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ABSTRACT

Salmi, Santtu
Numerical Methods for Pricing Options under Jump-Diffusion Processes
Jyväskylä: University of Jyväskylä, 2013, 50 p.(+included articles)
(Jyväskylä Studies in Computing
ISSN 1456-5390; 180)
ISBN 978-951-39-5513-7 (nid.)
ISBN 978-951-39-5514-4 (PDF)
Finnish summary
Diss.

This dissertation deals with the numerical solution of partial integro-differential
equations (PIDEs) derived for the pricing of options under jump-diffusion pro-
cesses. The addition of jumps into the option pricing model arguably leads to
a more realistic account of real-world market behavior. However, due to the
non-locality of these jump terms, the discretized systems become dense. Spe-
cial methods and algorithms are necessary to solve these systems efficiently. It-
erative methods and special time discretizations are employed to circumvent the
inversion of a full matrix. Full matrix-vector multiplications are still necessary,
which can be computed efficiently by employing Fourier transforms or recursion
formulas.

Keywords: option pricing, jump-diffusion, numerical methods, PIDE
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1 INTRODUCTION

The first recorded account of an investment mimicking an option contract was
mentioned in the book Politics [8] by Aristotle in the fourth century B.C. A man
named Thales of Miletus observed the weather patterns and predicted a huge
olive harvest. Thales understood that due to the rising demand in the use of
olive presses (olives could not be stored at that time), he could make a big profit
if he owned the olive presses in the area. However, since he did not have the
money to buy the olive presses, instead, he had a brilliant idea. Thales invested a
small amount of money to secure the use of the olive presses in the region during
the harvest. As he predicted, harvest was plentiful and he made a big fortune by
selling the rights to use the olive presses.

This kind of a financial contract is understood today as an option, where
the owner of the contract has the option, but not the obligation, to exercise the
option. Thales had the option of using the olive presses himself, exercising the
option, or selling the option contract for profit. It was possible, that due to an
unforeseeable disaster the olive harvest would have been destroyed. Therefore,
Thales ran the risk of losing his initial small investment. Alternatively, the harvest
could have been merely average, in which case Thales would have probably just
covered his expenses and made no profit. This was an example of an option
holder speculating on the price of the underlying asset, in this case, the right to
use an olive press. The option contract seller or writer, here the olive press owners,
had the guaranteed fixed profit of Thales’ initial investment even in the case of a
disaster, but the writers did not benefit from the higher olive press rental prices
generated by increasing demand. The option writers were hoping the underlying
asset price to remain at, or go below, the price that Thales paid them. This amount
is called the strike price of the option.

In contrast to speculation, another, arguably more important purpose for
option contracts is to hedge against risk. Let us consider a typical example of
a commercial farmer. The market price of wheat, rice and other crops fluctuate
according to supply and demand. The decision to plant a specific type of crop
needs to be made a season in advance, and after planting the farmer is committed
to this choice. Assume that the farmer decides that planting wheat is a good
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idea. If the price of wheat goes up during this time, he makes an unexpected
profit. If the price goes down, however, he could be ruined. To protect himself
from this risk, the farmer can enter into a financial contract, where he promises
to deliver a certain amount of wheat with a fixed price at a certain date in the
future. This is known as a futures contract. He is no longer exposed to the price
fluctuations in the markets. However, he also gives up the chance to make extra
profits if the price of wheat is higher at harvest, as he is obliged to sell under the
conditions written in the futures contract. To retain the chance to make extra
profits at harvest, the farmer can instead enter into a financial contract where
he has the option to sell under the specified conditions, but not the obligation.
In financial terminology this is called a put option. Similarly, the option to buy
the underlying asset under the specified conditions is called a call option. Put
options are often seen as a form of insurance. However, while you cannot insure
someone else’s house, you can buy an option on an asset you do not own. Also,
unlike regular insurance there is no limit on how many options you can own.
This enables put options to be used also in a speculative manner.

While a futures contract is binding on both parties, an option contract is
binding only on the writer. The writer of the option is obliged to buy or sell the
underlying asset under the specified conditions in case the option holder wants
to exercise the option. An option contract is therefore an asymmetric agreement
between the parties, and it clearly always has a positive value for the holder. The
option holder has to pay the writer for agreeing to the obligation imposed by
the option contract. In other words, the holder pays the writer for carrying the
risks associated with the fluctuations of the underlying asset. This leads to the
fundamental question: how much should the option holder pay the writer?

In 1973, for the first time this question was answered in a rigorous manner
in the pioneering papers by Black and Scholes [10], and Merton [52]. The Black-
Scholes model was certainly not the first attempt to give a fair price to an option,
but it was the first time a completely tractable solution was given. The model
consists of a random process, namely geometric Brownian motion, and a deter-
ministic drift. As a side note, already as early as the year 1900 random walk, a
discrete version of Brownian motion, was proposed to model asset price move-
ment by Bachelier in his thesis [6]. Only two parameters are needed as additional
inputs in the Black-Scholes model, which are the risk-free interest rate, a quantity
that can be approximated by observing very low risk assets such as government
bonds, and the market volatility, also a quantity that can be estimated from finan-
cial time series.

Black, Scholes, and Merton constructed an investment portfolio that con-
tains both a written option contract (also known as a short position on an op-
tion) and a dynamically adjusted amount of the underlying asset (e.g. stock). If
the amount of the underlying asset is continuously adjusted in the portfolio in
just the right way, a technique called delta-hedging, the value of the portfolio
remains unchanged under any continuous changes in the underlying asset. By
applying Itô’s lemma to the portfolio, a kind of a chain-rule in stochastic calcu-
lus, the randomness in the portfolio vanishes. Since the portfolio is now riskless,
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it must have a rate of return equal to any other riskless instrument. This is the
so-called no-arbitrage argument. This line of reasoning results in the celebrated
Black-Scholes partial differential equation (PDE), which satisfies the fair price of
a European-style option contract. This PDE admits an analytic solution, the so-
called Black-Scholes formula.

The Black-Scholes PDE undeniably revolutionized the field of finance. Be-
fore, option prices were settled individually between two parties, and the price
was based merely on intuition and negotiation. After, a fair price of an option
could be obtained via the Black-Scholes formula. In 1973 option trading boomed
when the Chicago Board Options Exchange started trading options in an open
exchange. In recent years, however, the limitations of the Black-Scholes model
have come under more attention.

In this dissertation we price options under models that are more general,
and presumably more realistic, than the Black-Scholes model. In particular, jump-
diffusion models are our central focus. The analytical solution to the classical
Black-Scholes model is known, but this is usually not the case for more general
models. Hence, numerical solution is necessary. Numerical solution methods for
option pricing can be roughly divided into three categories: numerical solution
of PDEs, Monte Carlo simulation, and numerical integration techniques. Here we
adopt the numerical solution of PDEs approach. Each numerical solution method
has their particular strengths and weaknesses. For example, PDE methods are
known to be strong for low dimensional problems, especially for American-style
option contracts. Numerical integration techniques are extremely powerful for
European-style option contracts, and naturally also for contracts that can be re-
duced to the European option pricing problem. Monte Carlo simulation is prefer-
able for high dimensional problems (e.g. basket options), and also for some exotic
contracts where an explicit PDE might be difficult to derive.



2 FINANCIAL OPTION CONTRACTS

In the following we discuss different styles of option contracts. The most com-
monly traded options include European and American options1, which are col-
lectively known as vanilla options. Conversely, options with nonstandard fea-
tures are generally known as exotic options, although there is no clear distinctive
definition between the two categories. Typically exotic options are so-called over-
the-counter (OTC) options, that is, they are traded and negotiated between two
private parties.

The defining characteristics of an option contract are: the governing under-
lying asset(s), strike price, expiry date, payoff function, and the option contract
style. The option may be exercised at specified dates, depending on the style of
the option contract, at or before the expiry date. In case of a call option, the option
holder has the right to buy the underlying asset with the strike price, and simi-
larly the holder of a put option has the option to sell the underlying asset with
the strike price. Additionally, option contracts include settlement terms, which
specify for example, whether the writer must deliver the actual asset on exercise,
or may simply tender the equivalent cash amount (cash settlement). For instance,
the standard practice for options depending on a stock is to deliver the equiva-
lent cash amount on exercise instead of the actual underlying stock. In this case,
exercising the option yields a payoff, which for vanilla options is the positive
difference between the strike price and the value of the underlying asset.

2.1 European Options

European style option contracts are usually index and commodity options. A
holder of a European-style option has the right to buy or sell the underlying asset
with the strike price at the expiry date. In other words, the right to exercise a
European option is only at the expiry date, at a single predefined point in time.

1 European and American options are traded everywhere in the world. The terminology
originated simply upon which continent these styles of options where first traded in.
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In practice, a European option is automatically exercised if it has any value at
expiry. Let us denote the value of the underlying asset at time t ∈ [0, T] by St,
where T is the expiry time. Now, the payoff function g(St) of a European style
call option is given by

g(ST) = max{ST − K, 0}, (1)

where K is the strike price of the option. Clearly the option has positive value only
if the value of the underlying asset St at time t = T is greater than the strike price
K. Otherwise, the holder of the option is better off buying the underlying asset
from the market, and in this case the option contract was a worthless investment.
Similarly, the payoff function g(St) of a European style put option is given by

g(ST) = max{K − ST, 0}. (2)

The payoff functions for K = 100 are plotted in Figure 1; also, option prices given
by the Black-Scholes formula, under parameters given in Table 1, are included
to illustrate the evolution of the option price (backwards) in time. Notice, how-
ever, that the price evolution is different for models other than the Black-Scholes
model. These models will be discussed further in the next chapter.

FIGURE 1 Payoff functions for European options at expiry: call option (Top Left), put
option (Top Right), and option prices given by the Black-Scholes formula at
one year before expiry: call option (Bottom Left), put option (Bottom Right).
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TABLE 1 Black-Scholes parameters

Strike price K 100
Expiry time T 1
Risk-free interest rate r 0.05
Volatility σ 0.2

2.2 American Options

Contrary to European options, American options can be exercised at any point
in time before expiry. Options that have this type of feature are known as early-
exercise options. However, American options are unique in that they can be ex-
ercised at any point in time, while other early-exercise options typically allow
early exercise at some predefined times before expiry. Due to this early exercise
possibility, the value of an American option is always greater than the value of a
corresponding European option.

The payoff function g(St) of an American call option at time t ∈ [0, T] is
given by

g(St) = max{St − K, 0}. (3)

Since exercise is possible at any time t ∈ [0, T], the natural question is: when
should one exercise the option? Exercising if St ≤ K is certainly not sensible since
the payoff is zero. If St > K the answer is not so clear anymore. The payoff is
positive, but by exercising the option, the holder also forgoes the possibility of
future profits. This is known as the time value of the option. The more time there
is left before expiry, the higher the probability of large changes in the underlying.
However, by exercising the option, the holder also eliminates the risk of losing
profits through the depreciation of the underlying asset. In fact, the early exer-
cise of an American option is an optimal decision problem, and the region in the
underlying asset space where exercise is optimal is called the early exercise re-
gion. This region changes in time, and it is characterized by the early exercise
boundary, which for a simple model is a point in the asset price space moving
with time. American options are typically stock, equity, and commodity options,
which are often the most traded options in an exchange.

2.3 Other styles of Options

Here we present a brief overview of some well-known non-vanilla options. A
Bermudan option, for example, is a simple variant of vanilla options. A Bermu-
dan option has the same payoff function as European and American options, as
given by (3) for a call option. However, Bermudan options can be exercised only
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at a predefined discrete set of times. Therefore, Bermudan options are an inter-
mediate between European and American options. Indeed, the name Bermudan
option is a pun, derived from the fact that Bermuda is geographically located be-
tween Europe and America. From a mathematical perspective, pricing a Bermu-
dan option can be reduced to pricing several European options (one for each ex-
ercise time of the Bermudan option). This is a significant advantage, since Euro-
pean options can often be priced with analytic or semi-analytic pricing methods,
whereas American options typically require numerical solution.

Options with unconventional payoff functions are known as exotic options.
A simple exotic option is a basket option, where the payoff value depends on the
weighted average of several underlying assets. Other exotic options include, but
are not limited to: lookback options, Asian options, binary options, and barrier
options. A lookback option is a path dependent option where the option holder
has the right to buy (sell) the underlying asset at its lowest (highest) price over
the lifetime of the option. Similarly, the value of an Asian option is determined
by the average value of the underlying asset over the lifetime of the option. A
binary option, as its name suggests, simply pays a fixed amount or nothing at
all, depending on the value of the underlying asset at expiry. Barrier options
can be divided into two categories: the option springs into existence after the
underlying asset breaches a barrier, or conversely, the option is extinguished if
the barrier is breached. The first type of barrier options are known as up and in,
knock-in, or down and in options. The second type of barrier options are known
as up and out, knock-out, or down and out options. There are also so-called double
barrier options that have two distinct barriers. If the underlying asset crosses
either one of these barriers, the option either springs into existence (knock-in) or
is extinguished (knock-out). Clearly, barrier options are always cheaper than a
similar option without a barrier, since the existence of the option is conditional.

In addition to the exotic options presented above, there is a wide variety
of other exotic options. However, in many cases the price of an exotic option
can be derived from the price of a vanilla option. Thus, the pricing of European
and American options is of fundamental importance. In the remainder of this
dissertation we will focus on the pricing of European and American options.



3 FINANCIAL MARKET MODELS

Even at the time of the introduction of the Black-Scholes model, the constant
market volatility assumption and continuity of sample paths were known to be
simplifications. Fitting empirically observed option prices into the Black-Scholes
model implies a volatility distribution pattern so commonly observed, that it has
been given its own name, the volatility smile. The implied volatility is typically
lower near the strike price, and higher far from the strike price of the option.
Thus, plotting the implied volatility against the strike price yields a smile like
curve. In the following, implied volatility is always assumed to be given by the
Black-Scholes model. It is known that the implied volatility becomes more pro-
nounced for options with short maturities, or in other words, for options that are
about to expire. The volatility smile can be seen as empirical evidence suggesting
that the Black-Scholes model is misspecified. Indeed, the use of the Black-Scholes
formula by financial practitioners was described in [60] as using “the wrong num-
ber in the wrong formula to get the right price”. Under the Black-Scholes model
options can be perfectly hedged by a replicating strategy, which holds only the
underlying asset and a risk-free bond. Thus, options in this (complete market)
setting are, perplexingly, redundant assets.

Other, more subtle concerns have also risen. For example, stock returns are
known to exhibit heavier tails than the log-normal distribution implied by the
Black-Scholes model. Also, the return distribution is typically skewed, where
extreme negative movements are more likely than extreme positive movements.
The usual modification to explain heavy tails is the introduction of jumps into
the model. Merton proposed log-normally distributed jumps in [53] already in
1976. Another well-known jump-diffusion model is the Kou model, where jumps
are drawn from a log-double-exponential distribution [46]. This offers a higher
probability for extreme events and allows asymmetry in the jump distribution.
The possibility of jumps is particularly important for options with short maturi-
ties, since the probability of a purely Brownian motion type process experiencing
a large sudden movement is almost zero. However, large sudden changes are
occasionally recorded, and the pronounced implied volatility smile near expiry
suggests that markets expect these kinds of movements.
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The aforementioned limitations of the Black-Scholes model are not only a
modeling issue. Blind trust in the Black-Scholes model can lead to the underesti-
mation of risk. If real-world assets are assumed to follow a geometric Brownian
motion, then banks can write an option with the Black-Scholes price and hedge
their position perfectly using the delta-hedging technique. They can charge a
small fee on top of the Black-Scholes price to make a small profit with no risk1.
Now assume, instead, that every 10 years there is a market crash, where asset
prices make a big sudden jump downward. In this scenario the bank makes small
steady profits for 10 years, but on the 10th year these profits are wiped out. The
moral hazard is apparent if bankers receive their bonuses during the good years,
but ultimately are not themselves financially exposed to the market crash. It is
not the case that financial practitioners do not know about the limitations of the
Black-Scholes model, rather, it might be in their own interest to remain optimistic.

In the following we describe and formulate some well-known market mod-
els. The usual modifications to the Black-Scholes model include stochastic volatil-
ity and jumps.

3.1 Black-Scholes Model

In the Black-Scholes model there are two assets. One is a riskless asset (risk-free
bond) with price βt, described by the ordinary differential equation

dβt = rβtdt, (4)

where r is the instantaneous (continuously compounded) interest rate for lending
or borrowing. Setting β0 = 1 gives βt = ert for t ≥ 0. The dynamics of the second
asset (the risky asset) are given by the following stochastic differential equation
(SDE)

dSt = μStdt + σStdWt, (5)

where St is the value of the underlying asset at time t, and μ and σ ≥ 0 are con-
stants that determine the magnitude of drift and volatility of the process, respec-
tively. Above, Wt is the Wiener process, also known as the standard Brownian
motion. A process that satisfies the SDE (5) is said to follow a geometric Brownian
motion. The SDE (5) is a shorthand notation of the following integral equation

St = S0 + μ
∫ t

0
Sudu + σ

∫ t

0
SudWu. (6)

The integral on the left is an ordinary Lebesgue integral, while the integral on the
right is a stochastic integral. This can be identified from the integrator, which for
a stochastic integral is a stochastic process, in this case the Wiener process Wu.
The SDE (5) is also often written in the equivalent form

dSt

St
= μdt + σdWt, (7)

1 To be precise, here it is also necessary to assume that there is no hedging risk.
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where dSt/St is the infinitesimal return (on investment).
There are multiple ways to derive the Black-Scholes PDE. Here we follow

the intuitive presentation given by Hull in [35], which is based on the original
paper by Black and Scholes [10]. The following assumptions are made under the
Black-Scholes model:

1. The underlying asset St satisfies the SDE (5), with constant μ and σ.
2. The short selling of assets is permitted.
3. There are no transactions costs or taxes, and assets are perfectly divisible.
4. The underlying asset pays no dividend.
5. There are no riskless arbitrage opportunities.
6. Trading is continuous.
7. The risk-free rate of interest r is constant.

Some of these assumptions can be relaxed. For example, the risk-free interest rate
r or volatility σ can be assumed to be non-constant deterministic quantities (e.g.
the so-called local volatility model). Alternatively, r and σ can be stochastic pro-
cesses themselves, which leads to stochastic interest rate or stochastic volatility
models. Also, dividend payment is often included by approximating it with an
additional drift term. However, in the following derivation we assume that the
assumptions given above hold.

Assume v(St, t) is the price of an option contract written on the underlying
asset St. The payoff of the option at expiry v(ST, T) is known. For example, the
payoff function at expiry for a European call option was given in (1). To find
the value of v := v(St, t) at earlier times t, we need to know how v evolves as a
function of St and t. For this purpose, we need a fundamental result in stochastic
calculus known as the Itô’s lemma [41].

Intuitively Itô’s lemma can be thought of as the stochastic equivalent of the
chain-rule. In its simplest form Itô’s lemma states that for a twice differentiable
scalar function f (x, t) of two real variables x and t the following equation holds2

d f (Xt, t) =
(

∂ f
∂x

μ +
∂ f
∂t

+
1
2

∂2 f
∂x2 σ2

)
dt + σ

∂ f
∂x

dWt, (8)

where Xt is a so-called Itô drift-diffusion process given by

dXt = μdt + σdWt. (9)

Now, recall that v is a function of St, which follows a geometric Brownian motion.
Thus, by applying Itô’s lemma on v we obtain the following equation

dv(St, t) =
(

∂v
∂St

μSt +
∂v
∂t

+
1
2

∂2v
∂S2

t
σ2S2

t

)
dt + σSt

∂v
∂St

dWt. (10)

2 For an informal derivation of Itô’s lemma see [35], where the proof is sketched using Taylor
polynomials. A formal proof can be found in [56], for example. Here it is sufficient to take
a leap of faith and take (8) for granted.



21

Let us write the discrete versions of SDEs (5) and (10) given by

ΔSt = μStΔt + σStΔWt, (11)

and

Δv =

(
∂v
∂St

μSt +
∂v
∂t

+
1
2

∂2v
∂S2

t
σ2S2

t

)
Δt + σSt

∂v
∂St

ΔWt, (12)

where Δv, ΔSt, and ΔWt are the changes in v, St, and Wt in a small time interval
Δt. Now, let us construct the so-called delta-hedge portfolio, which consists of
a written option −v and ∂v

∂St
amount of the underlying asset St at time t. This

portfolio is delta-neutral at time t, that is, it is hedged against any continuous
changes in the underlying asset at time instant t. Let us denote the value of the
portfolio by Π, which by definition is

Π = −v +
∂v
∂St

St. (13)

The change ΔΠ in the value of the portfolio in the time interval Δt is given by

ΔΠ = −Δv +
∂v
∂St

ΔSt. (14)

Substituting (11) and (12) into the equation (14) above yields

ΔΠ =

(
−∂v

∂t
− 1

2
∂2v
∂S2

t
σ2S2

t

)
Δt. (15)

Most important, notice how the terms with μ and Wt have vanished. This is the
key breakthrough of Black and Scholes in [10] and Merton in [52]. The portfo-
lio no longer has any source of uncertainty, hence, it is now riskless. We have
constructed a deterministic hedging strategy for the written option. Previously
it was assumed that there are no riskless arbitrage possibilities. This implies that
the portfolio must have a rate of return equal to any other riskless instrument,
such as the risk-free bond in (4). Therefore, the following equation holds

ΔΠ = rΠΔt, (16)

where r is the risk-free interest rate. Now, by substituting (13) and (15) into (16)
we have (

∂v
∂t

+
1
2

∂2v
∂S2

t
σ2S2

t

)
Δt = r

(
v − ∂v

∂St

)
Δt. (17)

By rearranging the terms and dividing by Δt we obtain

∂v
∂t

+
1
2

σ2S2
t

∂2v
∂S2

t
+ rSt

∂v
∂St

− rv = 0, (18)

which is the Black-Scholes PDE3. This PDE governs the evolution of the price
v(St, t) of the option contract backwards in time, where the final (initial) price is
known at time t = T to be equal to the payoff function of the option.
3 Notice, that the discretization approach used here implicitly assumes that the portfolio Π

is self-financing. The derivation of the Black-Scholes PDE in a continuous setting requires
this additional assumption.
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3.2 Stochastic Volatility Models

The constant volatility assumption of the Black-Scholes model is arguably one of
its most prominent shortcomings. In real world markets volatility tends to cluster.
In other words, large movements tend to be followed by large movements and
vice versa. Also, heavy tails of the return distribution can partly be accounted for
by relaxing the constant volatility assumption, particularly for larger time inter-
vals. Here we consider models where the volatility is presumed to be a stochastic
process. Therefore, we have a stochastic process to model the risky asset, and
another stochastic process to model the volatility of the former process. The so-
called local volatility model is a special case, which we will not entertain further
here, where the volatility is a deterministic time dependent process. Markets
under local volatility are complete, whereas stochastic volatility leads to an in-
complete market setting. Put differently, the hedging of options under stochastic
volatility is no longer a triviality, on the contrary, it becomes an inverse problem.

The underlying asset St under stochastic volatility models follows the SDE

dSt = μStdt + σtStdWt, (19)

where σt is the volatility process. Various models have been proposed for the
volatility process; see [7, 30, 36, 62, 64] for example. Generally, the volatility pro-
cess is written in the asset price model as σt = f (Vt), for some positive function
f . Here, it is sufficient to write σt :=

√
Vt, where Vt is the variance of σt. The SDE

now reads
dSt

St
= μdt +

√
VtdWt. (20)

The (square-root) volatility process Vt is typically taken to be an Itô drift-diffusion
process, that is, it satisfies an SDE driven by a Brownian motion with a drift.
This Brownian motion is distinct from the Brownian motion driving the asset
price process, however, a correlation between the two Brownian motions is often
included.

