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Abstract

In this thesis I study two aspects related to anisotropic flow coefficients
v2 and v3 in heavy-ion collisions. The study is done for Pb-Pb collisions
at
√
sNN = 2.76 TeV using data simulated by A MultiPhase Transport

(AMPT) model. First I study flow of identified charged particles, pions,
kaons and protons. At RHIC in Au-Au collisions at

√
sNN = 200 GeV it

has been observed that scaling v2 of identified hadrons with the number
of quarks and plotting it as a function of transverse kinetic energy KET
produces almost perfect scaling between different particle species. This was
taken as an indication that flow is mainly generated in the partonic phase
and is not strongly affected by the hadronic phase. However, in Pb-Pb col-
lisions at

√
sNN = 2.76 TeV in LHC the scaling has been observed to break

down. AMPT model uses a simple quark coalescence model, which was used
to explain the scaling at RHIC energies. Because of the scaling breakdown
at LHC the coalescence model has been challenged in the field. In my studies
I have observed that AMPT does not produce perfect quark number scaling,
even though it would be expected because of the coalescence model.

Another aspect studied here is event-by-event flow. Event-by-event flow
is connected to the fluctuations in the initial collisions. Only recently the
field has started to study fluctuations and event-by-event flow. I will show
distributions of event-by-event flow coefficients in the AMPT model. In
addition to the true fluctuations the distributions have a significant smearing
component from limited resolution resulting from finite multiplicity in a
single event. I will use a data-driven unfolding method based on an iterative
Bayesian procedure to remove the smearing effects. I will test the procedure
in a toy Monte Carlo simulation to test its performance and apply it to
AMPT data. I have observed that based on the Monte Carlo the procedure
works for v2 in general and for v3 in central collisions.

2



Contents
1 Introduction 5

1.1 Quantum chromodynamics . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.1 Foundation of QCD . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Asymptotic Freedom and Deconfinement of Quarks and Gluons 9

1.2 Heavy-Ion physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Features of Heavy-Ion Collisions 14
2.1 Collision Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Nuclear Geometry . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Hydrodynamical Modelling . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Anisotropic Flow . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 High pT Phenomena . . . . . . . . . . . . . . . . . . . . . . 24
2.3.3 Fluctuations and Event-by-Event Flow . . . . . . . . . . . . 29

2.4 Identified Charged Particle Flow . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Quark Number Scaling . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Quark Coalescence Model . . . . . . . . . . . . . . . . . . . 34

3 Methodology 36
3.1 Event Plane Method . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Event Plane Resolution from Two Sub Event Method . . . . 37
3.2 Unfolding procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Monte Carlo test of Unfolding . . . . . . . . . . . . . . . . . 40

4 AMPT model 45

5 Analysis 47
5.1 Quark Number Scaling in AMPT Model . . . . . . . . . . . . . . . 47

5.1.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.3 Comparison to ALICE Results . . . . . . . . . . . . . . . . . 49

5.2 Unfolding in AMPT . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Discussion 61
6.1 Identified Particle Flow and Quark Number Scaling . . . . . . . . . 61
6.2 Unfolding Event-by-Event Distributions . . . . . . . . . . . . . . . . 62

7 Summary 63

Appendix A Integration of 2 Dimensional Gaussian Distribution 64

3



List of Figures
1 Lattice QCD results . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2 QCD phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 η/s as a function of (T − Tc)/Tc . . . . . . . . . . . . . . . . . . . . 14
4 The definitions of the Reaction Plane and Participant Plane coor-

dinate systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Interaction between partons in central and peripheral collisions. . . 16
6 An illustration of the multiplicity distribution in ALICE measure-

ment with centrality classes. . . . . . . . . . . . . . . . . . . . . . . 17
7 The results of one Glauber Monte Carlo simulation. . . . . . . . . . 19
8 Schematic representation of a heavy-ion collision . . . . . . . . . . . 20
9 Charged particle spectra . . . . . . . . . . . . . . . . . . . . . . . . 22
10 Illustration of flow in momentum space in central and peripheral

collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11 Elliptic flow, v2 from pT = 1 to 60 GeV/c . . . . . . . . . . . . . . . 26
12 Measurements of the nuclear modification factor RAA in central

heavy-ion collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
13 A comparison between observed RAA (∆φ, pT) and RAA using v2 . . 29
14 Flow measurements of higher harmonics . . . . . . . . . . . . . . . 30
15 pT -spectra for pions, kaons and protons . . . . . . . . . . . . . . . 32
16 v2/nq as a function of pT/nq and v2/nq vs KET/nq at RHIC . . . . 33
17 Quark number scaling in ALICE . . . . . . . . . . . . . . . . . . . . 34
18 The measured v2 as a function of multiplicity by ALICE . . . . . . 41
19 Toy Monte Carlo Response matrices . . . . . . . . . . . . . . . . . . 42
20 Toy Monte Carlo results in unfolding for v2 and v3. . . . . . . . . . 42
21 Toy Monte Carlo results for various magnitudes of 〈v2〉 . . . . . . . 43
22 Azimuthal angle distribution from one toy Monte Carlo event . . . 44
23 Illustration of AMPT structure . . . . . . . . . . . . . . . . . . . . 45
24 Pseudorapidity distributions in AMPT for different centrality bins. 48
25 Particle specific v2 and v3 in AMPT. . . . . . . . . . . . . . . . . . 50
26 Particle specific Quark number scaled v2 and v3. . . . . . . . . . . . 51
27 Comparison of proton and kaon vn/nq to pion vn/nq . . . . . . . . . 52
28 v2 in AMPT and hydrodynamical simulations . . . . . . . . . . . . 53
29 Quark number scaled v2 in AMPT and hydrodynamical simulations 53
30 Ratio of v2/nq to pion v2/nq in AMPT and hydro . . . . . . . . . . 54
31 Particle identified v2 compared to ALICE . . . . . . . . . . . . . . . 55
32 Quark number scaled v2 for AMPT, ALICE and hydro . . . . . . . 56
33 Unfolding results in AMPT . . . . . . . . . . . . . . . . . . . . . . 58
34 Toy Monte Carlo Unfolding with AMPT parameters . . . . . . . . . 60

4



1 Introduction
At sufficiently high energies quarks and gluons are no longer bound to hadrons,
but they form a deconfined state known as Quark-Gluon plasma (QGP). The
main goal of heavy-ion physics is the study of QGP and its properties. One of the
experimental observables that is sensitive to the properties of QGP is the azimuthal
distribution of particles in the plane perpendicular to the beam direction.

When nuclei collide at non-zero impact parameter (non-central collisions), the
geometrical overlap region is asymmetric. This initial spatial asymmetry is con-
verted via multiple collisions into an anisotropic momentum distribution of the
produced particles. For low momentum particles (pT . 3 GeV/c), this anisotropy
is understood to result from hydrodynamically driven flow of the QGP [1–5].

One way to characterize this anisotropy is with coefficients from a Fourier se-
ries parametrization of the azimuthal angle distribution of emitted hadrons. The
second order coefficient, which is also known as elliptic flow, shows clear depen-
dence on centrality. The collision geometry is mainly responsible for the elliptic
flow. Higher harmonics don’t depend that much on centrality. These higher har-
monics carry information about the fluctuations in collisions. The event-by-event
fluctuations have an increasing importance in measurements.

In this master’s thesis identified charged particle flow and quark number scal-
ing is studied at LHC energies in A MultiPhase Transport (AMPT) [6, 7] model.
AMPT is a hybrid transport model, which models an ultra-relativistic nuclear col-
lision using many tools of Monte Carlo simulation. The results are compared to
ALICE results. In my Bachelor’s thesis I studied methods to determine the event
plane and flow coefficients in heavy-ion collisions with AMPT data. In this thesis
I have performed further analysis on the AMPT data and studied flow coefficients
of identified charged particles.

One important aspect in flow of different particle species has been quark num-
ber scaling. At RHIC energies

√
sNN = 200 GeV it was found to work almost

perfectly for pions, kaons and protons. This was taken as a strong indication
that anisotropic flow at RHIC develops primarily in the partonic phase, and is
not strongly influenced by the subsequent hadronic phase [8]. At LHC in Pb-Pb
collisions

√
sNN = 2.76 TeV it was observed that for proton v2 the quark number

scaling does not work [8]. The RHIC observations were explained by assuming
that hadronization occurs through a simple quark coalescence model, where three
nearest quarks are combined into a hadron or nearest quark-antiquark pair forms
a meson. AMPT model, that I study, uses this quark coalescence model and
therefore it is important to see whether it produces quark number scaling.

Another aspect that I studied is event-by-event flow and the unfolding method.
Unfolding is used to restore the original vn distribution from the observed distri-
bution, that is significantly smeared by limited resolution resulting from finite
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multiplicity in a single event. In this thesis I use a data-driven unfolding method
based on an iterative Bayesian procedure. I first test the performance in a toy
Monte Carlo simulation and later apply it to the AMPT data. Knowing the per-
formance of unfolding is required to know how reliable measured event-by-event
distributions are.

For future studies also the correlation between observed and true vn is impor-
tant. It has been proposed that studying jet properties separately for events with
strong or weak anisotropy would shed some new light on path length dependence
and energy loss models. For the separation on an event-by-event basis one has to
keep in mind the relation between observed and true vn.

This thesis is organised as follows: In the first section I will discuss Quan-
tum Chromodynamics, its history, its properties and how it leads to quark-gluon
plasma. I will give a brief introduction to the motivation and history of heavy-ion
physics. At the end of this chapter I will give an example of how study of heavy-ion
physics is related to string theory and the search for physics beyond the standard
model.

In section 2 I discuss the features of heavy-ion collisions. I present basic physics
behind the studied phenomena in more detail. I will discuss flow, its origins,
its relation to energy loss models and the two phenomena studied in this thesis,
fluctuating events and identified charged particle flow. I present results from RHIC
and LHC measurements of identified particle flow. Here I also define quark number
scaling and the quark coalescence model used to explain it.

In section 3 I present the methods I use in this thesis to study anisotropic flow.
I will show the event plane method used to calculate flow coefficients and the two
sub event method used to estimate event plane resolutions. Also in this section I
will present the unfolding procedure and a simple Monte Carlo simulation testing
the performance of this procedure.

In section 4 I introduce the AMPT model used to generate the data I study in
this thesis. I will go through the components used in the model. This is followed
by my analysis in section 5. I will show my analysis and my results on identified
particle flow and unfolding event-by-event distributions.

Finally I will discuss my results in section 6 and summarize my thesis in 7.
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1.1 Quantum chromodynamics

1.1.1 Foundation of QCD

There are four known basic interactions in the universe: gravity, electromagnetic,
weak and strong interactions. The standard model of particle physics includes
three of these excluding the gravitational interaction. The theory of strong inter-
actions is known as Quantum Chromodynamics (QCD).

The development of QCD began after the introduction of new powerful particle
accelerators that were capable of particle physics research in the 1950s. Before this
particles were mainly discovered from cosmic rays. Positrons, neutrons and muons
were discovered in the 1930s and charged pions were discovered in 1947 [9]. The
neutral pion was discovered in 1950 [10].

The Lawrence Berkeley National Laboratory started the Bevalac accelerator in
1954, Super Proton Synchrotron (SPS) in CERN began operating in 1959 and the
Alternating Gradient Synchrotron at Brookhaven started in 1960. With an energy
of 33 GeV AGS was the most powerful accelerator of that time. By the beginning
of 1960s several new particles had been discovered. These include antiprotons,
antineutrons, ∆-particles and the six hyperons (Ξ0, Ξ−, Σ±, Σ0 and Λ).

