
JYV ASKYLA STUDIES IN COMPUTING 4

J ussi Koskinen

Automated Transient Hypertext
Support for Software Maintenance

~
"=7

UNIVERSITY OF ~ JYV ASKYLA

JYV ASKYLA 2000

Editors
Seppo Puuronen
Department of Computer Science and Information Systems, University of Jyvaskyla
Kaarina Nieminen
Publishing Unit, University Library of Jyvaskyla

ISBN 951-39-0673-6 (nid.), 978-951-39-5482-6 (PDF)
ISSN 1456-5390

Copyright© 2000, by University of Jyvaskyla

Jyvaskyla University Printing House, Jyvaskyla and
ER-Paino Ky, Lievestuore 2000

ABSTRACT

Koskinen, Jussi
Automated Transient Hypertext Support for Software Maintenance
JyvaskyHi: University of Jyvaskyla, 2000, 98 p. (+included articles)
(Jyvaskyla Studies in Computing
ISSN 1456-5390; 4)
ISBN 951-39-0673-6 (nid.), 978-951-39-5482-6 (PDF)
Finnish summary
Diss.

The purpose of the study is to develop and evaluate a hypertext-based ap-
proach for legacy software maintenance support. Program text is viewed as
transient hypertext, consisting of program parts connected by links enabling
fast nonlinear browsing. Transient hypertextual access structures (THASs) are
formed automatically to satisfy the situation-dependent information needs of
software maintainers. We develop a layered model called HyperSoft for this
purpose, implement the approach, and evaluate its hypothesized usefulness
empirically. The formation of THASs is based on applying program analysis
techniques. The approach is implemented in the HyperSoft system, which is an
experimental software maintenance support tool. The implementation of the
system is guided by representatives from our industrial partner enterprises. The
target language (C) and the implemented THAS set is selected according to the
needs of the enterprises. The supported THAS set includes definition refer-
ences, occurrence lists, call graphs, and program slices. The usefulness of the
approach, the system, and the implemented THAS types is evaluated in three
different ways: first, by small-scale testing in the partner companies; second, by
comparing the HyperSoft's capability to the information needs of software
maintainers revealed in a series of earlier empirical studies; and third, by two
independent test series. The test series compare information retrieval task per-
formance effects of using HyperSoft and Borland C/C++. The results clearly
support our hypothesis regarding the usefulness of the approach.

Keywords: hypertext, software maintenance, CASE (Computer Assisted/
Aided Software Engineering), reverse engineering, program analy-
sis, program comprehension, program slicing

ACM Computing Review Categories

D.2.2. Software Engineering: Tools and Techniques, Computer-aided software en­
gineering (CASE), User interfaces

D.2.5. Software Engineering: Testing and Debugging, Tracing
D.2.7. Software Engineering: Distribution and Maintenance, Corrections,

Enhancement
D.3.4. Software: Programming Languages, Parsing
E.l. Data structures, Graphs
F.3.3. Theory of Computation, Studies of program constructs
H.3.3. Information Search and Retrieval, Retrieval models
H.S.l. Multimedia Information Systems, Hypertext navigation and maps

Author Assistant professor Jussi Koskinen,
Department of Computer Science and Information Systems,
University of JyvaskyHi,
P.O. Box 35, FIN-40351, Jyvaskyla, Finland.
Email: koskinen@cs.jyu.fi

Supervisors Professor Airi Salminen,
Department of Computer Science and Information Systems,
University of Jyvaskyla, Jyvaskyla, Finland.

Professor Jukka Paakki,
Department of Computer Science,
University of Helsinki, Helsinki, Finland.

Reviewers Professor Kaisa Sere,
Department of Computer Science,
Abo Akademi University, Turku, Finland.

Professor Carolyn Watters,
Faculty of Computer Science,
DalTech, Dalhousie University, Halifax, Nova Scotia, Canada.

Opponent Professor Kai Koskimies,
Department of Software Engineering,
University of Tampere, Tampere, Finland.

ACKNOWLEDGEMENTS

This research originated out of discussions with Professor Airi Salminen (Uni-
versity of JyvaskyHi, Dept. of Computer Science and Information Systems;
DCSIS). It was clear from the beginning that transient hypertext support could
be useful. Of the decisive in::tportance was the insight of applying transient hy-
pertext to software maintenance. Professor Jukka Paakki (currently at the Uni-
versity of Helsinki, Dept. of Computer Science and at Nokia Research Center)
joined the team, and was the central figure in leading the HyperSoft project.
Airi and Jukka were my mentors and coauthors. Mika Nieminen MSc. (cur-
rently managing director of SupraSoft) was my colleague in the course of im-
plementing the HyperSoft system. Together, we formed the HyperSoft team.
Thus I especially wish to thank Airi, Jukka, and Mika. This earlier work has
since continued as my PhD project.

I thank the reviewers of the thesis, Professor Kaisa Sere (Abo Akademi
University) and Professor Carolyn Watters (Dalhousie University, Canada) as
well as Professor Kai Koskimies (University of Tampere) for their comments
and remarks. Series editor, Dr Seppo Puuronen (DCSIS), provided many useful
remarks related to the summary part of the thesis. The steering group of the
HyperSoft project provided helpful comments during the implementation of
the HyperSoft system. The group consisted of the representatives of our partner
enterprises: Dr Antero Taivalsaari (senior researcher, Nokia Research Center),
Paavo Holopainen (system chief, Novo Group), Jyrki Saarivaara (project man-
ager, Tieto Corporation), and Marita Tolvanen (customer service chief, Tieto
Corporation).

The work done on parsers related to the AnaGram™ parser generator by
Jerome Holland (Parsifal Software, MA, USA) provided a good basis for the
construction of the C parser part of the HyperSoft system. Dr Annaliisa Kanka-
inen and Lecturer Anna-Liisa Lyyra (both from the Univ. of Jyvaskyla, Dept. of
Statistics) provided helpful support related to the use of statistical methods. I
remember the useful discussions I had on program slicing with Mr. Veli-Matti
Risku and on ESQL with Mr. Timo Suominen while they were writing their
master's theses. Professor Jari Veijalainen (DCSIS) and Professor Markku Sakki-
nen (DCSIS) both took a positive attitude towards the empirical testing of the
HyperSoft system at their courses on software engineering. Dr Steven Kelly
(DCSIS) and Lecturer Michael Freeman (Univ. of Jyvaskyla, English Dept.)
proof-read some of the critical parts of the text. These language revisions have
helped to improve the style of the thesis. I also wish to extend my thanks to my
long-time friend, Matti Kukkonen Doctor of Law, Lie. of Econ. (Helsinki School
of Economics and Business Administration) for innumerable general discus-
sions on science and life during the years leading to this dissertation.

Katriina Bystrom L.Soc.Sc. (University of Tampere), Professor Erkki Maki-
nen (University of Tampere), Professor Norman Wilde (University of West Flor-
ida, FL, USA), Professor Anneliese von Mayrhauser (Colorado State University,
CO, USA), Dr Terence Parr (MageLang Institute, USA), Dr Harri Oinas-
Kukkonen (University of Oulu), Professor Frank Wm. Tompa (University of

Waterloo, Canada), and Dr Eila Kuikka (University of Kuopio) provided useful
material and/ or comments related to reverse engineering, for which I thank
them. I'm grateful to those who participated in the evaluation of the HyperSoft
system: 8 persons from the partner enterprises during summer 1995 and sum-
mer 1996 and 70 students of computer science at the University of Jyvaskyla
during fall1998 and spring 1999. Last, but not least, I thank all my friends, my
mother, and my sister, who provided support for the fulfillment of this project.

This work has been funded by the Jyvaskylan Kauppalaisseuran Saatio
(1994) and by COMAS (Jyvaskyla Graduate School in Computing and Mathe-
matical Sciences, at the University of Jyvaskyla, 1997-1999). The HyperSoft pro-
ject (1994-1996) was funded by TEKES (National Technology Agency of
Finland) together with the University of Jyvaskyla and our partner enterprises:
Nokia Research Center, Novo Group (formerly: KT-Tietokeskus) and TietoEna-
tor (formerly: Tieto Corporation, TT-Kuntajarjestelmat and VTKK). The re-
search related to the HyperSoft project was mainly carried out within the
Information Technology Research Institute (TITU I University of Jyvaskyla).

Jyvaskyla, Finland. April2000.

Jussi Koskinen

CONTENTS

1 INTRODUCTION ... 13
2 SOFTWARE MAINTENANCE: CHARACTERISTICS,

PROBLEMS, AND SOLUTIONS ... 16
2.1 Software and program text ... 16
2.2 Software maintenance and program comprehension 17

2.2.1 Classifications of maintenance tasks 18
2.2.2 Program comprehension . 18
2.2.3 Economic significance 20

2.3 Solutions .. 20
2.3.1 Algorithmic solutions for program analysis 21
2.3.2 Hypertext and software hypertext systems 23

3 TRANSIENT HYPERTEXT SUPPORT FOR SOFTWARE
MAINTENANCE ... 26
3.1 Research objectives and problems 26
3.2 Principles . 28
3.3 The HyperSoft system . 28

3.3.1 Static program analyzer ... 30
3.3.2 Program database . 31
3.3.3 THAS generator . 31
3.3.4 Generic user interface . 32

3.4 Example HyperSoft sessions . 33
3.4.1 Call graph example .. 34
3.4.2 Backward slicing example . 39
3.4.3 Forward slicing example . 40

3.5 Evaluation of the approach . 42
3.5.1 Proposed benefits and probable drawbacks 42
3.5.2 Solutions related to HyperSoft 45

4 OVERVIEW OF THE ARTICLES ... 50
4.1 "Program Text as Hypertext: Using Program Dependences

for Transient Linking" .. 51
4.2 "HyperSoft: An Environment for Hypertextual Software

Maintenance" ... 52
4.3 "Creating Transient Hypertextual Access Structures for C

Programs" ... 53

4.4 "Automated Hypertext Support for Software Maintenance" 54
4.5 "From Relational Program Dependencies to Hypertextual

Access Structures" .. 55
4.6 "Hypertext Support for Information Needs of Software

Maintainers" .. 57
4.7 "Evaluations of Hypertext Access from C Programs" 58
4.8 About the joint articles and other publications 59

5 DISCUSSION ON RESEARCH DIRECTIONS . 60
5.1 Model extensions .. 61
5.2 Query mechanisms . 62
5.3 Technical optimizations . 62
5.4 New access structures ... 63
5.5 Language extensions .. 64
5.6 View enhancements ... 64
5.7 Empirical studies . 65

CONCLUSION .. 66
REFERENCES ... 68
APPENDIX 1 ALGORITHMIC SOLUTIONS FOR SOFTWARE

ANALYSIS . 91
APPENDIX 2 SURVEYED SOURCES 95
FINNISH SUMMARY ... 98

LIST OF INCLUDED ARTICLES

I Koskinen, J., Paakki, J. & Salminen, A. 1994a. Program text as hypertext-
using program dependences for transient linking. In Proc. 6th Int. Conf on
Software Engineering and Knowledge Engineering (SEKE'94). Skokie, IL:
Knowledge Systems Institute, 209-216.

II Salminen, A., Koskinen, J. & Paakki, J. 1994a. HyperSoft: an environment
for hypertextual software maintenance. In B. Magnusson, G. Hedin & S.
Minor (Eds.) Proc. Nordic Workshop on Programming Environment Research
(NWPER'94). LU-C5-TR: 94-127. Lund, Sweden: Lund Univ.,25-37.

III Koskinen, J. 1996c. Creating transient hypertextual access structures for C
programs. In Proc. 7th Israeli Conf on Computer Systems and Software Engi­
neering (ICCSSE'96). Los Alamitos, CA: IEEE Computer Soc., 56-65.

IV Paakki, J., Salminen, A. & Koskinen, J. 1996. Automated hypertext support
for software maintenance. The Computer Journal39 (7), 577-597.

V Paakki, J., Koskinen, J. & Salminen, A. 1997. From relational program de-
pendencies to hypertextual access structures. Nordic Journal of Computing 4
(1), 3-36.

VI Koskinen, J., Salminen, A. & Paakki, J. 1999. Hypertext support for infor-
mation needs of software maintainers. Univ. of Jyvaskylii, Jyvaskyla, Fin-
land. Computer Science and Information Systems Reports, Working paper
WP-37. Submitted (Dec. 1999) for publication to IEEE Transactions on Soft­
ware Engineering.

VII Koskinen, J. 1999c. Evaluations of hypertext access from C programs. Sub-
mitted (July 1999) and conditionally accepted (Jan. 2000) to be published
in Journal of Software Maintenance: Research and Practice.
(VII') An earlier version of the paper has been published as: Koskinen, J.
1999b. Empirical Evaluations of Hypertextual Information Access from Program
Text. University of Jyvaskyla, Jyvaskyla, Finland. Computer Science and
Information Systems Reports, Working paper WP-36.
(VII") The results of the 1st experiment has been published as: Koskinen,
J. 1999a. Empirical evaluation of hypertextual information access from
program text. In Proc. 7th Int. Workshop on Program Comprehension
(IWPC'99). IEEE Computer Soc., 162-169.

INTRODUCTION AND OVERVIEW

1 INTRODUCTION

The problems of software maintenance are prominent and well-known. Surpris-
ing amounts of resources are needed in order to obtain adequate comprehen-
sion of the structure and behavior of software systems. Program comprehension
is needed in finding information in programs and in modifying them without
introducing undesired side-effects. Reverse engineering techniques attack these
problems. Reverse engineering comprises the process of identifying the compo-
nents of a software system and their relations and of creating alternative (often
abstracted) representations for the system. Reverse engineering tools are an im-
portant research area owing to the considerable costs involved in software
maintenance.

This dissertation studies one way of supporting software maintenance via
reverse engineering techniques. The name of our approach, model and corre-
sponding implementation is HyperSoft. HyperSoft combines the techniques of
hypertextual information representation and retrieval with those of automated
software and program analysis (see Figure 1). HyperSoft can be motivated by
the possibilities to form hypertext based on program text, by congruence with
the central issues of program comprehension theories, by focused support for
information needs of practical importance, and by task performance effects.
These issues will later be discussed in detail.

Program text is viewed as hypertext in which the division into relevant
fragments and dependencies between the fragments is made explicit. Until the
present the hypertextual representation scheme and program analysis tech-
niques have been employed in software hypertext systems and reverse-engineering
tools, respectively, and usually separately. The HyperSoft approach is based on
the idea that hypertext is formed automatically. The hypertextual nodes corre-
spond to the syntactical fragments of the program text and the links to the pro­
gram dependencies1 characteristic of the programming language.

The terms dependence (plural: dependenc(i)es) and dependency (plural: dependencies) have the
same meaning and both are used in the literature -we mainly utilize the latter form.

14

Transient

hypertext \ I
representation

'-------'

Automated
(static program)

analysis

HyperSoft -+

/ \
FIGURE 1 The HyperSoft approach

Congruence with:
- "golden rules of hypertext formation"
- central issues of program

comprehension theories

Support for practically important
information needs

Task performance effects:
- increased efficiency

The HyperSoft model is a specialization and extension of a general, abstract,
language-independent model for textual databases (Salminen & Watters, 1992).
The HyperSoft model separates the syntactic and access structure layers from
each other. The transient hypertextual access structures (THASs) are composed of
those program parts which are linked together on the basis of the existing pro-
gram dependencies. THASs are transient, which means that they are not stored
permanently, but are instead generated on user request for the duration of the
tool usage session. THASs help software maintainers to focus their attention on
those parts of the program which are relevant, cf for example (Mizzaro, 1997;
JASIS, 1994), to the current software maintenance situation and to browse
through the THASs by following the hypertextuallinks formed by the support
tool. THASs are represented to the user as textual, hypertextual, and graphical
views.

The work contains theoretical, constructive, and empirical elements. The
implementability and practical applicability of the ideas presented is demon-
strated with an experimental software maintenance support tool, the HyperSoft
system (Paakki et al., 1996; Koskinen et al., 1997), which was constructed during
the HyperSoft project. Thus, the work includes a relatively large constructive
part (Koskinen, 1997; Koskinen et al., 1997). HyperSoft was a TEKES (National
Technology Agency of Finland) project during 1994-97. Since then, HyperSoft
has continued as my PhD project. The HyperSoft project has been guided by an
industrial steering group, consisting of representatives of three large Finnish
software houses: Nokia, Novo Group and Tieto Corporation. The steering
group has participated in the guidance of the project by reviewing the proposed
functionality of the HyperSoft system. The implemented THAS set and the sup-
ported programming language, C (Kernighan & Ritchie, 1988), were chosen by
the steering group.

The work done in relation to HyperSoft is also reported in various papers
or reports (Koskinen et al., 1994a; 1994b; Salminen et al., 1994a; 1994b; Koskinen,
1995; Koskinen, 1996a; 1996b; 1996c; Paakki et al., 1996; 1997; Koskinen 1999a;
1999b), in submitted papers (Koskinen et al., 1999; Koskinen 1999c) and in form
of a bibliography (Koskinen, 1999d). Moreover, there is the HyperSoft system
itself (Koskinen et al., 1997). The technical and user documentation of the

15

HyperSoft system includes a report (Koskinen, 1997), which contains the design
documentation of the back-end parts of the system, a Master's thesis (Nieminen,
1996) (which describes the front-end), and the HyperSoft user manual (Niemi-
nen & Koskinen, 1997). Other works related to HyperSoft include Risku (1995),
Tuovinen (1995), Suominen (1997) and Sillanpaa (1997).

This part contains a general overview and a summary of the thesis. An up-
dated and extended discussion is provided based on the existing literature as an
attempt to bind the results obtained in a potentially fruitful way to the related
research and possible extensions of the HyperSoft system (v. 1.0) (Koskinen et
al., 1997). The survey part includes efforts made to understand the processes of
software maintenance and program comprehension and the support mecha-
nisms of those processes.

First, the application area - software maintenance and program compre-
hension - is characterized and the branches of solutions and concepts which
constitute the background to HyperSoft are briefly surveyed in Chapter 2.
There exists a lot of research related to the aspects of reverse engineering and
hypertext support for software engineering, but only little or no research di-
rectly related to all of the aspects relevant for supporting software maintenance
via transient hypertext. The approach is potentially very fruitful. Those readers
who prefer more details are directed to the material provided in Appendix 1.
The literature survey is focused on the sources represented in Appendix 2. The
approach is described in Chapter 3, which presents the research objectives and
problems, principles, example sessions and evaluation (benefits, drawbacks,
and comparisons to other approaches).

Overviews of the articles forming the main part of the dissertation are
given in Chapter 4. A discussion on the scope of the approach and further re-
search directions are provided in Chapter 5. Finally, the conclusions are pre-
sented. The original articles are included. It should be noted that this overview
part extends the discussion, particularly in relation to the literature survey (Sec-
tion 2.3), the HyperSoft system (Section 3.3), and research directions (Chapter
5), whereas many of the other important aspects are noted only in passing. The
articles provide the detailed level information.

2 SOFTWARE MAINTENANCE: CHARACTERISTICS,
PROBLEMS, AND SOLUTIONS

The term software engineering - see e.g. Sommerville (1996); Pressman (1997) -
suggests a discipline resembling that of other engineering fields. However,
compared to the established fields of engineering, the area in which certain soft-
ware engineering techniques can be applied is less well-defined. The same tech-
niques can be applied in numerous areas of application (Glass & Vessey, 1995).
This diversity of domains of application introduces many of the problems re-
lated to software engineering. Compared to other fields of engineering general
libraries of ready-made or reusable components (see Weide et al., 1991) are not
so widely applied. Thus, old software in particular consists, in the most part, of
non-standard functions and elements, whose understanding and interfacing re-
lated to their maintenance and reuse (Prieto-Diaz, 1991) is problematic. A gen-
eral introduction to the main aspects of the area is provided, for instance, by
(Sommerville, 1996/ Sections 24.3 Static analysis tools; pp. 493-496, 25.1 CASE
classification; pp. 507-511, 26.3 Testing workbenches; pp. 538-539, 32 Software
maintenance; pp. 659-674, and 34.4 Reverse engineering; pp. 711-714).

2.1 Software and program text

Software, written as program text, consists of the instructions to the computer and
is typically stored in an electronic form. A characteristic feature of program text
is that in addition to this linear structure it also has a hierarchic structure defined
by a grammar, and that the instructions follow the rules of the programming lan­
guage used. Modern commercial software systems are typically very large and
programmed by various people each with their own level of expertise, pro-
gramming styles (Straker, 1992) and, possibly, using multiple languages.
Moreover, because software describes the abstract relations between its parts, the
dependencies within it are essentially invisible (Brooks, F.P. Jr. 1987). Software
entities are characterized by the concepts related to the programming

17

(implementation) and problem (application) domains, representations through
which these concepts are expressed, and by the fact that the operation of the en-
tities depends on the conditions present at the time of execution. Much of the
complexity of software is of an arbitrary nature determined by the human insti-
tutions and computer systems to which the interfaces have to conform. These
issues are discussed in text books, such as Sommerville (1996).

Program text and some pieces of system documentation are structured
text, which has been studied in relation to the structured text databases, for ex-
ample, by Rossiter et al. (1990); Kuikka (1996). Program text often has to serve as
a document for maintainers, but it differs from other technical documentation
(Hopkins & Jernow, 1990) in that it is typically not tailored for that purpose. It
is however often annotated with comments and supplemented with other docu-
mentation including, for example, the requirements, functional, design and ar-
chitectural specifications, as well as user manuals (Garg, 1989). But, especially
for large, old undocumented legacy systems (IS, 1995; 1998; Ning et al., 1994; Ben-
nett, 1995), the source code is the only accurate description. So, in dealing with
software systems of this kind, the necessary information needs to be extracted
from the source code.

As noted e.g. by Lakhotia (1993a), the problems of program comprehen-
sion are often overwhelming. There is no single unique fragmentation or specific
type of representation by which it would be possible to grasp all the aspects of
software. It is typical of program text that there are a lot of interdependencies be-
tween parts belonging to different fragmentations. Unlike the text in printed
books or journals, the program text is typically not static and never fully
reaches its final form, but typically evolves through numerous changes and
modifications (Ramalingam & Reps, 1992). The fact that program text is essen-
tially a complex web of invisible interdependencies generates many of the prob-
lems of its maintenance.

2.2 Software maintenance and program comprehension

The program text is originally written during the process of programming. The
term software maintenance (Hagemeister et al., 1992; von Mayrhauser, 1994) is of-
ten used only with reference to making changes to programs after they have
been delivered to customers. The importance of software maintenance and pro-
gram comprehension has been recognized more readily during the last few
years, partly because of the potentially great effects of the Y2K problems; see
e.g. (Newcomb & Scott, 1997; Ragland, 1997; Sharon, 1997; Zvegintzov, 1997;
Marcoccia, 1998). There is also a shortage of empirical studies on software main-
tenance, which has been noted by Haworth et al. (1992).

Because even new software has to be changed, the entropy (i.e. disorder)
of aging software is always increasing. This is the so-called ripple effect. Changes
made to software based on an insufficient understanding of its structure and be-
havior make it more fragile. Because there is only a small chance of making

18

changes correctly on the first attempt, changes need to be designed and their
possible negative side-effects minimized. These problems are exacerbated by
the fact that the sizes of new applications have tended to increase as new techni-
cal solutions and methods have made this feasible.

2.2.1 Classifications of maintenance tasks

Software maintenance tasks are often classified, according to the purpose of the
needed program changes, into the large sub-categories represented in Table 1.
This classification has appeared - for instance - in the software engineering
books of Pressman (1997) and will be applied in Article VI. Note that the list of
the included articles appears after the table of contents. Classifications and the
meanings of the terms slightly differ in different text-books. Sommerville (1996)
uses only the three first categories: corrective, adaptive, and perfective. Soft-
ware maintenance is often most difficult to accomplish while large changes or
enhancements Gones, 1989) of the adaptive maintenance category in case of in-
sufficient, unupdated or non-existent documentation are made to large legacy
systems.

Modifying programs on the basis of inadequate comprehension, then, eas-
ily leads to errors and, consequently, to tasks of the corrective maintenance
category (Regelson & Anderson, 1994; Duncan & Robson, 1996; Eisenstadt,
1997). Other ways of classifying maintenance activities have also been proposed
(Arunachalam & Sasso, 1996). If prototyping (Luqi, 1989; Davis, 1995) is used
according to the spiral model of software development (Boehm, 1988a), there
may be numerous "maintenance phases".

TABLE 1 The main maintenance task categories and their purposes

Maintenance category Purpose
Corrective Diagnosis, localization, and correction of errors.
Adaptive Interfacing software with a changing environment.
Enhancement or perfective Additions, enhancements, and modifications made

based on changing user needs.
Preventive Enhancement of future maintainability.

2.2.2 Program comprehension

Problems of software maintenance may be reduced via proper program com-
prehension. At a general level, program comprehension may be defined as a proc-
ess which aims to enhance the level of knowledge about issues which are
important to the fulfillment of programming and maintenance tasks. General,
important surveys of program comprehension research issues include (Corbi,
1989; Robson et al., 1991; JSS, 1999) and models for program comprehension
have been suggested or surveyed by Brooks (1977; 1983), Vessey (1989), von
Mayrhauser and Vans (1995a; 1995c), and Tilley et al. (1996).

19

The comprehension model of von Mayrhauser and Vans (1995a) is sup-
ported by a series of empirical studies (von Mayrhauser & Vans, 1995b; 1996;
1997a; 1997b; 1998; von Mayrhauser et al., 1997). Comprehension of specific pro-
gram components has been studied, for example, by Soloway et al. (1983), and
Iselin (1988). Program comprehension is based on general cognitive processes,
which have been studied by Letovsky (1986) and Iio et al. (1997).

More precisely, program comprehension is a process in which the pro-
grammer or maintainer interacts with the source code and tries to recreate the
design rationales and decisions (Rugaber et al., 1990) that the original program-
mers used while they were writing the program. In order to avoid the introduc-
tion of side-effects due to the changes made, program comprehension efforts
should precede the making of changes. The relation of program comprehension
and software maintenance is such that program comprehension is necessary in
order to fulfill software maintenance tasks successfully; see e.g. (Visaggio, 1997).

Programs are typically read both in sequential and nonlinear fashion.
Moreover, program comprehension is not only a text comprehension process, it
is more of a plan recognition process (Robertson & Yu, 1990) producing increased
knowledge about the original intentions. Because of their limited knowledge,
software maintainers constantly have information needs, which most often are
satisfied by examining the source code. Information needs have earlier mainly
been studied on a general, application domain independent level related to in-
formation science (Dervin & Nilan, 1986; Kulthau, 1991; Wilson, 1994).

