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ABSTRACT

Wolf, Guy

Big High-Dimensional Data Analysis with Diffusion Maps
Jyvéaskyld: University of Jyvaskyld, 2013, 30 p.(+included articles)
(Jyvéaskyla Studies in Computing

ISSN 1456-5390; 183)

ISBN 978-951-39-5533-5 (nid.)

ISBN 978-951-39-5534-2 (PDF)

Finnish summary

Diss.

In order to process big high-dimensional data, this thesis proposes a combina-
tion of techniques such as dimensionality reduction, coarse-graining, dictionary
constructions, and out-of-sample extensions. The introduced tools and method-
ologies cope with both the dimensionality and the size of analyzed datasets. The
thesis proposes to enhance the Diffusion Maps (DM) dimensionality reduction
method from the data point level to a data cluster level. The thesis proposes
two approaches for applying DM to data clusters or patches. The first approach
considers the DM properties that originate from its Markovian diffusion process.
This approach directly coarse-grains this process and prunes local data clusters
while ensuring the important stochastic properties of the process are preserved.
The second approach utilizes a manifold geometry data model and enhances the
diffusion kernel to consider nonscalar affinities between local manifold patches.
These affinities combine positional information on the manifold together with
relations between manifold tangent spaces in the compared patches. The result-
ing embedding maps each patch to an embedded tensor. Then, a patch-based
dictionary is introduced to retrieve a small representative set of patches that are
sufficient for approximating the embedded tensor space. In both cases, the ana-
lyzed kernel size is significantly reduced since it is only affected by the various
geometric areas (e.g., manifold patches) in which the data is spread instead of the
total number of data points.

In addition, this thesis also proposes methods for updating the initial DM
embedding as more information is streamed or becomes available. Two types of
such information are considered: 1. new data points that should be added to the
analysis, and 2. updates and modifications to existing data points that should
be updated. For the first update type, this thesis provides a patch-based out-of-
sample extension of vector fields. For the second type, this thesis introduces a
method to efficiently update kernel-based embeddings without recomputing the
spectral decomposition of the entire kernel. This method is especially suitable in
cases when the amount of updates is small and can be considered as a perturba-
tion of kernel values.

Keywords: Big Data, data analysis, manifold learning, diffusion maps
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1 INTRODUCTION

Big high-dimensional datasets have become increasingly common in many areas,
due to high availability of data and continuous technological advances. These
datasets are characterized by overwhelming amounts of collected data in them.
These amounts are affect both the number of observations in such datasets as
well as the number of features (measured, collected or computed) that are used
to quantify them. The number of such features in a dataset is also called the di-
mensionality of the dataset, since each observation corresponds to a vector whose
coordinates are determined by these features.

When a dataset contains many measured, collected, streamed and calcu-
lated features, the data points in it are expressed as vectors in a high dimensional
space. Analyzing them directly poses many challenges for machine learning and
data analysis methods, which are generally referred to as the “curse of dimen-
sionality”!. The main common theme of “curse of dimensionality” problems is
the relation between the high dimensionality of a dataset and the volume taken
by its data points in the space defined by data features. As the dimensionality of
the dataset increases, the data points occupy an increasingly smaller portion of
the feature space (i.e., the high dimensional space defined by the features of the
dataset). As aresult, the high dimensional representation of the data becomes too
sparse to directly obtain practical useful information from it.

Recent analysis methods, which originate from the field of machine learn-
ing, utilize a locally low-dimensional geometric structure (e.g., a manifold) to
model the data. These methods assumes the analyzed phenomena originate from
a small set of underlying factors that generate the observable (i.e., measured, col-
lected, streamed, or computed) features in the dataset via nonlinear mappings.
This provides the motivation for utilizing dimensionality reduction techniques
for data analysis. Instead of directly analyzing the dataset in its feature space,
such methods embed the data into a low-dimensional representation in which
important information, patterns and structures are revealed. Then, the analysis
(e.g., clustering and anomaly detection) can be done on the obtained represen-
tation. An example of such methods is the Independent Component Analysis

! To the author’s best knowledge, this term was coined by Richard E. Bellman in [5].
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(ICA) approach, which aims to find the independent components (i.e., the under-
lying factors) of the data by applying a known model to the nonlinear maps that
generate the analyzed data [32, 33].

Kernel methods present a common approach for obtaining meaningful di-
mensionality reduction of high dimensional data. These methods aim to preserve
local similarities between data points. In other words, data points that are similar
according to their feature values in the data set are mapped to similar low dimen-
sional points in the embedded space. Conceptually, these methods extend the
well known MDS [11, 22] method. They are based on a construction of an affin-
ity kernel that encapsulates the relations (distances, similarities, or correlations)
between data points. Spectral analysis of this kernel provides a representation
of the data that simplifies its analysis. The nonparametric nature of this analysis
uncovers important patterns in the data and reveals their geometry. In practice,
the dimensionality of the obtained representation is usually significantly lower
than the dimensionality of the input dataset.

