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ABSTRACT

Solovyeva, Elena
Mathematical models and stability analysis of induction motors under sudden
changes of load
Jyväskylä: University of Jyväskylä, 2013, 92 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 182)
ISBN 978-951-39-5520-5 (nid.)
ISBN 978-951-39-5521-2 (PDF)
Finnish summary
Diss.

This work is devoted to development of mathematical models of induction mo-
tors with various rotors and their analysis of stability and oscillations. This sub-
ject is of great current interest due to continued increase in the use of an induction
motor as the drive for many industrial applications.

The mathematical models of induction motors with squirrel cage, double
squirrel cage, wound rotors are developed in a rotating coordinate system rigidly
connected with rotating magnetic field. Unlike the well-known mathematical
models of induction machines the obtained models completely take into account
rotor geometry. Using special nonsingular changes of coordinates the investi-
gation of stability of these systems can be reduced to stability analysis of third
and fifth order differential equations. Thus, the derived models are described by
rather simple differential equations which allow for the indepth qualitative study
of such models.

Further for these models the conditions of local and global stability are es-
tablished. Dynamic stability of induction motors under various type of load
torque is considered. In the case of constant load torque the behaviour of in-
duction motors is defined by ordinary differential equations, in the case of dry
friction load torque the behaviour of induction motors is described by differential
inclusions. The qualitative analysis of these systems makes it possible to obtain
the conditions on permissible changes of induction motor parameters, such as
resistance, inductance, torque, under which an induction motor remains in op-
erational mode after a transient process. Moreover, the limit load problem for
induction motors is discussed and estimations of the limit load are obtained. The
obtained theoretical conclusions are supported by results of numerical experi-
ments. Also with the help of computer modeling, the particular case of a sudden
load appearing on an idle induction motor is studied.

Keywords: induction motors, squirrel-cage rotor, double squirrel-cage rotor, wound
rotor, stability, transient processes, the limit load problem, the non-
local reduction method, the event-driven method
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1 INTRODUCTION AND THE STRUCTURE OF THE
WORK

Induction motors are the most widely used electrical motors of alternating cur-
rent in both household and industrial applications. About 65-70% of all elec-
tric energy is consumed by electric motors (Machowski et al., 2011; O’Brien et
al., 2012), and over 90% of them are induction motors (Machowski et al., 2011;
Sumper and Baggini, 2012). They are essential elements in any power system.

The majority of modern devices using induction motors as drives operate
under various loads. For example, a constant load occurs in hoists, lifts, cranes,
but drills, boring machines, conveyors operates under dry friction load. A rapid
change of load allows one to increase productivity of the motor, but at the same
time it may lead to the different undesirable effects such as motor stopping, mo-
tor vibrations, damage or failure of the device itself. By this reason the investiga-
tion of induction motor operation under sudden changes of load is an actual and
practically important problem.

In the study of induction motors it is important to develop mathematical
models, which adequately describe their dynamics. In this context the following
two utterances are of interest from the viewpoint of mathematical modeling of in-
duction motors. In the book "Feedback control systems: analysis, synthesis, and
design" its authors Gille, Pelegrin, and Decaulne write (Gille-Maisani et al., 1959):
"Contrary to what is sometimes thought, the derivation or writing of the system equa-
tions is more important than the study of the equations themselves. Indeed, experience
shows that the majority of errors arise from inexact equations rather than from faulty
solutions. In addition, the equations, once written, can be solved and studied through
the use of a computer, but no calculating machine can write the equations of the system
under study." The second utterance of Slemon in his book "Electric machines and
drivers" (Slemon, 1992) is: "Use of a purely mathematical approach without adequate
attention to the physical model can frequently lead to serious error. Modeling is an art
which will develop as knowledge and experience grow." Therefore, it is necessary to
construct mathematical models of induction motors that are consistent with the
real motors.

Quite often the mathematical models of induction motors are described by
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differential equations of high-order with trigonometric nonlinearities that practi-
cally can not be analysed by analytical methods. Therefore, numerical methods
are also used for investigation of these equations. However, some complicated
effects such as hidden oscillations1 can not be found only by numerical methods.
Hence, it is necessary to develop analytical methods of investigation.

Thus, the main goals of this thesis include the derivation of mathematical
models of induction motors adequately describing the dynamics of these motors
under sudden changes of load, and investigation of such models with help of
analytical and numerical methods.

The brief history of induction motors. The induction motor was invented
in the late 19th century. By this time, both phenomena which underlie the princi-
ple of operation of induction motors have been already discovered: electromag-
netic induction and rotating magnetic field (Sah, 1946; Adkins, 1957; Alger, 1970;
Sarma, 1994; Salam, 2005; Gross, 2007).

In 1824 French physicist D.F. Arago discovered phenomenon of so-called
rotation magnetism. It has the greatest importance in electrical machines. He
showed that a fixed copper disk on the vertical axis begins to rotate, if a perma-
nent magnet rotates above it, and conversely if a copper disc rotates beneath a
suspended magnet, then the magnet begins to rotate. This phenomenon was ex-
plained on the basis of induced currents by British scientist M. Faraday in 1831.
He discovered electromagnetic induction, that is, the production of an electric
current in a circuit placed in a varying magnetic field. The discovery of this
phenomenon was an important step in the development of electrical machines,
gained practical significance and became the foundation of all modern electron-
ics.

However, it took more than a half of a century to understand that Arago’s
rotation could be used for the construction of induction motors. In 1879 British
scientist W. Bailey developed a motor in which he replaced the rotating mag-
net by a rotating magnetic field, generated by alternative switching of four pole
pieces to direct current power supply. Thus, it was the first primitive commuta-
torless induction motor. A little later, M. Depre (France, 1880—1883), I. Tomson
(USA, 1887) and others developed devices, also based on properties of a rotat-
ing magnetic field, and achieved some improvements in this direction, but these
were only steps towards the future induction motors.

In 1888 Serbian engineer and physicist N. Tesla and Italian physicist G. Fer-
raris invented a rotating magnetic field (Tesla, 1888a; Ferraris, 1888), produced
by an alternating two-phase current in stationary windings of stator. They con-

1 See chaotic hidden attractors in electronic Chua circuits (Leonov et al., 2010; Kuznetsov et
al., 2011a,b; Bragin et al., 2011; Leonov et al., 2011b, 2012; Leonov and Kuznetsov, 2012;
Kuznetsov et al., 2013; Leonov and Kuznetsov, 2013a; Leonov et al., 2011b,a; Kuznetsov
et al., 2010), in drilling systems (Kiseleva et al., 2012, 2014; Leonov et al., 2013), in air-
crafts (Leonov et al., 2012a,b; Andrievsky et al., 2012), in two-dimensional polynomial
quadratic systems (Kuznetsov et al., 2013; Leonov et al., 2011a; Leonov and Kuznetsov,
2010; Kuznetsov and Leonov, 2008; Leonov et al., 2008; Leonov and Kuznetsov, 2007;
Kuznetsov, 2008), in PLL (Leonov and Kuznetsov, 2014), and in Aizerman and Kalman
problems (Leonov et al., 2010b,a; Leonov and Kuznetsov, 2011, 2013b,c)
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structed the first alternating current commutatorless induction motors (Tesla, 1888b).
Ferraris’s motor had the solid copper rotor and concentrated two-phase windings
on the stator. Tesla’s motor had two-phase concentrated windings on the stator
and the same windings on the rotor. However, Tesla’s and Ferraris’s motors did
not receive the wide use. At the same time a rotating magnetic field is a base
of constructing electrical machines of alternating current till now (Sheldon and
Nostrand, 1902; Dawes, 1922; Bryant and Johnson, 1935; Sah, 1946; Hehre and
Harness, 1949; Annett, 1950; Adkins, 1957; Yanko-Trinitskii, 1958; Walsh, 1967;
Kashkari, 1969; Alger, 1970; Mablekos, 1980; Rajagopalan, 1987; Sarma, 1994; Beaty
and Kirtley, 1998; Drury, 2001; Rajput, 2002; Klempner and Kerszenbaum, 2004;
Kothari and Nagrath, 2006; Rajput, 2006; Hughes, 2006; Begamudre, 2007; Gross,
2007; Bakshi and Bakshi, 2009; Araujo, 2012).

In 1889 Russian engineer and inventor M.O. Dolivo-Dobrovolsky invented a
three-phase squirrel-cage induction motor and a three-phase transformer. In 1890
he developed a three-phase induction motor with a slip-ring rotor into which re-
sistors could be connected for starting and control. From 1890 the three-phase
system received general recognition and marked the beginning of wide applica-
tion of alternating current. The construction materials, the design and perfor-
mance of induction motors have been improved for many years. However, fun-
damental engineering solutions proposed by Dolivo-Dobrovolsky remain mostly
unchanged.

Mathematical theory of induction machines and methods of investiga-
tions. The history of development of the theory of electrical machines is partly
taken from (Adkins, 1957; Kopylov, 1984).

Beginning with the pioneering works of Nikola Tesla and Galileo Ferraris
(Tesla, 1888a,b; Ferraris, 1888), much research is devoted to the study of induction
machines (see, e.g., (Levine, 1935; Kron, 1951; Adkins, 1957; White and Woodson,
1959; Alger, 1970; Krause, 1986; Ong, 1998; Boldea and Nasar, 2001; Bahram, 2001;
Leonhard, 2001; Singh, 2005; Marino et al., 2010; Simion, 2010; Araujo, 2012)).
Originally, the theory of induction motors was based on construction of equiva-
lent circuits and their analysis. The following methods were used: the construc-
tion of the vector diagram, the symbolic method, the circle diagram method de-
veloped in the works of A. Heyland (Heyland, 1894, 1906), B.A. Behrend (Behrend,
1921), K.A. Krug, A. Blondel, G. Osanna, E. Arnold, I. Lakur, O. Bloch, G.N. Petrov,
M.P. Kostenko, the method of symmetric components invented by C.L. Fortescue
(Fortescue, 1918).

Then the period followed when the theory of induction motors was devel-
oped only in the framework of the general theory of electric machines, which
was stimulated by the problems of the construction of synchronous generators
and power systems. The first works concerned with the mathematical theory of
electrical machines appeared in the middle of the 1920s, in the 1930s and 1940s.
Among the authors, mention should be made of F. Tricomi (Tricomi, 1931, 1933),
R. Park (Park, 1928, 1929, 1933), A.A. Gorev (Gorev, 1927, 1960), G. Kron (Kron,
1935, 1939, 1942, 1963) and G.N. Petrov.

A very valuable contribution to the development of the mathematical the-
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ory was made by Park in a set of three papers (Park, 1928, 1929, 1933). These
papers develop not only the general two-axes equations of the synchronous ma-
chine, but they indicate how the equations can be applied to many important
practical problems. The works of P.Park is difficult to understand because they
do not contain the original stress equations with periodic coefficients for the real
machine and use the artificial system of relative units.

Park’s transformation provided the development of Kron’s generalized the-
ory, which was first published in a series of papers (Kron, 1935) and later in books
(Kron, 1939, 1942, 1963). Kron suggested the model and equations for the gener-
alized (primitive) electric machine.

The generalized electric machine is an idealized two-pole machine with two
pairs of windings on the stator and two pairs of windings on the rotor. Despite
the infinite variety of constructions of electric machines, any electrical machine
with a circular field in the air gap (also the induction motor) can be reduced to
the generalized electric machine.

By the end of the 1930s E. Arnold, R. Richter, A. Blondel, L. Dreyfus, M. Vid-
mar, C.P. Steinmetz, K.A. Krug, K.I. Shenfer, V.A. Tolvinsky and M.P. Kostenko
considerably extended and advanced the theory of steady-state operation of elec-
tric machines.

The next important step in the development of the mathematical theory of
electrical machines was the creation of mathematical models describing the tran-
sient processes. Initial studies of transient processes in power systems were con-
ducted at the beginning of the 1920’s in the USA and the results of this work were
published by V. Bush and R.D. Booth, B.L. Robertson, E. Clark, R. E. Doherty and
C. A. Nickle (Doherty and Nickle, 1926, 1927, 1930), R. Rüdenberg (Rüdenberg,
1931, 1942, 1975) and F. R. Longley (Longley, 1954).

A large contribution to the development of the theory of transient processes
was made by B. Adkins (Adkins, 1957), A. Blondel, T. Laybl, A.I. Vajnov (Vajnov,
1969), A.A. Gorev (Gorev, 1960, 1985), I.A. Glebov, D.A. Gorodsky, M.P. Kostenko,
R.A. Luter (Luter, 1939), G.N. Petrov, D. White, H. Woodson.

In (Adkins, 1957) on the basis of the generalized electric machine the gen-
eral theory of electrical machines is explained. Many examples of its application
for analysis of individual machines are demonstrated. Some questions concern-
ing the operation of electrical machines in automatic control systems and power
systems are considered.

In the fundamental work of D. White and H. Woodson (White and Wood-
son, 1959) the equations for generalized electric machine are derived. On the
basis of these equations almost all used electromechanical converters can be an-
alyzed. A good deal of attention is paid to the dynamic modes of operation of
electromechanical devices.

By the end of the 1930s there were many practical criteria of steady-state
stability. They were not rigorously proved, but contributed to stability analysis
of both simple and complex electric systems. These criteria are related to the
names of I.M. Markovich, S.A. Sovalov, I.S. Brooke, P.S. Zhdanov, K.A. Smirnov,
D.I. Azarev.
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In the engineering practice the method of numerical integration is com-
monly used for stability analysis of general equations of electromechanical sys-
tems. By this method, the trajectory of motion as a function of time is obtained.
However, this method allows one to calculate the trajectory only on a finite time
interval. At the same time amount of computation increases rapidly with in-
creasing the dimension of the system. A.A. Gorev pointed to shortcomings in
the methods of numerical integration by considering specific perturbations of the
phase variables. He also developed a stability criterion for conservative models
that use the kinetic and potential energy of the system. Therefore, these crite-
ria were called energy criterion. The energy criteria of stability are used in the
works of R.S. Magnusson (Magnusson, 1947), C. Szendy, B. Bokau, I.A. Gruzdev,
M.L.Levinshtein, S. Sovalov, A.A. Andronov for stability analysis of models of
power systems.

In the study of the steady-state stability of induction motors the mechanical
characteristics obtained from the Kloss formula (Kazmierkowski and Tunia, 1994)
are also commonly used in the engineering practice. This approach is consistent
with the practice of operation of induction motors. However, it is not rigorous
mathematically.

A very effective method of investigation of transient processes in dynamic
systems is the second method of A.M. Lyapunov. This method was first used for
stability analysis of synchronous motors by A.A. Yanko-Trinitskii in 1958 (Yanko-
Trinitskii, 1958).

The dynamic stability problem of electric machines is closely related to the
limit (ultimate) load problem (Annett, 1950; Yanko-Trinitskii, 1958; Haque, 1995;
Das, 2002; Bianchi, 2005; Leonov and Kondrat’eva, 2009). In the practice of oper-
ation of electric machines there are situations, in which a sudden change of outer
load or change of voltage occurs. The problem on design of limit load, under
which electric machine does not pull out of synchronism, arises.

A typical situation for induction motor is as follows: the motor is started
without load, then in transient process it pulls in synchronism and only after that
a load-on occurs (for example, when a motor is used in a driver of metal cutter).

The urgency of the limit load problem has increased significantly due to the
large number of outages in the modern world.