An important feature that many volatility models share is mean reversion.
For instance, the Ornstein-Uhlenbeck process [69] given by

dVt = a(b − Vt)dt + ψdWt (21)

is mean reverting with long term mean level b, rate of mean reversion a and
volatility of volatility ψ. Another popular mean reverting process is the Cox-
Ingersoll-Ross (CIR) process [15], which reads

dVt = a(b − Vt)dt + ψ
√

VtdWt. (22)

The mean reversion eventually pulls the process back towards the long term
mean level (imagine a rubber band attached to the mean level). The volatility
model proposed by Hull and White [36] in 1987 follows a geometric Brownian
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motion, which is not mean reverting4. However, observations suggest that real
world market volatility is mean reverting [26].

The SDEs used to model volatility are often the same models that are used
for interest rate modeling, where mean reversion is also an important property
[15, 37, 70]. For example, in the Heston stochastic volatility model [30] the volatil-
ity is modeled by the CIR process given in equation (22). The Heston stochastic
volatility model reads

dSt

St
= μdt +

√
VtdWt,

dVt = a(b − Vt)dt + ψ
√

VtdZt,
(23)

where Wt and Zt are correlated Wiener processes. The correlation can be written
as

Zt = ρWt +
√

1 − ρ2Ẑt, (24)

where Ẑt is a Wiener process independent of Wt, and ρ ∈ [−1, 1] is the instanta-
neous correlation coefficient. If the parameters satisfy the so-called Feller condi-
tion

2ab ≥ ψ2, (25)

then the volatility (CIR) process Vt is strictly positive. The Heston model is a
popular stochastic volatility model most likely because it admits a closed-form
solution for European-style options. The solution is given by a complex integral,
which needs to be evaluated numerically. The pricing of options under stochas-
tic volatility is somewhat more involved, since the variable Vt leads to an extra
degree of freedom.

The PDE that determines the evolution of the price v := v(St, Vt, t) of an
option under the Heston model is given by

∂v
∂t

+
1
2

VtS2
t

∂2v
∂S2

t
+ ρψVtSt

∂2v
∂StVt

+
1
2

ψ2Vt
∂2v
∂V2

t
+

rSt
∂v
∂St

+ (a(b − Vt)− β(St, Vt, t))
∂v
∂Vt

− rv = 0,
(26)

where β is the price of volatility risk. The reason for this term is that in reality
most investors are found to be risk averse in experimental settings [32]. More-
over, Lamoureux and Lastrapes find evidence from observed option prices that
the efficient-market hypothesis and investor risk-neutrality cannot hold simul-
taneously [49]. Often β is assumed zero, however. Then the price is said to be
given under the risk-neutral measure, i.e., under the assumption that investors
are risk-neutral. In the following formulations we will assume β = 0. In models
with jumps, in particular, the price of volatility risk term β is often found to be
unnecessary [4, 57].

4 There is a risk of confusion here, since Hull and White are associated with a stochastic
volatility model and an interest rate model. The interest rate model is mean reverting. To
add to the confusion, the Vasicek and Hull-White interest rate models are very similar, and
the names are sometimes used interchangeably.
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The PDE (26) can be derived using similar no-arbitrage arguments as in
the Black-Scholes model. However, this time it is not possible to balance the
hedging portfolio with only the underlying asset St. For instance, in [25] the
PDE is derived by adding another option with a different expiration date into the
hedging portfolio.

3.3 Jump-diffusion Models

The Black-Scholes and stochastic volatility models are examples of diffusion mod-
els, where the sample paths of the process are continuous. Stochastic volatility
models are able to generate heavy tails in the return distribution for larger time
intervals, which is a result of the accumulation of small moves over a sufficiently
long time. However, large sudden changes under diffusion models are next to im-
possible5. The addition of jumps into the model generates heavy tails in returns
for short time intervals, and allows large sudden changes in the underlying as-
set. This is particularly important from a risk management perspective, since the
implication is that large losses are possible even in a short time interval. Simi-
larly, as in the case of stochastic volatility, markets under jump-diffusion models
are incomplete. The difference between diffusion and jump-diffusion models in
risk management is well illustrated by the six standard deviation market move-
ment example; see [13] for instance. Such (six sigma) movements are occasionally
recorded in real world markets, but for a normal random variable an event that
is six standard deviations from the mean has a probability less than 10−8. Under
the Black-Scholes model such a daily return would happen on average once in a
million years!

A suitable stochastic process that allows jumps and diffusion is the Lévy
process; see e.g. [13]. It has similar properties as the Brownian motion, but also
allows discontinuities. Indeed, Brownian motion is a special case of the Lévy
process. Another special case of the Lévy process is a pure jump process, where
there is no diffusion component. Here, we are particularly interested in the jump-
diffusion case, where both the diffusion and jump components are nonzero.

Lévy processes can be divided into finite and infinite (jump) activity cases.
In the case of infinite activity, it is not necessary to introduce a Brownian com-
ponent at all, since the jump activity is high enough to generate realistic small
timescale behavior. This construction is important in terms of theoretical results.
For example, small jumps with infinite activity drawn from a stable distribution
start to resemble a diffusion process. After all, Brownian motion can be obtained
as the limit of a random walk when time step sizes are taken to zero. Often in
practical computations the infinite activity portion of the jump distribution is ap-
proximated with artificial diffusion, hence, the computation reduces to a finite

5 Technically, it is possible to generate large sudden changes under a diffusion model by fine
tuning the volatility to suddenly rise to extreme levels and then rapidly return close to
normal levels. A jump would produce a similar effect naturally, however.
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activity jump-diffusion case. This is one of the reasons why we choose to focus
on finite activity jump-diffusion models.

The pioneering paper by Merton [53] proposed log-normally sized jumps
that arrive according to a Poisson process. In general, the underlying asset St
under jump-diffusion models follows the SDE

dSt

St−
= (μ − λκ)dt + σdW(t) + (η − 1)dNt, (27)

where Nt is a Poisson process, κ is the expected relative jump size, λ is the rate
of the Poisson process, and η − 1 is a random variable producing a jump from
St to Stη. In case of the Merton model, the random variable η is log-normally
distributed. The expected relative jump size κ can be written κ = E(η − 1). If
κ �= 0, then the jump process (η − 1)dNt is not a martingale. This is the reason
for the compensator term −λκdt in the SDE (27). The notation St− in (27) means
that the value before a (possible) jump is used, more precisely St− := lim

u→t
Su. By

denoting γ := μ − λκ and ξ := η − 1 the SDE (27) can be written more succinctly
as

dSt

St−
= γdt + σdW(t) + ξdNt. (28)

The following partial integro-differential equation (PIDE) can be derived for
the evolution of the price v := v(St, t) of a European option under jump-diffusion
models

∂v
∂t

+
1
2

σ2S2
t

∂2v
∂S2

t
+ (r − λκ)St

∂v
∂St

− (r + λ)v + λ

(∫ ∞

0
v(ySt, t) f (y)dy

)
= 0, (29)

where f (·) is the density function of the jump size distribution. The PIDE (29) can
be derived using standard no-arbitrage arguments; see [53, 71] for example. The
formulation given above is valid only if the jump activity is finite. A more general
formulation and derivation is given in [13], which employs the more general Lévy
process framework.

3.4 Stochastic Volatility with Jumps

A natural extension of the models discussed previously is a combination of stochas-
tic volatility and jumps. Bates proposed a model [9] with lognormal jumps in the
asset price, and volatility modeled by the CIR process. This is essentially a com-
bination of the Merton jump-diffusion model and the Heston stochastic volatility
model. The aim is to have a complete model that accurately captures both the
short and long term behavior of empirically observed financial time series. The
volatility under stochastic volatility models is persistent, that is, changes in volatil-
ity have an impact on the future distribution of returns. On the other hand, jumps
in the asset price are transient, i.e., the future behavior of the asset price process



26

is unaffected by a jump. Duffie et al. proposed arguably more realistic mod-
els with stochastic volatility and jumps in both the asset price and volatility [19],
which leads to a volatility model that is both persistent and allows large sudden
changes. The first model has jumps in the asset price and volatility that arrive in-
dependent of each other (SVIJ). The other model has jumps in the asset price and
volatility that arrive concurrently (SVCJ). While both the SVIJ and SVCJ models
allow large sudden changes in volatility, the SVCJ model in particular links the
rapid changes in volatility with times of sudden shocks in the market. Eraker
et al. further investigate the Bates, SVIJ, and SVCJ models, and they find that
the SVIJ and SVCJ models produce the best fit to the market data [20]. The SVCJ
model has the added advantage of easier parameter estimation since jumps in the
asset price and volatility occur simultaneously.

The dynamics of the underlying asset St and variance Vt under the Bates
model follow the SDEs

dSt

St−
= γdt +

√
VtdWS

t + ξdNt,

dVt = a(b − Vt)dt + ψ
√

VtdWV
t ,

(30)

where the jumps arrive at rate λ and the jump sizes ξ are drawn from a lognormal
distribution, and the correlation between WS

t and WV
t is given as in (24). Similarly,

for the SVIJ and SVCJ models, the dynamics of St and Vt are given by

dSt

St−
= γdt +

√
Vt−dWS

t + ξSdNS
t ,

dVt = a(b − Vt−)dt + ψ
√

Vt−dWV
t + ξVdNV

t ,
(31)

where jumps arrive at rates λS and λV and the sizes ξS,ξV are drawn from a log-
normal and exponential distribution, respectively. In the case of the SVCJ model
the jumps are concurrent NS

t = NV
t , and their sizes are correlated according to a

jump correlation parameter ρJ .
Finally, Table 2 summarizes the models formulated in this chapter. In ad-

dition, sample paths from several models are plotted in Figure 2 simulated with
parameters listed in Table 3.
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TABLE 2 Well-known financial market models

Type Risky Asset Model Volatility Model

Black-Scholes[10] dSt
St

= μdt + σdWt Constant
Jump-diffusion[53, 46] dSt

St
= γdt + σdWt + ξSdNS

t Constant
Stochastic Volatility (Heston)[30] dSt

St
= μdt +

√
VtdWS

t dVt = a(b − Vt)dt + ψ
√

VtdWV
t

SV with Jumps in returns (Bates)[9] dSt
St

= γdt +
√

VtdWS
t + ξSdNS

t dVt = a(b − Vt)dt + ψ
√

VtdWV
t

SV with Jumps in S and V (SVIJ) and (SVCJ)[19] dSt
St

= γdt +
√

VtdWS
t + ξSdNS

t dVt = a(b − Vt)dt + ψ
√

VtdWV
t + ξVdNV

t
CIR interest rate model[15] drt = a(b − rt)dt + σ

√
rtdWt Constant

Hull-White/Vasicek interest rate models[37, 70] drt = a(bt − ctrt)dt + σdWt Constant
St risky asset price process
Vt (square-root) volatility process

σ, ψ volatility coefficient
Wt, WS

t , WV
t standard Brownian motion

μ, γ drift
rt interest rate
a rate of mean reversion
b long term mean level

ξSdNS
t Poisson process NS

t with rate λS and jump size distribution ξS
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FIGURE 2 Sample paths from Black-Scholes (Top Left), Heston (Top Right), Bates (Bot-
tom Left), and SVCJ (Bottom Right) simulated with parameters given in Ta-
ble 3.

TABLE 3 Parameter setup of the sample path simulations

Expiry Time T 1
Drift rate μ 0.05
Rate of mean reversion a 5
Volatility (mean level) σ 0.1
Correlation coefficients ρ, ρJ 0
Volatility of volatility ψ 0.5
Jump arrival rate λ 2



4 NUMERICAL SOLUTION METHODS

The Feynman-Kac formula establishes a link between certain stochastic processes
and parabolic PDEs [45, 55, 56], particularly, PDEs that are of the form that were
discussed in the previous chapter. As a consequence, the solution of the PDE
can be written as a conditional expectation, and vice versa. Therefore, one can
either solve the PDE directly, or alternatively evaluate the conditional expecta-
tion. In this chapter, we will consider numerical solution techniques for the PDE
approach. We discretize the spatial dimension using the finite difference method.
Alternative discretization methods include the finite element method and the bi-
nomial tree method.

Instead of solving the PDE numerically, one can evaluate the conditional ex-
pectation. In the special case of a European-style option under the Black-Scholes
model, the conditional expectation has an analytic solution. For more general
models the conditional expectation needs to be evaluated by Monte Carlo meth-
ods or numerical integration techniques. Monte Carlo is based on simulating
a large number of sample paths for the underlying SDE, then the central limit
theorem states that the option values generated by these paths converge in dis-
tribution to the conditional expectation. However, the convergence rate of Monte
Carlo is very poor, and a more efficient approach, when available, is to employ
semi-analytic numerical integration techniques, such as the Fourier transform
based methods; see [21, 22, 51] for example.

The PDE formulation extends to American-style options with minimal ef-
fort, whereas the conditional expectation is directly valid only for European-style
options. It is possible to extend Monte Carlo and numerical integration tech-
niques to American-style options, but it requires a considerable amount of extra
computation. For example, the standard approach to apply Monte Carlo meth-
ods to American-style options is to first simulate the corresponding paths un-
der European-style exercise, and then go back and analyze each path separately
to find the optimal exercise under American-style exercise [50]. Numerical in-
tegration techniques can also be extended for American-style options, but this
generally requires the solution of a number of European option pricing prob-
lems, which yields an approximation of the continuous exercise possibility; see
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e.g. [22]. As a general rule of thumb, analytic or semi-analytic solution meth-
ods are often available for European-style options, while American-style options
typically require numerical solution.

4.1 Partial Integro-Differential Equation Formulation

In the previous chapter we formulated various PDEs and PIDEs that govern the
price evolution of a European-style option contract. In practice, boundary con-
ditions need to be introduced in order to have a completely defined problem.
Consider the jump-diffusion PIDE in (29), for example. Let us invert the time
dimension by setting τ = T − t, so that we obtain a more typical initial value
problem instead of a final value problem. Denote the underlying asset by x := St,
and the partial derivatives by vτ := ∂v

∂τ , vx := ∂v
∂x , and vxx := ∂2v

∂x2 . Now, the PIDE
reads

vτ =
1
2

σ2x2vxx + (r − λκ)xvx − (r + λ)v + λ

(∫ ∞

0
v(xy, τ) f (y)dy

)
=: Lv, (32)

where we introduce Lv for future convenience. The PIDE holds for all (x, τ) ∈
[0, ∞)× (0, T]. The initial value of v at time τ = 0 is known, and it is given by

v(x, 0) = g(x), x ∈ [0, ∞), (33)

where g(x) is the payoff function of the option contract as described in Chapter
2. The boundary conditions for a European put option can be set as

v(0, τ) = Ke−rτ,
lim
x→∞

v(x, τ) = 0, τ ∈ [0, T], (34)

where K is the strike price of the option, and r is the risk-free interest rate. Call
options can be priced in a similar manner. Alternatively, the put-call parity for-
mula can be employed in order to obtain the price of a call option, when the
price of the corresponding put option is known. Complete formulations for the
other models in Chapter 3 are similar, with the main difference of an extra spatial
dimension in case of stochastic volatility.

4.2 American Option Early Exercise Constraint

The early exercise possibility of an American-style option can be handled in sev-
eral ways. In the special case of the Black-Scholes model, the price of an American-
style option can be obtained exactly as an infinite series [74]. Under a more gen-
eral assumption, the so-called smooth pasting principle, which states that the
price is smooth across the early exercise boundary, a free boundary problem can
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be formulated for the price of an American option. Employing this approach, the
front-fixing and front-tracking methods can be formulated. These methods have
been studied in [54, 58, 72], and more recently in [31, 67, 75].

Taking a direct approach, the price of an American-style option satisfies a
partial integro-differential inequality. The most common way to formulate this
inequality is in the form of a linear complementarity problem (LCP). Zhang [73]
described a variational inequality for the price of an American-style option un-
der the Merton model. It can be shown to be equivalent to the LCP form [44].
Alternatively, these problems can be formulated with a Lagrange multiplier as in
[42, 43].

The value v of an American-style option can be obtained as a solution to the
following LCP {

(vτ − Lv) ≥ 0, v ≥ g,
(vτ − Lv)(v − g) = 0,

(35)

where Lv is defined as in the PIDE (32). For an American put option the boundary
conditions can be set as

v(0, τ) = K,
lim
x→∞

v(x, τ) = 0, τ ∈ [0, T]. (36)

In the special case where the early exercise region is simply connected to the
boundary, which is the case for a simple put or call option, the LCP (35) can
be solved by employing the Brennan-Schwartz algorithm [11]. This algorithm
has optimal computational complexity and is very fast in practice. The projected
successive over relaxation (PSOR) method [16, 33] can also be employed to obtain
a solution to (35), however, it is not particularly efficient, especially under jump-
diffusion models [PIV].

The penalty method is efficient and it can be employed to obtain an approx-
imate solution to the LCP (35). Under the Black-Scholes model these methods
were considered in [24, 54]. Under jump-diffusion models penalty methods were
employed in [17, 66]. Another approach is to use the Lagrange multiplier formu-
lation for the LCP, and employ an operator splitting method [39, 40], which re-
sults in a European option pricing problem at each time step and an update step.
The operator splitting method produces an approximate solution to (35), where
the error of the method was shown to be of the same order than the underlying
time discretization scheme [40].

4.3 Space Discretization

To simplify notation, let us first divide the PIDE (32) into parts as follows

Lv = Dv + Jv, (37)
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where D is the differential operator and J is the integral operator defined by

Dv =
1
2

σ2x2vxx + (r − λκ)xvx − (r + λ)v,

Jv = λ

(∫ ∞

0
v(τ, xy) f (y)dy

)
.

(38)

The infinite space domain [0, ∞) is truncated to [0, X] with a sufficiently large X.
Let us construct an N-node uniform grid

0 = x1 < x2 < · · · < xN = X. (39)

Now, we can discretize the spatial derivatives in (37), which results in a semi-
discrete system

vτ = Dv + Jv =: Lv, (40)

where D is a banded matrix, and J is a full matrix. For instance, the matrix D is
tridiagonal under a standard finite difference discretization. See [63, PI] for more
details on finite difference discretizations. Another popular approach is to adopt
a Galerkin discretization in space and employ the finite element method; see [1, 2]
for example. The matrix J results from the application of a suitable numerical
quadrature on J. For American options, the space discretization leads to a semi-
discrete LCP {

vτ − Lv ≥ 0, v ≥ g,

(vτ − Lv)T(v − g) = 0,
(41)

where g is the discrete payoff function.
The integral term Jv of (38) can be evaluated numerically by employing

standard numerical quadratures, such as the Simpson’s rule or Gaussian quadra-
ture. Alternatively, one can employ linear interpolation for v between spatial
grid points, and then integrate this piecewise integral analytically; see [66, PI] for
example. Either way, this results in a full matrix J. Thus, adopting this direct
approach leads to a full matrix-vector multiplication Jv requiring O(N2) opera-
tions. Later we will present some special techniques, that allow the computation
of this multiplication in a more efficient manner.

4.4 Time Discretization

The numerical solution of the PDEs described in Chapter 3 is straightforward,
since applying a standard space discretization on them leads to a banded (typi-
cally tridiagonal) matrix. The main difficulty is the numerical solution of models
with jumps, which result in PIDEs, such as the PIDE (32). The presence of the
(non-local) jump term causes the discretized matrix to be full.

Second-order accurate time discretization schemes are traditionally implicit
schemes. However, employing a standard implicit time discretization scheme
on such a system would require inverting a full matrix. This can be avoided by
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employing iterative methods, for example, a fixed-point iteration for European
options [65], or a similar iteration for American options [PI]. An efficient penalty
iteration can also be employed on models with jumps [17].

Alternatively, the semi-discrete systems (40) and (41) can be discretized in
time by adopting special implicit-explicit (IMEX) time discretization schemes.
Typically, the jump term is treated explicitly, while the rest is handled implicitly.
A first-order accurate IMEX-scheme was proposed in [14]. Second-order IMEX-
schemes are usually two-step methods, such as the IMEX-midpoint scheme; see
[48, 47] for an example in an option pricing context. The standard implicit schemes
are unconditionally stable, whereas IMEX-schemes are conditionally stable.

In the following, we describe the iterative methods and IMEX-schemes in
more detail. While we formulated the PIDE (32) under a one-dimensional jump-
diffusion model, the semi-discrete systems (40) and (41) can be written in a similar
form under more general models, such as the Bates and SVCJ models; see [PV].

4.4.1 Standard Implicit Schemes

In the special case of a European option, efficient Runge-Kutta style time dis-
cretization schemes are particularly efficient [12, 23]. However, these schemes
include internal steps, which are computed by extrapolation. Therefore, this ap-
proach is not directly applicable to American options, since the extrapolation fails
near the early exercise boundary. Here we adopt the more general second-order
accurate Rannacher scheme [59], which consists of a few initial implicit Euler
steps, followed by Crank-Nicolson steps. The implicit Euler steps are taken to
damp the non-smooth initial condition (payoff function), since Crank-Nicolson is
not L-stable and a non-smooth initial condition might cause spurious oscillations
in the solution. The convergence of the Rannacher scheme was analyzed in [28].

Let us construct a (M + 1)-node time grid with time step sizes Δτ = T/M,
except the first two steps under implicit Euler are taken with the step size Δτ/2.
This selection enables us to create the fully discretized matrix only once. Now, by
applying the Rannacher time-stepping scheme onto the semi-discrete system (40)
and using the θ-scheme notation we have

vm+1 − vm

Δτ
= (D + J)(θvm+1 + (1 − θ)vm), (42)

where the parameter θ := θm is given by

θ := θm =

⎧⎨
⎩

1, 1 ≤ m ≤ 2,
1
2

, m = 3, . . . , M + 1.
(43)

The Rannacher scheme is unconditionally stable, and if time steps are increased
in such a way that the number implicit Euler steps is kept small, then the scheme
is second-order convergent in time.
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4.4.2 Implicit-Explicit Schemes

In the Rannacher scheme (42) above, we can see that it is necessary to invert the
full matrix D + J at each time step. The simple idea to avoid the inversion of a
full matrix is to employ the IMEX-Euler scheme [13, 14], which reads

vm+1 − vm

Δτ
= Dvm+1 + Jvm. (44)

Now it is only necessary to compute the full matrix-vector multiplication Jv.
However, the major drawback is that this scheme is only first-order accurate in
time. Second-order accurate two-step IMEX schemes can be constructed by start-
ing from an implicit scheme, and then combining it with an extrapolation proce-
dure for the explicit part. These types of scheme were studied in [29, 38], and in
an option pricing context in [47, 48, PIII].

The most commonly formulated two-step IMEX schemes include the IMEX-
midpoint, IMEX-CNAB and IMEX-BDF2 schemes. Applied on the semi-discrete
system (40), the IMEX-midpoint scheme reads

vm+1 − vm−1

2Δτ
= Jvm + D

(
vm+1 + vm−1

2

)
, (45)

whereas the IMEX-CNAB (Crank-Nicolson, Adams-Bashforth) is given by

vm+1 − vm

Δτ
= J

(
3vm − vm−1

2

)
+ D

(
vm+1 + vm

2

)
, (46)

and the IMEX-BDF2 scheme reads
3
2 vm+1 − 2vm + 1

2 vm−1

Δτ
= J(2vm − vm−1) + Dvm+1. (47)

These IMEX-schemes are conditionally stable; see [27, PIII] for stability analysis.