The program comprehension theories referred to above suggest that com-
prehension is affected by the existence of the following kinds of elements:
• mental models, i.e. representations within the mind of the programmer

about issues which are important to comprehension efforts (Pennington,
1987; Wiedenbeck & Fix, 1993; Corritore & Wiedenbeck, 1999),

• chunks (or cliches), i.e. meaningful program segments (Vessey, 1987; Rich &
Waters, 1988; Hartman, 1991; Burnstein & Roberson, 1997),

• program(ming) plans, i.e. stereotypic action sequences (Soloway & Ehrlich,
1984; Letovsky & Soloway, 1986; Davies, 1990; van Deursen et al., 1997),
and

• beacons, i.e. easily observable program lines which may serve as starting
points for comprehension efforts (Wiedenbeck, 1986; 1991; Gellenbeck &
Cook, 1991).
Most notably, the comprehension process is difficult if the original pro-

gramming plans are delocalized (Letovsky & Soloway, 1986; Soloway et al., 1988),
meaning that program parts which should be read together are dispersed
among other, irrelevant parts. "Reading" program text has been compared, e.g.
to reading a murder mystery or solving a puzzle in which all the central infor-
mation is not explicitly presented. Maintainers have to generate the "implicit
story" in their mind to achieve their objectives. They thus have to extract from
the scattered information a "series of events" that will describe various aspects
of the program's operation. The process has also been compared to the tasks
faced by a historian, a detective, and a clairvoyant (Corbi, 1989).

The program comprehension theories suggest that programmers use some
systematic comprehension strategies (Koenemann & Robertson, 1991), such as

20

top-down and bottom-up strategies. While employing, for example, the top-
down strategy, the maintainer first tries to comprehend the main program, or
function, and then descends to the lower levels of the calling hierarchy. While
employing an "as-needed strategy", the maintainer uses a variety of strategies in
combination depending on the current situation. Program comprehension proc-
esses and their relation to the information needs of the software maintainer are
further analyzed in von Mayrhauser and Vans (1995b) and in other studies con-
ducted by them (von Mayrhauser & Vans, 1997b; 1998; von Mayrhauser et al.,
1997).

2.2.3 Economic significance

Software maintenance is the single most expensive software engineering activ-
ity. The effort expended on maintenance is between 65-75% of the total effort
targeted to information systems development (Sommerville, 1996, p. 660).
Moreover, the proportion of maintenance costs of total costs has increased over
the years (Edelstein, 1993), even though new improved design methodologies
and programming paradigms, such as object-oriented analysis, design, and pro-
gramming, have been introduced and have had some positive effects on soft-
ware maintenance (Mancl & Havanas, 1990; Henry & Humphrey, 1993).
Localization of the relevant lines of code (e.g. those which need to be changed)
is an important class of tasks causing costs, since localizations require both time
and other resources.

Edelstein (1993) has estimated that a sum of US $70 billion was used for
software maintenance in 1993. On the other hand, Jones (1997) has estimated
that the Year 2000 (Y2K) problem alone will potentially cause, worldwide, the
astonishingly large total of $1600 billion. The strategic importance of the Y2K
problem is also noted by Gunter et al. (1996). Thus, reverse engineering meth-
ods and tools improving the fulfillment of software maintenance tasks (andes-
pecially program comprehension and localization of the relevant program lines)
have considerable economic significance.

2.3 Solutions

The problems of software maintenance and program comprehension have been
attacked in various ways. The development of reverse engineering tools (Rock-
Evans & Hales, 1992; CACM, 1994) is motivated by their potential to increase
productivity. Since the HyperSoft approach combines the notions of hypertext
and reverse engineering (program analysis) techniques, mainly these ap-
proaches are briefly surveyed here. Since HyperSoft is based on the idea of
automated support, methods, techniques, and tools especially enabling that
purpose are noted and references given to the most important sources. A wider
bibliography is available (Koskinen, 1999d).

Reverse engineering, program analysis, and software hypertext systems
all represent various aspects of support which can be found in (integrated)

21

CASE (Computer Aided Software Engineering) tools and environments (Misra,
1990; Fuggetta, 1993; Sommerville, 1996/ Section 25, pp. 505-544). Our research
can be considered as belonging to CASE research, although the focus is on sup-
porting maintenance (via reverse-engineering; lower CASE tools), instead of
supporting actual systems development (forward engineering; upper CASE
tools).

2.3.1 Algorithmic solutions for program analysis

Reverse engineering means the process of identifying a system's components and
their interrelations and of creating representations of the system in another
form or at a higher level of abstraction (Chikofsky & Cross, 1990; Cross et al.,
1992; I)SEKE, 1994). Thus, in our context, the representations created are based
on automated transformations. Reverse engineering is a reverse process of for­
ward engineering (ordinary systems development) in which the activity proceeds
from various specifications to analysis and design modelling, and finally to im-
plementation (coding). The software source code is usually available as an input
to the reverse engineering process and the process is normally part of software
re-engineering (Sommerville/ Section 3.4.4, pp. 711-713). Established methods
of program analysis (Welsh & McKeag, 1980; Aho et al., 1986) are typically used
in producing the higher-level representations related to reverse engineering.
Program analysis may be static or dynamic. HyperSoft applies static analysis; cf
for example, Wichman et al., (1995) and von Mayrhauser and Lang (1999). Dy-
namic analysis relies on information which is available only at the run-time of
the maintained program.

Since HyperSoft is based on the automatic generation of THASs, it is use-
ful to list here some of the algorithms and solutions to various reverse engineer-
ing and software analysis problems (in automatically analysing either the
source code or the related documentation, applicable in generating various
THAS types. From the view point of HyperSoft, these solutions can be grouped
according to whether they mainly support the identification of program compo-
nents (nodes) or their interrelations (dependencies). These algorithms corre-
spond to the possible content of the 'Algorithm' attribute of dependencies as
represented within our classification of program dependencies (see Article VI
Figure 2).

Relevant solutions for component identification include techniques for
program decomposition, various metrics and techniques which can be used to
identify interesting program parts, and text analysis and concept extraction
techniques which may be used as applied to the system documentation or com-
ments. Techniques related mainly to dependencies include general data flow
analysis, its variants, and techniques for producing trees and graphs which can
be used in storing program information. A classification of algorithmic solu-
tions is provided in Appendix 1. Here we will refer, as examples, to two of the
categories- program dependency analysis and program slicing (Appendix 1;
parts 5 and 6).

22

Program dependency analysis

Many of the reverse engineering tools available represent the target program to
the user on the basis of program dependencies, which can be automatically rec-
ognized from the source code. General models, classifications or characteriza-
tions for program dependencies have been proposed (Perry, 1987; Yau & Tsai,
1987; Podgurski & Clarke, 1990; Paakki et al., 1997). Some tools and techniques
(Moriconi & Hare, 1986; Gopal, 1991; Livadas & Roy, 1992; Muller et al., 1992;
Baratta-Perez et al., 1994; Linos et al., 1994) are based on program dependencies.
Control and data flow are the main examples of program dependencies ana-
lyzed in reverse-engineering and maintenance tools.

Since the main target language of our implementation is ANSI-C, it is rele-
vant also to view here the existing research done on C program analysis. A for-
mal method for reverse engineering C programs, including formal definition of
the semantics of the language is provided by Gannod and Cheng (1996). The
side-effect and modification analysis of C programs have been studied by Yur et
al. (1997). C has many special features affecting maintainability, which are dis-
cussed in some detail, for example, by Darnell and Margolis (1991). The hard
problems of analysing C programs - including handling of array and pointer
variables and unstructured flow of control - have been attacked by Jiang et al.
(1991). An environment for recognizing architectural cliches for C programs
based on abstract syntax trees has been developed by Fiutem et al. (1996).

Program slicing

Program slicing, as coined by Weiser (1982; 1984), can be defined as the extrac-
tion of relevant statements from the source programs. Some definitions of slic-
ing require that the slice is an executable subset of the program. Empirical
experiments (Weiser, 1982; Weiser & Lyle, 1986) suggest that slices are espe-
cially useful in debugging. General surveys of program slicing are provided by
Binkley and Gallagher (1996) and Harman and Gallagher (1998). Program slic-
ing techniques are surveyed by Tip (1995), compared by Kamkar (1995), and
program slicing tools are compared by Hoffner et al. (1995). IST (1998) is a re-
cent special issue on program slicing.

Slicing helps the maintainer to focus on program parts which are some-
how relevant to a certain maintenance situation. The focus of interest is indi-
cated by the slicing criterion, which typically is a variable occurrence within the
program text. Slices are formed on the basis of the analysis of the control and
data flows of the program. Backward slicing; see e.g. (Kamkar, 1993), reveals the
program parts which may affect the slicing criterion, whereas forward slicing
reveals the parts that may be affected by the slicing criterion. Hence, backward
slicing is typically used in debugging (Kamkar, 1998), whereas forward slicing
may be used, for example, in impact analysis; see e.g. (Turver & Munro, 1994;
Queille et al., 1994; Ajila, 1995; Fyson & Boldyreff, 1998). Many articles have
been written on impact analysis, of which some of the most important are re-
produced by Bohner and Arnold (1996).

23

Program slicing may also be used as an aid in regression testing (Harman
& Danicic, 1995; Gupta et al., 1996; Binkley, 1998). The slices may be formed on
the basis either of static (Choi & Ferrante, 1994) or of dynamic analysis (Korel &
Rilling, 1998) of the program. Variants which are related to slicing include
parametric slicing (Field et al., 1995), dicing (Chen, T. & Cheung, 1993;
Samadzadeh & Wichaipanitch, 1993), generalized slicing (Sloane & Holdsworth,
1996), sliving (Gupta, 1997), and chopping (Reps & Rosay, 1995). These special
techniques can be used in avoiding some of the problems related to traditional
slicing.

Efficiency problems related to program slicing are discussed, for instance,
by Reps et al. (1994). The time-efficiency problems of slicing can be alleviated by
storing the needed information into program dependency graphs or into some
other permanent structures. Program dependency graphs were introduced by
Ottenstein and Ottenstein (1984) and currently there exist many variants (Hor-
witz & Reps, 1992; Harrold & Malloy, 1993; Kinloch & Munro, 1993; 1994). Hy-
perSoft relies on the traditional way of producing the slices via iterative solving
of data flow equations, as in (Weiser, 1982).

Slicing tools include C-Debug (Samadzadeh & Wichaipanitch, 1993),
SLICE (Venkatesh, 1995) and those reported by Beck and Eichmann (1993) and
Hoffner et al. (1995). Some of the tools employ static and some dynamic analy-
sis. The intended application areas vary from debugging to program integra-
tion. Problematic areas include the analysis of pointers (Fiutem et al., 1999) and
the analysis of unstructured programs (Choi & Ferrante, 1994; Harman &
Danicic, 1998). Most of these problems of slicing from the view-point of C pro-
grams are noted by Samadzadeh and Wichaipanitch (1993).

2.3.2 Hypertext and software hypertext systems

Hypertext is surveyed by Conklin (1987). Nowadays, hypertext is a very widely
applied technique. Hypertext is text with nonlinear browsing capabilities, con-
sisting of text fragments called nodes and links connecting these nodes. Within
hypermedia systems the nodes may also contain non-textual information.

The usefulness of hypertext is often motivated by asserting that it comple-
ments the more traditional information retrieval based on search and querying
(see e.g. Belkin & Croft, 1992) with local navigation (Nielsen, 1990; Rivlin et al.,
1994) based on the linkage that it provides and by which it generates an open,
exploratory information space (Nielsen, 1989). One of the central problems in
forming hypertext is that it is often not clear what the most useful fragmenta-
tion and linkage would be. An example of this is the Oxford English Dictionary
project (Raymond & Tompa, 1988).

Empirical studies

A qualitative synthetic review of quantitative experimental studies on the use
of hypertext is provided by Chen, C. and Rada (1996). The areas of application
of the target hypertext systems are varied. On the basis of an analysis of 23
studies they made the following main observations: generally, hypertext

24

appears to enhance performance (although there is wide variation among the
studies, partly because of the different "benchmarks", different levels of sophis-
tication of the features provided and different kinds of experimental designs);
hypertext appears to benefit the users more in the case of open tasks (which de-
mand, for example, browsing and are typically more complex than dosed ones,
for example, simple searches); the effect of cognitive styles appears to be small;
and the effect of spatial abilities appears to be great. Users clearly benefit from
the graphical overview maps.

The great importance of providing an overview map over large hypertext
structures has also been noted, for example, in the empirical experiments by
Monk et al. (1988), related to the browsing of literate programs. They compared
hypertextual browsing, scrolling (the text of documents is shown sequentially
within a single window) and folding (elision; section titles are shown and by
clicking them their text is shown). They found tentative evidence that hypertext
alone as compared to scrolling is a less efficient way to perform program com-
prehension tasks. Comparisons of searching and hypertext browsing also exist
(Rada & Murphy, 1992; Qiu, 1993), but not with software engineering as an area
of hypertext application.

Methods of hypertext formation

Since one of the main principles of HyperSoft is the automatic formation of hy-
pertext, the efforts of forming hypertext automatically are of interest here. In
most cases the (document-based) hypertext is constructed manually or semi-
automatically; see Carmel et al. (1989); Rada et al. (1992). The projects of forming
hypertext automatically on the basis of information retrieval techniques are sur-
veyed in Agosti et al. (1997). Efforts of automatic hypertext formation (Agosti et
al., 1996; Agosti & Allan, 1997; Fraisse, 1997; French et al., 1997; Tebbutt, 1999)
typically, apply statistical, document analysis or clustering techniques to link
parts of the documents together. Automatic formation includes automated link
typing (Allan, 1996; Cleary & Bareiss, 1996). Many of the efforts (Rada 1992;
Agosti et al., 1995; Allan 1995; 1997) do not specifically address or emphasize
the problems of software engineering as a target area of support.

Hypertext models

Frisse and Cousins (1992) have compared three representative models of hyper-
text: Dexter (Grembaek et al., 1994), IBIS (Conklin & Begeman, 1989), and Trellis
(Stotts & Furuta, 1989). In addition, there is the GHMI model represented by
Wan and Bieber (1996), which is based on Dexter and extends its storage layer.
These models do not emphasize the idea of automatic hypertext creation;
rather, the emphasis is on the notion that hypertext is authored by people. The
purpose of developing Dexter has been to capture the important abstractions
found in a wide range of current and possible future hypertext systems. Within
HyperSoft, we instead, attempt to capture the important abstractions found in
program text and combine them with the abstractions concerning dynamic,
transient hypertext. Some information models (Shepherd et al., 1990; Watters &

25

Shepherd, 1990; Tague et al., 1991; Salminen et al., 1995), support the idea of
automatically created (dynamic) transient hypertext, which can be used as a ba-
sis for our efforts. HyperSoft and Dexter will be compared in Article IV.

Software hypertext systems

Software hypertext systems support program development and maintenance
activities by allowing users to create links between the source code, related
documentation or their internal components (some cases, the links may by pro-
duced automatically), thus e.g. enabling redocumentation (Fletton & Munro,
1988; Younger & Bennett, 1993) of legacy systems. The impact of hypertext in
CASE environments is discussed by Kerola and Oinas-Kukkonen (1992), and
hypertext in software development environments by Ziv and Osterweil (1995).
After the links have been formed, they can be used as an aid in program com-
prehension efforts. These sorts of links are generally considered as important
aids in system development, cf (Kerola & Oinas-Kukkonen, 1992).

There are innumerable commercial reverse-engineering tools. Nowadays,
some sort of hypertextual navigation has also found its way into some of them.
Typical structures are various cross-references. The most important of such sys-
tems for C include SHriMP (Storey & Muller, 1995), RIGI (Wong, 1996), Hind-
Sight (lntegriSoft, 2000), Cygnus Source Navigator (Red Hat, 2000), Discover
(SET, 2000), Imagix (2000), Logiscope 01 erilog, 2000) and Sniff+ (TakeFive,
2000). Since these are commercial systems, the modelling aspect of hypertext is
not their focus area. Since hypertext features are evidently becoming more fre-
quently provided, the importance of having a well-thought out approach for
their application and a well-grounded model for the representation of the hy-
pertext structures is emphasized.

Systems having some important similarities with HyperSoft (and which
will be described in more detail in Section 3.5.2) include DynamicDesign (Bige-
low & Riley, 1987; Bigelow, 1988), HyperCASE (Cybulski & Reed, 1992), ISHYS
(Garg, 1989; Garg & Scacchi, 1989), and DIF (Garg & Scacchi, 1990). There are
also many other systems including those reported by 0sterbye (1995), Oinas-
Kukkonen (1997a; 1997b) and Rajlich and Varadarajan (1999), which provide
mechanisms for creating hypertext for the purposes of forward engineering. Al-
though the capabilities of the above-cited systems are clearly useful in provid-
ing associations between the source code and the documentation (which
especially is an important part of creating program comprehension based on re-
vealing the connections between technical and application domains), their bene-
fits in relation to the maintenance of legacy systems are mainly confined to
documenting these systems. This is because most of them heavily rely on man-
ual hypertext formation, and for legacy systems such a pre-defined structure is
not available. The systems which have most important similarities with Hyper-
Soft are Whorf (Brade et al., 1994) and HyperPro (0sterbye & N0rmark, 1993;
1994; Ne~rmark & 0sterbye, 1994; 1995). These systems provide support for
viewing program text as hypertext.

3 TRANSIENT HYPERTEXT SUPPORT FOR
SOFTWARE MAINTENANCE

In this chapter we will describe our approach. First, we will describe the re-
search objectives and research problems (Section 3.1). Then we will represent
the principles (Section 3.2), describe the HyperSoft system, which is the imple-
mentation of our approach (Section 3.3), and provide example sessions of the
HyperSoft system in practice (Section 3.4). Finally, we will evaluate the ap-
proach from the theoretical point of view by proposing the potential benefits
and probable drawbacks on the basis of our experience, the results of the em-
pirical evaluations, and comparisons with other tools sharing similar features
(Section 3.5).

3.1 Research objectives and problems

The objectives of this study consist of the following: investigation of the possi-
bilities of viewing program text as transient hypertext in order to facilitate soft-
ware maintenance and program comprehension support, development of an
approach for these ends, implementation of the approach in the form of a tool,
and evaluation of both the tool and the approach.

By transient hypertext, we mean hypertext which is formed automatically
and which exists for only a relatively short period of time. The user is provided
with transient hypertextual access structures over the subject software system.
Although hypertext has been applied in the software engineering context to a
relatively large extent (see Section 2.3.2), source code and its internal structures
are seldom considered as hypertext. Because program text follows well the so-
called "golden rules of hypertext formation" (Shneiderman, 1989), it seems to be
reasonable and potentially useful to view program text as hypertext. The
golden rules assert that it is possible to form hypertext, if:
• there exists a large body of information organized into numerous

fragments,

27

• the fragments relate to each other, and
• the user needs only a small fraction at a time.

Program text clearly satisfies these conditions. Moreover, hypertext seems
to be a natural way in which to represent program text, because the program-
mer typically browses the text in various nonlinear ways while trying to com-
prehend it. Hypertext as a way of representing information within software
development environments has also been motivated by Ziv and Osterweil
(1995). Hypertext is usually formed manually, but in the case of program text
automatic formation is also quite possible. Because the automatic formation of
transient hypertext will eliminate the need for elaborate manual linking and en-
sures the currency of the hypertextual structures even if the software changes,
we have chosen to investigate that particular strategy.

Our research aims to achieve the following objectives.
1) Analyze whether and how program text can be viewed as transient hy-

pertext (Article I).
2) Determine what kind of model is suitable for representing program text

as transient hypertext (especially Articles I, IV).
3) Determine the proper form (and the related fragmentation of the program

text in case) of some of the important THAS types (Articles III, IV, V, VI).
4) Determine the nature of the program dependencies which can be used as

a basis on which to form the different hypertextuallink types (Article V).
5) Determine the necessary static information and the convenient form of

storing that information in order to support some of the most prominent
THAS types (Articles II, III, VI).

6) Discuss how to deal with the possibly large amount of static information
needed (Sections 3.5.1, 5.3, Article III).

7) Analyze what kinds of THAS types can be formed automatically (espe-
cially Section 2.3.1, Appendix 1, Articles I, V).

8) Discuss how THASs can be utilized in software maintenance (especially
Section 3.4, Articles I, V, VI).

9) Determine the nature and technical architecture of a software mainte-
nance support environment (the HyperSoft system) in which program
text is represented via THASs (especially Section 3.3, Articles II, III, IV,
and the report; Koskinen, 1997).

10) Analyze what kind of THAS types can be used to satisfy the typical infor-
mation needs of software maintainers (mainly Article VI).

11) Determine the effects of the THAS-based approach on the information re-
trieval performance of software maintainers (Article VII).

12) Gather information about the subjective notions of users on THAS-based
maintenance support (Articles IV, VII).
Because there were no pre-existing models tailored to view program text

as automatically formed transient hypertext, we have developed one such gen-
eral model (Article I). This modelling has been one of the main aims. The model
has been refined and extended during the research process. Since our model
contains the grammar of the supported programming language, the hypertex-
tual nodes may correspond to any of the syntactical structures of the program.
In practice, however, only some of the node types and the structures composed

28

from them are useful. The implemented HyperSoft system makes it possible to
empirically evaluate the relative usefulness of the different THAS types.

3.2 Principles

We provide a model as a basis for the systematic hypertext-based support in
software environments. In the HyperSoft model a THAS is modeled as a di-
rected graph, that is, as a pair (N, L) where N is a set of nodes and L is a set of
ordered node pairs called links. Typically, the nodes are parts of specific syntac-
tical types and the link types correspond to program dependencies. The links
are formed to enable unlinear text browsing. We have described and classified
the program dependencies potentially applicable for creating links in Paakki et
al. (1997). A complete description of the HyperSoft model will be provided in
Article IV.

It is characteristic of the HyperSoft approach that the access structures are
transient (temporary), they are generated automatically, the source code is the
main input, and the maintenance support of legacy systems is the main target
area. The approach describes a hypertext support environment by four layers -
source code, syntactic structure, access structure, and user interface - which are
explained, for example, in Article IV. The source code layer deals with linear
text representations in files and related operations (retrieval and modification).
The syntactic structure layer deals with parse trees representing the information
needed by the support environment and related operations. The access struc-
ture layer deals with THASs and THAS operations. And, finally, the interface
layer is related to text and THAS representations as conveyed to the user and
interaction between the user and the support environment.

The syntactic parts of program text serve as the basis for forming the hy-
pertext nodes, program dependencies serve as the basis for forming the links,
and both the nodes and the links are generated by automatic analysis. It is im-
portant within the appoach to be able to focus on relevant program parts and
important dependencies. At the interface layer, graphical representations and
abstract views are used to deal with the disorientation and cognitive overhead
problems (Wright, 1991) often associated with hypertext systems.

3.3 The HyperSoft system

The HyperSoft system (Koskinen et al., 1997) is based on our approach. It is de-
scribed in Articles II, III, and IV and in Koskinen (1997). It can be characterized
as a reverse-engineering tool. HyperSoft supports the ANSI-C language (Ker-
nighan & Ritchie, 1988; Ritchie, 1993) and embedded SQL (Date, 1987). Hyper-
Soft runs under Microsoft Windows™ 3.1/95/NT. HyperSoft supports the
comprehension and maintenance processes by providing various THAS types

29

and view types. THASs are formed automatically by the tool (based on static
analysis). The academic objectives of the project have been attained. The set
main requirement has been the implementation of a tool to support the mainte-
nance of large software systems written in the C language by providing capa-
bilities to view these programs unlinearly via automatically generated
hypertext in accordance with typical maintenance situations. The requirements
are detailed in Koskinen (1997 I Section 1.2).

The architecture of the system is represented in Figure 2. The architecture
corresponds to our layered HyperSoft model. The main components of Hyper-
Soft are: 1) analyzer (static program analyzer), 2) generator (THAS generator), 3)
program database, 4) interface (generic user interface), and 5) editor (HyperSoft is
currently integrated with PFE; Programmer's File Editor). The analyzer corre-
sponds to the syntactic structure layer, generator to the access structure layer,
and interface to the interface layer. The source program collection contains the
source files for which the program database is generated. The program data-
base is a repository component storing the information passed through other
components. Components 1), 2) and 3) belong to the back-end of the system and
components 4) and 5) to the front-end. Users interact with the system by using
the front-end components. The back-end components are needed in generating
THASs. Detailed design and abstract implementation descriptions of the back-
end components are included in (Koskinen, 1997).

- pruned parse trees
~-~ - symbol tables

- position information
- stored THASs

FIGURE 2 The general architecture of the HyperSoft system

Users

30

HyperSoft consists of two programs: Analyzer (component 1) and HyperGenera­
tor (components 2 and 4). Database (component 3) is used by both programs.
HyperGenerator consists of two parts: the generator is written by the author
and the interface by Nieminen (1996). The analyzer analyzes the original source
programs and forms the program database, The generator then uses that infor-
mation to form THASs which are represented to the user as hypertext through
the interface-component. The size of the system (excluding PFE) is about 32,000
LOC (lines of codef The general order of forming and representing the neces-
sary data structures is represented in Table 2. First, preprocessing is performed
including macro expansions. Then, parse tree is formed for each module and
compressed to spare memory. Next, symbol tables are formed based on parse
tree traversals and necessary cross-references are made. THAS generation is ini-
tiated by the generator. Finally, a THAS is represented to the user via the
interface.

TABLE 2 Overall schemata of the order of the main HyperSoft functionalities

Phase
1 Preprocessing, parsing, and parse tree formation.
2 Parse tree abstraction and compression.
3 Creation of symbol tables, based on the preorder traversal of the already

formed parse trees.
4 THAS generation, based on the static program database produced in the

phases 1, 2, and 3.
5 THAS representation to the user via a generic, graphical user interface

providing text and navigation views.

3.3.1 Static program analyzer

The analyzer has two parts: first one (Koskinen, 1997) supports ANSI-C and the
other one (Suominen, 1997) supports ESQL (Embedded Structured Query Lan-
guage). The analyzer creates the static parts of the program database for the
source programs that need to be (re)analyzed. This is a preliminary action pre-
ceeding the generation of the THASs. The analyzer also provides the necessary
parse tree and symbol table representations and operations. The analyzer is
built using the AnaGramTM metacompiler (Parsifal, 1993) and the C Macro Pre-
processor Package (CMPP) delivered with AnaGram. HyperSoft extensions are
built on top of the CMPP. The formation of the program database (see Section
3.3.2) is based on static analysis (cf Section 2.3.1). The analyzer is implemented
as a D05-program and supports the analysis of syntactically correct ANSI-C
programs3•

2 The analyzer is about 4,000 LOC and the generator about 5,000 LOC.
The analysis is subject to some limitations, which are detailed in (Koskinen, 1997).

31

AnaGram metacompiler

The AnaGram metacompiler (Parsifal, 1993) has been used to reduce the work
needed to code the analyzer. AnaGram is made by Parsifal Software and it con-
tains an LALR(l) parser generator; see (Aho & Johnson, 1974), which creates a
table-driven parser from a grammar written in a variant of BNF (Backus-Naur
Form). Compared to hand-made parsers, parsers generated by AnaGram are
more readable and thus more maintainable, yet not significantly slower.

C Macro Preprocessor Package

The C Macro Preprocessor (CMPP) delivered with the AnaGram metacompiler
includes the syntax descriptions for C parsers in the Kernighan and Ritchie
(1988, Section A13, pp. 234-239) form. The syntax (of programming languages)
is defined for AnaGram using a notation similar to BNF. The same notation can
be used both in the parser and in the lexer components of the system being im-
plemented. Components of the CMPP that are used in HyperSoft are described
in some detail in Article III. HyperSoft handles macros correctly. In cases where
the expanded macro text contains a symbol relevant for the current THAS, the
corresponding macro label will be included in the THAS which is currently un-
der construction. HyperSoft also shows the user those lines which are not
within the current (conditional) compilation with special highlighting, which is
useful feature since conditional compilation is heavily used in the C language.

3.3.2 Program database

The program database (PDB) is implemented as a set of DOS files, and it is cre-
ated by the analyzer component. There exist a parse tree, a local symbol table,
and static occurrence list files for each C (or ESQL) source or header file within
the user-defined project. Moreover, there exists a global symbol table which
gathers information about the symbols used in multiple files. The PDB files are
changed or deleted only when the corresponding source files are modified. In
that sense, the program database is permanent in contrast to the THASs. Since
all the intermodular information is gathered into the global symbol table, there
is no need for the time-consuming process of checking out the local PDB ele-
ments in the case of source modifications. This is in contrast with conventional
compilers which fetch the object files into main memory during the linking
phase.

3.3.3 THAS generator

THASs are formed by the generator component on the basis of various program
analysis techniques. The generator uses the static information stored in the pro-
gram database during the execution of the analyzer and passes information
about the THASs so-formed to the interface-component. All of the THASs are
transient/ dynamic in a sense that the user specifies the criteria for generation
during a HyperSoft session. The life-cycle of the THASs is such that they are

32

created on user request and are removed permanently when the session ends.
The generator is a part of the HyperGenerator, which is a Microsoft Windows
program.

HyperGenerator supports partial "multiprocessing". Within HyperSoft, it
is possible to move inside the text and map windows during THAS generations.
This is an especially useful capability when forming large THASs. It is also pos-
sible to initiate multiple THAS generations which will then be processed se-
quentially. HyperSoft is linked with the DBwin- a simple PD program- which
is used to show various items of status information and other messages to the
user during THAS generation in a separate window. Status information is
shown in order to give the maintainer an estimate of the time that the THAS
generation will take. The use of HyperSoft, however, does not require DBwin.

The generation of a THAS is initiated from the interface component by
sending a request to the generator's main function, which in turn calls the ade-
quate THAS generation functions. THAS formation constitutes of traversals of
occurrence lists and parse trees. When forming the occurrence list, it is only nec-
essary to traverse the static occurrence list of the selected symbol. Calling de-
pendency formations require both finding the function occurrences in the
occurrence lists and finding the function calls within a certain function body
based on the parse tree traversal (in forward call graphs). Slicing requires exten-
sive and complete traversals of the relevant parse (sub) trees.

The HyperSoft system currently supports the following THAS types:
1) Definition references (for variables, functions, and user-defined type

names), providing a link to the program part where the relevant compo-
nent is defined.

2) Occurrence lists (for variables, functions, and user-defined type names),
providing a chained list which can be used to check the symbol
occurrences.

3) Instance lists (for syntactical constructs), providing a list of components of
a specified syntactical type, such as declarations or jump statements.

4) Forward calling dependency structures (complete, "traditional" call graph
and calling-level-wise partial variants).

5) Backward calling dependency structures (complete and calling-level-wise),
showing the functions (and places of their implementation) which a func-
tion is called from.

6) Intraprocedural backward slices, containing information about the state-
ments within a function that may have effect on the value of a variable in a
specified program part.

7) Interprocedural forward slices (complete and calling-level-wise), contain-
ing information about statements that may be affected by the value of a
variable in a specified program part.

3.3.4 Generic user interface

Graphical representation of THASs and interaction with the user is a necessary
requirement in HyperSoft. The generator and the (generic user) interface of the
HyperSoft system are dependent on each other, since the interface would be

33

useless without information about the THASs, and the generator would be
practically useless without a graphical way of representing the THASs. The in-
terface has been implemented by Nieminen (1996).

The MVC (Model-View-Controller) model (Krasner & Pope, 1988) has
been used as the underlying architectural model in HyperSoft. According to
Booch et al. (1999) the responsibilities of the layers are as follows: the Model
layer manages the state of the model (in this case THASs); the View layer ren-
ders the model on the screen, manages movement and resizing of the view and
intercepts user events; and the Controller synchronizes changes in the model
and its views. HyperSoft provides various views for the program text and for
the THASs formed. The clear importance of (overview) maps has been re-
ported, for instance, by Chen, C. and Rada (1996), and McDonald and Steven-
son (1998). Examples of implemented views are gathered in Figure 8. The views
are linked to the program text such that from within them a user can directly
move to the appropriate program part. Thus, these links are hypertextual/ hy-
permedia! links between different representations of the same objects. The
views include the following.
1) Project file window, listing the modules which are related to the current

project and providing a way to move focus to their active element (at first,
to the beginning of the file).

2) Structured map view, for hierarchic examination of a THAS, showing the
modules, functions and the nodes within a THAS as embedded in the pro-
gram text. There is also a special structured map view for the integrated
editor (PFE), supporting code modifications in an integrated fashion.

3) Function dependency view, showing graphically the functions and the de-
pendencies between them within a THAS.

4) Module dependency view, showing graphically the active modules (which
are files in case of C) and relations between them within a THAS.

5) Miniature view, showing the code in a tiny font, for a quick overview of
the dispersion of the nodes of a THAS within the program text.
The hypertext nodes are highlighted in different colors. The color of nodes

represents the number of originating links (0, 1, more) or their target (whether
the dependency exists within or between functions or modules). Hypertext
links are optionally shown graphically on top of the program text.

3.4 Example HyperSoft sessions

HyperSoft runs under Microsoft Windows. The tool provides the user with sev-
eral different views on program text with hypertextual navigation capabilities
within the THASs generated by the tool. We will provide three examples of us-
ing non-trivial THAS types- call graphs and program slices. The use of the Hy-
perSoft system is described in more detail in the user manual (Nieminen &
Koskinen, 1997), and within the documentation distributed with the HyperSoft
system (Koskinen et al., 1997).

34

3.4.1 Call graph example

In this session, the user (unfamiliar with the program) is interested in obtaining
a general overview of a chess program and more detailed knowledge of how
individual chess moves are handled by it. The example project (Koskinen, 1993)
consists of 7 files and contains about 2,700 lines of code. This is the program
which has been used as a sample in Article VII, in the empirical evaluation of
the HyperSoft system. When starting HyperSoft the user defines the program
files from which the program database is to be formed. These files are included
in the project file. The program analyzer then forms the static program database
for these files. Figure 3 shows the contents of the project file window, a list of
the files from which the database is made, and status information on the forma-
tion of the static program database. The name of the file currently being ana-
lyzed is given in the window. The figure shows the situation when a117 files of
the chess program have been analyzed.

II

lill!.;l • [jl [i!]OI:J ~ IT.I
llnactiVP. C\HSOI-1\I:::.XI:::\ANAL VLI:: l::XI::1 ~-----------------------------------I I HyperSoft , ! I C-pr~gram preprocessor, parser &

! I stat 1c program database generator
i I Jussi Koskinen (199q-1995),
! I Uniuersi ty of Jyuaskyll!!l,
! I Persi hl Soft•ere (1993).
1 ------------------------------------

!Analyzing C programs specified in the project file.
! · c' /hsoft/input/chp/main. c · .. .
i · c' /hsoft/input/chp/main. h · .. .
I" c' /hsoft/input/chp/eval. c · .. .
! · c' /hsoft/input/chp/dialog. c · .. .
I" c' /hsoft/input/chp/try. c · .. .
1' c Jhsoft/input/chp/try. h' .. .
I' c Jhsoft/input/chp/oponing. c' ...

I No errors encountered.
IHyperSoft has now completed the formation of the static program database.
!Progra11 database is stored on directory · c: /hsoft/output · .
!Elapsed time, ee,ee,15

D

i•o·· , ... •
I ~~~~~~~~~~~~~~~~~~~~~~~~-~

FIGURE 3 The project file window and the formation of the static program database

The user may open multiple program files, views, and dependency diagrams
simultaneously on screen within a single HyperSoft session. The system can
also be used "simultaneously" (in batch mode) with other Microsoft Windows
applications (e.g. with an editor or a compiler). In Figure 4 two of the files,
main. c and main. h, have been opened, the program text being shown on the
windows. The user may browse the source files and select the sizes of the win­
dows and the fonts used. Within C, a program starts from the function called

35

main, which typically is located at the beginning of the module main. c. The left
pane of Figure 4 shows the beginning of the function main, which is supple-
mented with general comments, serving as a general overview of the purpose
of the program and as a starting point (beacon) for further comprehension
efforts.

II Hyp~t Sott l Occut t eriLe lbt matn c ma111j -_ttle _t!a\•tqatton _Query ~tew _Wtndow Help

lilm • [j] •o~ llll!B

:lhlo ~ .. ~- ~tl:l&l.:l:"-111~11 ~ ~-
=ati""' 01:i.do=, c:::cJ.y t::h.=J.u=-=llhm"'t""' = =!!JI'Lteol.. So :u::uot==l. o£
~-m~ baWZ"ll' a m..,.rr.ILI. v&l.....,, am~ ba'OIInll' • m>Z:~:Lrr&l.

(:i..=. aft= 11 =!!JI'Lt"-""1J.= "-'" •e=oobed..
:lhlo ~ o£ t:I:HI -'""-J.,.,..l h&l.:t"-mo.,.., :1.11 ~tKI.i:y~­
....J.ue~~~ o£ t::ho= cil=eJ?I"r le""'l h.oll.£-mO'UOO• tog•d:h=r.
:lhlo ~~~ o£- (i>llllt) m~-~..,tll - "U1-. ~:~~.m~i>llr Q1" t:tHI

e=-min=l. =l.=m=t=y pao:~.ti~ = ..:hoot1:1. Al•o tb= aurz=tl.y

•J. ... t.o1 Ill~ (<ibll:i.l:r,) ~- Jo. libl::>'lll:l OZI. IIGZ11CI. :1.1:1 -IIJ.-t:i.m•
C-== 'lllbo"_,..,..,,, 'llbo.,_cutp..>.t', '..:ho"-""''"t').

!Ih::i.11 .&z..at:i.c::n lllhcul.d boo 01pl.itt•d =to parl11.

:int m=O,mat.o=O, .. bl..=O,z,y;
:lftttl!lllp!IOIIIO,IZ!do,rreZnd,m ,:i.,j;
:int :d.=O ,¢=0 ,:112=0 ,y.:;:=l,a"'fft=O, oobeai:=J ,p=:>mot:~.cz=O ,t:i.me_l:i.m:i.t;
~:lfttlind.t=l;

Generate new forward calls (Hotkey CTRL-6)

FIGURE 4 THAS specification

c:\hsoft\input\chp\dialog.c
c:\hsoft\input\chp\eval.c

i c:\hsoftiJnput\chp\maln.c
c:\hsoft\input\chp\main.h

•I

/"' lilat:irr.""t"'d :number o£ .,.,]...,.t.,d mo"""' I "'""· =
11~ /" Mo:o::i.mum :numl>e.r o£ J?OII•ibl.= mo""''" = om.y <>=rt=

9 /*Nio:Ei.muml~tbof-l::b=m""""""t~*/

~·

/*MD:Lmumlo!!nQ!tb~ttu!~uar.i=t:narr.!!""/

I* Nio:Ei.mum ..J.lo"""d :number of mo=01 lt:l.l::h:in ~::boo g=
/*Mo:rlmum odlo...,d:numborod"rr.OU!!!BI odl:h:ln l'ho! ~
I• -"- 1=>9'\:b of \:be~ 1:~.i>=rym0'1100-al=:i=:uo.
I* ~r of i>=11t mo=11 llih.oon ..:fter "" aomp..~.ter-mc · .
I* -"- tli'Ji'loll of ;p:~.•a•11 ""/
I* !1be ni.dth of !:be l>a=d */
I* :liMo bn-#1-t of 1:b11 - ""/

14 I* !!he mo.,..•,., llbo..,_ c:n •a== l>ouoed c:n tb:L• """ ·

1000 I* st..t:i.a ...J.-w= of"-J;"UE1i• '"""""'.,. ...J.u..[PA'IN.l

(110-Hii:....._,...,.,,..l /"" ~tat:1.a lliLI."Ll&t:l.c:n of ttw obAal: "*/
100 I* p,..,_ ,..;....,..a., to-=W !:be =my lin=• ""/ .•

C-300-Hii:-oo;,-...., .. ,..j /*ia'lll:lo1cW:illl-lltll5'=1:101:1-oCl.tllr oolurr .•
(200-2""9-...,o""') /"" lol~ -l::b= kinsf'• ~:i.hc:n ""/
200 I*C...t1in.ar*/
(50+2""9-...,o""') /"" Att .. all to-=W \:be =my kinsf, tb:L• · ·

~ I* M:o ... m~~nt to-..:dlo l:hll a~~nt•z of \:boo :boazd. *I
~ /*!lhe~:lft.,....l>!!ro:4~11:1.1:il.l!m-:olft!ll(m~l··

-300 I* st .. t:i.a =J. t:i.c:a of ahzmg=SJ pieaell i=;te=l.
I* ~ .:4 .jlcdnQr !:be promot:!.c:n (:l.mme«::.ately),

The user may give THAS generation commands over the source files by select-
ing (pointing) the relevant program elements and the desired operations. Figure
4 shows the way that THAS generation is initiated by the user. In the example
the user has decided to generate a forward calling THAS (complete, traditional
"call graph") initiated from the top of the calling hierarchy, the main function (at
the corner of the pop-up window). The THAS type is selected from a pop-up
menu. Examining forward calls is a typical way to follow the systematic top-
down comprehension strategy. The THAS type shows the calling relations be-
tween the functions, and it is useful in gaining an overall understanding of the
functionality of the program, or in finding all the functions whose behaviour is
potentially affected by an intended change in the program.

Figure 5 shows part of the THAS created (the THAS extends to several
files). Status information about the generation of the THAS is shown in the "De-
bug Messages" window. The hypertextual nodes within the hypertextual views
are shown in reverse color. The figure shows, for example, a function call node
find_moves within the module main. c (at the center of the left pane) from

36

which there is a link to another module, eval . c, where the function is imple-
mented. If the user clicks the find_moves function call area (anchor), the cursor
moves to the destination of that hypertext link. In this way the user may browse
back and forth, by following the links set by the system (or via backtracking
along them). Since the links may (and typically do) indicate the program de-
pendencies which connect program parts somehow belonging together, corn-
prehension of "delocalized program plans" is supported. The user may limit the
levels to which THAS generation will expand. In the example the user has
specified that the analysis should extend to the fifth calling level (see the "De-
bug Messages" window; there are various ways to limit the expansion of the
analysis within the system). The program files into which the THAS has ex-
panded are annotated with'!' in the project file window. This feature helps to
reduce time and cognitive complexity in relation to the maintenance situation.

II Hvper:Sotttl-or\varcl calls rnatn c rnatnj

Iii •• [j] •o1:1 BrlB

i£!:::::~~:=:~1 {llliiLWnw-.I!IWJ-IIIio r
if(openind[gamem.ove] >O) {

!I!I!I'J(movestr, qam.emoves [gamemow
printf("Op'i£1.i.ng: '%::1'' \n" ,.,OYiil::l't;&;
!I'J (mo-s tr, i!<x1, l!iy1, l!ix2, &y2) r
printf("Op'i£1.i.ng: xl=%d,yl.=%d,x2=
m.arlnd-1; mn.oves [1] -1;

}

... uvu::s [1.] [laaxind] • xl=xl. ;movo~~::s [1.] [
m.ovol:!s [1] [111..arlnd] • x2-x2 ;movol!!s [1] [
... uvu::s [1.] [laaxind] • ca.pt=hoa.rd [x2] [
m.ovol:!s [1] [111..arlnd] • va1nll::!-100,:

getch(); •/
m.OVIil"tlil:9t=0;

do I
i.f(nmoves [ml]==O) {

!DI!IIIIillll!ll""-' •l '
i.f (mnoves [ml.] >O) {

if(output>=3) {
1!1!1!11](11 \n<<<Found moves:)

}
i.f(m1<1-mX DEPTH) {

if(mn.ov;s [m1]>1) ~
else {

m•xind---1!!1!!1111!! (m1) '

FIGURE 5 THAS formation

i.nt x,:r;
£u;~;(x=l;x<=WLX X;x++) {

for(y-1;:r<....mx: Y;y++) {
i.f(muvliltlil::i't) -pri.nt£(• %d, • ,h~
i.fC!Im!Cboard[x] [y])--s && he

• Input:
• Note:

1 emoves [] 1 (evaluatE
moves that will be E

are £irst sorted in
Tholl sid.a (s)
Bubble sort used, sl:

i.nt i.,j ,x1,y1,x2,y2,max,m.ax:lnd,n
if(output>=2) (

1!1!1!11](11 \n<<<mn.oves [%d] =%d>>>'
}
for(i.=1;i.<=nmoves [m..l] ;i++) {

max=-HAXIHT ;maxind=i;
for(j=i.;j<==nmoves [ml] ;j++) {

if (muvo~~s [m1] [j] . valu.a>m.ax) l
max==m.oves [ml] [j]

Creatmg new access sb'udure.
Level1 completed (83 nodes)
Level2 completed (1 96 nodes)
Level3 completed (21 7 nodes)
Level~ completed (256 nodes)
LevelS completed (283 nodes)
Generation interrupted by the user!

-
The Elccess structure is only pEirtiEIIIyformed!
BS module changes perlormed .
283 o.ccess structure nodes lormed.
EIEipsed time: 00:01:46

~ c:lhsoft\inputlchpleval.c
Y c:\hsoft\input\chp\main.c

c:lhsoft\inputlchp\main.h
~ c:lhsoft\inputlchplopening.c
! c:lhsoft\inputlchpltry.c

c:lhsoft\inputlchpltry.h

Figure 6 shows some of the links which exist between the THAS nodes. Hyper-
Soft supports different levels of link viewing, namely: 1) links are not high-
lighted, only the nodes, 2) if a cursor is set on top of a node, the links
originating from it are shown, 3) selected links are shown, 4) interprocedural
links are shown, or 5) all the links are shown. In the figure all the defined links
are shown. These options also help to reduce the amount of information repre-
sented and thus to overcome the cognitive bottleneck related to focusing
attention.

37

II Hyper~ott 11-orwarcl calls mam c ma1n1

Iii •• [ii·D~ ·~ B

:•!!!l!!!l!!!l!!!ll all possible moves of a piece

* Method:

int p=bo
if(s:mr(p
p=llBS(p)

\lry.c1J1) lry kinq
\lry 1 Jl?J lry qu~~ll
\try c(33) try _rook
\try c(34] try_brsllDf•
\try q 3~) try_kn1gt1t
ltry.c(3b) try_pawn
\try c(37] prrr rtf
\try c(37) exrt

~ece, col1lllln 'x' and row 'y',
[]' m.11.tr.ix
the type of the piece, then ca

' fun.(ltion

~. 11/

1 ,y) ,:break;
,y) ;break;

,y) ;:break;
(x,y) ;break;

FIGURE 6 Links and navigation within the THAS

(x,y,x+1,y+J
].kinq) {

In the example the user has followed the links from main to find_moves, and
further to the function try _piece, which calls the proper handler of each cate-
gory of chess piece. These in turn call the move evaluator - eval_move - with
proper square parameters. The function eval_move is the most central function
within the example application, determining the relative goodness of individual
chess moves. Thus, at this stage the user has arrived at the most central
component.

If there is only a single link originating from the active node, that link is
obviously the default. If there are multiple links, a pop-up menu is shown from
which the user may select the link to follow. As usual in hypertext systems, the
user may backtrack along the active link-chain one step at a time or go back to
the first ("home") node simply by pressing the corresponding icons (the icons
are located on the third row down from the top of the screen).

Graphical views and maps can be used to manage large THASs and to
provide direct access to the source files on an abstract level. The importance of
this was mentioned in relation to the empirical studies of hypertext in Section
2.3.2. It is also possible to view many THASs simultaneously within the Hyper-
Soft system. As noted earlier, in the case of program text, a single fragmentation
or linkage is not sufficient for describing all the relevant aspects.

Figure 7 shows two THASs using different methods: on the left the for-
ward calling THAS described above is represented as a dependency diagram,
and on the right a backward calling THAS from the function eval_move is rep-
resented as a structured map view. The backward calling structure shows the

38

functions which the initial function is called from. By following these links the
user may combine the applied top-down comprehension strategy with the
bottom-up strategy. Moreover, since the different kind of THAS types can be
used in various combinations, the "as-needed comprehension strategies" are
also supported. The backward calling information is useful, for example, when
trying to understand the purpose of a function. The user may decide to let the
THAS generation continue in the background whilst continuing to navigate
through already generated THASs or program files, or using other applications.

- llyperSofl [13dckward calls e\,dl c eval_rr1uve] ~

[lie Naviqalion _Query Yiew]'iinduw llelp

-Backward calls: eval.c - eval 11.ove
~ eval. c t+int find moves(int i,int s) {

+ int eval_move(int x1,int y1,int
Ill! try.c

nt try k~ng(x,y) {

+ int try_castling(int x,int y,int
+ int try_queen(.:Lnt x,int y) {

+int try_rook(int x,int y) (

~ int try_bishop(int x,int y) {

~ int try_knight(int x,int y) {

-:?int try_pawn(int x,int y) {

FIGURE 7 Multiple THASs and multiple representations

Figure 8 summarizes various ways of viewing the program text through Hyper-
Soft. Starting from the left, the figure shows the so-called miniature view, hy-
pertextual views, the structured map view, the project file window, and the
graphical function dependency view. The general purposes of these views were
described in Section 3.3.4. The views are used to manage the systematic exami-
nation of the created THASs. The views are linked to each other so that the user
can move, for example, from the structured map view or the function depend-
ency view to the hypertextual view. Within the hypertextual view the user can
move along the transient links. This sort of view integration is important in or-
der to support cognitively smooth operation.

39

- HyperSnft [Forward ~ails main c ma1n]

file Navigation .Query Yiew Window Help

FIGURE 8 Various THASs and representations within the HyperSoft system

The above example session dealt with the forward calling THAS type. Another
important THAS category within the HyperSoft system are program slices
(Weiser, 1982). Program slices are more specific THASs than the above-
described call graphs. When the user has first fixed the specific focus of interest
(on a certain situation, for example, via browsing through the source code using
other THAS types), slices may be used to restrict the subsequent area of interest.
The importance of program slices as THASs is discussed in Article VI.

3.4.2 Backward slicing example

Within this session, the user aims to understand a function that produces erro-
neous results. Here we assume that the static program database has been
formed properly, as in case of the previous example. Program slices can be
formed according the same principles as in the previous example. Two exam-
ples of intraprocedural backward slices as THASs are represented in Figure 9.

In this case the user is interested in examining the program parts which
may have an effect on some program part (slicing criterion). The example also
exemplifies that multiple THASs can fluently be viewed (and thus compared)
fluently simultaneously on screen. The slice in the left pane is started from the
occurrence of variable d (in statement ++d), and the slice at the right pane from
the occurrence of variable b (in statement --b). Statements that might have a
data flow effect on the slicing criterion variables are included in the THASs. The
analysis proceeds against the direction of the control flow. For example, in the

40

slice on the left, there is a link from the home node (statement ++d) to the place
where d immediately received its value (statement d=d+x). From there, accord-
ingly run links to the statements where d (statement d=e) and x (statements
x=x-1, x=a+b+d, ...) received their values. In cases where the cursor is set on
top of some of the anchors, a pop-up window (as in case of all THAS types) is
shown which the user can use to systematically traverse paths of interest.

=I HyperSoft [Backward Slice: hsofl6.c- flast]

file Navigation .Query Ylew Window Jjeip

Structured Map View

x=-b;x=x+l;a++:

+
+

hsoft6.c(31) d=d+x

)

x•x-1; ~~~~c+l; e•e+l: t•t+l;
zl•x;b~

x•d+k; x"'x-1; b•x-1;

x=b;x""x+l;a++;
"" -z:l;b-z:2:;

+ +

0:00:00 0:00:00 32:19

FIGURE 9 Intraprocedural backward slices as THASs

..
+

+

The slices can be used, e.g. to find the statements from which the possibly incor-
rect values of the slicing variables originate. Thus the user is provided with a
view of the factors relevant to the current corrective maintenance or debugging
situation. Since the formation of intra-procedural backward slices is fast, the
user may constantly further specify the focus of interest (based on the existing
understanding at each moment). The process of forming program slices in the
HyperSoft system is described in (Koskinen, 1997).

3.4.3 Forward slicing example

In this session, the user aims to evaluate the potential effects of making a
change in a program. The user is interested in finding out which program parts
may be affected by the specific program part (to be changed). This sort of inves-
tigation is supported in HyperSoft via forward slicing. Figure 10 shows an ex-
ample of interprocedural forward slicing. The slicing criterion is variable gl
(second gl++ statement, function f21). Downward slicing consists of the

41

analysis of the functions called from the initial function, whereas upward slic-
ing consists of the analysis of the functions which the initial function may have
been called from. The names of the functions which are upward calling contexts
are always appended to the THAS since downward slicing must also be applied
to them. Downward slicing is performed for each function within the calling
trajectory (for those parts which appear after the call in a particular situation).
What functions will actually be analyzed is determined by the status of the
analysis. The process and terminology of slicing is described in more detail in
Article III.

- Hypet Soft [Fotwat cl rille ~~~··ft20 I f21] ~

file Navigation ..Query Yiew Window Help

Counting the contexts
9 upwmd slicing level(s).
21 alternaliYe contextfundion(s).
1(21). "NIA '121' (38nodes)
2(21), "00·00·26 'f20' (46nodes)
3(21). "oo,oo,18 'f15' (56 nodes)
<(21). "00'00'13 'fll' (56 nodes)
5(21). "00,00,11 '19' (56 nodes)
6[21). "00'00,09 '16' (58 nodes)
7[21). "00,00,09 '14' (85nodes)
8(21), ~00:00:07 'fl' (87nodes)
9(21). "00'00,06 'mo.in' (90nodes)
1 0(21 > "00'00,06 '14' (101 nodes)
11 121 > "oo,oom 'f1' (134 nodes)
12(21).. ~00:00:06 'mam' (13.!1 nodes)
1 3(21 > "00'00,05 'f11' (134 nodes)
14(21 > "00'00,06 '19' (134 nodes)
15(21> "00,00,05 '16' (134 nodes)
16(21).. ~00:00:04 'fll' (13.!1 nodes)
1 7(21 > "oo,oom 'f1' (134 nodes)
1 B(21 > "00'00'02 'main' (134 nodes)
1 9(21 > "00'00'02 '14' (134 nodes)
20(21).. ~00:00:01 'fl' (13.!1 nodes)
21(21> "00'00'00 'mo.in' (134 nodes)

FIGURE 10 Interprocedural forward slice as a THAS

In the example, the slicing criterion is within the function £21. Thus, in this
case, the initial function is £21. Thus, upward calling contexts are the functions
which £21 may be called from. Note that the reason for appending a certain
node into the THAS or forming a link between two nodes may be indirect. The
reasons may be related to the downward and/ or upward slicing analysis
and/ or the usages of global variables. The example points out to the user that
the global variable gl at the indicated program point cannot be changed with-
out wide effects on the rest of the program. The example also demonstrates the
form of the slices as THASs in cases of a very complex situation. The examina-
tion of large THASs is supported via the various views, which were shown in
Figure 8.

42

Those views help the user, e.g. to view the large interprocedural slices at
an abstract, aggregated level. In case of realistic projects, complete slices often
are very large and their formation may take much time. Thus, in some cases, it
is useful to restrict the slicing analysis and form partial slices instead. In Hyper-
Soft this is supported such that the user may specify the number of upward and
downward calling levels into which the slicing analysis will expand. This re-
duces radically the time needed to form slices in the case of interprocedural
static slicing, which is described in Article IV. Thus, there exists a tradeoff be-
tween whether to form slices quickly or precisely. More examples of slicing are
given in Article V, and the subject is discussed in more detail in (Koskinen,
1997).

3.5 Evaluation of the approach

The general idea of THASs (as well as many other reverse engineering tech-
niques) is to provide support mechanisms for enhancing productivity by speed-
ing up the work flow and decreasing errors and effort. Many software
productivity models exist, including those represented by Boehm (1988b) and
Banker et al. (1991), which discuss programmer productivity in detail. Hyper-
Soft as a reverse engineering technique aims at increasing productivity, espe-
cially in the case of maintenance and comprehension tasks of legacy systems.
We will first evaluate the approach on the basis of our empirical results and
theoretical background (Section 3.5.1) and then compare it with other related
approaches (Section 3.5.2).

3.5.1 Proposed benefits and probable drawbacks

The issues discussed include empirical evaluations within partner enterprises,
studies conducted based on earlier empirical studies as reported in the litera-
ture, series of laboratory experiments conducted, interaction and representation
aspects, technical considerations and limitations, target area of the approach,
and congruence with the program comprehension theories.

Usefulness of HyperSoft

We have empirically evaluated the effects of using HyperSoft. The usefulness of
the approach, the system, and the selected THAS set has been evaluated in
three different ways: 1) by small-scale testing in the partner companies, 2) by
comparing the capabilities offered by HyperSoft to the information needs of
software maintainers as revealed in a series of earlier empirical studies, and 3)
by two test series. The results support our hypothesis regarding the usefulness
of the approach.

The results of the small-scale testing in the partner companies are pre-
sented in Article IV and the results of the analysis of the earlier empirical stud-
ies in Article VI. The appropriateness of the implemented THAS set has been

43

evaluated on the basis of comments received from the partner companies (Arti-
cle IV) and on analysis of four empirical studies on the information needs of
professional software maintainers (Article VI). The results suggest that the
THAS set which is currently implemented in HyperSoft satisfies well the typical
information needs of software maintainers for which static analysis is
applicable.

In relation to the test series, we have measured the number of correct an-
swers, wrong answers and time needed for the completion of given tasks. We
have modelled usefulness via task performance (efficiency, accuracy, complete-
ness, error rate, and time needed) and subjectively felt effort as well as subjec-
tive opinion of the usefulness of the maintenance support provided (Article
VII). We have obtained clear support for our hypothesis regarding the useful-
ness of our approach, as reported in Article VII. The efficiency of task perform-
ance is clearly enhanced as compared to conventional program text browsing
and information seeking. Completeness and accuracy of searches and the local-
ization of the needed information are enhanced. Statistically almost significant
results have also been obtained regarding the reduction in the amount of time
needed to complete tasks.

These positive results can partly be explained by the way that interaction
and hypertext representation are organized in HyperSoft. Mental resources can
obviously be saved by using HyperSoft as compared to more elaborate ways of
interacting with the support environment, including querying, which requires
more elementary user operations. Thus, with HyperSoft, the comprehension
process is interrupted only to a minimal degree by the technical details of
searching for new information, owing to the simplicity of user interaction. Hy-
pertext and graphical views are integrated in HyperSoft, as suggested by Brade
et al. (1994), such that the graphical views contain links to the original program
text, which should be useful in program comprehension. Because many differ-
ent THAS types can be formed in HyperSoft, the text can be viewed from many
different points of view within a single paradigm of information representation.
Within HyperSoft, THASs are represented on top of the original text (as embed-
ded components) which probably helps in understanding the context and sur-
roundings of the nodes cf Utting and Yankelovich (1989) as compared to
isolated views. HyperSoft includes standard features of hypertext, e.g. for back-
tracking, which probably is of use in relation to program browsing since pro-
grammers typically browse programs back and forth while trying to
comprehend them. Due to the automated analysis, relevant program compo-
nents can be found completely, and thus traversed and handled appropriately.
This is especially important with safety-critical applications, as well as, e.g. with
respect to the Y2K problems.

Technical considerations and limitations

Since hypertext structures are formed automatically, the problems related to la-
borious manual hypertext formation and maintenance (Kaplan & Maarek, 1990;
0sterbye, 1992) are avoided. This is essential, especially when changing source

44

programs. Also, for large programs the formation of many of the hypertextual
structures manually would be impossible or at least impractical.

Owing to the applied general model, the structure of the HyperSoft sys-
tem is modular, and thus the introduction of new THAS types is very straight-
forward (and the introduction of new programming languages is relatively
uncomplicated). Since THAS types can be tailored to meet the requirements of
specific maintenance tasks and related information needs, they can effectively
aid in focusing the attention of the user within a given situation. The method of
storing all of the global information in a global symbol table supports efficient
program analysis in cases of modifying sources, which is a good first step to-
wards incrementality.

In the case of realistically large source programs, the generation of some of
the THAS types (especially complete static forward slices) in HyperSoft is slow.
This is partly a matter of optimization. On the other hand, most of the THAS
types can be formed reasonably efficiently. In any case, the decision to use cer-
tain THAS types naturally results tradeoffs between usage of memory and time
and accuracy of results. An analysis of HyperSoft's space and time require-
ments and consumption is provided in Article IV. The topic is further discussed
in Section 5.3 and the technical limitations of the implemented HyperSoft sys-
tem are detailed in Koskinen (1997).

The application of HyperSoft in industrial settings in its present form
would necessitate some changes in working habits. For example, there would
be a need to use multiple tool environments, the compiler and the HyperSoft
system, "simultaneously", and, possibly, the specific editor integrated with Hy-
perSoft to make source program modifications. Another, better, possibility
would be to use the HyperSoft ideas and to integrate the HyperSoft approach
with some CASE or compiler-environment. These requirements could give rise
to a certain amount of change-resistance among users or would necessitate
studying the way that integration is achieved effectively.

Congruence with program comprehension theories

Software maintenance requires program comprehension. The HyperSoft ap-
proach and the way that program text is represented is congruent with the cen-
tral issues of the main program comprehension theories. Program text is our
main focus, which is also always the main focus of software maintenance and
program comprehension. Support for delocalized program plans is achieved by
enabling smooth navigation based on linkage between various dispersed and
yet related program components. Support for systematic program comprehen-
sion strategies is supported by providing a way in which to browse through the
relevant program components, which helps in focusing attention. Support for
the top-down strategy is enabled via THASs that help to follow the order of
function calls and to associate program components and the documentation re-
lated to them. Support for the bottom-up strategy is achieved by making ex-
plicit the low-level meaningful structural components of the program text. The
composition of lower-lever elements into higher-level entities is, in particular,
supported by the abstract, graphical views. Support for identifying beacons

45

(which serve as starting points for further browsing) is achieved by making
them explicit as hypertextual nodes. Several different THASs and THAS types
can then be generated by using these as starting points.

3.5.2 Solutions related to HyperSoft

Related research has been surveyed in Section 2.3.1 for reverse engineering and
slicing and in Section 2.3.2 for software hypertext systems. Here we will pro-
vide a more detailed discussion of the similarities to and differences from the
most closely related solutions and implementations. We will first consider gen-
eral reverse engineering solutions and then software hypertext systems. We will
make some comparisons at the end of the section.

Reverse engineering tools

Surgeon's Assistant (Gallagher, 1997) is a tool for visualizing decomposition
slices of ANSI C programs. The tool is integrated with the Emacs text editor
which allows the changes to be made only to the chosen slice, thus eliminating
undesired change side-effects. The visualization component provides capabili-
ties for collapsing regions of the resultant graph and to marking nodes. Gal-
lagher (1997) notes the importance of providing complementary graphical
views to support the investigation of large program slices. Venkatesh (1995)
notes the need for showing that the program slices formed in realistic situations
are "thin" enough, meaning that to be practical they should not be too large.
Venkatesh has built a slicer for C programs (SLICE) and determined average
worst-case metrics for the size of the dynamic slices. The conclusion is that dy-
namic slices are generally thin enough.

EDATS (Extensible Dependency Analysis Tool Set) (Wilde et al., 1994) is a
PROLOG-based reverse engineering tool for heterogenous software environ-
ments. The tool includes a simple query-by-example type of query language via
which information about source code objects can be retrieved. The system has
been tested in form of a case study with a 25,000 LOC C program. The focus in
the EDATS project has been on back-end features. The data model behind the
tool consists of 12 entity subclasses and 22 dependency subclasses (and classes
for the inverse dependencies). The authors conclude that an important feature is
the possibility to retrieve information from chains of dependencies.

CARE (Linos et al., 1993b) is are-engineering tool for C programs, main-
taining a repository of entities and relations (control flow and data flow de-
pendencies). CARE focuses on visualization and incremental modifications of
programs. Linos et al. (1993b) emphasize the importance of an open architec-
ture, meaning that it should be possible for users to use their favorite tools (edi-
tor, debugger etc.) in an integrated fashion. They use so-called colonnade
graphs to represent data flow information. Colonnade graphs represent the re-
lated variables, types, parameters, functions, and constants organized so that
each category forms a column. The study of colonnade graphs is ongoing (Linos
et al., 1999). Control and data flow dependencies can be viewed either through
the so-called monolithic views (entailing complete code or control flow or

46

colonnade graph) or through so-called multiple-slice views (enabling variant
graphical representations of the dependencies). The features include the so-
called call graph and colonnade editors. The tool includes program slicing. The
features of the tool have been empirically evaluated using 40 senior computer
science students and a 2,000 LOC program. The results suggest that the most
useful features include having access to conventional, textual code representa-
tion from within the graphical representations, search, undo, zoom, highlight-
ing, program slices, and the ability to move graphical entities on display.

CIA (C Information Abstraction system) (Chen, Y.-F. et al., 1990) automati-
cally extracts relational information from C programs and stores it into a pro-
gram database. The created database can be processed and retrieved by any
relational database system. The conceptual data model of the system contains 5
data types (functions, global variables, types, files, and macros) and 11 relation-
ships between these component types (including file inclusion, function refer-
ences to other data types, variable references to other data types, references
among types, and type references to macros). The system applies relational, tex-
tual, and graphical views. The authors mention that with a proper interface the
described information could be represented as hypertext.

The approach of Heisler et al. (1993) provides so-called structural and
functionality views of C programs. The structural view shows relations among
structural elements such as code blocks and variables, whereas the functionality
view provides a hierarchical outline of the functionalities of the program. The
implemented tool supports ripple-effect analysis, program slicing and redocu-
mentation. The tool runs under UNIX and is implemented using Yacc and Lex.

Storey et al. (1997) have empirically compared three representative reverse
engineering tools which also contain some hypertext capabilities and which
were mentioned at the end of Section 2.3.2. These tools are Rigi (Muller &
Klashinsky, 1988), SHriMP (Storey & Muller, 1995), and Sniff+ (TakeFive, 1998).
The comparison comprised 30 subjects and a 1,700 LOC C program to be com-
prehended. Storey et al. conclude that the features that these reverse engineer-
ing tools possess may affect the program comprehension strategies applied, the
dependency relationships provided by all three tools were used by most of the
subjects, that searching features are needed, and that seamless integration be-
tween the higher-level views and the source code is desirable.

Nine representative static call graph extractors for C language, including
CIA (Chen, Y.-F. et al., 1990), Imagix (1998), Rigiparse/Cparse (Muller &
Klashinsky, 1988), and Cflow (which is distributed with the Unix operating sys-
tem), are compared in detail by Murphy et al. (1998). The main conclusion of the
paper is that there exists a significant difference between the content and form
of the call graphs produced by the different tools owing to the design choices
made.

As mentioned in Section 2.3.1, there are many intermediate program rep-
resentations. Those representations can also be used as a basis for the formation
of hypertextual structures. These representations include: program dependency
graphs (Ottenstein & Ottenstein, 1984), system dependency graphs (Horwitz et
al., 1990), unified interprocedural graphs (Harrold & Malloy, 1993), and com-
bined C graphs (CCGs) (Kinloch & Munro, 1994). These graphs typically

47

contain explicit representations of a program's control and data dependencies.
CCG is a fine-grained intermediate program representation, which can be used
as a basis for forming e.g. program slices, call graphs, data flow information,
definition-use information, and control dependency views. CCG is composed of
Function CCGs (FCCGs), each representing an individual function of the C pro-
gram. Each FCCG is a directed graph containing several different types of
edges connecting its vertices. The content of the vertices typically corresponds
to elementary statements or their parts. The approach is implemented as a tool
named PERPLEX which produces a generic PROLOG fact base. Kinloch and
Munro (1994) state that one of the advantages of CCG, as compared to other
graphs, is that it eliminates redundant information.

Software hypertext systems

Whorf (Brade et al., 1994) is a hypertext tool for the maintenance of C programs,
targeted at supporting the recognition of delocalized program plans on the ba-
sis of an as-needed strategy via multiple, concurrent views of software. The
views provide capabilities for source code editing, and for representing call
graphs and variable and function cross-references. The supported structures in-
clude identifiers, calling dependencies, and containment. The usefulness of the
tool is motivated by stating that it focuses the search process, provides quick ac-
cess to the desired information and access to additional information (related to
functions and variables). The system has been evaluated with 12 subjects (pro-
fessional programmers and graduate students) with a 250 LOC program. The
evaluation of using the tool as compared to paper documentation suggests that
the applied approach is useful for accessing information related to software.

In the approach developed by 0sterbye and N0rmark (1994) the key prin-
ciple is the separation between internal hypertext representation and external
screen representation. This approach is termed (semantically) rich hypertext,
and is implemented in the HyperPro system. HyperPro provides an interaction
engine governed by rules for representation, interpretation of events, and menu
setup, relative to the type hierarchy of nodes and links. One of the focus areas
has been the typing of nodes and links and the internal structures of hypertext
nodes.

The HyperCASE environment (Cybulski & Reed, 1992) is an architectural
framework for integrating a collection of tools. The system provides a visual,
integrated and customizable software engineering environment consisting of
loosely coupled tools for presentations involving both text and diagrams. Hy-
perCASE combines a hypertext-based user interface with a common
knowledge-based document repository. The tools include managers for reuse,
integrity, specification, documentation, and configuration, as well as abstract
trackers and analyzers.

Similarly, DynamicDesign (Bigelow, 1988) is a CASE environment con-
taining hypertext capabilities. Nodes contain project components and links de-
pict the relationships between components. The approach covers requirements
specifications, system and user documentation, and source code. Although the
system explicates such concepts as object code and symbol tables, the

48

relationships between source code elements are not emphasized nor discussed.
The work addresses the importance of integrated CASE as well as the automatic
generation of sequential and relational links, storage of fine-grained (intra
source code) information in a relational database and the formation of a rela-
tionally complete query language.

The focus of ISHYS (Garg, 1989; Garg & Scacchi, 1989) and DIP (Garg &
Scacchi, 1990) is on managing software documents. Through the development
process, DIP (Documents Integration Facility) stores the relevant information
about the target system (related to its design, development, use, and mainte-
nance) in textual objects as nodes of hypertext.

Comparisons

The possibility of representing C program information in the form of hypertext
is first suggested in Chen, Y.-F. et al. (1990). Since then, the most notable and
comparable tool to HyperSoft in this regard has been Wharf (Brade et al., 1994).
The aims of HyperSoft and Wharf are similar in the following regards: both
support the C language, apply hypertext explicitly, aim at supporting the as-
needed comprehension strategy and comprehension of delocalized plans, and
apply multiple representations which are linked to each other. The motivation
given by the developers of Wharf applies also to HyperSoft. The graphical rep-
resentation of call graphs is different, which is quite typical of the different re-
verse engineering tools, as noted by Murphy et al. (1998). Wharf does not
include program slicing. As in the approach of 0sterbye and N0rmark (1994),
we have aimed at separating internal hypertext representation and external
screen representation. In addition we have aimed at providing a versatile set of
THAS types based on our model of hypertext representation.

Our approach differs from other software hypertext systems in the sense
that we focus solely on the source code. The HyperCASE environment (Cybul-
ski & Reed, 1992) does not specifically address the problems of source code
analysis and representation. The emphasis is rather on forward engineering
throughout the whole life-cycle of software. DynamicDesign (Bigelow, 1988) is
very similar to HyperCASE in regards relevant to HyperSoft.

Within the HyperSoft system openness, as suggested by the developers of
CARE (Linos et al., 1993b), has been approached by making it possible to inte-
grate the desired text editor with the system (Programmer's File Editor; PFE is
the current editor). The way that program slices are represented in CARE is dif-
ferent from that in HyperSoft. The possible differences in their relative usability
are unknown. Both represent slicing information in a sensible way. The func-
tionality view of the approach of Heisler et al. (1993) is analogous to the struc-
tured map view of the HyperSoft system. The slicing features of HyperSoft and
other slicing tools are compared in Article III. Like HyperSoft, HyperPro (0ster-
bye & N0rmark, 1994) also aims at the separation of hypertext representation
and screen representations. The HyperPro project, however, is more focused on
the issues of the storage layer than HyperSoft. The suggestions and observa-
tions related to program data storage (Kinloch & Munro, 1994), dynamic pro-
gram slicing (Venkatesh, 1995), and program slice representation (Gallagher,

49

1997) are also relevant to HyperSoft. It should be noted that these and other
techniques introduced after the architecture of the HyperSoft system was de-
signed (1994) could not necessarily have been taken into account when the sys-
tem was implemented.

Empirical studies on hypertext effects were listed in Section 2.3.2. When
comparing the evaluation of the HyperSoft system (see Section 4.8, Article VII)
to the evaluations of the related tools, the following observations can be made.
Whorf (Brade et al., 1994) is in many regards similar to HyperSoft. Thus, there-
sults received from the evaluation of HyperSoft are relevant to the development
of tools like Whorf as well. Since Whorf has been evaluated with only a small
program (250 LOC) and only as compared to using paper documentation, the
results with HyperSoft complement the results received from the use of Whorf.

On the other hand, EDATS (Wilde et al., 1994) has been evaluated with a
larger program (25,000 LOC), but only as a case study. The observations of
Wilde et al. (1994) and Storey et al. (1997) support the usefulness of dependency-
based tool features. The related tool which is best evaluated is CARE (Linos et
al., 1993b) (2,000 LOC program, 40 subjects comparing the features of the tool).
The observations of the most important features are largely taken into account
within the implementation of the HyperSoft system: there are links from the
graphical views to the program text in HyperSoft. Storey et al. (1997) have also
drawn attention to the importance of this sort of integration. Hypertextual
nodes are represented as highlighted elements within the program text, and
program slices (which are considered as useful) have been implemented. The
importance of a search function (complementing browsing) has been noted by
Halasz (1988); Linos et al. (1993b); Storey et al. (1997). HyperSoft currently does
not include a search function, which, obviously, would be a simple but impor-
tant additional feature. A search function would clearly be a first step to the di-
rection of supplementing the approach with querying capabilities, an option to
be discussed in Section 5.2.

4 OVERVIEW OF THE ARTICLES

In this chapter we will summarize the main parts of the study. We will also
briefly characterize the purposes of the research and the applied research meth-
ods. The main part of the work is reported in the included articles. The Articles
I and IV-VI mostly deal with the HyperSoft model and approach, and Articles II
and III with the HyperSoft system. The HyperSoft system is also described at
some length in Section 3.3 and in Articles IV, and V. The empirical evaluations
presented in Article VII are relevant to both the system and the approach. Ow-
ing to the fact that the dissertation includes published articles, the treatment of
some issues is repeated in them. The HyperSoft model and system have been
developed gradually during the research process, which means that the most
detailed descriptions are to be found in the later articles. Since the approach is
potentially very versatile, much effort has been made to gather together refer-
ences to the applicable methods and algorithms as well as to the potential areas
of application, see Section 2.3. Since studies of program dependencies, their rep-
resentations, and their automatic extraction from the program text have been
extensively reported in the literature, we have focused on the problem of form-
ing hypertext based on program code (instead of inventing new program analy-
sis algorithms).

The methodological characterization is given in terms used by Haworth et
al. (1992) and, especially, Nunamaker et al. (1991), who have focused in their pa-
per on describing systems development as a research methodology. Systems
development research includes constructing a conceptual framework (theory
formation), developing a system architecture, systems analysis and design,
building the (prototype) system, and observing and evaluating the system.
Theories can suggest research hypotheses, as well as guide and enable research.
Systems development may take the role of 'proof-by-demonstration'. Haworth
et al. (1992) have represented a framework for classifying software maintenance
research applying three central targets of research: programmer, code, and re-
quirements. In our research, the emphasis has clearly been on code and on the
support of the interaction between code and programmer. With regard to pro-
grammers we need to chart their main attributes while empirically evaluating

51

our tool. Requirements mostly correspond to information needs. The informa-
tion needs of the programmers must be satisfied in order for them to be able to
fulfill the requirements set to the software.

4.1 "Program Text as Hypertext: Using Program Dependences for
Transient Linking"

Koskinen, J., Paakki, J. & Salminen, A. 1994a. Program text as hypertext- using
program dependences for transient linking. In Proc. 6th Int. Conf Software Engi­
neering and Knowledge Engineering (SEKE'94). Skokie, IL: Knowledge Systems In-
stitute, 209-216.

Research problems and methods

The paper investigates the possibilities of viewing program text as transient hy-
pertext. The literature has been reviewed for that purpose and for identifying
meaningful research questions in the area. The formation of a conceptual frame-
work has been commenced. This formation entails the development of the first
version of the HyperSoft model for viewing program text as hypertext.

Content and results

The paper introduces a model for viewing program text as hypertext and ex-
plores the possibilities of creating hypertext automatically on the basis of well-
known program dependencies. The model is a specialization of a generic
domain-independent model for text databases (Salminen & Watters 1992). The
paper also presents examples of some of the possible access structures. The in-
tended application domain of the model is software maintenance.

One of the problems of representing program text as hypertext is that
there does not exist a unique fragmentation, nor a unique set of links that
would be suitable in all situations. Moreover, because program text is typically
not static, but frequently changes, the formation of all of the potentially needed
hypertextual structures manually is not practical. The idea of transient hypertext
is introduced. The user is provided with the possibilities for the dynamic speci-
fication of structures to support hypertext access. The syntactic structure is a
parse tree for the program with respect to the grammar, and the access struc-
ture is a graph or hypergraph consisting of a set of program parts and a set of
links connecting the parts.

Because program parts and their relationships have been extensively stud-
ied in programming language research, the automatic creation of hypertext is
possible. Many of the important program dependencies are typically repre-
sented in the form of different dependency graphs which are surveyed, and
their potential as a basis for hypertext generation is discussed. The structures
traditionally used to contain program dependency information include parse

52

trees, module dependency graphs, call graphs, data flow graphs, control flow
graphs, and program dependency graphs. The dependencies which exist be-
tween the elements of these structures include, for example, structural depend-
encies, cohesion, coupling, calling dependencies, data flow dependencies and
control flow dependencies. The possibilities of using the common properties of
program parts as a basis for this purpose are also discussed. The possible prop-
erties include the text type of a part, the value of the part, containment, intem-
esting level, and the complexity of the program part.

4.2 "HyperSoft: An Environment for Hypertextual Software
Maintenance"

Salminen, A., Koskinen, J. & Paakki, J. 1994a. HyperSoft: an environment for
hypertextual software maintenance. In B. Magnusson, G. Hedin & S. Minor
(Eds.) Proc. Nordic Workshop on Programming Environment Research (NWPER'94).
LU-C5-TR: 94-127. Lund, Sweden: Lund Univ.,25-37.

Research problems and methods

This paper tackles the problem of how to construct a support environment in
which program text can be viewed as hypertext. The HyperSoft model is used
as a basis for designing the architecture of the HyperSoft system. In this stage,
only system design exists, not actual implementation. System extensibility and
modularity are stressed as central goals.

Content and results

The paper presents the general architecture of the HyperSoft system (cf Figure
2), which combines the techniques of static program analysis and dynamic hy-
pertext access. The architecture separates on one hand the back-end and the
front-end components, and on the other hand the components generating static
(permanent) and dynamic (transient) data.

There are static links between the components of the program database.
Links from the parse trees to the symbol tables enable fast retrieval of symbolic
information whereas the links from the symbol tables to the parse trees enable
the retrieval of the position and contextual information of the symbol occur-
rences. The THASs are formed by the generator component and are, like the
static structures, stored in the program database. When the generation of a
THAS has been completed it is passed to the interface component, whose archi-
tecture is described. Ways of dealing with the disorientation and cognitive
overhead problems, often related to hypertext systems, are discussed, as well as
the general ideas of navigation through THASs.

The main interconnections between the program database components
with some examples of link and node types are given. The aspects of source

53

code change and incremental updates of the database are discussed. The possi-
ble THAS set to be implemented is discussed. Examples of architectural THASs,
structures based on data flow, calling structures, and program slices are given.

4.3 "Creating Transient Hypertextual Access Structures for C
Programs"

Koskinen, J. 1996c. Creating transient hypertextual access structures for C pro-
grams. In M. Kavanaugh (Editorial production) Proc. 7th Israeli Conf Computer
Systems and Software Engineering (ICCSSE'96). IEEE Computer Soc., 56-65.

Research problems and methods

This paper investigates the lessons learned from the HyperSoft prototype (v.
0.7), which was constructed during the first phase of the HyperSoft project. Sys-
tem requirements (including implemented THAS types) are mainly determined
on the basis of the information received from the private-sector partner compa-
nies. Experiences and observations using the prototype have further been taken
into account when refining the model and designing the system.

Content and results

The paper describes the implementation of the back-end components of the Hy-
perSoft system. The detailed architecture of the system, the contents of the pro-
gram database, and the process of creating the static and transient structures are
presented. The transient access structures (THASs) are formed on the basis of
the HyperSoft model and method. THASs are classified as singletons (refer-
ences), lists, trees, and general graphs.

Examples of occurrence lists, call graphs and program slices as THAS
types are given. Since the HyperSoft system is not only a slicing system, a ver-
satile set of THASs have to be supported and thus a more general approach
than is typical in pure slicers have to be taken. HyperSoft's slicing capabilities
are compared to the features of other slicing tools. The way of forming the slic-
ing THAS types is described. The most complex of the implemented THAS
types are static forward slices. In the longer version of the paper, published as
part of Koskinen (1996b), they are used as an in-depth example of building
THASs. In the included paper, the process of interprocedural static slicing is de-
scribed in detail. Some possibilities for improving its current implementation
are outlined in Koskinen (1997). Program parts, dependencies, and linkages re-
lated to slicing, as well as the formation and representation of the slices as
THASs are briefly discussed.

The main problem areas of the implementation of HyperSoft are dis-
cussed. These include the efficient execution of static interprocedural program
slicing and the reduction of the amount of static information needed. A much

54

wider discussion on these topics can be found in Koskinen (1997). In static inter-
procedural slicing there is a clear tradeoff between whether to produce precise
and complete slices slowly or to obtain partial results quickly.

4.4 "Automated Hypertext Support for Software Maintenance"

Paakki, J., Salminen, A. & Koskinen, J. 1996. Automated hypertext support for
software maintenance. The Computer J. 39 (7), 577-597.

Research problems and methods

An extended discussion of the HyperSoft model and its relation to the devel-
oped HyperSoft system is provided. More observations are made with respect
to HyperSoft's usability. The usability evaluation has been performed by ob-
taining feedback from the representatives of the partner enterprises (the num-
ber of participating subjects was 4) related to the suggested and implemented
HyperSoft functionalities and via questionnairies distributed to the test users
(3), who were professional software maintainers. Moreover, a more detailed ex-
amination of the system (v. 0.8) is performed with regard to the space and time
needed by using simulation with example programs. The lessons learned from
the development of the system and the feedback received from the partner com-
panies have served in improving the design of the later versions of the system
and the planning of its statistical empirical evaluations (Article VII).

Content and results

The model is extended to include four layers: the source code layer, the syntac-
tic structure layer, the access structure layer, and the user-interface layer. The
layered structure of the model makes the extension of the sets of supported pro-
gramming languages, THASs, and graphical user interface environments easier.
The original source code is retrieved from the source code layer to the syntactic
structure layer in order to create the static program database, and to the inter-
face layer in order to display the code. The syntactic structure layer determines
the possible THAS node types. The THASs are created at the access structure
layer on the basis of the information determined by the syntactic structure
layer. Finally, the visual representation of these structures is reached at the in-
terface layer. The use of the model is illustrated with an example program. The
model is also compared to Dexter, which is another hypertext model. See (Ha-
lasz & Schwartz, 1994; Leggett & Schnase, 1994; Gmnbaek et al., 1994; Gmnbaek
& Trigg, 1994) for information about Dexter.

The questions of source code storage and retrieval need to be answered at
the source code layer. The questions which need to be answered at the syntactic
structure layer include the determination of the information which is to be
stored statically and the method(s) of creating the program database and its
storage form. Issues which need to be resolved at the access structure layer

55

include the determination of useful THASs, the THAS seed and the method of
specifying it, the mixture of different node and link types within a single THAS,
the need to combine different THASs, and THAS storage mechanisms. The in-
terface layer gathers decisions concerning the necessary textual and graphical
windows and views, node and link visualizations, and the interaction between
the user and the system during navigation and THAS specification.

A relational characterization and classification of program dependencies is
presented to serve as a basis for concrete THAS formulations. This abstract clas-
sification includes, for example, matching, subordination, control, and data de-
pendencies. The dependencies are characterized with respect to their
reflexivity, symmetry, transitivity, and arity. Elementary THASs contain pro-
gram elements bound together on the basis of the relations subsisting between
the above types. Dependencies are characterized as navigation structures.

The paper introduces the implementation of the HyperSoft prototype and
characterizes its typical application area: adaptive maintenance of legacy sys-
tems. Preliminary THASs are characterized according to the dependency classi-
fication and are presented as they are shown to the user through the interface
component. The implemented THAS types include occurrence lists, calling
structures and program slices. An occurrence list reveals the points in the pro-
gram where a certain symbol is defined or used. Calling structures reveal the
forward or backward calling dependencies between function calls and function
implementations. A backward slice reveals the statements which may have an
effect on the value of a specified symbol occurrence(s). A forward slice shows
the statements which would be affected if the value of a specified symbol occur-
rence(s) were changed. The interface layer allows the display of the source code
in windows, the specification and manipulation of THASs, and navigation
within them.

4.5 "From Relational Program Dependencies to Hypertextual
Access Structures"

Paakki, J., Koskinen, J. & Salminen, A. 1997. From relational program depend-
encies to hypertextual access structures. Nordic Journal of Computing 4 (1), 3-36.

Research problems and methods

The focus area of the paper is on further theory building. A model of program
dependencies is developed, and the THAS types implemented in the HyperSoft
system (v. 0.85) are characterized using the terminology of the model.

Content and results

Program dependencies can be used as a basis on which to determine the hyper-
textual links to be formed between nodes (program parts) by binding together

56

related node pairs. The paper provides a relational characterization and classifi-
cation of program dependencies. The classification is represented as a lattice us-
ing the OMT notation (Rumbaugh et al., 1991). Subtypes within the class
hierarchy inherit the properties of their superclasses. Dependency classes have
the following attributes: start and destination types, arity, an algorithm for their
extraction/ determination, and relation. The three relational properties, namely:
reflexivity, symmetry, and transitivity (and their inverses) are used as a basis for
characterizing program dependencies. The relation property specifies whether
all, some, or none of the dependencies within a category are reflexive, symmet-
ric, or transitive, respectively. The classification can be used, e.g. as a basis for
the systematic development and evaluation of the dependency features pro-
vided in the HyperSoft system and in other similar reverse-engineering tools.

Some of the classes are clearly more important than others in the sense
that conventional programming languages apply mechanisms which produce
dependencies belonging to these classes. These classes, termed as Essential, Inci­
dental, Symmetrical, Subordinative, Matching, Extrovert, Structural, and Imperative,
are discussed in detail in the paper. The most important dependency categories
are Matching and Subordinative. The subtypes of Matching are Lexical (pro-
gram parts share a similar textual representation), Syntactic (sub parse trees for
parts are isomorphic), Semantic (parts share some computational, run-time
value), and Qualitative (parts share some quality factor of software engineering).
Within the category of Subordinative, the clearly most important subtypes are
Control (part a is executed after bon condition c), and Data (the value of data on
part b is dependent on the value of data on part a). The Matching dependencies
can be supported via THAS types, which are lists, whereas Control and Data
dependencies may be supported via program slice THAS types.

The process of forming THASs is represented using an example. Hyper-
text links are not needed for reflexive relations. For symmetric relations a unidi-
rectional linking is sufficient (because of the available backtracking features).
Indirect transitive relations should not usually be supported via linking, since
the linkage tends to become too dense. On the other hand, direct transitive rela-
tions require hypertextual linkage. There exist multiple combinations of these
three basic properties in the case of individual program dependencies. Elemen-
tary dependencies can be used as a basis for compound dependencies. These, in
tum, can be used as a basis for THAS types using set operations (union, inter-
section, difference, and restriction). Since THASs are graphs, a section is de-
voted to characterizing them from the graph-terminological view-point. The
HyperSoft system is used as an example environment whose THAS types are
characterized using the terminology of the dependency model. The dependen-
cies manifested within the currently implemented THAS types are described in
terms of the classification.

57

4.6 "Hypertext Support for Information Needs of Software
Maintainers"

Koskinen, J., Salminen, A. & Paakki, J. 1999. Hypertext support for information
needs of software maintainers. Univ. of Jyvaskyla, Jyvaskyla, Finland. Computer
Science and Information Systems Reports, Working paper WP-37. Submitted for
publication to IEEE Transactions on Software Engineering.

Research problems and methods

The research problem of the paper concerns the information needs of software
maintainers and their relationship to HyperSoft solutions. The paper analyzes
and classifies the information needs of software maintainers as revealed in a se-
ries of earlier empirical studies. The HyperSoft access structures (v. 1.0) are then
evaluated with respect to those information needs.

Content and results

In this paper information needs have been analyzed based on the data gathered
in the series of empirical studies conducted by von Mayrhauser, Vans and
Howe (von Mayrhauser & Vans, 1995b; 1997b; 1998; von Mayrhauser et al.,
1997). Those studies provide data on the information needs of professional soft-
ware maintainers at the most detailed and comprehensive level available. These
information needs have been ranked, grouped, characterized, and analyzed
from the view point of supporting them via hypertext techniques. The nature
and the interpretation of the information needs are discussed. Certain kinds of
information are needed, especially in the case of certain kinds of maintenance
tasks: general, corrective, preventive, and adaptive. The information sought is
grouped on the basis of source from which it can be obtained and the type of
analysis required. The alternatives are static analysis of source code, dynamic
analysis/code execution, analysis of documentation and other textual material,
and recording of user operations and session history.

The way in which information needs relate to the formation of THASs is
described. Five large THAS categories, i.e., references, lists, sets, trees, and gen-
eral graphs are proposed as a way of gathering the data satisfying the most
prominent information needs. Most such needs are simple, and can thus be sat-
isfied on the basis of references or lists. For the satisfaction of some of the most
important needs, the convenient form, however, is a general graph. Individual
THAS types and THAS-type variants can be tailored to satisfy situation-
dependent information needs. Examples of THAS types are provided, most of
which are supported in some form by the HyperSoft system. This indicates the
appropriateness of the THAS set implemented. Possible extensions related to
hypertextual support based on dynamic analysis of programs and automated
analysis of system documentation are also briefly sketched.

58

4.7 "Evaluations of Hypertext Access from C Programs"

Koskinen, J. 1999c. Evaluations of hypertext access from C programs. Condi-
tionally accepted to be published in Journal of Software Maintenance: Research and
Practice.

Research problems and methods

The need to validate empirically the effectiveness of hypertext via usability
studies in the software engineering context has been addressed, e.g. by Ziv and
Osterweil (1995). In this paper the effectiveness of the support provided by the
HyperSoft system is evaluated. Our main hypothesis is that HyperSoft en-
hances information retrieval performance in case of typical tasks as compared
to conventional text browsing and search. The main part of the study consists of
two independent series of classical laboratory experiments using a control
group and a test task to find differences in performance between a HyperSoft
group and a control group. The subjects of the first experiment series (N=23)
were (on average) fourth-year computer science students, and the subjects of
the second experiment series (N=47) were (on average) second-year computer
science students. Thus, the subjects were novice programmers.

The test task and the sample program were the same in both experiments.
The subjects, however, were not the same and the actual task set was varied, al-
though the tasks were similar on both occasions. On each occasion, task per-
formance between the group using HyperSoft and the group using the Borland
C/C++ environment (its text browsing and search functions) were compared.
We measured task performance in the case of sample information requests. The
example program was a non-commercial chess program of about 2,500 LOC
written in ANSI-C (Koskinen, 1993). The task sets were based on the results of
the study by von Mayrhauser and Vans (1995b). The significance of the differ-
ences between the groups is determined using statistical methods (Student's t­
tests, Mann-Whitney U tests, and two-way variance analysis).

Content and results

The paper gives the results of empirical evaluations of the HyperSoft system us-
ing computer science students as subjects. The results of the first experiment
have been published in the proceedings of IWPC'99 (International Workshop on
Program Comprehension) (Koskinen, 1999a), which is the main international fo-
rum on program comprehension research.

The results clearly support our hypothesis as to the usefulness of the Hy-
perSoft system and of transient hypertext support for software maintenance.
Many of the differences in performance between the groups are statistically
highly significant. The hypothesis that HyperSoft enhances task performance as
compared to conventional text browsing and search was confirmed at a 0.000
level of risk. This means that the risk that the results are due to chance is

59

virtually non-existent. This result was achieved in both experiments, the results
of the two experiments also support each other very well in several important
regards. For the combined data, the same results were obtained both through
variance analysis and t-tests. The efficiency in performance of the HyperSoft
group was over two times better than that of the control group in both experi-
ments. In general, the subjects using HyperSoft were able to find more complete
answers to the questions posed and to perform the tasks more efficiently and in
less time than the subjects in the control groups. Task-wise results are also ana-
lyzed in detail. It is probable that in case of more complex (more open) tasks,
the benefits would be even greater, as has been reported by Chen, C. and Rada
(1996). In case of more complex tasks, it is also feasible to apply multiple
THASs.

The limitations of the empirical experiments are discussed. These limita-
tions include the fact that only the information-seeking behaviour of novices
was studied. Professional software maintainers may need more specified sup-
port than novices cf (Soloway et al., 1982; Gugerty & Olson, 1986; Cunniff &
Taylor, 1987). However, especially program slices provide detailed information,
which is of value to professionals also (Weiser, 1982). Moreover, the HyperSoft
approach and system also make it possible to support flexibly other information
needs of professional maintainers (as noted in Article VI), since THAS types can
be tailored to meet emergent user needs. Although software modifications were
not made, the general importance of the localization activities studied is clearly
prominent even as such, since the selected task types were representative.

4.8 About the joint articles and other publications

The summarizing part and the Articles III (Koskinen, 1996c), and VII (Koskinen,
1999c) were written solely by the author. The author is the main contributor of
Article VI (Koskinen et al., 1999). The other joint work; Articles I (Koskinen et al.,
1994a), II (Salminen et al., 1994a), IV (Paakki et al., 1996), and V (Paakki et al.,
1997) were written in close collaboration by the authors. All the published arti-
cles included have been refereed by at least two international experts. All
published/ submitted conference papers and journal articles have been edited
and revised for final publication by the author. Section 6 of article IV, and sec-
tion 7 of article V were written solely by the author. The implementation of the
HyperSoft system's back-end components, described in more detail in (Koski-
nen, 1996a; 1997), also represents the independent work of the author. The
front-end components of the HyperSoft system were implemented by Nieminen
(1996). The Articles I-IV appeared in the author's licentiate thesis (Koskinen,
1996b). This doctoral dissertation is an extension of that previous work. The
new work includes the Article IV in revised and published form, Articles V, VI,
VII, and the report (Koskinen 1997), which describes the design of the Hyper-
Soft system v. l.O's back-end components, the final implementation of the Hy-
perSoft system (Koskinen et al., 1997), and the other recent manuscripts. The
research results have also been presented in the form of position papers (Salmi-
nen et al. 1994b; Koskinen et al. 1994b; Koskinen 1995).

5 DISCUSSION ON RESEARCH DIRECTIONS

There are many interesting options for further research. This chapter aims at
proposing a further research agenda and describes some of the possible exten-
sions and enhancements related to different aspects of HyperSoft. The current
HyperSoft system is focused on supporting program comprehension and soft-
ware maintenance by providing various THASs over source programs written
in C. Further refined specialized support could be tailored for these purposes
by introducing new THAS types, new view types, or by integrating new sup-
plementary techniques into HyperSoft, see Figure 11.

* Software
engineers

)j()j(Knowledge

'A' ·A' Information needs

FIGURE 11 THAS-based maintenance support

Support
environment

Accessories

61

The central elements (system components, databases, data sets, data flows, and
actors) in supporting software maintenance through our approach are depicted
in Figure 11. The target system is the one which is under maintenance. The sup-
port environment provides relevant information for its users (software engi-
neers or maintainers). It consists of the programs which are needed to view,
browse and change the source code of the target systems and other integrated
support mechanisms. The figure shows the main data flows between the com-
ponents by arrows. Data flows are· represented at abstract level (internal da-
taflows of the HyperSoft system were depicted in Figure 2). The numerals (x) in
the figure refer to the sections (5.x) listed below. Discussed issues include 1)
model extensions of HyperSoft, 2) options to specify more complex information
requests, 3) optimizations in central areas, 4) some remarks on introducing new
THAS types, 5) language extensions, 6) visual representations of THASs, and 7)
evaluations of the features of HyperSoft in various ways.

5.1 Model extensions

We have focused on improving the ability to obtain information from the
source code on the basis of static analysis. The HyperSoft model underlying our
approach, however, allows for the extension of access structures to cover such
documentation, which is structured based on underlying grammar, as well, and
for the use of dynamic analysis in identifying the required program parts. Thus,
the numeral 1 in Figure 11 is located near the system documentation database.
From the theoretical point of view, this model extension issue (in relation to the
input information type) is the most important area of further research. One
problem is the typical unavailability of structured documentation in case of leg-
acy systems. The model extension issue is also discussed in Article VI.

Experiments on automatically transforming non-program text into hyper-
text are reported by Agosti and Allan (1997). Also, for example, parts of the
documentation associated with the source code could automatically be trans-
formed into hypertext. Documents may be marked-up by using, e.g. SGML
(Goldfarb, 1990; Cowan et al., 1994), or HTML (Musciano & Kennedy, 1998). In
addition, comments (Riecken et al., 1991) embedded within the source code
could be structured systematically and thus handled within the model.

Program text can be considered as a special case of text, since it is not
solely targeted at a human reader, but is also used to control the computer. This
means that unlike most other texts, program text contains information which
cannot be obtained without executing the program. Because of this, some of the
relevant THAS types cannot be formed without information which is available
only during the run-time of the program. Examples of these are dynamic pro-
gram slices (Kamkar, 1993).

62

5.2 Query mechanisms

Most of the empirically verified information needs of professional C program-
mers can be satisfied with simple mechanisms such as those currently provided
in HyperSoft, or by using QBE (Query By Example) (Zloof, 1977). If complex or
very detailed information requests need to be formed, a dedicated (textual)
query language is called for. For example, Paul and Prakash (1996) have pre-
sented a source code algebra which is stated to combine high expressive power
with a flexible query paradigm. One of the related general problems, however,
is the complexity of typical queries and required comprehension effort (Chan et
al., 1997). If query mechanisms (such as those represented in Appendix 1; part
7) were to be implemented in HyperSoft, they would probably mostly benefit
those maintainers who are very capable in formalizing their information needs
and have the necessary patience. Since forming a query interrupts the estab-
lished way in which most people perform their programming and maintenance
tasks, it is not clear whether such mechanisms would actually be called upon.

5.3 Technical optimizations

The main needs for optimizations lie in the areas of improving the efficiency of
the interprocedural slicing and of compressing/pruning the necessary static
structures, most notably parse trees. There is a clear tradeoff between whether
to form a slice precisely or fast. The need to be able to tradeoff between time
and precision in relation to whole-program analysis tools - and program slicing
in particular- has been addressed by Atkinson and Griswold (1996). They rec-
ommend features for demand-driven computation, discarding, persistent stor-
age of important data-structures, precision control, and termination control.
HyperSoft includes some mechanisms similar to these, as noted in Section 3.3.

THASs are relatively small compared to parse trees. Since sufficient mass
storage space is nowadays available at tolerable costs, the relatively large size of
parse trees has mostly only indirect importance in slowing down the operation
of the system, especially in case of interprocedural slicing. Because parse trees
comprise most of the static program database (90%), performance may be opti-
mized by compressing them. Regardless of the way that the static program da-
tabase is formed, it may be compressed by means of standard packages, such as
pkzip, gnu-zip, compress, or compact, which yield about 55-70% compression rates
(Katajainen & Makinen, 1990). Our simulations with the HyperSoft system and
the example chess program (described in Section 3.4) show that decompression
would slow down THAS formation by about 50 %. Hence, a tradeoff exists be-
tween whether to save disk space or to generate THASs faster.

Probably the most compact representation holding the same information
as abstract syntax trees is the so-called production tree (Waddle, 1990). These
structures are relatively simple to form and take only about 1/3 of the space of

63

abstract syntax trees. Special methods of coding the parsing process to be used
as an aid in compressing syntactical information has also been suggested. These
sorts of methods (Lelewer & Hirschberg, 1987; Cameron, 1988; Katajainen et al.,
1986; Peltola & Tarhio, 1991) yield at best a compression rate of about 85%
(compared to the original files), see also, e.g. (Gil & Itai, 1999) for packing tree
structures. The methods may rely, for example, on coding the program struc-
ture on the basis of the applied productions. These kinds of special methods are
not used in HyperSoft. It should be noted that even though some of the meth-
ods yield high compression rates, they often also lead to long (de)compression
times. If there is a tradeoff, time optimization should be preferred over space
optimization in a system such as HyperSoft.

One way of improving slicing efficiency is to store the needed program in-
formation in the form of program (or system) dependency graphs (Horwitz &
Reps, 1992) or combined C graphs (Kinloch & Munro, 1994). It is, however, not
clear whether using program dependency graphs (as intermediate representa-
tions) would be an optimal solution for HyperSoft, since in HyperSoft a very
large amount of program information has to be stored in order to support a suf-
ficiently versatile THAS set, cf Horwitz et al. (1988). If graphs of this kind are
not used, the efficiency of (downward) slicing could nonetheless be improved
by applying the so-called in-out (definition-usage) sets (Kamkar 1993). If the pre-
defined in-out set for a specific function is available, it would only be necessary
to analyze the function once for each different content of the set of relevant vari-
ables when entering that function (see Article III for the details of downward
slicing and the set of relevant variables). The in-out sets would be determined
during a batch process for all functions. The current rules for determining the
contents of the relevant variable set within the HyperSoft system are described
in Koskinen (1997, pp. 106-107). Our experiences with the slicing features of Hy-
perSoft are such that there appears to be a general need for features such as the
incremental generation of partial slices, for both cognitive and efficiency rea-
sons. There also exist some additional options for optimizations which have
been reported and classified in Koskinen (1996b, pp. 25-27).

5.4 New access structures

The introduction of new THAS types to HyperSoft is straightforward, as only a
new THAS generation function needs to be implemented. Experiences with the
current simple THAS types support the hypothesis as to their usefulness. The
more complex THASs may be composed of elementary structures. Moreover,
by using set operations, cf Garg (1988), more refined structures can be pro-
duced. Our experiences with slicing suggest that it is useful to supplement it
with less complete THASs, which can be generated more or less instantane-
ously. The simpler structures can be used to support the process in which the
user fixes the seed for the complete slicing analysis. In Article VI we analyze the
information needs which constitute the most important base for THAS types.
This analysis shows that the most useful additional THAS types for inclusion in

64

HyperSoft are probably domain concept descriptions and lists of browsed loca-
tions. Some suggestions are also provided in Koskinen (1996b). Basically, the
possibilities for extending the THAS set by introducing new THAS types based
on, for example, the algorithms surveyed in Appendix 1, are extensive.

5.5 Language extensions

The explicit technical separation of the components in HyperSoft makes it rela-
tively straightforward to extend the system with new languages. A new lan-
guage may be supported by implementing a new analyzer component to form
the static program database. The interface component focuses on the visualiza-
tion based on the THASs which it gets as input from the generator component.
If the relevant items of the new language can be described in the form which is
currently used to store the static information, the THAS generator may be up-
dated by simply extending its procedures. SQL extensions have already been
completed in the form of a spin-off project within one of our partner enterprises
(Suominen, 1997).

Versatile (multi-) language support is important. Possible object-oriented
extensions of the HyperSoft THAS set have been considered in Tuovinen (1995).
The possibilities of the analysis of C++ (Stroustrup, 1986; 1993) were considered
during the project, including the options of using ANTRL (Parr & Quong 1995)
or AnaGram (Parsifal, 1993) as the basis of parsing. Novel solutions would,
however, be needed to split the C++ grammar into non-ambigous parts and to
construct separate parsers for the sub-grammars. Although C++ is "merely" an
extension of the C language, the analysis is problematic. The main reasons for
this include the facts that it is difficult or impossible to form an LALR(1) gram-
mar for C++, cf e.g. (Parr & Quong, 1996), and C++ is very liberal in its syntax,
making the identification of the semantic meaning of the symbols difficult. In
C++ it is, e.g., possible to have different symbols with the same name declared
in a scope because the identity of a symbol is determined by its name and type.
Unlike in C, declarations can be intermixed with statements, cf Knapen et al.
(1999). Dynamic binding and polymorphism introduce their own peculiarities,
making the static analysis approach less promising, see e.g. Tonella et al. (1997).
Reverse engineering tools for C++ has been proposed by Grass (1992), Chen, X.
et al. (1996), Linos and Courtois (1996), and Yueh and Low (1997). The needs of
the partner enterprises would also include support for COBOL; cf The COBOL
Center (1999) and even assembly language; cf Chen, S. et al. (1990).

5.6 View enhancements

Software visualization requires human-computer interaction and use of graphi-
cal interfaces which are discussed, e.g. by Shneiderman (1992). There exists a

65

wide range of software visualization systems (Catalin-Roman & Fox, 1993;
Vilela et al., 1997). Our experiments support the hypothesis of the importance of
supplementing overviews. The need for visual support for program slicing is
also noted by Gallagher (1997). Various graphical views are provided by the
HyperSoft system to complement the hypertextual representation of THASs
(Nieminen, 1996}.

Because slices can be very large, they may need to be sieved. The most
useful information within a slice is probably concentrated on the most immedi-
ate calling levels of the original context function. The observations of Atkinson
and Griswold (1996) support this hypothesis. Therefore, even if the slice is
formed completely, it would be useful to be able to view only the n most imme-
diate calling levels, first. Slicing structures can also be viewed in various ab-
stract forms so that a general view of module cohesion and coupling can be
formed, cf the implemented module dependency views and (Ott & Thuss,
1989). HyperSoft is well suited to these kind of purposes, since the generation of
THASs is separated from their representation to the user, and THASs can be
augmented with the necessary information. Different ways to visually express
THASs in HyperSoft have been suggested by Sillanpaa (1997). One option is the
use of distortion-oriented visualizations to further improve focusing on rele-
vant items (Leung & Apperley, 1994}. This could be useful, especially in the case
of large slices.

5.7 Empirical studies

Possible evaluations include empirical end-user evaluations of the system us-
ability. Further possible evaluations of HyperSoft should, in the ideal case, fo-
cus on professional maintainers performing real maintenance including
program modifications. As noted, we have already performed data gathering in
professional settings (Article N). Truely reliable empirical evaluations with
professionals performing real maintenance tasks would encounter many organ-
izational and financial problems. These are the reasons why we decided to con-
duct laboratory experiments instead.

Another strategy is to continue performing controlled laboratory experi-
ments evaluating different aspects of hypertext support by using computer sci-
ence students as subjects for this purpose. There exist good methodological
summaries. Experimentation is discussed from the methodological point of
view, for instance, by Pfleeger (1997); Tichy (1998); Zelkowitz and Wallace
(1998} and empirical studies of programmers by Shneiderman (1986). Reverse
engineering tools have been evaluated, for example, by Storey et al. (1996) and
user interface solutions have been compared by Jeffries et al. (1991}. Analyses of
the empirical software studies (Shneiderman, 1986} and theoretical frameworks
(Haworth et al., 1992) for software maintenance studies provide information
about the aspects which could be studied and the methodologies which can be
used by utilizing the existing HyperSoft system, according to our original inten-
tion of performing comparative empirical evaluations.

CONCLUSION

This dissertation represented a new approach to the support of software main-
tenance activities via enhancing information retrieval. It should be noted that
software maintenance accounts for over half of the resources spent on informa-
tion systems development. The approach combines automated (static program)
analysis and transient hypertextual representation. The approach focuses on
supporting the localization of relevant information from the source code.

In order to make changes to software without introducing side-effects, the
relevant program parts need to be comprehended. During program comprehen-
sion, the programmer tries to form a mental model about the structure, opera-
tion, and purpose of the relevant software components. Such an understanding
can be gained through viewing the source code and documentation. If adequate
documentation does not exist, the information has to be "reverse-engineered"
from the source code. The understanding is often hampered by the fact that the
information needed is dispersed throughout the source code. The process of ex-
tracting the information can, however, be supported by various reverse engi-
neering tools. During program comprehension efforts, the programmer
typically browses the source code back and forth trying to find meaningful pro-
gram segments and interdependencies between them. The process is dearly
such that it can be supported by viewing program text as hypertext.

We have developed the HyperSoft model, which makes it possible to sys-
tematically support software maintenance and program comprehension proc-
esses by representing the program text as hypertext to the maintainer. The
hypertext is formed automatically by analyzing the source programs and by ex-
tracting useful information which is stored in a program database. The transient
hypertextual structures which are created automatically, on user request, on the
basis of their situation-dependent information needs, are called THASs. THASs
are created based on the information which has been stored into the program
database. The use of transient structures instead of static structures eliminates
the elaborate manual linking which is typical of conventional hypertext sys-
tems, helps to ensure the validity of the hypertextual structures, and helps to
reduce the amount of static information needed. THASs are composed of the
relevant program parts linked together on the basis of existing program

67

dependencies. The existing literature on techniques and algorithms for extract-
ing the required program part and program dependency information have been
surveyed. The development of a relational classification of program dependen-
cies serves as a basis for the systematic planning of well-formed THAS types.

The HyperSoft system - an experimental software maintenance support
tool- is used to demonstrate the implementability and convenience of the ideas
presented and to experiment with various THASs. The system has been imple-
mented within a project guided by an industrial steering group. The target lan-
guage (C), and the currently provided THAS types have been selected by the
group. The THAS types include occurrence lists of variables, functions, and
user-defined types, forward and backward calling dependency structures, intra-
procedural backward slices, and interprocedural forward slices. The system
helps in focusing the maintainer's attention on those program parts which are
relevant to the current maintenance task, and in navigating among those parts
by following the hypertextual links generated by the system. The various
graphical views can also be used to achieve the same purpose since they are
linked to the original program text.

We have evaluated the approach in three ways. First, by small-scale test-
ing in the partner companies, the results of which have suggested the useful-
ness of the approach. Second, by comparing the capabilities offered by
HyperSoft to the information needs of software maintainers as revealed in a se-
ries of earlier empirical studies. And third, by two series of empirical experi-
ments. The data on information needs derived from the earlier studies suggests
that the THAS types, which are currently implemented in the HyperSoft sys-
tem, provide a good coverage of support for the kinds of information typically
needed, which can be produced via static program analysis. We conducted two
separate experiments with computer science students as subjects. The outcome
of these experiments clearly supported our hypothesis regarding the usefulness
of the approach in typical information retrieval tasks, as compared to the con-
ventional information-seeking capabilities of a widely used compiler environ-
ment. We have modelled the effects on task performance in multiple ways, as
well as gathered subjective information related to the usability of the approach.

Finally, we have discussed some possible further research topics. We have
presented some ideas for extending the scope of application of the approach,
and ways to improve the formation of the THASs and to extend the set of sup-
ported THAS types. Most importantly, there are good possibilities for exten-
sions and for the introduction of new interesting THAS types in a
straightforward way. Since the support of multiple THASs during a session po-
tentially requires great amount of statically stored information, some methods
of dealing with this problem have been proposed. Parse tree abstraction and
pruning are among the best available ways of reducing the amount of static in-
formation needed and improving the efficiency of THAS generation. The most
effective way of applying HyperSoft ideas in practice would probably be via an
integrated CASE environment. Programmers and maintainers constantly use
compilers and editors in their work. Those tools have to deal with many of the
same problems as HyperSoft, most importantly, efficient automated source
code analysis and informative representation of the source code to the users.

68

REFERENCE 5 4

Agosti, M. & Allan, J. 1997. Introduction to the special issue on methods and
tools for the automatic construction of hypertext. Information Processing &
Management 33 (2), 129-131.

Agosti, M., Crestani, F. & Melucci, M. 1996. Design and implementation of a
tool for the automatic construction of hypertexts for information retrieval.
Information Processing and Management 32 (4), 459-476.

Agosti, M., Crestani, F. & Melucci, M. 1997. On the use of information retrieval
techniques for the automatic construction of hypertext. Information Process­
ing and Management 33 (2), 133-144.

Agosti, M., Melucci, M. & Crestani, F. 1995. Automatic authoring and construc-
tion of hypertext for information retrieval. ACM Multimedia Systems 3 (1),
15-24.

Agrawal, H. 1994. On slicing program with jump statements. ACM SIGPLAN
Notices 29 (6), 302-312. Proc. ACM SIGPLAN Conf Programming Language
Design and Implementation (PLDI'94).

Aho, A.V. 1990. Algorithms for finding patterns in strings. In J. van Leeuwen
(Ed.) Handbook of Theoretical Computer Science (Vol. A). Elsevier & MIT
Press, 255-300.

Aho, A.V. & Johnson, S. 1974. LR parsing. ACM Computing Surveys 6 (2), 99-124.
Aho, A.V., Sethi, R., & Ullman, J. 1986. Compilers - Principles, Techniques, and

Tools. Reading, MA: Addison-Wesley.
Ajila, S. 1995. Software maintenance: an approach to impact analysis of objects

change. Software - Practice and Experience 25 (10), 1155-1181.
Allan, J. 1995. Automatic Hypertext Construction. Ithaca, NY: Department of Com-

puter Science, Cornell University (Diss.).
Allan, J. 1996. Automatic hypertext link typing. In Proc. 7th ACM Conf Hyper­

text, 42-52. ACM Press.
Allan, J. 1997. Building hypertext using information retrieval. Information Proc­

essing & Management 33 (2), 145-159.

4 The acronyms used of the journal names are given at the end of the reference list.

69

Al-Zoubi, R. & Prakash, A. 1995. Program view generation and change analysis
using attributed dependency graphs. J. Software Maintenance: Research and
Practice 7 (4), 239-261.

Arunachalam, V. & Sasso, W. 1996. Cognitive processes in program comprehen-
sion: an empirical analysis in the context of software reengineering. The J.
Systems and Software 34 (3), 177-189.

Ashley, M. & Bybvig, R. 1998. A practical and flexible flow analysis for higher-
order languages. ACM TOPLAS 20 (4), 845-868.

Atkinson, D. & Griswold, W. 1996. The design of whole-program analysis tools.
In M. Kavanaugh (Ed. production) Proc. 18th Int. Conf Software Engineer­
ing (ICSE'96). IEEE Computer Soc., 16-27.

Atkinson, D. & Griswold, W. 1998. Effective whole-program analysis in the
presence of pointers. ACM SIGSOFT Software Engineering Notes 23 (6),
46-55. ACM SIGSOFT 6th Int. Symp. Foundations of Software Engineering
(FSE'6).

Baeza-Yates, R. & Gannet, G. 1992. A new approach to text searching. CACM 35
(10), 74-82.

Ball, T. & Horwitz, S. 1992. Slicing programs with arbitrary control-flow. In P.
Fritzson (Ed.) LNCS 749. Springer-Verlag, 206-222. First Int. Workshop on
Automated and Algorithmic Debugging (AADEBUG'92).

Banker, R., Datar, S. & Kemerer, C. 1991. A model to evaluate variables impact-
ing the productivity of software maintenance projects. Management Science
37 (1), 1-18.

Baratta-Perez, G., Conn, R., Finnell, C. & Walsh, T. 1994. Ada system depend-
ency analyzer tool. Computer 27 (1), 49-55.

Beck, J. & Eichmann, D. 1993. Program and interface slicing for reverse engi-
neering. In E. Straub (Ed. production) Proc. 15th Int. Conf Software Engi­
neering (ICSE'93). Los Alamitos, CA: IEEE Computer Soc., 509-518.

Beeri, C. & Kornatzky, Y. 1990. A logical query language for hypertext systems.
In Hypertext: Concepts, Systems, and Applications. Proc. European Conf
Hypertext'90 (ECHT'90). Cambridge: Cambridge Univ. Press., 67-80.

Belkin, N. & Croft, W.B. 1992. Information filtering and information retrieval:
two sides of the same coin? CACM 35 (12), 29-38.

Benedusi, P., Cimitile, A. & DeCarlini, U. 1989. A reverse engineering method-
ology to reconstruct hierarchical data flow diagrams for software mainte-
nance. In Proc. Int. Conf Software Maintenance (ICSM'89). IEEE Computer
Soc., 180-191.

Bennett, K. 1995. Legacy systems: coping with success. IEEE Software 12 (1),
19-22.

Bergeretti, J.-F. & Carre, B. 1985. Information-flow and data-flow analysis of
while-programs. ACM TOPLAS 7 (1), 37-61.

Bertino, E., Rabitti, F. & Gibbs, S. 1988. Query processing in a multi-media envi-
ronment. ACM TOOlS 6 (1), 1-41.

Bieman, J. & Ott, L. 1994. Measuring functional cohesion. IEEE TOSE 20 (8),
644-657.

Bigelow, J. 1988. Hypertext and CASE. IEEE Software 5 (2), 23-27.

70

Bigelow, J. & Riley, V. 1987. Manipulating source code in dynamic design. InS.
Weiss & M. Shwartz (Ed.) Proc. Hypertext'S? (1st ACM Conf Hypertext).
ACMPress.

Binkley, D. 1998. The application of program slicing to regression testing. Infor­
mation and Software Technology 40 (11/12), 583-594.

Binkley, D. & Gallagher, K. 1996. Program slicing. AIC 43, 1-50.
Bodik, R. & Gupta, R. 1997. Partial dead code elimination using slicing transfor-

mations. ACM SIGPLAN Notices 32 (5), 159-170. Proc. ACM SIGPLAN Conf
Programming Language Design and Implementation (PLDI'97).

Boehm, B. 1988a. A spiral model of software development and enhancement.
Computer 21 (5), 61-72.

Boehm, B. 1988b. Understanding and controlling software costs. IEEE TOSE 14
(10), 1462-1477.

Bohner, S. & Arnold, R. 1996. Software Change Impact Analysis. IEEE Computer
Soc.

Booch, G., Rumbaugh, J. & Jacobson, I. 1999. The Unified Modeling Language User
Guide. Reading, MA: Addison-Wesley.

Brade, K., Guzdial, M., Steckel, M. & Soloway, E. 1994. Wharf: a hypertext tool
for software maintenance. Int. J. Software Engineering and Knowledge Engi­
neering4 (1), 1-16.

Briand, L., Devanbu, P. & Melo, W. 1997. An investigation into coupling meas-
ures for C++. In Proc. 19th Int. Conf Software Engineering (ICSE'97). New
York: ACM Press, 412-421.

Brooks, F.P. Jr. 1987. No silver bullet- essence and accidents of software engi-
neering. Computer 20 (4), 10-19.

Brooks, R. 1977. Towards a theory of the cognitive processes in computer pro-
gramming. IJMMS 9, 737-751.

Brooks, R. 1983. Towards a theory of the comprehension of computer programs.
IJMMS 18 (6), 543-554.

Burke, M. 1990. An interval-based approach to exhaustive and incremental in-
terprocedural data flow analysis. ACM TOPLAS 12 (3), 341-395.

Burke, M. & Ryder, B. 1990. A critical analysis of incremental iterative data flow
analysis algorithms. IEEE TOSE 16 (7), 723-728.

Burkowski, F. 1992. An algebra for hierarchically organized text-dominated da-
tabases. Information Processing & Management 28 (3), 333-348.

Burnstein, I & Roberson, K. 1997. Automated chunking to support program
comprehension. In P. Storms (Ed. production) Proc. 5th Int. Workshop on
Program Comprehension (IWPC'97). Los Alamitos, CA: IEEE Computer Soc.,
40-49.

CACM. 1994. CACM 37 (5). Theme issue on reverse engineering.
Caldiera, G. & Basili, V. 1991. Identifying and qualifying reusable software com-

ponents. Computer 24 (2), 61-70.
Cameron, R. 1988. Source encoding using syntactic information source models.

IEEE Trans. Inform. Theory 34 (4), 843-850.

71

Canfora, G. & Cimitile, A. 1992. Reverse-engineering and intermodular data
flow: a theoretical approach. J. Software Maintenance: Research and Practice 4
(1), 37-59.

Canfora, G., Cimitile, A. & Munro, M. 1993. A reverse engineering method for
identifying reusable abstract data types. In Proc. 1st Working Conf Reverse
Engineering (WCRE'93), 73-82.

Canfora, G., Cimitile, A. & Munro, M. 1996a. An improved algorithm for identi-
fying objects in code. Software- Practice and Experience 26 (1), 25-48.

Canfora, G., Cimitile, A., Munro, M. & Taylor, C. 1996b. Extracting abstract data
types from C programs: a case study. In Proc. Int. Conf Software Mainte­
nance (ICSM'96), 200-209.

Carmel, E., McHenry, W. & Cohen, Y. 1989. Building large, dynamic hypertexts:
how do we link intelligently?. J. Management Information Systems 6 (2),
33-50.

Catalin-Roman, G. & Fox, K. 1993. A taxonomy of program visualization sys-
tems. Computer 26 (12), 11-24.

Chan, H., Wei, K. & Siau, K. 1997. A system for query comprehension. Informa­
tion and Software Technology 39 (3), 141-148.

Chen, C. & Rada, R. 1996. Interacting with hypertext: a meta-analysis of experi-
mental studies. Human-Computer Interaction 11 (2), 125-156.

Chen, S., Heisler, K., Tsai, W., Chen, X. & Leung, E. 1990. A model for assembly
program maintenance. Software Maintenance 2, 3-32.

Chen, T. & Cheung, Y. 1993. Dynamic program dicing. In Proc. Int. Conf Soft­
ware Maintenance- 1993 (ICSM'93), 378-385.

Chen, T. & Low, C. 1997. Error detection in C++ through dynamic data flow
analysis. Software- Concepts and Tools 18 (1), 1-13.

Chen, X., Tsai, W.-T., Huang, H., Poonawala, M., Rayadurgam, S. & Wang, Y.
1996. Omega: an integrated environment for C++ program maintenance.
In Proc. Int. Conf Software Maintenance (ICSM'96), 114-123.

Chen, Y.-F., Gansner, E. & Koutsofios, E. 1998. A C++ data model supporting
reachability analysis and dead code detection. IEEE TOSE 24 (9), 682-694.

Chen, Y.-F., Nishimoto, M. & Ramamoorthy, C. 1990. The C information ab-
straction system. IEEE TOSE 16 (3), 325-334.

Chikofsky, E. & Cross, J. H. II. 1990. Reverse engineering and design recovery: a
taxonomy. IEEE Software 7 (1), 13-17.

Choi, J.-D., Cytron, R. & Ferrante, J. 1991a. Automatic construction of sparse
data flow evaluation graphs. In Conf Record of the 18th ACM Symp. Princi­
ples of Programming Languages (POPL'91). ACM Press, 55-66.

Choi, J.-D., Miller, B. & Netzer, R. 1991b. Techniques for debugging parallel
programs with flowback analysis. ACM TOPLAS 13 (4), 491-530.

Choi, J.-D. & Ferrante, J. 1994. Static slicing in the presence of goto statements.
ACM TOPLAS 16 (4), 1097-1113.

Cimitile, A. & De Carlini, U. 1991. Reverse engineering: algorithms for program
graph production. Software- Practice and Experience 21 (5), 519-537.

72

Cimitile, A., De Lucia, A., Di Lucca, G. & Fasolino, A.R. 1999. Identifying objects
in legacy systems using design metrics. The f. Systems and Software 44 (3),
199-212.

Clarke, L., Cormack, G. & Burkowski, F. 1995. An algebra for structured text
search and a framework for its implementation. The Computer f. 38 (1),
43-56.

Cleary, C. & Bareiss, R. 1996. Practical methods for automatically generating
typed links. In Proc. 7th ACM Conf Hypertext. ACM Press, 31-41.

Computer. 1999. Computer 32 (8). Theme issue on data mining.
Conklin, J. 1987. Hypertext: an introduction and survey. Computer 20 (9), 17-41.
Conklin, J. & Begeman, M. 1989. giBIS: a tool for all reasons. JASIS 40, 200-213.
Consens, M., Mendelzon, A. & Ryman, A. 1992. Visualizing and querying soft-

ware structures. In Proc. 14th Int. Conf Software Engineering (ICSE'92). New
York: ACM Press, 138-156.

Corbi, T. 1989. Program understanding: challenge for the 1990s. IBM Systems f.
28 (2), 294-306.

Corritore, C. & Wiedenbeck, S. 1999. Mental representations of expert proce-
dural and object-oriented programmers in a software maintenance task.
IJHCS 50 (1), 61-84.

Cowan, D., German, D., Lucena, C. & von Staa, A. 1994. Enhancing code for
readability and comprehension using SGML. In Proc. Int. Conf Software
Maintenance (ICSM'94), 181-190.

Creech, M., Freeze, D. & Griss, M. 1991. Using hypertext in selecting reusable
software components. In J. Walker (Ed.) Proc. Hypertext'91: 3rd ACM Conf
Hypertext. New York: ACM Press.

Cross, J. H. II, Chikofsky, E., May, C.H. Jr. 1992. Reverse engineering. AIC 35,
199-254.

Cunniff, C. & Taylor, C. 1987. Representation form effects on novice's program
comprehension. In Olson, G., Sheppard, S. & Soloway, E. (Ed.) Proc. 2nd
Workshop Empirical Studies of Programmers (ESP'87). Norwood, NJ: Ablex.

Cutillo, F., Fiore, R. & Visaggio, G. 1993. Identification and extraction of domain
independent components in large programs. In Proc. 1st Working Conf Re­
verse Engineering (WCRE'93), 83-92.

Cybulski, J. & Reed, K. 1992. A hypertext-based software-engineering environ-
ment. IEEE Software 9 (2), 62-68.

Cytron, R., Ferrante, J., Rosen, B., Wegman, M. & Zadeck, F. 1991. Efficiently
computing static single assignment form and the control dependence
graph. ACM TOPLAS 13 (4), 451-490.

Darnell, P. & Margolis, P. 1991. C: A Software Engineering Approach. New York:
Springer.

Date, C. 1987. A Guide to the SQL Standard. Reading, MA: Addison-Wesley.
Davies, S. 1990. The nature and development of programming plans. IJMMS 32

(4), 461-481.
Davis, A. 1995. Software prototyping. AIC 40, 39-63.

73

Dervin, B. & Nilan, M. 1986. Information needs and uses. In M. Williams (Ed.)
Ann. Review of Information Science and Technology (ARIST) 21. Knowledge
Industry Publications, 3-33.

van Deursen, A., Woods, S. & Quilici, A. 1997. Program plan recognition for
Year 2000 tools. In P. Storms (Ed. production) Proc. 4th Working Conf Re­
verse Engineering (WCRE'97). Los Alamitos, CA: IEEE Computer Soc.,
124-135.

Duncan, I. & Robson, D. 1996. An exploratory study of common coding faults in
C programs. J. Software Maintenance: Research and Practice 8 (4), 241-256.

Dunlop, M. & van Rijsbergen, C. 1993. Hypermedia and free text retrieval. Infor­
mation Processing & Management 29 (3), 287-298.

Edelstein, D. 1993. Report on the IEEE STD 1219- 1993- Standard for Software
Maintenance. ACM SIGSOFT Software Engineering Notes 18 (4), p. 94.

Eisenstadt, M. 1997. My hairiest bug war stories. CACM 40 (4), 30-37.
Eyre-Todd, R. 1993. The detection of dangling references in C++ programs.

ACM LOPLAS 2,127-134.
Faustle, S., Fugini, M.G. & Damiani, E. 1996. Retrieval of reusable components

using functional similarity. Software- Practice and Experience 26 (5), 491-530.
Field, J., Ramalingam, G. & Tip, F. 1995. Parametric program slicing. In Proc.

22nd ACM SIGPLAN/SIGACT Symp. Principles of Programming Languages
(POPL'95). ACM Press, 379-392.

Fiutem, R., Tonella, P., Antoniol, G. & Merlo, E. 1996. A cliche-based environ-
ment to support architectural reverse engineering. In Proc. Int. Conf Soft­
ware Maintenance (ICSM'96), 319-328.

Fiutem, R., Tonella, P., Antoniol, G. & Merlo, E. 1999. Points-to analysis for pro-
gram understanding. The J. Systems and Software 44 (3), 213-228.

Fletton, N. & Munro, M. 1988. Redocumenting software systems using hyper-
text technologies. In IEEE Int. Conf Software Maintenance 88 (ICSM'BB),
54-59.

Fraisse, S. 1997. A task driven design method and its associated tool for auto-
matically generating hypertexts. In M. Bernstein, L. Corr & K. 0sterbye
(Ed.) The 8th ACM Conf Hypertext- Hypertext'97. ACM Press, 234-236.

French, J., Knight, J. & Powell, A. 1997. Applying hypertext structures to soft-
ware documentation. Information Processing & Management 33 (2), 219-231.

Frisse, M. & Cousins, S. 1992. Models for hypertext. JASIS 43 (2), 183-191.
Fuggetta, A. 1993. A classification of CASE technology. Computer 26 (12), 25-38.
Fyson, M. & Boldyreff, C. 1998. Using application understanding to support im-

pact analysis. J. Software Maintenance: Research and Practice 10 (2), 93-110.
Gallagher, K.B. 1992. Evaluating the Surgeon's Assistant: results of a pilot

study. In Proc. Int. Conf Software Maintenance -1992 (ICSM'92), 236-244.
Gallagher, K.B. 1997. Visual impact analysis. In Proc. Int. Conf Software Mainte­

nance (ICSM'96). IEEE Computer Soc., 52-58.
Gannod, G. & Cheng, B. 1996. Using informal and formal techniques for there-

verse engineering of C programs. In Proc. Int. Conf Software Maintenance
(ICSM'96), 265-274.

Garg, P. 1988. Abstraction mechanisms in hypertext. CACM 31 (7), 862-870.

74

Garg, P. 1989. Information Management in Software Engineering: A Hypertext Based
Approach. Los Angeles: University of Southern California (Diss.).

Garg, P. & Scacchi, W. 1989. Ishys: designing an Intelligent Software Hypertext
System. IEEE Expert 4 (3), 52-63.

Garg, P. & Scacchi, W. 1990. A hypertext system to manage software lifecycle
documents. IEEE Software 7 (3), 90-98.

Gellenbeck, E. & Cook, C. 1991. An investigation of procedure and variable
names as beacons during program comprehension. In J. Koenemann-
Belliveau, T. Moher & S. Robertson (Ed.) Empirical Studies of Programmers:
4th Workshop (ESP'91). Norwood, NJ: Ablex, 65-81.

Gil, J. & Itai, A. 1999. How to pack trees. J. Algorithms 32 (2), 108-132.
Glass, R. & Vessey, I. 1995. Contemporary application-domain taxonomies.

IEEE Software 12 (4), 63-76.
Goldfarb, C. 1990. The SGML Handbook. Y. Rubinsky (Ed.). Oxford: Oxford

Univ. Press.
Gopal, R. 1991. Dynamic program slicing based on dependence relations. In

Proc. IEEE Int. Conf Software Maintenance (ICSM'91), 191-200.
Grass, J. 1992. Object-oriented design archaeology with CIA++. Computing Sys­

tems 5 (1), 5-67.
Griswold, W., Atkinson, D. & McCurdy, C. 1996. Fast, flexible syntactic pattern

matching and processing. In A. Cimitile & H. Muller (Ed.) Proc. 4th Int.
Workshop on Program Comprehension (IWPC'96). IEEE Computer Soc.,
144-153.

Griswold, W. & Notkin, D. 1993. Automated assistance for program restructur-
ing. ACM TOPLAS 2 (3), 228-269.

Griswold, W. & Notkin, D. 1995. Architectural tradeoffs for a meaning-
preserving program restructuring tool. IEEE TOSE 21 (4), 275-287.

Grove, D., DePauw, G., Dean, J. & Chambers, C. 1997. Call graph construction
in object-oriented languages. ACM SIGPLAN Notices 32 (10), 108-124. Proc.
OOPSLA'97.

Gmnbaek, K., Hem, J., Madsen, 0. & Sloth, L. 1994. Systems: a Dexter-based ar-
chitecture. CACM 37 (2), 65-74.

Gmnbaek, K. & Trigg, R. 1994. Design issues for a Dexter-based hypermedia
system. CACM 37 (2), 40-49.

Gugerty, L. & Olson, G. 1986. Comprehension differences in debugging by
skilled and novice programmers. In E. Soloway & S. Iyengar (Ed.) Empiri­
cal Studies of Programmers: Papers presented at the First Workshop (ESP'86).
Norwood, NJ: Ablex.

Gunter, C., Mitchell, J. & Notkin, D. 1996. Strategic directions in software engi-
neering and programming languages. ACM Computing Surveys 28 (4),
727-737.

Gupta, A. 1997. Program understanding using program slivers: an experience
report. In Proc. Int. Conf Software Maintenance (ICSM'97). IEEE Computer
Soc., 66-71.

Gupta, R., Harrold, M. & Soffa, M. 1996. Program slicing-based regression test-
ing techniques. Software Testing, Verification and Reliability 6 (2), 83-111.

75

Hagemeister, J., Lowther, B., Oman, P., Yu, X. & Zhu, W. 1992. An annotated
bibliography on software maintenance. ACM SIGSOFT Software Engineer­
ing Notes 17 (2), 79-84.

Halasz, F. 1988. Reflections on Notecards: seven issues for the next generation
of hypermedia systems. CACM 31 (7), 836-855.

Halasz, F. & Schwartz, M. 1994. The dexter hypertext reference model. CACM
37 (2), 29-39.

Hall, M. & Kennedy, K. 1992. Efficient call graph analysis. ACM LOPLAS 1 (3),
227-242.

Harman, M. & Danicic, S. 1995. Using program slicing to simplify testing. Soft­
ware Testing, Verification and Reliability 5, 143-162.

Harman, M. & Danicic, S. 1998. A new algorithm for slicing unstructured pro-
grams. J. Software Maintenance: Research and Practice 10 (6), 415-442.

Harman, M. & Gallagher, K.B. 1998. Program slicing. Information and Software
Technology 40 (11/12), 577-582.

Harris, D., Reubenstein, H. & Yeh, A. 1995. Recognizers for extracting architec-
tural features from source code. In Proc. 2nd Working Conf Reverse Engi­
neering (WCRE'95). IEEE Computer Soc., 252-261.

Harrold, M. & Malloy, B. 1993. A unified interprocedural program representa-
tion for a maintenance environment. IEEE TOSE 19 (6), 584-593.

Harrold, M., Malloy, B. & Rothermel, G. 1993. Efficient construction of program
dependence graphs. In Proc. 1993 Int. Symp. Software Testing and Analysis
(ISST A '93) I 160-170.

Harrold, M., Rothermel, G. & Sinha, S. 1998. Computation of interprocedural
control dependencies. In M. Young (Ed.) Proc. ACM SIGSOFT Int. Symp.
Software Testing and Analysis (ISSTA'98). ACM Press, 11-20.

Harrold, M., Soffa, M. 1990. Computation of interprocedural definition and use
dependencies. In Proc. IEEE Comput. Soc. 1990 Int. Conf Comput. Languages.
IEEE Computer Soc., 297-306.

Hart, J. & Pizzarello, A. 1996. A scalable, automated process for Year 2000 sys-
tem correction. In M. Kavanaugh (Ed. production) Proc. 18th Int. Conf Soft­
ware Engineering (ICSE'96). Los Alamitos, CA: IEEE Computer Soc.,
475-484.

Hartman, J. 1991. Understanding natural programs using proper decomposi-
tion. In Proc. 13th Int. Conf Software Engineering (ICSE'91). IEEE Computer
Soc./ ACM Press, 62-73.

Hasti, R. & Horwitz, S. 1998. Using static single assignment form to improve
flow-sensitive pointer analysis. ACM SIGPLAN Notices 33 (5), 97-105. Proc.
ACM SIGPLAN'98 Conf Programming Language Design and Implementation
(PLDI'98).

Haworth, D., Sharpe, S. & Hale, D. 1992. A framework for software mainte-
nance: a foundation for scientific inquiry. J. Software Maintenance: Research
& Practice 4 (2), 105-117.

Heisler, K., Kasho, Y. & Tsai, W. 1993. A reverse engineering model for C pro-
grams. Information Sciences 68, 155-189.

76

Henry, S. Humphrey, M. 1993. Object-oriented vs procedural programming lan-
guages: effectiveness in program maintenance. JOOP 6 (3), 41-49.

Hoffner, T., Kamkar, M. & Fritzson, P. 1995. Evaluation of program slicing
tools. In Proc. 2nd Workshop on Automated and Algorithmic Debugging
(AADEBUG'95). IRISA-CNRS, 51-69.

Hopkins, J. & Jernow, J. 1990. Documenting the software development process.
In Proc. SIGDOC'90. ACM Press, 125-133.

Horwitz, S. 1990a. Identifying the semantic and textual differences between two
versions of a program. In Proc. SIGPLAN'90 Conf Programming Language
Design and Implementation (PLDI'90), 234-246.

Horwitz, S. 1990b. Adding relational query facilities to software development
environments. Theoretical Computer Science 73 (2), 213-230.

Horwitz, S., Prins, J. & Reps, T. 1988. On the adequacy of program dependence
graphs for representing programs. In Proc. 15th ACM Symp. Principles of
Programming Languages (POPL'88). New York: ACM Press, 146-157.

Horwitz, S., Prins, J. & Reps, T. 1989. Integrating non-interfering versions of
programs. ACM TOPLAS 11 (3), 345-387.

Horwitz, S. & Reps, T. 1991. Efficient comparison of program slices. Acta Infor­
matica 28 (8), 713-732.

Horwitz, S. & Reps, T. 1992. The use of program dependence graphs in software
engineering. In Proc. 14th Int. Conf Software Engineering (ICSE'92). New
York: ACM Press, 392-411.

Horwitz, S., Reps, T. & Binkley, D. 1990. Interprocedural slicing using depend-
ence graphs. ACM TOPLAS 12 (1), 26-60.

Hutchens, D. & Basili, V. 1985. System structure analysis: clustering with data
bindings. IEEE TOSE 11 (8), 749-757.

lio, K., Furuyama, T. & Arai, Y. 1997. Experimental analysis of the cognitive
processes of program maintainers during software maintenance. In Proc.
Int. Conf Software Maintenance (ICSM'97). IEEE Computer Soc.

IJSEKE. 1994. Int. J. Software Engineering and Knowledge Engineering 4 (3). Special
issue on reverse engineering.

Imagix. 2000. Imagix 4D. Product information available (10-Mar-00) in www-
form at <URL: http:/ /www.imagix.com>. Company: Imagix. Description:
a reverse engineering tool (for C, C++).

IntegriSoft. 2000. HindSight. Product information available (10-Mar-00) in
www-form at <URL: http:/ /www.integrisoft.com/hindsight.htm>. Com-
pany: IntegriSoft. Description: a reverse engineering tool (for C, C++,
Fortran).

IS. 1995. IEEE Software 12 (1). Special issue on legacy systems.
IS. 1998. IEEE Software 15 (4). Theme issue on managing legacy systems.
Iselin, B. 1988. Conditional statements, looping constructs, and program com-

prehension: an experimental study. IJMMS 28 (1), 45-66.
1ST. 1998. Information and Software Technology 40 (11/12). Special issue on pro-

gram slicing.
Jackson, D. & Ladd, D. 1994. Semantic diff: a tool for summarizing the effects of

modifications. In Proc. Int. Conf Software Maintenance (ICSM'94), 243-252.

77

Jackson, D. & Rollins, E. 1996. Abstraction mechanisms for pictorial slicing. In
Cimitile, A. & Muller, H. (Ed.) Proc. 4th Int. Workshop on Program Compre­
hension (IWPC'96). IEEE Computer Soc.

JASIS. 1994. JASIS 45 (3). Special issue on relevance.
JASIS. 1998. JASIS 49 (5). Special issue on knowledge discovery and data

mining.
Jeffries, R., Miller, J., Wharton, C. & Uyeda, K. 1991. User interface evaluation in

the real world: a comparison of four techniques. In Proc. Conf Human Fac­
tors in Computing Systems. New York: ACM Press, 119-124.

Jiang, J., Zhou, X. & Robson, D. 1991. Program slicing for C- the problems in
implementation. In Proc. Int. Conf Software Maintenance (ICSM'91). IEEE
Computer Soc., 182-190.

Johmann, K., Liu, S.-S. & Yau, S. 1995. Context-dependent flow-sensitive inter-
procedural dataflow analysis. J. Software Maintenance: Research and Practice
7 (3), 177-202.

Jones, C. 1989. Software enhancement modelling. J. Software Maintenance- Re­
search and Practice 1, 91-100.

Jones, C. 1997. Slow response to Year 2000 problem. IEEE Software 14 (3),
114-115 (an interview).

JSS. 1999. The J. Systems and Software 44 (3). Special issue on program
comprehension.

Kafura, D. & Reddy, G. 1987. The use of software complexity metrics in soft-
ware maintenance. IEEE TOSE 13 (3), 335-343.

Kamkar, M. 1993. Interprocedural Dynamic Slicing with Applications to Debugging
and Testing. Dept. of Computer and Information Science, Linkoping Univ.,
Sweden. Linkoping Studies in Science and Technology Dissertations 297
(Diss.).

Kamkar, M. 1995. An overview and comparative classification of program slic-
ing techniques. The J. Systems and Software 31 (3), 197-214.

Kamkar, M. 1998. Application of program slicing in algorithmic debugging. In­
formation and Software Technology 40 (11/12), 637-646.

Kaplan, S. & Maarek, Y. 1990. Incremental maintenance of semantic links indy-
namically changing hypertext systems. Interacting with Computers 2 (3),
337-366.

Katajainen, J. & Makinen, E. 1990. Tree compression and optimization with ap-
plications. Int. J. Foundations of Computer Science 1 (4), 425-447.

Katajainen, J., Penttonen, M. & Teuhola, J. 1986. Syntax-directed compression of
program files. Software Practice and Experience 16 (3), 269-276.

Kernighan, B. & Ritchie, D. 1988. The C Programming Language (2nd ed.).
Englewood-Cliffs: Prentice Hall.

Kerola, P. & Oinas-Kukkonen, H. 1992. Hypertext system as an intermediary
agent in CASE environments. In K. Kendall, K. Lyytinen & J. DeGross
(Ed.) The Impact of Computer Supported Technologies on Information Systems
Development. NY: North-Holland, 289-313.

Khoshgoftaar, T., Szabo, R. &Voas, J. 1995. Detecting program modules with
low testability. In Proc. Int. Conf Software Maintenance (ICSM'95), 242-250.

78

Kinloch, D. & Munro, M. 1993. A combined representation for the maintenance
of C programs. In Proc. 2nd Int. Workshop on Program Comprehension
(IWPC'93). IEEE Computer Soc., 119-127.

Kinloch, D. & Munro, M. 1994. Understanding C programs using the combined
C graph representation. In Proc. Int. Conf Software Maintenance (ICSM'94),
172-180.

Knapen, G., Lague, B., Dagenais, M. & Merlo, E. 1999. Parsing C++ despite
missing declarations. In B. Werner (Ed. production) Proc. 7th Int. Workshop
on Program Comprehension (IWPC'99). IEEE Computer Soc., 114-125.

Koenemann, J. & Robertson, S. 1991. Expert problem solving strategies for pro-
gram comprehension. In Proc. Conf Human Factors in Computing Systems.
ACM Press, 125-130.

Kontogiannis. K., Galler, M., Demori, R., Bernstein, M. & Merlo, E. 1995. Pattern
matching for design concept localization. In Proc. 2nd Working Conf Re­
verse Engineering (WCRE'95). IEEE Computer Soc., 96-103.

Korel, B. & Rilling, J. 1998. Dynamic program slicing methods. Information and
Software Technology 40 (11/12), 647-660.

Koskinen, J. 1993. Chess'93. Included in (Koskinen et al., 1997). Description: a
non-commercial example ANSI-C input program of the HyperSoft system,
performing chess analysis. 2,700 LOC.

Koskinen, J. 1995. HyperSoft: a hypertext approach to software maintenance
support. InS. Assar & V. Plihon (Ed.) Proc. 2nd Doctoral Consortium on Ad­
vanced Information Systems Engineering - 7th Int. Conf Information Systems
Engineering: Current Practice and Future Prospects (CAiSE'95), 30-31.

Koskinen, J. 1996a. HyperSoft: Static Program Analyzer, Program Data Base and Ac­
cess Structure Generator Components. University of Jyvaskyla, Jyvaskyla,
Finland. Computer Science and Information Systems Reports, Working
paper WP-35.

Koskinen, J. 1996b. HyperSoft: Automated Hypertext Support for Software Mainte­
nance. University of Jyvaskyla, Jyvaskyla, Finland. Computer Science and
Information Systems Reports, Technical Reports TR-13. Licentiate thesis in
computer science.

Koskinen, J. 1996c. Creating transient hypertextual access structures for C pro-
grams. In M. Kavanaugh (Ed. production) Proc. 7th Israeli Conf Computer
Systems and Software Engineering (ICCSSE'96). IEEE Computer Soc., 56-65.

Koskinen, J. 1997. HyperSoft: Back-end Components. University of Jyvaskyla, Jy-
vaskyla, Finland. Computer Science and Information Systems Reports,
Technical Reports TR-17.

Koskinen, J. 1999a. Empirical evaluation of hypertextual information access
from program text. In B. Werner (Ed. production) Proc. 7th Int. Workshop
on Program Comprehension (IWPC'99). IEEE Computer Soc., 162-169.

Koskinen, J. 1999b. Empirical Evaluations of Hypertextual Information Access from
Program Text. University of Jyvaskyla, Jyvaskyla, Finland. Computer Sci-
ence and Information Systems Reports, Working paper WP-36.

79

Koskinen, J. 1999c. Evaluations of hypertext access from C programs. Condi-
tionally accepted to be published in J. Software Maintenance: Research and
Practice.

Koskinen, J. 1999d. A bibliography of reverse engineering and hypertext tech-
niques. To appear at personal www home page under <URL:
http:/ /www.cs.jyu.fi>.

Koskinen, J., Nieminen, M. & Suominen, T. 1997. HyperSoft system (v. 1.0). Dept.
of Computer Science and Information Systems, Univ. of JyvaskyHi. Distri-
bution disk. Also to appear at personal www home page under <URL:
http:/ /www.cs.jyu. fi>. Description: an experimental reverse engineering
tool for software maintenance support (for ANSI-C, ESQL). 35,000 LOC.

Koskinen, J., Paakki, J. & Salminen, A. 1994a. Program text as hypertext- using
program dependences for transient linking. In Proc. 6th Int. Conf Software
Engineering and Knowledge Engineering (SEKE'94). Skokie, IL: Knowledge
Systems Institute, 209-216.

Koskinen, J., Salminen, A. & Paakki, J. 1994b. HyperSoft: viewing program text
as hypertext to support software maintenance and comprehension. In:
Doctoral Program Seminar on IS Maintenance. Helsinki: Swedish School of
Economics and Business Adminstration.

Koskinen, J., Salminen, A. & Paakki, J. 1999. Hypertext support for information
needs of software maintainers. Univ. of Jyvaskyla, Jyvaskyla, Finland.
Computer Science and Information Systems Reports, Working paper WP-37.
Submitted for publication to IEEE Transactions on Software Engineering.

Kozaczynski, W., Ning, J. & Engberts, A. 1992. Program concept recognition
and transformation. IEEE TOSE 18 (12), 1065-1075.

Krasner, G. & Pope, S. 1988. A cookbook for using the model-view-controller
interface paradigm in Smalltalk-80. JOOP 1 (3), 26-49.

Kuhlthau, C. 1991. Inside the search process: information seeking from the
user's perspective. JASIS 42 (5), 361-371.

Kuikka, E. 1996. Processing of Structured Documents Using a Syntax-Directed Ap­
proach. Univ. Kuopio, Kuopio, Finland. Kuopio University Publications
C-53 (Diss.).

Kuikka, E. & Salminen, A. 1997. Two-dimensional filters for structured text. In­
formation Processing & Management 33 (1), 37-54.

Lakhotia, A. 1993a. Understanding someone else's code: analysis of experiences.
The J. Systems and Software 23,269-275.

Lakhotia, A. 1993b. Constructing call multigraphs using dependence graphs. In
Conf Record of the 20th ACM Symp. Principles of Programming Languages
(POPL'93). ACM Press, 273-284.

Landi, W., Ryder, B. & Zhang, S. 1993. Interprocedural modification side effect
analysis with pointer aliasing. ACM SIGPLAN Notices 28 (6), 56-67. Proc.
SIGPLAN'93 Conf Programming Language Design and Implementation
(PLDI'93).

Lee, B. & Hurson, A. 1993. Issues in dataflow computing. AIC 37, 285-333.
Leggett, J. & Schnase, J. 1994. Viewing Dexter with open eyes. CACM 37 (2),

76-86.

80

Lelewer, D. & Hirschberg, D. 1987. Data compression. ACM Computing Surveys
19 (3), 261-296.

Letovsky, S. 1986. Cognitive process in program comprehension. In E. Soloway
& S. Iyengar (Ed.) Empirical Studies of Programmers: Papers presented at the
First Workshop (ESP'86). Norwood, NJ: Ablex, 80-98.

Letovsky, S. & Soloway, E. 1986. Delocalized plans and program comprehen-
sion. IEEE Software 3 (3), 41-49.

Leung, Y. & Apperley, M. 1994. A review and taxonomy of distortion-oriented
presentation techniques. ACM TOCHI 1 (2), 126-160.

Liang, D. & Harrold, M. 1999. Efficient points-to-analysis for whole program
analysis. ACM SIGSOFT Software Engineering Notes 24 (6), 199-215. Proc.
7th European Software Engineering Conf/lth ACM SIGSOFT Symp. Founda­
tions of Software Engineering (ESEC/FSE'99).

Linos, P., Aubet, P., Dumas, L., Helleboid, Y., Lejeune, P., & Tulula, P. 1994.
Visualizing program dependencies: an experimental study. Software- Prac­
tice and Experience 24 (4), 387-403.

Linos, P. & Courtois, V. 1996. A toolset for maintaining hybrid C++ programs. J.
Software Maintenance: Research and Practice 8 (6), 389-420.

Linos, P., Aubet, P., Dumas, L., Helleboid, Y., Lejeune, P., & Tulula, P. 1993a. Fa-
cilitating the comprehension of C programs: an experimental study. In
Proc. 2nd Int. Workshop on Program Comprehension (IWPC'93). IEEE Com-
puter Soc., 55-63.

Linos, P., Aubet, P., Dumas, L., Helleboid, Y., Lejeune, P., & Tulula, P. 1993b.
CARE: an environment for understanding and re-engineering C pro-
grams. In Proc. Int. Conf Software Maintenance (ICSM'93). IEEE Computer
Soc., 130-139.

Linos, P., Ososanya, E. & Karunakaran, V. 1999. Improving the visibility of
graphical program displays: an experimental study. In B. Werner (Ed. pro-
duction) Proc. 7th Int. Workshop on Program Comprehension (IWPC'99). IEEE
Computer Soc., 12-19.

Livadas, P. & Johnson, T. 1994. A new approach to finding objects in programs.
J. Software Maintenance: Research and Practice 6 (5), 249-260.

Livadas, P. & Roy, P. 1992. Program dependency analysis. In Proc. Int. Conf
Software Maintenance (ICSM'92). IEEE Computer Soc., 356-365.

Luqi. 1989. Software evolution through rapid prototyping. Computer 22 (5),
13-25.

MacLeod, I. 199la. A query language for retrieving information from hierarchic
text structures. The Computer J. 34 (3), 254-264.

MacLeod, I. 1991b. Text retrieval and the relational model. JASIS 42 (3), 155-165.
Mancl, D. & Havanas, W. 1990. A study of the impact of C++ on software main-

tenance. Proc. IEEE Int. Conf Software Maintenance (ICSM'90), 63-69.
Marcoccia, L. 1998. Building infrastructure for fixing the year 2000 bug: a case

study. J. Software Maintenance: Research and Practice 10 (5), 333-352.
Marlowe, T. & Ryder, B. 1991. Hybrid incremental alias algorithms. In Proc. 24th

Hawaii Int. Conf System Sciences (HICSS'91) (Vol. II), 428-437.

81

Martin, R. 1997. Dealing with dates: solutions for the Year 2000. Computer 30 (3),
44-51.

Matwin, S. & Ahmad, A. 1994. Reuse of modular software with automated com-
ment analysis. In Proc. Int. Conf Software Maintenance (ICSM'94), 222-233.

von Mayrhauser, A. 1994. Maintenance and evolution of software products. AIC
39, 1-49.

von Mayrhauser, A. & Lang, S. 1999. On the role of static analysis during soft-
ware maintenance. In B. Werner (Ed. production) Proc. 7th Int. Workshop on
Program Comprehension (IWPC'99). IEEE Computer Soc., 170-177.

von Mayrhauser, A. & Vans, A.M. 1995a. Program comprehension during soft-
ware maintenance and evolution. Computer 28 (2), 44-55.

von Mayrhauser, A. & Vans, A.M. 1995b. Industrial experience with an inte-
grated code comprehension model. Software Engineering J. 10 (5), 171-182.

von Mayrhauser, A. & Vans, A.M. 1995c. Program understanding models and
experiments. AIC 40, 1-38.

von Mayrhauser, A. & Vans, A.M. 1996. Identification of dynamic comprehen-
sion processes during large scale maintenance. IEEE TOSE 22 (6), 424-437.

von Mayrhauser, A. & Vans, A.M. 1997a. Hypothesis-driven understanding
processes during corrective maintenance of large scale software. In Proc.
Int. Conf Software Maintenance (ICSM'97). IEEE Computer Soc., 12-20.

von Mayrhauser, A. & Vans, A.M. 1997b. Program understanding needs during
corrective maintenance of large systems. In Proc. 21st Ann. Computer Soft­
ware & Applications Conf (COMPSAC'97). IEEE Computer Soc., 630-637.

von Mayrhauser, A. & Vans, A.M. 1998. Program understanding during soft-
ware adaptation tasks. In Proc. Int. Conf Software Maintenance (ICSM'98).
IEEE Computer Soc., 316-325.

von Mayrhauser, A., Vans, A.M. & Howe, A. 1997. Program understanding be-
haviours during enhancement of large-scale software. J. Software Mainte­
nance: Research and Practice 9 (5), 299-327.

McCabe, T. 1976. A complexity measure. IEEE TOSE 2 (4), 308-320.
McDonald, S. & Stevenson, R. 1998. Navigation in hyperspace: an evaluation of

the effects of navigational tools and subject matter expertise on browsing
and information retrieval in hypertext. Interacting with Computers 10 (2),
129-142.

Mendelzon, A. & Sametinger, J. 1995. Reverse engineering by visualizing and
querying. Software- Concepts and Tools 16 (4), 170-182.

Misra, S. 1990. Evaluating CASE system characteristics: evaluative framework.
Information and Software Technology 32 (6), 415-422.

Mizzaro, S. 1997. Relevance: the whole history. JASIS 48 (9), 810-832.
Monk, A., Walsh, P. & Dix, A. 1988. A comparison of hypertext, scrolling and

folding as mechanisms for program browsing. In D. Jones & R. Winder
(Ed.) People and Computers IV. Cambridge: Cambridge Univ.,421-435.

Moriconi, M. & Hare, D. 1986. The PegaSys system: pictures as formal docu-
mentation of large programs. ACM TOPLAS 8 (4), 524-546.

Moriconi, M. & Winkler, T. 1990. Approximate reasoning about the semantic ef-
fects of program changes. IEEE TOSE 16 (9), 980-992.

82

Moser, L. 1990. Data dependence graphs for Ada programs. IEEE TOSE 16 (5),
498-502.

Moulin, B. & Rousseau, D. 1992. Automated knowledge acquisition from regu-
latory texts. IEEE Expert 7 (5), 27-35.

Muller, H. & Klashinsky, K. 1988. Rigi: a system for programming-in-the-large.
In Proc. 10th Int. Conf Software Engineering (ICSE'BB), 80-86.

Muller, H., Orgun, M., Tilley, S., & Uhl, J. 1993. A reverse engineering approach
to subsystem structure identification. J. Software Maintenance: Research and
Practice 5 (4), 181-204.

Muller, H., Tilley, S., Orgun, M., Corrie, B. & Madhavji, N. 1992. A reverse engi-
neering environment based on spatial and visual software interconnection
models. In Proc. Fifth ACM SIGSOFT Symp. Software Development Environ­
ments. ACM Press, 88-98.

Murphy, G. & Notkin, D. 1996. Lightweight lexical source model extraction.
ACM TOSEM 5 (3), 262-292.

Murphy, G., Notkin, D., Griswold, W. & Lan, E. 1998. An empirical study of
static call graph extractors. ACM TOSEM 7 (2), 158-191.

Musciano, C. & Kennedy, B. 1998. HTML: The Definitive Guide (3rd ed.). O'Reilly
&Assoc.

Newcomb, P. & Scott, M. 1997. Requirements for advanced Year 2000 mainte-
nance tools. Computer 30 (3), 52-57.

Nielsen, J. 1989. The matters that really matter for hypertext usability. In F. Ha-
lasz & N. Meyrowitz (Ed.) Proc. 2nd ACM Conf Hypertext, Hypertext'89.
New York: ACM Press, 239-248.

Nielsen, J. 1990. The art of navigating through hypertext. CACM 33 (3), 296-310.
Nieminen, M. 1996. HyperSoft jiirjestelmiin kiiyttoliittymii ja sen kehittiiminen (Hy­

perSoft system: the user interface and its development) (in Finnish). Univ. of Jy-
vaskyHi. Master's thesis in computer science.

Nieminen, M. & Koskinen, J. 1997. HyperSoft: kiiyttiijiin kiisikirja (HyperSoft: User's
Manual) (in Finnish). Jyvaskyla, Finland: HyperSoft project, Dept. of Com-
puter Science and Information Systems, Univ. of Jyvaskyla.

Ning, J., Engberts, A. & Kozaczynski, W. 1993. Recovering reusable components
from legacy systems by program segmentation. In Proc. 1st Working Conf
Reverse Engineering (WCRE'93), 64-72.

Ning, J., Engberts, A. & Kozaczynski, W. 1994. Automated support for legacy
code understanding. CACM 37 (5), 50-57.

Noonan, R. 1985. An algorithm for generating abstract syntax trees. Computer
Languages 10 (3/4), 225-236.

Nunamaker, J.F. Jr., Chen, M. & Purdin, T. 1991. Systems development in infor-
mation systems research. J. Management Information Systems 7 (3), 89-106.

N0rmark, K. & 0sterbye, K. 1994. Representing programs as hypertext. In B.
Magnusson, G. Hedin & S. Minor (Ed.) Proc. Nordic Workshop on Program­
ming Environment Research (NWPER '94). LU-CS-TR: 94-127. Lund, Sweden:
Lund Univ., 11-24.

N0rmark, K. & 0sterbye, K. 1995. Rich hypertext: a foundation for improved
interaction techniques. IJHCS 43 (3), 301-321.

83

Oinas-Kukkonen, H. 1997a. Improving the Functionality of Software Design Envi­
ronments by Using Hypertext. Univ. of Oulu, Finland. Acta Univ. Ouluensis,
A 296 (Diss.).

Oinas-Kukkonen, H. 1997b. Towards greater flexibility in software design sys-
tems through hypermedia functionality. Information and Software Technol­
ogy 39 (6), 391-397.

Ott, L. & Bieman, J. 1998. Program slices as an abstraction for cohesion measure-
ment. Information and Software Technology 40 (11/12), 691-700.

Ott, L. & Thuss, J. 1989. The relationship between slices and module cohesion.
In Proc. 11th Int. Conf Software Engineering (ICSE'89). IEEE Computer
Soc./ ACM Press, 198-204.

Ottenstein, K. & Ottenstein, L. 1984. The program dependence graph in a soft-
ware development environment. ACM SIGPLAN Notices 19 (5), 177-184.
ACM SIGSOFT Software Engineering Notes 9 (3). Proc. ACM
SIGPLAN/SIGSOFT Symp. Practical Programming Developm. Environments.

Paakki, J., Salminen, A. & Koskinen, J. 1996. Automated hypertext support for
software maintenance. The Computer J. 39 (7), 577-597.

Paakki, J., Koskinen, J. & Salminen, A. 1997. From relational program depend-
encies to hypertextual access structures. Nordic Journal of Computing 4 (1),
3-36.

Palthepu, S., Greer, J. & McCalla, G. 1997. Cliche recognition in legacy software:
a scalable, knowledge-based approach. In P. Storms (Ed. production) Proc.
4th Working Conf Reverse Engineering (WCRE'97). Los Alamitos, CA: IEEE
Computer Soc., 94-103.

Pande, H., Landi, W. & Ryder, B. 1994. Interprocedural def-use associations for
C systems with single level pointers. IEEE TOSE 20 (5), 385-403.

Parr, T. & Quong, R. 1995. ANTLR: a predicated-LL(k) parser generator. Soft­
ware- Practice and Experience 25 (7), 789-810.

Parr, T. & Quong, R. 1996. LL and LR translators need k>1lookahead. ACM SIC­
PLAN Notices 31 (2), 27-34.

Parsifal. 1993. AnaGram™- User's Guide. Wayland, MA: Parsifal Software.
Paul, S. & Prakash, A. 1994a. A framework for source code search using pro-

gram patterns. IEEE TOSE 20 (6), 463-475.
Paul, S. & Prakash, A. 1994b. Supporting queries on source code: a formal

framework. Int. J. Software Engineering and Knowledge Engineering 4 (3),
325-348.

Paul, S. & Prakash, A. 1996. A query algebra for program databases. IEEE TOSE
22 (3), 202-217.

Peltola, H. & Tarhio, J. 1991. On syntactical data compression. InK. Koskimies
et al. (Ed.) Proc. 2nd Symp. Programming Languages and Software Tools. Re-
port A-1991-5. Dept. of Computer Science, Univ. of Tampere, Finland,
205-214.

Pennington, N. 1987. Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive Psychology 19 (3), 295-341.

Perry, D. 1987. Software interconnection models. In Proc. 9th Int. Conf Software
Engineering (ICSE'87). ACM Press, 61-69.

84

Pezze, M., Taylor, R. & Young, M. 1995. Graph models for reachability analysis
of concurrent programs. ACM TOSEM 4 (2), 171-213.

Pirklbauer, K. 1992. A study of pattern-matching algorithms. Structured Pro­
gramming 13 (2), 89-98.

Pfleeger, S. 1997. Experimentation in software engineering. AIC 44, 127-167.
Plato££, M. & Wagner, M. 1991. An integrated program representation and

toolkit for the maintenance of C programs. In Proc. Int. Conf Software
Maintenance (ICSM'91).

Podgurski, A. & Clarke, L. 1990. A formal model of program dependences and
its implications for software testing, debugging and maintenance. IEEE
TOSE 16 (9), 965-979.

Pollock, L & Soffa, M. 1989. An incremental version of iterative data flow analy-
sis. IEEE TOSE 11 (12), 1537-1549.

Pressman, R. 1997. Software Engineering - A Practitioner's Approach (4th ed.).
McGraw-Hill.

Prieto-Diaz, R. 1991. Implementing faceted classification for software reuse.
CACM 34 (5), 89-97.

Pugh, W. 1992. A practical algorithm for exact array dependence analysis.
CACM 35 (8), 102-114.

Qiu, L. 1993. Analytical searching vs browsing in hypertext information re-
trieval systems. Canadian J. Library & Information Science 18 (4), 1-13.

Queille, J.-P., Voidrot, J.-F., Wilde, N. & Munro, M. 1994. The impact analysis
task in software maintenance: a model and a case study. In Proc. Int. Conf
Software Maintenance (ICSM'94).

Rada, R. 1992. Converting a textbook into hypertext. ACM TOIS 10 (3), 294-315.
Rada, R. & Murphy, C. 1992. Searching versus browsing in hypertext. Hyperme­

dia 4 (1), 1-30.
Rada, R., Wang, W., Mili, H, Heger, J. & Scherr, W. 1992. Software reuse: from

text to hypertext. Software Engineering J. 7, 311-321.
Ragland, B. 1997. The Year 2000 Problem Solver: A Five Step Disaster Prevention

Plan. McGraw-Hill.
Rajlich, V. & Varadarajan, S. 1999. Using the web for software annotations. Int.

J. Software Engineering and Knowledge Engineering 9 (1), 55-72.
Ramalingam, G. & Reps, T. 1992. A theory of program modifications. In Proc.

Colloquium on Combining Paradigms for Software Development. Springer-
Verlag, 137-152.

Raymond, D. & Tompa, F.Wm. 1988. Hypertext and the Oxford English Dic-
tionary. CACM 31 (7), 871-879.

Rayside, D., Kerr, S. & Kontogiannis, K. 1998. Change and adaptive mainte-
nance detection in Java software systems. In Proc. 5th Working Conf Reverse
Engineering (WCRE'98). IEEE Computer Soc., 10-19.

Red Hat. 2000. Cygnus Source Navigator v. 4.5. Product information available
(10-Mar-00) in www-form at <URL: http:/ /www.redhat.com/products/
cygnus.html>. Company: Red Hat. Description: a reverse engineering tool.

Regelson, E. & Anderson, A. 1994. Debugging practices for complex legacy soft-
ware systems. In Proc. Int. Conf Software Maintenance (ICSM'94), 137-145.

85

Reps, T. 1998. Program analysis via graph reachability. Information and Software
Technology 40 (11/12), 701- 726.

Reps, T., Horwitz, S., Sagiv, M. & Rosay, G. 1994. Speeding up slicing. ACM
SIGSOFT Software Engineering Notes 19 (5), 11-20. ACM SIGSOFT'94, Proc.
2nd ACM SIGSOFT Symp. Foundations of Software Engineering (FSE'2).
ACMPress.

Reps, T. & Rosay, G. 1995. Precise interprocedural chopping. ACM SIGSOFT
Software Engineering Notes 20 (4), 41-52. G. Kaiser (Ed.) SIGSOFT'95: Proc.
3rd ACM SIGSOFT Symp. Foundations of Software Engineering (FSE'3).

Rich, C. & Waters, R. 1988. The Programmer's Apprentice: a research overview.
Computer 21 (11), 10-25.

Rich, C. & Wills, L. 1990. Recognizing a program's design: a graph-parsing ap-
proach. IEEE Software 7 (1), 82-89.

Riecken, R., Koenemann-Belliveau, J. & Robertson, S. 1991. What do expert pro-
grammers communicate by means of descriptive commenting. In J.
Koenemann-Belliveau, T. Moher & S. Robertson (Ed.) Empirical Studies of
Programmers: 4th Workshop (ESP'91). Norwood, NJ: Ablex, 177-195.

Risku, V.-M. 1995. Siivuttaminen ohjelmistojen ylliipidossa (Slicing in software main­
tenance) (in Finnish). Univ. of Jyvaskyla. Master's thesis in computer
science.

Ritchie, D. 1993. The development of the C language. ACM SIGPLAN Notices 28
(3), 201-208. Proc. 2nd ACM SIGPLAN Conf History of Programming Lan­
guages (HOPL-II).

Rivlin, E., Botafogo, R. & Shneiderman, B. 1994. Navigating in hyperspace: de-
signing a structure-based toolbox. CACM 37 (2), 87-96.

Robson, D., Bennett, K., Cornelius, B. & Munro, M. 1991. Approaches to pro-
gram comprehension. The J. Systems and Software 14 (2), 79-84.

Robertson, S. & Yu, C.-C. 1990. Common cognitive representations of program
code across tasks and languages. IJMMS 33 (3), 343-360.

Rock-Evans, R. & Hales, K. 1992. Reverse Engineering: Markets, Methods and Tools.
London: Ovum.

Rossiter, B., Sillitoe, T. & Heather, M. 1990. Database support for very large hy-
pertexts. Electronic Publishing 3 (3), 141-154.

Rugaber, S., Ornburn, S. & LeBlanc, R. Jr. 1990. Recognizing design decisions in
programs. IEEE Software 7 (1), 46-54.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. & Lorensen, W. 1991. Object­
Oriented Modeling and Design. Englewood-Cliffs, NJ: Prentice-Hall.

Ryder, B. & Paul, M. 1988. Incremental data flow analysis algorithms. ACM TO­
PLAS 10 (1), 1-50.

Salminen, A., Koskinen, J. & Paakki, J. 1994a. HyperSoft: an environment for
hypertextual software maintenance. In B. Magnusson, G. Hedin & S.
Minor (Ed.) Proc. Nordic Workshop on Programming Environment Research
(NWPER'94). LU-C5-TR: 94-127. Lund, Sweden: Lund Univ., 25-37.

Salminen, A., Paakki, J. & Koskinen, J. 1994b. Incorporating hypertext function-
ality into software maintenance environments. In Workshop on Corporating

86

Hypertext Functionality into Software Systems, ACM European Conference on
Hypermedia Technologies (ECHT'94). ACM Press.

Salminen, A., Tague-Sutcliffe, J. & McClellan, C. 1995. From text to hypertext by
indexing. ACM TOIS 13 (1), 69-99.

Salminen, A. & Watters, C. 1992. A two-level structure for textual databases to
support hypertext access. JASIS 43 (6), 432-447.

Salton, G., Allan, J. & Buckley, C. 1994. Automatic structuring and retrieval of
large text files. CACM 37 (2), 97-108.

Salton, G., Buckley, C. & Smith, M. 1990. On the application of syntactic meth-
odologies in automatic text analysis. Information Processing & Management
26 (1), 73-92.

Samadzadeh, M. & Wichaipanitch, W. 1993. An interactive debugging tool for C
based on dynamic slicing and dicing. In Proc. 21st Annual Computer Science
Conf. ACM Press, 30-37.

Schwarz, C. 1990. Automatic syntactic analysis of free text. JASIS 41 (6), 409-415.
SET. 2000. Discover. Product information available (10-Mar-00) in www-form at

<URL: http:/ /www.setech.com/products>. Company: SET Inc. Descrip-
tion: a reverse engineering tool (for ANSI C/C++ et al.).

Sharon, D. 1997. Year 2000 tool classification scheme. IEEE Software 14 (4),
107-111.

Shepherd, M., Watters, C. & Cai, Y. 1990. Transient hypergraphs for citation
networks. Information Processing & Management 26 (3), 395-412.

Shneiderman, B. 1986. Empirical studies of programmers: the territory, paths,
and destinations. In E. Soloway & S. Iyengar (Ed.) Empirical Studies of Pro­
grammers: Papers presented at the First Workshop (ESP'86). Norwood, NJ:
Ablex, 1-12.

Shneiderman, B. 1989. Reflections on authoring, editing, and managing hyper-
text. E. Barret (Ed.) The Society of Text. Cambridge, MA: MIT Press,
115-131.

Shneiderman, B. 1992. Designing the User Interface: Strategies for Effective Human­
Computer Interaction (2nd ed.). Reading, MA: Addison-Wesley.

Sillanpaa, R. 1997. Hypertekstin visualisointi (Visualization of hypertext) (in Fin-
nish). Univ. of Helsinki. Master's thesis in computer science.

Sloane, A. & Holdsworth, J. 1996. Beyond traditional program slicing. ACM
SIGSOFT Software Engineering Notes 21 (3), 180-186. S. Zeil (Ed.) Proc. 1996
Int. Symp. Software Testing and Analysis (ISSTA'96).

Soloway, E., Adelson, B. & Ehrlich, K. 1988. Knowledge and processes in the
comprehension of computer programs. In M. Chi, R. Glaser & M. Farr
(Ed.) The Nature of Expertise. Hillsdale, NJ: Lawrence Erlbaum Ass., 129-152

Soloway, E., Bonar, J. & Ehrlich, K. 1983. Cognitive strategies and looping con-
structs: an empirical study. CACM 26 (11), 853-860.

Soloway, E. & Ehrlich, K. 1984. Empirical studies of programming knowledge.
IEEE TOSE 10 (5), 595-609.

Soloway, E., Ehrlich, K., Bonar, J. & Greenspan, J. 1982. What do novices know
about programming? In B. Shneiderman & A. Badre (Ed.) Directions in
Human-Computer Interaction. Norwood, NJ: Ablex.

87

Soloway, E., Pinto, J., Letovsky, S., Littman, D. & Lampert, R. 1988. Designing
documentation to compensate for delocalized plans. CACM 31 (11),
1259-1267.

Sommerville, I. 1996. Software Engineering (5th ed.). Addison-Wesley.
Storey, M.-A. & Muller, H. 1995. Manipulating and documenting software

structures using SHriMP views. In Proc. Int. Conf Software Maintenance
(ICSM'95). IEEE Computer Soc.,275-284.

Storey, M.-A., Wong, K., Fang, P., Hooper, D., Hopkins, K. & Muller, H. 1996.
On designing an experiment to evaluate a reverse engineering tool. In
Proc. 3rd Working Conf Reverse Engineering (WCRE'96). IEEE Computer
Soc.,31-40.

Storey, M.-A., Wong, K. & Muller, H. 1997. How do program understanding
tools affect how programmers understand programs. In P. Storms (Ed.
production) Proc. 4th Working Conf Reverse Engineering (WCRE'97). Los
Alamitos, CA: IEEE Computer Soc., 12-21.

Stotts, P. & Furuta, R. 1989. Petri-net-based hypertext: document structure with
browsing semantics. ACM TOIS 7 (1), 3-29.

Straker, D. 1992. C Style Standards and Guidelines. UK: PHI.
Stroustrup, B. 1986. The C++ Programming Language. Reading, MA:

Addison-Wesley.
Stroustrup, B. 1993. A history of C++: 1979-1991. In HOPL-II, The Second ACM

SIGPLAN History of Programming Languages Conference. New York: ACM,
271-297.

Suetens, P., Fua, P. & Hanson, A. 1992. Computational strategies for object rec-
ognition. ACM Computing Surveys 24 (1), 5-61.

Suominen, T. 1997. Upotetun SQL:n analysointi HyperSoft jiirjestelmiissii (The analy­
sis of embedded SQL in HyperSoft system) (in Finnish). Univ. of Helsinki.
Master's thesis in computer science.

Tague, J., Salminen, A. & McClellan, C. 1991. A complete formal model for in-
formation retrieval systems. In A. Bookstein, Y. Chiaramella, G. Salton &
V. Raghavan (Ed.) Proc. ACM SIGIR'91. ACM Press, 14-20.

TakeFive. 2000. Sniff+. Product information available (10-Mar-00) in www-form
at <URL: http:/ /www.takefive.com/products/sniff+.htrnl>. Company:
TakeFive software. Description: a reverse engineering tool (C, C++ et al.).

Tebbutt, J. 1999. User evaluation of automatically generated semantic hypertext
links in a heavily used procedural manual. Information Processing and Man­
agement 35 (1), 1-18.

The COBOL Center. 1999. Product information available (14-Apr-00) in www-
form at <URL: http:/ /www.infogoal.com/ cbd/ cbdtol.htm>. Description:
a list of tools (for COBOL).

Tichy, W. 1998. Should computer scientists experiment more. Computer 31 (5),
32-40.

Tilley, S., Paul, S. & Smith, D. 1996. Towards a framework for program under-
standing. In A. Cimitile & H. Muller (Ed.) Proc. 4th Int. Workshop on Pro­
gram Comprehension (IWPC'96). IEEE Computer Soc., 19-28.

88

Tip, F. 1995. A survey of programming slicing techniques. J. Programming Lan­
guages 13 (3), 121-189.

Tonella, G., Fiutem, R. & Merlo, E. 1997. Flow insensitive C++ pointers and
polymorphism analysis and its application to slicing. In Proc. 19th Int.
Conf Software Engineering (ICSE'97). New York: ACM Press, 433-443.

Tuovinen, A.-P. 1995. Analyzing, Understanding and Maintaining Object-Oriented
Programs. Helsinki: HyperSoft project, Dept. of Computer Science, Univ. of
Helsinki.

Turver, R. & Munro, M. 1994. An early impact analysis technique for software
maintenance. J. Software Maintenance: Research and Practice 6 (1), 35-52.

Utting, K. & Yankelovich, N. 1989. Context and orientation in hypermedia net-
works. ACM TOIS 7 (1), 58-84.

Venkatesh, G. 1995. Experimental results from dynamic slicing of C programs.
ACM TOPLAS 17 (2), 197-216.

Verilog. 2000. Logiscope. Product information available (10-Mar-00) in www-
form at <URL: http:/ /www.csverilog.com/products/logiscop.htm>.
Company: Verilog. Description: a reverse engineering tool (for 80+
languages).

Vessey, I. 1987. On matching programmers' chunks with program structures: an
empirical investigation. IJMMS 27 (1), 65-89.

Vessey, I. 1989. Towards a theory of computer program bugs: an empirical test.
IJMMS 30 (1), 23-46.

Vilela, P., Maldonado, J. & Jino, M. 1997. Program graph visualization. Software
-Practice and Experience 27 (11), 1245-1262.

Visaggio, G. 1997. Relationships between comprehension and maintenance ac-
tivities. In P. Storms (Ed. production) Proc. 5th Int. Workshop on Program
Comprehension (IWPC'97). Los Alamitos, CA: IEEE Computer Soc., 4-16.

Waddle, V. 1990. Production trees: a compact representation of parsed pro-
grams. ACM TOPLAS 12 (1), 61-83.

Wan, J. & Bieber, M. 1996. GHMI: a general hypertext data model supporting
integration of hypertext and information systems. In Proc. 29th Hawaii Int.
Conf Systems Sciences (HICSS'96).

Wang, Y., Tsai, W.-T. et al. 1996. The role of program slicing in ripple effect
analysis. In Proc. 8th Int. Conf Software Engineering and Knowledge Engineer­
ing (SEKE'96), 369-376.

Watters, C. & Shepherd, M. 1990. A transient hypergraph-based model for data
access. ACM TOIS 8 (2), 77-102.

Weide, B., Ogden, W. & Zweben, S. 1991. Reusable software components. AIC
33, 1-65.

Weiser, M. 1982. Programmers use slices when debugging. CACM 25 (7),
446-452.

Weiser, M. 1984. Program slicing. IEEE TOSE 10 (4), 352-357.
Weiser, M. & Lyle, J. 1986. Experiments on slicing-based debugging aids. In E.

Soloway & S. Iyengar (Ed.) Empirical Studies of Programmers: Papers pre­
sented at the First Workshop (ESP'86). Norwood, NJ: Ablex, 187-197.

89

Welsh, J. & McKeag, M. 1980. Structured System Programming. N.J.: Prentice
Hall.

Wichman, B., Canning, A., Clutterbuck, D., Winsborrow, L., Ward, N. & Marsh,
D. 1995. Industrial perspective on static analysis. Software Engineering J. 10
(2), 69-75.

Wiedenbeck, S. 1986. Beacons in computer program comprehension. IJMMS 25
(6), 697-709.

Wiedenbeck, S. 1991. The initial stage of program comprehension. IJMMS 35 (4),
517-540.

Wiedenbeck, S. & Fix, V. 1993. Characteristics of the mental representations of
novice and expert programmers: an empirical study. IJMMS 39 (5),
793-812.

Wilde, N., Blackwell, K. & Justice, R. 1998. Understanding data-sensitive code:
one piece of the Year 2000 puzzle. ACM SIGSOFT Software Engineering
Notes 23 (5), 75-80.

Wilde, N., Chapman, A. & Richardson, R. 1994. The extensible dependency
analysis tool set: a knowledge base for understanding industrial software.
Int. J. Software Engineering and Knowledge Engineering 4 (4), 521-534.

Wills, L. 1990. Automated program recognition: a feasibility demonstration. Ar­
tificial Intelligence 45 (1 /2), 113-171.

Wilson, R. & Lam, M. 1995. Efficient context-sensitive pointer analysis for C
programs. In Proc. ACM SIGPLAN'95 Conf Programming Language Design
and Implementation (PLDI'95), 1-12.

Wilson, T. 1994. Information needs and uses: fifty years of progress?. In V. Vick-
ery (Ed.) Fifty Years of Information Progress. Aslib, 15-51.

Wong, K. 1996. Rigi User's Manual Version 5.4.1. Product information available
(10-Mar-00) in www-form at <URL: http:/ /www.rigi.csc.uvic.ca/rigi/
manual/user.html>. Description: a reverse engineering tool (for C).

Wright, P. 1991. Cognitive overheads and prostheses: some issues in evaluating
hypertexts. In J. Walker (Ed.) Proc. ACM Conf Hypertext'91: 3rd ACM Conf
Hypertext. New York: ACM Press, 1-12.

Wu, S. & Manber, U. 1992. Fast text searching allowing errors. CACM 35 (10),
83-91.

Yang, H., Luker, P. & Chu, W. 1997. Code understanding through program
transformation for reusable component identification. In P. Storms (Ed.
production) Proc. 5th Int. Workshop on Program Comprehension (IWPC'97).
Los Alamitos, CA: IEEE Computer Soc., 148-159.

Yang, W. 1991. Identifying syntactic differences between two programs. Soft­
ware- Practice and Experience 21 (7), 739-755.

Yau, S. & Chang, P. 1988. A metric of modifiability for software maintenance. In
Proc. Int. Conf Software Maintenance (ICSM'BB). IEEE Computer Soc.,
374-381.

Yau, S. & Tsai, J. 1987. Knowledge representation of software component inter-
connection information for large-scale software modifications. IEEE TOSE
13 (3), 355-361.

90

Younger, E. & Bennett, K. 1993. Model-based tools to record program under-
standing. In Proc. 2nd Int. Workshop on Program Comprehension (IWPC'93).
IEEE Computer Soc., 119-127.

Yueh, T. & Low, C. 1997. Error detection in C++ through dynamic data flow
analysis. Software- Concepts and Tools 18 (1), 1-13.

Yur, J.-S., Ryder, B., Landi, W. & Stocks, P. 1997. Incremental analysis of side ef-
fects for C software system. In Proc. 19th Int. Conf Software Engineering
(ICSE'97). New York: ACM Press, 422-432.

Zelkowitz, M. & Wallace, D. 1998. Experimental models for validating technol-
ogy. Computer 31 (5), 23-31.

Zhou, M. & Tompa, F. Wm. 1998. The suffix-signature method for searching for
phrases in text. Information Systems 23 (8), 567-588.

Ziv, H. & Osterweil 1995. Research issues in the intersection of hypertext and
software development environments. LNCS 896, 268-279. Workshop on Soft­
ware Engineering and Human-Computer Interaction. Springer-Verlag.

Zloof, M. 1977. Query-by-example: a database language. IBM Systems J. 16 (4),
324-343.

Zvegintzov, N. 1997. A resource guide to Year 2000 tools. Computer 30 (3), 58-63.
0sterbye, K. 1992. Structural and cognitive problems in providing version con-

trol for hypertext. In D. Lucarella, J. Nanard, N. Nanard & P. Paolini (Ed.)
Proc. ACM European Conf Hypertext (ECHT'92), 33-42.

0sterbye, K. 1995. Literate Small talk programming using hypertext. IEEE TOSE
21 (2), 138-145.

0sterbye, K. & N0rmark, K. 1993. The Vision and the Work in the Hyper Pro Project.
Dept. of Mathematics and Computer Science, Aalborg Univ., Aalborg,
Denmark. Technical report: R-93-2012.

0sterbye, K. & N0rmark, K. 1994. An interaction engine for rich hypertexts. In
Proc. ACM European Conf Hypermedia Technologies (ECHT'94). ACM Press
167-176.

Journal name acronyms used

AIC
ACMLOPLAS
ACMTOCHI
ACMTOIS
ACMTOOIS
ACMTOPLAS
ACMTOSEM
CACM
IEEETOSE
IJHCS
IJMMS
JASIS
JOOP
LNCS

Advances in Computers
ACM Letters on Programming Languages and Systems
ACM Transactions on Computer-Human Interaction
ACM Transactions on Information Systems
ACM Transactions on Office Information Systems
ACM Transactions on Programming Languages and Systems
ACM Transactions on Software Engineering and Methodology
Communications of the ACM
IEEE Transactions on Software Engineering
International Journal of Human-Computer Studies
International Journal of Man-Machine Studies
Journal of the American Society for Information Science
Journal of Object-Oriented Programming
Lecture Notes in Computer Science

91

APPENDIX 1 Algorithmic solutions for software analysis

Since hypertext is formed automatically in our approach, the availability of automated
techniques is essential. This appendix gathers and classifies references to the important
sources on automated analysis in software engineering. The list aims to be representa-
tive, but not exhaustive. The survey is based on the publications listed in Appendix 2.
The references have been selected from a wide set of sources. Selection criterias have
favored: relevance to the promising HyperSoft further research areas, high status of
the publication forum, originality, and recent results.

1) General structural analysis

This category comprises general techniques for program decomposition and extraction
of objects and aggregates. The techniques relate to:
• identification of objects (Suetens et al., 1992; Cutillo et al., 1993; Muller et al., 1993;

Livadas & Johnson, 1994; Canfora et al., 1996a; Murphy & Notkin, 1996; Cimitile
et al., 1999);

• chunking, abstraction, and clustering (Hutchens & Basili, 1985; Burnstein &
Roberson, 1997);

• determination of concepts and cliches (Wills, 1990; Rich & Wills, 1990; Kozaczyn-
ski et al., 1992; Fiutem et al., 1996; Palthepu et al., 1997); and

• restructuring (Griswold & Notkin; 1993; 1995).

2) