XML documents are structured documents where a document instance is described as a

hierarchic structure of named parts (Bray, Paoli, & Sperberg-McQueen, 1998). The parts

are explicitly indicated by systematic markup that enables applications to identify,

retrieve, and process those parts in a similar manner as data in databases.

Document management can be regarded as a special kind of enterprise content

management (ECM). Smith and McKeen (2003, p. 648) define the term as “the strategies,

tools, processes and skills an organization needs to manage all its information assets

(regardless of type) over their life cycle”. A term closely related to document manage-

ment is records management. In the records management standard 15489 (ISO 15489-1,

2001, p. 3), a record is defined as “information created, received, and maintained as

evidence and information by an organization or person, in pursuance of legal obligations

or in the transaction of business” and records management as “field of management

responsible for the efficient and systematic control of the creation, receipt, maintenance,

use and disposition of records, including processes for capturing and maintaining

evidence of and information about business activities and transactions in the form of

 7

records”. In contrast to document and content management systems that are primarily

intended to support on-going business processes involving editing or versioning of

content, records management systems are primarily intended to provide secure repository

of authentic records (DLM Forum Foundation, 2011). A record captured into a records

management system may consist of one or more documents (ISO 15489-1, 2001) or of

other kinds of components. In records management systems modifications of records are

prevented or strictly controlled whereas in content or document management systems

updates and versioning are typical operations.

Similarly to databases, the structure and other constraints for a class of XML

documents on a domain is described by a schema. The schema defines a markup language

for the domain. A great number of schemas have been defined for specific sectors or

application domains. For example, the earlier mentioned ODF and OOXML for office

applications, HL7 standards for the health sector (www.hl7.org), and the Universal

Business Language (UBL, www.oasis-open.org) for business documents. Organizations

sometimes adopt a pre-defined schema like ODF or OOXML as such for documents

produced in their processes. In other times they define their own schemas either from a

generic schema earlier developed by a standardization organization, for example, from

HL7 or UBL, or from the very beginning.

The layout of XML documents on an output medium is usually defined by means of

style sheets. This enables the separation of structure, layout, and content of a document

from each other, and processing each of them separately (see Figure 2). There are

different schema languages available to define the structure and different style sheet

languages to define the layout. The figure lists three of the available schema languages

 8

and two of the available style sheet languages. From the schema languages DTD

(Document Type Definition) is defined in the XML specification. The style sheet

languages CSS and XSL, as well as the schema language XML Schema, have been

developed and published by W3C. RELAX NG is the schema language developed by

Clark and Murata through OASIS (Advancing open standards for the information society;

Clark & Murata, 2001).

 FIG. 2. Three facets of an XML document.

From the point of view of XML document management it is important to realize that

XML documents actually have two structures at the same time: logical structure and

physical structure. The core components of the logical structure are elements indicated in

the marked-up document by tags of the form <...> and </...>. The physical structure

consists of storage units called entities. The entities of a document are either separate files

or named pieces of text reused in different places. The entities are connected to each

other by entity references. The management of XML documents requires the

management of both structures, logical and physical.

Systematic management of any kind of content items requires metadata. Metadata

may be related to collections of items or to individual items (Gilliland, 2008). In the first

case we use in this paper the term class metadata, in the latter instance metadata.

Instance metadata is often regarded as a surrogate of the instance like, for example, a

library record for a publication is a surrogate of the publication (Greenberg, 2010).

 9

Examples of class metadata in an XML document management environment are schemas

specifying the structural and other constraints for a class of documents, or ontologies

defining concepts and their relationships to be used, for example, for annotating

documents. In fact, also schemas define ontologies for the structural components of

documents. Instance metadata attached to an XML document might be described, for

example, by using Dublin Core (DC) standard (Dublin Core Metadata Initiative, 2010)

and embedded in documents or stored externally, possibly in XML format (Powell &

Johnston, 2003).

Methods and techniques from various information, information systems, and

business process analysis methodologies can be used to analyze and describe XML

document management. Since XML was derived by a number of restrictions from the

older meta markup language SGML (Standard Generalized Markup Language; Goldfarb,

1990), the methods originally developed for SGML are applicable also in XML environ-

ments. In the following we briefly describe and compare four widely published

methodologies that have been introduced and used to support the deployment of SGML

or XML documents: the DTD development methodology of Maler and El Andaloussi

(1996), the RASKE methodology (Salminen et al., 1997; Salminen et al., 2000; Tiitinen

et al., 2000; Salminen, 2010), the Unified Content Strategy (Rockley, Kostur, &

Manning, 2003), and the Document Engineering approach (Glushko & McGrath, 2005).

Each of the four methodologies has its own emphasis, adopting and adapting older

methods. The comparison of the methodologies is summarized in Table 1. In addition to

the four aforementioned methodologies, we have included in our comparison Dirks,

 10

guidelines for the management of digital records (State Records Authority of New South

Wales, 2007). In the following we briefly describe some characteristic features and core

concepts of each of the five methodologies.

 TABLE 1. Summary of the five methodologies.

 Primary application
domain

Types of
documents

Document format Modeling
concerns

Maler&ElAndaloussi publishing industry &
technical
documentation

narrative SGML document and
component
structures

RASKE electronic document
management in
organizations

narrative SGML/XML
recommended

organizational
environment,
business and
work processes,
roles, documents,
metadata

Unified Content
Strategy

content management
and multichannel
publishing

narrative XML
recommended

content life
cycles, element
structures, reuse,
documents,
workflows,
content
management
processes

Document
Engineering

automated business
processes

narrative/transacti
onal

XML
recommended

business
processes,
documents,
components

Dirks records management narrative/transacti
onal

various formats,
XML
recommended for
archival format

modeling is not
explicitly included
in the
methodology

The methodology of Maler and El Andaloussi (1996) has emphasis on the design of

SGML DTDs providing means for the DTD project management, document type needs

analysis, document type design, DTD development, validation, and documentation. The

tree structures of documents are modeled by elm diagrams. They have been widely

adopted and adapted in SGML/XML syntax-oriented editors and also in other

methodologies for describing SGML/XML structures.

The emphasis in the RASKE methodology is in the holistic analysis of a docu-

ment/content management environment. Documents, metadata, and other content items

 11

are considered in the organizational context of business processes. The RASKE

methodology includes methods for requirements analysis, modeling, and evaluation. It

has adopted and adapted some object-oriented modeling methods for process modeling,

document modeling, and role modeling. From the process models the most extensively

used in the methodology have been the input and output models showing the resources

used or produced in business processes. Document modeling is divided into object, state,

and content modeling.

The fundamental concept in the Unified Content Strategy is reuse. The main

purpose is to avoid content “silos” by effective content reuse. The implementation of the

strategy is divided into eight phases starting with analysis, design, and selecting tools and

technologies (e.g. XML). The analysis phase includes the analysis of content life cycle

processes but no particular process modeling technique is suggested. The most common

life cycle is considered to extend from creation to delivery; problems related to content

archival and retention are outside the scope of the methodology.

While the previous methodologies have been developed to support the management

of narrative documents that are primarily intended for human use and human

communication, the Document Engineering Approach provides concepts and methods to

design effective business transactions and Web services by means of documents, and in

particular, by means of XML documents. The central concept of model matrix is used as

a roadmap to advance from models at different levels of abstraction and granularity to

effective implementations of transactions. No modeling technique is inherently required

in the approach but the use of XML-encoded implementation models is emphasized.