Facing this number of different particles started the search for symmetries. Al-
ready in 1932 Heisenberg [11] had proposed an isospin model to explain similarities
between the proton and the neutron. In 1962 Gell-Mann and Ne’eman presented
that particles sharing the same quantum numbers (spin, parity) could be organ-
ised using the symmetry of SU(3). [12] Heisenberg’s Isospin model followed the
symmetry of SU(2). Using the SU(3) model known baryons and mesons could be
presented as octets. This also lead to the discovery of the Ω− particle since this
was missing from the SU(3) decuplet that included heavier baryons.

The most simple representation of SU(3) is a triplet. Inside this triplet particles
would have electric charges 2/3 or −1/3. However, these had not been detected. In
1964 Gell-Mann [13] and Zweig proposed that baryons and mesons would be bound
states of these three hypothetical triplet particles that Gell-Mann called quarks.
Now we know that these are the u, d and s quarks. The original quark model had
still problems; it was violating the Pauli exclusion principle. For example the Ω−

particle is comprised of three s quarks, two of which would have exactly the same
quantum states.

The problem was solved by the colour quantum number. The first to present
the idea of colour had been Greenberg already in 1964 [14]. In 1971 Gell-Mann
and Frtizsch presented their model, which solved the antisymmetry problem. They
added a colour quantum number to quarks, which separated quarks of the same
species. In the new colour model the baryonic wave function became

7



(qqq)→ (qrqgqb − qgqrqb + qbqrqg − qrqbqg + qgqbqr − qbqgqr) , (1)

The colour model was also supported by experimental evidence. The decay rate
of a neutral pion with the addition of colours is

Λ
(
π0 → γγ

)
=
α2

2π

N2
c

32

m3
π

f 2
π

. (2)

For Nc = 3 this gives 7.75 eV and the measured value is (7.86± 0.54) eV [15].
Another observable that combines the colour information to the number of

quark flavours is The Drell-Ratio R [16]

R =
σ (e+ + e− → hadrons)

σ (e+ + e− → µ+ + µ−)
= Nc

∑
f

Q2
f (3)

This has the numerical value 2 when including the three light quarks u, d
and s. When the collision energy reaches the threshold of heavy quark (c and
b) production processes this increases to 10/3 (for f = u, d, s, c) and 11/3 (for
f = u, d, s, c, b). The threshold of tt̄ production,

√
s ≈ 350 GeV has not been

reached so far by any e+e− colliders.
The colour model explained why no free quarks had been observed. Only colour

neutral states are possible. The simplest ways of producing a colour neutral object
are the combination of three quarks, and the combination of a quark-antiquark
pair. These are known as baryons and mesons.

After the addition of colour the main ingredients of QCD had been established.
The final quantum field theory of Quantum Chromodynamics formed quickly be-
tween 1972 and 1974. Main part of this was the work Gross, Wilczek, Politzer
and George did for non-abelian gauge field theories [17–21]. Gross, Wilczek and
Politzer received the Nobel Prize in Physics for their work in 2004.

The role of gluons was as a colour octet was presented by Fritzsch, Gell-Mann
and Leutwyler in 1973 [22]. The theory had now 8 massless gluons to mediate the
strong interaction. Unfortunately these gluons had not been observed experimen-
tally . Indirect evidence of the existence had been seen as it was observed that
only about half of the momentum of protons was transported by the quarks [23].
Direct evidence should be seen in electron-electron collisions as a third, gluonic,
jet in addition to two quark jets. Three jet events were first seen in 1979 at the
PETRA accelerator at DESY [24–26].
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1.1.2 Asymptotic Freedom and Deconfinement of Quarks and Gluons

In Quantum Electrodynamics (QED) the electric charge is screened. In the vicinity
of a charge, the vacuum becomes polarized. Virtual charged particle-antiparticle
pairs around the charge are arranged so that opposing charges face each other.
Since the pairs also include an equal amount of opposite charge compared to the
original charge the average charge seen by an observer at a distance is smaller.
When the distance to the charge increases the effective charge decreases until the
coupling constant of QED reaches the fine-structure constant α = 1

137
.

Contrary to QED, QCD is a non-abelian theory. In other words the generators
of the symmetry group of QCD, SU(3), do not commute. This has the practical
consequence that gluons, that have a colour charge, interact also with other gluons,
whereas in QED the electrically neutral carrier particles, photons, only interact
with charged particles.

The colour charges in QCD lead to a similar screening effect as in QED, but
QCD includes also antiscreening because the gluons can also interact with other
gluons. In QCD the antiscreening effect is stronger than screening and in total
colour charges are antiscreened. For larger distances to the colour charge the cou-
pling constant is larger. This explains why no free colour charges can be observed.
When the distance between charges increases the interaction grows until it is strong
enough to produce a new quark-antiquark pair [27].

On the other hand for very small distances the coupling constant approaches
0. This is called asymptotic freedom. For large energies and small distances the
coupling constant becomes negligible. In 1975 Collins [28] predicted a state where
individual quarks and gluons are no longer confined into bound hadronic states.
Instead they form a bulk QCD matter that Shuryak called Quark-Gluon plasma
in his 1980 review of QCD and the theory of superdense matter [29].

Though QGP was predicted its properties are still obscure. Even with the final
theory of QCD making testable predictions is extremely difficult. The traditional
approach in quantum mechanics, perturbation theory, only works when the inter-
action is weak. In QCD this requires high energy or short distance interactions.
Perturbative QCD (pQCD) [30] can be used to calculate processes like the Drell
ratio.

Most of the processes can not be calculated directly with pQCD. For example
the hadron structure is nonperturbative because of colour confinement. In proton-
proton collision experiments one can use the QCD factorisation theorem, where
cross-section is separated into two parts: short-distance parton cross section that
can be calculated with pQCD and the universal long-distance functions which can
be measured with global fits to experiments.

For non-perturbative processes, like the ones present in QGP, one usually turns
to Lattice QCD. It is a lattice gauge theory formulated on a discrete Euclidean
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space time grid. When the size of the lattice is taken infinitely large and its sites
infinitesimally close to each other, the continuum QCD is recovered. Since no new
parameters or field variables are introduced in this discretization, LQCD retains
the fundamental character of QCD [31].

Lattice QCD has provided the theoretical approximations about the tempera-
ture needed for QGP formation. The results from lattice calculation are shown in
Fig. 1 [32]. The transition from hadronic matter to QGP is sharp. Thus QGP can
be seen as a separate state of matter.
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Figure 1: Lattice QCD results [32] for the energy density / T 4 as a function of the
temperature scaled by the critical temperature TC. Note the arrows on the right
side indicating the values for the Stefan-Boltzmann limit. [1]

A schematic view of a phase diagram for QCD matter as a function of tem-
perature and the baryochemical potential is shown in Fig. 2. The baryochemical
potential µ represents the imbalance between quarks and antiquarks. At zero tem-
perature this corresponds to the number of quarks but at higher temperatures
there are also additional pairs of quarks and antiquarks. At zero temperature with
increasing µ the density is zero up to the onset transition where it jumps to nuclear
density, and then rises with increasing µ. Neutron stars are in this region of the
phase diagram, although it is not known whether their cores are dense enough
to reach the quark matter phase. Along the vertical axis the temperature rises,
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taking us through the crossover from a hadronic gas to the quark-gluon plasma.
This is the regime explored by high-energy heavy-ion colliders.

Figure 2: A schematic outline for the phase diagram of QCD matter at ultra-high
density and temperature. [33]

Lattice QCD predicts a phase transformation to a quark-gluon plasma at a
temperature of approximately T ≈ 170 MeV ≈ 1012 K [1]. This transition tem-
perature corresponds to an energy density ε ≈ 1 GeV/fm3, nearly an order of
magnitude larger than that of normal nuclear matter. Thus producing QGP re-
quires extreme conditions that existed in the early universe at the age of 10−6 s
after the Big Bang and are nowadays experimentally achievable in heavy-ion colli-
sions. The study of QCD matter at high temperature is of fundamental and broad
interest. The phase transition in QCD is the only phase transition in a quan-
tum field theory that can be experimentally probed by any present or foreseeable
technology.

11



1.2 Heavy-Ion physics

The Quark Gluon Plasma (QGP) is experimentally accessible by through colli-
sions of heavy atomic nuclei at ultra-relativistic energies. Its properties and phase
transitions between hadronic matter and QGP can be explored through heavy-
ion physics. Because of the difficulties in theoretical approaches to QGP heavy-
ion physics is a field driven by experimental evidence. Thus the development of
heavy-ion physics is strongly connected to the development of particle colliders.

The first heavy-ion collisions were done at the Bevalac experiment at the
Lawrence Berkeley National Laboratory [34] and at the Joint Institute for Nuclear
Research in Dubna [35] at energies up to 1 GeV per nucleon. In 1986 the Super
Proton Synchrotron (SPS) at CERN started to look for QGP signatures in O+Pb
collisions. The center-of-mass energy per colliding nucleon pair

(√
sNN

)
was 19.4

GeV [36]. These experiments did not find any decisive evidence of the existence
of QGP. In 1994 a heavier lead (Pb) beam was introduced for new experiments at√
sNN ≈ 17 GeV. At the same time the Alternating Gradient Synchrotron (AGS)

at BNL, Brookhaven collided ions up to 32S with a fixed target at energies up
to 28 GeV [37]. Hints of QGP were already seen at SPS. Although the discovery
of a new state of matter was reported at CERN, these experiments provided no
conclusive evidence of QGP. Now SPS is used with 400 GeV proton beams for
fixed-target experiments, such as the SPS Heavy Ion and Neutrino Experiment
(SHINE) [38], which tries to search for the critical point of strongly interacting
matter.

The Relativistic Heavy Ion Collider (RHIC) at BNL in New York, USA started
its operation in 2000. The top center-of-mass energy per nucleon pair at RHIC,
200 GeV, was reached in the following years. The results from the experiments at
RHIC have provided a lot of convincing evidences that QGP was created [1,2,39,
40].

The newest addition to the group of accelerators capable of heavy-ion physics
is the Large Hadron Collider (LHC) at CERN, Switzerland. LHC started operat-
ing in November 2009 with proton-proton collisions. First Pb-Pb heavy-ion runs
started in November 2010 with

√
sNN = 2.76 TeV, an energy that is over ten times

higher than at RHIC. Among the six experiments at LHC, A Large Ion Collider
Experiment (ALICE) is dedicated to heavy-ion physics. Also CMS and ATLAS
have active heavy-ion programs.

The first indisputable evidence of QGP came from RHIC [1] measurements in
2004. Originally it was believed that QGP behaves as an ideal gas. The first hints
against the ideal gas assumption came from Lattice QCD calculations [32] which
showed that QGP approaches the Stefan-Boltzmann limit very slowly and the
RHIC observations confirmed that QGP behaves more like a strongly interacting
fluid. i.e. it has no or very little viscosity. This discovery strengthened the role
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of hydrodynamics [41–43] as a way of describing collective (low pT) phenomena
in heavy-ion physics. I will discuss the hydrodynamical approach in section 2.2.
Another approaches into modelling heavy-ion collisions have been successful. In
this thesis I will study A MultiPhase Transport (AMPT) model, which is a hybrid
model. Unlike hydrodynamics the model treats particles and their interactions
individually with the use of Monte Carlo simulations.