Numerical solution of the limit load problem for particular values of the pa-
rameters is given in works of W.V. Lyon, H.E. Edgerton (Lyon, 1928; Lyon and
Edgerton, 1930), as well as in monograph of D. Stoker (Stoker, 1950). To deter-
mine the limit load the so called equal-area method is used in the engineering
practice.

The limit load problem for electrical machines is related to the problem of
finding attraction domains of stable equilibria, which correspond to operating
modes of this machine.

Mathematical setting of the limit load problem for electrical machines and
the methods of its solution are considered in (Bryant and Johnson, 1935; Sah, 1946;
Annett, 1950; Blalock, 1950; Yanko-Trinitskii, 1958; Barbashin and Tabueva, 1969;
Caprio, 1986; Chang and Wang, 1992; Miller and Malinowski, 1994; Nasar and
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Trutt, 1999; Leonov et al., 2001; Das, 2002; Bianchi, 2005; Leonov, 2006a; Wad-
hwa, 2006; Lawrence, 2010; Glover et al., 2011), where a mathematical justifica-
tion of "equal-area method" is given and the estimates of limit loads are obtained.
In these works the different mathematical models of electrical machines and the
Lyapunov function of the type: "quadratic form plus an integral of nonlinearity"
are used.

The complexity of constructing Lyapunov functions for multidimensional
models of dynamical systems has led to the necessity to develop the various gen-
eralizations of the second Lyapunov method. In the monograph A.H. Gelig, G.A.
Leonov, V.A. Yakubovich (Gelig et al., 1978) to investigate the stability of electric
motors, in addition to typical functions of Lyapunov, the functions, involving the
information on solutions of equation of comparison, namely Tricomi equation,
are used. These Lyapunov-type functions constitute the essence of the non-local
reduction method (Leonov, 1984a,b).

The non-local reduction method was originally developed to study the global
stability and oscillations of differential equations for automatic control systems
and synchronous electric machines (Gelig et al., 1978; Leonov et al., 1992; Yakubovich
et al., 2004). For alternating current induction machines the elements of this
method were introduced in (Leonov, 2004, 2006a; Leonov and Kondrat’eva, 2009),
where the limit load problem was considered.

This work is a direct continuation and extension of studies initiated in (Leonov,
2006a; Leonov and Kondrat’eva, 2009; Solovyeva, 2011)

Structure of the work. The work is devoted to the development of differ-
ential equations of induction motors and their stability analysis. The following
problems are considered: steady-state stability problem, dynamic stability prob-
lem, the limit load problem.

This thesis is structured as follows. It consists of five main parts (five chap-
ters), Finnish summary, list of references, three appendices and five included arti-
cles. The motivation for this thesis, the construction history of induction motors,
the literature review of the development of the mathematical theory of induction
motors, in particular, the stability problems and methods of their solutions are
presented in chapter 1. Also the main results obtained by the author and the
articles that are the basis of this thesis are given shortly.

In chapter 2 the classification, the construction and the operation princi-
ple of induction motors are described. Based on laws of classical mechanics and
electrodynamics and some simplifying assumptions, the differential equations of
induction motors with squirrel-cage, double squirrel-cage, wound rotors are de-
rived by the author. Unlike the well-known mathematical models of induction
motors the obtained model completely takes into account rotor geometry (ro-
tor winding configuration). Using special nonsingular transformation of coordi-
nates the investigation of stability of these systems is reduced to stability analysis
of third and fifth order differential equations. Thus, the derived mathematical
models are described by rather simple differential equations which allow for the
indepth qualitative study of such models.

In chapter 3 stability analysis of induction motors is carried out. The condi-
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tions of steady-state stability for developed mathematical models are established.
Dynamic stability of induction motors under no-load conditions is proved. Dy-
namic stability of induction motors under different type of load torque (constant
and dry friction) is considered. For induction motors with these types of loads,
the limit load problem is formulated. Using the second method of Lyapunov,
the modification of the non-local reduction method, the estimations of the limit
load are obtained by the author. These estimates substantially improve estimates,
obtained by the equal-area criterion and used in engineering practice.

In chapter 4 theoretical results are verified by numerical experiments. The
systems describing the dynamics of induction motors under different sudden
changes of external loads are simulated by the event-driven method. The nu-
merical results are presented and analyzed.

Conclusions and some future research plans are presented and discussed
briefly in chapter 5.

In appendix 1 the nonsingularity of coordinates transformations is proved.
In appendix 2 the proofs of the main theorems are given. Listings of programs in
Matlad are represented in appendix 3.

Included articles. This thesis is based on 10 published articles by the author
(PI;PII;PIII;PIV;PV; Zaretsky, Kondrat’eva and Solov’yova, 2010; Leonov, Kon-
drat’eva, Zaretskiy and Solov’eva, 2011; Solovyeva, 2012; Leonov, Solovyeva and
Zaretskiy, 2013; Leonov, Kuznetsov, Kiseleva, Solovyeva and Zaretskiy, 2014).
The main results are presented in five included papers. In all the publications
the statements of problems are due to the supervisors.

In included articles the following results are obtained by the author. In
PI, PII a new mathematical model which describes the dynamics of induction
machine with squirrel-cage rotor is proposed. Also the author obtained analyti-
cal and numerical estimations of the limit constant load on this machine by the
equal-area criterion (PI) and a modification of the non-local reduction method
(PII). Similar investigations are carried out for induction machines with double-
cage rotor in article PIII. In PIV a new mathematical model of induction machine
with wound rotor is developed. The speed control through changing the external
resistance in the rotor circuit is considered and estimations of speed control range
are obtained. In PV the mathematically rigorous derivation of differential equa-
tions for induction motors with squirrel-cage and wound rotors is presented in
details. Using the qualitative analysis of these systems the author also obtained
the conditions on permissible changes of induction motor parameters, such as
resistance, inductance, torque, under which an induction motor remains in an
operational mode after a transient process.

The results of this thesis were also reported at the international confer-
ences International Workshop "Mathematical and Numerical Modeling in Science
and Technology" (Finland, Jyväskylä – 2010), XI International Conference "Sta-
bility and Oscillations of Nonlinear Control Systems" (Moscow, Russia – 2010,
2012), 7th European Nonlinear Dynamics Conference (Rome, Italy – 2011), 4th
All-Russian Multi-Conference on Control Problems "MKPU–2011" (Divnomorskoe,
Russia – 2011), International Conference TRIZfest-2011 (Saint-Petersburg, Russia
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– 2011), 7th Vienna International Conference on Mathematical Modelling (Vienna,
Austria – 2012), 5th IFAC International Workshop on Periodic Control Systems
(Caen, France – 2013) and at the seminars at the department of Applied Cyber-
netics (Saint Petersburg State University, Russia 2009 – 2013) and the department
of Information Technology (University of Jyväskylä, Finland 2010 – 2013).



2 MODELS OF INDUCTION MOTORS

In the theory of electrical machines the mathematical models, described by ordi-
nary differential equations (White and Woodson, 1959; Leonhard, 2001; Marino
et al., 2010; Araujo, 2012; Ahmad, 2010; Chiasson, 2005; Krause et al., 2002; Ong,
1998; Sul, 2011) or partial differential equations (Arkkio, 1987; Marriott and Griner,
1992; Huai et al., 2002; Rachek and Merzouki, 2012), are used. They describe rela-
tions between electromagnetic torque and main electrical and mechanical quan-
tities.

Partial differential equations allow one to describe more completely the
magnetic field, temperature distribution, and another particular qualities of elec-
trical machines, but they turn out to be considerably complicated for investiga-
tions. The complexity of such models excludes analytical analysis and numerical
analysis also does not provide exact results due to errors in computational pro-
cedures and finiteness of computational time interval. At the same time the use
of analytical methods for investigation of mathematical models of electrical ma-
chines, described by ordinary differential equations, allows one to obtain qualita-
tive behaviour of system. Therefore these models are mostly used for describing
electrical machines.

In the derivation of mathematical models, describing the behavior of in-
duction electrical motors, the rotation of rotor relative to stationary stator is con-
sidered. For this purpose different coordinate systems can be used. The most
common coordinates are the following: the fixed frame, connected with stator,
and the rotating frame, connected with rotor. The fixed frame was used first
by N.S. Stanley (Stanley, 1938). The rotating frame was obtained by applying
Park’s transform (Park, 1929) to induction machines in (Brereton et al., 1957). The
equations of induction motors in these coordinates under different simplifying
assumptions were derived and studied in the works (Ahmad, 2010; Bose, 2006;
Chiasson, 2005; De Doncker et al., 2011; Krause et al., 2002; Marino et al., 2010;
Ong, 1998; Sul, 2011; Wach, 2011). However, in this thesis following (Leonov,
2004, 2006a; Leonov and Kondrat’eva, 2009) the coordinate system, rigidly con-
nected with rotating magnetic field, is chosen. It allows one to describe in more
details dynamics of rotor. Comparatively low (third and fifth) order of obtained
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models permits one to use the analytical methods.
The classification of induction motors is given and the construction of in-

duction motors with squirrel-cage, double squirrel-cage and wound rotors is pre-
sented in this chapter. The operation principle of induction motors is explained
on the example of a motor with double squirrel-cage rotor. For this motor math-
ematically rigorous derivation of the equations, based on the voltage equations
and the torque equation is carried out. The derivation of mathematical models
for induction motors with cage and wound rotors is performed in PV. Unlike the
well-known mathematical models of induction machines the obtained models
completely take into account their rotor geometry (rotor winding configuration).

2.1 Classification and electromechanical models of induction mo-
tors

The induction motor belongs to the class of electric rotating machines. The impor-
tant property of all electrical machines is the principle of reversibility: electrical
machine can transform mechanical energy into electrical energy and vice versa
(Nasar, 1995; Kothari and Nagrath, 2006). Thus, an induction machine can oper-
ate as a motor (in the motor mode), converting electrical energy into mechanical
one or as a generator (in the generator mode), converting mechanical energy into
electrical one (Voldek, 1974; Ivanov-Smolenskii, 1980). Induction machines are
rarely used as generators because their performance characteristics as generators
are unsatisfactory for most applications.

Further we consider a classification of electrical motors (similarly for elec-
trical generators). There are many characteristics of electric motors, which cre-
ate various classifications. Moreover, with the development of new motor types,
the classifications of these motors become less rigorous or unsuitable. Following
(Bakshi and Bakshi, 2008; Fuchs and Masoum, 2011; Tan and Putra, 2013), the
main classification is shown below in Fig. 1.

Electric motors are classified generally by the type of electrical system to
which the motor is connected: direct current (DC) motors and alternating current
(AC) motors. AC motors are more reliable than DC motors and have less main-
tenance. Motors with AC supply are subdivided into synchronous and asyn-
chronous ones. The basic difference between an induction machine and a syn-
chronous one is that a speed of the rotor of the induction machine under load
does not coincide (is asynchronous) with the speed of magnetic field, being gen-
erated by supply voltage.

Induction motors are divided into two main categories: single-phase and
three-phase. Single-phase induction motor is fed by single-phase power supply
and its stator winding produces a pulsating magnetic field. These motors are
used in house-hold applications, like washing machines, fans, coolers, refriger-
ators, etc. At the same time three-phase induction motor is fed by three-phase
power supply and its stator windings produces a rotating magnetic field. Such
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FIGURE 1 Types of electrical motors

motors are used as industrial drives in rolling mills, stamping presses, metal cut-
ting machine tools, conveyors, pumps, drills, etc. The first type of induction mo-
tors is not studied in this work because we assume that a magnetic field, gener-
ated by stator windings, rotates with a constant angular velocity and the magnetic
induction vector is constant in magnitude.

Three-phase induction motors are classified according to the rotor type as
follows: squirrel-cage rotor and wound rotor. The both types are studied in the
work. In additional, a induction motor with double cage rotor, which is modifi-
cation of squirrel cage rotor, is studied too.

The squirrel-cage rotor induction motor is the most widely used AC mo-
tor because of its simple construction, low cost, reliability in operation and easy
maintenance (Voldek, 1974; Ivanov-Smolenskii, 1980). However, it should be
noted that the difficulty of speed control, high starting currents and low starting
torque are their serious disadvantages. In order to improve the starting proper-
ties an induction motor with double squirrel-cage rotor was suggested. Induc-
tion motors with wound rotor don’t have disadvantages described above. But it
is achieved through complication of rotor design, that leads to increasing in the
cost and decreasing the reliability. Therefore, wound rotor induction motors are
mainly used under heavy starting duty as well as in drivers, where the speed
control is required.

Now let us consider the construction of three-phase induction motors. The
main constructive elements of induction motors are stationary stator and rotating
rotor. The fixed part of the motor, called the stator, is a hollow laminated cylinder
(stator core) with axial slots on its inner surface (Fig. 2). The stator core is made
of electrical steel laminations. The laminations are insulated from one another.
The three-phase winding is placed in the stator core slots. This winding, fed by
three-phase supply, is arranged in such a way that it produces a rotating magnetic
field.
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FIGURE 2 Stator of three-phase induction motors: 1 – stator core, 2 – electrical steel
laminations, 3 – three-phase winding, 4 – slots

The rotating part of the motor, called the rotor, is placed inside the stator.
There is the airgap between stator and rotor. The rotor (Figs. 3, 4, 5) consists
of laminated cylinder (rotor core) with axial slots on its outside surface, winding
and the shaft. A working gear is connected to a rotor shaft. Thus, by the trans-
formation of electric energy into the mechanical one the induction motor imparts
rotational motion to the working gear via shaft. Like the stator core, rotor core is
constructed of a stack of electrical steel laminations insulated from one another.
The rotor winding is placed in the slots. The slot shape, width of the slot opening
and slot depth can be different (for example, rectangular, round, closed, semi-
closed, semiopen, open and so on).

Induction motors have the same construction of stator and differ only in
rotors (rotor windings). As already mentioned above, there are two types of rotor:
squirrel-cage and wound (another name is a slip-ring rotor) ones. The winding
of squirrel-cage rotor can be constructed in the form of single squirrel-cage or
double squirrel-cage. Respectively, in this case a rotor is called squirrel-cage rotor
(for short cage rotor) or double squirrel-cage rotor (for short double cage rotor).

A cage rotor winding consists of bars short-circuited at each end by two
rings (Fig. 3, a). The entire structure resembles a squirrel cage (Fig. 3, b), therefore
the rotor is called squirrel cage rotor.

A winding of the double cage rotor (Fig. 4, a) is made of two independent
windings – these being two squirrel-cages, one inside the other (Fig. 4, b).

A winding of wound rotor (Fig. 5) consists of coils, each of which is made
of several turns of insulated wire. Some coils of one phase, connected in series,
form a coil group. In the work we consider the simplest case, when wound rotor
winding consists of three coil groups (three-phase winding) and each coil group
is made up of one coil. Thus, the wound rotor winding is considered as three
identical coils displaced 120 electrical degrees apart (Fig. 5, b). Some ends of coils
a, b, c (Fig. 5, b) are connected to the rotor itself at one point o (such a type of
connection is called a star). Another ends of coils a′, b′, c′ are connected to slip
rings, mounted on rotor shaft and isolated from it and each other. That is why
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a b

FIGURE 3 a - Squirrel-cage rotor: 1 – rotor core, 2 – bars, 3 – end rings, 4 – shaft; b -
winding of squirrel-cage rotor

a b

FIGURE 4 a – Double squirrel-cage rotor: 1 – rotor core, 2 – bars, 3 – end rings, 4 – shaft;
b - winding of double squirrel-cage rotor

a rotor is called also a slip-ring rotor. The brushes are resting on the slip rings.
The brushes, sliding over the surfaces of rotor rings, always make electric contact
with them and are connected, thus, with rotor windings. The rotor winding can
be either short-circuited, either connected with another external devices through
the brushes, for example, with rheostat (Fig. 5, a), inductor, windings of other
electrical machines. Such devices are often used for speed control of induction
motors with wound rotor.