Similarly to RASKE, documents are regarded as inputs and outputs of business

 12

processes. RASKE, however, considers process models as descriptive tools to support

human communication and understanding, not as prescriptive tools to enable automated

business processes. The problems related to document publishing, archival, and retention

are left outside the scope of Document Engineering.

Dirks methodology was especially designed for building good recordkeeping

systems into Australian Government agencies. In the methodology a recordkeeping

system may be a separate information system but often it is (or should be) embedded in a

business information system, in order to keep records of business transactions. The

methodology includes a great number of guidelines, for example, for capturing, storing,

and securing digital records, creating metadata about them, determining how long to keep

them, enabling business continuity also in disaster situations, preserving digital records

for long term, and finally disposing them. Dirks also defines a process of eight steps for

designing and implementing recordkeeping systems. In contrast to the previous four

methodologies, Dirks does not provide methods and techniques for analyzing and

designing documents. The use of open standards for records is introduced as a possible

design strategy and XML in particular as a possible archival format to which records are

converted and then packaged together with related metadata.

In this section we describe the components of an XML document management envi-

ronment using the concepts and models that we have earlier introduced in the RASKE

methodology. The main components of a document management environment can be di-

vided into activities and resources (see Figure 3). In the figure the activities are depicted

by the oval, resources by rectangles, and information flow between resources and

 13

activities by arrows. An activity is a set of actions performed by one or more actors in a

work process. An activity can be divided into smaller activities and described by means

of a process model and instantiated in a process case. The resources are of three types:

actors, systems, and content items. An actor is an organization, a person, or a software

agent. A system is a tool that is used to support the performance of activities. Various

kinds of systems are needed in computerized environments, including hardware,

software, networks, standards, and mandates. Mandates can be, for example, regulations

and legislation governing the document management of the domain. Content items are

documents and other units of stored data accessible as meaningful pieces of information

by means of systems. All resources are information repositories in which the information

produced in an activity can be stored or from which information can be taken and used in

an activity. Thus information is not stored only in documents and other content items but

also in the heads and experience of people, in the organizational culture, and in systems.

 FIG. 3. An XML document management environment.

 14

By analyzing documented cases (e.g. Aversano, Canfora, de Lucia, & Gallucci,

2002; Broberg, 2004; Sartor, Palmirani, Francesconi, & Biasiotti, 2011; Sohn, Ko, Lee,

Kim, Lim, & Choy, 2002) as well as using the information gathered by observations and

interviews from a number of XML deployment cases (e.g. Nurmeksela, Jauhiainen,

Salminen, & Honkaranta, 2007; Salminen et al., 2004), we have identified the typical

components in an XML document management environment. The activities may be

divided into three categories: development activities, business process activities, and

content management activities. Actors include organizations and experts needed in the

three kinds of activities.

The most typical content items accessible from the data repository of an XML

document management environment are XML documents, their schemas and style sheets.

The components of the physical structure of documents are stored as files or in a

database. The types of metadata resources vary: in some environments all instance

metadata associated with XML documents is embedded in documents and in their file

names, in others the instance metadata is stored externally, for example, as Dublin Core

metadata in self-contained XML files. In simplest cases the structural concepts expressed

in schemas are the only ontologies managed systematically as content items. Some

environments maintain term dictionaries, some others more complex ontologies. Also

these ontologies can be represented in XML format, for example, using the XML syntax

of RDF (Resource Description Framework). Information from the content items that are

stored in open formats should be accessible by several systems, not only by those

available in the environment at the time the items have been created.

 15

The systems needed in an XML document management environment include a great

number of standards besides XML, for example, XML Schema for schemas, XSLT for

transformations, HTML and XHTML for Web pages, and CSS for style sheets. In many

cases also sectoral standards like Open Document Format (ISO/IEC 26300, 2006) or

Office Open XML (ISO/IEC 29500, 2008) for office documents, or ebXML

(www.ebxml.org) standards for business documents are needed. In all organizations there

also are rules and regulations concerning the document management. Some of the rules

are produced internally, some of them are external rules expressed, for example, in the

legislation of the country or as best practices of the industry. Classification schemes are

needed for organizing content units. Also specification of access rights may require

classification schemes. Especially in the case of inter-organizational business processes,

the number of different software systems involved in a process case may be great,

including different authoring tools, transformation software, content or document

management systems, database systems, workflow systems, case management systems,

and records management systems.

XML Document Life Cycle

Since documents produced in a business process have to be accessible longer than

the life of the process, it is important to consider the special features of XML document

management from the point of view their own life, not only their role in the business

process. In this section we introduce a document life cycle model of five phases. We

describe the typical activities related to the management of XML documents in each

phase. Furthermore, we identify the typical actors, systems, and types of content items

 16

concerned in the activities of the phase. The model utilizes the concepts that we have

earlier introduced in the RASKE methods.

In Figure 4 we have used the RASKE process modeling technique to depict the

document life cycle activities. The major content units produced in the activities are

shown on the right. Conceptually the units are stored in a repository accessible by

different systems. In practice, however, a number of different repositories are often in use

and different software systems have access to different repositories during the process.

The activities in the figure are connected to each other with weak control flow meaning

that a control flow arrow (solid line) from an activity A to activity B indicates that

activity B starts after activity A has started. The modeling technique allows iteration and

parallel activities without showing them explicitly. For example, the design activities may

continue parallel with all other activities.

 FIG. 4. Activities of an XML document life cycle.

 17

The design activities produce the class metadata for the document repository, in-

cluding schemas for documents and metadata, style sheets, and ontologies. Also

preservation strategies and access control policies may be formally defined and stored as

content units. Content production activities produce the content units from which

documents are constructed. The content units are stored with related metadata. The

capture and dissemination activities refer to the capture of documents as records, making

them accessible for use by some system, and publishing the documents for use. The use

activities refer to the access of documents and information from documents. The

retention activities are intended to maintain the accessibility of documents and

information in them, as well as their integrity and authenticity as records. Retention also

includes the possible disposal of documents. Below each of the activities is described in

more detail, emphasizing the XML-related features in all of the phases.

The design includes the planning, implementation, and maintenance of the document

management solutions for the environment. The schema design lies in the core of the

design activities. Besides schemas, the design concerns the external layout of documents,

tools to be used (e.g. for document authoring, distribution, and exchange), business and

content management processes, responsibilities, the ways people and organizations use

documents to collaborate and communicate with each other, as well as the ways various

software systems communicate with each other. The design also concerns ontologies and

metadata to be associated with documents. All methods briefly introduced earlier are

applicable for the design activities. Additional methods or methodologies may be adopted

to support special design areas like enterprise architecture (Liu, Wang, & Quan, 2009),

 18

access control (Bertino & Ferrari, 2002; Bhatti, Ghafoor, Bertino, & Joshi, 2005; Bertino,

Ferrari, Paci, & Provenza, 2007; Kundu & Bertino, 2008), security (Bernard, 2007),

records management (DLM Forum Foundation, 2011), ontology (Noy & Hafner, 1997),

or digital preservation (Stanescu, 2005; Runadotter, Mörtberg, & Mirijamdotter, 2011).

A great number of various systems may be involved in the design, both as enablers

and constrainers. Operational software systems in use in the business processes often set

critical constraints to the design. The new solutions may be implemented as changes in

the old software or new software may be built or obtained. The design concerns all

phases of the document life cycle and therefore diverse expertise is needed in the design.