4.5 Iterative Methods

Employing standard time discretization schemes, such as the Rannacher scheme
(42), on jump-diffusion models leads to systems with full matrices. In case of Eu-
ropean options, these systems are linear systems of equations, whereas for Ameri-
can options they are systems of LCPs. In the following we describe some iterative
methods that avoid the inversion of a full matrix when solving these problems.

4.5.1 Fixed-Point Iteration

Tavella and Randall proposed a stationary iterative method in [65] for European
options, which reads

vl+1 = T−1(b + θJvl), l = 0, 1, . . . , (48)
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where T = I/Δτ − θD, b = vm/Δτ + (1− θ)(D + J)vm, and I denotes the N × N
identity matrix. Now by taking vm as the initial guess, that is v0 = vm, and
solving in sequence the linear systems (48), one obtains a convergent approximate
solution to the original problem (42). Notice that T is a banded matrix, or in the
case of a standard finite difference space discretization T is a tridiagonal matrix.
Hence, (48) can be solved extremely efficiently by employing LU-factorization.

A similar iteration was proposed for American options in [PI]. First, let us
denote the LCP

Bv ≥ b, v ≥ g, (Bv − b)T(v − g) = 0 (49)

by LCP(B, v, b, g). Now the iterative method for American options reads

LCP(T , vl+1, θJvl + b, g), l = 0, 1, . . . . (50)

Thus, the iteration leads to LCPs with banded matrices instead of full matrices.
In [PI] it was shown that the iteration (50) converges at the rate

C =
θΔτλ

1 + θΔτ(r + λ)
. (51)

In typical circumstances C � 1, thus, the iteration converges rapidly.

4.5.2 Penalty Iteration

A penalty formulation was proposed by d’Halluin et al. in [17] to price American
options under jump-diffusion models. The authors formulate the PIDE (32) as

vτ = Lv +
1
ε

max{g − v, 0}, (52)

where the last term is a penalty term penalizing for the violation of the early
exercise constraint, and ε is a small positive penalty parameter. By applying, for
example, finite differences and the Rannacher scheme onto (52) we obtain nonlin-
ear non-smooth systems of equations. Such systems can be solved by employing
a semismooth Newton method; see [43, 76], for example. However, the semis-
mooth Newton iteration would require solving linear systems with full matrices.
Instead, we employ an approximate semismooth Newton method described in
[17, 66]. Essentially, the jump term is dropped out of the coefficient matrix. Thus,
we can iterate a sequence of tridiagonal systems given by

vl+1 =
(

Cl
)−1

(b + θJvl + Plg), l = 0, 1, 2, . . . , (53)

where Cl and b are given by

Cl =
1

Δτ
I − θD + Pl and

b =
1

Δτ
vm + (1 − θ)[D + J]vm.

(54)
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Above Pl is the diagonal penalty matrix enforcing the penalty term in (52). At
each iteration Pl is updated, which is described in [PII]. The penalty iteration
(53) has been shown [17] to rapidly converge to the unique solution of (52). The
penalty method can be employed in combination with the IMEX-schemes as well
[PII]. In this case the semismooth Newton method can be used directly, since the
time discretization leads to a tridiagonal matrix.

4.6 Efficient Evaluation of the Jump Term

In the above described IMEX-schemes and iterative methods the inversion of a
full matrix is avoided. A matrix-vector multiplication with the full matrix J is still
required. The direct computation of such a multiplication would require O(N2)
operations. A more efficient approach is to compute the multiplication as a con-
volution integral and then employ FFTs, which can be computed in O(N log N)
operations. In the special case of the Kou model, an even more efficient special
technique is available. The memoryless property of the density function f enables
the use of efficient recursion formulas [66], which lead to the optimal computa-
tional complexity O(N). Here we briefly describe these methodologies.

4.6.1 Convolution Form

The integral term

Jv = λ

(∫ ∞

0
v(τ, xy) f (y)dy

)
(55)

of (38) can be written as

I =
∫ ∞

0
v(τ, xy) f (y)dy =

∫ ∞

−∞
v̄(τ, x̄ + z) f̄ (z)dz, (56)

by setting x̄ = log(x) and using the change of variable z = log(y). Above we
denote v̄(τ, z) = v(ez) and f̄ (z) = f (ez)ez. The right-hand side of (56) is a convo-
lution integral. Now if we have a uniform grid in x̄ and we apply the trapezoidal
rule on the convolution integral, then the resulting matrix is a Toeplitz matrix;
see for example [PV]. This matrix can be embedded into a circulant matrix. A
multiplication with a circulant matrix can be computed efficiently using FFTs by
employing the convolution theorem.

A uniform grid in x̄ is not very practical, since it is logarithmically uniform
in the original variable x. Therefore, it is prudent to use interpolation to construct
a uniform grid in x̄ from an arbitrary grid in x. In the following we summarize
the necessary steps to compute (56) by employing FFTs.

– Precompute and store the FFT of f̄ (z) at points z = x̄i.
– Use vm to interpolate from grid points in x to x̄, which yields v̄m.
– Take the FFT of v̄m and multiply it with the precomputed FFT.
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– Take the the inverse FFT of the result of the previous step, and then interpo-
late it back to the grid points in x.

The FFTs require only O(N log N) operations as opposed to the O(N2) operations
of the direct approach; see also [3, 18]. In case of the SVCJ model the FFTs need
to be taken in two directions. In [PV] the formulations are given under the Bates
and SVCJ models.

4.6.2 Recursion Formulas

In the special case of the Kou model with log-double-exponentially sized jumps,
it is possible to compute the integral efficiently by employing recursion formulas
as in [66]. First, by changing variables y = z/x in (55) we can write

I =
∫ ∞

0
v(τ, xy) f (y)dy =

∫ ∞

0
v(τ, z) f (z/x)/xdz. (57)

Recall the log-double-exponential distribution density function

f (y) =

{
qα2yα2−1, y < 1

pα1y−α1−1, y ≥ 1,
(58)

where p, q, α1 > 1, and α2 are positive constants such that p + q = 1. We can
substitute (58) into (57) and decompose the integral as I = I− + I+ to obtain

I− =
∫ x

0
v(τ, z) f (z/x)/xdz = qα2x−α2

∫ x

0
v(τ, z)zα2−1dz (59)

and
I+ =

∫ ∞

x
v(τ, z) f (z/x)/xdz = pα1xα1

∫ ∞

x
v(τ, z)z−α1−1dz. (60)

Now consider I− at each grid point xi

I−i = qα2x−α2
i

∫ xi

0
v(τ, z)zα2−1dz, (61)

which can be approximated by employing linear interpolation for v between grid
points yielding a matrix A− with elements A−

i,j given by

A−
i,j = qα2x−α2

i

∫ xj+1

xj

(
xj+1 − z

Δxj
v(τ, xj) +

z − xj

Δxj
v(τ, xj+1)

)
zα2−1dz. (62)

Due to the memoryless nature of the log-double-exponential distribution, it holds

A−
i+1,j = A−

i,j

(
xi+1

xi

)−α2

j = 0, . . . , i − 1. (63)

This leads to the recursion formula

I−i+1 ≈ I−i

(
xi

xi+1

)α2

+ A−
i+1,i ∀i = 1, . . . , N − 1. (64)
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Similarly for I+ it is possible to derive the recursion formula

I+i−1 ≈ I+i

(
xi−1

xi

)α1

+ A+
i−1,i−1 ∀i = 2, . . . , N − 1. (65)

Therefore, we can compute (Jv)i = −λ(I−i + I+i ) for i = 1, . . . , N − 1 resulting in
the computational complexity O(N). In [66] it is shown that this approximation
is second-order accurate.



5 CONTRIBUTION OF INCLUDED ARTICLES

This chapter provides a summary of each of the five included articles and presents
their main contributions. The author’s personal contribution to each of these ar-
ticles is pointed out.

5.1 Article I

This article presents an iterative method for pricing American options under
jump-diffusion models. The convergence of this method is proved in a general
LCP setting, and then the rate of convergence of the method is given under a
typical discretization. The main result of the article, Theorem 1, was commented
in the peer review process to be a very nice result and useful in practice. The
proposed iterative method was employed and analyzed further in [5, 34]. In [34]
the iterative method is generalized for regime switching models, and in [5] the
method is shown superior in terms of convergence bounds and numerical results
compared to the other considered method.

The author did the majority of the writing, wrote the computer program and
performed the numerical experiments. The co-author came up with the idea for
the iterative method, and wrote the mathematical convergence proof. The author
received an award from the IMACS association for this article.

5.2 Article II

A survey of finite difference methods for pricing American options under jump-
diffusion models is given in this article. In addition, a comparison between six
different approaches is presented. The article compares various ways of treat-
ing the early exercise constraint of the American option pricing problem. These
include the Brennan-Schwartz algorithm, operator splitting method and penalty
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method. These methods are then combined with either a traditional time dis-
cretization method combined with an iteration, or the IMEX-midpoint scheme.
The resulting combinations are then compared in numerical experiments. The
numerical experiments show that the iterative methods cannot compete in per-
formance with the IMEX-midpoint scheme. In the peer review process the article
was commented to be valuable due to bringing clarity to the large pool of papers
published on this topic.

The author wrote the majority of the article and performed the numerical
experiments. The co-author wrote the introduction and the survey sections.

5.3 Article III

A family of IMEX time discretization schemes for pricing options under jump-
diffusion models is proposed in this article. The stability of the proposed methods
is analyzed with Fourier stability analysis. It is found that the stability proper-
ties of the IMEX-midpoint scheme are inadequate in some circumstances. On the
other hand, the IMEX-BDF2 and the IMEX-CNAB schemes show favorable stabil-
ity properties. Furthermore, the IMEX-CNAB scheme produced the smallest er-
ror in numerical experiments, which leads us to recommend this time discretiza-
tion method for the purposes of option pricing under jump-diffusion models.

The author wrote the majority of the article and performed the numerical ex-
periments. The mathematical stability proofs were written in collaboration with
the author and the co-author.

5.4 Article IV

In this article the iterative method proposed in [PI] is applied to price Ameri-
can options under the Bates model. At each iteration an LCP needs to be solved.
These LCPs are solved using either the projected successive overrelaxation (PSOR)
method [16] or the projected algebraic multigrid (PAMG) method [68]. While the
accuracy of the considered methods is similar, the iterative method combined
with the PAMG method turns out to be an order of magnitude faster when the
discretizations are refined.

The co-authors wrote the majority of the article, and performed the numeri-
cal experiments. The author wrote several miscellaneous parts, especially related
to the iterative method, and was involved in revising the article.
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5.5 Article V

The IMEX-CNAB scheme, promoted in article [PIII], is employed in this article
to price European and American options under the Bates and the SVCJ models.
To the best of our knowledge, this is the first article dealing with the numerical
pricing of American options under the SVCJ model. Due to the application of the
IMEX-CNAB scheme, the resulting matrices are block tridiagonal. Thus, they can
be solved by employing LU decomposition. Alternatively, they can be iterated
under an algebraic multigrid (AMG) method [61]. The necessary matrix-vector
multiplications are computed efficiently using FFTs. This procedure is described
in detail for the Bates and the SVCJ models. The operator splitting (OS) method
[39, 40] is employed to enable the use of LU decomposition for American options
as well. Similarly, the PAMG method [68] is employed instead of the AMG for
American options. The LU+OS methodology turns out to be surprisingly fast and
accurate.

The author wrote the majority of the abstract, introduction, and the numer-
ical experiments sections. The co-authors wrote the computer program and the
method descriptions.



6 CONCLUSIONS

Option contracts play a fundamental role in the financial industry. They are used
in purposes ranging from leveraging speculative bets to protecting against risk in
investments. Only recently in 1973, a rigorously justified answer to the question
of the fair price of an option contract was given by Black, Scholes, and Merton.
Over the years, however, it has become evident that the Black-Scholes model is
in many ways a crude simplification of real-world market behavior. The pro-
posed corrections to the Black-Scholes model often fall into two major categories:
stochastic volatility and jumps.

It can be argued that many of the problems with the Black-Scholes model
can be fixed by introducing stochastic volatility. There is one feature that these
diffusive models lack, however, which is the possibility of large sudden changes.
It is well known that occasionally there is a large sudden change in the value
of an asset. This might be due to quarterly reports, market distress, a technical
breakthrough, or even an unforeseen disaster. Whatever the case, it remains that
the impact of such movements is large even if the probability is small. For option
contracts this is especially important from a risk management perspective. After
all, the implication is that large losses are possible even in a small time window.

In this dissertation we focus on option pricing models with jumps. Some
models combine jumps with stochastic volatility, such as the Bates and the SVCJ
models. Others simply augment the Black-Scholes model with jumps, e.g., the
Merton and Kou jump-diffusion models. Perhaps one of the reasons why these
models are not in widespread use is that the solution to such option pricing mod-
els is more difficult to obtain.

Here we study numerical methods that solve these models employing PIDE
formulations. At least second-order accurate time discretization methods are
needed to obtain accurate option prices. Due to jumps, standard time discretiza-
tion methods would require the inversion of a full matrix. A more efficient ap-
proach is to employ iterative methods, which iterate a sequence of systems with
banded coefficient matrices. Alternatively, special IMEX time discretization meth-
ods can be employed to avoid the inversion of a full matrix. In both cases full
matrix-vector multiplications are still necessary. These multiplications can be
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computed efficiently by employing FFTs or recursion formulas. The application
of these methodologies results in algorithms capable of pricing options under
jump-diffusion processes in milliseconds, or a few seconds at most.
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YHTEENVETO (FINNISH SUMMARY)

Vuonna 1973 Black ja Scholes julkaisivat uraauurtavan artikkelin optiohinnoit-
telusta. Black-Scholes mallissa kohde-etuutta (esim. osake) mallinnetaan satun-
naisen Brownin liikkeen avulla. Ehkä suurimmat epäkohdat mallissa ovat ole-
tukset vakiosuuruisesta markkinoiden volatiliteetista ja polkujen jatkuvuudesta.
Viime vuosina erityisesti stokastisen volatiliteetin mallit ovat levinneet laajaan
käyttöön. Voidaankin sanoa, että volatiliteetin muuttaminen stokastiseksi suu-
reeksi ratkaisee monia ongelmia alkuperäisestä Black-Scholes mallista.

Yllä kuvattuja malleja voidaan kutsua diffuusiomalleiksi. Niissä tapahtu-
vat muutokset ovat asteittaisia. Suuret muutokset diffuusiomallien alaisuudessa
vaativat aina enemmän tai vähemmän aikaa. Tiedetään kuitenkin, että markki-
noilla tapahtuu ajoittain erittäin nopeita muutoksia. Tämänlaisten muutoksien
mallintaminen diffuusiomallien avulla on erittäin vaikeaa ellei mahdotonta. On-
kin perusteltua, että malliin tulisi lisätä mahdollisuus isoihin hyppyihin. Tällöin
puhutaan hyppydiffuusiomalleista. Erityisesti lyhytikäisten optioiden hinnoitte-
lussa on ratkaiseva ero sillä, mikä on hinnoittelumallin mukaan lyhyessä ajassa
mahdollista. Vaikka hypyn todennäköisyys on erittäin pieni, niin sen vaikutus
option hintaan on merkittävä. Erityisesti riskienhallinnan kannalta on kriittistä
tiedostaa, että suuret tappiot ovat mahdollisia myös erittäin pienessä ajassa.

Yksi tapa hinnoitella optio on ratkaista osittaisdifferentiaaliyhtälö (ODY).
Hyppydiffuusiomallien tapauksessa kyseessä on tarkemmin ottaen osittaisintegro-
differentiaaliyhtälö, koska hypyt lisäävät yhtälöön integraalin. Tämän tutkimuk-
sen kohteena ovat erityisesti numeeriset menetelmät tämänlaisten yhtälöiden te-
hokasta ratkaisua varten. Työ on nimeltään Numeerisia menetelmiä optiohinnoit-
teluun hyppydiffuusioprosessien alaisuudessa. Ehkä yksi syy miksi hyppydiffuusio-
mallien käyttö on vielä varsin harvinaista on se, että optiohinnoittelu niiden alai-
suudessa on selvästi vaikeampaa.

Ongelman diskretisointi johtaa tyypillisesti lineaariseen yhtälöryhmään, jo-
ka voidaan esittää matriisina. Hypyistä johtuva epälokaali integraali muuttaa tä-
män matriisin täydeksi. Perinteiset toisen kertaluokan aikadiskretisointimenetel-
mät vaativat tämän matriisin kääntämisen. Koska matriisi on tässä tapauksessa
täysi, niin kääntämisen sijaan on paljon tehokkaampaa ratkaista ongelma itera-
tiivisilla menetelmillä, jotka antavat tarkan approksimaation ratkaisusta kääntä-
mällä sarjan nauhamatriiseja. Vaihtoehtoisesti voidaan käyttää erikoisia implisiitti-
eksplisiitti (IMEX) aikadiskretisointimenetelmiä, joiden avulla tehtävä muodos-
tuu suoraan nauhamaiseksi. Molemmissa tapauksissa on silti tarpeellista suorit-
taa matriisi kertaa vektori kertolasku täydellä matriisilla. Tämä kertolasku voi-
daan suorittaa tehokkaasti käyttämällä Fourier-muunnoksia tai rekursiokaavoja.
Kuvattujen menetelmien avulla on mahdollista kehittää algoritmeja, jotka pysty-
vät hinnoittelemaan optioita hyppydiffuusioprosessien alaisuudessa millisekun-
neissa, tai pahimmillaan muutamassa sekunnissa.
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We propose an iterative method for pricing American options under jump-diffusion models.

A finite difference discretization is performed on the partial integro-differential equation,

and the American option pricing problem is formulated as a linear complementarity

problem (LCP). Jump-diffusion models include an integral term, which causes the resulting

system to be dense. We propose an iteration to solve the LCPs efficiently and prove its

convergence. Numerical examples with Kou’s and Merton’s jump-diffusion models show

that the resulting iteration converges rapidly.

© 2011 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

It is widely recognized that the classic option pricing model proposed in 1973 by Black and Scholes in [5] and Merton in

[19], does not ideally fit observed empirical market data. Two identified empirical features have been under much attention:

(1) skewed distribution with higher peak and heavier tails (i.e. leptokurtic behavior) of the return distribution and (2) the

volatility smile [3].

Many studies have been undergone to propose modifications to the Black–Scholes model to explain these phenomena.

Here we focus on jump-diffusion models proposed by Kou in [17], and by Merton in [20]. These models have finite jump

activity, unlike the more general approach with possibly infinite jump activity proposed by Carr, Geman, Madan and Yor

in [7]. Another approach is to consider stochastic volatility models with jumps. The model proposed by Bates in [4] with

jumps only in the value of the underlying asset is an example of such an approach. More general jump-diffusion models

with stochastic volatility are considered in [10], for example.

Jumps can have a large impact on the price of an option, especially when near expiry. Merton’s jump-diffusion model

with the log-normal distribution is better able to produce the volatility smile phenomenon. However, the use of the log-

double-exponential distribution instead of the log-normal distribution allows the introduction of asymmetric leptokurtic

features. Kou argues in [17] that this model better matches empirical data without adding much complexity to the model.

The downside of moving to the log-double-exponential distribution is that it uses more parameters than the log-normal

distribution. Moreover, many theoretical results are only valid for the log-normal distribution [26].

A solution to a jump-diffusion model can be obtained by solving a partial integro-differential equation (PIDE). Due to

the integral term the discretization leads to a full matrix. Direct solution methods are usually too expensive with a full
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0168-9274/$30.00 © 2011 IMACS. Published by Elsevier B.V. All rights reserved.

doi:10.1016/j.apnum.2011.02.002



822 S. Salmi, J. Toivanen / Applied Numerical Mathematics 61 (2011) 821–831

matrix, and therefore other numerical methods should be considered. Several methods have been proposed to approximate

the linear complementarity problems resulting from American option pricing. These include a penalty method presented by

d’Halluin, Forsyth and Labahn in [8] and an operator splitting method presented by Ikonen and Toivanen in [14,16]. One

alternative approach to PIDEs is to employ a risk-neutral valuation formula and evaluate it quickly using FFT (Fast Fourier

Transform) [11,18].

Tavella and Randall in [23] described a stationary iterative method for pricing European options. Here, we propose a

generalization of this iterative method to price American options. Using this approach, each iteration requires the solution

of LCP with a banded or sparse matrix instead of the full matrix. Under Kou’s and Merton’s models the banded matrix is

tridiagonal. Brennan and Schwartz algorithm [6] can be used to solve these LCPs. While we do not consider any multi-factor

jump-diffusion models, for example, stochastic volatility models with jumps, the iteration is also applicable for such models.

The outline of this paper is the following. In Section 2, Merton’s and Kou’s jump-diffusion models are introduced. In

Section 3, a finite difference discretization for these models is presented. Section 4 describes the iterative methods used to

solve the resulting systems of linear equations and linear complementarity problems for European and American options,

respectively. Also, the Brennan and Schwartz algorithm is briefly introduced. Numerical experiments are given in Section 5,

and finally Section 6 contains conclusions. The main contributions of this paper are the iterative method proposed in

Section 4.1, and numerical experiments in Section 5.

2. Models for European and American options

The value of the underlying asset x under the classic Black–Scholes model [5] is given by

dx(t)

x(t−)
= μdt + σ dW (t), (1)

where μ is the drift rate, σ is the volatility and W (t) is a standard Brownian motion. In general, a finite activity jump term

is introduced into the model as follows

dx(t)

x(t−)
= μdt + σ dW (t) + d

(
N(t)∑
j=1

V j

)
, (2)

where N(t) is a Poisson process with rate λ and the set {V j} is a sequence of independent identically distributed random

variables. Under Merton’s jump-diffusion model the set {V j} is from the log-normal distribution with the density

fln(y) := 1

yδ
√
2π

exp

(
− (log y − γ )2

2δ2

)
, (3)

whereas under Kou’s jump-diffusion model the set {V j} is from a distribution with the log-double-exponential density

fld(y) :=
{
qα2 y

α2−1, y < 1,

pα1 y
−α1−1, y � 1,

(4)

where p,q,α1 > 1, and α2 are positive constants such that p + q = 1.

Under the assumptions of the general jump-diffusion model (2), the value v of a European option can be obtained by

solving a final value problem defined by a backward PIDE

vt = Lv = −1

2
σ 2x2vxx + (r − λκ)xvx + (r + λ)v − λ

( ∞∫
0

v(t, xy) f (y)dy

)
, (5)

for all (t, x) ∈ [0, T ) × [0,∞). Above r is the (continuously compounded) risk free interest rate, f is the density function,

and κ is the expected relative jump size. The final value of v is given by

v(T , x) = g(x), x ∈ R+, (6)

where g(x) is the payoff function of the option contract. For a put option, it is

g(x) = max{K − x,0}, (7)

where K is the strike price. The boundary conditions for a European put option are given by

v(t,0) = Ke−r(T−t),

lim
x→∞ v(t, x) = 0, t ∈ [0, T ]. (8)
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American options can be exercised at any time before expiry. Due to this, an additional constraint has to be intro-

duced to the model to avoid arbitrage opportunities. The value v of an American option can be obtained by solving an

LCP {
(vt − Lv) � 0, v � g,

(vt − Lv)(v − g) = 0.
(9)

For American put options the behavior on the boundaries is given by

v(t,0) = K ,

lim
x→∞ v(t, x) = 0, t ∈ [0, T ]; (10)

see [13] for more information.