QGP has also provided string theorists a long sought-after method to test
dynamics of strongly-coupled gauge theory [44], since it seems that the viscosity of
the QGP is very small and might be very close to a lower bound of shear viscosity
to entropy ratio η/s suggested by string theoretical calculations1. According to the
calculations η/s, has an universal minimum value of ~/4πkB [46]. This universal
minimum value of 1/4π ≈ 0.08, would hold for all substances. According to the
theory the limit could be reached in the strong coupling limit of gauge theories
and the limit in QCD is QGP.

The ratio η/s of QGP can not be directly measured but it can be estimated
with data from heavy-ion collisions. Comparing hydrodynamical calculations with
different η/s values to experimental data gives an estimate of the η/s in the system.
The minimum value of η/s is found in the vicinity of the critical temperature,
Tc [47]. Finding the η/s values in QGP matter would therefore also provide a
way of determining the critical point of QCD matter [47]. At RHIC [47] the ratio
has been constructed from v2 measurements. The estimated ratio in QGP and
temperature dependance of the ratio in different substances is shown in Fig.3.

The η/s value for the matter created in Au-Au collisions at RHIC (
√
sNN =

200 GeV) has been estimated to be 0.09 ± 0.015 [47], which is very close to the
predicted lowest value. This suggests that the the matter created goes through a
phase where it is close to the critical point of QCD.

1One should note that finite minimal viscosity was discussed by Gyulassy and Danielewicz
already in 1980’s [45], a long before any string theoretical calculations.
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Figure 3: η/s as a function of (T −Tc)/Tc for several substances as indicated. The
calculated values for the meson-gas have an associated error of ∼ 50% The lattice
QCD value Tc = 170 MeV is assumed for nuclear matter. The lines are drawn to
guide the eye. [47]

2 Features of Heavy-Ion Collisions

2.1 Collision Geometry

In contrast to protons atomic nuclei are objects with considerable transverse size.
The properties of a heavy-ion collision depend strongly on the impact parameter
b which is the vector connecting the centers of the two colliding nuclei at their
closest approach. One illustration of a heavy-ion collision is shown in Fig. 4.

Impact parameter defines the reaction plane which is the plane spanned by b
and the beam direction. ΨRP gives the angle between the reaction plane and some
reference frame angle. Experimentally the reference frame is fixed by the detector
setup. Reaction plane angle cannot be directly measured in high energy nuclear
collisions, but it can be estimated with the event plane method [48].

Participant zone is the area containing the participants. The distribution of
nucleons in the nucleus exhibits time-dependent fluctuations. Because the nucleon
distribution at the time of the collision defines the participant zone, the axis of
the participant zone fluctuates and can deviate from the reaction plane. The angle
between the participant plane and the reaction plane is defined by [50]
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Figure 4: The definitions of the Reaction Plane and Participant Plane coordinate
systems [49]. The dashed circles represent the two colliding nuclei and the green
dots are partons that take part in the collision. xPP and xRP are the participant
and reaction planes. The angle between xRP and xPP is given by Eq. (4). yPP
and yRP are lines perpendicular to the participant and reaction planes.

ψPP = arctan
−2σxy

σ2
y − σ2

x +
√(

σ2
y − σ2

x

)2
+ 4σ2

xy

, (4)

where the σ-terms are averaged over the energy density.

σ2
y = 〈y2〉 − 〈y〉2, σ2

x = 〈x2〉 − 〈x〉2, σxy = 〈xy〉 − 〈x〉〈y〉 (5)

The impact parameter is one way to quantize the centrality of a heavy-ion
collision but it is impossible to measure in a collision. It can be estimated from
observed data using theoretical models, but this is always model-dependent and
to compare results from different experiments one needs an universal definition for
centrality. The difference between central and peripheral collisions is illustrated
in Fig. 5. In a central collision the overlap region is larger than in a peripheral
collision. Larger overlap region translates into a larger number of nucleons partici-
pating in the collision, which in turn leads to a larger number of particles produced
in the event.

Usually centrality is defined by dividing collision events into percentile bins by
the number participants or experimentally by the observed multiplicity. Centrality
bin 0-5% corresponds to the most central collisions with the highest multiplicity
and higher centrality percentages correspond to more peripheral collisions with
lower multiplicities. A multiplicity distribution from ALICE measurements [51]
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(a) Peripheral collision (b) Central collision

Figure 5: Interaction between partons in central and peripheral collisions. The
snowflakes represent elementary parton-parton collisions. When the impact pa-
rameter b is large the number of elementary collisions is small. Particle production
is small. Smaller impact parameter increases the number of elementary collisions.
This increases particle production.

illustrating the centrality division is shown in Fig. 6. The distribution is fitted
using a phenomenological approach based on a Glauber Monte Carlo [52] plus a
convolution of a model for the particle production and a negative binomial distri-
bution.

2.1.1 Nuclear Geometry

To model heavy-ion collisions one must first have a description as good as possible
of the colliding objects. Atomic nuclei are complex ensembles of nucleons. The
nuclei used in heavy-ion physics have in the order of 200 nucleons. Mostly used
nuclei are 208Pb at LHC and 197Au at RHIC. The distribution of these nucleons
within a nucleus is not uniform and is subject to fluctuations in time.

Nuclear geometry in heavy-ion collisions is often modelled with the Glauber
Model. The model was originally developed to address the problem of high energy
scattering with composite particles. Glauber presented his first collection of papers
and unpublished work in his 1958 lectures [53]. In the 1970’s Glauber’s work
started to have utility in describing total cross sections. Maximon and Czyz applied
it to proton-nucleus and nucleus-nucleus collisions in 1969 [54].

In 1976 [55] Białłas, Bleszyński, and Czyż applied Glauber’s approach to
inelastic nuclear collisions. Their approach introduced the basic functions used in
modern language including the thickness function and the nuclear overlap function.
Thickness function is the integral of the nuclear density over a line going through
the nucleus with minimum distance s from its center

TA (s) =

∫ ∞
−∞

dzρ
(√

s2 + z2
)
. (6)

This function gives the thickness of the nucleus, i.e. the amount material seen by
a particle passing through it.
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Figure 6: An illustration of the multiplicity distribution in ALICE measurements.
The red line shows the fit of the Glauber calculation to the measurement. The
data is divided into centrality bins [51]. The size of the bins corresponds to the
indicated percentile.

Overlap function is an integral of the thickness functions of two colliding nuclei
over the overlap area. This can be seen as the material that takes part in the
collision. It is given as a function of the impact parameter b

TAB (b) =

∫
ds2TA (s̄)TB

(
s̄− b̄

)
(7)

The average overlap function, 〈TAA〉, in an A-A collisions is given by [56]

〈TAA〉 =

∫
TAA (b) db∫ (

1− e−σinelpp TAA(b)
)
db
. (8)

Using 〈TAA〉 one can calculate the mean number of binary collisions

〈Ncoll〉 = σinelpp 〈TAA〉 , (9)

where the total inelastic cross-section, σinelpp , gives the probability of two nucleons
interacting. The number of binary collisions is related to the hard processes in a
heavy-ion collision. Each binary collision has equal probability for direct produc-
tion of high-momentum partons. Thus the number of high momentum particles is
proportional to 〈Ncoll〉.
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Soft production on the other hand is related to the number of participants.
It is assumed that in the binary interactions participants get excited and further
interactions are not affected by previous interactions because the time scales are
too short for any reaction to happen in the nucleons. After the interactions ex-
cited nucleons are transformed into soft particle production. Production does not
depend on the number of interactions a nucleon has gone through. The average
number of participants, 〈Npart〉 can also be calculated from the Glauber model

〈
NAB
part (b)

〉
=

∫
ds2TA (s̄)

1−

[
1− σNN

TB
(
s̄− b̄

)
B

]B
+

∫
ds2TB (s̄)

1−

[
1− σNN

TA
(
s̄− b̄

)
A

]A . (10)

Glauber calculations require some knowledge of the properties of the nuclei.
One requirement is the nucleon density distribution, which can be experimen-
tally determined by studying the nuclear charge distribution in low-energy elec-
tron scattering experiments [52]. The nucleon density is usually parametrized by
a Woods-Saxon distribution

ρ (r) =
ρ0

1 + exp
(
r−R
a

) , (11)

where ρ0 is the nucleon density in center of the nucleus, R is the nuclear radius
and a parametrizes the depth of the skin. The density stays relatively constant as
a function of r until around R where it drops to almost 0 within a distance given
by a.

Another observable required in the calculations is the total inelastic nucleon-
nucleon cross-section σNN

inel. This can be measured in proton-proton collisions at
different energies.

There are two often used approaches to Glauber calculations. The optical ap-
proximation is one way to get simple analytical expressions for the nucleus-nucleus
interaction cross-section, the number of interacting nucleons and the number of
nucleon-nucleon collisions. In the optical Glauber it is assumed that during the
crossing of the nuclei the nucleons move independently and they will be essentially
undeflected.

With the increase of computational power at hand the Glauber Monte Carlo
(GMC) approach has emerged as a method to get a more realistic description of
the collisions. In GMC the nucleons are distributed randomly in three-dimensional
coordinate system according to the nuclear density distributions. Also nuclear
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parameters, like the radius R can be sampled from a distribution. A heavy-ion
collision is then treated as a series of independent nucleon-nucleon collisions, where
in the simplest model nucleons interact if their distance in the plane orthogonal
to the beam axis, d, satisfies

d <
√
σNN
inel (12)

The average number of participants and binary collisions can then be determined
by simulating many nucleus-nucleus collisions. The results of one GMC Pb-Pb
event with impact parameter b = 9.8fm is shown in Fig. 7
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Figure 7: The results of one Glauber Monte Carlo simulation. Big circles with
black dotted boundaries represent the two colliding nuclei. The participant zone
is highlighted with the solid red line. Small red and blue circles represent nucleons.
Circles with thick boundaries are participants i.e. they interact with at least one
nucleon from the other nucleus. Small circles with dotted boundaries are spectators
which do not take part in the collision.

2.2 Hydrodynamical Modelling

The relativistic version of hydrodynamics has been used to model the deconfined
phase of a heavy-ion collision with success. Heavy-ion collisions produce many
hadrons going into all directions. It is expected that tools from statistical physics
would be applicable to this complexity [57]. The power of relativistic hydrodynam-
ics lies in its simplicity and generality. Hydrodynamics only requires that there is
local thermal equilibrium in the system. In order to reach thermal equilibrium the
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system must be strongly coupled so that the mean free path is shorter than the
length scales of interest [58].

The use of relativistic hydrodynamics in high-energy physics dates back to
Landau [59] and the 1950’s, before QCD was discovered. Back then it was used
in proton-proton collisions. Development of hydrodynamics for the use of heavy-
ion physics has been active since the 1980’s, including Bjorken’s study of boost-
invariant longitudinal expansion and infinite transverse flow [41]. Major steps
were taken later with the inclusion of finite size and and dynamically generated
transverse size [42, 43], a part of which was done at the University of Jyväskylä.
The role of hydrodynamics in heavy-ion physics was strengthened when QGP was
observed to behave like a liquid by RHIC [1].

The evolution of a heavy-ion event can be divided into four stages. A schematic
representation of the evolution of the collisions is shown in Fig. 8. Stage 1 follows
immediately the collision. This is known as the pre-equilibrium stage. Hydrody-
namic description is not applicable to this regime because thermal equilibrium is
not yet reached. The length of this stage is not known but it is assumed to last
about 1 fm/c in proper time τ .
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Figure 8: Schematic representation [58] of a heavy-ion collision as the function of
time and longitudinal coordinates z The various stages of the evolution correspond
to proper time τ =

√
t2 − z2 which is shown as hyperbolic curves separating the

different stages.