Design of XML document management solutions is a continuous process typically

including a great number of different tasks after the first implementations, for example,

the design of XML transformations for multiple-channel publishing and planning schema,

style sheet, or ontology updates. XML schemas evolve over time and this evolution

should be taken into account already in the original schema design (Genevès, Layaïda, &

Quint, 2011).

In content production the main purpose is to create, maintain, and store the content

units that are used as components in XML documents. In some environments the content

is entered directly to an XML document. At the content production stage content items

are regarded as editable data, be they XML documents, files in various formats, or data in

a database. Important information repositories for XML documents are databases that are

created and maintained in various operational systems. In some cases large amounts of

data are collected by migration from legacy content repositories, for example, from

 19

documents in pdf, SGML, HTML, or proprietary formats (e.g. Reuben, 2003). The

transformation into XML format is a semi-automated process where a human expert of

the content solves the problems that cannot be handled automatically.

The creation and editing of a content unit may be performed using any kind of

authoring system like, for example, an office system or a syntax-directed editor. In the

last case, the validity of the content against the schema is checked at the time of content

authoring. A workflow system designed especially for collaborative authoring of XML

documents may enable, for example, adding multiple digital signatures to the document

as fragment signatures (Brooke, Paige, & Power, 2010). In some cases the content units

are stored simply in a file system. A great number of more advanced systems are however

available. They can be roughly divided into three categories: content management

systems, XML-enabled database systems, and native XML database systems.

Characteristic features of these three kinds of systems have been described in (Salminen

& Tompa, 2011). Research on version management of XML data has produced a number

of articles during the last years (e.g. Mella, Ferrari, Bertino, & Koglin, 2006; Rönnau &

Borghoff, 2009; several articles published in the ACM Document Engineering

symposiums during 2005-2011).

At capture documents become under systematic records management. They are

associated with metadata that provides evidence of the creation of the records and enables

the access of the documents, information in them, understanding their content in the

context of their creation, and their retention. If the content of a record is not stored in the

form of an XML document at the time of content authoring, then the XML document is

 20

first assembled from units available in the content repository, validated, and then

captured. The ISO standard 15489 for records management defines the necessary

functions included in the capture of a record (ISO 15489-1, 2001; ISO 15489-2; 2001).

The capture may be implemented in the same content management system where the

content is produced. Alternatively the documents are registered and stored in a separate

system designed especially for records management.

There are various ways to capture documents as records in an XML document

management environment. One possibility is that the records management operations as

defined in records management standards concern only the publishing format of the XML

document, for example, pdf. In that case, however, the benefits of XML for

dissemination, use, and retention are missed. One of the benefits is that XML format

enables selective dissemination of document content, according to the stated access

control policies (Bertino & Ferrari, 2002). On the other hand, XML as an open standard

format is also suitable for the publication of documents as open data, available for

software processing in commercial services.

MoReq2010 (DLM Forum Foundation, 2011) specification is a de facto industry

standard for software systems that manage records. In the MoReq terminology, records

are organized in classes. A record consists of one or more components and is associated

with metadata, event history, and access control list. In case of XML documents,

documents of the same type might be organized as records in a class. The metadata

associated with a document of the class would include schema and style sheet

information. The components might consist of the external entities of the document. If

 21

different style sheets are in use for different documents of the class, then the style sheets

might be stored as components.

MoReq2010 defines for every record, independently of its format, an XML export

format. The export in the specified format is mandatory to all MoReq2010-compliant

systems. Content in non-XML data formats can be either embedded in the XML export

data format, or linked by an URI to the XML data.

The use of XML documents includes location, retrieval, presentation, interpretation,

and reuse of the data stored in documents and in the associated metadata. The data access

is performed either by human users or by software systems, inside or outside the context

where the content items and documents were created. In commercial enterprises the use

of documents is usually strictly controlled by access rights and tracking. Some of the

documents created in an organization can however be publicly accessible, as part of the

continuingly growing ecosystem of heterogeneous Web data. The use of documents often

involves the reuse of their parts in other documents.

A great number of methods to improve the retrieval effectiveness from XML

documents have been developed, as shown, for example, by the surveys of Liu,

McMahon, and Culley, (2008) and Luk, Leong, Dillon, Chan, Croft, and Allan (2002).

The retrieval may concern whole documents or their parts, or data is gathered from

several documents, or by integrating data from different data repositories (Pérez,

Berlanga, Aramburu, & Pedersen, 2008). In many situations the diversity of repositories

potentially containing useful data is great, including data both in XML and non-XML for-

mat, institutional repositories and open-access repositories, on local, regional, national, or

 22

international level. It is important that the user has capabilities to check the

trustworthiness of the data. The Online Computer Library Center and The Center for

Research Libraries have jointly developed and published criteria and checklist for the

audit and certification of trustworthy repositories (OCLC and CRL, 2007). No special

criteria are expressed for XML repositories but the checklist still provides a tool for

evaluation also for those repositories.

Retention includes activities for maintaining the usability, integrity, and authenticity

of documents. Usable documents can be located, retrieved, presented, and interpreted, in

spite of the possible changes in the technological and organizational environment.

Metadata plays a critical role in retention. The retention policies developed for corporate

document repositories must include rules concerning the length of retention. Unless the

retention has been defined permanent, the retention activities include disposal according

to the disposal schedule.

In XML document management environments there often is a need to change

XML schemas. The documents conforming to the old schemas and stored in the doc-

ument archive do not necessarily conform to the new schemas without changes. In these

situations maintaining the accessibility of information possibly requires the

transformation of old documents so that they conform to the new schemas and preserve

information. Methods for transformations needed by schema evolution have been

developed earlier for databases and later for XML documents (e.g. Kwietniewski, Gryz,

Hazlewood, & Van Run, 2010). Another alternative is to maintain different schema

versions.

 23

The retention activities in an environment may include the transfer of non-XML

content items into XML format. The National Archives of Australia (Heslop, Davis, &

Wilson, 2002) has described a preservation process where items in any format are

transferred into a normalized XML format. In the normalization the core idea is to

preserve the essence of the source document, to enable the recreation of the essential

performance over time. Thus the preservation policies have to include the specification of

the essential features of the source documents. Several other proposals have been made

for migration strategies where the obsolescence of file formats has been solved by

migration to XML (e.g. van Horik & Roorda, 2011). The source documents being

originally XML documents, the preservation policies in some environment might

determine schemas belonging to the essence of the documents, in some other

environment they might be seen non-essential from the point of view of long-term access.

Similar differences may occur concerning style sheets. In some environment the archival

of different XML document versions is important for enabling historical queries

concerning the evolution of documents and their contents (Wang & Zaniolo, 2008).

Demonstration in Two Cases

In this section two very different XML document management cases are described,

both from Finland. We have been involved in both cases mostly as researchers, partly as

consultants and teachers. The first case describes a part of a complex information and

content management environment having importance at the national level. The other case

concerns content management in a Faculty Office. In both cases one central document

 24

type of the environment has been chosen for the life cycle description. Our case

descriptions are divided into four parts:

Data gathering methods. This part explains the information sources used for the case

description.

XML document management environment. This part identifies the core components of

the environment where the life cycle activities of the case take place.

Life cycle description. The most important activities, actors, systems, and content

items in each of the five phases are covered. The description of the design phase

includes some history background, the descriptions of the other phases concern the

current situation.

Impact analysis. In this part the idea is to assess the consequences of the deployment

of XML in the environment.