3. Discretization

3.1. Discretization of spatial derivatives

We use finite differences to obtain an approximate solution. The infinite space domain is truncated to [0, X] with a

sufficiently large X to avoid an unacceptably large truncation error. The value of v at X is set to be g(x). An n nodes grid

0 = x1 < x2 < · · · < xn = X (11)

is used. The space derivatives of Eq. (5) are approximated with central-differences

vx(t, xi) ≈ vi+1(t) − vi−1(t)

	xi−1 + 	xi
(12)

and

vxx(t, xi) ≈ 2[	xi−1vi+1(t) − (	xi−1 + 	xi)vi(t) + 	xi vi−1(t)]
	xi−1	xi(	xi−1 + 	xi)

, (13)

where vi(t) = v(t, xi) and 	xi = xi+1 − xi . We apply these approximations to Eq. (5). This leads to a set of semi-discrete

equations having a matrix form

vt + Av = 0, A = D − R (14)

where D is a tridiagonal matrix and R is a full matrix resulting from the integral term. The matrix D has the following

structure

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r 0 0 . . . 0 0 0 0

D2,1 D2,2 D2,3 0 . . . 0 0 0

0 D3,2 D3,3 D3,4 0 . . . 0 0

... 0
. . .

. . .
. . . 0 . . . 0

0 . . . 0 D i,i−1 D i,i D i,i+1 0
...

0 0 . . . 0
. . .

. . .
. . . 0

0 0 0 . . . 0 Dn−1,n−2 Dn−1,n−1 Dn−1,n

0 0 0 0 . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where the first and last row of the matrix are enforcing the boundary conditions. We use a modified volatility σ̂ instead of

σ defined by

σ̂ 2 = max

{
σ 2, (r − λκ)

	xi

xi
,−(r − λκ)

	xi−1

xi

}
. (16)

This artificial volatility ensures that all off-diagonal elements are nonpositive [24]. For the rows i = 2, . . . ,n − 1, the off-

diagonal elements of D are given by

D i,i−1 = −σ̂ 2x2i + (r − λκ)xi	xi

	xi−1(	xi−1 + 	xi)
, (17)
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and

D i,i+1 = −σ̂ 2x2i − (r − λκ)xi	xi−1

	xi(	xi−1 + 	xi)
. (18)

The diagonal elements are given by

D i,i = r + λ − D i,i−1 − D i,i+1, i = 2, . . . ,n − 1. (19)

3.2. Approximation of the integral term

The integral term

I =
∞∫
0

v(t, xy) f (y)dy (20)

of (5) can be discretized by using the linear interpolation for v between grid points. First, performing a change of variable

y = z/x, we get

I =
∞∫
0

v(t, z) f (z/x)/xdz. (21)

Now, by using linear interpolation we get an approximation

Ii ≈ Ai =
n−1∑
j=1

Ai, j (22)

of I at each grid point xi , i = 2, . . . ,n − 1, where

Ai, j =
x j+1∫
x j

(
x j+1 − z

	x j
v(t, x j) + z − x j

	x j
v(t, x j+1)

)
f (z/xi)/xi dz. (23)

In the case of Merton’s model, the log-normal distribution f (y) = fln(y) is used, and thus we have

Ai, j = 1

δ
√
2π

x j+1∫
x j

(
x j+1 − z

	x j
v(t, x j) + z − x j

	x j
v(t, x j+1)

)
exp

(
− (log (z/xi) − γ )2

2δ2

)/
z dz. (24)

By performing the integration, we obtain

Ai, j = 1

2	x j

[(
erf

(
γ − log (x j+1/xi)

δ
√
2

)
− erf

(
γ − log (x j/xi)

δ
√
2

))
α j

+
(
erf

(
γ + δ2 − log (x j+1/xi)

δ
√
2

)
− erf

(
γ + δ2 − log (x j/xi)

δ
√
2

))
xiβ j

]
, (25)

where erf(·) is the error function and

α j = v(t, x j+1)x j − v(t, x j)x j+1 and β j =
(
v(t, x j) − v(t, x j+1)

)
eγ +δ2/2. (26)

In the case of Kou’s model, we have the log-double-exponential distribution f (y) = fld(y). We decompose the integral

as I = I− + I+ and its approximation as Ai = A−
i + A+

i , i = 2, . . . ,n − 1, where

I− =
x∫

0

v(t, z) f (z/x)ld/xdz = qα2x
−α2

x∫
0

v(t, z)zα2−1 dz (27)

and

I+ =
∞∫
x

v(t, z) f (z/x)ld/xdz = pα1x
α1

∞∫
x

v(t, z)z−α1−1 dz. (28)
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The approximations A−
i and A+

i are given by

I−i ≈ A−
i =

i−1∑
j=1

A−
i, j and I+i ≈ A+

i =
n−1∑
j=i

A+
i, j, (29)

where

A−
i, j =

qx
−α2

i

(α2 + 1)	x j

[(
x
α2+1
j+1 − (x j+1 + α2	x j)x

α2

j

)
v(t, x j) + (

xα2+1
j − (x j − α2	x j)x

α2

j+1

)
v(t, x j+1)

]
(30)

for j = 1, . . . , i − 1, and

A+
i, j =

px
α1

i

(α1 − 1)	x j

[(
x
1−α1

j+1 − (x j+1 + α1	x j)x
−α1

j

)
v(t, x j) + (

x1−α1
j − (x j + α1	x j)x

−α1

j+1

)
v(t, x j+1)

]
(31)

for j = i, . . . ,n − 1 are given by performing the integration in (23) with f (y) = fld(y).

The matrix R resulting from approximating the integral has the sparsity pattern

R = λ

⎛
⎜⎜⎜⎜⎜⎜⎝

0 . . . 0

∗ . . . ∗
...

. . .
...

∗ . . . ∗
0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (32)

In the case of Kou’s model, the actual computation of A−
i, js and A+

i, js is performed by using recursion formulas given by

Toivanen in [24]. With this approach, only O (n) operations are required to calculate the integral approximation. However,

this approach is only applicable when a log-double-exponential distribution is used.

3.3. Time discretization

Now for European options we have a semi-discrete linear problem

vt + Av = 0. (33)

For American options we obtain a semi-discrete LCP{
(vt − Av) � 0, v � g,

(vt − Av)(v − g) = 0.
(34)

We use the Rannacher scheme [21] for time-discretization; see [12] for convergence analysis. This scheme performs a few

first time steps using the implicit Euler scheme, and after that the remaining steps are performed with the Crank–Nicolson

method. The implicit Euler steps are taken to avoid possible oscillations due to the nonsmooth final value (payoff function).

We perform the first four steps with the implicit Euler method. The time domain [0, T ] is split equally with time step

	t = T /m, with the exception of the implicit Euler steps that are set to have the length 	t/2.

Applying Rannacher time-stepping scheme to the semi-discrete problem (33) gives us

B(k)v(k) = b(k), k =m + 2, . . . ,1, (35)

where

B(k) = I + θk	tkA, b(k) = (
I − (1− θk)	tkA

)
v(k+1), and v(m+3) = g. (36)

The parameter θk is defined by

θk =
{
1, m − 1 � k �m + 2,
1
2
, k =m − 2, . . . ,1.

(37)

For the semi-discrete LCP (34) the time-stepping gives{(
B(k)v(k) − b(k)

)
� 0, v(k) � g,(

B(k)v(k) − b(k)
)T (

v(k) − g
) = 0,

k =m + 2, . . . ,1. (38)
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4. Solution methods

4.1. Iterative method

First we present an iterative method for a generic LCP and a result for its convergence. After that we apply it to price

American options. We denote an LCP

Bx � b, x � g, (Bx− b)T (x− g) = 0 (39)

by LCP(B, x,b, g).

Theorem 1. Let B be a strictly diagonally dominant square matrix with positive diagonal entries. Let a matrix splitting

B = T − J (40)

be such that the inequality

T i,i −
∑
j �=i

|T i, j| −
∑
j

| J i, j| > 0 (41)

holds for all i. Then the vectors xl+1 , l = 0,1,2, . . . , defined by the iteration

LCP
(
T , xl+1, J xl + b, g

)
, (42)

and an initial guess x0 converge to the solution x of the LCP (39). Furthermore, for the error el = xl − x the norm inequality

∥∥el+1
∥∥∞ �

(
max

i

∑
j | J i, j|

T i,i − ∑
j �=i |T i, j|

)∥∥el∥∥∞ (43)

holds.

Proof. Substituting xl+1 = x+ el+1 and xl = x+ el to (42) gives us for the error el+1 an LCP

T el+1 � J el − Bx+ b, el+1 � g − x,(
T el+1 − J el + Bx− b

)T (
el+1 − g + x

) = 0. (44)

Let the ith component of el+1 denoted by el+1
i have the largest absolute value, that is, ‖el+1‖∞ = |el+1

i | � |el+1
j | for all j.

In the following, we need an estimate of |( J el)i | from above given by

∣∣( J el)
i

∣∣ =
∣∣∣∣∑

j

J i, je
l
j

∣∣∣∣ �
∑
j

| J i, j|
∣∣elj∣∣ �

(∑
j

| J i, j|
)∥∥el∥∥∞. (45)

Let us consider the ith inequalities and equations of the LCPs (39) and (44). We have the following four possibilities:

1. (Bx− b)i = 0 and (T el+1 − J el + Bx− b)i = 0: We have (T el+1)i = ( J el)i and also∣∣(T el+1
)
i

∣∣ = ∣∣( J el)
i

∣∣. (46)

We estimate |(T el+1)i | from below as follows:

∣∣(T el+1
)
i

∣∣ =
∣∣∣∣T i,ie

l+1
i +

∑
j �=i

T i, je
l+1
j

∣∣∣∣ �
∣∣T i,ie

l+1
i

∣∣ −
∣∣∣∣∑
j �=i

T i, je
l+1
j

∣∣∣∣
� T i,i

∣∣el+1
i

∣∣ −
∑
j �=i

|T i, j|
∣∣el+1

j

∣∣ �
(
T i,i −

∑
j �=i

|T i, j|
)∣∣el+1

i

∣∣. (47)

By combining the estimates (45) and (47) with Eq. (46), we obtain

∥∥el+1
∥∥∞ �

∑
j | J i, j|

T i,i − ∑
j �=i |T i, j|

∥∥el∥∥∞. (48)



S. Salmi, J. Toivanen / Applied Numerical Mathematics 61 (2011) 821–831 827

2. (Bx− b)i = 0 and el+1
i − g i + xi = 0: We have

−(
T el+1

)
i
� −(

J el − Bx+ b
)
i
= −(

J el
)
i
�

∣∣( J el)
i

∣∣. (49)

We note that el+1
i = g i − xi � 0. We estimate −(T el+1)i from below as follows:

−(
T el+1

)
i
= −T i,ie

l+1
i −

∑
j �=i

T i, je
l+1
j � T i,ie

l+1
i −

∣∣∣∣∑
j �=i

T i, je
l+1
j

∣∣∣∣
� T i,i

∣∣el+1
i

∣∣ −
∑
j �=i

|T i, j|
∣∣el+1

j

∣∣ �
(
T i,i −

∑
j �=i

|T i, j|
)∣∣el+1

i

∣∣. (50)

By combining the estimates (45) and (50) with the inequality (49), we obtain again the inequality (48).

3. xi − g i = 0 and (T el+1 − J el + Bx− b)i = 0: Using the inequality (Bx− b)i � 0, we obtain(
T el+1

)
i
= (

J el − Bx+ b
)
i
= (

J el
)
i
− (Bx− b)i �

(
J el

)
i
�

∣∣( J el)
i

∣∣. (51)

We note that el+1
i = el+1

i − g i + xi � 0. We estimate (T el+1)i from below as follows:

(
T el+1

)
i
= T i,ie

l+1
i +

∑
j �=i

T i, je
l+1
j � T i,ie

l+1
i −

∣∣∣∣∑
j �=i

T i, je
l+1
j

∣∣∣∣
� T i,i

∣∣el+1
i

∣∣ −
∑
j �=i

|T i, j|
∣∣el+1

j

∣∣ �
(
T i,i −

∑
j �=i

|T i, j|
)∣∣el+1

i

∣∣. (52)

By combining the estimates (45) and (52) with the inequality (51), we obtain again the inequality (48).

4. xi − g i = 0 and el+1
i − g i + xi = 0: We have ‖el+1‖∞ = |el+1

i | = 0.

Thus, in all four possible cases the norm inequality (48) holds for the error el+1. Taking maximum of the factor in the

right-hand side of (48) over i gives us theorem’s norm inequality (43).

From the assumption (41) for the matrix splitting (40) it follows that the factor in the right-hand side of (43) is strictly

less than one. Thus, the error el+1 converges to zero and xl+1 converges to x. �
A stationary iterative method was proposed by Tavella and Randall in [23] for pricing European options under jump-

diffusion models. This iteration was analyzed by d’Halluin, Forsyth, and Vetzal in [9]. We adopt the formulation presented

by Almendral and Oosterlee in [2], where the matrix B(k) is split with a regular splitting

B(k) = T − J , where T = I + θk	tkD and J = −θk	tkR. (53)

For European options, the iterative method reads

vl+1 = T−1
(
b(k) + J vl

)
, l = 0,1, . . . , (54)

where the initial guess v0 is taken to be v(k+1) . Each iteration requires a solution with the tridiagonal T , and the multipli-

cation of a vector by J .
We can use the same matrix splitting (53) with the iteration (42) for American options. Let us consider the convergence

of this iteration and more specifically the coefficient in the inequality (43). As the first and last row of the matrix R contains

only zeroes the value of∑
j | J i, j|

T i,i − ∑
j �=i |T i, j| (55)

is zero for i = 1 and i = n. In the following, we consider i in the range 2, . . . ,n − 1. We have

T i,i −
∑
j �=i

|T i, j| = 1+ θk	tk(D i,i + D i,i−1 + D i,i+1) = 1+ θk	tk(r + λ). (56)

For our quadrature rules, it holds

∑
j

R i, j = λ

xn∫
0

f (z/xi)/xi dz = λ

xn/xi∫
0

f (y)dy < λ. (57)
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Table 1
Reference prices used for numerical experiments.

Model and type Value at 90 Value at 100 Value at 110

Kou, European put [24] 9.430457 2.731259 0.552363

Kou, American put [24] 10.005071 2.807879 0.561876

Merton, European call [9] 0.527638 4.391246 12.643406

Merton, American put 10.003815 3.241215 1.419796

Thus, we have∑
j

| J i, j| = θk	tk
∑
j

R i, j < θk	tkλ. (58)

The above observations, gives us the following result based on Theorem 1.

Corollary 1.With the above described discretizations and splitting (53) of B(k) , for the error el in the iteration (42) the inequality∥∥el+1
∥∥∞ < C

∥∥el∥∥∞ (59)

holds, where the constant is

C = θk	tkλ

1+ θk	tk(r + λ)
. (60)

Furthermore, for any r � 0 and λ � 0, C < 1 holds, that is, the iteration converges.

4.2. Brennan and Schwartz algorithm

To solve the resulting LCP (42) with a tridiagonal T in each iteration, we use the Brennan and Schwartz algorithm. The

original algorithm presented by Brennan and Schwartz in [6], is based on Gaussian elimination; see also [1,15]. Consider a

linear complementarity problem LCP(T , v,b, g). We form an U L-decomposition of T such that

U L = T , (61)

and select the diagonal of L to consist of ones. The algorithm now reads

y = U−1b

v1 = max{y1, g1}
DO i = 2, . . . ,n

vi = max{yi − Li,i−1vi−1, gi}
END DO (62)

where Li, j are components of L. Note that an American call option can be priced with the same approach by reversing the

order of the Brennan and Schwartz algorithm, assuming the underlying asset pays dividends continuously; see [15] for the

algorithm in reverse order.

5. Numerical experiments

5.1. European put option under Kou’s model

First, we price European put options under Kou’s model using the following model parameters:

σ = 0.15, r = 0.05, T = 0.25, K = 100,

λ = 0.1, α1 = 3.0465, α2 = 3.0775, p = 0.3445. (63)

These parameters are also used by d’Halluin, Forsyth and Vetzal in [9] and Toivanen in [24]. We use the reference prices

described in [24]. Table 1 gives a complete list of reference prices used in this section. A uniform space grid between [0, X]
is used with n nodes and X = 400. We continue the iteration until ‖vl − vl+1‖2 is less than 10−8. This stopping criterion is

used in all the examples.

The results of the pricing are given in Table 2, which reports pricing errors, the number of total iterations and execution

times. Also the ratio of the consecutive errors in the l2-norm at x = 90, x = 100, and x = 110. The computations were

performed on a PC with a 2.2 GHz AMD Athlon 3500+ processor. The codes were run on Matlab, however time consuming

parts were implemented as mex files using C language. Second-order convergence is evident from Table 2 as the ratio is

close to 4.
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Table 2
European put option pricing errors, execution times, total iterations and the ratios of errors under Kou’s model.

n m Error at 90 Error at 100 Error at 110 Ratio Iterations Time (ms)

50 20 3.061e−1 4.459e−1 1.766e−1 66 0.9

100 40 4.512e−2 −1.116e−1 1.047e−2 4.71 126 1.3

200 80 −2.441e−3 −2.648e−2 −5.386e−3 4.45 246 3.6

400 160 −6.598e−4 −6.550e−3 −1.377e−3 4.03 324 9.6

800 320 −1.678e−4 −1.634e−3 −3.462e−4 4.01 644 81.4

1600 640 −4.199e−5 −4.084e−4 −8.685e−5 4.00 1284 157.9

Table 3
American put option pricing errors, execution times, total iterations and the ratios of errors under Kou’s model.

n m Error at 90 Error at 100 Error at 110 Ratio Iterations Time (ms)

50 20 2.436e−1 4.279e−1 1.757e−1 66 0.8

100 40 2.987e−2 −1.201e−1 1.064e−2 4.21 126 1.3

200 80 −5.071e−3 −2.989e−2 −5.767e−3 4.03 193 3.2

400 160 −4.263e−3 −7.623e−3 −1.547e−3 3.48 324 10.1

800 320 −3.123e−4 −1.964e−3 −4.126e−4 4.37 644 88.0

1600 640 −1.003e−4 −5.090e−4 −1.106e−4 3.93 1284 168.4

Table 4
European call option pricing errors, execution times, total iterations and the ratios of errors under Merton’s model with a straightforward matrix–vector

multiplication.

n m Error at 90 Error at 100 Error at 110 Ratio Iterations Time (ms)

50 20 3.845e−1 4.025e−1 1.060e−1 66 10.0

100 40 6.102e−2 −1.172e−1 7.445e−4 4.29 126 77.1

200 80 −1.801e−3 −2.778e−2 −5.746e−3 4.65 246 221.2

400 160 −5.144e−4 −6.873e−3 −1.464e−3 4.03 482 1197.6

800 320 −1.325e−4 −1.714e−3 −3.677e−4 4.01 644 5996.0

1600 640 −3.336e−5 −4.285e−4 −9.215e−5 4.00 1284 37893.7

5.2. American put option under Kou’s model

In this second example, we price American put options with the same parameters as in the previous example. This

problem has been considered in [24,25] and the reference prices are taken from [24]. The Brennan and Schwartz algorithm

is used to solve the resulting LCPs.

Results are listed in Table 3. Errors, execution times and iteration counts are similar to the previous example with

European options. The iteration converges rapidly with typically two iterations on each time step. Rapid convergence can

be also expected based on Corollary 1 as the value of C in (59) is about 6.24e−4 for m = 20 and 1.95e−5 for m = 640.

Accuracy is similar to the European option, which could be further increased with a nonuniform grid. Note that we described

the discretization (12) and (13) also for nonuniform grids. Execution times are only slightly higher when compared to the

previous example. A second-order convergence is obtained.

5.3. European call option under Merton’s model

In the third example, we price European call options under Merton’s model. We use the following parameters:

σ = 0.15, r = 0.05, T = 0.25, K = 100,

λ = 0.1, γ = −0.9, δ = 0.45. (64)

These parameters are also used by d’Halluin, Forsyth, and Vetzal in [9]. They are equal to the ones used in the previous

examples with the exception of the distribution parameters γ and δ. The same reference prices were used as in [9].

Instead of pricing a call option directly, we compute the price of a put option with the same strike price, and then use

the put–call parity

vc(t, x) = vp(t, x) + x− Ke−r(T−t) (65)

to obtain the price of the call option. Above vc is the price of the call option and vp is the price of the put option.

Results are listed in Table 4. Again, second-order convergence is observed, and similar errors and iteration counts as

in previous examples. However, this time execution times are significantly higher. This is to be expected, and is due to

vector–matrix multiplication with a full n × n matrix that is required to compute the integral approximation. A much faster

implementation can be done with FFT. With this approach the number of required operations to compute the integral



830 S. Salmi, J. Toivanen / Applied Numerical Mathematics 61 (2011) 821–831

Table 5
European call option pricing errors, execution times, total iterations and the ratios of errors under Merton’s model and the FFT approach.

n m Error at 90 Error at 100 Error at 110 Ratio Iterations Time (ms)

50 20 3.752e−1 3.949e−1 9.971e−2 66 2.0

100 40 5.919e−2 −1.186e−1 −5.002e−4 4.18 126 6.2

200 80 −2.142e−3 −2.809e−2 −6.018e−3 4.60 246 48.8

400 160 −5.945e−4 −6.943e−3 −1.527e−3 4.04 482 121.1

800 320 −1.528e−4 −1.732e−3 −3.840e−4 4.01 644 301.2

1600 640 −3.864e−5 −4.332e−4 −9.643e−5 4.00 1284 1215.7

Table 6
American put option pricing errors, execution times, total iterations and the ratios of errors under Merton’s model with straightforward matrix–vector

multiplication.

n m Error at 90 Error at 100 Error at 110 Ratio Iterations Time (ms)

50 20 2.846e−1 3.722e−1 1.043e−1 66 9.9

100 40 3.492e−2 −1.286e−1 7.778e−4 3.60 126 84.9

200 80 −3.815e−3 −3.210e−2 −6.143e−3 4.05 246 220.8

400 160 −3.815e−3 −8.166e−3 −1.625e−3 3.59 324 1007.7

800 320 −8.542e−4 −2.067e−3 −4.204e−4 4.03 644 5975.4

1600 640 −2.840e−4 −5.063e−4 −1.047e−4 3.86 1284 38313.7

Table 7
American put option pricing errors, execution times, total iterations and the ratios of errors under Merton’s model and the FFT approach.

n m Error at 90 Error at 100 Error at 110 Ratio Iterations Time (ms)

50 20 2.837e−1 3.684e−1 1.007e−1 66 2.0

100 40 3.468e−2 −1.295e−1 −1.564e−4 3.55 126 6.0

200 80 −3.815e−3 −3.235e−2 −6.388e−3 4.04 246 43.9

400 160 −3.815e−3 −8.226e−3 −1.685e−3 3.60 324 103.7

800 320 −8.559e−4 −2.083e−3 −4.361e−4 4.02 644 305.8

1600 640 −2.843e−4 −5.104e−4 −1.089e−4 3.86 1284 1221.0

approximation can be reduced from O (n2) to O (n logn); see [2,9,22] for example. This is almost as good as the O (n)

operations required by the recursion formulas used in the first two examples.

Results computed with the FFT approach are listed in Table 5 for comparison purposes. To avoid wrap-around errors, we

have used the embedding of a Toeplitz matrix into a circulant matrix described by Almendral and Oosterlee in [2]. Standard

FFT methods require a uniform grid, which in this case is in the log x space. An interpolation step is required to move the

data to a uniform grid in the log x space, and then another interpolation step is needed to move the result back to the grid

in the x space. These steps explain the slight deterioration of accuracy that is evident. However, this is a small price to pay

for such a significant performance increase. See [9] for more details on the interpolation.