The design description of induction motors given above is quite enough for
development of mathematical models of these induction motors. More detailed
description of construction of induction motors can be found in (Vajnov, 1969;
Bruskin et al., 1979; Trzynadlowski, 2001; Gaucheron, 2004; Upadhyay, 2008).

2.2 Mathematical models of induction motors with different types
of rotors

The derivation of the equations of induction motors is based on laws of classi-
cal mechanics and electrodynamics under the following simplifying assumptions
(Popescu, 2000; Leonhard, 2001; Skubov and Khodzhaev, 2008; Zaretskiy, 2013):



24

a

a b

FIGURE 5 a - Wound rotor with rheostat: 1– rotor core, 2 – first coil with current i1, 3
– second coil with current i2, 4 – third coil with current i3, 5 – slip rings, 6 –
brashes, 7 – shaft; 8 – rheostat; b - winding of wound rotor with slip rings

1. it is assumed that magnetic permeability of stator and rotor steel is equal to
infinity. This assumption makes it possible to use the principle of superpo-
sition for the determination of magnetic field, generated by stator;

2. one may neglect energy losses in electrical steel, i.e., motor heat losses, mag-
netic hysteresis losses, and eddy-current losses;

3. the saturation of rotor steel is not taken into account, i.e. the current of any
force can run in rotor winding;

4. one may neglect the effects, arising at the ends of rotor winding and in rotor
slots, i.e., one may assume that a magnetic field is distributed uniformly
along a circumference of rotor.

Let us make an additional assumption1:
5. stator windings are fed from a powerful source of sinusoidal voltage.

Then, following (Adkins, 1957; White and Woodson, 1959; Skubov and Khodzhaev,
2008), due to the last assumption the influence of rotor currents on stator currents
may be ignored. Thus, a stator generates a uniformly rotating magnetic field with
a constant in magnitude induction. So, it can be assumed that the magnetic in-
duction vector B is constant in magnitude and rotates with a constant angular
velocity ω1. This assumption goes back to the classical ideas of N. Tesla and G.
Ferraris and allows one to consider the dynamics of induction motor from the
point of view of its rotor dynamics (PV; Leonov, 2006a).

Now we focus on derivation of equations of induction motor with double
cage rotor. Let us introduce the uniformly rotating coordinates, rigidly connected
with the magnetic induction vector B, and consider the motion of double cage
rotor in this coordinate system (Fig. 6). Suppose that a magnetic field rotates
clockwise. Also, suppose that the positive direction of the rotation axis of the
rotor coincides with the direction of the rotation of the magnetic induction vector.

1 Without this assumption it is necessary to consider a stator, what leads to more complicated
derivation of equations and more complicated equations themselves, which are difficult for
analytical and numerical analysis.
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FIGURE 6 The rotating coordinates, rigidly connected with the rotating magnetic field
B

The rotating magnetic field crosses bars of rotor winding and, according
to the law of electromagnetic induction (Theraja and Theraja, 1999), it induces
electromotive force (EMF) in them, the direction of which is shown in Fig. 7, a.
EMF, which arises in bars of cages moving in magnetic field, is given by formula

ε = v B l sin α, (1)

where B – induction of magnetic field; v – velocity of bar relative to magnetic
field, the directions of which is shown in Fig. 7, a; α – angle between a vector
of velocity and a vector of magnetic field induction, l – length of the bar. The
direction of EMF in the bar changes, when the sign of sin α changes. Taking into
account the positive direction of the rotor rotation axis, the velocity and the angle
α (Fig. 7, b) are calculated as follows:

v = −l1 θ̇, α =
π

2
+

2kπ

n1
+ θ, k = 1, ..., n1

for the bar with number k of outer cage and

v = −l2 θ̇, α =
π

2
+

2kπ

n2
+ θ, k = 1, ..., n2,

for the bar with number k of inner cage. Here l1, l2 are the lengths of the radiuses
of the outer and inner cages, respectively; n1, n2 are the numbers of bars in the
outer and inner cages, respectively; θ is the angle between a vector of magnetic
field induction and the radius-vector directed to the nth bar.

Hence, formula (1) for the EMF of the kth bar of the outer and inner cages
correspondingly takes the following form

ε1, k = −B l1 l sin(
π

2
+

2kπ

n1
+ θ) θ̇ = −B l1 l cos(

2kπ

n1
+ θ) θ̇, k = 1, ..., n1,

ε2, k = −B l2 l sin(
π

2
+

2kπ

n2
+ θ) θ̇ = −B l2 l cos(

2kπ

n2
+ θ) θ̇, k = 1, ..., n2.

(2)
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FIGURE 7 Geometry of double cage rotor: a – the directions of velocities and EMF; b –
a definition of angle α for the outer cage

Under the action of EMF, an alternating current arises in rotor winding. Ac-
cording to Ampere’s force law (Theraja and Theraja, 1999), as a result of the inter-
action between currents in bars and rotating magnetic field, there arise electro-
magnetic forces F1, k and F2, k, the directions of which are shown in Fig. 8, a.
Electromagnetic forces generate electromagnetic torque, and hence the rotor starts
rotating with a certain frequency ω2. The direction of rotor rotation coincides
with the direction of magnetic field rotation. If the magnetic field rotates with
the speed ω1 called synchronous, the rotor rotates with the speed ω2 slightly less
than synchronous one. Hence the speed is called asynchronous. The difference
between the two speeds, i.e., synchronous speed and rotor speed is called slip
speed and is denoted as s = ω1 − ω2.

Define electromagnetic torque of induction motor with double cage rotor,
produced by the electromagnetic forces F1, k, k = 1, ..., n1, and F2, k k = 1, ..., n2.
The value of electromagnetic force, induced in the kth bar of outer cage, is deter-
mined by Ampere’s force law:

F1, k = lBik,

where l – length of the bar, ik – current in the kth bar of outer cage. The projections
of force F1, k (Fig. 8, b), acting on a bar of outer cage with the current ik, are given
by formula

Fpr 1, k = B l l0 cos(β)ik = B l l0 cos(θ +
2kπ

n1
)ik. (3)

Taking into account the number of bars in outer cage and a positive direction
of the rotor rotation axis, it follows that the produced electromagnetic torque,
acting on the outer cage, is equal to the following:

M1 = l1 lB
n1

∑
k=1

cos(θ +
2kπ

n1
)ik.
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FIGURE 8 Geometry of double cage rotor: a – the directions of electromagnetic forces
and currents; b – the projection of force F1, k

Electromagnetic torques, acting on the inner cage can be similarly determined:

M2 = l2 lB
n2

∑
k=1

cos(θ +
2kπ

n2
)jk,

where jk – current in kth bar of inner cage. Thus, the electromagnetic torque of
induction motor with a double cage rotor is equal to

Mem = M1 + M2.

The dynamics of rotating induction motor is described by the equations of
electric circuits (voltage equations) and the equation of moments of forces, acting
on a motor rotor (torque equation).

Let us consider an electrical circuit of double cage rotor winding, shown in
Fig. 9. Note that this electric circuit is equivalent to that, shown in Fig.(Fig. 4,
b). In the included article PI, the currents flowing in the bars of single cage were
defined. Since in terms of design the winding of double cage rotor is presented
as two independent cages, using the results obtained in PI for each (outer and
inner) cage, we get the system of differential equations for currents in bars of
double cage rotor

L1 i̇k + R1 ik = −l1 lB cos(θ +
2kπ

n1
)θ̇, k = 1, ..., n1,

L2 j̇k + R2 jk = −l2 lB cos(θ +
2kπ

n2
)θ̇, k = 1, ..., n2,

(4)

where R1, L1 – resistance and inductance of bar of outer cage; R2, L2 – resistance
and inductance of bar of inner cage.



28

���

���

i1 i2 in1-1
in1

R1 R1 R1 R1

1 2 n1-1 n1

1' 2' (n1-1)' n'1

���

���

j1 j2 jn2-1
jn2

R2 R2 R2 R2

1 2 n2-1 n2

1' 2' (n2-1)' n'2

a b

FIGURE 9 Electrical circuit of double cage rotor winding: a – electrical circuit of outer
cage; b – electrical circuit of inner cage

The motion of double cage rotor of induction motor about shaft in the cho-
sen coordinate system is described by the torque equation:

Jθ̈ = Mem − Ml,

where θ – mechanical angle of rotor rotation; J – the moment of inertia of the
rotor; Mem – electromagnetic torque; Ml – load torque.

Thus, the dynamics of induction motor with a double cage rotor is described
by the following system of differential equations

L1 i̇k + R1 ik = −l1 lB cos(θ +
2kπ

n1
)θ̇, k = 1, ..., n1,

L2 j̇k + R2 jk = −l2 lB cos(θ +
2kπ

n2
)θ̇, k = 1, ..., n2,

Jθ̈ = l1 lB
n1

∑
k=1

cos(θ +
2kπ

n1
)ik + l2 lB

n2

∑
k=1

cos(θ +
2kπ

n2
)jk − Ml.

(5)

Let us transform system (5) to a form more convenient for the further study.
For this purpose we introduce the additional assumption that n1 = 4m1 and
n2 = 4m2. This assumption is justified, since the number of bars used in modern
double cage rotors is usually divisible by four. The nonsingular transformation
of coordinates (the proof of nonsingularity of this transformation can be found in
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Appendix 1)

ϑ = −θ,
s = ϑ̇,

x = − 2L1

n1l1lB

n1

∑
k=1

sin(ϑ − 2kπ

n1
)ik,

y = − 2L1

n1l1lB

n1

∑
k=1

cos(ϑ − 2kπ

n1
)ik,

zk =
m

∑
p=−m

i(k+p)modn1
− ctg(

π

n1
)ik, k = 2, ..., n1 − 1,

μ = − 2L2

n2l2lB

n2

∑
k=1

sin(ϑ − 2kπ

n2
)jk,

ν = − 2L2

n2l2lB

n2

∑
k=1

cos(ϑ − 2kπ

n2
)jk,

υk =
m

∑
p=−m

j(k+p)modn2
− ctg(

π

n2
)jk, k = 2, ..., n2 − 1,

(6)

reduces system (5) to the form

θ̇ = s,
ṡ = a1y + a2ν + γ,
ẋ = −c1x + ys,
ẏ = −c1y − xs − s,
żk = −c1zk, k = 2, ..., n1 − 1,
μ̇ = −c2μ + νs,
ν̇ = −c2ν − μs − s,
υ̇k = −c2υk, k = 2, ..., n2 − 1,

(7)

where a1 = n1(ll1B)2

2JL1
, c1 = R1

L1
, a2 = n2(ll2B)2

2JL2
, c2 = R2

L2
, γ = Ml

J . From now

on we assume R1
L1

= R2
L2

, hence, c1 = c2 = c.
In system (7) variables x, y, μ, ν, zk, υk determine electric quantities in the

rotor bars, and variable s determines the rotor slip speed. Note that the equations
with the variables zk and υk can be integrated independently of the rest of the
system and have no effect on its stability. The remaining equations, except the
first one, do not depend on θ; therefore, it is sufficient to consider the system of
fifth order differential equations

ṡ = a1y + a2ν + γ,
ẋ = −cx + ys,
ẏ = −cy − xs − s,
μ̇ = −cμ + νs,
ν̇ = −cν − μs − s.

(8)
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If we exclude from consideration one of two cages, we obtain the following
equations of induction motor with squirrel-cage rotor (see PI, PII, PV)

Li̇k + R ik = −l0lB cos(θ +
2kπ

n
)θ̇, k = 1, ..., n,

Jθ̈ = l0lB
n

∑
k=1

cos(θ +
2kπ

n
)ik − Ml,

(9)

where ik – the current in the kth bar; R – the bar resistance, L – the bar inductance,
l and l0 –the radius and the length of the squirrel cage rotor, respectively; θ – the
angle between the magnetic field vector B and a radius vector directed to the nth
bar; J – the rotor moment of inertia; Ml is the load torque. Using nonsingular
changes of coordinates, presented in PI, PII, PV, the investigation of system (9) in
the context of stability reduces to the investigation of the following system (see
PV for more details)

ṡ = ay + γ,
ẋ = −cx + ys,
ẏ = −cy − xs − s,

(10)

where a = n(l0lB)2

2JL , γ = Ml
J , c = R

L .

Derivation of equations for induction motors with wound rotor, the rotor
winding of which consists of three coils, is given in details in (PV; Leonov et al.,
2014). In the case when no external devices are connected to slip rings, the initial
equations describing such motor have the following form

Jθ̈ = nBS
n

∑
k=1

ik cos
(

π

2
− θ − 2(k − 1)π

3

)
− Ml,

Li̇1 + Ri1 = −nBSθ̇ cos
(π

2
− θ
)

,

Li̇2 + Ri2 = −nBSθ̇ cos
(

π

2
− θ − 2π

3

)
,

Li̇3 + Ri3 = −nBSθ̇ cos
(

π

2
− θ − 4π

3

)
,

(11)

where n – the number of turns in each coil; B – an induction of magnetic field; S –
an area of one turn of coil, θ – a mechanical angle of rotation of rotor; ik – currents
in coils; R – resistance of each coil; L – inductance of each coil; J – the moment
of inertia of the rotor; Ml – a load torque. Using nonsingular transformation of
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coordinates (the proof of nonsingularity can be found in Appendix 1)

ϑ = π
2 − θ,

s = −θ̇,
x = − 2

3
L

nSB

(
i1 sin(π

2 − θ) + i2 sin(π
2 − θ − 2π

3 ) + i3 sin(π
2 − θ − 4π

3 )
)

,

y = − 2
3

L
nSB

(
i1 cos(π

2 − θ) + i2 cos(π
2 − θ − 2π

3 ) + i3 cos(π
2 − θ − 4π

3 )
)

,

z = i1 + i3 − i2

(12)

and reasoning similarly to the case of double cage rotor we obtain that the in-
vestigation of stability of system (11) can be reduced to stability analysis of sys-
tem (10), where

a =
3(nSB)2

2JL
, γ =

Ml
J

, c =
R
L

. (13)

In the case when the wound rotor winding is connected to variable external
resistances r (or to variable external inductances l), the dynamics of induction
motor with wound rotor is described by the same system of equation (11) but
with other parameter R (L): replace R by R + r (replace L by L + l) (see (PIV;PV;
Leonov et al., 2014)). These resistances (rheostat) and inductances (inductor) are
used to control the motor speed.

As the result we obtained three different dynamical systems, which describe
induction machines with various types of rotors: the system of 6 order for the
wound rotor, the system of n + 2 order for the squirrel-cage rotor and the system
of n + n1 + 2 order for the double-cage rotor. However, due to suggested changes
of coordinates the systems for wound and squirrel-cage rotors reduce to third or-
der system. The variables x, y correspond to currents flown in the rotor windings
(i1, i2, i3 in the case wound rotor and ik, k = 1, ..., n in the case squirrel-cage ro-
tor). Using inverse transformations of coordinates, we can estimate the force of
currents in each of rotors. Thus, investigation of induction motors with different
types of rotor is reduced to study systems (5) and (10).