The State Budget Proposal of the Finnish Government is prepared in a complex

XML-based environment supporting the budgetary process of the Government. The

schedule and deadlines for both content management and decision-making activities are

tight. Annually one State Budget Proposal and typically 1-5 Supplementary State Budget

Proposals are created.

Data for the case description was gathered from literal sources, by expert interviews, and

by observations done by one of the authors when working as an ECM consultant for the

 25

Finnish Parliament. The Internet service for the State Budget Proposal

(http://budjetti.vm.fi/) was also utilized.

The major information producers and users during the life of a State Budget Proposal are

illustrated in Figure 5. Next we briefly describe the three kinds of information resources:

systems, actors, and content items. More about the role of the resources in the

information management is explained in the context of the life cycle description.

 FIG. 5. XML document management environment for the State Budget Proposal.

Systems. The creation of the Budget Proposal is regulated by the Finnish

Constitution and Acts, and many of the regulations are implemented in software systems.

Besides XML, important XML-related standards that have been adopted in the

environment. The budgeting system provides access to the financial data and spending

 26

limits of the budget. Xopus XML editor is a tool for producing XML content and Adobe

FrameMaker+XML for editing the Budget Proposal for printing.

Actors. The most important business stakeholders in the creation of the Budget Pro-

posal are the Finnish Government and Parliament, and the decision-makers there. In the

Government, Ministry of Finance has the central role. In the decision-making process the

most important user of the Budget Proposal is the Finnish Parliament using it as the basis

to create and accept the State Budget.

Contents items. The Budget Proposal consists of a number of separately produced

content items. The State Budget Proposal as a whole typically consists of about 900

pages. The XML content is stored in the Xopus XML database, according to the

component structure defined in the schema.

Design. The current solution is based on three major design cycles, the first starting in

1995. The analysis of the content management environment and requirements for the new

solution was done in a research project where the first versions of RASKE methods were

developed and tested. The project was participated by researchers, representatives from

the Finnish Parliament, Ministry of Finance together with a few other ministries, and a

software company. Preliminary schemas as SGML DTDs were designed for the major

document types of the budgetary process by the researchers of the project. Later selected

ICT service providers designed and implemented final SGML DTDs and customized

software products for document authoring, visualization, and storage. The first solution

concerned mainly the capture and dissemination phase of the document life cycle. The

content production of the Draft Budgets remained unstructured, paper copies and text

 27

editor (Word 6) files were used for distribution. Transformation into SGML format was

done manually in the Ministry of Finance. The shift to structured content production took

place in 1998, using Adobe FrameMaker+SGML software.

A few years later, problems in content authoring and managing motivated to start the

second design cycle. Important objectives in the redesign included better support for last-

minute changes, automated multi-channel publishing, and switch from SGML to XML.

In the redesign project, an ICT service provider transformed SGML DTD into XML DTD

and customized new software products: Microsoft Word with X4O extension for content

production and XHive XML database for capture, dissemination and use. Ministry of

Finance continued using Adobe FrameMaker for content authoring. Content production

in the renewed environment started in 2003. The earlier produced SGML documents were

transformed into the new XML format.

The third design cycle started at the time of the renewal of the budgeting system in

2008. Thus far major financial calculations for the budget had been done in a separate

system and the results were copied manually into documents. The aim in the renewal was

to integrate budget calculations, content production, and document capture into a single,

centralized system. The new system was intended to support collaborative content

production in all ministries and in the Office of the President. Furthermore, a goal was to

provide new support for the Parliament for using the Budget Proposal. A selected ICT

provider redesigned the XML schema and customized new software products: Xopus

XML editor for content production and Xopus database for capture, dissemination and

use. Adobe FrameMaker+XML was re-customized for preparing the print format.

 28

Content production in the redesigned environment started in 2012. The documents

produced during 1998-2002 were transformed to conform to the new schema.

As a result of the three design iterations, several XML editors and XML databases

have been customized and many transformations have been implemented. From the

users’ point of view, the most important result is the Internet service. The design has been

done in deep collaboration of ECM, XML, records management and business process

experts. The foundation of the design work is the XML schema describing the structure

of the State Budget Proposal.

Content production. Annually each of the 12 ministries, Office of the President, and the

Finnish Parliament create their Draft Budgets entering the data to the budgeting system

with the Xopus XML editor. The system allows parallel editing of different parts of the

same document by different users. The structure of the document and related metadata is

controlled by XML schemas. The content of the document is stored in the Xopus XML

database. The related metadata includes information about the actors, document type and

status of the content. Metadata is used, for example, to control the access to the content.

The Draft Budgets are not available for other ministries until the Ministry of Finance has

published the first version of the Budget Proposal.

Capture and dissemination. The Draft Budgets are assembled into a draft version of the

State Budget Proposal using the XML content of the Xopus database. The final version is

a result of negotiations between the ministries and decisions done in the Cabinet Finance

Committee and Government sessions. The versions handled in the budgeting negotiations

 29

of the ministries are transformed from the budgetary system into Microsoft Word XML

or pdf formats. The final State Budget Proposal is published from the budgeting system

on the Internet service in HTML and pdf formats. To the Parliament the document is

submitted in the XML format and as printed books. The printed version is edited with

Adobe FrameMaker+XML application. The metadata required for the creation of HTML

pages and for supporting advanced searches is included in the document already in the

content production phase.

Use. A new State Budget Proposal is of interest to state institutions, municipalities and

citizens, because it regulates the government funding, taxes and loans for the next year.

The Finnish Parliament creates and accepts the State Budget and thus is the main user of

the State Budget Proposal. The Parliament captures the Proposal into its own

Parliamentary System. Members of the Parliament use the printed book. For processing

and reuse, the content of the Proposal is available in the budgeting system. Typically

Members of the Parliament accept some part of the Proposal as it is, but propose some

changes to the content. These changes are assembled in the Finance Committee into a

Finance Committee Report. The content of the Committee Report is partly created by

reusing the data of the Proposal. The content of the Proposal is reused again when

preparing the final State Budget. The content of the Proposal is later used in the

ministries when preparing Supplementary Budget Proposals or a new State Budget

Proposal. Advanced search capabilities for these reuse needs have been implemented to

the budgetary system and to the Internet service.

 30

Retention. The Budget Proposal is archived permanently in paper format into external

diary systems. All Budget Proposals that have been produced in structured format since

2002 are available on the Internet service. The three design iterations have resulted in

three different schemas and correspondingly three classes of structured documents, each

class originally conforming to its own schema. The selected retention strategy in the case

has however been to transform the documents to conform to the latest schema. The

transformations have concerned 13 Budget Proposals and about 50 Supplementary

Budget Proposals. Between the major design iterations small changes have been done to

schemas: some structures have been added while others have been removed.

The implementation of the structured approach for the State Budget Proposal has im-

proved effectiveness of the administration: the budget data management, financial

calculations and content management activities are integrated into a single budgeting

system. The technical content management process for authoring, publishing and

delivering of the content is automated. Thus the last minute changes in the decision-

making are better managed and copying mistakes in content production are avoided.

Delivery of the documents between organizations is done in digital format, which is fast

and lowers printing costs. Better availability of the Budget Proposals for citizens and

interest groups on the Internet has enhanced transparency of public administration

processes. The XML structure and associated metadata enables advanced search

capabilities. Furthermore, the XML format can be offered as open data for processing by

software systems.