5.4. American put option under Merton’s model

In this example, we price American put options under Merton’s model. The same parameters are used as in the previous

example. The reference prices were computed numerically using a fine grid of n = 6400 and m = 2560. Results are reported

in Table 6. The errors, the ratios of errors, iteration counts and execution times are similar to the European counterpart.

Again, the results computed with the FFT approach are listed in Table 7 for comparison purposes.

6. Conclusions

We described an efficient iteration to solve LCPs resulting from the implicit finite difference discretization of PIDEs for

pricing American options under jump-diffusion models. It is a generalization of the stationary iterative method for European

options presented by Tavella and Randall in [23]. The iteration requires solving LCPs with a banded matrix instead of the

full matrix resulting from the discretization of the jump model. We proved that the iteration converges and gave the

convergence rate in l∞-norm.

We considered Kou’s model [17] and Merton’s model [20] for pricing American and European options. The resulting LCPs

in the iteration for American options are tridiagonal and they were solved with the Brennan and Schwartz algorithm [6].

European options were priced with the iteration described by Tavella and Randall in [23]. For both American and European

options, the iterations converged rapidly with typically two iterations per time step.

A reasonably accurate solution can be computed in a few milliseconds, assuming the integral approximation can be

efficiently computed. For Kou’s model, recursion formulas introduced by Toivanen in [24] were used, and for Merton’s

model an FFT based approach was used to achieve good performance. Under both models, second-order convergence was

observed.
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Abstract

We propose families of IMEX time discretization schemes for the partial
integro-differential equation derived for the pricing of options under a jump-
diffusion process. The schemes include the families of IMEX-midpoint, IMEX-
CNAB and IMEX-BDF2 schemes. Each family is defined by a convex com-
bination parameter c ∈ [0, 1], which divides the zeroth-order term due to the
jumps between the implicit and explicit part in the time discretization. These
IMEX schemes lead to tridiagonal systems, which can be solved extremely
efficiently. The schemes are studied through Fourier stability analysis and nu-
merical experiments. It is found that, under suitable assumptions and time
step restrictions, the IMEX-midpoint family is absolutely stable only for c = 0,
while the IMEX-CNAB and the IMEX-BDF2 families are absolutely stable for
all c ∈ [0, 1]. The IMEX-CNAB c = 0 scheme produced the smallest error in
our numerical experiments.

1 Introduction

Jump-diffusion models have become an important modeling tool in the pricing of
financial derivatives. In his seminal paper [17] in 1976, Merton proposed the addition
of jumps into the Black-Scholes model. Contrary to models with continuous paths,
jump-diffusion models allow large sudden changes in the price of the underlying asset.
The possibility of jumps is particularly important for options with short maturities,
since large sudden changes under a purely Brownian motion type process have almost
zero probability. Indeed, the implied volatility is known to exhibit a smile like shape
with respect to the strike price, which becomes more pronounced near the expiry of
the option. Jump-diffusion models have been shown to naturally produce implied
volatilities with a smile [1, 5].
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Under the Merton model, jumps follow a compound Poisson process with constant
intensity and log-normal jump sizes. Other well-known jump-diffusion models in the
literature include the Kou model [14] and the more general CGMY model [4]. The
CGMY model allows infinite jump activity, while the other mentioned models are fi-
nite activity jump-diffusion models. Here we restrict to finite activity jump-diffusion
models. However, we note that in numerical computations it is usual practice to
reduce the infinite activity jump-diffusion model to a finite activity jump-diffusion
case by approximating the infinite activity portion of the jump distribution by arti-
ficial diffusion; see [6], for example. Thus, the results presented here apply also in
that case.
A partial integro-differential equation (PIDE) can be derived for the price of a Euro-
pean option under a jump-diffusion process. The American option pricing problem
can be formulated in the form of an inequality by adopting the linear complementar-
ity problem (LCP) formulation. We will consider the time discretization schemes for
such problems. Second-order accurate time discretization schemes are traditionally
implicit schemes. However, employing standard implicit time discretization schemes
on jump-diffusion models results in systems with full matrices. A more efficient
approach is to employ iterative methods, for example, a fixed-point iteration for
European options [21], or a similar iteration for American options [19]. An effi-
cient penalty iteration was also proposed for American options in [7]. The iterative
methods enable the use of standard implicit discretizations, which are accurate and
unconditionally stable.
Alternatively, the inversion of a full matrix can be avoided by employing implicit-
explicit (IMEX) discretizations, where typically the jump term is treated explicitly
and the rest implicitly. The IMEX discretizations lead to tridiagonal systems. The
tridiagonal systems can then be solved directly and extremely efficiently; see [20]
for a comparison. These discretization schemes are conditionally stable. A first-
order accurate IMEX-Euler scheme for jump-diffusion models was formulated in
[6]. Second-order accurate IMEX-schemes are typically two-step linear multistep
methods, such as the IMEX-midpoint scheme; see [15,16] for example. For European
options even more efficient numerical methods exist, which exploit the linear nature
of the European option pricing problem, such as the Runge-Kutta type methods
proposed in [3,9], or the specialized Fourier transform based methods such as in [8].
For American options, however, second-order accurate schemes are generally the
most efficient methods available.
An interesting question is the temporal discretization of the zeroth-order term λv
in the PIDE. In [15,16], the authors propose an IMEX-midpoint scheme where they
include the zeroth-order term explicitly in the time discretization. Another obvious
choice is to include the zeroth-order term in the implicit part of an IMEX scheme.
However, as the jump term and the zeroth-order term partially cancel each other,
it begs the question if including a portion of the zeroth-order term in the explicit
part would improve the performance and stability of the discretization method by
essentially canceling a portion of the explicit part. Here we will introduce a convex
combination of the zeroth-order term into various IMEX schemes and investigate
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the effects through Fourier stability analysis and numerical experiments. The opti-
mal weights for this convex combination to minimize the explicit part (i.e. explicit
eigenvalue) would require the exact knowledge of the eigenvalues of the discretized
problem. Unfortunately, the eigenvalues are generally not available in closed form,
and we will therefore consider some a priori chosen convex combinations.

2 Preliminaries

In this section, we will describe the mathematical model for pricing European options
under a jump-diffusion process. We assume that the stock price St follows a finite
activity jump-diffusion process as in [5]. Then the stochastic differential equation
for St is given by

dSt

St−

= (μ− λκ)dt+ σdW (t) + (η − 1)dNt, (1)

where μ is the drift rate, σ is the volatility, W (t) is a standard Brownian motion, Nt

is a Poisson process with rate λ, (η−1) is a random variable of the jump distribution
producing a jump from St− to ηSt−, and κ is the expected value of (η − 1). The
notation St− means that whenever there is a jump, the value of the process before
the jump is used.
Now, let v(x, τ) be the value of a European option contract that depends on the price
of the underlying asset x = St and the time to maturity τ = T − t. The function
v(x, τ) satisfies the PIDE

vτ =
1

2
σ2x2vxx + (r − λκ)xvx − (r + λ)v + λ

(∫ ∞

0

v(xy, τ)f(y)dy

)
=: Lv, (2)

for all (x, τ) ∈ [0,∞) × (0, T ], where r is the risk-free interest rate, and f is the
density function of the jump distribution [17, 23]. The value of v at the maturity is
given by

v(x, 0) = g(x), x ∈ [0,∞), (3)

where g(x) is the payoff function for the option contract. For a put option, it is

g(x) = max(K − x, 0), (4)

where K is the strike price. The boundary conditions for a European put option are
given by

v(0, τ) = Ke−rτ ,

lim
x→∞

v(x, τ) = 0, τ ∈ [0, T ].
(5)

To simplify notation, we split the PIDE (2) into parts as follows

Lv = Dv + λ(Jv − v), (6)
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where D is the differential operator and J is the integral operator defined by

Dv :=
1

2
σ2x2vxx + (r − λκ)xvx − rv,

Jv :=

(∫ ∞

0

v(xy, τ)f(y)dy

)
.

(7)

3 Time Stepping Schemes and Stability

In the following we consider the stability properties of IMEX schemes with three
time levels in the context of the PIDE (2). The considered schemes include the
IMEX-midpoint (or IMEX-CNLF, Crank-Nicolson, Leap-Frog) scheme

vm+1 − vm−1

2
= Δτλ(J − cI)vm +Δτ(D − λ(1− c)I)

vm+1 + vm−1

2
, (8)

where I is the identity matrix, D and J are matrices resulting from the spatial
discretization of (7). We also consider the IMEX-CNAB (Crank-Nicolson, Adams-
Bashforth) scheme

vm+1 − vm = Δτλ(J − cI)
3vm − vm−1

2
+ Δτ(D − λ(1− c)I)

vm+1 + vm

2
, (9)

and the IMEX-BDF2 scheme

3

2
vm+1 − 2vm +

1

2
vm−1 = Δτλ(J − cI)(2vm − vm−1)

+Δτ(D − λ(1− c)I)vm+1.
(10)

These schemes were previously studied in a more general context in [2,10], for exam-
ple. Above, we have included the extra parameter c ∈ [0, 1] for the convex combina-
tion of the zeroth-order term λv between the explicit and implicit part. This leads to
a family of methods for each scheme, with a particular method defined by the value
of c. We adopt the finite difference method for the spatial discretization; see [19] for
details on the discretization. We note, however, that a different spatial discretization
method could be chosen as well, for instance, the finite element method.
The considered schemes are constructed by starting from an implicit method, which
is then combined with an extrapolation procedure for the explicit part. Schemes of
this type are known to be consistent [11,13]. Also, the order of an IMEX linear mul-
tistep method is the minimum order of the explicit and implicit method considered
separately [13]. Therefore, the IMEX methods considered here are of order 2.
The stability of a numerical scheme is usually studied under Fourier stability analysis.
A finite difference scheme is stable if the errors made at one time step do not magnify
as the computations are carried forward in time. A scheme that can be shown to
be stable in the limit Δτ → 0 is called a (zero) stable scheme. A solution produced
by such a scheme is guaranteed to remain bounded under finite time. In practice,
however, time step sizes are of fixed size, and for optimal computational efficiency
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one usually wants to choose the largest possible time step to obtain a desired level of
accuracy. Zero stability is a necessary condition for the good behavior of the scheme,
but for practical computations it is not sufficient. The actual required time step size
for stability can be especially restrictive for stiff problems or schemes with more than
two time levels. In the worst case, a scheme can be zero stable, but at the same time
unstable for any fixed Δτ > 0.
A theoretical definition for stability that is also sufficient for practical purposes is
that of absolute stability. A scheme is absolutely stable if it can be shown to be
stable for a range of Δτ . This is a more stringent requirement, and zero stability
clearly follows from absolute stability. Unfortunately, absolute stability of a scheme
is often difficult to prove. The usual approach is to apply the scheme to the linear
test problem and analyze its stability. In the case of IMEX-schemes, the linear test
equation reads

v′(τ) = νBv(τ) + νCv(τ), (11)

where νB and νC are the complex eigenvalues of the explicit and implicit part of the
scheme, respectively.
By applying the so-called method of lines approach on the PIDE (6), we obtain a
semi-discrete linear system of ODEs

v
′(τ) = Dv(τ) + Jv(τ)− λv(τ), τ ≥ 0. (12)

Stability results for the test equation (11) can be readily extended to linear sys-
tems with commuting matrices. The stability of IMEX-schemes in a commutative
framework was discussed in [10], for example. However, above D and J do not
commute in general. Nevertheless, in many practical applications it has been found
that time step size restrictions based on the linear test equation are accurate even
in the noncommutative case [12].
First, we will analyze the stability of the explicit part in the IMEX-schemes (8),
(9) and (10). In this special case the formal connection between the test equation
(11) and the system of ODEs (12) is maintained. This enables us to present some
theoretical stability bounds for the PIDE (2) in the special case D = 0.

3.1 Explicit stability

The stability of an IMEX linear multistep method, as in [10], is determined by the
roots of the characteristic equation

k∑
i=0

aiζ
k−1 = νB

k∑
i=1

biζ
k−1 + νC

k∑
i=0

ciζ
k−1 = 0. (13)

The scheme is stable if all roots satisfy |ζ | ≤ 1, with strict inequality for multi-
ple roots. We adopt the formulation in [10] by dividing the equation by |ζk| and
substituting z = 1/ζ . Now the characteristic equation reads

A(z) = νBB(z) + νCC(z), (14)
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where A,B and C are given by

A(z) =

k∑
i=0

aiz
i, B(z) =

k∑
i=1

biz
i, C(z) =

k∑
i=0

ciz
i. (15)

Stability holds if all roots satisfy |z| ≥ 1, again with strict inequality if |z| is a
multiple root. A necessary condition for this is

A(z)− νBB(z)− νCC(z) �= 0, for all |z| < 1. (16)

Apart from the possibility of multiple roots of modulus 1 this is also a sufficient
condition.
For the IMEX-midpoint scheme (8) the polynomials in (14) are given by

A(z) =
1

2
(1− z2), B(z) = z, C(z) =

1

2
(1 + z2), (17)

and νB and νC are the eigenvalues of

Δτλ(J − cI)v = νBv and Δτ(D − (1− c)λI)v = νCv. (18)

Let the eigenvalues νJ and νD be given by

Jv = νJv, and Dv = νDv. (19)

Then it holds

νB = Δτλ(νJ − c) and νC = Δτ(νD − (1− c)λ). (20)

Let us consider the special case that νD = 0. Then

νC = −Δτλ(1 − c). (21)

Substituting νB in (20) and νC in (21) into the characteristic polynomial gives

1

2
(1− z2) = Δτλ(νJ − c)z − 1

2
Δτλ(1− c)(1 + z2). (22)

Solving νJ from the above equation yields

νJ = c+
1

2z

[
1

Δτλ
(1− z2) + (1− c)(1 + z2)

]
. (23)

The boundary of the stability region for νJ is obtained by setting z = eiθ, substituting
this into (23), and letting θ vary in the range [0, 2π]. The expression for the stability
boundary simplifies to

νJ(θ) = c+ (1− c) cos θ − i

λΔτ
sin θ. (24)
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This defines an ellipse centered at c, the radius along the real axis being 1 − c, and
the radius along the imaginary axis being 1

λΔτ
. Stability boundaries for the IMEX-

midpoint scheme under various λΔτ and c are plotted in Figure 1. The gray unit
ball illustrates the area of possible eigenvalues νJ . This suggests that only for the
choice c = 0 the IMEX-midpoint scheme is stable for all possible νJ . In [15, 16] the
authors propose a similar scheme as c = 1 here, with the difference that they include
the term rv in the explicit part. They show that the scheme is zero stable. Our
analysis suggests, however, that this type of a scheme can be particularly ill-suited
for practical computations because the scheme may be unstable for any λΔτ > 0.
The polynomials for the IMEX-CNAB scheme (9) are given by

A(z) = (1− z), B(z) =
1

2
(3z − z2), C(z) =

1

2
(1 + z). (25)

Again for νJ this leads to

νJ = c+
2

3z − z2

[
1

Δτλ
(1− z) +

1

2
(1− c)(1 + z)

]
. (26)

We have chosen the IMEX-CNAB scheme to represent methods from the IMEX-
Adams family of methods; see Example 2.3 in [10]. We also briefly considered the
other IMEX-Adams family schemes advocated by Nevanlinna and Liniger in [18] and
Ascher et al. in [2], but we omit these results since they produced roughly similar
results. Stability boundaries for the IMEX-CNAB scheme are plotted in Figure 2.
The polynomials for the IMEX-BDF2 scheme (10) are given by

A(z) =
1

2
(3− z)(1− z), B(z) = z(2 − z), C(z) = 1. (27)

Similarly as above, we get for νJ

νJ = c+
1

z(2 − z)

[
1

2Δτλ
(3− z)(1 − z) + (1− c)

]
. (28)

The stability boundaries for this scheme are plotted in Figure 3.
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We will now formally investigate the explicit stability regions of the IMEX schemes.
We will assume that J does not have error due to the truncation of the domain.
This leads to a non-negative right stochastic matrix J . An alternative path is to
assume that J has truncation error and is non-negative. In this case |νJ | < 1 holds
due to the Gershgorin circle theorem. Thus, roots of modulus 1 do not exist, and the
theoretical results below would be valid even if J is not right stochastic. We assume
that J does not have truncation error because it is a more general framework.
In the following analysis, we need the following lemma.

Lemma 1. If J is strictly positive, then |νJ | ≤ 1 and roots of modulus 1 are simple.

Proof. The Gershgorin circle theorem states that the eigenvalues

λ(A) ∈
⋃

1≤i≤N

D(aii,
∑
j �=i

|aij |), (29)

where aij are elements of a square matrix A, and D(a, r) is a disc of radius r cen-
tered at a. Since J is a right stochastic matrix, the theorem applied to J gives
λ(J) ∈ D(0, 1). That is, the eigenvalues of J are bounded by |νJ | ≤ 1. Since J is
strictly positive, the Perron-Frobenius theorem states that 1 is a Perron-Frobenius
eigenvalue. The roots corresponding to the Perron-Frobenius eigenvalue are sim-
ple.
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Proposition 1. If J is strictly positive and νD = 0, then the IMEX-midpoint scheme
is absolutely stable for λΔτ < 1 and c = 0.

Proof. The following shows that under the assumptions |νJ | ≤ 1 and λΔτ < 1, z > 1
has to hold. From |νJ | ≤ 1, it follows

4|νJ |2 = 4

∣∣∣∣1z
[

1

2λΔτ
(1− z2) +

1

2
(1 + z2)

]∣∣∣∣
2

≤ 4. (30)

From this it follows ∣∣∣∣ 1

λΔτ
(1− z2) + 1 + z2

∣∣∣∣
2

≤ |z|2. (31)

Denote d = 1

λΔτ
− 1 and, thus, 1

λΔτ
= d + 1. Note that d > 0 holds due to the

assumption λΔτ < 1. The above is∣∣(d+ 1)(1− z2) + 1 + z2
∣∣ = ∣∣2 + d(1− z2)

∣∣ ≤ |z|2. (32)

Let z = a+ bi for real a and b. The above is

|2 + d(1− a2 + b2 − 2abi)|2 = [2 + d(1− a2 + b2)]2 + d2[2ab]2 ≤ 4(a2 + b2) (33)

which leads to

4− 4(a2 + b2) + 4d(1− a2 + b2) + d2(1− a2 + b2)2 + 4d2a2b2 ≤ 0. (34)

The following shows that |z|2 = a2 + b2 < 1 leads to contradiction and, thus, |z| ≥ 1
has to hold. From the above it follows

4d(1− a2 + b2) + d2(1− a2 + b2)2 + 4d2a2b2 ≤ 0. (35)

Dividing by d > 0 leads to

4(1− a2 + b2) + d(1− a2 + b2)2 + 4da2b2 ≤ 0. (36)

As a2b2 ≥ 0, it holds

4(1− a2 + b2) + d(1− a2 + b2)2 ≤ 0. (37)

It is easy to see that 1−a2+b2 > 0 holds for a and b such that a2+b2 < 1. Therefore,

4(1− a2 + b2) + d(1− a2 + b2)2 > 0 (38)

which is a contradiction with the previous inequality.

Notice that we assumed that J is strictly positive. This assumption can be relaxed
to non-negative J , but then one has to additionally assume that possible roots at
real z = ±1 are simple.

9



Proposition 2. If J is strictly positive then the IMEX-BDF2 scheme with νD = 0
is absolutely stable for all λΔτ < 2

3
and c ∈ [0, 1].

Proof. We know that the characteristic equation (14) is satisfied for

νJ = c+
1

z(2 − z)

[
1

2Δτλ
(3− z)(1 − z) + (1− c)

]
. (39)

From Lemma 1 it follows that |νJ | ≤ 1. Assume that |z| < 1 and that equation
(39) holds. In the following we will show that this leads to a contradiction. Denote
k = 1

2λΔτ
> 3

4
and z = a+ ib. Multiplying (39) by z yields

νJz = cz +
1

(2− z)
[k(3− z)(1 − z) + (1− c)]

= cz + k

(
2 +

1

z − 2
− z

)
+

1− c

2− z

= cz + k(2− z) +
1− c− k

2− z

= cz + k(2− z) +
(1− c− k)(2− z)

(2− a)2 + b2

= ca+ icb+ k(2− a− ib) +
(1− c− k)(2− a+ ib)

(2− a)2 + b2
.

(40)

Now we can show that 	(νJz) ≥ 1, which leads to |νJz| ≥ 1.

	(νJz) = ca+ k(2− a) +
(1− c− k)(2− a)

(2− a)2 + b2

= ca+
(1− c)(2− a)

(2− a)2 + b2
+ k(2− a)

[
1− 1

(2− a)2 + b2

]
.

(41)

In the above expression, the coefficient of k is positive. Thus, the smallest possible
value of k > 3

4
minimizes the expression and the inequality holds

	(νJz) = ca +
(1− c)(2− a)

(2− a)2 + b2
+ k(2− a)

[
1− 1

(2− a)2 + b2

]

> ca +
(1− c)(2− a)

(2− a)2 + b2
+

3

4
(2− a)

[
1− 1

(2− a)2 + b2

]

= ca +
(1− c)(2− a)− 3

4
(2− a)

(2− a)2 + b2
+

3

4
(2− a)

= ca +
1

4
(2− a)

1− 4c

(2− a)2 + b2
+

3

4
(2− a).

(42)

In the above expression, for the coefficient of c it holds

a− 2− a

(2− a)2 + b2
≤ a− 2− a

(2− a)2
= a− 1

2− a
≤ 0. (43)
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Thus, the expression is minimized by the choice c = 1 and the next inequalities hold

	(νJz) > ca +
1

4
(2− a)

1− 4c

(2− a)2 + b2
+

3

4
(2− a)

≥ a− 3

4

2− a

(2− a)2 + b2
+

3

4
(2− a)

≥ a− 3

4

2− a

(2− a)2
+

3

4
(2− a)

=
1

4

[
a + 6− 3

2− a

]
(44)

The function 1

4

[
a + 6− 3

2−a

]
first increases from 1 at a = −1 to 1

2

[
4−√

3
]
> 1

at a = 2 − √
3, and then it decreases to 1 at a = 1. The above analysis shows

that 	(νJz) > 1 and, thus, |νJz| > 1. This leads to |νJ ||z| = |νJz| ≥ 1, and also
|νJ | ≥ |1

z
| > 1, which is a contradiction with Lemma 1. Hence, no |z| < 1 exists

such that (39) holds, which means that the necessary condition for stability (16)
holds. This is also sufficient, since Lemma 1 guarantees that roots of modulus 1 are
simple.

The following result can be proven in the same way as Proposition 2.

Proposition 3. If J is strictly positive then the IMEX-CNAB scheme with νD = 0
is absolutely stable for all λΔτ < 1

2
and c ∈ [0, 1].

Remark 1. Above, we let c ∈ [0, 1]. It can also be shown that the IMEX-BDF2
scheme is stable for all λΔτ < 1 and c = 1

2
. This is illustrated in Figure 3 (left).

Also, it can be shown that the IMEX-CNAB scheme is stable for all λΔτ < 1 and
c = 0, see Figure 2 (left).

Under Merton and Kou models J is strictly positive for any quadrature with positive
weights. The following corollaries result from Proposition 1, 2 and 3.

Corollary 1. The IMEX-midpoint scheme with νD = 0 is absolutely stable under
Kou and Merton models for λΔτ < 1 and c = 0.

Corollary 2. The IMEX-BDF2 scheme with νD = 0 is absolutely stable under Kou
and Merton models for all λΔτ < 2

3
and c ∈ [0, 1].

Corollary 3. The IMEX-CNAB scheme with νD = 0 is absolutely stable under Kou
and Merton models for all λΔτ < 1

2
and c ∈ [0, 1].