In contrast to the well-known mathematical models (see, for example, (White
and Woodson, 1959; Leonhard, 2001; Khalil, 2002; Marino et al., 2010)), in which
on the basis of engineering approaches the geometry of rotors is simplified (the
winding of any rotor is reduced to the winding of stator), the mathematical mod-
els of induction motors constructed in this thesis completely take into account
rotor geometry. This allows one to determine real values of currents in bars or
coils of rotor windings. Hence, mathematical models (5), (9) and (11) compare
favorably with the well-known models.



3 STABILITY ANALYSIS OF INDUCTION MOTORS

The investigation of stability is one of the major scientific and technological prob-
lems in the design of electrical machines. By the stability of a machine we mean
the ability of the machine to re-establish a steady-state mode after disturbances of
the initial mode, for example changes of the external load, changes of supply volt-
age, etc. The process of pull into synchronism of the machine after asynchronous
start-up is also a property of stability of the machine. Stability is an important
qualitative characteristic of an electrical machine, providing the reliability of its
work.

In this chapter on the basis of the developed mathematical models two types
of stability of an induction motor are studied: steady-state and dynamic stabil-
ity. Also, the limit load problem with different types of loads is formulated and
estimations of the limit permissible load are obtained by the author.

3.1 Steady-state stability analysis of induction motors

The ability of an induction motor to re-establish a steady-state mode after its arbi-
trarily small disturbances is called steady-state (static, local) stability. The term of
steady-state stability in the theory of electrical machines is matched by the term
of asymptotic stability (stability "in small") in the theory of differential equations.
An asymptotically stable equilibrium state corresponds to a stable steady-state
mode of operation of an induction motor. This means that after an arbitrarily
small short-term disturbances of a steady-state mode the motor returns to this
mode. Such mode is called the operating mode. An unstable equilibrium state
corresponds to an unstable mode of motor operation, that is, an arbitrarily small
disturbance does not lead to a steady-state mode. Such mode is called a physi-
cally unrealizable.

Steady-state stability is a necessary condition for normal operation of the
induction motor. In addition, the stability or instability of the mode does not
depend on the type of disturbance and is uniquely determined by the parameters
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of this mode.
The local stability of modes of induction motors is studied by use of the

classical theorem on stability in the first approximation (Anderson and Fouad,
1977; Gorev, 1985; Ushakov, 1988; Merkin, 1997).

Let us first study the steady-state stability of modes of induction motors
with double cage rotor. The equilibrium states of the system

ṡ = a1y + a2ν + γ,
ẋ = −cx + ys,
ẏ = −cy − xs − s,
μ̇ = −cμ + νs,
ν̇ = −cν − μs − s,

(8)

under condition γ < a1+a2
2 are points (x = μ = − s2

i
c2+s2

i
, y = ν = − csi

c2+s2
i
, s = si).

Here si are roots of the equation

(a1 + a2)cs
s2 + c2 = γ. (14)

System (8) does not have the equilibrium states under condition γ > a1+a2
2

Consider the characteristic polynomial of the Jacobian matrix of the right-
hand side of system (8) in stationary points:

f (λ) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ′ − λ 0 a1 0 a2
− csi

c2+s2
i

−c − λ si 0 0

− c2

c2+s2
i

−si −c − λ 0 0

− csi
c2+s2

i
0 0 −c − λ si

− c2

c2+s2
i

0 0 −si −c − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

= −((c + λ)2 + s2
i )[λ

3 + (2c − γ′)λ2 + (c2 + s2
i +

(a1+a2)c2

c2+s2
i

− 2cγ′)λ+
+(a1 + a2)c − c2γ′ − s2

i γ′].
(15)

The second-order polynomial situated in round brackets of (15), has two
complex roots with negative real parts. Hence, stability of the characteristic poly-
nomial is determined by stability of polynomial of the third order situated in
square brackets of (15).

It is known that for the third order polynomial

p3 + b2p2 + b1p + b0

the necessary and sufficient conditions of stability are the following

b0 > 0, b1 > 0 b2 > 0, b1b2 − b0 > 0,

Sometimes they are called conditions of Vyshnegradskii (Leonov, 2001, 2006b).
Check these conditions in stationary points. Taking into account γ′(s) ≤ 0 (since
functions of considered below loads is nonincreasing), we obtain

b0 = (a1 + a2)c − c2γ′(s)− s2γ′(s) > 0, (16)



34

b1 = c2 + s2 +
(a1 + a2)c2

c2 + s2 − 2cγ′(s) > 0, (17)

b2 = 2c − γ′(s) > 0, (18)

b2b1 − b0 = (2c − γ′(s))(c2 + s2 + (a1+a2)c2

c2+s2 − 2cγ′(s))− (a1 + a2)c + c2γ′(s)+

+s2γ′(s) = 2c(c2 + s2 − 2cγ′(s)) + 2c(a1+a2)c2

c2+s2 − ac − γ′(s)( (a1+a2)c2

c2+s2 − 2cγ′(s)) =

= 2c(c2 + s2 − 2cγ′(s))− γ′(s)( (a1+a2)c2

c2+s2 − 2cγ′(s)) + (a1+a2)c(c2−s2)
c2+s2 .

(19)
It is obvious that conditions (16),(17),(18) are satisfied for any stationary

point of the system (8). The condition (19) is fulfilled in the case si < c and is not

fulfilled in the case si > c. Hence, the equilibrium states (x = μ = − s2
i

c2+s2
i
, y =

ν = − csi
c2+s2

i
, s = si � c) are asymptotically stable and correspond to operating

modes. The equilibrium states (x = μ = − s2
i

c2+s2
i
, y = ν = − csi

c2+s2
i
, s = si > c) are

unstable and correspond to physically unrealizable modes.
Study next the steady-state stability of modes of induction motors with cage

and wound rotors. In the case when γ < a
2 system

ṡ = ay + γ,
ẋ = −cx + ys,
ẏ = −cy − xs − s

(10)

which describes the dynamics of induction motors with cage and wound rotors,

has several equilibrium points (x = − s2
i

c2+s2
i
, y = − csi

c2+s2
i
, s = si), where si are

roots of the equation acs
s2+c2 = γ. The characteristic polynomial of the Jacobian

matrix of the right-hand side of system (10) in stationary states is as follows:

f (λ) = λ3 + (2c − γ′)λ2 + (c2 + s2
i +

ac2

c2 + s2
i
− 2cγ′)λ + ac − c2γ′ − s2

i γ′.

Analysis of this polynomial was carried out above (a = a1 + a2). Hence, oper-
ating modes of induction motors with cage and wound rotor are determined by

asymptotically stable equilibrium states (x = − s2
i

c2+s2
i
, y = − csi

c2+s2
i
, s = si � c).

The equilibrium states (x = − s2
i

c2+s2
i
, y = − csi

c2+s2
i
, s = si > c) are unstable and

correspond to physically unrealizable modes.
For γ0 = 0 system (8) has an unique asymptotically stable equilibrium state

(x = μ = y = ν = s = 0) and system (10) also has an unique asymptotically
stable equilibrium state (x = y = s = 0). These states correspond to operating
modes of the induction motors under no-load conditions.

The function
ϕ(s) =

αcs
c2 + s2
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is called static characteristic of an induction machine (for double cage rotor α =
a1 + a2, for cage and wound rotor α = a). It is presented for a wide range of slip,
including all possible modes of an induction machine, in the Fig. 10.
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FIGURE 10 The static characteristic of an induction machine

The static characteristic ϕ(s) allows one to describe the behaviour of systems
(8) and (10), changing the parameters of load γ or slip speed s, also allows one
to find the critical values of these parameters and to define the stability region
(Panovko and Gubanova, 1967; Blehman, 1994). Operating modes of an induc-
tion motor correspond to the ascending part of static characteristic (s ∈ (0, c)).
Physically unrealizable modes correspond to the descending part of static char-
acteristic (s > c) (Panovko and Gubanova, 1967; Blehman, 1994).

3.2 Dynamical stability of induction motors under no-load condi-
tions

In practice of induction motor operation the disturbances that occur on the sys-
tem may be not only small, but also large. The property of an electrical machine to
return to an operating mode after large disturbances is called the dynamical sta-
bility (Venikov, 1977; Pai, 1989; Xue and Pavella, 1989; Kimbark, 1995; Boldea and
Nasar, 2006). The special case of dynamical stability, when machine returns to an
operating mode after any disturbances, is called the global stability. The terms of
dynamic stability and global stability in the theory of electrical machines corre-
spond to the terms of stability "in large" and stability "in whole" in the theory of
differential equations, respectively. Dynamic stability or instability depends not
only on the parameters of the initial mode, but also on the value and character
of disturbances (Langsdorf, 1955; Chang and Wang, 1992; Ong, 1998; Natarajan,
2002; Toliyat and Kliman, 2004; Leonov, 2006a; Gross, 2007; Begamudre, 2007).

The global stability investigation of induction motors under no-load con-
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ditions is carried out by the well-known theorem of Barbashin–Krasovsky (Bar-
bashin and Krasovskiy, 1952) on stability "in whole". In addition, the Lyapunov
functions are used.

Following (Leonov and Kondrat’eva, 2009), let us introduce the following
definitions.

Definition 1. The region of attraction of asymptotically stable equilibrium point x = p
of the autonomous system

ẋ = f (x), x ∈ Rn (20)

is the set of all points in phase space, attracting to point x = p as t → +∞, that is, the
set of points x0 ∈ Rn such that

lim
t→+∞

x(t, x0) = p.

Definition 2. If the attraction region of asymptotically stable equilibrium point of au-
tonomous system (20) is the same as a space of points, then the system is called stable "in
whole".

The following theorem is a modification of the Barbashin–Krasovsky theo-
rem.

Theorem 1. (Leonov, 2006a; Leonov and Kondrat’eva, 2009) Let x = 0 be an unique
Lyapunov stable equilibrium point of system (20) and there exists a continuos positive
definite function V such that

1. lim |V(x)| = ∞ as |x| → ∞;
2. for any solution x(t, x0) of system (20) the function V(x(t, x0)) is nonincreasing;
3. if V(x(t)) ≡ V(x(0)), then x(t) ≡ 0.

Then system (20) is stable "in whole".

By applying theorem 1, we prove stability "in whole" of the systems, de-
scribing the dynamics of induction motors with different types of rotors under
no-load conditions.

Theorem 2. The system of equations of induction motor with double cage rotor under
no-load conditions

ṡ = a1y + a2ν,
ẋ = −cx + ys,
ẏ = −cy − xs − s,
μ̇ = −cμ + νs,
ν̇ = −cν − μs − s

(21)

is stable "in whole".
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Proof. It was shown that s = 0, y = 0, x = 0, μ = 0, ν = 0 is a unique asymp-
totically stable equilibrium point of system (21). Let us consider the continuous
positive definite function

V(s, x, y, μ, ν) = a1(x2 + y2) + a2(μ
2 + ν2) +

1
2

s2.

It is obvious that
lim

|z|→∞
|V(z)| = ∞,

that is, condition 1 of theorem 1 is fulfilled.
The derivative of V by virtue of system (21) is as follows:

V̇ = −a1cx2 − a1cy2 − a2cν2 − a2cμ2 − a1ys − a2νs + a1ys + a2νs =

= −a1c(x2 + y2)− a2c(ν2 + μ2) ≤ 0,

that is, condition 2 of theorem 1 is satisfied.
It follows that if z(t) = (s(t), x(t), y(t), ν(t), μ(t)) is a solution of system (21)

such that V(z(t)) ≡ V(z(0)), then we have x(t) ≡ 0, y(t) ≡ 0, ν(t) ≡ 0, μ(t) ≡
0. Hence, from system (21) we get s(t) ≡ 0. Thus, condition 3 of theorem 1 is
fulfilled.

Finally, the application of theorem 1 yields that system (21) is stable "in
whole"

Theorem 3. The system of equations of induction motor with cage and wound rotors
under no-load conditions

ṡ = ay,
ẋ = −cx + ys,
ẏ = −cy − xs − s

(22)

is stable "in whole".

The proof of theorem 3 is identical to the proof of theorem 2 with the use of
the continuous positive definite function

V(x, y, s) = x2 + y2 +
1
a

s2.

Thus, these theorems claim that the induction motors under no-load condi-
tions are globally stable.

3.3 Types of loads

Nowadays electrical machines operates under different loading conditions. The
most widespread loads (load torques), which occur during operation of induction
motors, can be classified depending on speed in the following groups (Pillai, 1989;
Sarkar, 2012) :
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1. constant loads Mc, which provide active torques. This type of load is typical
for hoisting mechanisms (hoists, lifts, elevators, cranes), as well as for all
machines operating on gradients (locomotives, trains, escalator).

Let us consider the constant load through the example of a hoist. When
a load is moved upwards, the developed torque opposes the action, i.e. it
acts in a direction opposite to speed of rotation. On the other hand, when
the load is moved downwards, the developed torque aids the action, i.e. it
acts in the same direction as speed of rotation. Thus, it can be seen that
load torques continue to act in the same direction even after the direction
of rotation speed has been reversed. Also the load torque is independent of
magnitude of speed due to the gravitational forces. Hence,

Mc = const > 0.

The speed-torque curve for this type of load is shown in Fig. 11, a.
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FIGURE 11 Speed torque curves of different types of loads: a – constant load; b – dry
friction load

2. dry friction load Md, which provide passive torques. Such type of load is
characteristic for mechanisms with rotational or translational motion in a
horizontal plane, for example, for drills, boring machines, conveyors, elec-
tric saw.

The characteristics of dry friction load may be described using the ex-
ample of a drill. When the drill bit enters the hard material, load torque oc-
curs due to friction and oppose motion, retarding the rotation speed. More-
over, if the direction of speed is changed by the reversing switch, then the
direction of torque also changes. However, magnitude of load torque re-
mains constant. During the drilling process there are situations when the
motor stops, that correspond to sticking the system. In this case the speed
is equal to zero and load torque equals electromagnetic torque. Such effects
often happen in practice of drill operation.

Thus, dry friction torque is constant in magnitude and is directed against
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motion. Hence, this type of load is given by formula

Md =

⎧⎨
⎩

M if ω2 > 0,
[−M, M] if ω2 = 0,
−M if ω2 < 0,

where M = const, ω2 is rotation speed of rotor. The dry friction torque
speed curve is illustrated in Fig. 11, b.

3. viscous friction load Mv, which also provide passive torques. It is directly
proportional to the speed in magnitude and depends on the direction of
motion. Hence,

Mv = kω2,

where k is a coefficient. The viscous friction torque speed curve is presented
in Fig. 12, a.

4. fan type of load Mf , which also provide passive torques. It is a load whose
magnitude is proportional to some power of the speed. Hence, this load is
defined as

Mf = kω
p
2 ,

where k is a coefficient. The value of power p depends on type of sys-
tem: p = 2 for fans, blowers, propellers in shop or aeroplanes; p ∼= 2, 5
for pumps; p ∼= 1, 25 for compensators; p = −1 for certain type of lathers,
boring machines, milling machines, etc. The speed torque curves for the fan
type of load in the case a fan are shown in Fig. 12, b (p = 2) and Fig. 12, c
(p = −1).
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FIGURE 12 Speed torque curves of different types of loads: a – viscous friction load; b
– fan type load (p = 2); c – fan type load (p = −1)

In general, the load torque consists of linear combination of the above mentioned
loads.