 31

The transfer from SGML to XML has enhanced the utilization of open standards and

offered more choices when selecting suitable tools. However, lack of maturity of the tools

has caused problems. Implementation of the structured approach in the environment has

not been fast and easy: several iterations have been done during last ten years and in each

increment more complexity has been added to the environment. The latest design took 3,5

years and the cost for the design and implementation of the unified budgetary system was

1,5 million euros.

The Faculty Council meetings of the Faculty of Information Technology at the Uni-

versity of Jyväskylä are called by Meeting Agendas 11-14 times each year. The agendas

are created at the Faculty Office in an XML-based environment.

Data for the case description was collected by one of the authors. As a student she had

participated in the development project were the XML-based agenda production started.

Later she participated as a consultant in the update of the document production system.

By participating in the projects she had gathered detailed knowledge of the environment

and the solution. During these projects, data was collected by analyzing earlier agendas

and meeting minutes, by interviewing the office personnel of the faculty, and by

prototyping. After implementations information about new solutions was available in

project reports.

 32

The major information producers and users during the life cycle of a Faculty Council

Meeting Agenda are illustrated in Figure 6. Next we briefly describe them.

 FIG. 6. XML document management environment for the Meeting Agenda.

Systems. The creation of Meeting Agendas is regulated by the rules concerning the

decision-making process in the faculties and departments of the university. Besides XML,

important standards that have been adopted in the environment are XML DTD, XML

Schema, XSLT, CSS, XSL:FO, XHTML, and pdf. From the software systems Altova

XMLSpy has been the tool for schema design and Microsoft InfoPath for authoring

agendas.

Actors. Student groups and their supervisors have participated in the development of

the XML-based solutions. The most important organizational business stakeholders

involved in the creation and use of the Meeting Agendas are the two departments of the

Faculty, the Faculty Office, the Faculty Council, and the University Administration

 33

Office. In the Faculty Office mainly the Head of the Faculty Administration and the Head

of the Faculty Academic Affairs prepare the issues for handling.

Content items. In the content repository the schemas, InfoPath templates, InfoPath

forms, XSLT transformations, as well as the XSL and CSS style sheets represent class

metadata. The agendas and related meeting minutes are stored in the network drive in

XML format as InfoPath forms. The folders also include the meeting specific documents

transformed from XML into HTML and pdf formats for publishing purposes. No separate

instance metadata items are stored in the content item repository. Instance metadata

related to a meeting agenda is embedded in the agenda. Also properties attached to files

and folders, their names in particular, carry instance metadata.

Design. Problems in document production, publishing, and delivery were the main

motivations for starting the design of an XML-based solution for Faculty Council

Meeting Agendas in 2004. Since there was knowledge and experience about the use of

the RASKE methodology at the faculty, the methodology was adopted for analyzing and

describing the document management environment. No suitable predefined schema was

publicly available at the time, therefore a decision was made to design custom schemas

for the agenda front page, list of items page, and agenda items. In the design an important

objective was to produce minimal changes to content authoring in the Faculty Office

environment where MS Word had been the main authoring tool for a long time. Therefore

the schemas were designed to be used with MS InfoPath.

The content authoring using InfoPath was facilitated by InfoPath form templates,

associated with schemas. Several pre-filled InfoPath forms were created to support

 34

content authoring. XSLT transformation definitions and CSS style sheets were designed

for HTML and pdf outputs.

The XML-based document production started in 2005. For the first time in the

history of the IT Faculty the entire agenda had a coherent layout. In the beginning of

2010, the schemas and InfoPath form templates were modified due to the university re-

form. The update required only minor changes in the schemas and templates. In spite of

that, the earlier pre-filled InfoPath forms conforming to the earlier template and schema

versions could no longer be opened and used with InfoPath. Therefore new pre-filled

forms had to be created. The latest upgrade of the solution was carried out in June 2012

together with the update of the MS Office Suite to the 2010 version. InfoPath forms

receiving XML data from another form required a full trust setting. Forms that run with a

full trust setting are digitally signed with a certificate. This allows a form to access data

from external files. In the case of agendas, InfoPath forms required a full trust setting in

order to reuse XML content properly between InfoPath forms as well as to authenticate

the code that runs document assembly of each agenda.

Content production. The two departments of the faculty and the Faculty Office deliver

the documents needed for handling in the next meeting. Typically the documents end up

in the appendices of the Meeting Agenda as such. Some appendices may be received

from external sources. If paper documents are received, they are scanned and saved as

pdf documents. The Head of the Faculty Administration and the Head of the Faculty

Academic Affairs, possibly by support of other Faculty Office staff, enter content to the

agenda gradually using InfoPath forms. Typically there is a draft version of each agenda

 35

item. All forms for items to be included in the agenda of an upcoming meeting are saved

in the same folder on a network drive. Some of the text content may be copied from the

published minutes of an earlier meeting available on the intranet. The agenda authors use

the HTML versions of the archived documents for the needs of copying pieces of content.

Legal phrases reoccurring in agenda items are retrieved from an external XML document,

which can be modified in InfoPath when needed.

Capture and dissemination. Once the agenda items have been finalized, the separate

document files are assembled into one agenda document. The document author carries

out this task with the list of items form. The content of the form ends up as the second

page of the agenda. A click of a button on the form runs required scripts to assemble the

chosen XML-based InfoPath forms into one XML document file. The assembly includes

also the execution of the format conversion, realized with XSL transformation files, to

create HTML and pdf outputs of the assembled agenda. The document assembly software

also adds reoccurring information on agenda pages automatically without any input from

the document author. For example, the name of the document type, date of the meeting,

and page numbers are added to each agenda item header as they are on the list of items

form. The file names for the assembled documents in their different formats are generated

automatically. For example, the pdf format of the agenda created on April 8th 2011 is

named as “agenda.8.4.2011.pdf”. The HTML and pdf formats of the agenda are published

to the Faculty Council on the intranet, and the list of agenda items is delivered via email

to the whole personnel of the faculty. Most of the agenda metadata is available on the

agenda front page. It includes organizational and meeting-specific information. Each

 36

agenda item comes with a header section including, for example, the name of the person

who has prepared the item for the meeting.

Use. The published agenda is used by the Faculty Council members to support the

decision-making in the meeting. After the meeting the Head of the Faculty Ad-

ministration and the Head of the Faculty Academic Affairs use the agenda to create

Meeting Minutes. The XML documents available as InfoPath forms for the agenda are

complemented with new content, such as decisions made in the meeting and the names of

the faculty council members present in the meeting. The minutes serve as evidence of and

information of the decisions made in the meeting. Unlike the agenda, the minutes are

public documents and therefore viewable for everyone. Access to the minutes appendices,

however, is restricted.

Retention. Long-term archival is guided by the regulations of the university. The official

archival records of the Faculty Council meetings are the meeting minutes. The minutes of

all meetings during a year are collected in a printed book archived in the Faculty Office.

The number of people involved in the management of agendas and related documents in

the Faculty Office is small. Therefore simple rules concerning file and folder names,

together with the rules concerning the metadata embedded in documents have been

sufficient. No explicit preservation policies have been defined for the digital content

repository. Instead of the earlier repository consisting mostly of MS Word files, the new

content repository includes different kinds of documents in different formats. All

document instances related to the agenda of a meeting are stored on a network drive in a

 37

folder. The folder includes the XML documents (InfoPath forms) as well as assembled

HTML and pdf output documents, both for the agenda and the corresponding minutes.