3.2 Implicit stability

While the theoretical connection between the linear test problem (11) and the system
of ODEs (12) does not hold in the full generality of the jump-diffusion model (νJ �= 0
and νD �= 0), we can nevertheless try to predict the behavior of the IMEX-schemes
from the stability boundaries of the linear test problem. There is no guarantee
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that they are accurate for the system of ODEs (12), but this is generally the best
prediction that can be done.
A sufficient condition for the eigenvalue νD being real and nonpositive is, for exam-
ple, that −D is tridiagonal and M-matrix, as in this case D is a quasi-symmetric
tridiagonal matrix. Under r ≥ 0, the M-matrix property can be attained by adding
artificial diffusion into the model, as was done in [22] for example. Using the cen-
tral difference discretizations for vxx leads the lower bound for νD being of order
−2σ2X2/(Δx)2, where X is the right end of the computational domain and Δx is
the grid step size.
By repeating the procedure as before, but this time with νD �= 0, we obtain the
following expression for νJ under the IMEX-midpoint scheme, for example.

νJ = c+
1

2z

[
1

Δτλ
(1− z2) + (1− c− νD

λ
)(1 + z2)

]
. (45)

The stability region is an ellipse similar to the case νD = 0 defined in (24), but this
time with a radius along the real axis given by 1 − c − νD/λ. This is illustrated
in Figure 4. The stability region in (45) improves for any real νD < 0. Thus,
under these assumptions, the stability of the scheme only improves with the implicit
part included. The same is true for the IMEX-CNAB and the IMEX-BDF2 schemes,
which is illustrated in Figures 5 and 6. This suggests that under suitable assumptions,
the special case νD = 0 can be considered as the worst case stability scenario. While
this formally applies only to the test problem, it is possible to test the practical
performance of the methods applied to the PIDE (6) through numerical experiments.
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Figure 4: Stability boundaries for c = {0, 1
2
, 1} under the IMEX-midpoint scheme

with λ = 1

2
, Δτ = 1 and νD = −1

8
(left), νD = −1 (center) and νD = −4 (right).

4 Numerical Experiments

In this section we present numerical results computed with the IMEX-midpoint,
IMEX-CNAB and IMEX-BDF2 schemes. We price European and American put op-
tions under the parameters listed in Table 1. A uniform grid with N spatial and M
temporal nodes is used, and the spatial truncation boundary is set to X = 400. We
take N = 6401, which should be a sufficiently fine spatial grid to accurately observe
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the convergence in the temporal dimension. The first two time steps are taken with
the first-order accurate one-step IMEX-Euler scheme. The reference prices were com-
puted numerically with N = 6401,M = 16384 using a fixed-point iteration for Euro-
pean options [21] and for American options [19]. The amount of spatial nodes is kept
constant, while the number of time steps is doubled in each refinement. The com-
putations were performed on a PC with a 2.3 GHz Intel Xeon E5410 processor. The
root mean square errors (RMSE) were computed at spatial nodes xi = {90, 100, 110}.
More precisely, RMSE =

√
((v1 − v∗1)

2 + (v2 − v∗2)
2 + (v3 − v∗3)

2)/3, where v∗i is the
reference price and vi is the computed price at xi = {90, 100, 110}. The a priori
chosen convex combination parameters are c = {0, 0.5, 1}.

Expiry Time T 1
Strike K 100
Risk free rate r 0.05
Volatility σ 0.15
Jump arrival rate λ {0.5, 5, 50}
Jump model type Kou
Jump distribution parameters α1 = 3, α2 = 3, p = 0.333333

Table 1: Parameter setup for European and American put options
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First, we price European options under the Kou model with the parameters listed in
Table 1. The temporal errors for λ = {0.5, 5, 50} are plotted in Figures 7, 8, and 9 for
the IMEX-midpoint, IMEX-CNAB, and IMEX-BDF2 schemes, respectively. Next,
we price American options under the Kou model with the same parameters listed in
Table 1. The temporal errors for λ = {0.5, 5, 50} are plotted in Figures 10, 11, and
12 for the IMEX-midpoint, IMEX-CNAB, and IMEX-BDF2 schemes, respectively.
The IMEX-midpoint scheme with the zeroth-order term treated explicitly (c = 1)
becomes rapidly unstable with higher values of λ. The accuracy disparity between
different values of c is insignificant with small to moderate values of λ, but becomes
evident with larger values of λ.
Finally, we compare the IMEX-midpoint (c = 0), IMEX-CNAB (c = 0) and IMEX-
BDF2 (c = 0) schemes against each other, and against an alternative method,
namely, the fixed-point iteration that was used to compute the reference prices.
This comparison is plotted in Figure 13 for European options and in Figure 14 for
American options for λ = {0.5, 5, 50}. This comparison is not fair in terms of com-
putational effort, since each time step takes significantly longer with the iterative
method; see [20] for a comparison with CPU times. The comparison is neverthe-
less included to illustrate the general level of accuracy of the IMEX-schemes. This
shows that while the IMEX-schemes are very fast and second-order convergent, their
(initial) accuracy deteriorates with higher values of λ. In other words, for high λ it
takes an IMEX scheme more time steps to reach the same level of accuracy as the
iterative methods. However, also the iterative methods require more iterations per
time step with higher values of λ; see Corollary 1 in [19].
The IMEX schemes are about twice as fast with a small λ, see [20] for example,
and several times faster with a large λ than the iterative methods. Furthermore,
Figures 13 and 14 indicate that the accuracy disparity between the IMEX-schemes
and iterative methods is negligible with low to moderate values of λ. Thus, for
low to moderate λ the IMEX schemes are clearly more efficient. In most cases the
IMEX-CNAB c = 0 scheme produced the smallest error among the considered IMEX
schemes in our numerical experiments.
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Figure 7: Temporal errors for the European put option under the IMEX-midpoint
scheme with λ = 0.5 (left), λ = 5 (center) and λ = 50 (right, c = 1 unstable and is
off the chart).
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Figure 8: Temporal errors for the European put option under the IMEX-CNAB
scheme with λ = 0.5 (left), λ = 5 (center) and λ = 50 (right).
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Figure 9: Temporal errors for the European put option under the IMEX-BDF2
scheme with λ = 0.5 (left), λ = 5 (center) and λ = 50 (right).

5 Conclusions

We considered the accuracy and absolute stability of several IMEX schemes applied
to the PIDE (6) with varying convex combinations of the zeroth-order term λv. The
only stable choice for the IMEX-midpoint scheme is the fully implicit discretization
of λv with the convex combination parameter c = 0. In particular, the choice c = 1
proved to be very unstable for this scheme. A scheme similar to c = 1 was proposed
in [15, 16], for example. We find that this type of a scheme is not suitable for larger
values of λ . The IMEX-CNAB and IMEX-BDF2 schemes are stable for all c ∈ [0, 1],
with the IMEX-CNAB scheme having a slightly more restrictive stability condition
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Figure 10: Temporal errors for the American put option under the IMEX-midpoint
scheme with λ = 0.5 (left), λ = 5 (center) and λ = 50 (right).
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Figure 11: Temporal errors for the American put option under the IMEX-CNAB
scheme with λ = 0.5 (left), λ = 5 (center) and λ = 50 (right).
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Figure 12: Temporal errors for the American put option under the IMEX-BDF2
scheme with λ = 0.5 (left), λ = 5 (center) and λ = 50 (right).

than the IMEX-BDF2 scheme.
The IMEX-CNAB scheme with c = 0 had the best accuracy among all considered
IMEX schemes in our numerical experiments. We recommend the use of the IMEX-
BDF2 scheme with c = 0.5 if maximal stability is crucial. Otherwise, we recommend
the use of the IMEX-CNAB scheme with c = 0.
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Abstract

We consider the numerical pricing of American options under the Bates model which adds log-normally distributed jumps

for the asset value to the Heston stochastic volatility model. A linear complementarity problem (LCP) is formulated where

partial derivatives are discretized using finite differences and the integral resulting from the jumps is evaluated using simple

quadrature. A rapidly converging fixed point iteration is described for the LCP, where each iterate requires the solution of an

LCP. These are easily solved using a projected algebraic multigrid (PAMG) method. The numerical experiments demonstrate

the efficiency of the proposed approach. Furthermore, they show that the PAMG method leads to better scalability than the

projected SOR (PSOR) method when the discretization is refined.

Keywords: American option; Bates model; Finite difference method; Iterative method; Linear complementarity problem

1. Introduction

In this paper we consider the numerical pricing of American options. Such options can be exercised prior to

the date of maturity which leads to a free-boundary problem. This is in contrast to European options that can only

be exercised on the date of maturity leading to an easier problem to solve. Since trading of options has grown to

a tremendous scale during the last decades the need for accurate and effective numerical option pricing methods

is obvious. The most common options give the holder either the right to sell (put option) or buy (call option) the

underlying asset for the strike price. A mathematical model to describe the behavior of the underlying asset is

needed to compute the option price. Many such models of varying complexity exist. Typically, more complicated

models reproduce more realistic paths of the underlying asset and are hence better to give accurate option prices

but they also make the numerical pricing process more challenging. The most commonly used model is the Black-

Scholes model [1], which assumes the value of the underlying asset to follow a geometric Brownian motion. In the

Merton model [2] log-normally distributed jumps are added to the Black-Scholes model, while in the Kou model

[3] the jumps are log-doubly-exponentially distributed. By making the volatility a stochastic quantity the Heston

model is derived [4], while the Bates model [5] combines the Merton model with the Heston model by adding

log-normally distributed jumps to the latter one. Finally, the correlated jump model [6] also lets the volatility jump

in the Bates model.

∗Corresponding author.

E-mail address: toivanen@stanford.edu.
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One way to price options is to employ a Monte-Carlo type solver that simulates the behavior of the underlying

asset using the model employed and then compute discounted mean values. Such methods are known to have

nonfavorable convergence properties and the treatment of the early exercise feature is nontrivial which is why

we use another approach here. We formulate a linear complementarity problem (LCP) for a partial (integro-)

differential equation (P(I)DE) operator for the price, discretize the P(I)DE, and then solve the resulting LCPs.

Several methods have been proposed for solving the resulting LCPs. The Brennan and Schwartz algorithm [7] is

a direct method for pricing American options under the Black-Scholes model; see also [8]. Numerical methods

for pricing under the Heston model have been developed in [9], [10], [11], [12], [13], [14], for example. The

treatment of the jumps in the Merton and Kou models have been studied in [15], [16], [17], [18], [19], [20], for

example. Pricing under the Bates model has been considered in [21], [22] and under the correlated jump model in

[23].

In this paper, we price American call options under the Bates model. The spatial partial derivatives in the

resulting partial integro-differential operator are discretized using a seven-point finite difference stencil and the

integral term is discretized using a simple quadrature rule. The Rannacher scheme [24] is employed for the time

stepping. We solve the resulting LCPs by employing a fixed point iteration described and analyzed in [25] where

each iteration requires the solution of an LCP. These are solved using a projected multigrid (PAMG) method which

was recently introduced in [26]. The numerical experiments demonstrate that the proposed method is orders of

magnitude faster than the projected successive overrelaxation (PSOR) method.

The outline of the paper is the following. The Bates model and an LCP formulation for an American call

option is described in Sect. 2. In Sect. 3 the discretization of the LCPs is introduced and the iterative method to

solve them is proposed in Sect. 4. Numerical experiments are presented in Sect. 5 and conclusions are given in

Sect. 6.

2. Option Pricing Model

Here, we consider the Bates model [5] that combines the Merton jump model [2] and the Heston stochastic

volatility model [4]. It describes the behavior of the asset value s and its variance y by the coupled stochastic

differential equations

ds = (μ − λξ)sdt +
√

ysdw1 + (J − 1)sdn,

dy = κ(θ − y)dt + σ
√

ydw2.

Here μ is the growth rate of the asset value, κ is the rate of reversion to the mean level of y, θ is the mean level of y,

and σ is the volatility of the variance y. The two Wiener processes w1 are w2 have the correlation ρ. The Poisson

arrival process n has the rate λ and the jump size J is taken from a distribution

f (J) =
1√

2πδJ
exp

(
− [ln J − (γ − δ2/2)]2

2δ2

)
,

where γ and δ define the mean and variance of the jump. The mean jump ξ is given by ξ = exp(γ) − 1.

For simplicity, from now on we assume that the market prices of the volatility and jump risks are zero. Apply-

ing the Feynman-Kac formula to the Bates model we arrive at the following PIDE

0 = ∂u
∂τ
− 1

2
ys2 ∂2u

∂s2 − ρσys ∂
2u
∂s∂y − 1

2
σ2y ∂

2u
∂y2 − (r − q − λξ)s ∂u

∂s − κ(θ − y) ∂u
∂y + (r + λ)u − λ ∫ ∞

0
u(Js, y, τ) f (J)dJ

= ∂u
∂τ
− a11

∂2u
∂s2 − a12

∂2u
∂s∂y − a22

∂2u
∂y2 − a1

∂u
∂s − a2

∂u
∂y + (r + λ)u − λ ∫ ∞

0
u(Js, y, τ) f (J)dJ =: Lu,

(1)

where u is the price of a European option, τ = T − t is the time to expiry and q is the dividend yield. The initial

condition for (1) is defined by

u = g(s, y),

where g is the payoff function which gives the value of option at the expiry. In the following, we consider only

call options. A similar approach can be also applied for put options. The payoff function for a call option with the

strike price K is

g(s, y) = max(s − K, 0).
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For the computations, the unbounded domain is truncated to

(s, y, τ) ∈ (0, S ) × (0,Y) × (0,T ] (2)

with sufficiently large S and Y .

The price u of an American option under the Bates model satisfies an LCP

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu ≥ 0,
u ≥ g,
(Lu) (u − g) = 0.

(3)

We impose the boundary conditions

{
u(0, y, τ) = g(0, y),
u(S , y, τ) = g(S , y),

y ∈ (0,Y),

uy(s,Y, τ) = 0, s ∈ (0, S ).

Beyond the boundary s = S , the price u is approximated to be the same as the payoff g, that is, u(s, y, τ) = g(s, y)

for s ≥ S . On the boundary y = 0, the LCP (3) holds and no additional boundary condition needs to be posed.

3. Discretization

We will compute approximate prices u on a space-time grid defined by the grid points (xi, y j, τk), 0 ≤ i ≤ m,

0 ≤ j ≤ n, 0 ≤ k ≤ l. In space we use a uniform grid with grid steps Δs = S/m in the s-direction and Δy = Y/n in

the y-direction. We start by introducing a semidiscrete approximation for

u(si, y j, τ), 0 ≤ i ≤ m, 0 ≤ j ≤ n.

For the non cross-derivatives in (1) we use standard second-order, centered finite difference approximations.

In this paper, we assume that the correlation ρ is negative. Due to the cross-derivative, we use a seven-point

finite difference stencil. A similar stencil has been described in [21], [22]. For a positive correlation ρ, a suitable

seven-point stencil is given in [10], [11]. The cross-derivative is approximated by

∂2u
∂s∂y

(si, y j, τ) ≈ 1

2ΔsΔy

(
2u(si, y j, τ) − u(si−1, y j+1, τ) − u(si+1, y j−1, τ)

+ (Δs)2 ∂
2u
∂s2

(si, y j, τ) + (Δy)2 ∂
2u
∂y2

(xi, y j, τ)

)
.

(4)

Due to the additional derivative terms in (4), we define modified coefficients for ∂
2u
∂s2 and ∂

2u
∂y2 as

ã11 = a11 +
1

2

Δs
Δy

a12, and ã22 = a22 +
1

2

Δy
Δs

a12.

To avoid positive weights in the computational stencil when the convection dominates the diffusion, we add

some artificial diffusion according to

â11 = min

{
ã11, −1

2
b1Δs,

1

2
b1Δs

}
and â22 = min

{
ã22, −1

2
b2Δy,

1

2
b2Δy

}
.

This is equivalent to using a combination of one-sided and central differences for the convection part. The resulting

matrix is an M-matrix with nonpositive off-diagonals and positive diagonal. It is strictly diagonally dominant when

r + λ > 0.
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The integral term in (1) at each grid point si is denoted by Ii. We start by making the change of variable J = ez,

to obtain

Ii =

∫ ∞

0

u(Jsi, y, τ) f (J)dJ =
∫ ∞

−∞
u(ezxi, y, τ)p(z)dz,

where p is the probability density function of the normal distribution with mean γ− δ2/2 and variance δ2 given by

p(z) =
1√
2πδ

exp

(
− [z − (γ − δ2/2)]2

2δ2

)
.

Then we decompose Ii into one integral over the computational domain defined in (2) and one integral over the

remainder of the interval. The first part is then divided on the spatial grid so that we get

Ii =

n−1∑
j=0

Ii, j +

∫ ∞

ln sn−ln si

g(ezsi, y)p(z)dz, (5)

where

Ii, j =

∫ ln s j−ln si

ln s j+1−ln si

u(ezsi, y, τ)p(z)dz. (6)

The price function u(s, y, τ) needs to be approximated between each grid point pair (si, si+1) in order to define

approximate values of Ii, j. For this, we use a piecewise linear interpolation

u(s, y, τ) ≈ si+1 − s
si+1 − si

u(si, y, τ) +
s − si

si+1 − si
u(si+1, y, τ) (7)

for s ∈ [si, si+1]. Using (7) in (6) we get

Ii, j ≈ eγ

2

[
erf

(
si, j+1 − δ2/2
δ
√

2

)
− erf

(
si, j − δ2/2
δ
√

2

)]
α j xi +

1

2

[
erf

(
si, j+1 + δ

2/2

δ
√

2

)
− erf

(
si, j + δ

2/2

δ
√

2

)]
β j xi,

where erf(·) is the error function, si, j = ln s j − ln si − γ,

α j =
u(s j+1, y, τ) − u(s j, y, τ)

s j+1 − s j
, and β j =

u(s j, y, τ)s j+1 − u(s j+1, y, τ)s j

s j+1 − s j
.

The spatial discretization leads to a semi-discrete LCP

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uτ + Au + a ≥ 0,
u ≥ g,
(uτ + Au + a)T (u − g) = 0,

where A is an (m + 1)(n + 1) × (m + 1)(n + 1) matrix, a is a vector resulting from the second term in (5), u and

g are vectors containing the grid point values of the price u and the payoff g, respectively. In the above LCP, the

inequalities hold componentwise.

For the temporal discretization we use the Rannacher scheme [24]; see also [27]. The first four time steps

are performed with the implicit Euler method with the time step Δτ/2, and then the rest of the time steps are

performed with the Crank-Nicolson method with the time step Δτ, where Δτ = T/(l − 2). Thus, the time grid is

defined by

τk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k

2(l−2)
T, k = 0, 1, 2, 3,

k−2
l−2

T, k = 4, 5, . . . , l.

The purpose of a few Euler steps in the beginning of the time-stepping process is to damp oscillatory components

of the solution. The discretization in time leads to the solution of the following sequence of LCPs:

LCP(B(k+1),u(k+1), b(k+1), g), (8)
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where u(k) denotes the vector u at the kth time step. Here LCP(B,u, b, g) denotes the linear complementarity

problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Bu − b) ≥ 0,
u ≥ g,
(Bu − b)T (u − g) = 0.

For the first four time steps k = 0, 1, 2, 3, the implicit Euler method leads to

B(k+1) = I +
1

2
ΔτA and b(k+1) = u(k) − 1

2
Δτa. (9)

For the rest of the time steps k = 4, 5, . . . , l − 1, the Crank-Nicolson method leads to

B(k+1) = I +
1

2
ΔτA and b(k+1) =

(
I − 1

2
ΔτA

)
u(k) − Δτa. (10)

4. The solution of LCPs

The projected SOR method (PSOR) for LCPs was introduced by Cryer in [28]. The method performs suc-

cessive over relaxed corrections for the components of the solution vector combined with a projection when a

component violates the early exercise constraint. For pricing American options this methods has been discussed

in the books [29], [30], for example. The method is fairly simple to implement, but typically the number of iter-

ations grows substantially when the discretization is refined. Thus, it is not usually efficient when fairly accurate

option prices are sought. In this paper we will employ PSOR to (8) for comparison, see Sect. 5.

Here we will focus on an iterative scheme introduced in [22] and [25]. Let B denote the matrix B(k+1) in (9)

or (10) associated with the LCP (8). It has a regular splitting [31]

B = T − J,

where J is a block diagonal matrix with full diagonal blocks resulting from the integral term and T is the rest

which is a block tridiagonal matrix. Based on this splitting, the first two authors of this paper proposed a fixed

point iteration for LCPs in [22], [25]. It is a generalization of an iteration for linear systems described in [30] and

applied in [15], [18], [20]. The fixed point iteration for LCP(B,u, b, g) reads

LCP(T,u j+1, b + Ju j, g), j = 0, 1, . . . (11)

Each iteration requires the solution of an LCP with the block tridiagonal T and the multiplication of a vector by

J. Below we will describe and compare PSOR and PAMG to solve these LCPs.

Based on a convergence result in [25] and the properties of the discretization, we can easily see that the

reduction of the l∞-norm of the error in each iteration of (11) is proportional to Δτλ. In general Δτλ is much less

than one yielding that the iteration converges very rapidly. In practice, typically only a few iterations are needed

to reach sufficient accuracy for practical purposes.

One way to solve the LCPs in (11) is to use PSOR. Since it is not an efficient method for refined discretizations

we will only use it here for comparison and instead make use of a projected algebraic multigrid method (PAMG)

introduced in [26]. With a well designed multigrid method, the number of iterations does not grow with refined

discretizations. For extensive literature on this see, the book [32], for example. For solving LCPs Brandt and

Cryer introduced a projected full approximation scheme (PFAS) multigrid method in [33]. Another multigrid

method for similar problems was described in [34]. The PFAS method was used to price American options under

stochastic volatility by Clarke and Parrott in [9], and Oosterlee in [13]. Some alternative approaches employing

multigrid methods for option pricing have been considered in [35], [36], [37]. Reisinger and Wittum described a

projected multigrid (PMG) method for LCPs which resembles more closely a classical multigrid method for linear

problems in [38]. This method has been used to price American options in [38], [11].

The above mentioned methods are so-called geometrical multigrid methods which means that the spatial oper-

ators are discretized on sequence of grids. Furthermore, transfer operators between grids need to be implemented.
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The geometrical multigrid method can be implemented with some effort especially when the computational do-

main is a rectangle like in this case, but it is not a black-box method to which one can just give the matrix and

vectors defining the LCP. An algebraic multigrid (AMG) method [39], [40] builds the coarse problems and the

transfer operators automatically using the properties of the matrix. Recently, Toivanen and Oosterlee generalized

an AMG method for LCPs and called the resulting method as the projected algebraic multigrid (PAMG) method

[26]. Its treatment of LCPs in the coarser levels resemble the one in the PMG method [38]. The PAMG method is

easy to use and efficient [26]. Below we present the algorithms for one iteration of PSOR and PAMG respectively.

Algorithm One iteration of PSOR(B,u, b, g) Algorithm One iteration of PAMG(B,u, b, g)

for i = 1, . . . , dimB if coarsest level then

ri = bi −∑dimB
j=1 Bi ju j solve LCP(B,u, b, g)

ui = ui + ωri/Bii else

ui = max(ui, gi) PS(B,u, b, g)

end for uc = 0
rc = R̃(b − Bu)

gc = R̂(g − u)

PAMG(Bc,uc, rc, gc)

u = u + P̃uc

PS(B,u, b, g)

end if

Here R̃ and R̂ denote the restriction operators for the solution of the LCP and its constraint respectively. The

prolongation for the LCP is denoted by P̃. Finally PS is a smoother for the LCP. For more details on these

operators, see [26].