Further in the work it is considered only the first two loads, because unlike
the other ones they are essentially independent of speed. The last condition al-
lows one to obtain analytical results in the case of constant and dry friction loads.
Moreover, specifics of both loads is needed to take into account for investigating
the stability of induction motors and for their computer modeling.
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3.4 Dynamical stability of induction motors under various loads.
The limit load problem

The problem of dynamic stability of an induction motor consists of not only of
checking whether the motor maintain synchronism after a given dynamic dis-
turbances, but also finding the limit permissible disturbance, corresponding to
the boundary of dynamic stability. Therefore, the problem of dynamic stability is
closely related to the limit (ultimate) load problem (PI; PII; PIII; PV; Annett, 1950;
Haque, 1995; Das, 2002; Bianchi, 2005) and the speed control problem (PIV; PV;
Vajnov, 1969; Marino et al., 2010).

In practice of operation of induction motors there are situations, in which a
sudden change of external load or change of voltage occurs. A problem of calcu-
lation of a limit load, under which the motor does not pull out of synchronism,
arises.

A typical situation for induction motor is as follows: the motor is started
without load, then in transient process it pulls in synchronism and only after that
a load-on occurs (for example, when a motor is used in a driver of metal-cutting
machine tool).

Let us describe the limit load problem by the example of an electric circular
saw (Fig. 13). The simplest model consist of a blade with cutting teeth, which is
driven by an induction motor. In the simplest model the interaction of gears is
not considered. Therefore, the electric circular saw in the simplest case can be
described by equations of the induction motor.

FIGURE 13 Scheme of metal cutting saw under no-load condition

As was shown above the dynamics of induction motors may be described
by the autonomous system of the form

ż = f (z), z ∈ Rn. (23)

While the blade does not come in contact with the workpiece, the load is
equal to zero (Fig. 13). It can be assumed that the motor operates in a synchronous
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mode, because its global stability under no-load condition was proved above.
This operating mode correspond to the zero solution of the system z = 0.

Further at time t = τ0, when the blade comes into contact with the work-
piece, the instantaneous load-on occurs (Fig.14). Thus, for t > τ0 the load torque
is not already zero. Hence, the operating mode of the motor changes. i.e., a new
operating mode of the motor under load γ0 corresponds to an asymptotically sta-
ble equilibrium state of the system z = z0. In this case the limit load problem is
as follows: to find loads, under which the induction motor pulls in the new op-
erating mode after transient processes. Thus, a mathematical formulation of the
limit load problem for induction motors is the following: to find conditions, un-
der which the solution of the system z = z(t) with the initial data z = 0 belongs
to the attraction domain of the stationary solution z = z0. The latter means that
the following relations

lim
t→+∞

z(t) = z0, (24)

must be satisfied. A load is called permissible if after transient processes the
motor pulls in a new operating mode, i.e., if relation (24) is satisfied.

FIGURE 14 Occurrence of the load

Let us consider generalized problem when motor is already operating un-
der load γ∗ (the system has asymptotically stable equilibrium state z∗) and at
some instant t = τ0 parameters of motor operation are changed. Then transients
processes occur, as the result of which either the motor pulls in synchronism or
stops. In the first case it is necessary that the solution z = z(t) of the system with
initial data z = z∗ tends to asymptotically stable equilibrium state z0 as t → +∞:

lim
t→+∞

z(t) = z0.

Thus, the limit load problem is reduced to the problem of defining the at-
traction region of the stable equilibrium state.

Let us find asymptotically stable equilibrium points of systems (8) and (10)
under constant load γ = const = M (γ′ = 0), using the results obtained in section
3.1:

– system (8) under the condition 0 < γc ≤ a1+a2
2 has one asymptotically stable
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equilibrium point (Fig. 15, a)

(x0, μ0, y0, ν0, s0) = (x = μ = − s2
0

c2 + s2
0

, y = ν = − cs0

c2 + s2
0

,

s = s0 =
c(a1 + a2 −

√
(a1 + a2)2 − 4γ2

c )

2γc
)

and one unstable equilibrium point

(x1, μ1, y1, ν1, s1) = (x = μ = − s2
1

c2 + s2
1

, y = ν = − cs1

c2 + s2
0

,

s = s1 =
c(a1 + a2 +

√
(a1 + a2)2 − 4γ2

c )

2γc
);

under the condition γc >
a1+a2

2 system (8) does not have equilibrium points,
i.e., its stationary set is empty (Fig. 15, b).
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FIGURE 15 Graphical solution of the equation αcs
s2+c2 = γ in the case γ = const (for

double cage rotor α = a1 + a2, for cage and wound rotor α = a)

– system (10) under the condition 0 < γc ≤ a
2 has one asymptotically stable

equilibrium point (Fig. 15, a)

(x0, y0, s0) = (x = − s2
0

c2 + s2
0

, y = − cs0

c2 + s2
0

, s = s0 =
c(a −√a2 − 4γ2

c )

2γc
)

and one stable equilibrium point

(x1, y1, s1) = (x = − s2
1

c2 + s2
1

, y = − cs1

c2 + s2
0

, s = s1 =
c(a +

√
a2 − 4γ2

c )

2γc
);

under the condition γc > a
2 system (8) does not have equilibrium points

(Fig. 15, b).
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The limit load problem on induction motors with different types of rotors and the
generalized problem in the case of constant load γ = const were formulated and
solved with help of modified non-local reduction method in the applied articles
(PI, PII, PIII, PV). Analytical estimations of limit permissible load on induction
motors, operating under no-load conditions, were found. The main results are
given below. In theorem 4 and corollaries 1 and 2 the following notations are
used:

Γ = 2 max
λ∈(0,c)

[
λ

(
c − λ − γ2

4c2(c − λ)

)]1/2

,

ψ(s) = −γ

c
s2 + αs − cγ,

s1 =
c(α +

√
α2 − 4γ2)

2γ
,

(25)

where α = a in the case cage and wound rotors (system (10)) and α = a1 + a2 in
the case of double cage rotor (system (8)).

Theorem 4. Suppose that γ < 2c2, s∗ < s1 and the solution of the equation

F(ω)F′(ω) = −ΓF(ω)− ψ(ω)

with initial data F(s1) = 0 fulfils the condition

1. for system (8)

F(s∗) >
√
(a1y∗ + a2μ∗ + γ)2 + (a1x∗ + a2ν∗ +

γ

c
s∗)2 ,

2. for system (10)

F(s∗) >
√
(ay∗ + γ)2 + (ax∗ +

γ

c
s∗)2 .

Then the solution of system (8) with initial data s = s∗, x = x∗, μ = μ∗, y = y∗, ν =
ν∗ satisfies the relations

lim
t→∞

s(t) = s0, lim
t→∞

x(t) = x0, lim
t→∞

μ(t) = μ0, lim
t→∞

y(t) = y0, lim
t→∞

ν(t) = ν0 (26)

and the solution of system (10) with initial data s = s∗, x = x∗, y = y∗ satisfies the
relations

lim
t→∞

s(t) = s0, lim
t→∞

x(t) = x0, lim
t→∞

y(t) = y0. (27)

The proof of this theorem for three-dimensional system (10) can be found in
PV, similarly the proof for five-dimensional system (8) can be carried out.

Corollary 1 (PI, PII, PIII, PV). Suppose that γ < 2c2 and the solution of the equation

F(ω)F′(ω) = −ΓF(ω)− ψ(ω),
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with initial data F(s1) = 0 fulfils the condition

F(0) > γ. (28)

Then the load γ = const is a permissible load, i.e., the solution of system (8) with γ =
const and zero initial data x = μ = y = ν = s = 0 satisfies the relations (26) and the
solution of system (10) with γ = const and zero initial data x = y = s = 0 satisfies the
relations (27).

Corollary 2 (PII, PIII). If the conditions

5c2 ≥ 2α, γ ≤
√

3
4

α

are satisfied, then the load γ = const is a permissible load.

From analytical estimates (28) and γ < 2c2, we obtain the numerical esti-
mate of the limit permissible constant load on induction motors, presented in the
Fig.16.

FIGURE 16 Numerical estimate of the limit permissible constant load on induction mo-
tors (γmax = a1+a2

2 for system (8), γmax = a
2 for system (10))

Now consider the case of dry friction load. In this case equations of induc-
tion motors with double cage rotor are written as

ṡ = a1y + a2ν + γl,
ẋ = −cx + ys,
ẏ = −cy − xs − s,
μ̇ = −cμ + νs,
ν̇ = −cν − μs − s,

(29)

where

γl =

⎧⎪⎨
⎪⎩

Ml
J if s < ω1,
[−Ml

J , Ml
J ] if s = ω1,

−Ml
J if s > ω1.
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We see that system (29) is a differential inclusion, i.e., this system is of the
form

ẋ ∈ F(t, x), (30)

where x ∈ Rn, F(t, x) is a multivalued function. Following the works (Filippov,
1960; Gelig et al., 1978; Filippov, 1985, 1988), we define a solution of differential in-
clusion (30) as absolutely continuous vector function x(t) satisfying ẋ ∈ F(t, x(t))
almost everywhere on some interval [t1, t2].

Let us show how it is possible to determine system (29) for s = ω1 such that
the solution of the new extended system will be the solution of the initial system.
Introduce the notations

η = a1y + a2ν, M =
Ml
J

.

For s �= ω1 the right-hand side of system (29) is continuous and we can use
the classical definition of the solution. Namely, for s < ω1 system (29) have the
form

ṡ = a1y + a2ν + M,
ẋ = −cx + ys,
ẏ = −cy − xs − s,
μ̇ = −cμ + νs,
ν̇ = −cν − μs − s

(31)

and for s > ω1 system (29) have the form

ṡ = a1y + a2ν − M,
ẋ = −cx + ys,
ẏ = −cy − xs − s,
μ̇ = −cμ + νs,
ν̇ = −cν − μs − s

(32)

Assume now that at some instant of time t0 the trajectory of continuous
system (31) (or (32)) falls into the point D belonging to s = ω1. If η(t0) < −M,
then clearly the trajectory can be continued due to system (31) in the subspace
s < ω1, since the value ṡ for t = t0, found from the first equation of system (31),
is positive. Similarly, if s(t0) = ω1 and η > M, then the trajectory be continued
due to system (32) in the subspace s > ω1.

Constructed such ways the trajectories of system (29) pass through a part of
the plane s = ω1, defining by the inequality η > M, in the side of increase s, and
pass through a part of the plane s = ω1, defining by the inequality η < M,in the
side of decrease s (Fig.17).

However, discussions carried out above is not convenient, if at time t = t0
the following relations are satisfied

s = ω1, −M < η < M. (33)
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FIGURE 17 Field of directions of trajectory for system (29) in neighborhood of domain
s = ω1

Indeed from the point D, coordinates of which are satisfied relations (33),
it is impossible to start the trajectory in subspace s < ω1 due to system (31),
since in the point D the derivation ṡ, defining from the first equation of system
(31), is more zero. Similarly, it is impossible to start the trajectory from point D
in subspace s > ω1 due to system (32), since ṡ in point D, defining by the first
equation of system (32), is less zero.

The trajectories of system (31) and (32) does not pass trough the strip (33),
but slide over it (Fig.17). Hence, the trajectory started from the point D must stay
in the strip (33) until −1 < η < 1. Along arc of this trajectory, belonging the strip
(33), ṡ = 0, i.e., the trajectory slides over the strip (33). Therefore, if we want that
the solution is satisfied system (29), then it follows to set equal the right-hand
side of the first equation to zero in (29). From this

γl = −η.

The trajectories of system (29) leave the slip strip (33) either through the
space η = M, s = ω1, moving away in subspace s > ω1, or through the space
η = −M, s = ω1, moving away in subspace s < ω1. (For definiteness, we join the
boundary |η| = M, s = ω1 to slip strip.)

According to determination γl presented above, system (29) takes the fol-
lowing form

ṡ = a1y + a2ν + γl,
ẋ = −cx + ys,
ẏ = −cy − xs − s,
μ̇ = −cμ + νs,
ν̇ = −cν − μs − s,

(34)

where

γl =

⎧⎨
⎩

M if s < ω1 or s = ω1, a1y + a2ν > M,
−a1y − a2ν if s = ω1,−M � a1y + a2ν � M,
−M if s > ω1 or s = ω1, a1y + a2ν < −M.
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Let us find equilibrium points of system (34), using results obtained in sec-
tion 3.1. Note that γ′

l = 0. Depending on the values s and γl, the number of equi-
librium points is equal to either three or two or one (see table 1). By z0 denote the
asymptotically stable equilibrium point which corresponds to an operating mode
of motor, by z1 denote the unstable equilibrium point and by z2 denote the asymp-
totically stable equilibrium point which corresponds to rotor stop. The values z0
and z1 are calculated as in the case of a constant load: z0 = (s0, x0, μ0, y0, ν0), z1 =

(s1, x1, μ1, y1, ν1), z2 = (s2, x2, μ2, y2, ν2) = (ω1, − ω2
1

c2+ω2
1
, − ω2

1
c2+ω2

1
, − cω1

c2+ω2
1
, − cω1

c2+ω2
1
).

In the same way we determine system (10), describing an induction motor
with cage and wound rotors in the case of dry friction load γ = γl:

ṡ = ay + γl,
ẋ = −cx + ys,
ẏ = −cy − xs − s,

(35)

where

γl =

⎧⎨
⎩

M if s < ω1 or s = ω1, ay > M,
−ay if s = ω1,−M � ay � M,
−M if s > ω1 or s = ω1, ay < −M.

Equilibrium points of system (35) can be found in table 1 and are calculated
from formulas: the asymptotically stable equilibrium point z0 = (x0, y0, s0), the
unstable equilibrium point z1 = (s1, x1, y1), the asymptotically stable equilibrium

point, corresponding the rotor stop z2 = (s2, x2, y2) = (ω1, − ω2
1

c2+ω2
1
, − cω1

c2+ω2
1
).

Now when the asymptotically stable equilibrium points of systems (34) and
(35) are found, we can solve the generalized problem and the limit load problem
for induction motors in the case of dry friction load. We will be used notations
(25), where γ = M.

Theorem 5. Suppose that s0 < ω1, M < min
{

2c2,
a1 + a2

2

}
and the solution of

the equation
F(s)F′(s) = −ΓF(s)− ψ(s)

with initial data F(s1) = 0 fulfils the conditions

F(s∗) >
√
(a1y∗ + a2μ∗ + M)2 + (a1x∗ + a2ν∗ +

M
c

s∗)2 , (36)

F(ω1) < M, if s1 > ω1.

Then the solution of system (34) with initial data s = s∗, x = x∗, μ = μ∗, y =
y∗, ν = ν∗ satisfies the relations

lim
t→∞

s(t) = s0, lim
t→∞

x(t) = x0, lim
t→∞

μ(t) = μ0, lim
t→∞

y(t) = y0, lim
t→∞

ν(t) = ν0. (37)
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TABLE 1 Equilibrium points of systems (34) and (35), graphical solution of the equation
αcs

s2+c2 = γ in the case of dry friction load (for double cage rotor α = a1 + a2, for
cage and wound rotor α = a)

γ < α
2 γ = α

2 γ > α
2

ω1 < s0
�� ss0

z2

ω1 = s0
�� s0 s �� ss0

z2 z2

s0 < ω1 < s1

�� s1s0 s �� s

z0 z2

ω1 = s1

��s1s0 s ��s1 s

z0, z2 z2

ω1 > s1

��s1s0 s ��s0,1 s

z0, z1, z2 z0, z2
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Theorem 6. Suppose that s0 < ω1, M < min
{

2c2, a/2
}

and the solution of the
equation

F(s)F′(s) = −ΓF(s)− ψ(s)

with initial data F(s1) = 0 fulfils the conditions

F(s∗) >
√
(ay∗ + M)2 + (ax∗ +

M
c

s∗)2 , (38)

F(ω1) < M, if s0 < ω1 < s1.