None of the documents created for the Faculty Council meetings have ever been

destroyed, following the current archival policy at the university.

The InfoPath form templates, XSL transformation files, CSS style sheets, and

custom XML schemas are archived in their own folders on a network drive. Only the

latest versions of the class metadata files are stored. The office personnel creating

agendas has no need to access these folders for agenda content authoring.

The design of the XML document management was activated by problems related to

laborious document preparation and publishing process, and frequently occurring errors

in Faculty Council Meeting Agendas. The main concern was in solving these problems.

Therefore improvements in the work of people at the Faculty Office and decrease in the

number of errors in the agendas were regarded as the main objectives to the development

project. In the new environment the work is supported by the adaptation of the authoring

environment and by the support of automation. Members of the office staff were briefly

trained before the deployment of the new system. The transfer did not cause major

problems or complains as the users were closely involved in the development process.

This ensured commitment to the use of the new solution. In the content production phase

the need for manual typing and copy pasting has decreased and the automated creation of

the HTML format for online publishing has replaced the earlier laborious manual

gathering of content to the HTML format. No systematic evaluation of the number of

 38

errors in meeting agendas has been carried out, but most obviously the form-based data

input with constraints controlled by the schema has decreased the number of errors.

In the case the focus in the development was in the work of document authors. The

management of documents as records and their long-term archival was left outside the

development project. The metadata embedded in documents in the front page and in page

headings has followed the rules created already before the adoption of XML. Some new

rules for document naming had to be decided for the new kinds of files in the content

repository.

The daily work at the Faculty Office does not require XML knowledge. For

occasional changes needed to XML schemas, InfoPath form templates, transformation

files, or style sheets, an XML expert has been requested. So far such expertise has been

available at the faculty but some concerns have been stated about the lack of policies for

ensuring the needed XML knowledge.

Evaluation

Our main objective was to develop a model for analyzing and describing XML docu-

ment management throughout document life cycle. Our development process was

iterative. We first designed a preliminary model and then gathered data from the two

cases. After several discussions and test descriptions we ended up to the life cycle

consisting of the five phases as shown in Figure 4. It provided, together with the XML

document management environment model (Figure 3), a good basis to analyze and

describe the cases in a uniform way. One of the principles related to the artifact created in

design science concerns the level of abstraction (Österle et al., 2011). According to this

 39

principle the artifact should be applicable to a class of problems. Analysing parallel two

different cases during the model development was an important means to avoid

developing a model suitable just for one case.

In the model we want to emphasize the explicit inclusion of design and retention in

the phases of the life cycle. The retention of business documents has become an

important topic especially after the Sarbanes-Oxley Act of 2002 of the United States. The

law mandates the retention of electronic documents and criminalizes the altering or

destroying electronic records (Volonino, 2003; Stephens, 2005). Organizations are

required to facilitate e-discovery, meaning the process of gathering electronic information

for legal, regulatory, or administrative actions (Volonino et al., 2007). The retention of

electronic records is important also in public sector. In Finland, for example, the law

about electronic public sector services (24.1.2003/13) requires the archival of electronic

documents so that their authenticity and integrity can be later demonstrated. Lack of

understanding of the special features of XML document management environments may

cause problems for retention and e-discovery. One of the special features of XML

document management environments is their dynamics. It is typical to XML document

management environments that the design is an ongoing process. Therefore we see it

important to show the design phase explicitly in the model as the first phase.

We believe that our framework provides a tool both for researchers and practitioners

to compare different cases. Our example cases have some similarities but are contrasting

in many respects. The design of the document production was in both cases an iterative

process involving schema updates. The storage and retention solutions in the two cases

are quite unlike. In the Faculty case the XML data of the meeting agendas is stored in the

 40

file system at the intranet server while the State Budget Proposal is stored in an XML

database. No special retention strategies have been designed for the digital format of

Faculty Council Agendas and no changes have been done to the old documents at the

time of the schema update. For the Budget Proposals the strategy in schema updates has

been to transform the old documents to conform to the latest schema.

The feedback from the case environments showed that the case descriptions were

seen as useful tools in the environments to analyze the solutions and also as tools to

record the core characteristics of the environments.

Conclusion

In the paper we first introduced the concepts related to XML document management

and described methodologies that have earlier been used to analyze XML document

management in organizations. We argued that the methodologies lack support for the

analysis of XML document management throughout their life, from the design to the

retention. To fill the gap, we developed a model for the purpose, as an extension of the

RASKE methodology, following the design science approach.

During the development of the model we tested its applicability only in cases where

the deployment of XML had already been implemented. Further research is needed to

show how the model could support the design of new solutions for XML document

management. Basically there are two different kinds of support. On the one hand, earlier

case descriptions can be used as a means to learn about XML document management and

earlier implementation cases. On the other hand, the concepts and models of the

 41

framework may be used as a tool to describe the new XML document management

solutions.

Both in public and private sector organizations there is a strong tendency to shift

from paper archival to digital archival. At the same time, new legislation is created to

mandate the preservation of digital information produced in business processes. Espe-

cially in case of legal auctions organizations are required to discover all relevant

documents and demonstrate their reliability and authenticity. E-discovery is a complex

and often costly procedure. An interesting area of future research is to consider XML

document management especially from the point of view of e-discovery.

As mentioned earlier, the RASKE methodology has provided models and methods

for holistic analysis of document management environments. It has some special support

for analyzing structured documents, but its use is not restricted to XML-encoded

documents. The same concerns also the life cycle model introduced in this paper. The

five phases of Figure 4 are not restricted to XML documents. Therefore the model is

applicable in analyzing electronic document management also more generally.

References

Aversano, L., Canfora, G., de Lucia, A., & Gallucci, P. (2002). Integrating document and

workflow management tools using XML and Web technologies: A case study. In T.

Gyimóthy, & F. Brito e Abreu (Eds.), Proceedings of the Sixth European Conference

on Software Maintenance and Reengineering (CSMR’02). Washington, DC: IEEE.

Barker, R.M., Cobb, A.T., & Karcher, J. (2009). The legal implications of electronic

document retention: Changing the rules. Business Horizons 52(2), 177-186.

 42

Bernard, R. (2007). Information lifecycle security risk assessment: A tool for closing

security gaps. Computers & Security 26(1), 26-30.

Bernstein, P.A., & Haas, L.A. (2008). Information integration in the enterprise.

Communications of the ACM 51(9), 72-79.

Bertino, E., & Ferrari, E. (2002). Secure and selective dissemination of XML documents.

ACM Transactions on Information and System Security 5(3), 290-331.

Bertino, E., Ferrari, E., Paci, F., & Provenza, L.P. (2007). A system for securing push-

based distribution of XML documents. International Journal of Information Security

6(4), 255-284.

Bhatti, R., Ghafoor, A., Bertno, E., & Joshi, J.B.D. (2005). X-GTRBAC: an XML-based

policy specification framework and architecture for enterprise-wide access control.

ACM Transactions on Information and System Security 8(2), 187-227.

Borglund, E.A.M. (2008). Design for recordkeeping: areas of improvement. PhD Thesis,

Department of Natural Sciences, Mid Sweden University Doctoral Thesis 52.

Retrieved April 18, 2013, from http://miun.diva-

portal.org/smash/get/diva2:1952/FULLTEXT01

Bray, T., Paoli, J., & Sperberg-McQueen, C. M., (Eds.) (1998). Extensible Markup

Language (XML) 1.0, W3C Recommendation, 10 February 1998, W3C Consortium.