The second stage is the regime where thermal equilibrium or at least near-
equilibrium is reached. In this stage hydrodynamics should be applicable if the
temperature is above the deconfinement temperature [58]. This lasts about 5 −
10 fm/c until the temperature of the system sinks low enough for hadronization to
occur. Now the system loses its deconfined, strongly coupled, state and hydrody-
namics can no longer be used. The third stage is the hadron gas stage where the
hadrons still interact. This ends when hadron scattering becomes rare and they
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no longer interact. In the final stage hadrons are free streaming and they fly in
straight lines until they reach the detector.

The hydrodynamical approach treats the ensemble of particles as a fluid. It
uses basic equations from hydrodynamics and thermodynamics but with a few
modifications to account for the relativistic energies. The calculation is based
on a collection of differential equations connecting the local thermal variables like
temperature, pressure etc. to local velocities of the fluid. One also needs equations
of state that connect the properties of the matter, e.g. temperature and pressure
to density. Given initial conditions and equations of state the calculation gives the
time-evolution of the system.

At first only ideal hydrodynamics was used. Ideal hydrodynamics does not
include viscosity but it is a relatively good approximation and it could predict
phenomena like elliptic flow. For more detailed calculations also viscosity must be
considered and viscosity itself is an interesting property of QGP.

In this thesis I compare my results of identified particle flow to calculations from
two hydrodynamical models; VISHNU model by Song et al. [60] and calculations
by Niemi et al. [61].
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2.3 Flow

In a heavy-ion collision the bulk particle production is known as flow. The pro-
duction is mainly isotropic but a lot of studies including my thesis focus on the
small anisotropies. After the formation of the QGP, the matter begins to expand
as it is driven outwards by the strong pressure difference between the center of the
collision zone and the vacuum outside the collision volume. The pressure-driven
expansion is transformed into flow of low-momentum particles in the hadroniza-
tion phase. Since the expansion is mainly isotropic the resulting particle flow is
isotropic with small anisotropic corrections that are of the order of 10% at most.
The isotropic part of flow is referred to as radial flow.

The transverse momentum spectra dN/ dpT in heavy-ion collisions is shown
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Figure 9: Charged particle spectra measured by ALICE [62] for the 9 centrality
classes given in the legend. The distributions are offset by arbitrary factors given
in the legend for clarity. The distributions are offset by arbitrary factors given in
the legend for clarity. The dashed lines show the proton-proton reference spectra
scaled by the nuclear overlap function determined for each centrality class and by
the Pb-Pb spectra scaling factors [62].
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in Fig. 9. The vast majority of produced particles have small pT. The difference
between the yield of 1 GeV/c and 4 GeV/c particles is already 2-3 orders of mag-
nitude. Any observables that are integrated over pT are therefore dominated by
the small momentum particles.

2.3.1 Anisotropic Flow

In a non-central heavy-ion collision the shape of the impact zone is almond-like.
In peripheral collisions the impact parameter is large which means a strongly
asymmetric overlap region. In a central collision the overlap region is almost
symmetric in the transverse plane. In this case the impact parameter is small.
Collisions with different impact parameters are shown in Fig. 5.

The pressure gradient is largest in-plane, in the direction of the impact pa-
rameter b, where the distance from high pressure, at the collision center, to low
pressure, outside the overlap zone, is smallest. This leads to stronger collective
flow into in-plane direction, which in turn results in enhanced thermal emission
through a larger effective temperature into this direction, as compared to out-of-
plane [3,4,63]. The resulting flow is illustrated in Fig. 10. Flow with two maxima
in the direction of the reaction plane is called elliptic flow. This is the dominant

(a) Peripheral collision (b) Central collision

Figure 10: Illustration of flow in momentum space in central and peripheral colli-
sions. The density of the arrows represent the magnitude of flow seen at a large
distance from the collision in the corresponding azimuthal direction. In a pe-
ripheral collision momentum flow into in-plane direction is strong and flow into
out-of-plane direction is weak. In a central collision anisotropy in flow is smaller,
but the total yield of particles is larger.
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part of anisotropic flow. Also more complex flow patterns can be identified. The
most notable of these is the triangular flow, which is mainly due to fluctuations in
the initial conditions.

Flow is nowadays usually quantified in the form of a Fourier composition

E
d3N

dp3
=

1

2π

d2N

pT dpT dη

(
1 +

∞∑
n=1

2vn (pT, η) cos(n(φ−Ψn))

)
, (13)

where the coefficients vn give the relative strengths of different anisotropic flow
components and the overall normalisation gives the strength of radial flow. Elliptic
flow is represented by v2 and v3 represents triangular flow. The first coefficient,
v1, is connected to directed flow. This will however in total be zero because of
momentum conservation. It can be nonzero in some rapidity or momentum regions
but it must be canceled by other regions.

The first approaches to quantifying the anisotropy of flow did not use the
Fourier composition. Instead they approached the problem with a classic event
shape analysis using directivity [64] or sphericity [3, 65] to quantify the flow.

The first experimental studies of anisotropy were performed at the AGS [66]
in 1993. They noted that the anisotropy of particle production in one region
correlates with the reaction plane angle defined in another region.

The first ones to present the Fourier decomposition were Voloshin and Zhang in
1996 [67]. This new approach was useful for detecting different types of anisotropy
in flow, since the different Fourier coefficients give different harmonics in flow.
They also show the relative magnitude of each harmonic compared to radial flow.

Some parts of the Fourier composition approach were used for Au-Au collisions
at
√
sNN = 11.4 GeV at AGS in 1994 [68]. This analysis still focused on event

shapes but they constructed these shapes using Fourier composition from different
rapidity windows.

2.3.2 High pT Phenomena

The measurement of anisotropic flow coefficients can be extended to very high
transverse momenta pT. High pT measurements of v2 from CMS [69] are shown
in Fig. 11. For high transverse momenta v2 values are positive and they decrease
slowly as a function of pT. At high transverse momentum the v2 values don’t,
however, represent flow.

High momentum particles are very rare and they are only produced in the
initial collisions. After they are created they escape the medium before a thermal
equilibrium is reached. Thus they are not part of the pressure-driven collective
expansion. Instead high momentum yield is suppressed because of energy loss in
the medium. When propagating through the medium these partons lose energy as
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they pass through the medium. This is referred to as jet quenching. Jet quenching
depends on the path lengths through the medium. Thus anisotropy in this region
is mainly dependent on the collision geometry and density of medium.

The energy loss of partons in medium is mainly due to QCD bremsstrahlung
and to elastic scatterings between the parton and the medium.

In elastic scatterings the recoil energy of the scattered partons are absorbed
by the thermal medium, which reduces the energy of the initial parton. The mean
energy loss from elastic scatterings can be estimated by

〈∆E〉el = σρL 〈E〉1scatt ∝ L, (14)

where σ is the interaction cross section and 〈E〉1scatt is the mean energy transfer
of one individual scattering [70].

Another energy loss mechanism is medium-induced radiation. In QCD this
radiation is mainly due to the elementary splitting processes, q → qgr and g → ggr.
Assuming that the parton is moving with the speed of light radiation energy loss
can be estimated by

〈∆E〉rad ∝ T 3L2, (15)

where L is the length of the medium and T is its temperature [71].
There are several models that attempt to describe the nature of the energy loss

mechanism. The most used models can be divided into four formalisms.
In the Gyulassy-Levai-Vitev (GLV) [72] opacity expansion model the radiative

energy loss is consiered on a few scattering centers Nscatt. The radiated gluon
is constructed by pQCD calculation as summing up the relevant scattering am-
plitudes in terms of the number of scatterings. Another approach into opacity
expansion is the ASW model by Armesto, Salgado and Wiedermann [73].

Thermal effective theory formulation by Arnold, Moore and Yaffe (AMY) [74]
uses dynamical scattering centers. It is based on leading order pQCD hard thermal
loop effective field theory. This model assumes that because of the high temper-
ature of the plasma the strong coupling constant can be treated as small. The
parton propagating through the medium will lose energy from soft scatterings and
hard scatterings.

The above models calculate the energy loss while the parton propagates through
the medium, focusing on the pQCD part. The higher twist (HT) approach byWang
and Guo [75] implements the energy loss mechanism in the energy scale evolution
of the fragmentation functions.

The last category is formed by the Monte Carlo methods. The PYTHIA event
generator [76] is widely used in high-energy particle physics. Two Monte Carlo
models based on PYTHIA describing the energy loss mechanism are PYQUEN [77]
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Figure 11: Elliptic flow, v2, as a function of the charged particle transverse momen-
tum from 1 to 60 GeV/c with |η| < 1 for six centrality ranges in Pb-Pb collisions
at
√
sNN = 2.76 TeV, measured by the CMS experiment. [69].
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and Q-Pythia [78]. Other Monte Carlo models include JEWEL [79] and Ya-
JEM [80].

Jet quenching in heavy-ion collisions is usually quantized with the nuclear
modification factor RAA, which is is defined as

RAA (pT) =
(1/N evt

AA) dNAA/ dpT
〈Ncoll〉 (1/N evt

pp ) dNpp/ dpT
(16)

where dNAA/ dpT and dNpp/ dpT are the yields in heavy-ion and proton-proton
collisions, respectively and 〈Ncoll〉 is the average number of binary nucleon-nucleon
collisions in one heavy-ion event. The number of binary collisions can be calculated
from the Glauber model as shown in Sec. 2.1.1. From the point of view of direct
production a heavy-ion collision can be estimated relatively well to be only a series
of proton-proton collisions.

If the medium has no effect on high pT particles the nuclear modification factor
should be 1. At RHIC and LHC this has been observed to be as low as 0.2 because
of jet quenching. Measurements of RAA from different sources are shown in Fig. 12

The nuclear modification factor can also be used to quantify anisotropy. In
the study of anisotropy RAA in-plane and out-of-plane can be compared. The
distance traveled through medium is largest out-of-plane which leads to stronger
suppression in this direction. The nuclear modification factor as a function of
∆φ = φ− ψn is given by

RAA (∆φ, pT) =
(1/N evt

AA) d2N
AA
/d∆φ dpT

〈Ncoll〉 (1/N evt
pp ) dNpp/ dpT

≈ dNAA/ dpT (1 + 2 · v2 cos (2∆φ))

〈Ncoll〉 dNpp/ dpT

= Rincl
AA (pT) (1 + 2 · v2 cos (2∆φ)) . (17)

The yield of proton-proton collisions is independent of the reaction plane and
the yield in heavy-ion collisions is modulated by the second harmonics. In Eq. (17)
RAA is approximated only up to the second harmonics. From Eq. (17) it follows
that

RAA (0, pT)−RAA (π/2, pT)

Rincl
AA (pT)

≈ Rincl
AA (pT) (1 + 2 · v2 − (1− 2 · v2))

Rincl
AA (pT)

= 4 · v2 (18)

The observed RAA (∆φ, pT) from PHENIX measurements in Au-Au collisions at√
s = 200 GeV [92] is compared to RAA using v2 via Eq. (17) in Fig. 13. They

agree very well within the statistical errors for all centrality and pT bins.
At high-pT, the pQCD processes are dominant, hence the vn (or RAA(∆φ, pT))

characterize the pathlength-dependence of the energy loss process.
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Figure 12: Measurements of the nuclear modification factor RAA in central heavy-
ion collisions at three different center-of-mass energies, as a function of pT, for
neutral pions (π0), charged hadrons (h±), and charged particles [81–85], compared
to several theoretical predictions [36, 86–90]. The error bars on the points are the
statistical uncertainties, and the yellow boxes around the CMS points are the
systematic uncertainties. The bands for several of the theoretical calculations
represent their uncertainties [91].