The MDS method uses the eigenvectors of a Gram matrix, which contains
the inner products between the data points in the analyzed dataset, to define a
mapping of these data points into an embedded space that preserves (or approx-
imates) most of these inner products. This method is equivalent to PCA [20, 18],
which projects the data onto the span of the principal directions of the variance
of the data. Both of these methods capture linear structures in the data. They
separate between meaningful directions, which represent the distribution of the
data, and noisy uncorrelated directions. The former ones are associated with sig-
nificant eigenvalues (and eigenvectors) of the Gram matrix, while the latter ones
are associated with small eigenvalues.!!!

Kernel methods, such as Isomap [40], LLE [29], Laplacian Eigenmaps [4],
Hessian Eigenmaps [14] and Local Tangent Apace Alignment [42, 43], extend the
MDS paradigm by considering locally-linear structures in the data. A convenient
interpretation of these structures is provided by the assumptions that they form
a low-dimensional manifold that captures the dependencies between the observ-
able features in the data. This is called the manifold assumption. Namely, the data
is assumed to be sampled from this manifold. The resulting spectrally-embedded
space in these methods preserves the intrinsic geometry of the manifold, which
incorporates and correlates with the underlying factors of the analyzed phenom-
ena in the data.

Kernel methods are also inspired from spectral graph theory [8]. The de-
fined kernel can be interpreted as a weighted adjacency matrix of a graph whose
vertices are the data points. The edges of this graph are defined and weighted by
the local relations (or similarities) in the kernel matrix. The analysis of the eigen-
values and the corresponding eigenvectors of this matrix reveals many qualities
and connections in this graph, which serves as a discretization of the continuous
manifold geometry.

The diffusion maps (DM) kernel method [9] utilizes a stochastic diffusion
process to analyze data. It defines diffusion affinities via symmetric conjugation
of a transition probability operator. These probabilities are based on local dis-
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tances between data points. The Euclidean distances in the DM embedded space
correspond to a diffusion distance metric in the observable space. This distance
metric quantifies the connectivity between data points by incorporating all the
diffusion paths between them. When the data is sampled from a low-dimensional
manifold, these diffusion paths follow the intrinsic geometry of the manifold (i.e.,
geodesic paths on it). Therefore, the resulting diffusion distances capture the un-
derlying manifold geometry of the data.

The diffusion distance metric was utilized for clustering & classification [13],
parametrization of linear systems [39], and shape recognition [7]. Furthermore,
the DM method was used in a wide variety of data analysis and pattern recogni-
tion applications. Examples include audio quality improvement by suppressing
transient interference [38], moving vehicle detection [31], scene classification [19],
gene expression analysis [30] and source localization [37].

In addition, several extensions of DM methodology was recently proposed.
For example, in [23, 21], the DM methodology is extended to consider several
data sources and fuse the generated datasets into a single embedded representa-
tion. In [35, 36, 34], the DM affinities were extended to consider the orientation
and local neighborhoods of the underlying manifold, and the resulting embed-
ded space was used for Cryo EM applications.

This thesis extends the DM method to provide a framework for analyzing
big high-dimensional data. It deals with practical challenges that are posed by
handling big volumes of data that are updated on a daily basis (if not at a higher
rate). The thesis proposes theoretical and practical approaches to model and an-
alyze such data. The presented tools enable efficient, sound and practical utiliza-
tions of DM in particular and kernel methods in general for analyzing modern
datasets.



2 CONTRIBUTION OF THE THESIS

The thesis consists of a collection of papers that address practical challenges of
analyzing big high-dimensional data with kernel methods in general and diffu-
sion maps in particular. The relations between these papers are illustrated in
Fig. 1. They cover three main approaches for performing data analysis by utiliz-
ing DM. The first approach enhances kernel methods and DM to consider and
analyze clusters (or patches) of data points instead of analyzing them individu-
ally. The second approach defines, explores and utilizes dictionary constructions
to reduce the size of the diffusion kernel and enable the utilization of DM for

| Big High-Dimensional Data Analysis with Diffusion Maps

Updating Cluster Dictionary
Data Analysis Construction
Coarse-grained Patch-to-tensor
. localized embedding [PII]
Updating kernel diffusion [P1]

methods in spectral
decomposition
by affinity
perturbations [PV] Linear-projection
diffusion [PIII]

Approximate patch-to-tensor embed-

ding via dictionary construction [PIV]

FIGURE 1 Illustration of the structure of the thesis
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bigger datasets. The third approach is aimed at coping with updating data by
analyzing the effects of perturbations on the DM embedded space and by us-
ing out-of-sample extension techniques to efficiently computing the embedding
of new data points. Detailed descriptions of these approaches are presented in
sections 2.1, 2.2 and 2.3.