Retrieved April 18, 2013, from http://www.w3.org/TR/1998/REC-xml-19980210.

Broberg, M. (2004). A successful documentation management system using XML.

Technical Communication 51 (4), 537-546.

Brooke, P.J. Paige, R.F., & Power, C. (2010). Document-centric XML workflows with

fragment digital signatures. Software – Practice and Experience 40(8), 655-672.

 43

Brooks, T.A. (2001). Where is meaning when form is gone? Knowledge representation

on the Web. Information Research 6 (2).

Cerri, D., & Fuggetta, A. (2007). Open standards, open formats, and open source. Journal

of Systems and Software 80(11), 1930-1937.

Chen, M. (2003). Factors affecting the adoption and diffusion of XML and Web services

standards for E-business systems. Human-Computer Studies, 58(3), 259-279.

Clark, J., & Murata, M. (Eds.) (2001). RELAX NG Specification, Committee Specifi-

cation 3 December 2001, OASIS. Retrieved April 18, 2013, from http://www.oasis-

open.org/committees/relax-ng/spec-20011203.html.

DLM Forum Foundation (2011). MoReq2010®: Modular Requirements for Records

Systems – Volume 1: Core Services & Plug-in Modules. Retrieved April 18, 2013,

from http://moreq2010.eu/

Dublin Core Metadata Initiative (2010). Dublin Core Metadata Element Set, Version 1.1.

2010-10-11. Retrieved April 18, 2013, April 18, 2013,

http://dublincore.org/documents/dces/

Genevès, P., Layaïda, N., & Quint, V. (2011). Impact of XML schema evolution. ACM

Transactions on Internet Technology 11 (1), 4:1-4:27.

Gilliland, A.J. (2008). Setting the Stage. In T. Gill, A.J. Gilliland, Whalen, M., &

Woodley, M.S., Introduction to Metadata, Online Edition, Version 3.0. Los Angeles,

CA: Getty Publications. Retrieved April 18, 2013, from

http://getty.edu/research/publications/electronic_publications/intrometadata/setting.ht

ml

 44

Glushko, R.J., & McGrath, T. (2005). Document Engineering: Analysing and Designing

Documents for Business Informatics and Web Services. Cambridge, MA: MIT Press.

Goldfarb, C. F. (1990). The SGML Handbook. Oxford: Oxford University Press.

Greenberg, J. (2010). Metadata and digital information. In M.J. Bates & M. Niles Maack

(eds.), Encyclopedia of Library and Information Science, Third Edition, 1:1 (pp.

3610-3623). New York: Taylor & Francis.

Gregor, S., & Jones, D. (2007). The anatomy of a design theory. Journal of the Asso-

ciation for Information Systems 8(5), 312-335.

Heslop, H., Davis, S., & Wilson, A. (2002). An approach to the preservation of digital

records. national Archives of Australia. Retrieved April 18, 2013, from

http://www.aa.gov.au/Images/An-approach-Green-Paper_tcm16-47161.pdf

Hevner, A.R., March, S.T., & Park, J. (2004). Design research in information systems

research. MIS Quarterly 28(1), 75-105.

Horik, van, R., & Roorda, D. (2011). Migration to intermediate XML for electronic data

(MIXED): Repository for durable file format conversions. The International Journal

of Digital Curation 2(6), 245-252.

ISO 15489-1 (2001). Information and documentation – Records management. Part 1:

General.

ISO/TR 15489-2 (2001). Information and documentation – Records management. Part 2:

Guidelines.

ISO/IEC 26300 (2006). Information technology – Open Document Format for Office

Applications (OpenDocument) v1.0.

 45

ISO/IEC 29500-1 (2008). Information technology – Document description and pro-

cessing languages – Office Open XML File Formats – Part 1: Fundamentals and

Markup Language Reference.

Järvenpää, M., Virtanen, M., & Salminen, A. (2006). Semantic portal for legislative

information. In M. Wimmer, H.J. Scholl, Å. Grönlund, K. Viborg Andersen (Eds.),

Proceedings of the Fifth International Conference on Electronic Government (EGOV

2006). Lecture Notes in Computer Science 4084 (pp. 219-230). Berlin: Springer

Verlag.

Kundu, A., & Bertino, E. (2008). A new model for secure dissemination of XML content.

IEEE Transactions on Systems, Man, and Cybernetics 3 (3), 292-301.

Kwietniewski, M., Gryz, J., Hazlewood, S., Van Run, P. (2010). Transforming XML

documents as schemas evolve. Proceedings of the VLDB Endowment 3(1-2), 1577-

1580.

Liu, H., Wang, X., & Quan, Q. (2009). Research on the enterprise' model of information

lifecycle management based on enterprise architecture. Proceedings of the Ninth

International Conference on Hybrid Intelligent Systems (pp. 165-169). New York,

NY: IEEE Computer Society.

Liu, S., McMahon, C.A., & Culley, S.J. (2008). A review of structured document re-

trieval (SDR) technology to improve information access performance in engineering

document management. Computers in Industry 59(1), 3-16.

Luk, R.W.P., Leong, H.V., Dillon, T.S., Chan, A.T.S., Croft, W.B., & Allan, J. (2002). A

survey in indexing and searching XML documents. Journal of the American Society

for Information Science and Technology 53(6), 415-437.

 46

March, S.T. & Smith, G.F. (1995). Design and natural science research on information

technology. Decision Support Systems 15 (4), 251-266.

Maler, E., & El Andaloussi, J. (1996). Developing SGML DTDs. From text to model to

markup. Englewood Cliffs, NJ: Prentice Hall.

Mella, G., Ferrari, E., Bertino, E., & Koglin, Y. (2006) Controlled and cooperative

updates of XML documents in byzantine and failure-prone distributed systems. ACM

Transactions on Information and System Security 9(4), 421-460.

Ministry of Government Administration, Reform and Church Affairs (2007). Open

document standards to be obligatory for state information. Press release. Retrieved

April 18, 2013, from

http://www.regjeringen.no/en/dep/fad/pressesenter/pressemeldinger/2007/Open-

document-standards-to-be-obligatory.html?id=494810

Noy, N.F., & Hafner, C.D. (1997). The state of the art in ontology design. A survey and

comparative review. AI Magazine 18(3), 53-74.

Nunamaker, J.F., Chen, M., & Purdin, T.D.M. (1990). Systems development in in-

formation systems. Journal of Management Information Systems 7(3), 89-106.

Nurmeksela, R., Jauhiainen, E., Salminen, A., & Honkaranta, A. (2007). XML document

implementation: Experiences from three cases. In Y. Badr, R. Chbeir, & P.

Pichappan (Eds.), Proceedings of the Second International Conference on Digial

Information Management (pp. 224-229). Los Alamitos, CA: IEEE.

OCLC and CRL (2007). Trustworthy Repositories Audit & Certification: Criteria and

Checklist. Version 1.0. Retrieved April 18, 2013, from

http://www.crl.edu/sites/default/files/attachments/pages/trac_0.pdf

 47

Peffers, K., Tuunanen, T., Rothenberger, M.A., & Chatterjee, S. (2008). A design science

research methodology for information systems research. Journal of Management

Information Systems 24(3), 45-77.

Peled, A. (2011). When transparency and collaboration collide: The USA Open data

Program. Journal of the American Society for Information Science and Technology

62(11), 2085-2094.