Jet quenching is not the only high pT phenomenon studied in heavy-ion colli-
sions. Another property is jet fragmentation. The high momentum parton created
in the initial collision fragments into a number of partons with smaller pT. Jet
fragmentation occurs also in proton-proton collisions in the vacuum, but it can
be modified due to the presence of the medium. In order to study the jet frag-
mentation function (D(z), where z = phT/p

part
T ) modification due the medium, we

use the two-particle correlations. The particle yield can be extracted from the
correlation function. The background from the flow processes is correlated and
needs to be subtracted to get the particle yield associated only with the jet. The
ratio of the jet yields in Au-Au and p-p collision IAA = Y Au+Au/Y p+p character-
izes the jet fragmentation modification [93]. IAA probes the interplay between the
parton production spectrum, the relative importance of quark-quark, gluon-gluon
and quark-gluon final states, and energy loss in the medium.
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Figure 13: A comparison between observed RAA (∆φ, pT) and RAA using v2 from
PHENIX measurements of Au-Au collisions at

√
s = 200 GeV. On the X-axis

is the measured RAA (∆φ, pT). On the y-axis is the inclusive RAA multiplied by
1 + 2v2 cos (∆φ) [92].

2.3.3 Fluctuations and Event-by-Event Flow

The colliding nuclei are not static objects but the distribution of nucleons fluctuates
over time. The arrangement of the nucleons at the time of the collision is random,
which leads to fluctuations in the initial conditions. The shape of the collision zone
is not a perfect almond and it can have a more complex shape. Also the density of
the created medium is not homogenous but it can have dense hot spots. The initial
density distribution of the created medium is the main reason for anisotropic flow.
Because of fluctuations the strength of anisotropic flow is not constant event-by-
event.

The existence of more complex density profiles also leads to odd flow harmonics.
The basic hydrodynamical approach could only explain elliptic flow and even-
harmonics. For a long time it was believed that the odd harmonics would be
negligible. In 2007 Mishra et al. [94] argued that density inhomogeneities in the
initial state would lead to non-zero vn values for higher harmonics including v3. It
was later noted that higher harmonics of vn would be suppressed by viscous effects
and that the shape of vn as a function of n would provide another valuable tool
for studying η/s [95].

In 2010 significant v3 components were also observed in RHIC data [96]. The
AMPT model that is also studied in this thesis was able to quantitatively describe
the centrality dependence of v3 at RHIC and LHC energies,

√
sNN = 200 GeV and
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Figure 14: Flow measurements of higher harmonics

2.76 TeV [97].
Contrary to elliptic flow higher harmonics are not strongly affected by the

centrality of the collision. This supports the theory of higher harmonics being the
result of fluctuations. Also v2 measurements of ultra-central collisions give non-
zero results for flow, even though the traditional approach based on the anisotropy
of the overlap zone gives no prediction of anisotropic flow. This is also the result of
fluctuations. Measurement of distributions of vn coefficients has been performed at
ATLAS [98]. Their measurements of distributions for v2 in central collisions and for
v3 and v4 in general are consistent with a pure Gaussian fluctuation scenario [98].

Measurements of different flow harmonics are shown in Fig. 14. The left panel
shows different flow harmonics as a function of pT as measured by ALICE [99] in
peripheral collisions. In general flow coefficients decrease as a function of n after
n = 2. Central collisions are an exception.The right panel of Fig. 14 shows vn as
a function of n in central collisions as measured by ALICE [100].
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Measurement of event-by-event flow and higher harmonics has growing impor-
tance in the field. Triangular flow is useful also for studying jet quenching and
in-medium energy loss since anisotropies of flow are related to the path lengths
of partons traversing through the medium. Path-lengths and medium density in
turn are related the energy loss. An interesting topic of future research would
be studying jet properties like RAA separately in events with strong and weak
anisotropy.
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2.4 Identified Charged Particle Flow

In this thesis I study flow of identified charged particles in the AMPT model.
Analysis of identified flow has been performed already at RHIC and now at LHC.
The ALICE detector at LHC has unique particle identification capabilities. This
makes it well suited to measuring flow of identified particles [102]. Results from
ALICE for spectra of pions, kaons and protons are shown in Fig. 15. The exper-
imental results are overlaid with hydrodynamical calculations from the VISHNU
model [60]. The figure shows that vast majority of hadrons produced in a heavy-
ion collision are pions. The yield of pions is an order of magnitude larger than the
yield of kaons and almost three orders larger than the yield of protons. Pions are
the lightest of hadrons (mass of π± ≈ 140 MeV/c) which makes producing them
more favourable than production of protons (mass ≈ 938 MeV/c).
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Figure 15: Transverse momentum spectra for pions, kaons and protons in
√
sNN =

2.76 TeV Pb-Pb collisions. Experimental data are from ALICE [102]. Theoreti-
cal curves are from hydrodynamical calculations [60]. From top to bottom the
curves correspond to 0-5% (×1000), 5-10% (×100), 10-20% (×10), 20-30%, 30-
40% (×0.1), 40-50% (×0.01), 50-60% (×0.001), 60-70% (×10−4), 70-80% (×10−5)
centrality, respectively, where the factors in parentheses indicate the multipliers
applied to the spectra for a more clear presentation [60].
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Figure 16: (a) v2 as a function of pT, (b) v2/nq as a function of pT/nq and (right)
v2/nq as a function of KET/nq for identified particle species obtained in minimum
bias Au-Au collisions [103].

2.4.1 Quark Number Scaling

Anisotropic flow studies can be extended to identified particles. When studying
elliptic flow coefficients of different particle species as a function of pT one sees that
the data are ordered by the masses of the particles. There is also a clear separation
between mesons and baryons. Scaling vn coefficients by the number of quarks, nq
(For mesons nq = 2 and for baryons nq = 3) removes this separation. Results from
v2 measurements in Au-Au collisions at

√
sNN = 200 GeV from PHENIX [103] are

shown in Fig. 16. At RHIC it was further observed that plotting the coefficients
as a function of transverse kinetic energy KET

KET =
√
m2 + p2T −m (19)

instead of pT removes the mass ordering and gives almost perfect scaling between
identified hadrons. Differences vanish in some energy range completely [103]. This
was taken as a strong indication that anisotropic flow at RHIC develops primarily
in the partonic phase, and is not strongly influenced by the subsequent hadronic
phase [8].

Particle specific flow has also been studied in ALICE at LHC with
√
sNN =

2.76 TeV [8]. It has been observed that the quark number scaling that worked
perfectly at RHIC breaks down at LHC energies. Pions and kaons align well, but
proton v2/nq (KET ) data does not follow the meson data. Data from ALICE is
shown in Fig. 17.
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One way to get similar scaling also for protons was presented by Lacey et al [8].
They assumed that proton data had a blueshift of 0.2 GeV/c and correcting this
with a similar redshift, i.e. decreasing the proton pT by 0.2 GeV/c prior to the
quark number scaling almost restores the scaling between protons and light mesons.
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Figure 17: Identified particle flow coefficients with quark number scaling as mea-
sured by ALICE.

2.4.2 Quark Coalescence Model

Quark number scaling has been explained by a simple quark coalescence model,
with constituent quark recombination [104]. Since v2 is the coefficient from a
Fourier series it can be calculated for quarks by

v2,q = 〈cos (2φ)〉 =
1

2π

∫ 2π

0

dN quark

dφ
cos (2φ) dφ, (20)

In the coalescence model the hadronization phase is described such that three
nearest quarks combine into a baryon and nearby quark-antiquark pairs combine
into mesons. The usual coalescence model assumes that the invariant spectrum
of particles produced in the hadronization is proportional to the product of the
invariant spectra of constituents, i.e. the quarks [104]. In this case the Baryon Nb

and meson Nm spectra are given by

dNb

d2pT
(pT) = Cb (pT)

[
dNq

d2pT

(pT,q
3

)]3
dNm

d2pT
(pT) = Cm (pT)

[
dNq

d2pT

(pT,q
2

)]2
, (21)
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where the coefficients Cb and Cm are probabilities for qq̄ to meson and qqq to
baryon coalescence. Hence the meson and baryon v2 coefficients are

v2,h =
1

2π

∫ 2π

0

(
dN quark

dφ

)nq
cos (2φ) dφ = nqv2,q. (22)

where nq is the number of quarks. Therefore

v2,m (KET ) ≈ 2 · v2,q
(
KET

2

)
,

v2,b (KET ) ≈ 3 · v2,q
(
KET

3

)
(23)

Identified charged particle flow at LHC energies has also been studied in hy-
drodynamical calculations. For example in the VISHNU model [60]. The model
has provided similar results as the LHC measurements.

The simple quark coalescence model has been challenged and nowadays many
believe that there is actually no reason for perfect quark number scaling. So far
there is no agreement of what causes the breaking of quark number scaling at LHC
energies or why it worked so well for RHIC data.

The AMPT model that I study in thesis uses the simple quark coalescence
assumption in the hadronization phase. Therefore it should give perfect quark
number scaling. I will present results of identified particle flow and quark number
scaling in the model.
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3 Methodology
I will now explain the basic principles and methods I use in this thesis concern-
ing the determination of flow coefficients. I study only simulated data but these
methods are used also for real experimental data. There are several ways of cal-
culating the vn coefficients. In this thesis I use the event plane method for the
identified charged particle flow coefficients which are averaged over events. For
event-by-event flow I use another method that is explained in section 3.2.

3.1 Event Plane Method

The azimuthal angle dependence of the invariant yield, as a function of pT and
rapidity y, can be expressed using Fourier series as

E
d3N

dp3
=

1

2π

d2N

pTdpTdy

(
1 +

∞∑
n=1

2vn (pT, y) cos(n(φ− ψn))

)
, (24)

where the vn coefficients are the flow coefficients. They also depend on pT and
y. Event plane method uses event plane angles ψn to calculate these coefficients.
Event planes, unlike the reaction plane, depend on n and are only defined by the
Fourier series.

The first step is the calculation of the event flow vector Qn, which is defined as

Qn,x =
∑
i

wi cos(nφi) = Qn cos(nψn),

Qn,y =
∑
i

wi sin(nφi) = Qn sin(nψn). (25)

We sum over all particles used in determination of the event plane (i index). wi
is the weight for particle i and φi is its azimuthal angle in the laboratory frame. In
this study there is no weighting and wi = 1. When using weighting the weight wi
should approximate vn(pT, y). For low transverse momentum vn(pT, y) increases
almost linearly with pT [48]. The transverse momentum is therefore a good and
common choice as weight. The difference between using unity or weighting with
pT is small [105].

One gets the event plane angle from Qn

ψn =
1

n
arctan

(
Qn,y

Qn,x

)
. (26)

The observed vn is given by the average over azimuthal angles of all particles of a
single type in an event in a given pseudorapidity and transverse momentum space
bin
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vobsn (pT, η) = 〈cos[n(φi − ψn)]〉. (27)

One must be careful not to use the particles that were used in sums (25) to
calculate vn. Otherwise this leads to auto-correlations. In this thesis this is avoided
by using forward particles to calculate the event plane angles and mid-rapidity
particles to calculate vn coefficients.