2.1 Cluster and patch analysis

Data-analysis methods nowadays are expected to deal with increasingly large
amounts of data. Such massive datasets often contain many redundancies. One
effect from these redundancies is the high-dimensionality of datasets, which is
handled by dimensionality reduction techniques such as DM. Another effect is
the duplicity of very similar data-points that can be analyzed together as a cluster.
To cope with this effect, thesis presents two novel approaches in [PII, PI] for an-
alyzing data clusters (or local patches) rather than individual data points. These
approaches allow the DM dimensionality reduction framework to move from the
data point level to the cluster level. This way, the size of the analyzed dataset is
decreased by only referring to data clusters or patches. Then, the dimensionality
of the dataset can be decreased by the DM embedding.

In order to provide motivation and justification for the presented approaches,
two main questions should be addressed: 1. Why is patch processing, which is
also called vector processing, the right way to go when we want to manipulate
high-dimensional data? 2. Do these patches exist in real-life datasets? Brief an-
swers to both questions are provided here as well as in [PII].

Data analysis methods often assume that the processed data have been gen-
erated by some physical phenomenon, which is governed by an underlying po-
tential [26, 27]. Therefore, the affinity kernel will reveal clustered areas that cor-
respond to neighborhoods of the local minima of this potential. In other words,
these high-dimensional data points reside on several patches located on the low
dimensional underlying manifold. On the other hand, if the data is spread sparsely
over the manifold in the high-dimensional ambient space, then the application of
an affinity kernel to the data will not reveal any patches/clusters. In this case, the
data is too sparse to represent or detect the underlying manifold structure, and
the only available processing tools are variations of nearest-neighbor algorithms.
Therefore, data points on a low-dimensional manifold in a high-dimensional am-
bient space can either reside in locally-defined patches, and then the methods in
this thesis are applicable to it, or scattered sparsely all over the manifold and thus
there is no detectable coherent physical phenomenon that can provide an under-
lying structure for it. Since the algorithms in this thesis are based on a manifold
learning approach, it is inapplicable in the latter case.

In general, all the tools that extract intelligence from high-dimensional data
assume that under some affinity kernel there are data points that reside on locally-
related patches, otherwise no intelligence (or correlations) will be extracted from
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the data and it can be classified as noise of uncorrelated data points. Therefore,
the local patches, and not the individual points, are the basic building blocks
for correlations and underlying structures in the dataset, and their analysis can
provide a more natural representation of meaningful insights to the patterns that
govern the analyzed phenomenon.

The DM methodology and the proposed methodologies in the thesis are
classified as spectral methods. Spectral methods are global in the sense that
they usually require the relations between all the samples in the dataset. This
global consideration hinders their use in practical large-scale problems due to
high memory (e.g., fitting the kernel matrix in memory) and computational costs.
However, in many cases there are many duplicities, or near duplicities, in mas-
sive datasets and a the number of different clusters (or patches) of closely-related
data-points is significantly less then the number of samples in the dataset. Pro-
cessing data clusters and patches, instead of individual data points, reduces the
many redundancies that usually occur in big datasets, thus, it enables also to lo-
calize spectral processing and reduce these overheads and impracticalities.

We consider two approaches to achieve a DM analysis of clusters or patches.
The first approach in [PI] is based on the structure of the stochastic Markovian
diffusion process in DM. This approach prunes data clusters and coarse grains
the DM transition probabilities between them while preserving the main DM
stochastic properties. The second approach in [PII] is based on the local neighbor-
hood structure of a manifold model for the data geometry. Under this model, the
data points are assumed to be sampled from a low-dimensional manifold and lo-
cal data patches are approximated by tangent spaces of the manifold. The scalar
DM affinities are extended in this approach to matrix affinities that encompass
multidimensional similarities between local neighborhoods of data points on the
manifold. Overviews of these approaches are presented in Sections 2.1.1 and 2.1.2
with further discussion on each of them.

2.1.1 Coarse grained diffusion maps

In [PI], a coarse-graining approach is proposed for dealing with both the high-
dimensionality of the data and the big size of the modern dataset. The presented
method prunes data clusters to be considered as the analyzed elements of the
DM dimensionality reduction framework. This way, the DM kernel size is deter-
mined by the number of pruned clusters, which is usually significantly smaller
than the number of data points in the analyzed dataset. Then, the coarse-grained
DM can be applied in order to compute a low-dimensional embedding of these
data clusters. We show that the essential properties (e.g., ergodicity) of the under-
lying diffusion process of DM are preserved by the coarse-graining. The affinity
that is generated by the coarse-grained process, which we call Localized Diffu-
sion Process (LDP), is strongly related to the recently introduced Localized Diffu-
sion Folders (LDF) [13] hierarchical clustering algorithm. We show that the LDP
coarse-graining is in fact equivalent to the affinity-pruning that is achieved at
each folder-level in the LDF hierarchy:.
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The LDF method performs an iterative process that obtains a folder hierar-
chy that represents the points in the dataset. Each level in the hierarchy is con-
structed by pruning clusters of folders (or data points) from the previous level.
The iterative process has two main phases in each iteration:

1. Clustering phase: the “shake & bake” method is used to cluster the folders
(or data-points) of the current level in the hierarchy by using a diffusion
affinity matrix.