Finally, we summarize our algorithm to numerically price American options under the Bates model. Note that

PSOR or PAMG form inner iterations to the outer LCP-iteration. In the next section we will see that for PAMG,

both the outer and inner iteration-count is kept very low for each time-step.

Algorithm
Discretize (3) with (1) giving (8) with (9) and (10)

for k = 1, . . . , l (Time-stepping)

for j = 1, 2, . . . until convergence (LCP-iteration)

Solve (11) using PSOR or PAMG

end for

end for

5. Numerical Experiment

In our numerical example, we price American call options. The parameters for the Bates model are the same

as in [22] and they are defined below.
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Parameter Notation Value

Risk free interest rate r 0.03

Dividend yield q 0.05

Strike price K 100

Correlation between the price and variance processes ρ -0.5

Mean level of the variance θ 0.04

Rate of reversion to the mean level κ 2.0

Volatility of the variance σ 0.25

Jump rate λ 0.2

Mean jump γ -0.5

Variance of jump δ 0.4

The computational domain is (x, y, τ) ∈ [0, 400]× [0, 1]× [0, 0.5]. For the PSOR method, the relaxation parameter

ω = 1.5 is used.

In Table 1 we report the numerical results. The table has the following columns:

• Grid (m, n, l) defines the number of grid-points in x, y, and τ to be m, n, and l, respectively.

• LCP iter. gives the average number of LCP iterations on each time step.

• PSOR/PAMG iter. gives the average number of inner PSOR or PAMG iterations for solving one LCP.

• Error gives the root mean square relative error given by

error =

⎡⎢⎢⎢⎢⎢⎢⎣1

5

5∑
i=1

(
u(xi, θ,T ) − U(xi, θ,T )

U(xi, θ,T )

)2
⎤⎥⎥⎥⎥⎥⎥⎦

1/2

,

where x = (80, 90, 100, 110, 120)T . The reference prices U given in [22] at (xi, θ,T ), i = 1, 2, . . . , 5 are

0.328526, 2.109397, 6.711622, 13.749337, 22.143307. They were computed using a componentwise split-

ting method on the grid (4096, 2048, 514).

• Ratio is the ratio of the consecutive root mean square relative errors.

• CPU gives the CPU time in seconds on a 2.0 GHz Intel Core i7 PC using one thread. For the PAMG method,

the CPU time includes the AMG initialization time.

For the iterations, we use the stopping criterion∥∥∥r̄ j
∥∥∥

2
≤ 10−6‖b‖2,

where r̄ j is the reduced residual for the LCP iterations and the pure PSOR iterations respectively. It is defined by

r̄ j
i =

⎧⎪⎪⎨⎪⎪⎩
Bu j

i − bi if u j
i > gi

0 if u j
i = gi.

For the inner PSOR/PAMG iterations it is defined similarly with T and the associated vectors instead of B, u j, and

b.

The multiplication by the matrix J is the most expensive operation in the iteration. In order to perform it

efficiently with the LCP iterations, we collected all n+ 1 multiplications corresponding to all x-grid lines together

and then performed the resulting matrix-matrix multiplication using the optimized GotoBLAS library [41].

In Table 1, roughly second-order accuracy is observed with the proposed discretization as the ratio is about

four on average. On finer grids, only two LCP iterations are required to satisfy the stopping criterion. With the

coarsest grid (64, 32, 10), the LCP iterations with the PSOR and PAMG methods require the same amount of time

while the pure PSOR is twice slower. On finer grids, the speed differences become large and the number of PSOR

iterations roughly doubles with each refinement. On the finest grid (1024, 512, 130), the LCP iteration with the

PAMG method is about 12 times faster than the LCP iteration with the PSOR method, and it is 150 times faster

than the pure PSOR iteration.
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Table 1. The numerical results with five different space-time discretizations.

method Grid (m, n, l) LCP iter. PSOR/PAMG iter. error ratio CPU

PSOR (64, 32, 10) 47.6 0.11765 0.09

(128, 64, 18) 50.2 0.04068 2.89 1.24

(256, 128, 34) 109.6 0.00740 5.49 42.00

(512, 256, 66) 216.8 0.00227 3.26 1608.39

(1024, 512, 130) 396.6 0.00038 5.93 251758.87

LCP iter. (64, 32, 10) 2.4 35.5 0.11759 0.04

with PSOR (128, 64, 18) 2.0 44.4 0.04064 2.89 0.28

(256, 128, 34) 2.0 101.0 0.00738 5.50 5.19

(512, 256, 66) 2.0 212.4 0.00226 3.27 107.91

(1024, 512, 130) 2.0 417.0 0.00038 5.96 1673.90

LCP iter. (64, 32, 10) 2.5 2.9 0.11760 0.04

with PAMG (128, 64, 18) 2.1 3.5 0.04064 2.89 0.26

(256, 128, 34) 2.0 3.5 0.00738 5.50 2.10

(512, 256, 66) 2.0 3.3 0.00226 3.26 17.85

(1024, 512, 130) 2.0 2.6 0.00038 5.93 133.11

6. Conclusions

In this paper we considered a linear complementarity problem (LCP) with a partial integro-differential operator

for pricing American options under the Bates model. For the partial derivatives and integral we employed finite

differences and simple quadrature respectively. In the numerical experiments, the discretizations are roughly

second-order accurate in both space and time.

We proposed a rapidly converging iteration for solving LCPs at each time step. In each such iteration, an LCP

with a sparse matrix needs to be solved. We demonstrated that these problems can be efficiently and easily solved

with a projected algebraic multigrid method. With finer discretizations this approach leads to an order or several

orders of magnitude faster method than using the projected SOR method.
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Abstract

Partial integro-differential equation (PIDE) formulations are often preferable for
pricing options under models with stochastic volatility and jumps, especially for Amer-
ican-style option contracts. We consider the pricing of options under such models,
namely the Bates model and the so-called SVCJ model. The non-locality of the jump
terms in these models lead to matrices with full matrix blocks. Standard discretization
methods are not viable directly since they would require the inversion of such a ma-
trix. Instead, we adopt a two-step implicit-explicit (IMEX) time discretization scheme,
the IMEX-CNAB scheme, where the jump term is treated explicitly, while the rest is
treated implicitly. The resulting linear systems can then be solved directly by em-
ploying LU decomposition. Alternatively, the systems can be iterated under a scalable
algebraic multigrid (AMG) method. For pricing American options, LU decomposition
is employed with an operator splitting for the early exercise constraint or, alternatively,
a projected AMG method can be used to solve the resulting linear complementarity
problems. We price European and American options in numerical experiments, which
demonstrate the good efficiency of the proposed methods.

Keywords: option pricing, stochastic volatility model, jump-diffusion model, finite
difference method, implicit-explicit time discretization

1 Introduction

Since the pioneering papers by Black and Scholes [6], and Merton [34], the shortcomings of
their original model have become clear. It is well known that fitting empirically observed
option prices into the Black-Scholes model typically implies a volatility distribution with
a smile like shape. This volatility smile becomes more pronounced near the maturity
date. The usual modifications of the Black-Scholes model to explain such implied volatility
patterns include models with jumps and/or stochastic volatility.

While the underlying asset price can be completely modeled by an infinitude of predom-
inantly small jumps, such as in the CGMY model [8], the conventional view is that jumps
are relatively rare, high impact events. Over large time intervals the Brownian component
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becomes the dominant factor in the model since jumps are infrequent and their influence
tends to cancel out. Thus, for options with long maturities the stochastic volatility models,
for example the Heston model [23], are often regarded as more appropriate. For options
with short maturities, however, jumps become increasingly important as a purely Brown-
ian motion driven process would require extremely high levels of volatility to explain the
pronounced volatility smile pattern. Well-known jump-diffusion models in the literature
include the Merton [35] and Kou [29] models.

Bates proposed a more complete model in [5] with stochastic volatility and jumps in
returns, essentially a combination of the Heston and Merton models. Duffie et al. [15]
followed up with arguably a more realistic model with stochastic volatility and jumps in
both returns and volatility. They considered independently arriving jumps (SVIJ) and
contemporaneously arriving jumps (SVCJ). These models were further investigated by
Eraker et al. in [16]. They concluded that SVIJ and SVCJ provide the best fit, but SVCJ
is easier to estimate since jumps in returns and volatility are simultaneous.

In this paper we consider the numerical pricing of options under the Bates model (also
known as the SVJ model) and the SVCJ model. A partial integro-differential equation
(PIDE) can be derived for the price of a European option under the Bates and SVCJ
models. Similarly, the price of an American option can be obtained by formulating a
linear complementarity problem (LCP) with the same operator. Under the Heston model,
numerical methods based on partial differential formulations for option pricing have been
considered in the 1990s, for example, in [10, 53]. More recently similar methods have been
generalized for the Bates model in [4, 9, 50, 36, 47, 40] and pricing European options under
the SVJC model have been studied in [17, 52].

The finite difference and finite element methods are the most common ways to discretize
the spatial operator; see [1]. For example, in [4, 17, 36, 40, 52] finite elements have been
employd while in [9, 50, 47, 33, 38, 32, 39] finite differences are used. The discretization of
the integral operator leads to matrices with full matrix blocks, for simplicity such matrices
are called full matrices in the following. Standard implicit time discretization schemes lead
to systems of equations with these full matrices. Efficient iterative methods can be used
in combination with implicit discretization schemes, such as in [49, 44] for example. A
more attractive approach is to employ special implicit-explicit (IMEX) time discretization
schemes which treat the jump term explicitly and the rest implicitly. A first-order accurate
IMEX-Euler scheme for option pricing under jump-diffusion models was proposed in [12].
Second-order accurate IMEX schemes, for example, in [3, 19] have been applied for option
pricing in [17, 30, 31, 45]. In [46] a family of IMEX time discretization schemes was
analyzed in the context of option pricing under jump-diffusion models. In particular the
IMEX-CNAB scheme was found to be fast and accurate, while having desirable stability
properties. Here we employ this time discretization scheme for the Bates and SVCJ models.

The implicit treatment of the partial differential operator leads to block tridiagonal
systems which are of LCP form for American options. While the projected SOR method
(PSOR) [13] can be easily employed to solve these systems, its efficiency deteriorates, i.e.
the number of required iterations grows when discretizations are refined. A scalable alter-
native is a well designed multigrid method which require a constant number of iterations
also with refined discretizations. The first such method for LCPs was the projected full
approximation scheme (PFAS) multigrid method introduced by Brandt and Cryer in [7].
This method was used to price American options by Clarke and Parrott in [10], and Ooster-
lee in [37]. The projected multigrid (PMG) method for LCPs introduced by Reisinger and
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Wittum in [42] resembles more closely multigrid methods for linear systems. The PFAS
and PMG methods are so-called geometrical multigrid methods which require a sequence
of hierarchical grids. An easier-to-use alternative is algebraic multigrid (AMG) methods
[43, 48] which automatically generate a sequence of coarser problems. The projected al-
gebraic multigrid (PAMG) method proposed in [51] is a generalization of these algebraic
methods for LCPs. This is one of the methods that we employ for the solution of LCPs.

The other method that we will use is the operator splitting method proposed in [24]
and employed for the Heston model in [26, 27]. This method approximates the LCP as a
system of linear equations and a set of simple decoupled linear complementarity problems.
A popular alternative approximation is the penalty method which was considered for the
Heston model by Zvan, Forsyth, and Vetzal in [53] and since then by many authors for
various option pricing models. For the block tridiagonal systems of linear equations many
different methods can employed. In this paper, we will show that these systems can be
solved very efficiently using a modern sparse direct solver when the time-step is constant.
In this case, an LU decomposition of the coefficient-matrix needs to be formed only once.
For two-dimensional problems like the underlying one, George showed in his 1973 paper
[21] that the decomposition can be formed using O(m3) operations and the solution each
time-step requires O(m2 logm) operations, where m is of the same order as the number
of grid-points in both directions. As the number of time-steps is usually also of the same
order, i.e. ∼ m, the computational complexity of the time-stepping is greater than the one
required by forming the LU decomposition.

Explicit treatment of the jumps leads to matrix-vector multiplications with a full ma-
trix. These multiplications can be performed efficiently by employing FFT based imple-
mentations. For a logarithmically uniform grid, the jump matrix under the SVJ model
is a Toeplitz matrix, which can be embedded into a circulant matrix, as in [2] for exam-
ple. The multiplication can then be computed by an FFT and an inverse FFT, which
require only O(m logm) operations for each grid line. This approach is more involved for
the SVCJ model, where FFTs need to be performed in two directions. Again under the
SVCJ model the jump matrix can be embedded into a block circulant matrix with circulant
blocks (BCCB); see [17], for example. The FFTs in both directions require O(m2 logm)
operations. Here we describe and employ this approach with the SVCJ model.

2 Option pricing model

2.1 Governing equations

First we consider a model with stochastic volatility and jumps in returns described by Bates
[5]. Under this model the behavior of the asset value s and its variance v is described by
the coupled stochastic differential equations

ds = μBsdt+
√
vsdw1 + sdJ,

dv = κ(θ − v)dt+ σ
√
vdw2.

(1)

Here μB is the drift rate defined by μB = r − q − λξB where r ≥ 0 is the risk-free interest
rate and q ≥ 0 is the continuous dividend yield. The jump process J is a compound Poisson
process with intensity λ > 0 and J + 1 has a log-normal distribution p(y) with the mean
in log y being γ and the variance in log y being δ

2, i.e. the probability density function is

given by p(y) = 1√
2πyδ

e
−

(log y−γ)2

2δ2 . The parameter ξB is defined by ξB = e
γ+δ2/2 − 1. The
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variance v has mean level θ, κ is the rate of reversion to the mean level of v, and σ is the
volatility of the variance v. The two Wiener processes w1 are w2 have the correlation ρ.

By combining derivative pricing arguments from [11, 18] for the Bates model, we can
obtain the PIDE (formulated in forward time)

∂u

∂τ
=

1

2
vs

2∂
2
u

∂s2
+ ρσvs

∂
2
u

∂s∂v
+

1

2
σ
2
v
∂
2
u

∂v2
+ (r − q − λξB)s

∂u

∂s
+ κ(θ − v)

∂u

∂v

− (r + λ)u+ λ

∫ ∞

0

u(sy, v, τ)p(y)dy =: LB
Du+ L

B
I u,

(2)

where u is the price of a European option and τ = T − t is the time to expiry. The
operators L

B
D and L

B
I are defined as the differential part (including the term −(r + λ)u)

and the integral part of (2), respectively. The initial condition for (2) is defined by

u = g(s, v), (3)

where g is the pay-off function which gives the value of the option at the expiry.
Next, we allow for jumps in the volatility and study SVCJ. Then we have

ds = μSsdt+
√
vsdw1 + sdJ

s

dv = κ(θ − v)dt+ σ
√
vdw2 + dJ

v
.

(4)

Now μS = r − q − λξS where ξS is defined by ξS = e
γ+δ2/2(1 − νρJ)

−1 − 1 and ρJ

defines the correlation between jumps in returns and variance. The two-dimensional jump
process (Js

, J
v) is a R × R

+-valued compound Poisson process with intensity λ > 0.
The distribution of the jump size in variance is assumed to be exponential with mean ν.
Conditional on a jump of size zv in the variance process, Js+1 has a log-normal distribution
p(zs, zv) with the mean in log zs being γ+ ρJz

v. This gives a bivariate probability density

function defined by p(zs, zv) = 1√
2πzsδν

e
− zv

ν
−

(log zs−γ−ρJzv)2

2δ2 .

As in [15, 17], we assume that the price of a European option under the SVCJ-model
can be obtained as the solution to the PIDE

∂u

∂τ
=

1

2
vs

2∂
2
u

∂s2
+ ρσvs

∂
2
u

∂s∂v
+

1

2
σ
2
v
∂
2
u

∂v2
+ (r − q − λξS)s

∂u

∂s
+ κ(θ − v)

∂u

∂v

− (r + λ)u+ λ

∫ ∞

0

∫ ∞

0

u(s · zs, v + z
v
, τ)p(zs, zv)dzvdzs =: LS

Du+ L
S
I u.

(5)

The initial condition is defined by (3).
For computational reasons we truncate the unbounded domain to (s, v, τ) ∈ (0, smax)×

(0, vmax)×(0, T ]. We impose the boundary conditions u(0, v, τ) = e
−rτ

g(0, v), u(smax, v, τ) =
g(smax, v), and

∂u
∂v
(s, vmax, τ) = 0. On the boundary v = 0, the PIDEs (2) and (5) hold

and no additional boundary condition needs to be posed; see [27] on discussion on this
boundary and its treatment.

2.2 Linear complementarity problem for American options

In the following, LD and LI denote the differential operator L
B
D or L

S
D, and the integral

operator LB
I or LS

I , respectively. With this notation both (2) and (5) can be expressed as
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∂u
∂τ

− LDu− LIu =: Lu = 0. The price u of an American option satisfies the LCP defined
by {

Lu ≥ 0, u ≥ 0,

(Lu)(u− g) = 0.
(6)

We impose the same boundary conditions as for (2) and (5) except on the boundary s = 0
the boundary condition is without discounting, i.e. u(0, v, τ) = g(0, v).

3 Discretization

3.1 Computational grid

We will use a computational grid that is uniform in τ and nonuniform in s and v. The
spatial grid is denoted (si, vj), i = 1, . . . ,ms, j = 1, . . . ,mv. We employ grid generating
functions s : [0, 1] → [0, smax] and v : [0, 1] → [0, vmax] to define the grid-points as si =
s((i− 1)/(ms − 1)) and vj = v((j − 1)/(mv − 1)).

There are many ways to choose the functions s and v. Here we use the quadratic
functions

s(p) = ap
2 + bp, p ∈ [0, 1], v(q) = cq

2 + dq, q ∈ [0, 1] (7)

with the coefficients a, b, c, and d defined by the following conditions. In order to have
the end points at smax and vmax the conditions s(1) = smax and v(1) = vmax have to hold.
We choose s to map the point pK to the strike price K, i.e. s(pK) = K. When this point
satisfies pK < K/smax the grid is refined in the interval [0,K]. A similar condition can be
defined also for v, but instead we require the grid to be α times finer at 0 than at vmax.
This leads to the condition v

′(0) = αv
′(1). These four conditions define the coefficient a,

b, c, and d.
At a grid point si = s((i − 1)/(ms − 1)) the grid step to the left is denoted by Δs

−
i =

si − si−1 and the grid step to the right is denoted by Δs
+
i = si+1 − si. The grid steps

around vj are denoted in the same way.

3.2 IMEX-discretization in time

In [46] a number of IMEX-discretization methods for option pricing problems under jump-
diffusion models are examined. The authors found that the IMEX-CNAB method pro-
duced the smallest error among the methods they studied. This method can be seen as a
modification of the popular Crank-Nicolson method with a second-order accurate explicit
threatment for the integral operator. For these reasons, we will employ and promote this
method here.

We start by taking a small even number 2Ñ of Rannacher-style smoothing Euler steps
[41, 22] with the time-step Δτ/2 given by(

I − Δτ

2
LD

)
u
(n+1)/2 =

(
I +

Δτ

2
LI

)
u
n/2

, n = 0, . . . , 2Ñ − 1. (8)

This is followed by IMEX-CNAB steps defined by(
I − Δτ

2
LD

)
u
n+1 =

(
I +

Δτ

2
LD +

3Δτ

2
LI

)
u
n − Δτ

2
LIu

n−1
, n = Ñ , . . . , N. (9)
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3.3 Discretization of the differential operator

Here we construct a seven-point finite difference discretization for the differential operator

LDu =
1

2
vs

2∂
2
u

∂s2
+ ρσvs

∂
2
u

∂s∂v
+

1

2
σ
2
v
∂
2
u

∂v2

+ (r − q − λξ)s
∂u

∂s
+ κ(θ − v)

∂u

∂v
− (r + λ)u.

(10)

We start with the mixed derivative and assume that the correlation ρ is negative. A
similar seven-point finite difference discretization can also be constructed for a positive ρ;
see [25, 26], for example. An alternative approach to construct finite difference stencils
is considered in [28]. A Taylor-expansion of u(si+1, vj−1, τ) and u(si−1, vj+1, τ) around
(si, vj , τ) leads to, omitting the argument (si, vj , τ) in the expressions

u(si+1, vj−1, τ) ≈ u+Δs
+
i

∂u

∂s
−Δv

−
j

∂u

∂v

+
(Δs

+
i )

2

2

∂
2
u

∂s2
−Δs

+
i Δv

−
j

∂
2
u

∂s∂v
+

(Δv
−
j )

2

2

∂
2
u

∂v2
,

u(si−1, vj+1, τ) ≈ u−Δs
−
i

∂u

∂s
+Δv

+
j

∂u

∂v

+
(Δs

−
i )

2

2

∂
2
u

∂s2
−Δs

−
i Δv

+
j

∂
2
u

∂s∂v
+

(Δv
+
j )

2

2

∂
2
u

∂v2
,

(11)

which gives

∂
2
u

∂s∂v
≈ −u(si+1, vj−1, τ) + u+Δs

+
i

∂u
∂s

−Δv
−
j

∂u
∂v

+
(Δs+i )2

2
∂2u
∂s2

+
(Δv−j )2

2
∂2u
∂v2

Δs
+
i Δv

−
j

,

∂
2
u

∂s∂v
≈ −u(si−1, vj+1, τ) + u−Δs

−
i

∂u
∂s

+Δv
+
j

∂u
∂v

+
(Δs−i )2

2

∂2u
∂s2

+
(Δv+j )2

2

∂2u
∂v2

Δs
−
i Δv

+
j

.

(12)

Using a weighted average of the approximations in (12) we obtain

∂
2
u

∂s∂v
≈ w

−u(si+1, vj−1, τ) + u+Δs
+
i

∂u
∂s

−Δv
−
j

∂u
∂v

+
(Δs+i )2

2
∂2u
∂s2

+
(Δv−j )2

2
∂2u
∂v2

Δs
+
i Δv

−
j

+ (1− w)
−u(si−1, vj+1, τ) + u−Δs

−
i

∂u
∂s

+Δv
+
j

∂u
∂v

+
(Δs−i )2

2
∂2u
∂s2

+
(Δv+j )2

2
∂2u
∂v2

Δs
−
i Δv

+
j

.

(13)

Using (13) in (10), we obtain the approximation

LDu ≈ css

∂
2
u

∂s2
+ cvv

∂
2
u

∂v2
+ cs

∂u

∂s
+ cv

∂u

∂v

+

(
−(r + λ) + ρσvs

(
w

Δs
+
i Δv

−
j

+
1−w

Δs
−
i Δv

+
j

))
u

− w

Δs
+
i Δv

−
j

u(si+1, vj−1, τ)− 1− w

Δs
−
i Δv

+
j

u(si−1, vj+1, τ),

(14)
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where the coefficients are

css =
1

2

(
vs

2 + ρσvs

(
wΔs

+
i

Δv
−
j

+
(1− w)Δs

−
i

Δv
+
j

))
,

cvv =
1

2

(
σ
2
v + ρσvs

(
wΔv

−
j

Δs
+
i

+
(1− w)Δv

+
j

Δs
−
i

))
,

cs = (r − q − λξ)s+ ρσvs

(
w

Δv
−
j

− 1− w

Δv
+
j

)
,

cv = κ(θ − v) + ρσvs

(
− w

Δs
+
i

+
1− w

Δs
−
i

)
.