Then the solution of system (35) with initial data s = s∗, x = x∗, y = y∗ satisfies the
relations

lim
t→∞

s(t) = s0,

lim
t→∞

x(t) = x0,

lim
t→∞

y(t) = y0.
(39)

The proof of theorems 5 and 6 is carried out in appendix 2.

Corollary 3. Suppose that s0 < ω1, M < min
{

2c2, α/2
}

and the solution of the
equation

F(s)F′(s) = −ΓF(s)− ψ(s),

with initial data F(s1) = 0 fulfils the conditions

F(0) > M, (40)

F(ω1) < M, if s0 < ω1 < s1. (41)

Then the load

γl =

⎧⎨
⎩

M if s < ω1,
[−M, M] if s = ω1,
−M if s > ω1.

is a permissible load, i. e., the solution of system (34) with zero initial data x = μ = y =
ν = s = 0 satisfies relations (37) and the solution of system (35) with zero initial data
x = y = s = 0 satisfies relations (2).

Proof. It is not too difficult to see that condition (40) of corollary 3 is equivalent
condition (36) of theorem 5 for

s∗ = x∗ = y∗ = μ∗ = ν∗ = 0

and condition (38) of theorem 6 for

s∗ = x∗ = y∗ = 0.

Thus, all the conditions of theorems 5 and 6 are satisfied.
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FIGURE 18 Numerical estimate of the limit permissible dry friction load on induction
motors (γmax = a1+a2

2 for system (34), γmax = a
2 for system (35))

From conditions of corollary 3 we obtain the numerical estimate of the limit
permissible dry friction load on induction motors, presented in the Fig. 18.

As is seen from Fig. 16 and Fig. 18 the regions of permissible loads are simi-
lar, but at certain time the value of permissible dry friction load become less than
the value of permissible constant load. It is due to the rotor stop in the case of dry
friction load.

In the engineering practice to determine the estimates of limit load it is used
so called the the equal-area criterion. The estimates obtained in this section sub-
stantially improve estimates obtained by the equal-area criterion.



4 NUMERICAL MODELING OF INDUCTION
MOTOR UNDER SUDDEN CHANGES OF LOAD

In this chapter theoretical results are verified by numerical experiments. The
systems describing the dynamics of induction motors under different sudden
changes of external loads are simulated by the standard computational tools of
Matlab and the event-driven method (Piiroinen and Kuznetsov, 2008). The nu-
merical results are presented and analyzed.

Simulation of an induction motor under constant load

In what follows we assume that an induction motor operates in synchronism
without load. Our concern is with the behaviour of the motor when a load-on
occurs. In the case of constant load the following behaviors of the motor are pos-
sible after loading:

1. the motor continues to work in an operating mode, i.e., the rotor continues
to rotate in the same direction as that of the rotating magnetic field. It means
the solutions of systems (8) and (10), after some oscillations, tend to the
stable equilibrium states for s < ω1 (Figs.20, 21). In this case a constant load
is said to be permissible.

2. the motor stops. It means the solutions of systems (8) and (10), after some
oscillations, tend to the stable equilibrium states in the special case s = ω1.
In this case a constant load is said to be permissible, but undesirable.

3. the motor continues to operate, but in a braking mode, i.e., the rotor contin-
ues to rotate in the opposite direction to that of the rotating magnetic field.
It means the solutions of systems (8) and (10), after some oscillations, tend to
the stable equilibrium states for s > ω1 (Figs.22, 23). In this case a constant
load is also said to be permissible, but undesirable.

4. the rotor start to rotate in the opposite direction to that of the rotating mag-
netic field with acceleration. It means the solutions of systems (8) and (10)
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tends to infinity (Figs.24, 25). It leads to breakdown of the motor. In this
case a constant load is said to be impermissible.

In section 3.4 the numerical estimations of limit permissible constant load on idle
induction motors were obtained. In Fig. 19 regions 1 and 2 correspond to permis-
sible load found by corollary 1. Curve 6 corresponds to loads under which the
rotor stops. Region 5 correspond to impermissible load according to steady-state
stability analysis of induction motors. Thus, regions 3 and 4 remain not investi-
gated analytically. Thereby numerical modeling of systems (8) and (10) is carried
out for constant loads, taken from regions 3 and 4.

�

���

���

���

���

���

FIGURE 19 Parameter space of systems (8) and (10): regions 1, 2 are permissible loads,
obtained by theorems; regions 3, 4 are not investigated analytically; region
5 is impermissible loads; line 6 corresponds to the loads under which the ro-
tor stops; line 7 corresponds to maximum loads under which the operating
modes exist

Since idle induction motors are globally stable, then zero initial data are
taken. In the case of constant load for computer modeling the standard compu-
tational tools of Matlab for systems of ODE’s are used. The results of computer
modeling shown that for all parameters γl, taken from region 3 and 4, the tra-
jectories of systems (8) and (10) tend to asymptotically stable equilibrium states
(see, e.g., Figs. 20 – 23). The latter means that considered constant loads are per-
missible and induction motors pull into synchronism.

Conclusion: the limit permissible constant loads coincide with the values
of maximum constant loads under which systems (8) and (10) have stationary
solutions, in other words, effects of instability were not found. For loads more
than critical values the rotor starts to rotate with acceleration. This can lead to
breakdown of the motor.
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FIGURE 20 Constant load case. Modeling system (8) with parameters from region 3:
a1 = 1, 5, a2 = 0, 5, c = 0, 5, γ = 0, 8
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FIGURE 21 Constant load case. Modeling system (10) with parameters from region 3:
a = 2, c = 0, 4, γ = 0, 8
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FIGURE 22 Constant load case. Modeling system (8) with parameters from region 4:
a1 = 1, 5, a2 = 0, 5, c = 0, 9, γ = 0, 95
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FIGURE 23 Constant load case. Modeling system (10) with parameters from region 5:
a = 2, c = 0, 8, γ = 0, 95
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FIGURE 24 Constant load case. Modeling system (8) with parameters from region 5:
a1 = 1, 5, a2 = 0, 9, c = 0, 5, γ = 1, 1
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FIGURE 25 Constant load case. Modeling system (10) with parameters from region 5:
a = 2, c = 0, 8, c2 = 0, 5, γ = 1, 1
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Simulation of an induction motor under dry friction load

In the case of dry friction load the following behaviors of the motor are possible
after loading:

1. the motor continues to work in an operating mode. It means the solutions of
systems (8) and (10), after some oscillations, tend to the stable equilibrium
states for s < ω1. In this case a dry friction load is said to be permissible.

2. the motor stops. It means the solutions of systems (8) and (10), after some
oscillations, tend to the stable equilibrium states in the special case s = ω1.
In the first case a dry friction load is said to be impermissible.

In section 3.4 the numerical estimations of limit permissible dry friction load on
idle induction motors were found. In Fig. 26 region 1 corresponds to permissible
loads obtained by corollary 3. Curve 4 corresponds to loads under which the
rotor stops. Thus, regions 2 and 3 remain not investigated analytically. Thereby
numerical modeling of systems (34) and (35) is done for dry friction loads, taken
from these regions.
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FIGURE 26 Parameter space of systems (34) and (35): region 1 is permissible loads,
obtained by theorems; regions 2, 3 are not investigated analytically; line 4
corresponds to the loads under which the rotor stops

The dynamics of induction motors under dry friction load is described by
equations (29) and (35), which have discontinuous right hand-sides. Therefore
a special method for numerical computation of their solutions is necessary. One
of such methods is the event-driven method (Piiroinen and Kuznetsov, 2008).
For computer modeling of systems (29) and (35) we use a modified algorithm
and Matlab code from (Piiroinen and Kuznetsov, 2008). Introduce the following
notations:

D1 =
{
(s, x, y, μ, ν)T ∈ R5

∣∣∣ s < ω1

}
,
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D2 =
{
(s, x, y, μ, ν)T ∈ R5

∣∣∣ s > ω1

}
,

H =
{
(s, x, y, μ, ν)T ∈ R5

∣∣∣ s = ω1

}
,

Δ =
{
(s, x, y, μ, ν)T ∈ R5

∣∣∣ s = ω1, −γ < a1y + a2ν < γ
}

.

For three order system (35) similar notations can be introduced.

Algorithm: INIT. Initialize the program with all parameters.
1. Find the initial state (statei for i = 1, ..., 5).
2. Solve the current ODE until an event occurs or if the final simulation time

has been reached.
3. Check if the current time is equal to the final time else check in which region

the state is in by using the event variables.
4-6. Check which event that occurred.

7. Set state1 = −state1 and state2 = −state2 since we are moving from region
{D1 ∪ (H \Δ)} to {D2 ∪ (H \Δ)} (or {D2 ∪ (H \Δ)} to {D1 ∪ (H \Δ)}),
and continue to step 2.

8. Set state4 = −state4 and state5 = −state5 since we are moving from region
{D1 ∪ (H \ Δ)} to {D1 ∪ ∂Δ} (or {D2 ∪ (H \ Δ)} to {D2 ∪ ∂Δ}), and
continue to step 2.

9. Set state1 = −1, state2 = −1 and state3 = −state3 since we are moving from
region {D1 ∪ ∂Δ} to Δ (or {D2 ∪ ∂Δ} to Δ), and continue to step 2.

10. Set state4 = −state4 and state5 = −state5 since we are moving from region
{D1 ∪ ∂Δ} to {D1 ∪ (H \ Δ)} (or {D2 ∪ ∂Δ} to {D2 ∪ (H \ Δ)}), and
continue to step 2.

11. Set state1 = −state1, state3 = −state3, state4 = −state4 and state5 = −state5
since we are moving from region Δ to {D1 ∪ (H \ Δ)} and continue to step
2.

12. Set state1 = −state1, state3 = −state3, state4 = −state4 and state5 = −state5
since we are moving from region Δ to {D2 ∪ (H \ Δ)} and continue to step
2.

The algorithm is presented in Fig. 27.

The results of computer modeling shown that

1. for all parameters γl, taken from region 2, the trajectories of systems (8) and
(10) tend to asymptotically stable equilibrium states (s < ω1) (Figs. 28, 29).
It means that considered dry friction loads are permissible and induction
motors pull into synchronism.

2. for all parameters γl, taken from region 3, the trajectories of systems (8) and
(10) tend to another asymptotically stable equilibrium states corresponding
s = ω1 (Figs. 30–33). It means that considered dry friction loads are imper-
missible and induction motors stop.
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FIGURE 27 A schematic chart of the algorithm for modeling systems (29) and (35)

Conclusion: the limit permissible dry friction loads coincide with the values of
maximum dry friction loads under which systems (8) and (10) have equilibrium
points, which is in the region D1. In other words, effects of instability were not
found as in the case of a constant load. For loads more than critical values the
rotor stops.
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FIGURE 28 Dry friction load case. Modeling system (34) with parameters from region
2: a1 = 1, 5, a2 = 0, 5, c = 0, 4, M = 0, 85, ω1 = 0, 5
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FIGURE 29 Dry friction load case. Modeling system (35) with parameters from region
2: a = 2, c = 0, 2, M = 0, 85, ω1 = 0, 5
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FIGURE 30 Dry friction load case. Modeling system (34) with parameters from region
3: a1 = 1, 5, a2 = 0, 5, c = 0, 65, M = 0, 99, ω1 = 0, 5
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FIGURE 31 Dry friction load case. Modeling system (35) with parameters from region
3: a = 2, c = 0, 65, M = 0, 99, ω1 = 0, 5
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FIGURE 32 Dry friction load case. Modeling system (34) with parameters from region
3: a1 = 1, 5, a2 = 0, 5, c = 0, 2, M = 1, 2, ω1 = 0, 5
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5 CONCLUSIONS

In this chapter the main results of this thesis and further research steps are pre-
sented and discussed briefly. Note that this work is a direct continuation and
extension of Master’s thesis of the author (Solovyeva, 2011).

In this work the induction motors with squirrel-cage, double squirrel-cage
and wound rotors have been studied. The original mathematical models of con-
sidered motors were developed by the author. These models are explained and
described in Chapter 2.2. By introducing a coordinate system, rigidly connected
with rotating magnetic field, the dynamics of rotors was described in details. Due
to suggested nonsingular changes of coordinates the investigation of stability of
these models was reduced to stability analysis of third and fifth order differential
equations.

On the basis of the new models developed, steady-state and dynamic stabil-
ity analysis is performed in Chapter 3. Global stability of induction motors under
no-load condition is proved analytically in Chapter 3.2.

Another contribution of the author is the solution of the limit load problem
for induction motors, presented in Chapter 3.3. Moreover, two types of loads
were considered: constant load and dry friction load. For both cases the esti-
mations of the limit permissible load were obtained by the modified non-local
reduction method. These estimations substantially improve engineering estima-
tions, obtained by the equal-area criterion. However, results of the numerical
simulations, demonstrated in Chapter 4, shown that found estimations are not
optimal. In other words, the estimations obtained by the theorems are smaller
than the actual limit loads. Hence, the estimations can be improved and a more
careful analysis is required.

Further research work is intended to develop analytical methods of analysis
of mathematical models of induction motors and to study the models of induction
motors with viscous friction and fan type loads.

Note that the basic assumption behind the modelling that stator windings
are fed from a powerful source of sinusoidal voltage was made according to clas-
sical theoretical works (Adkins, 1957; White and Woodson, 1959; Skubov and
Khodzhaev, 2008). In this case the influence of rotor currents on stator currents
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can be ignored. Obviously such assumption is allowable for description the dy-
namics of induction machines working in operating modes and during transient
processes, but does not allow one to describe the start-up of these machines if
high currents which flow through the rotor windings. Further we need to ver-
ify the results obtained in this thesis in the practice and engineering experts are
required. That is the next step of our work.

The main results of this thesis could be useful for electrical engineers.
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YHTEENVETO (FINNISH SUMMARY)

Tässä työssä mallinnetan matemaattisesti erilaisia roottoreita käyttäviä asynk-
ronimoottoreita ja analysoidaan näiden värähtelyominaisuuksia. Aihe on ajan-
kohtainen, sillä asynkronimoottorien käyttö voimansiirtolaitteina teollisuudessa
lisääntyy jatkuvasti. Työssä on kehitetty matemaattisia malleja asynkronimoot-
toreille, joissa on oravanhäkki- tai kaksoisoravanhäkki-rakenne, kiinteästi mag-
neettikenttään liitetyssä pyörivässä koordinaattijärjestelmässä. Erotuksena tun-
netuista asynkronimoottorien matemaattisista malleista kyseessä olevissa mal-
leissa on täysin huomioitu roottorin ulkomuoto. Käyttäen erityisiä koordinaattien
ei-singulaarisia muutoksia voidaan näiden järjestelmien stabiilisuutta tutkia ana-
lysoimalla kolmannen ja viidennen asteen differentiaaliyhtälöiden stabiilisuutta.
Näin ollen kyseiset mallit ovat kuvattavissa melko yksinkertaisten differentiaa-
liyhtälöiden avulla, mikä mahdollistaa mallien syvällisen laadullisen analyysin.
Malleille on luotu ehdot lokaalille ja globaalille stabiilisuudelle. Lisäksi on tar-
kasteltu asynkronimoottorien dynaamista stabiilisuutta erilaisten kuormitusmo-
menttityyppien yhteydessä. Vakiokuormitusmomentin tapauksessa asynkroni-
moottorien käyttäytymistä mallinnetaan tavallisilla differentiaaliyhtälöillä. Kui-
vana kitkana esiintyvän kuormitusmomentin tapauksessa asynkronimoottorien
käyttäytymistä puolestaan mallinnetaan differentiaali-inkluusioilla. Järjestelmien
laadullinen analyysi mahdollistaa sen, että asynkronimoottorin parametreille, ku-
ten vastukselle, induktiivisuudelle ja vääntömomentille, voidaan määrittää tur-
valliset muutosikkunait, joiden sisällä asynkronimoottori säilyttää toimintaky-
kynsä.