Finite multiplicity limits the estimation of the event plane angle. If there
is a difference between the measured event plane and the true event plane, i.e.
ψn − ψtrue

n 6= 0 the observed flow coefficient changes. This must be corrected with
the event plane resolution which is defined as

Rn = 〈cos[n(ψn − ψtrue
n )]〉, (28)

where the average is taken over a large number of events [50]. Although Rn is
not constant event-by-event, only the average value is often used. In an ideal case
one would use event-by-event resolutions but in practice this is more challenging.
The resolution depends on strength of flow and available statistics. Stronger flow
makes the estimation of event planes more accurate. Thus with more multiplicity
or larger vn coefficients the resolution is larger.

This resolution formula requires that one knows the actual event plane an-
gle ψtrue

n . This is possible in simulations, but in real experiments this has to be
modified to work without ψtrue

n .
The final flow coefficients are given by the resolution correction

vn =
vobsn
Rn

. (29)

3.1.1 Event Plane Resolution from Two Sub Event Method

In general the true event plane angle is not known. Therefore the event plane
resolution has to be estimated using alternative methods. An estimate can be
done by dividing the full event into two subevents.

For the two-subevent method one must have two symmetric detectors or two
subsets with the same multiplicities from an event. In this method the event plane
resolution can be expressed as a function of the resolution parameter χ, which is
a function of vn and the multiplicity, N [48]

χ = vn
√
N, (30)

Rn = 〈cos(n(ψn − ψtrue
n ))〉 =

√
π

2
χe−

χ2

2

[
In−1

2

(
χ2

2

)
+ In+1

2

(
χ2

2

)]
, (31)
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where I is the modified Bessel function of the first kind.
For subsets A and B with same multiplicities the resolution is the same. This

resolution can also be expressed as a function of the difference between the two
event planes obtained from subsets A and B

RA
n = 〈cos

(
n
(
ψAn − ψtrue

n

))
〉 = 〈cos

(
n
(
ψBn − ψtrue

n

))
〉

=
√
〈cos (n (ψAn − ψBn ))〉. (32)

Using Eq. (31) the resolution parameter of the subevent, χA, can be estimated
numerically using the subevent resolution from Eq. (32). The multiplicity of
the full event is twice the multiplicity of one subevent. Therefore the resolution
parameter of the full event is

χ =
√

2χA. (33)
The event plane resolution of the full event can be then calculated using Eq. (31)

with the resolution parameter of the full event from Eq. (33).

3.2 Unfolding procedure

The flow coefficients are not constant event-by-event, because of fluctuations in the
initial conditions. In addition to average values the distributions of vn coefficients
are important observables in heavy-ion collisions. Unfortunately the experimental
methods have their own uncertainties and they smear the distribution. To get the
true distribution one must be able to remove these effects.

The process of removing the smearing from experimental methods is known as
unfolding. Unfolding can be used to get the true distribution from the observed
distribution. In this thesis I use a data-driven method based on a Bayesian un-
folding procedure [106]. The method uses a response function p

(
vobsn |vn

)
and an

initial guess of the shape of the distribution to construct the response matrix.
First I calculate the vn coefficients for each event. In this calculation I don’t

use the event plane method, because it produces also a certain amount of negative
values. These are problematic for the unfolding procedure. Instead I calculate the
flow vector v̄obsn =

(
vobsn,x, v

obs
n,y

)
which is the normalised Q-vector.

vobsn,x =
1

Nch

Nch∑
i=1

cos(nφi)

vobsn,y =
1

Nch

Nch∑
i=1

sin(nφi) (34)
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The magnitude of the flow vector gives the flow coefficient

vobsn =

√(
vobsn,x
)2

+
(
vobsn,y
)2 (35)

The next step is determining the response function. I do this with a two-
subevent method. I randomly divide charged particles into two subevents and for
both subevents I calculate v̄obsn separately. The smearing is estimated from the
distribution of the difference of the flow vectors between the two sub events.

p
(
v̄an − v̄bn

)
= p

(
van,x − vbn,x, van,y − vbn,y

)
(36)

For this distribution the physical flow signal is canceled out [106]. The distribution
is well described by a 2 dimensional Gaussian with identical widths, δ2se, in both
dimensions.

This distribution is related to the
(
vobsn , vn

)
distribution.

p
(
v̄obsn |v̄n

)
=

1

2
p
(
v̄an − v̄bn

)
≈ 1

2πσ2
n

e
−(v̄obsn −v̄n)

2

2σ2
n , (37)

where σn = σ2se/2. The 1-dimensional response function can then be obtained by
integrating out the azimuthal angle from the 2-dimensional Gaussian. The result
is

p
(
vobsn |vn

)
≈ 1

2πσ2
n

e
−

(vobsn )
2
+v2
n

2σ2
n I0

(
vobsn vn
σ2
n

)
, (38)

where I0 is the modified Bessel function of the first kind and σn = σ2se/2 [106].
After constructing the response function I make an initial guess about the true

vn distribution. As an estimate I use the distribution

p (vn) =
vn
σ2
e−

v2
n

2σ2 , (39)

As shown in appendix A this is the radial projection of a 2 dimensional Gaus-
sian distribution in v̄n. The σ parameter is given by σ =

√
2/π 〈vn〉. Since the

event plane method produces a good estimate of the average vn I use the aver-
age 〈vn〉 from the event plane method. The function in Eq.39 describes the v3
distributions well but fails for v2 beyond the top 2% most central collisions [98].
For the unfolding procedure it is not crucial for the initial guess to have the exact
form of the true distribution. The unfolding procedure is able to retrieve the true
distribution even with a worse initial guess.

The initial guess gives the probability of having a certain vn value. The ex-
pected number of events with this value is then
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N (vn) = Neventsp (vn) . (40)

After this I use the response function from Eq. (38) to calculate the probability of
having a certain observed vobsn value. Then the number of events with certain vn
and vobsn is

N
(
vn, v

obs
n

)
= N (vn) p

(
vobsn |vn

)
(41)

The calculated numbers of expected
(
vn, v

obs
n

)
pairs make the response matrix,

that is used for unfolding. The true vn distribution is obtained with a Bayesian
unfolding procedure from [107]. For the unfolding in ROOT I use the RooUnfold
package [108].

In the Bayesian unfolding method the true distribution (cause "c") is obtained
with an iterative algorithm starting from the response matrix and from the mea-
sured distribution (effect "e").

The first step of the iteration uses the response matrix as the unfolding matrix
M0. This is then used to get the first c1 from the observed distribution ê.

citer+1 = M iterê. (42)

The c1 distribution is then used to calculate the second unfolding matrix M1.

M iter
i,j =

Aj,ic
iter
i∑

m,k Am,iAj,kc
iter
k

, (43)

where Aj,i = p (ej|ci) is the response function. This process is then iterated. The
number of iterations required is relatively small. The v2 and v3 distributions I
studied converged already after 4-6 iterations.

3.2.1 Monte Carlo test of Unfolding

I tested the unfolding procedure with a simple toy Monte Carlo simulation. In
the toy Monte Carlo I generate the v2 and v3 coefficients for each event from the
distribution

p (vn) =
vn
σ2
e−

v2
n

2σ2 (44)

where σ =
√

2/π 〈vn〉.
The values I used for 〈vn〉 are shown in Tab. 1. In this toy Monte Carlo I

used the same value for 〈v2〉 and 〈v3〉 for each run. This is to test if there are any
differences between the different harmonics that are not related to the magnitude of
that harmonic. The values I used for 〈v2〉 are in the range of LHC measured values
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in different centralities as shown in Fig. 18. After generating the vn coefficients
I use the distribution from Eq. (24) to generate azimuthal angles of particles. In
this simulation I use constant multiplicity in events.

Parameter value
〈v2〉 0.02, 0.03, 0.05, 0.07, 0.10
〈v3〉 0.02, 0.03, 0.05, 0.07, 0.10
Number of events 1 000 000
Multiplicity per event 500

Table 1: Toy Monte Carlo parameters

Figure 18: The measured v2 as a function of multiplicity by ALICE [109].

I calculate the vn values and their distribution using Eq. (34, 35). In addition
to this I calculate the average vEPn coefficients using the event plane method from
Section 3.1 correcting with the event plane resolution. I make an initial guess
based on Eq. (44) where I use the average corrected vEPn as 〈vn〉, then generate
a response matrix using Eq. 38. Using this response matrix I do the Bayesian
unfolding.

Response matrices for two cases are shown in Fig. 19. It can be seen that in
the large v2 case there is a relatively good correlation between observed and true
v2. For the small v2 case correlation is weak. The unfolding produces relatively
good results also in this case, but observing a large vn value in a single event does
not mean that the true anisotropy is strong.

One of the goals of future research is to separate events with small and large v2
or v3 coefficients and study jet observables like RAA separately for small and large
flow events. In studies like this it is important to know the shape of the response
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matrix to be able to estimate how well the measured flow correlates with the true
flow.
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Figure 19: Response matrices in toy Monte Carlo. These are filled by the observed
v2 and input v2 of each event.

The final results from the toy Monte Carlo for unfolding with 〈v2〉 = 〈v3〉 = 0.03
are shown in Fig. 20. It can be seen that there is no difference in measuring v2
and v3 when the magnitude is the same.
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Figure 20: Toy Monte Carlo results in unfolding for v2 and v3.

Results for different magnitudes of flow coefficients are shown in Fig. 21. It
can be seen that for larger values of v2 and v3 the original distribution is retrieved.
However for 〈v2〉 ≤ 0.03 there is a significant difference between the input and
unfolded distributions.

It should be noted that even in this ideal case the observed distribution before
unfolding differs significantly from the input distribution. The simulation includes

42



2v
0 0.02 0.04 0.06

N
um

be
r 

of
 E

ve
nt

s

0

10000

20000

30000

40000
Number of events: 1000000
Multiplicity: 500

: 0.020
2

Average v

2Observed v
, 4 iterations2Unfolded v

2
Input v

2
Initial guess v

(a) 〈v2〉 = 0.02

2v
0 0.05 0.1 0.15

N
um

be
r 

of
 E

ve
nt

s

0

5000

10000

15000

Number of events: 1000000
Multiplicity: 500

: 0.050
2

Average v

2Observed v
, 4 iterations2Unfolded v

2
Input v

2
Initial guess v

(b) 〈v2〉 = 0.05

2v
0 0.05 0.1 0.15 0.2

N
um

be
r 

of
 E

ve
nt

s

0

5000

10000

Number of events: 1000000
Multiplicity: 500

: 0.070
2

Average v

2Observed v
, 4 iterations2Unfolded v

2
Input v

2
Initial guess v

(c) 〈v2〉 = 0.07

2v
0 0.05 0.1 0.15

R
at

io

0.8

0.9

1

1.1

1.2
Number of events: 1000000

Multiplicity: 500

2
Ratio of observed and input v

: 0.020
2

Average v

: 0.030
2

Average v

: 0.050
2

Average v

: 0.070
2

Average v

: 0.100
2

Average v

(d) Ratio of unfolded to input

Figure 21: Toy Monte Carlo results for various magnitudes of 〈v2〉

43



no detector accuracy or efficiency issues. The only reason for not having accurate
measurements of vn is the finite multiplicity. When sampling the dN/ dφ distri-
bution randomly the result is never a perfect replication of the distribution. One
toy Monte Carlo event with multiplicity N = 400 is shown in Fig. 22.
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Figure 22: Azimuthal angle distribution from one toy Monte Carlo event with
N = 400, v2 = 0.3, v3 = 0.2. The observed distribution is overlaid by the input
distribution (red line).