Pérez, J.M., Berlanga, R., Aramburu, M.J., & Pedersen, T.B. (2008). Integrating data

warehouses with Web data: A survey. IEEE Transactions on Knowledge and Data

Engineering 20(7), 940-955.

Powell, A., & Johnston, P. (2003). Guidelines for implementing Dublin Core in XML.

Dublin Core Metadata Initiative. Retrieved April 18, 2013, from

http://dublincore.org/documents/dc-xml-guidelines/

Reuben, E. (2003). Migrating records from proprietary software to RTF, HTML, and

XML. Computers in Libraries 23(6), 30-33.

Rockley, A., Kostur, P., & Manning, S. (2003). Managing Enterprise Content: A Unified

Content Strategy. Indianapolis, IN: New Riders.

Runardotter, M., Mörtberg, C., Mirijamdotter, A. (2011). The changing nature of ar-

chives: whose responsibility? Electronic Journal of e-Government 9(1), 68-78.

Rönnau, S., & Borghoff, U.W. (2009). Versioning XML-based office documents. An

efficient, format-independent, merge-capable approach. Multimedia Tools and

Applications 43(3), 253-274.

 48

Salminen, A. (2005). Building digital government by XML. In R.H. Sprague, Jr. (Ed.),

Proceedings of the Thirty-Eighth Hawaii International Conference on System

Sciences (HICSS-38). Los Alamitos, CA: IEEE Computer Society.

Salminen, A. (2010). Modelling documents in their context. In M.J. Bates & M. Niles

Maack (Eds.), Encyclopedia of Library and Information Sciences, Third Edition.

New York: Taylor & Francis. DOI: 10.1081/E-ELIS3-120044399.

Salminen, A., Kauppinen, K., & Lehtovaara, M. (1997). Towards a methodology for

document analysis. Journal of the American Society for Information Science 48(7),

644-655.

Salminen, A., Lyytikäinen, V., & Tiitinen, P. (2000). Putting documents into their work

context in document analysis. Information Processing & Management 36(4), 623-

641.

Salminen, A., Lyytikäinen, V., Tiitinen, P., & Mustajärvi, O. (2004). Implementing

digital government in the Finnish Parliament. In W. Huang, K. Siau, & K.K. Wei

(Eds.), Electronic Government Strategies and Implementation (pp. 242-259).

Hersley, PA: IDEA Group Publishing.

Salminen, A., Nurmeksela, R., Lehtinen, A., Lyytikäinen, V., & Mustajärvi, O. (2008).

Content production strategies for e-Government. In A.-V. Anttiroiko (Ed.),

Electronic Government: Concepts, Methodologies, Tools, and Applications. Hersley,

PA: Information Science Reference.

Salminen, A., & Tompa, F.W. (2001). Requirements for XML document database

systems. In E.V. Munson (Ed.), Proceedings of the ACM Symposium on Document

Engineering (DocEng '01) (pp. 85-94). New York: ACM Press.

 49

Salminen, A. & Tompa, F. (2011). Communicating with XML New York: Springer-

Verlag New York Inc.

Sartor, G., Palmirani, M., Francesconi, E., & Biasiotti, M. A. (Eds.) (2011). Legislative

XML for the Semantic Web. Law, Governance and Technology Series 4. Dordrecht:

Springer.

Shah, R., Kesa, J., & Kennis, A. (2008). Implementing open standards: A case study of

the Massachusetts open formats policy. In Proceedings of the 2008 International

Conference on Digital Government Research (pp. 262-271). Los Angeles, CA:

Digital Government Society of NorthAmerica.

Smith, H.A., & McKeen, J.D. (2003). Developments in practice viii: enterprise content

management. Communications of AIS 11(33), 1-26.

Sohn, W.-S., Ko, S.-K., Lee, K.-H., Kim, S.-H., Lim, S.-B., & Choy, Y.-C. (2002).

Standardization of eBook documents in the Korean industry. Computer Standards &

Interfaces 24(1), 45-60.

Sprague Jr., R.H. (1995). Electronic document management: Challenges and opportu-

nities for information systems managers. MIS Quarterly 19(1), 29-49.

Stanescu, A. (2005). Assessing the durability of formats in a digital preservation envi-

ronment: The INFORM methodology. OCLC Systems & Services, 21 (1), 61 – 81.

State Records Authority of New South Wales (2007). Strategies for documenting

government business: The Dirks Manual. Retrieved April 18, 2013, from

http://www.records.nsw.gov.au/recordkeeping/dirks-manual

Stephens, D.O. (2005). The Sarbanes-Oxley Act: Records management implications.

Records management Journal 15(2), 98-103.

 50

Tiitinen, P., Lyytikäinen, V., Päivärinta, T., & Salminen, A. (2000). User needs for

electronic document management in public administration: a study of two cases. In

H.R. Hansen, M. Bichler, & H. Mahrer (Eds.), Proceedings of ECIS 2000, European

Conference on Information Systems, Volume 2 (pp. 1144-1151). Wien:

Wirtschaftsuniversität Wien.

Volonino, L. (2003). Electronic evidence and computer forensics. Communications of the

Association for Information Systems 12 (Article 27), 457-468.

Volonino, L., Sipior, J.C., & Ward, B.T. (2007). Managing the lifecycle of electronically

stored information. Information Systems Management 24(3), 231-238.

Wang, F., & Zaniolo, C. (2008). Temporal queries and version management in XML-

based document archives. Data & Knowledge Engineering 65(2), 304-324.

Österle, H., Becker, J., Frank, U., Hess, T., Karagiannis, D., Krcmar, H., …, & Sinz, E.J.

(2011). Memorandumdesign-oriented on information systems research. European

Journal of Information Systems 20 (1), 7-10.

	Deployment of XML for office documents in organizations
	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	LIST OF INCLUDED ARTICLES
	1 XML FOR OFFICE DOCUMENTS
	1.1 XML documents
	1.2 Data-centric vs. document-centric XML
	1.3 XML document components
	1.4 Document management in offices
	1.5 Standard schemas for XML documents
	1.6 Office document standardization

	2 RESEARCH GOAL AND METHODOLOGY
	2.1 Research objectives
	2.2 Research approach and research process
	2.3 Research process

	3 SCHEMA DESIGN METHODS
	3.1 The Maler and El Andaloussi method
	3.2 Document Engineering Approach
	3.3 Unified Content Strategy
	3.4 Comparison of the methods

	4 SUMMARY OF THE INCLUDED ARTICLES
	4.1 Article 1: “Two Methods for Schema Design for IntelligentXML Documents in Organizations”
	4.2 Article 2: “Aspects on XML Document Content Reuse in Organizations”
	4.3 Article 3: “XML Document Implementation: Experiences fromThree Cases”
	4.4 Article 4: “A Life Cycle Model of XML Documents”
	4.5 About the Joint Articles

	5 RESULTS AND IMPLICATIONS
	5.1 Contributions
	5.2 Implications

	6 CONCLUSION
	REFERENCES
	YHTEENVETO (FINNISH SUMMARY
	ORIGINAL PAPERS
	TWO METHODS FOR SCHEMA DESIGN FOR INTELLIGENT XML DOCUMENTS IN ORGANIZATION
	ASPECTS ON XML DOCUMENT CONTENT REUSE IN ORGANIZATIONS
	XML DOCUMENT IMPLEMENTATION: EXPERIENCES FROMTHREE CASES
	A LIFE CYCLE MODEL OF XML DOCUMENTS

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