Lisäksi tarkastellaan asynkronimoottorien maksimaalista kuormitusta ja joh-
detaan teoreettiset rajat turvalliselle kuormitukselle. Saadut teoreettiset tulokset
on vahvistettu numeerisilla testeillä.

Tietokonesimuloinnin avulla on tutkittu myös erikoistapausta, jossa syntyy
äkillinen kuormitus tyhjäkäynnillä olevalle asynkronimoottorille.
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APPENDIX 1 PROOF OF NONSINGULARITY OF
COORDINATES TRANSFORMATION

Proposition 1. A transformation of coordinates

ϑ = −θ,
s = −θ̇,

x = − 2L1

n1l1lB

n1

∑
k=1

sin(−θ − 2kπ

n1
)ik,

y = − 2L1

n1l1lB

n1

∑
k=1

cos(−θ − 2kπ

n1
)ik,

zk =
m

∑
p=−m

i(k+p)modn1
− ctg(

π

n1
)ik, k = 2, ..., n1 − 1,

μ = − 2L2

n2l2lB

n2

∑
k=1

sin(−θ − 2kπ

n2
)jk,

ν = − 2L2

n2l2lB

n2

∑
k=1

cos(−θ − 2kπ

n2
)jk,

υk =
m

∑
p=−m

j(k+p)modn2
− ctg(

π

n2
)jk, k = 2, ..., n2 − 1

(42)

is a non-singular transformation.

Proof. For brevity, we introduce the following notations:

C1 =
2L1

n1l1lB
; C2 =

2L2

n2l2lB
;

ϑ1
k = −θ − 2kπ

n1
, k = 1, ..., n1;

ϑ2
k = −θ − 2kπ

n2
, k = 1, ..., n2;

α =
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D2 =
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⎜⎜⎜⎜⎜⎝

C2 sin ϑ2
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The transformation of coordinates (42) is nonsingular one if the Jacobian is
nonzero:

det M = det

⎛
⎜⎜⎝

−1 0 0T 0T

0 −1 0T 0T

α 0 D1 0
β 0 0 D2

⎞
⎟⎟⎠ = det D1 det D2 �= 0.

The matrices D1 and D2 differs from each other only in their degrees. In PV
it was shown that the determinants of such matrices are independent of θ and,
hence, the determinant of the matrix M is constant, which depends only on the
parameters n1 and n2. Using results obtained in PV we get that det D1,2 = 4β2

for n1,2 = 4, det D1,2 = 241.137β2 for n1,2 = 8, det D1,2 = 3.4 · 105β2 for n1,2 =
12, det D1,2 = 2.8 · 109β2 for n1,2 = 16, det D1,2 = 8.24 · 1013β2 for n1,2 = 20,
det D1,2 = 6.02 · 1018β2 for n1,2 = 24, det D1,2 = 9.42 · 1023β2 for n1,2 = 28,
det D1,2 = 2.8 · 1029β2 for n1,2 = 32. The numerical calculation of det D1,2 can
be continued further; however, generally the number of bars in outer or inner
squirrel-cage is less than 32. Thus, the nonsingularity of coordinates transforma-
tion (42) is proved in the case n1 � 32 and n2 � 32.

Proposition 2. A transformation of coordinates

ϑ = π
2 − θ,

s = −θ̇,
x = − 2

3
L

nSB

(
i1 sin(π

2 − θ) + i2 sin(π
2 − θ − 2π

3 ) + i3 sin(π
2 − θ − 4π

3 )
)

,

y = − 2
3

L
nSB

(
i1 cos(π

2 − θ) + i2 cos(π
2 − θ − 2π

3 ) + i3 cos(π
2 − θ − 4π

3 )
)

,

z = i1 + i3 − i2

is a non-singular transformation.

Proof. For brevity, we introduce the following notations:

C =
2
3

L
nSB

, ϑk =
π

2
− θ − 2(k − 1)π

3
, k = 1, 2, 3.
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Then we obtain

det
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⎞
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= det
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= C2(sin ϑ2 cos ϑ3 − sin ϑ3 cos ϑ2 − 2 sin ϑ1 cos ϑ1 cos
π

3
+ 2 cos ϑ1 sin ϑ1 cos

π

3
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2
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APPENDIX 2 PROOF OF THEOREMS

Recall notations (25) introduced in section 3.4 (γ = M):

Γ = 2 max
λ∈(0,c)

[
λ

(
c − λ − M2

4c2(c − λ)

)]1/2

,

ψ(s) = −M
c

s2 + αs − cM,

s1 =
c(α +

√
α2 − 4M2)

2M
,

where α = a in the case cage and wound rotors (system (35)) and α = a1 + a2 in
the case of double cage rotor (system (34)).

Theorem 5. Suppose that s0 < ω1, M < min
{

2c2,
a1 + a2

2

}
and the solution of

the equation
F(s)F′(s) = −ΓF(s)− ψ(s) (43)

with initial data F(s1) = 0 fulfils the conditions

F(s∗) >
√
(a1y∗ + a2μ∗ + M)2 + (a1x∗ + a2ν∗ +

M
c

s∗)2 , (44)

F(ω1) < M, if s1 > ω1. (45)

Then the solution of system (34) with initial data s = s∗, x = x∗, μ = μ∗, y =
y∗, ν = ν∗ satisfies the relations

lim
t→∞

s(t) = s0, lim
t→∞

x(t) = x0, lim
t→∞

μ(t) = μ0, lim
t→∞

y(t) = y0, lim
t→∞

ν(t) = ν0. (46)

Proof. In the case s1 < ω1 system (34) completely coincides with system (8) and

the solution of system (34) is in the region
{
(s, x, y, μ, ν)T ∈ R5

∣∣∣ s < ω1

}
.

Therefore, the proof in this case is the same as the proof of theorem 4.
Consider the case ω1 < s1. The nonsingular transformation of coordinates

η = a1y + a2ν,

z = −a1x − a2μ,

ζ = y − ν,

ξ = x − μ,
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reduces system (34) to the form

ṡ = η + γl,

η̇ = −cη − zs − as,

ż = −cz + ηs,

ζ̇ = −cζ − ξs,

ξ̇ = −cξ + ζs.

(47)

Here

γl =

⎧⎨
⎩

M if s < ω1 or s = ω1, η > M,
η if s = ω1,−M ≤ η ≤ M,
−M if s > ω1 or s = ω1, η < −M.

Let us introduce the regions:

D1 =
{
(s, η, z, ζ, ξ)T ∈ R5

∣∣∣ s < ω1

}
,

D2 =
{
(s, η, z, ζ, ξ)T ∈ R5

∣∣∣ s > ω1

}
,

H =
{
(s, η, z, ζ, ξ)T ∈ R5

∣∣∣ s = ω1

}
,

Δ =
{
(s, η, z, ζ, ξ)T ∈ R5

∣∣∣ s = ω1, −γ < η < γ
}

.

In the slip region Δ system (47) is determined as follows:

ṡ = 0,

η̇ = −cη − zω1 − aω1,

ż = −cz + ηω1,

ζ̇ = −cζ − ξω1,

ξ̇ = −cξ + ω1ζ,

(48)

This system has one asymptotically stable equilibrium state

s = ω1, η = − acω1

ω2 + c2 , z = − aω2
1

ω2 + c2 , ζ = 0, ξ = 0,

which is below the lower bound of the slip region Δ and, hence, is never achieved.
Thus, system (47) has one asymptotically stable equilibrium state corresponding
to an operating mode

s = s0, η = − cas0

s2
0 + c2

, z = − as2
0

s2
0 + c2

, ζ = 0, ξ = 0.
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Note that the initial data s∗, x∗, y∗, μ∗, ν∗ of system (34) transforms into the
initial data

s = s∗, η = a1y∗ + a2ν∗, z = −a1x∗ − a2μ∗, ζ = y∗ − ν∗, ξ = x∗ − μ∗

of new system (47). Show that the solution of system (47) with such initial data is
bounded. For this purpose we consider the function

W(s, η, z, ζ, ξ) =
1
2

[
(η + M)2 + (z +

M
c

s)2 + ζ2 + ξ2 − F2(s)
]

and the region Ω

Ω = {(s, η, z, ζ, ξ) | W(s, η, z, ζ, ξ) ≤ 0} .

Taking into account cΓ > g and

ψ(σ) > 0, ∀σ ∈ [ω1; s1) ,

the function W(s, η, z, ζ, ξ) on the solutions of system (47) satisfies the relations in
the region Ω

Ẇ(s, η, z, ζ, ξ) = (η + M)[−cη − zs − as] +
(

z +
M
c

s
) [

−cz + ηs +
M
c
(η + γl)

]
+

+ζ[−cζ − ξs] + ξ[−cξ + ζs]− F(s)F′(s) [η + γl] = −c(η + M)2 − c(z +
M
c

s)2−

−cζ2 − cξ2 +
M
c

(
z +

M
c

s
)
(η + γl)− ψ(s)[η + γl]− F(s)F′(s)[η + γl] = −cζ2−

−cξ2 − c(η + M)2 − c(z +
M
c

s)2 +
M
c

(
z +

M
c

s
)
(η + M)− ΓF(s)[η + M]−

−(M − γl)

(
M
c

[
z +

M
c

s
]
+ ψ(s) + ΓF(s)

)
≤ −c(η + M)2 − c(z +

M
c

s)2 − cζ2−

−cξ2 +
M
c

(
z +

M
c

s
)
(η + M)− ΓF(s)[η + M].

From here and using Gurvic criterion, we obtain

Ẇ(s, η, z, ζ, ξ) + 2λ W(s, η, z, ζ, ξ) = −(c − λ)(η + M)2 − (c − λ)

(
z +

M
c

s
)2

−

−(c − λ)ζ2 − (c − λ)ξ2 − λ F2(s) +
M
c

(
z +

M
c

s
)
(η + M) + ΓF(s)(η + M) ≤ 0

Thus, the region Ω is the invariant set.
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Next, equation (43) has either a solution F(s) (curve 1 in Fig. 34) such that

F(s2) = F(s1) = 0, s2 < min s∗, s0

F(s) > 0, ∀s ∈ (s2, s1)

or a solution F(s) (curve 2 in Fig. 34) such that

F(s) > 0, ∀s ∈ (−∞, s1).

FIGURE 34 Two possible cases of behavior of the solution of equation (43)

In the first case the region Ω is bounded. In the second case we introduce
the function

V(s, η, z, ζ, ξ) =
1
2
(η + M)2 +

1
2

(
z +

M
c

s
)2

+
1
2

ζ2 +
1
2

ξ2 +

s∫
s1

ψ(σ)dσ.

In the region D1 this function on the solutions of system (47) satisfies the relation

V̇(s, η, z, ζ, ξ) ≤ 0.

Hence, the region Ω can be bounded by

Ω2 =
{
(s, η, z, ζ, ξ)

∣∣ V(s, η, z, ζ, ξ) < C, s ∈ [s3,+∞)
}

,

where s3 is the solution of the equation

s1∫
x

ψM(σ)dσ = C, x < s1,

C > max

⎧⎨
⎩1

2
γ2 −

s1∫
s∗

ψM(σ)dσ, 0

⎫⎬
⎭ .

Consequently, the region Ω is the bounded invariant set.
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From condition (44) of the theorem and expressions for C it follows that

W(s∗, η∗, z∗, ζ∗, ξ∗) < 0,

V(s∗, η∗, z∗, ζ∗, ξ∗) < 0.

As the result we proved that the trajectory of system (47) with initial data s∗, η∗, z∗, ζ∗, ξ∗
is bounded.

Let us study the behaviour of the solution of system (47) for s = ω1. The
region Ω in this case takes the following form (see Fig. 35)

Ω
∣∣

H =

{
(η, z, ζ, ξ) ∈ H

∣∣∣ (η + M)2 +

(
z +

M
c

s
)2

+ ζ2 + ξ2 ≤ 4M2

}
.
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FIGURE 35 Restriction of the region Ω to the region H

Condition (45) guaranties that the region Ω
∣∣

H is below the upper bound of
the slip region Ω

∣∣
H and crosses the lower bound. Consider the function in slip

region

VH(η, z, ζ, ξ) =
1
2

[
(η + M)2 +

(
z +

M
c

s
)2

+ ζ2 + ξ2

]
,

For the function VH(η, z, ζ, ξ), the following relation is valid:

V̇H(η, z, ζ, ξ) ≤ 0. (49)

The surfaces VH(η, z, ζ, ξ) = const are non-contact. Moreover, they are the
restriction of non-contact surfaces V(s, η, z, ζ, ξ) = const to the region H. Let be

Ω1 = Ω ∩ (D1 ∪ Δ).

If the solution is in the region Ω1, then there exists two cases:
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1. either the solution never achieves the region Δ, i.e., it is in the subspace
D1. It follows from the determination γl;

2. or the solution falls into the slip region Δ. Then, taking into account (49),
the solution falls into the lower bound of the slip region η = −M and goes
out through it in the region Ω ∩ D1.

Suppose that the solution falls into the region Ω\Ω1, then consider the function

U(s, η, z, ζ, ξ) =
1
2

[
(η − M)2 +

(
z − M

c
s
)2

+ ζ2 + ξ2+

+

s∫
∗

(
M
c

σ2 + aσ + Mc
)

dσ

⎤
⎦ .

For any solution of system (47) from the subspace D2 the following relation is
satisfied:

U̇(s, η, z, ζ, ξ) ≤ 0.

The function U(s, η, z, ζ, ξ) also defines the non-contact surfaces in the region D2
(see Fig. 36). Since the function U(s, η, z, ζ, ξ) decreases in the region D2, then the
trajectory falls into the region Ω1.

� � � �

��

�

�

η

��
� �

�

� � � �

��

�

�

��

a b

FIGURE 36 Non-contact surfaces, defined by the function U = const

Thus, the solution of system (47) with initial data

s∗, η∗, z∗, ζ∗, ξ∗

falls into the region Ω1 and remains in it.
The function V(s, η, z, ζ, ξ) decreases in the region D1 and in the slip region

Δ. Hence, it decreases in the region Ω1:

V̇(s, η, z, ζ, ξ) ≤ 0. (50)

Let x(t) = (s(t), η(t), z(t), ζ(t), ξ(t)) be a solution of system (47) for t ≥ 0
in the bounded region Ω1. Then the function V(x(t)) is also bounded for t ≥ 0.
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This and the decrease of the function V(x(t)) for t ≥ 0 imply the existence of a
finite limit lim

t→+∞
V(x(t)) = L.