44



4 AMPT model
In this thesis I have studied data simulated using A Multiphase Transport Model
(AMPT) [6, 7]. AMPT is a hybrid transport model, which models an ultra-
relativistic nuclear collision using many tools of Monte Carlo simulation. There
are two versions of AMPT. One is referred to as the default version and the other
as AMPT with string melting. The data used in this thesis is generated with
the string melting version. The AMPT model consists of four main components.
Structure of the string melting version is illustrated in Fig. 23.

Figure 23: Illustration of the structure of the AMPT model with string melting.

Heavy-ion jet interaction generator (HIJING) model [110] gives the initial con-
ditions, for example spatial and momentum distributions of partons. Scatterings
in partonic interactions are handled with Zhang’s parton cascade (ZPC) model.
Hadronization uses either the Lund string fragmentation model (default AMPT) or
a quark coalescence model (AMPT with string melting). The subsequent hadronic
matter and its dynamics are then described by a hadronic cascade, based on a
relativistic transport (ART) model. The hadronic interactions are terminated at
a cutoff time, when the studied observables are considered to be stable. After this
cutoff the final results are obtained.

In the HIJING model the two colliding nuclei are assumed to have radial den-
sity profiles with Woods-Saxon shapes. Particle production is described in two
parts. Hard processes have momentum transfers larger than some cutoff momen-
tum p0. The current version of AMPT uses 2.0 GeV for the cutoff value. Soft
processes have lower momentum transfer values. Hard processes are treated via
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the PYTHIA program [76] and evaluated using perturbative QCD (pQCD). The
soft part includes non-perturbative processes and is modelled by the formation of
strings. In the default model excited strings are assumed to decay independently
according to the Lund JETSET fragmentation model [111]. The model with string
melting converts excited strings that are not projectile and target nucleons with-
out any interactions to partons according to the flavour and spin structures of
their valence quarks. Mesons are converted to quark and antiquark pairs. Baryons
and antibaryons are respectively converted to three quarks or three antiquarks,
respectively.

The dynamics of the parton phase is solved using the ZPC model. In ZPC
two partons undergo scattering whenever they approach each other with a small
enough minimal distance. At the moment ZPC includes only parton two-body
scatterings such as gg → gg with cross-sections calculated using pQCD. Minijet
partons from hard scatterings can lose energy by gluon splitting and transfer their
energies to nearby soft strings in the HIJING model. These mechanisms lead to
the so-called jet quenching [6] phenomenon in AMPT. However, the dominant
source for jet quenching at high momenta, namely the radiation of energy by the
interactions with the medium [112], is not implemented in AMPT.

When partons stop interacting, i.e. they no longer scatter with other partons
the hadronization phase starts. In the default AMPT partons are combined with
their parent strings to form excited strings. These are then converted to hadrons
according to the Lund string fragmentation model. Here it is assumed that strings
fragment into quark-antiquark pairs and hadrons are formed from these quarks
and antiquarks.

AMPT with string melting uses a simple quark coalescence model, which com-
bines nearby quark-antiquark pairs into mesons and three nearest quarks or anti-
quarks into baryons or anti-baryons that are close to the invariant mass of these
partons. In both AMPT versions the hadrons are given an additional formation
time of 0.7 fm/c during which they are not allowed to scatter with other hadrons
during the hadron cascade. Partons freeze out at different times in the parton cas-
cade. Therefore hadronization also occurs at different times and partons coexist
with hadrons during the hadronization process.

In AMPT with string melting, strings are melted into soft partons which can
undergo only elastic scatterings among themselves and hence the total number of
partons in the system is exactly equal to the number of constituent quarks in the
produced hadrons.

Hadron cascade in the AMPT model is handled with a relativistic transport
model (ART). ART was originally developed to model heavy-ion collisions at AGS
energies. ART includes baryon-baryon, baryon-meson and meson-meson elastic
and inelastic scatterings.
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5 Analysis

5.1 Quark Number Scaling in AMPT Model

5.1.1 Analysis

The AMPT data I use in this thesis is taken from ALICE simulation produc-
tion [113]. The simulation used the string melting version of AMPT to generate√
sNN = 2.76 TeV Pb-Pb collision events. The number of events in each cen-

trality bin, and the multiplicity comparison between ALICE and AMPT is shown
in Tab. 2. I used the event plane method on the AMPT data to calculate flow
coefficients for different particle types. Centralities from 0-5% to 40-50% were
studied.

Centrality 0-5% 5-10% 10-20% 20-30% 30-40% 40-50%
ALICE dNch/ dη 1601± 60 1294± 49 966± 37 649± 23 426± 15 261± 9

AMPT dNch/ dη 1514 1231 917 617 403 250
Difference in dNch/ dη 5.7% 5.1% 5.3% 5.2% 5.7% 4.4%
AMPT events 56733 66579 71023 84566 80033 415425
R2 0.92 0.94 0.96 0.96 0.94 0.91
R3 0.88 0.87 0.86 0.84 0.83 0.81

Table 2: Comparison of dNch/ dη for |η| < 0.5 between data measured at ALICE
and data from AMPT simulation. Also the event plane resolutions used to correct
v2 and v3 are shown.

Charged particles in the pseudorapidity range of 3 < |η| < 5 are used to
calculate the event plane angles ψ2 and ψ3 using methods explained in section 3.1.
The pseudorapidity distribution from AMPT is shown in Fig. 24. The weight used
in Eq. (25) is constant 1.

To get the event plane resolution the two sub event method was used as de-
scribed in Section 3.1.1. In this study the two subsets are taken by dividing the
particles randomly to two groups. Obtained resolutions are also shown in Tab. 2.

Calculated event plane angles were then used to calculate flow coefficients of
different charged particle species in the mid-rapidity region with |η| < 0.8. The
particles studied here were pions, kaons and protons. Since the range used to
calculate event plane angles is outside the mid-rapidity region used to calculate vn
coefficients, there is no need for the removal of auto-correlations.

First the flow coefficients were calculated as a function of the transverse mo-
mentum pT. After this the quark number scaling is added as described in section
2.4. Particle masses and quark numbers for studied particles are shown in Tab 3.
I also tested the blueshift correction used in Ref. [8] for v2 of protons. The value
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Figure 24: Pseudorapidity distributions in AMPT for different centrality bins.
The vertical lines represent pseudorapidity limits of different detectors. V0A and
V0C represent detectors at ALICE and the rapidity ranges used in my study are
represented by the virtual detector.

I used was a constant 0.15 GeV/c. The correction is applied to the transverse
momentum pT before the quark number scaling and calculating KET .

Particle type Pion Kaon Proton
Particle mass m [ GeV/c] 0.139570 0.493667 0.938272
Number of quarks nq 2 2 3

Table 3: Particles in AMPT study

5.1.2 Results

In Fig. 25 the calculated flow coefficients v2 and v3 are plotted as a function of
the transverse momentum pT. The differences between particle species can be
seen clearly. Pions and kaons form the meson arm while the protons are the only
baryons. The results of quark number scaling are shown in Fig.26. Here is also
shown the result of blueshift correction for the proton data. Ratio plots are shown
in Fig. 27. The vn/nq values of protons and kaons are divided by the corresponding
values for pions and plotted as a function of KET/nq. When looking at the ratios
there are differences at very low KET . In this region vn coefficients are very
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small and thus a small difference between particle species gives a large relativistic
difference.

It can be seen that the proton data without corrections are systematically lower
than pion and kaon data except forKET ≈ 0.4 GeV/c in peripheral collisions. The
quark number scaling as such fails in AMPT as it failed in LHC data. However
the scaling is restored in low KET with the blueshift correction.

For 0.2 GeV/c < KET < 0.5 GeV/c the blueshift corrected proton data agrees
well with pion and kaon data. At very low KET (< 0.2 GeV/c) pion data falls
below kaon and corrected proton data. At higher KET the proton v2 is below the
pion and kaon v2 coefficients even with corrections.

For v3/nq the values seem to align throughout the KET range without any
corrections. However the error bars are almost as large as were the differences
observed in v2.

In Fig. 28, 29, 30 v2, v2/nq and ratios to pion v2/nq are compared between
analysed AMPT data and results from hydrodynamical simulations [60, 61].

From the comparison it can be seen that at low pT and for peripheral collisions
AMPT and hydrodynamical models agree. This is the region where flow is believed
to be dominated by hydrodynamical expansion. At high pT and in central collisions
other effects become prominent.

Also the hydrodynamics calculations seem to break down the quark number
scaling. There is no agreement between quark number scaled flow of protons and
mesons in neither of the calculations.

5.1.3 Comparison to ALICE Results

Comparisons between particle-specific v2 coefficients in AMPT and ALICE for
pions, kaons and protons are shown in Fig.31. Results from two hydrodynamical
simulations by Heinz [60] and Niemi [61] are also shown.

It can be seen that for high pT the AMPT values are significantly below the
ALICE measurements. This behaviour was already observed in non-identified
flow [105]. For particle identified flow it can be seen that the range in which the
AMPT values match the LHC values depends on the particle species. For pions
the agreement holds only for pT . 0.6 GeV/c, but for kaons and protons the ranges
of agreement go up to pT ≈ 1.0 GeV/c and pT ≈ 1.5 GeV/c.

Overlay of quark number scaled values for ALICE, AMPT and hydrodynamical
data is shown in Fig. 32. When plotted against the quark number scaled transverse
kinetic energyKET the ranges of agreement between AMPT and ALICE are about
the same for all the particle species.
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Figure 25: Particle specific v2 and v3 in AMPT.

50



  q
/n 2

 v

0

0.02

0.04

0.06

, Virtual Detector
2

Quark Number Scaled v

Pions

Kaons

Protons

Protons with redshift 0.15

0-5%

 [GeV/c]q/nT KE
0 0.2 0.4 0.6 0.8 1

  q
/n 2

 v

0

0.05

0.1 20-30%

5-10%=2.76 TeV AMPTNNsPb-Pb 

 [GeV/c]q/nT KE
0 0.2 0.4 0.6 0.8 1

30-40%

10-20%

 [GeV/c]q/nT KE
0 0.2 0.4 0.6 0.8 1

40-50%

(a) Quark number scaled v2

  q
/n 3

 v

0

0.02

0.04

, Virtual Detector
3

Quark Number Scaled v

Pions

Kaons

Protons

0-5%

 [GeV/c]q/nT KE
0 0.2 0.4 0.6 0.8 1

  q
/n 3

 v

0

0.02

0.04

20-30%

5-10%=2.76 TeV AMPTNNsPb-Pb 

 [GeV/c]q/nT KE
0 0.2 0.4 0.6 0.8 1

30-40%

10-20%

 [GeV/c]q/nT KE
0 0.2 0.4 0.6 0.8 1

40-50%

(b) Quark number scaled v3
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function of the scaled transverse kinetic energy KET/nq.
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Figure 29: Comparison of quark number scaled v2 plotted as a function of the
scaled transverse kinetic energy KET/nq in AMPT and hydrodynamical simula-
tions [60, 61].
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Figure 30: Comparison of proton and kaon v2/nq to pion v2/nq plotted as a function
of the scaled transverse energy KET/nq in AMPT and hydrodynamical simula-
tions [60, 61].