2. Pruning phase: the clusters of the current level are pruned and given as
folders of the next level in the hierarchy. The diffusion affinity is also pruned
to represent affinities between pruned clusters (i.e., folders of the next level
in the hierarchy) instead of folders in the current hierarchial level.

In [PI], we focus on exploring the pruning that is performed in the second phase
of this process, while considering the clustering of the data, which may be per-

i
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(a) Let P be the DM transition probability matrix between all the data points in a dataset
M. For two disjoint clusters C;, C i < M, C;NC i = @, consider only the transition
probabilities between data points in C; U C; and store them in the matrix .

B 13 Bt Cj

1€

=
.

(b) Consider the top right submatrix of 43, which only considers rows that correspond
to data points in C; and columns that correspond to data points in C;. Let K,']» be a
wighted sum of all the probabilities in this submatrix. The transition probabilities be-
tween pruned clusters are obtained by normalizing the resulting kernel K, which con-
tains the cells K; j between all data clusters, to be row stochastic.

FIGURE 2 Illustration of the diffusion transition probability pruning in [PI], which is
equivalent to the LDF affinity pruning phase in [13]
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formed by “shake & bake” process [13] or by another clustering algorithm, as
prior knowledge. Figure 2 illustrates the introduced transition probability prun-
ing between clusters in [PI], which is similar to the affinity pruning in LDFE. In
fact, the resulting pruned probabilities and affinities in these two methods are
shown in [PI] to be equivalent.

Essentially, the LDF algorithm provides an hierarchical data clustering with
additional affinity information for each level in the hierarchy. While there are
many empirical justifications for the merits of LDF and its utilization in various
fields (e.g., unsupervised learning and image processing), it lacked theoretical
justifications. The introduced coarse-grained localized diffusion process in [PI]
preserves essential properties of the original DM process that enable its utiliza-
tion for dimensionality reduction tasks. This process and the diffusion affinity
generated by it are related in the paper to the one achieved by the LDF pruning
phase. This relation adds the needed complimentary foundations for the LDF
framework by providing theoretical justifications for its already-obtained empir-
ical support. Additionally, the presented relation shows that the applications pre-
sented in [13] in fact demonstrate the utilization of the LDP for data-analysis tasks
and the results presented there provide empirical support of its benefits.

A similar coarse-graining approach was also presented in [24]. The ap-
proach there is based on a graph representation of the diffusion random-walk
process. The clustering of data-points was performed by graph partitioning.
Then, transition probabilities between partitions were achieved by averaging tran-
sition probabilities between their vertices. The resulting random-walk process
maintains most of the spectral properties of the original diffusion process and
its eigendecomposition can be approximated by the original spectral decompo-
sition. However, the approximation error strongly depends on the exact parti-
tioning used. In addition, since all the random-walk paths are considered in the

(@) (b)

FIGURE 3 Illustration of the difference between (a) a localized path, which only tra-
verses through data points in its source and destination clusters, and (b) a
nonlocalized path, which traverses through one or more intermediary clus-
ters
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averaging process, there is a limited number of viable time-scales (in the diffusion
process) that can be used by this process before it converges to the averaging of
the stationary distribution.

The presented coarse-graining of the diffusion process in [PI] copes with
the rapid convergence toward the stationary distribution by only preserving lo-
calized paths between clusters while ignoring paths that are “global” from the
cluster point-of-view. The difference between localized and nonlocalized paths
is illustrated in Fig. 3 While it is desirable that the clusters will be sufficiently
coherent to consist of a continuous partitioning of the dataset and its underly-
ing manifold, the properties of the presented coarse-graining process are neither
depend on such assumptions nor on the exact clustering method used.

2.1.2 Patch-based diffusion maps

In [PII], we extend the original Diffusion Maps method in particular and kernel
methods in general by suggesting the concept of a super-kernel. We aim to an-
alyze patches of an underlying data manifold instead of analyzing single data
points on this manifold, which represents the geometrical structure of the ana-
lyzed data. Each patch is defined as a local neighborhood of a point in a dataset
sampled from the underlying manifold. The relation between two patches is de-
scribed by a matrix rather than by a scalar value. This matrix represents both
the affinity between the points at the centers of these patches and the similar-
ity between their local coordinate systems. The constructed matrices between all
patches are then combined in a block matrix, which we call a super-kernel. The
structure of the constructed super-kernel is illustrated in Fig. 4. The presented
super-kernels provide an extension of scalar-affinity kernels that are used in ker-
nel methods.