(15)

Second-order finite difference discretizations of the second-derivatives are defined by

∂
2
u

∂s2
(si, vj , τ) ≈ 2

1

Δs+i
u(si+1, vj , τ)−

(
1

Δs+i
+ 1

Δs−i

)
u(si, vj , τ) +

1

Δs−i
u(si−1, vj , τ)

Δs
−
i +Δs

+
i

,

∂
2
u

∂v2
(si, vj , τ) ≈ 2

1

Δv+j
u(si, vj+1, τ)−

(
1

Δv+j
+ 1

Δv−j

)
u(si, vj , τ) +

1

Δv−j
u(si, vj−1, τ)

Δv
−
j +Δv

+
j

.

(16)

Similarly, second-order finite differences for the first-order derivatives are defined by

∂u

∂s
(si, vj , τ) ≈

Δs−i
Δs+i

u(si+1, vj , τ)−
(
Δs−i
Δs+i

− Δs+i
Δs−i

)
u(si, vj , τ)− Δs+i

Δs−i
u(si−1, vj , τ)

Δs
−
i +Δs

+
i

,

∂u

∂v
(si, vj , τ) ≈

Δv−j

Δv+j
u(si, vj+1, τ)−

(
Δv−j

Δv+j
− Δv+j

Δv−j

)
u(si, vj , τ)− Δv+j

Δv−j
u(si, vj−1, τ)

Δv
−
j +Δv

+
j

.

(17)

When a finite difference method is employed, spurious oscillations might occur when the
discretization matrix of −LD does not lead to a so called M -matrix. Sufficient conditions
for an M -matrix are that it is strictly diagonally dominant with positive diagonal elements
and it has non-positive off-diagonal elements. To ensure the off-diagonals to be non-
positive, we add artificial diffusion when necessary. With the second-order differences (16)
and (17), this leads to the modified diffusion coefficients

c̃ss = max

{
c̃ss, −1

2
csΔs

−
i ,

1

2
csΔs

+
i

}
,

c̃vv = max

{
c̃vv , −1

2
cvΔv

−
i ,

1

2
cvΔv

+
i

}
.

(18)

When the original coefficients css and cvv are positive, this addition of artificial diffusion
is equivalent to using one-sided first-order finite differences to discretize a part of the first-
order derivatives.

In order not to add excessive diffusion to the discretization, it is desirable that the
coefficients css and cvv are non-negative. For a general weight w ∈ [0, 1], this leads to the
bounds

− ρ

σ
siΔv

+
j ≤ Δs

−
i ≤ − 1

ρσ
siΔv

+
j and − ρ

σ
siΔv

−
j ≤ Δs

+
i ≤ − 1

ρσ
siΔv

−
j (19)
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for the grid step sizes Δs
−
i and Δs

+
i . These bounds can be quite stringent when the

correlation ρ approaches −1.
Note that the diagonal element of the discretization matrix is r + λ minus the sum of

the off-diagonal elements. Thus, the matrix is strictly diagonally dominant with positive
diagonals when r + λ > 0 and the off-diagonal elements are non-positive.

3.4 Discretization of the integral operator

3.4.1 Bates’ model

The integral term can be written as

I =

∫ ∞

0

u(sy, v, τ)p(y)dy =

∫ ∞

−∞

ū(z + x, v, τ)p̄(z)dz, (20)

where x = log s, z = log y, ū(z, v, τ) = u(ez , v, τ), and p̄(z) = p(ez)ez. Now, make the
change of variable ζ = z + x and study the value of the integral at the point xi

Ii =

∫ ∞

−∞

ū(ζ, v, τ)p̄(ζ − xi)dζ =

∫ xmax

xmin

ū(ζ, v, τ)p̄(ζ − xi)dζ

+

∫ xmin

−∞

ḡ(ζ, v, τ)p̄(ζ − xi)dζ +

∫ ∞

xmax

ḡ(ζ, v, τ)p̄(ζ − xi)dζ.

(21)

The interval (xmin, xmax) is chosen to be so large that the two last integrals of (21) are
negligible. The first part of the integral is evaluated using the trapezoidal quadrature rule
on an equidistant grid in x with spacing Δx and mx grid-points in (xmin, xmax) giving

Ii ≈
∫ xmax

xmin

ū(ζ, v, τ)p̄(ζ − xi)dζ ≈ Δx

mx∑
j=1

ū(ζj, v, τ)p̄(ζj − xi) = Īi. (22)

Note that the above appoximation includes the additional terms Δx
2
ū(xmin, v, τ)p̄(xmin−xi)

and Δx
2
ū(xmax, v, τ)p̄(xmax − xi) which are also assumed to be negligible. Computing all

Īi, i = 1, . . . ,mx can be accomplished by the matrix-vector multiplication defined by

Ī = Tmx ū,

where

Ī =
(
Ī1 Ī2 · · · Īmx−1 Īmx

)T
, ū =

(
ū1 ū2 · · · ūmx−1 ūmx

)T
,

Tmx =

⎛
⎜⎜⎜⎜⎜⎝

p̄(0) p̄(Δx) · · · p̄((mx−2)Δx) p̄((mx−1)Δx)

p̄(−Δx) p̄(0) p̄(Δx) · · · p̄((mx−2)Δx)

...
. . .

. . .
. . .

...
p̄(−(mx−2)Δx) · · · p̄(−Δx) p̄(0) p̄(Δx)

p̄(−(mx−1)Δx) p̄(−(mx−2)Δx) · · · p̄(−Δx) p̄(0)

⎞
⎟⎟⎟⎟⎟⎠ .

The matrix Tmx is a so called Toeplitz matrix with constant diagonals. Such matrices can
be embedded in circulant matrices which for Tmx yields

C2mx−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p̄(0) · · · p̄((mx−1)Δx) | · · · p̄(−Δx)

...
. . . | . . .

...
p̄(−(mx−1)Δx) p̄(0) | p̄((mx−1)Δx)

−−−−− −−− −−−−− + −−− −−−−−
...

. . . | . . .
...

p̄(Δx) · · · p̄(−(mx−1)Δx) | · · · p̄(0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The computation of Ī = Tmxū can be performed by first computing Ĩ = C2mx−1ũ, where

ũ =
(
ū1 ū2 · · · ūmx−1 ūmx 0 · · · 0 )T . Then Ī is given by the mx first elements in Ĩ.

The circulant matrix C2mx−1 can be decomposed as C2mx−1 = F
−1
2mx−1ΛF2mx−1, where

F2mx−1 is a Fourier matrix of order 2mx−1 and Λ is a diagonal matrix with the eigenvalues
of C2mx−1 on the diagonal. These eigenvalues can be computed by F2mx−1c where c is
the first column vector in C2mx−1. From this we conclude that the multiplication of a
vector w by the matrix C2mx−1 can be computed as F

−1
2mx−1ΛF2mx−1w. This can then

be accomplished using two discrete Fourier transforms (DFTs) and one inverse discrete
Fourier transform (IDFT). By embedding Tmx in a circulant matrix CMx where Mx is the
smallest power of 2 such that Mx ≥ 2mx−1, the DFTs and IDFTs can be computed using
fast Fourier transforms (FFTs) requiring O(Mx log2Mx) arithmetic operations. If there
are repeated matrix-vector multiplications with the matrix CMx , then the eigenvalues of
CMx can be precomputed once in the beginning.

We summarize the computation of the integral in (20) as follows:

• Interpolate values from the si grid-points to equidistant points xi between xmin and
xmax.

• Compute and embed the matrix Tmx into a circulant matrix CMx .

• Compute Ī using the algorithm described above using FFTs.

• Interpolate Īi to the original grid-points si.

3.4.2 SVCJ model

The integral term can be written as

I =

∞∫
0

∞∫
0

u(szs, v + z
v
, τ)p(zs, zv)dzvdzs =

∞∫
−∞

∞∫
0

ū(x+ z
x
, v + z

v
, τ)p̄(zx, zv)dzvdzx, (23)

where x = log s, zx = log zs, ū(x, v, τ) = u(ex, v, τ), and p̄(zx, zv) = p(ez
x
, z

v)ez
x
.

Now, make the changes of variables ζ = x+ z
x and η = v + z

v and study the value of
the integral at the point (xi, vj)

Ii,j =

∫ ∞

−∞

∫ ∞

vj

ū(ζ, η, τ)p̄(ζ − xi, η − vj)dηdζ. (24)

Similarly to the treatment of the integral in the Bates model, we choose a rectangle
(xmin, xmax) × (vj , v̄max) which is large enough so that integrating over it gives a suffi-
ciently good approximation for (24). The first part of the integral is evaluated using the
two-dimensional generalization of the trapezoidal rule on an equidistant grid in x and in v

with spacing Δv and m̄v grid-points giving

∫ xmax

xmin

∫ v̄max

vj

ū(ζ, η, τ)p̄(ζ − xi, η − vj)dηdζ ≈ ΔxΔv

2

mx∑
k=1

ū(ζk, ηj , τ)p̄(ζk − xi, 0)

+ ΔxΔv

mx∑
k=1

m̄v∑
�=j+1

ū(ζk, η�, τ)p̄(ζk − xi, η� − vj) = Īi,j.

(25)
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By defining Ī =
(
Ī1 Ī2 · · · Īmx−1 Īmx

)T
, ū =

(
ū1 ū2 · · · ūmx−1 ūmx

)T
,

Ī� =
(
Ī1,� Ī2,� · · · Īm̄v−1,� Īm̄v ,�

)T
, ū� =

(
ū1,� ū2,� · · · ūm̄v−1,� ūm̄v ,�

)T
, we can compute Ī

by Ī = Tm̄vmxū, where Tm̄vmx is a block-Toeplitz matrix with Toeplitz blocks (BTTB-
matrix) defined by

Tm̄vmx =

⎛
⎜⎜⎜⎜⎝

T0 T1 · · · Tm̄v−1

T−1

. . .
. . .

...
...

. . .
. . . T1

T−(m̄v−1) · · · T−1 T0

⎞
⎟⎟⎟⎟⎠ , T� =

⎛
⎜⎜⎜⎜⎝

T0,� T1,� · · · Tmx−1,�

T−1,�
. . .

. . .
...

...
. . .

. . . T1,�

T−(mx−1),� · · · T−1,� T0,�

⎞
⎟⎟⎟⎟⎠ , (26)

where

Tk,� =

⎧⎪⎨
⎪⎩
0, � < 0,
1
2
ΔxΔvp̄(kΔx, 0), � = 0,

ΔxΔvp̄(kΔx, �Δv), � > 0.

For a general block-circulant matrix with circulant blocks (BCCB-matrix) CMvMx of
order MvMx defined by

CMvMx =

⎛
⎜⎜⎜⎜⎝

C0 C1 · · · CMv−1

CMv−1

. . .
. . .

...
...

. . .
. . . C1

C1 · · · CMv−1 C0

⎞
⎟⎟⎟⎟⎠ , C� =

⎛
⎜⎜⎜⎜⎝

C0,� C1,� · · · CMx−1,�

CMx−1,�
. . .

. . .
...

...
. . .

. . . C1,�

C1,� · · · CMx−1,� C0,�

⎞
⎟⎟⎟⎟⎠ ,

it holds that CMvMx = (FMv ⊗ FMx)
−1

Λ(FMv ⊗ FMx). Following the discussion in the
previous section we conclude that the multiplication of a vector w by a BCCB-matrix can
be accomplished using two 2d DFTs and one 2d IDFT. Again, the DFTs and IDFT can be
computed efficiently using FFTs requiring O(MvMx log2(MvMx)) arithmetic operations.

The BTTB-matrix Tm̄vmx defined in (26) can be embedded in a BCCB-matrix CMvMx

where Mx is the smallest power of 2 such that Mx ≥ 2mx−1 and Mv is the smallest power
of 2 such that Mv ≥ 2m̄v − 1. A multiplication of a vector w by the matrix T can then be
replaced by the multiplication of the vector w̃ by the matrix C. Here w̃ is defined as the
extension of w by appending Mx −mx zeros to each block in w and Mv − m̄v zero vectors
of dimension Mx.

We summarize the computation of the integral in (23) as follows:

• Interpolate values from grid-points in (s, v) to equidistant points xi between xmin

and xmax and equidistant points vj between 0 and v̄max.

• Compute the BTTB-matrixTm̄vmx and embed this matrix in a BCCB-matrixCMvMx .

• Compute Ī using the algorithm described above using FFTs.

• Interpolate Īi,j to the original grid in (s, v).

3.5 Numerical Experiments

In this section we price European and American put options under the Bates and the
SVCJ models. We compare two alternative approaches to solve the discretized systems:
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the algebraic multigrid (AMG) method, and the LU decomposition method. The operator
splitting (OS) method [24, 27] is employed to enable the LU decomposition method for
American options as well. Similarly, the projected algebraic multigrid (PAMG) method is
adopted instead of the AMG for American options. These combinations lead to a total of
eight different cases.

The used AMG implementation is based on the Ruge-Stüben algorithm [43] and the
PAMG method is described in [51]. This algorithm generates automatically the coarse grid
problems using only the left-hand side matrix. In the considered option prices problems,
the dimension of the problem reduces by a factor between two and three in each coarsening
of the problem. For the grids specified in Table 1, the number of levels generated by the
multigrid methods varies between 7 and 16. The AMGmethods employ a multigrid V-cycle.
The smoother for moving downwards and upwards is one (projected) Gauss-Seidel iteration
over all points, followed by one more iteration over the so-called fine-points (F-points). For
the LU decompositions, we employed the UMFPACK version 5.6.1 [14]. For fast Fourier
transforms, we employed FFTW version 3.3.2 [20]. We performed the experiments on a
Mac laptop with 2 GHz Intel Core i7 processor and 8 Gbytes of memory.

The shared parameters and the grid refinement schedule employed in the numerical
experiments are listed in Table 1. In addition, under the SVCJ model the correlation
between jumps is set as ρJ = −0.5, and the mean of the exponentially distributed jump
sizes in variance is set as ν = 0.2. The coefficients for the grid generating functions in
(7) are defined by the parameters pK = 7/16 and α = 2. The truncation boundaries for
the integrations are defined by xmin = log s2 − 1

8
(log smax − log s2), xmax = log smax, and

v̄max = 5
4
vmax. The number of grid points in the equidistant integration grid is twice as

many in each direction compared to the computational grid. Reference prices, listed in
Table 2, were computed using the (P)AMG method on a fine grid with 4097, 2049, and
513 nodes in s, v, and τ directions, respectively.

Figure 1 illustrates that the pricing errors of the (P)AMG and LU(+OS) approaches are
almost identical. Option prices, ratios of consecutive errors, average iterations and CPU
times for the European options under the Bates and SVCJ models are listed in Tables 3
and 5 for the AMG approach, and in Tables 4 and 6 for the LU decomposition approach.
Similarly, the numerical results for American options under the Bates and SVCJ models
are reported in Tables 7 and 9 for the PAMG approach, and in Tables 8 and 10 for the
LU+OS approach.

The ratios of consecutive errors are computed using the l2 norm with respect to the
reference prices. The ratios are, on average, of second order. On the finest grid, in some
cases the ratios are as high as 7. We also computed the ratio between the change in the
solution between grids 5 to 6, and 6 to 7. These ratios were around 4 also on the finest
grids, which suggests that the high ratios of consecutive errors, those listed in the tables,
are due to the inaccuracy of the computed reference prices.

As the grid is refined, the LU decomposition approach is slightly faster than the
(P)AMG method. In both cases, however, penny-accurate prices can obtained in a fraction
of a second under the Bates model, and in about two seconds under the SVCJ model.
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Parameter Value

Brownian correlation ρ -0.5
Risk-free interest rate r 0.03
Dividend yield q 0
Volatility of variance σ 0.25
Rate of mean reversal κ 2
Variance mean level θ 0.04
Strike price K 100
Jump arrival rate λ 0.2
Expiry time T 0.5
Jump size log-variance δ

2 0.16
Jump size log-mean γ -0.5
Truncation boundary smax 4K
Truncation boundary vmax 0.5

Grid Nodes Nodes Nodes
# in s in v in τ

1 17 9 3
2 33 17 5
3 65 33 9
4 129 65 17
5 257 129 33
6 513 257 65
7 1025 513 129

Table 1: Shared parameters employed in numerical experiments for the Bates and the
SVCJ model (Left), and the grid refinement schedule (Right).

Option type Price at 90 Price at 100 Price at 110

European put (Bates) 11.302917 6.589881 4.191455
European put (SVCJ) 11.134438 6.609162 4.342956
American put (Bates) 11.619920 6.714240 4.261583
American put (SVCJ) 11.561620 6.780527 4.442032

Table 2: Reference prices at s = {90, 100, 110}.

Grid Price Price Price Avg. Ratio CPU
# at 90 at 100 at 110 itns. time(s)

1 12.3849 5.0124 3.9946 2.0 0.001
2 11.3310 6.0693 4.0525 2.0 3.56 0.002
3 11.3077 6.4645 4.1630 2.1 4.20 0.016
4 11.3103 6.5589 4.1862 3.2 3.99 0.137
5 11.3029 6.5821 4.1880 2.9 3.79 0.984
6 11.3035 6.5880 4.1908 2.2 4.22 6.746
7 11.3026 6.5894 4.1914 2.8 3.72 64.584

Table 3: Average iterations, CPU times, ratios of convergence and option prices at s =
{90, 100, 110} for the European put option under the Bates model computed with AMG.
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Figure 1: Absolute errors under the Bates and SVCJ models computed with the (P)AMG
and LU decomposition approaches: European option under the Bates model (Top Left),
European option under the SVCJ model (Top Right), American option under the Bates
model (Bottom Left), and American option under the SVCJ model (Bottom Right).

Grid Price Price Price Avg. Ratio CPU
# at 90 at 100 at 110 itns. time(s)

1 12.3849 5.0124 3.9946 – 0.001
2 11.3310 6.0693 4.0525 – 3.56 0.003
3 11.3077 6.4645 4.1630 – 4.20 0.013
4 11.3103 6.5589 4.1862 – 3.99 0.081
5 11.3029 6.5821 4.1880 – 3.78 0.586
6 11.3034 6.5880 4.1908 – 4.17 4.556
7 11.3026 6.5894 4.1914 – 3.78 40.946

Table 4: Average iterations, CPU times, ratios of convergence and option prices at s =
{90, 100, 110} for the European put option under the Bates model computed with LU
decomposition.
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Grid Price Price Price Avg. Ratio CPU
# at 90 at 100 at 110 itns. time(s)

1 12.3827 5.1852 4.2076 2.0 0.001
2 11.2023 6.1214 4.2195 2.0 3.74 0.004
3 11.1462 6.4897 4.3191 2.1 4.15 0.039
4 11.1445 6.5810 4.3401 3.0 4.07 0.285
5 11.1359 6.6028 4.3410 2.7 4.42 2.811
6 11.1357 6.6080 4.3430 2.4 3.98 26.574
7 11.1345 6.6090 4.3432 3.0 7.00 277.622

Table 5: Average iterations, CPU times, ratios of convergence and option prices at s =
{90, 100, 110} for the European put option under the SVCJ model computed with AMG.

Grid Price Price Price Avg. Ratio CPU
# at 90 at 100 at 110 itns. time(s)

1 12.3827 5.1852 4.2076 – 0.002
2 11.2023 6.1214 4.2195 – 3.74 0.006
3 11.1462 6.4897 4.3190 – 4.15 0.036
4 11.1445 6.5810 4.3401 – 4.07 0.237
5 11.1359 6.6028 4.3409 – 4.41 2.598
6 11.1357 6.6080 4.3430 – 3.98 23.991
7 11.1345 6.6090 4.3432 – 7.00 246.697

Table 6: Average iterations, CPU times, ratios of convergence and option prices at s =
{90, 100, 110} for the European put option under the SVCJ model computed with LU
decomposition.

Grid Price Price Price Avg. Ratio CPU
# at 90 at 100 at 110 itns. time(s)

1 12.7091 5.0795 4.0487 2.0 0.001
2 11.5471 6.1571 4.1120 2.0 3.40 0.003
3 11.5941 6.5718 4.2277 2.1 3.91 0.017
4 11.6189 6.6767 4.2537 3.2 3.88 0.140
5 11.6169 6.7040 4.2569 2.9 3.29 1.015
6 11.6195 6.7115 4.2605 2.3 3.90 6.778
7 11.6193 6.7135 4.2613 2.8 2.86 65.024

Table 7: Average iterations, CPU times, ratios of convergence and option prices at s =
{90, 100, 110} for the American put option under the Bates model computed with PAMG.
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Grid Price Price Price Avg. Ratio CPU
# at 90 at 100 at 110 itns. time(s)

1 12.6810 5.0757 4.0446 – 0.001
2 11.5537 6.1576 4.1115 – 3.38 0.003
3 11.5992 6.5736 4.2282 – 3.97 0.013
4 11.6217 6.6778 4.2541 – 3.92 0.080
5 11.6187 6.7047 4.2572 – 3.52 0.592
6 11.6204 6.7119 4.2606 – 4.06 4.582
7 11.6197 6.7137 4.2614 – 4.14 41.348

Table 8: Average iterations, CPU times, ratios of convergence and option prices at s =
{90, 100, 110} for the American put option under the Bates model computed with the
LU+OS approach.

Grid Price Price Price Avg. Ratio CPU
# at 90 at 100 at 110 itns. time(s)

1 12.8186 5.2849 4.2876 2.0 0.001
2 11.5035 6.2465 4.3055 2.0 3.54 0.005
3 11.5365 6.6405 4.4118 2.1 3.81 0.039
4 11.5616 6.7445 4.4362 3.0 3.98 0.285
5 11.5594 6.7713 4.4386 2.7 3.62 2.808
6 11.5617 6.7783 4.4415 2.4 4.44 27.276
7 11.5611 6.7800 4.4420 3.0 3.25 276.467

Table 9: Average iterations, CPU times, ratios of convergence and option prices at s =
{90, 100, 110} for the American put option under the SVCJ model computed with the
PAMG.

Grid Price Price Price Avg. Ratio CPU
# at 90 at 100 at 110 itns. time(s)

1 12.7909 5.2869 4.2881 – 0.002
2 11.5121 6.2488 4.3060 – 3.52 0.006
3 11.5419 6.6425 4.4124 – 3.87 0.036
4 11.5658 6.7461 4.4368 – 4.07 0.239
5 11.5616 6.7722 4.4390 – 3.97 2.462
6 11.5628 6.7788 4.4417 – 4.22 24.777
7 11.5617 6.7803 4.4421 – 7.67 248.852

Table 10: Average iterations, CPU times, ratios of convergence and option prices at s =
{90, 100, 110} for the American put option under the SVCJ model computed with the
LU+OS approach.
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4 Conclusions

In this work we have considered the numerical pricing of options under the Bates model
and the SVCJ model. For the time discretization we employed the second-order accurate
IMEX-CNAB scheme which treats the differential operator implicitly and the integral term
explicitly. This way we avoid having to solve systems of equations with dense matrices.
The matrix-vector multiplications arising from the explicit jump terms can be computed
efficiently using FFTs.

European options lead to linear systems of equations, which under the IMEX-CNAB
scheme can be solved efficiently by employing AMG method or LU decomposition. For
American options a common approach is to formulate the pricing problem as an LCP.
Here we solve these LCPs by employing either PAMG or operator splitting in combination
with LU decomposition. Both these methods were employed to price European/American
options under the Bates/SVCJ model, rendering a total set-up of 8 combinations.

Numerical experiments show that the (P)AMG and LU(+OS) approaches produce al-
most identical prices. Since the operator splitting technique does not essentially reduce
the accuracy in the solution and the LU decomposition can be precomputed prior to the
time-stepping, the LU(+OS) methodology turns out to be surprisingly accurate and fast.
To the best of our knowledge, this is the first paper where American options under the
SVCJ model are priced.
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