54



 [GeV]
T

p
0 1 2 3 4

2v

0

0.1

0.2

0.3

LHC Centrality 20-30% Pions
AMPT
ALICE preliminary
Niemi
Heinz (Centrality 20-40%)

(a) Centrality 20-30%

 [GeV]
T

p
0 1 2 3 4

nv
0

0.1

0.2

0.3
LHC Centrality 20-30% Kaons
AMPT
ALICE preliminary
Niemi
Heinz (Centrality 20-40%)

(b) Centrality 20-30%

 [GeV]
T

p
0 1 2 3 4

nv

0

0.1

0.2

0.3

0.4
LHC Centrality 20-30% Protons
AMPT
ALICE preliminary
Niemi
Heinz (Centrality 20-40%)

(c) Centrality 20-30%
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5.2 Unfolding in AMPT

After identified particle flow I studied event-by-event distributions in AMPT. I
calculated v̄obsn =

(
vobsn,x, v

obs
n,y

)
for particles in mid-rapidity |η| < 0.8 and pT >

0.1 GeV/c. I applied the unfolding method given in Sec. 3.2 also to AMPT data.
Statistics used for each centrality bin as well as average vn coefficients are shown
in Tab. 4. The unfolding results for v2 and v3 are shown in Fig. 33. For v2 the
average value for peripheral collisions is large enough to provide accurate unfold-
ing based on the toy Monte Carlo simulation. Also for the central collisions the
multiplicity is high enough even though the average v2 is in the range with worse
unfolding performance. The unfolded v2 distributions should therefore match the
true distribution well.

Centrality 0-5% 5-10% 10-20% 20-30% 30-40% 40-50%
Events 56733 66579 71023 84566 80033 415425
〈Nch〉 (|η| < 0.8, 2423 1971 1471 990 647 401
pT > 0.1 GeV/c)
Unfolding 〈v2〉 0.028 0.041 0.058 0.072 0.078 0.077
Unfolding 〈v3〉 0.016 0.018 0.018 0.016 0.012 0.0078

Table 4: Number of events used in AMPT study and the average multiplicity used
to calculate v2 and v3. Also shown are the average values of unfolded v2 and v3
distributions.

It can be seen that the v2 distributions in peripheral collisions do not look
like the radial projection of a two dimensional Gaussian shown in Eq. (39). It
looks more like a regular Gaussian. This was the distribution used in the toy
Monte Carlo and as an initial guess. This is not surprising since this distribution
is connected to flow caused purely by fluctuations and v2 in peripheral collisions
is mainly caused by the geometrical asymmetry in the collision.

The average value for v3 stays at a relatively constant value of 0.16 between
the different centrality bins until it drops at centralities larger than 40%. In central
collisions the multiplicity is however higher than the one used in the toy Monte
Carlo. This might be enough for the method to provide accurate results. In
peripheral collisions the multiplicity is even below the values that were tested in
the toy Monte Carlo simulation. At these values the unfolding method cannot be
expected to give accurate results.

It can be seen that for v3 in peripheral collisions the unfolded distributions
agree with the initial guess. This is expected since in events with low multiplicity
and low v3 values the initial guess dominates the unfolding result.

To get an additional estimate of the performance of unfolding in AMPT I ran
the toy Monte Carlo simulation using detected multiplicities and 〈vn〉 values. The
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ratios of unfolded and input distributions are shown in Fig. 34. It can be seen
that for v2 the method gives accurate results. For v3 in centralities up to 20%
agreement between input and unfolded distributions is within 10%. For v3 in more
peripheral collisions the method fails to reproduce the input distribution.
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6 Discussion

6.1 Identified Particle Flow and Quark Number Scaling

First of the two main goals of this thesis was studying identified particle flow in
AMPT. At RHIC in Au-Au collisions with

√
sNN = 200 GeV it was found out

that plotting the quark number scaled transverse kinetic energy versus the quark
number scaled v2 gives an almost perfect scaling between different particle species.
This was taken as a strong indication that anisotropic flow at RHIC develops
primarily in the partonic phase, and is not strongly influenced by the subsequent
hadronic phase [8]. It has already been observed that at LHC energies this scaling
does not work. Quark number scaling observed at RHIC was explained by a
simple quark coalescence model. Since hadrons are simply combinations of the
constituent quarks, flow in the deconfined phase is directly transformed into flow
in the hadronic phase. The coalescence model has been challenged after the LHC
observations. The AMPT model I study uses this coalescence model, but as I have
presented in this thesis, AMPT data has similar scaling properties as the LHC
data.

Because of the quark coalescence any differences in flow between different par-
ticle species has to develop in the hadronic phase, which seems to affect the flow at
LHC energies. AMPT treats the hadronic phase with the ART model. To confirm
the effect of the hadronic phase one could turn off the hadron cascade in AMPT
and look at flow immediately after hadronization. This has not been done and it
might be an interesting topic for future research.

I presented analysis of identified particle flow in the AMPT model for Pb-
Pb collisions with

√
sNN = 2.76 GeV. I had previously studied [105] the flow

coefficients in AMPT data and now I expanded the study to particle identified
flow of pions, kaons and protons in different centrality bins.

I tested the quark number scaling properties of AMPT with v2 and v3 and
compared the v2 results to ALICE preliminary data and hydrodynamical calcula-
tions. I had previously observed [105] that AMPT reproduces the charged particle
vn values observed at LHC only for pT . 1 GeV/c and fails at higher pT. The
same can be seen in the particle identified data. However the range of agreement
between AMPT and LHC data depends on the particle species. For pions the
disagreement begins already at pT ≈ 0.5 GeV/c, but for kaons and protons the
thresholds are 1 GeV/c and 1.5 GeV/c respectively. The dominant source for jet
quenching at high momenta, namely the radiation of energy by the interactions
with the medium [112], is not implemented in AMPT. Thus it is not surprising
that it fails at high pT.

When studying quark number scaling AMPT and LHC data behave similarly.
Scaling works well for pions and kaons except for very low KET . For protons
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scaling breaks down also at higherKET . Based on the ALICE data it was observed
that redshifting the proton pT with 0.20 GeV/c restores scaling between protons
and mesons [8]. In AMPT a proton redshift of similar size restores scaling except
for high KET .

6.2 Unfolding Event-by-Event Distributions

The second objective was studying event-by-event distributions and unfolding
these distributions. I presented results of v2 and v3 distributions in AMPT. I
applied a Bayesian unfolding method to the distributions to get estimates of the
true distributions. I tested the unfolding procedure in a simple Monte Carlo sim-
ulation with various multiplicities and magnitudes of flow. For multiplicities and
v2 values corresponding to the AMPT results the method reproduced the true
distribution. For v3 the signal is weaker which makes measuring it more difficult.
The simulation gave reasonable results also for v3 with parameters corresponding
to central collisions, where the multiplicity is highest. For more peripheral col-
lisions lower multiplicity limits the accuracy and for centralities larger than 20%
the procedure fails to reproduce the input distribution.

It should be noted that even in the ideal Monte Carlo simulation the observed
distribution before unfolding differs significantly from the input distribution. The
simulation includes no detector accuracy or efficiency issues. The only reason for
not having accurate measurements of vn is the finite multiplicity. When sampling
the dN/ dφ distribution randomly the result is never a perfect replication of the
distribution. Weaker signals make the measurement even harder.

In real measurements detector accuracy and nonflow effects further complicate
the measurement. The effects of nonflow have been studied at PHENIX [114].
They observed that the effect is negligible for central collisions. Jets are rare and
include a small amount of particles compared to the total number of particles in
a heavy-ion collision. In peripheral collisions where the multiplicity is smaller and
flow signal is weaker nonflow is more significant. Nonflow effects include mainly
jet effects. Even though the parton that created the jet is very energetic, the
fragmentation process produces a number of particles also with small pT. These
particles have not been affected by the pressure-driven expansion which caused
the flow, so they bring an additional component to the angle distribution. This
component makes it harder to detect the actual flow signal.

Based on the Monte Carlo study the unfolded v2 distributions in AMPT should
match the true distributions. Also v3 distributions in centrality bins 0-20% pro-
vided results that were within 10% of the input distribution. For more peripheral
collisions with v3 the unfolding procedure can not be trusted.
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7 Summary
In this master’s thesis I have studied quark number scaling of identified charged
particle flow coefficients and unfolding the distributions of v2 and v3 of charged
particles in the AMPT model.

I had previously studied [105] the flow coefficients in AMPT data and now
I expanded the study to particle identified flow of pions, kaons and protons in
different centrality bins. At RHIC it was found out that plotting the quark number
scaled transverse kinetic energy versus the quark number scaled v2 gives an almost
perfect scaling. It has already been observed that quark number scaling breaks
down at LHC energies. Quark number scaling at RHIC was explained with a quark
coalescence model which is implemented in the AMPT model.

I tested the quark number scaling properties of AMPT with v2 and v3 and com-
pared the v2 results to ALICE preliminary data and hydrodynamical calculations.
This revealed that the proton v2 does not match the pion and kaon v2 values.
The difference between proton and meson data is of similar size as measured in
ALICE. Correcting proton pT with a redshift of 0.15 − 0.20 GeV/c returns the
scaling between particle species. In AMPT data the redshift correction works for
low KET , but at high KET there is still considerable difference with proton and
meson v2 values.

Previously I had already observed [105] that AMPT reproduces the charged
particle vn values observed at LHC only for pT . 1 GeV/c and fails at higher
pT. The same can be seen in the identified particle data. However, the range of
agreement between AMPT and LHC data depends on the particle species. For
pions the disagreement begins already at pT ≈ 0.5 GeV/c, but for kaons and
protons the AMPT data agrees with measured data until 1 GeV/c and 1.5 GeV/c
respectively.

Another aspect I studied in this thesis was the unfolding of vn distributions. I
used a data-driven unfolding method, that I first tested with a toy Monte Carlo
simulation with different multiplicities and average vn values. It was found out
that the method reproduces the input distribution very well for multiplicities and
〈v2〉 values corresponding to centralities 0-60% and 〈v3〉 values corresponding to
centralities 0-20%, but for parameters corresponding to v3 in more peripheral col-
lisions the method failed to reproduce the input distributions.

Based on this study, unfolded event-by-event distributions of v2 can be trusted
up to centralities 50% and distributions of v3 can be trusted in centralities 0-20%.
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Appendices
A Integration of 2 Dimensional Gaussian Distri-

bution
A Gaussian distribution that is centered at 0 has the form

1

N

dN
dx

=
1

σ
√

2π
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x2

2σ2

The expectation value 〈x〉 is zero because the distribution is symmetric.

〈x〉 = 0 (45)

The expectation values of 〈|x|〉 and 〈x2〉 are nonzero
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can be done with the following trick∫ ∞
−∞

e−ax
2

=

√
π

a

Differentiating with respect to a gives∫ ∞
−∞

x2e−ax
2

=
1

2

√
π

a3

Inserting a = 1/2σ2 gives ∫ ∞
−∞

x2e−
x2

2σ2 =
√

2πσ3

and thus

〈
x2
〉

=

∫ ∞
−∞

x2

σ
√

2π
e−

x2

2σ2 =
1

σ
√

2π

√
2πσ3 = σ2
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A two dimensional Gaussian distribution has the form

1

N

dN
dx dy

=
1

σx
√

2π

1

σy
√

2π
e
− (x)2

2σ2
x
− y2

2σ2
y (48)

For a symmetric case σx = σy this reduces to

1

N

dN
dx dy

=
1

σ22π
e−

(x+y)2

2σ2 (49)

A change into polar co-ordinates dx dy = r dr dφ = 2πr dr, gives

1

N

dN
dx dy

=
1

N

1

2πr

dN
dr

=
1

2πσ2
e−

r2

2σ2

Therefore

1

N

dN
dr

=
r

σ2
e−

r2

2σ2 (50)

〈|r|〉 = 〈r〉 =

∫ ∞
0

dr
r2

σ2
e−

x2

2σ2 =
1

σ2

√
2πσ31

2
= σ

√
π

2
(51)

σ =

√
2

π
〈r〉 (52)
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