We suggest several methods for constructing super-kernels. In particular,

dxd

nxn : Gy : nd x nd

dxd

FIGURE 4 The structure of a super-kernel G over a dataset M with n data points that
are sampled from a d-dimensional manifold immersed in a high dimensional
space. The super-kernel G is a block matrix, where each block Gy, x,y € M,
is a d x d matrix that represents a non-scalar affinity between the manifold
patches around x and around y.
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linear-projection operators between tangent spaces of data points are suggested
for expressing the similarities between the local coordinate systems of their patches.
Other constructions such as ones based on orthogonal transformations can also
be used. Such constructions will be explored in future works. We also suggest
using the original diffusion kernel for expressing the affinities between points
on the manifold. We examine and determine the bounds for the spectra (i.e.,
the eigenvalues) of the suggested constructions. Then, the eigenvalues and the
eigenvectors of the constructed super-kernels are used to embed the patches of
the manifold into a tensor space. This embedding is illustrated in Fig. 5. We relate
the Frobenius distance metric between the coordinate matrices of the embedded
tensors to a new distance metric between the patches in the original space. We
show that this metric can be regarded as an extension of the diffusion distance
metric, which is related to the original Diffusion Maps method [9].

nd

(a) Each eigenvector ¢ of the nd x nd super-kernel G is a vector of length nd. Equivalently, it
contains 1 subvectors of length d that define a map ¢(x), x € M, of patches around data points in
M.

(A =) —]]
7; — : 0 x d

(A5 ][ [—@s(x) —]]

(b) By using J eigenvectors of the super-kernel, each patch around a data point x is mapped to
& subvectors ¢;(x), ..., phis(x) of length d. These subvectors are then organized in a coordinate
matrix of a tensor Ty € R® ® R that provides the embedding of the patch around x € M.

FIGURE 5 Illustration of the achieved patch-to-tensor embedding based on the eigen-
values Ay > Ay > ... > As and the eigenvectors ¢y, ¢, . .., ¢s of the super-
kernel G from Fig. 4. The exact value of J is determined by the decay of the
spectrum of G.

The linear-projection diffusion (LPD) super-kernel that is introduced in [P1I]
is further explored in [PIII]. The main focus in [PIII] is on the theoretical prop-
erties of the LPD super-kernel that was presented in [PII]. This super-kernel is a
specific type of linear-projection super-kernels, whose spectra (i.e., eigenvalues)
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were shown to be non-negative. In the case of the LPD super-kernel, all the eigen-
values are between zero and one. The LPD-based embedding in [PII] results in
a tensor space in which Frobenius distances (between coordinate matrices of em-
bedded tensors) extend of the original diffusion distance from [9]. This extension
incorporates information about the proximities of tangential points in the dif-
fusion process together with the projections between the corresponding tangent
spaces that represent the patches [PII].

The results obtained in [PII] for finite constructions of LPD super-kernels are
extended in [PIII] by exploring their properties when they becomes continuous.
This paper enhances the properties of LPD super-kernels two-folds: 1. It shows
that the infinitesimal generator of the LPD super-kernel converges to a natural
extension of the original diffusion operator from scalar functions to vector fields.
This operator was shown to be locally equivalent to a composition of linear pro-
jections between tangent spaces and the vector-Laplacians on them. 2. It intro-
duces the stochastic process defined by the LPD super-kernels and demonstrated
it on a synthetic manifold.

The presented PTE method in [PII, PIII] generalizes the DM framework and
its diffusion distance metric by incorporating matrix similarity relations into a
single super-kernel. However, the use of these multidimensional similarities re-
sults in a bigger kernel matrix, which significantly increases the computational
complexity of PTE due to its reliance on a spectral decomposition of the kernel.
In [PIV], we present an efficient approximation for this spectral decomposition
that enables us to utilize an enhanced diffusion distance for the analysis of large
datasets. This enhancement is discussed in Section [PIV]

Among other benefits, the patch-processing approach introduced here, to-
gether with suitable dictionary constructions such as the one in [PIV], enable the
reduction of wide redundancies in many large-scale datasets. It provides a mean-
ingful representation of the essential intelligence from the analyzed data without
any superfluous information that does not benefit the sought-after patterns and
can thus be regarded as noise from the analysis point of view. The presented LPD
super-kernel and related vector propagating diffusion process can also be utilized
for out-of-sample extensions of vector fields. This utilization is explored in [PIV]
and is further discussed in Section 2.3.

2.2 Patch-based dictionary construction

The DM method uses a Markovian diffusion process to model and analyze data.
A spectral analysis of the DM kernel yields a map of the data into a low dimen-
sional space, where Euclidean distances between the mapped data points rep-
resent the diffusion distances between the corresponding high dimensional data
points. Many machine learning methods, which are based on the Euclidean met-
ric, can be applied to the mapped data points in order to take advantage of the
diffusion relations between them. However, a significant drawback of the DM in
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particular, and kernel methods in general, is the need to apply spectral decompo-
sition to a kernel matrix, which becomes infeasible for large datasets.

For a sufficiently small dataset, kernel methods can be implemented and
executed on relatively standard computing devices. However, even for moder-
ate size datasets, the necessary computational requirements to process them are
unreasonable and, in many cases, impractical. For example, a segmentation of
a medium size image with 512 x 512 pixels requires a 2!® x 218 kernel matrix.
The size of such a matrix necessitated about 270 gigabytes of memory assuming
double precision. Furthermore, the spectral decomposition procedure applied to
such a matrix will be a formidable slow task. Hence, there is a growing need
to have more computationally efficient methods that are practical for process-
ing large datasets. This need becomes even more crucial when using non-scalar
affinities between data patches (or clusters) as suggested in [P1I] and discussed in
Section 2.1.

Sparsification by a sparse eigensolver such as Lanczos, which computes the
relevant eigenvectors [12] of the kernel matrix, is widely used to reduce the com-
putational load involved in processing a kernel matrix. Another sparsification
approach is to transform the dense kernel matrix into a sparse matrix by selec-
tively truncating elements outside a given neighborhood radius of each dataset
member. Other approaches to achieve matrix sparsification are described in [41].
Given a dataset with n data points, common approaches for processing kernel
methods, including the ones described in this thesis, require at least O(n?) oper-
ations to determine which entries to either calculate or to threshold. While there
are methods to alleviate these computational complexities [1], kernel sparsifica-
tion might result in a significant loss of intrinsic geometric information such as
distances and similarities.

The main computational load associated with kernel methods is generated
by the application of a spectral decomposition to a kernel matrix. Considerable
efforts have been invested (e.g., in [15, 2] and others) in approximating the spec-
tral decomposition operator to become a feasible computation. For example, the
dictionary approach in [15] constructs a dictionary of representatives that are
sufficient for approximating the full kernel. This method outputs the smaller
dictionary-based kernel and the corresponding extension coefficients to the full
dataset (or kernel). The number of dictionary members depends on the given
data, kernel configuration and the desired quality of the full kernel approxima-
tion.

Another prominent approach to reduce the discussed computational load is
based on the Nystrom extension method [16], which estimates the eigenvectors
needed for an embedding. This approach is based on three phases:

1. The dataset is subsampled uniformly over the set of indices that are ran-
domly chosen without repetition.

2. The subsamples define a smaller (than the dataset size) kernel. SVD is ap-
plied to the small kernel.

3. Spectral decomposition of a small kernel is extended by the application of
the Nystrom extension method to the entire dataset.
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This three-phase approach reduces the computational load, but the approximated
spectral decomposition output suffers from several major problems. Subsam-
pling affects the quality of the spectral approximation. In addition, the Nystrom
extension method exhibits ill-conditioned behavior that also affects the spectral
approximation [6]. Uniform subsampling of a sufficient number of data points
captures most of the data probability distribution. However, rare events, com-
pared to the subsampled size, might get lost. The results from this loss of infor-
mation degrades the quality of the estimated embedded distances.

In [PIV], the dictionary construction approach in [15] is utilized to approxi-
mate the spectral decomposition of a non-scalar affinity kernel under the settings
of [PII, PII], which are described in Section 2.1. In this case the need for effi-
cient dictionary constructions becomes even more important since a dataset with
n data points from a d-dimensional manifold produces a nd x nd super-kernel
matrix (see Fig. 4). The presented dictionary construction in [PIV] utilizes the
underlying patch structure of data that originate from a low-dimensional man-
ifold in a high-dimensional ambient space. This paper describes the necessary
condition for updating a non-scalar dictionary for achieving a bound on the ap-
proximation error.

Although the proposed method is applicable to many such kernels, we fo-
cus on the linear-projection super-kernel construction described in [PII]. The ex-
tension of the dictionary construction from [15] is done by an efficient algorithm
that assumes the data is sampled from an underlying manifold and utilizes the
non-scalar relations and the similarities between manifold patches instead of uti-
lizing scalar relations between individual data points. The constructed dictionary
contains a small set of representative manifold patches, which are represented by
the embedded tensors from [PII]. This representative set is shown to be suffi-
cient, by construction, for representing the entire structure of the super-kernel
and the non-scalar affinities in it. Therefore, the achieved patch dictionary en-
compasses multidimensional similarities between local areas of the data. The
presented dictionary-based analysis reduces the computational costs of the spec-
tral analysis in comparison to the straight-forward embedding method in [PII].
Hence, it enables the patch-based embedding to be applied to datasets that are
impractical to process and embed without using the dictionary construction.

2.3 Dealing with updating data

Many machine learning algorithms contain a training step that is done once. The
training step is usually computationally expensive since it involves processing
big matrices (e.g., spectral decomposition of a big kernel matrix). If the analyzed
data originates from an evolving dynamic system (or phenomena), it has to be
updated as the underlying system changes over time. There are two main types
of updates that can be considered in such systems: 1. Some features of the train-
ing dataset are changed without adding new samples. 2. New samples are col-
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lected, measured or streamed over time and the results of the analysis should be
extended to them. In this section we discuss methods for handling both cases.

The first challenge is addressed by [PV], which presents an algorithm for
updating kernel-based embeddings under sufficiently small perturbations of the
data affinities. The second challenge is well known as out-of-sample extension
and there are several methods of coping with it using scalar-affinity kernels.
In [PIV] we present such an extension scheme for vector-fields (rather than scalar
functions) that arise in modern applications. Specifically, the presented method
enables the out-of-sample extension of patch-based embeddings such as the PTE
from [PII]. More detailed discussions of these methods are presented in Sec-
tion 2.3.1 and 2.3.2.

2.3.1 Updating kernel methods by affinity perturbations

Studying a dataset while being able to extract constructive information from it
is a challenging task. The computational complexity increases when processing
evolving data that requires frequent updates of the profile that represents the
training set we use. As time advances, the training profile, which was previously
extracted from evolving dynamic data, may not represent accurately the behavior
of the current data. Therefore, this scenario requires not only the extension of a
known stable profile to new samples (as done in out-of-sample techniques), but
rather the updating of the extracted training profile. A straightforward approach
to update this profile is to repeat the entire computational process that previously
generated it. However, this approach becomes computationally impractical when
dealing with big data while the changes in the training profile are relatively small.

In [PV], the problem of efficiently updating the training profile of analyzed
data is explored under the setting of constantly evolving data. The data is mod-
eled by a kernel matrix and processed by spectral decomposition. In many algo-
rithms for clustering and classification, a low dimensional representation of the
affinity kernel graph of the embedded training dataset is computed. Then, it is
used to classify newly arrived data points. This paper proposes methods for up-
dating such kernel-based embeddings of the training dataset in an incremental
way without the need to perform the entire computation upon changes in a small
number of the training samples. An efficient computation of this algorithm is
critical in many web-based applications.

The presented methods in [PV] efficiently update the training profile while
performing a limited computation that only takes into consideration the modified
features instead of considering all the features in the dataset. It is based on ex-
tending the Power Iteration algorithm from [25]. This algorithm has been proved
to be effective when calculating the principle eigenvector of a matrix. However,
this method was not suitable for find the other eigenvectors of the matrix. The
presented algorithm in [PV], which we call Recursive Power Iteration (RPI), uses
an iterative approach that uncovers one eigenvector at a time. In each step, the
power iteration is performed on a modified kernel matrix whose principal eigen-
vector corresponds to the next eigenvector to uncover from the full kernel matrix.
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In general, an initial guess of the eigenvectors is important to guarantee
fast convergence of the algorithm. The presented RPI algorithm uses the original
eigenvectors of the unperturbed kernel as the initial guess for each power itera-
tion. An additional optimization is achieved by using first order approximation
of the perturbed eigenvectors. The justification for this approach is that the first
order approximation of the perturbed eigenvector is inexpensive, and each RPI
step will guarantee that this approximation converges to the actual eigenvector
of the perturbed kernel. The first order approximation should be close to the
required solution and therefore requires fewer iterations steps to converge. The
correctness of the presented algorithm is proved in [PV] and its performances are
demonstrated on real data.

2.3.2 Out-of-sample extensions of vector fields

The challenge of extending achieved data analysis results (e.g., the DM embed-
ding) to newly arrived data points is addressed by out-of-sample extension meth-
ods. Several kernel approaches have been applied for this tasks. A classical
kernel-based technique is the Nystrom extension method [2, 28]. This method is
based on inverting a kernel matrix that is assumed to be derived from a uniform
sampling of the data. More recent methods are Geometric Harmonics [10] and
the Multiscale Extension (MSE) scheme in [6]. These methods use the spectral
decomposition of the kernel (i.e., its eigenvalues and eigenvectors) as a basis of
its range. The eigenfunctions are shown to be easily extended to new data points,
thus any function in its range, which can be expressed as a linear combination of
these eigenfunctions, is also easily extended. Functions that are not in the range
of the kernel are extended by projecting them on the kernel’s range and using the
resulting function (and extension) as an approximation of the original function.

The MSE scheme [6] in particular was suggested as an alternative to the
Nystrom extension. This scheme, which samples scattered data and extends func-
tions defined on sampled data points, overcomes some of the limitations of the
Nystrom method due to ill-conditioned matrix inversions that are involved in
its computation. The MSE method is based on mutual distances between data
points. It uses a coarse-to-fine hierarchy of a multiscale decomposition of a Gaus-
sian kernel to overcome ill-conditioned phenomena and to speed the computa-
tions.

The main focus of [PIV] is the dictionary construction that enables the appli-
cation of patch-based DM analysis to big data. However, the presented construc-
tion also provides a natural diffusion-based out-of-sample extension of vector
fields. This type of extension is beneficial when the analyzed data consists of di-
rectional information in addition to positional information on the manifold. For
example, the goal in [3] is to recover missing data in images utilizing interpolation
of the appropriate vector field. Another example is the utilization of tangential
vector fields interpolation on S? for modeling atmospheric air flow and oceanic
water velocity [17].

The dictionary construction in [PIV] is aimed to approximate the spectral
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FIGURE 6 Illustration of the super-kernel as an operator on vector-fields. Let M be the
d-dimensional underlying data manifold and let Ty(M) = RY, x € M, be
the d-dimensional tangent spaces of the manifold at every data point. Then,
the constructed super-kernel provides an operator on tangent vector fields

7: M — R? such that 3(x) € Te(M) S ¥ Gy d(y) = Go(x) € Te(M)

decomposition a super-kernel that consists of non-scalar affinities between man-
ifold patches. This approximation is achieved by computing the super-kernel
decomposition on a sufficiently small set of representatives (i.e., the dictionary)
and extend the results of this computation to the entire dataset. The presented ex-
tension method from the dictionary set can also be utilized to extend the super-
kernel spectral decomposition (and the resulting embedding) to new manifold
areas (or patches), either from the sampled dataset or even from the (smaller) dic-
tionary. According to [PIII], the LPD super-kernel provides a diffusion operator
for tangent vector fields of the underlying data manifold. This interpretation of
the super-kernel is illustrated in Fig. 6. Thus, its spectral decomposition consists
of eigenvector fields that span the range of the LPD super-kernel. Therefore, the
achieved extension method in [PIV] for super-kernel eigenvector fields is equiva-
lent to the out-of-sample extension of tangent vector fields of the underlying data
manifold.



YHTEENVETO (FINNISH SUMMARY)

Tama opinndyte esittelee joukon menetelmia suurten, korkeaulotteisten datamas-
sojen késittelyd varten. Esiteltdvdt menetelmit ovat ulotteisuuden vihentdmi-
nen, karkeajakoistus, sanakirjarakennelmat ja aineiston ulkopuoliset laajennuk-
set. Esitetyt metodit pystyvait kasittelem&dan kooltaan ja ulottuvuuksiltaan vaati-
via aineistoja. Teoksessa esitetddn kaksi tapaa laajentaa diffuusiokuvauksiin pe-
rustuva ulotteisuuden vahentaminen yksittdisten datapisteiden tasolta dataklus-
tereihin. Ensimmainen tapa tarkastelee menetelmén kayttiméan Markov-diffuusio-
prosessin ominaisuuksia. Se karkeajakoistaa suoraan tédtd prosessia ja karsii pai-
kallisia dataklustereita. Samalla myos prosessin stokastiset ominaisuudet sdily-
vit. Toinen ldhestymistapa hyodyntdaa monistogeometrista datamallia. Se laajen-
taa diffuusioytimen huomioimaan paikallisten data-alueiden epédskalaarit saman-
kaltaisuudet. Nam& samankaltaisuudet yhdistdvét paikkatiedon ja vertailtujen
data-alueiden moniston tangenttiavaruuksien valiset suhteet. Tuloksena saatava
upotuskuvaus tuottaa jokaisesta alueesta upotetun tensorin. Seuraavaksi muo-
dostetaan alueesta sanakirja, joka mahdollistaa upotetun tensoriavaruuden liki-
maddrdisesti esittdvan, pienen aluejoukon valinnan. Molemmissa tavoissa tarkas-
teltavan diffuusioytimen koko pienenee merkittavasti, koska ydin on riippuvai-
nen vain datapisteiden muodostamista geometrisista alueista datapisteiden ko-
konaismédédran sijaan.

Lisédksi esitetddn menetelmid alkuperdisen diffuusioupotuksen péivittdmi-
seksi, kun lisdd dataa tulee saataville. Uusien, analyysiin lisattdvien datapistei-
den kasittelyyn esitellddn aluepohjainen aineiston ulkopuolisten vektorikenttien
laajennus. Péivitettyjd datapisteitd varten esitetddn tehokas menetelméd ydinpoh-
jaisten upotusten padivittimiseen laskematta uudelleen koko ytimen spektraaliha-
jotelmaa. Tdméa menetelma soveltuu erityisesti maaraltaan vahdisten paivitysten
késittelyyn, ja on tarkasteltavissa ytimen arvojen vaihteluna.
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