Since the trajectory x(t) is bounded, then the set Ω0 of its ω-limit points is
not empty. Let x∗ ∈ Ω0. The set Ω0 is invariant and, hence, the trajectory, starting
from the point x∗ is contained in Ω0, for all t ∈ R. Therefore for all t ∈ R we get

V(x(t, x∗)) ≡ L.

Using (50), we obtain η(t, x∗) ≡ 0, z(t, x∗) ≡ 0, ζ(t, x∗) ≡ 0 and ξ(t, x∗) ≡ 0.
Relations (47) and (50) imply ṡ(t, x∗) ≡ 0. Consequently, s(t, x∗) ≡ const and the
set Ω0 is a subset of the stationary set of system (47).

Thus, any solution of system (47) in Ω1 tends to an equilibrium point. This
fact, the positive invariance of the set Ω1 and the inclusions

(s∗, a1y∗ + a2ν∗,−a1x∗ − a2μ∗, y∗ − ν∗, x∗ − μ∗) ∈ Ω1,

(s0,− cas0

s2
0 + c2

,− as2
0

s2
0 + c2

, 0, 0) ∈ Ω1

imply (46).

Theorem 6. Suppose that s0 < ω1, M < min
{

2c2,
a
2

}
and the solution of the

equation
F(s)F′(s) = −ΓF(s)− ψ(s)

with initial data F(s1) = 0 fulfils the conditions

F(s∗) >
√
(ay∗ + M)2 + (ax∗ +

M
c

s∗)2 ,

F(ω1) < M, if s1 > ω1.

Then the solution of system (35) with initial data s = s∗, x = x∗, y = y∗ satisfies
the relations

lim
t→∞

s(t) = s0, lim
t→∞

x(t) = x0, lim
t→∞

y(t) = y0.

Proof. The proof of the theorem is similar to the proof of theorem 5 and is based
on the functions

W(s, x, y) =
1
2

[
(ay + M)2 + a2(x +

M
c

s)2 − F2(s)
]

,

V(s, x, y) =
1
2

⎡
⎣(ay + M)2 + a2(x +

M
c

s)2 +

s∫
s1

ψ(σ)dσ

⎤
⎦ .



APPENDIX 3 COMPUTER MODELING OF SYSTEMS
DESCRIBING INDUCTION MOTORS UNDER
VARIOUS LOADS (MATLAB
IMPLEMENTATION)

Program code in Matlab for simulating the behavior of induction motors under
constant loads and dry friction loads.

1 function [F1, F2, H, dH] = system3d(z, load)
2 global params3d; % System parameters
3 a = params3d(1); c = params3d(2);
4 %% Values of the phase vector
5 s = z(1); x = z(2); y = z(3);
6 %% Vector field without load
7 F = [ a*y; ... % \dot{s} - \gamma_l
8 -c*x + y*s; ... % \dot{x}
9 -c*y - x*s - s; ]; ... % \dot{y}

10 %% Vector fields in regions
11 [H, f1, f2, j1, j2] = feval(load, s);
12 F1 = F + [f1; 0; 0; ]; % (n1 < s)
13 F2 = F + [f2; 0; 0; ]; % (n1 > s)
14 %% Vector normal of discontinuity surface
15 dH = [-1, 0, 0]; % dH = grad(H)
16 end

1 function [F1, F2, H, dH] = system5d(z, load)
2 global params5d; % System parameters
3 a1 = params5d(1); a2 = params5d(2);
4 c1 = params5d(3); c2 = params5d(4);
5 %% Values of the phase vector
6 s = z(1); x = z(2); y = z(3); mu = z(4); nu = z(5);
7 %% Vector field without load
8 F = [ a1*y + a2*nu; ... % \dot{s} - \gamma
9 -c1*x + y*s; ... % \dot{x}

10 -c1*y - x*s - s; ... % \dot{y}
11 -c2*mu + nu*s; ... % \dot{\mu}
12 -c2*nu - mu*s - s; ]; ... % \dot{\nu}
13 %% Vector fields in regions
14 [H, f1, f2, j1, j2] = feval(load, s);
15 F1 = F + [f1; 0; 0; 0; 0; ]; % (n1 < s)
16 F2 = F + [f2; 0; 0; 0; 0; ]; % (n1 > s)
17 %% Vector normal of discontinuity surface
18 dH = [-1, 0, 0, 0, 0]; % dH = grad(H)
19 end

1 function [J1,J2,d2H] = jacobian3d(z, gamma)
2 global params3d; % System parameters
3 a = params3d(1); c = params3d(2);
4 %% Values of the phase vector
5 s = z(1); x = z(2); y = z(3);
6 %% Jacobian wuthout load
7 J = [ 0, 0, a; ... % s
8 y, -c, s; ... % x
9 -x-1, -s, -c; ]; ... % y

10 %% Jacobians in regions
11 [H, f1, f2, j1, j2] = feval(gamma, s);
12 J1 = J; J1(1,1) = J1(1,1) + j1; % (n1 > s)
13 J2 = J; J2(1,1) = J1(1,1) + j2; % (n1 < s)
14 %% (d2/dx2)H(x) - second derivative of H(x)
15 d2H = zeros(3, 3);
16 end
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1 function [J1,J2,d2H] = jacobian5d(z, gamma)
2 global params5d; % System parameters
3 a1 = params5d(1); a2 = params5d(2);
4 c1 = params5d(3); c2 = params5d(4);
5 %% Values of the phase vector
6 s = z(1); x = z(2); y = z(3); mu = z(4); nu = z(5);
7 %% Jacobian wuthout load
8 J = [ 0, 0, a1, 0, a2; ... % s
9 y, -c1, s, 0, 0; ... % x

10 -x-1, -s, -c1, 0, 0; ... % y
11 nu, 0, 0, -c2, s; ... % mu
12 -mu-1, 0, 0, -s, -c2; ]; ... % nu
13 %% Jacobians in regions
14 [H, f1, f2, j1, j2] = feval(gamma, s);
15 J1 = J; J1(1,1) = J1(1,1) + j1; % (n1 > s)
16 J2 = J; J2(1,1) = J1(1,1) + j2; % (n1 < s)
17 %% (d2/dx2)H(x) - second derivative of H(x)
18 d2H = zeros(5, 5);
19 end

1 function [ H, f1, f2, j1, j2 ] = load(s)
2 global params;
3 M = params(1); k = params(2); p = params(3); n1 = params(4);
4 if n1 == -1
5 H = 1;
6 else
7 H = n1 - s;
8 end
9 f1 = M + k*(n1 - s)^p; f2 = -f1;

10 j1 = -k*p*(n1-s)^(p-1); j2 = -j2;
11 end

1 function [tvect, yvect] = filippov(system, jacobian, load, time, z0)
2 yvect = []; tvect = [];
3 %% Set ODE options
4 options = odeset(’RelTol’, 1e-2, ’AbsTol’, 1e-3, ...
5 ’MaxStep’, 0.01, ’Events’, @fevents);
6 [state, dir] = findstate(system, jacobian, z0, load);
7 stopit = 0; t0 = 0;
8 while ~stopit
9 [t,z,TE,YE,IE] = feval(’ode45’, @filippovfunc, [t0 time], z0, ...

10 options, system, jacobian, state, dir, load);
11 z0 = z(end,:); t0 = t(end);
12 yvect = [yvect;z];
13 tvect = [tvect;t];
14

15 if ~isempty(IE) && (t0~=time)
16 for k = 1:length(IE)
17 if IE(k) ~= 4
18 switch 1
19 case state(3)
20 switch IE(k)
21 case {2,3}
22 state(IE(k) - 1) = - state(IE(k) - 1);
23 state([3, 4, 5]) = - state([3, 4, 5]);
24 dir([1, IE(k)]) = - [1, dir(IE(k))];
25 case 5,
26

27 otherwise
28 disp(’ERROR: Wrong event in filippov’)
29 end
30 case state(4)
31 switch IE(k)
32 case 1,
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33 state([1, 2]) = - state([1, 2]);
34 dir(IE(k)) = - dir(IE(k));
35 case {2,3}
36 state([4, 5]) = - state([4, 5]);
37 dir(IE(k)) = - dir(IE(k));
38 case 5,
39

40 otherwise
41 disp(’ERROR: Wrong event in filippov’)
42 end
43 case state(5)
44 switch IE(k)
45 case 1,
46 state([1, 2, 3]) = - [1, 1, state(3)];
47 dir(IE(k)) = - dir(IE(k));
48 case {2,3}
49 state([4, 5]) = -state([4, 5]);
50 dir(IE(k)) = -dir(IE(k));
51 case 5,
52

53 otherwise
54 disp(’ERROR: Wrong event in filippov’)
55 end
56 otherwise
57 disp(’ERROR: Wrong state vector in filippov’)
58 end
59 end
60 end
61 else
62 stopit =1;
63 end
64 end
65

66 end
67

68 %-------------------- findstate ------------------------
69

70 function [state,dir] = findstate(vfields, jacobians, z0, load)
71 state = -1*ones(1, 5); % [-1, -1, -1, -1, -1]
72 [F1, F2, H, dH] = feval(vfields, z0, load);
73 dHF1 = dH*F1; dHF2 = dH*F2;
74 dir = [-sign(H), -sign(real(dHF1)), -sign(real(dHF2))];
75 %% Find current state
76 if H > 0
77 state(1) = -state(1);
78 elseif H < 0
79 state(2) = -state(2);
80 elseif sign(dHF1)*sign(dHF2) < 0
81 state(3) = -state(3);
82 else
83 if sign(dHF1) > 0
84 state(1) = -state(1);
85 else
86 state(2) = -state(2);
87 end
88 end
89 %% Difficalty function
90 if sign(dHF1)*sign(dHF2) > 0
91 state(4) = -state(4);
92 elseif sign(dHF1)*sign(dHF2) < 0
93 state(5) = -state(5);
94 else
95 if isempty(jacobians)
96 state(4) = -state(4);
97 else
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98 [J1,J2,d2H] = feval(jacobians, z0, load);
99 if dHF1 == 0

100 HxF1x_F1Hxx = dH*J1 + F1’*d2H;
101 sig = sign(HxF1x_F1Hxx*F1)*sign(dHF2);
102 dir(2) = -sign(HxF1x_F1Hxx*F1);
103 elseif dHF2 == 0
104 HxF2x_F2Hxx = dH*J2 + F2’*d2H;
105 sig = sign(HxF2x_F2Hxx*F2)*sign(dHF1);
106 dir(3) = -sign(HxF2x_F2Hxx*F2);
107 else
108 disp(’ERROR: Something is wrong in filippov:findstate’)
109 sig = 1;
110 end
111

112 if sig < 0
113 state(5) = -state(5);
114 else
115 state(4) = -state(4);
116 end
117 end
118 end
119 end
120

121 %-------------------- filippovfunc ------------------------
122

123 function [dz] = filippovfunc(t, z, vfields, jacobians, state, dir, load)
124 [F1, F2, H, dH] = feval(vfields, z, load);
125 switch 1
126 case state(1) % s < n1
127 dz = F1;
128 case state(2) % s > n1
129 dz = F2;
130 case state(3) % s == n1 (sliding region)
131 Fa = 0.5*F1; Fb = 0.5*F2;
132 dHF1 = dH*F1; dHF2 = dH*F2;
133 Hu = -((dHF1+dHF2)/(dHF2-dHF1));
134 dz = (Fa + Fb) + Hu*(Fb - Fa) - H*dH’;
135 otherwise
136 disp(’ERROR: Wrong state vector in filippov:filippovfunc’)
137 end
138 end
139 %-------------------- filippovevents ------------------------
140

141 function [value, isterminal, direction] = fevents(t,z,vfields, ...
142 jacobians,state,dir,load)
143 [F1, F2, H, dH] = feval(vfields, z, load);
144

145 value = [H, dH*F1, dH*F2];
146 direction = dir;
147 isterminal = [1, 1, 1, 0];
148

149 switch 1
150 case {state(1),state(2)} % s != n1
151 direction(1) = -state(1);
152

153 value = [value, 1];
154 direction = [direction, 0];
155 case state(3) % s == n1
156 value(1) = 1;
157

158 [J1,J2,d2H] = feval(jacobians, z, load);
159

160 F1p2 = F1 + F2;
161 F2m1 = F2 - F1;
162
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163 dHF1p2 = value(2) + value(3);
164 dHF2m1 = value(2) - value(2);
165

166 Hu = - dHF1p2/dHF2m1;
167 dHu = - (...
168 ((F1p2’)*d2H + dH*(J1 + J2))*(dHF2m1) - ...
169 ((F2m1’)*d2H + dH*(J2 - J1))*(dHF1p2) ...
170 )/(dHF2m1^2);
171 dz = 0.5*(F1p2 + F2m1*Hu) - H*dH’;
172 value = [value, dHu*dz];
173 direction = [direction, 0];
174 otherwise
175 disp(’ERROR: Wrong event in filippov:fevents’)
176 end
177 value = real(value);
178 end

1 global params ... %% Parameters for load [M, k, p, n1]
2 params3d ... %% Parameters for 3d systems [a1, c1]
3 params5d; ... %% Parameters for 5d systems [a1, a2, c1, c2]
4 %% System parameters
5 a1 = 0.1:0.1:2;
6 c1 = 0.5:0.5:6;
7 a2 = 0.1:0.1:2;
8 c2 = 0.1:0.1:2;
9 %% Load parameters

10 M = 0.9:0.05:1;
11 k = [0, 1];
12 p = [0, 1, 2];
13 n1 = [1, 3, 6]; %% n1 = -1 for model without discontinuity
14 %% Modelling parameters
15 time = 20; %% Time of modelling
16 z0 = [0, 0, 0, 0, 0]; %% Initial point
17 format = ’png’;
18 for i1=1:length(a1)
19 for j1=1:length(c1)
20 for i2=1:length(a2)
21 for j2=1:length(c2)
22 params3d = [ a1(i1), c1(j1)];
23 params5d = [ a1(i1), a2(i2), c1(j1), c2(j2) ];
24 for iM=1:length(M)
25 for iK=1:length(k)
26 for iP=1:length(p)
27 for iN1=1:length(n1)
28 params = [M(iM), k(iK), p(iP), n1(iN1)];
29 [t, z] = filippov(’system5d’,’jacobian5d’,’load’,...
30 time,z0);
31 figure(1);
32 plot3(z(:, 1), z(:, 2), z(:, 3), ’-b’);
33 xlabel(’s’); ylabel(’x’); zlabel(’y’);
34 grid on;
35 figure(2);
36 plot(t, z(:, 1), ’-b’);
37 xlabel(’time’); ylabel(’s’);
38 grid on;
39 save_and_close(params5d, format);
40 end
41 end
42 end
43 end
44 end
45 end
46 end
47 end
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1 function [ ] = save_and_close(p, format)
2 global params;
3 mkdir(format);
4 name = strcat(mat2str(p), ’_’, mat2str(params));
5 name = strrep(strrep(name, ’ ’, ’|’), ’.’, ’,’);
6 file1 = strcat(num2str(length(p)+1), ’d_phase_’, name, ’.’, format);
7 file2 = strcat(num2str(length(p)+1), ’d_time_’, name, ’.’, format);
8 saveas(figure(1), strcat(format,’/’,file1), format);
9 saveas(figure(2), strcat(format,’/’,file2), format);

10 end
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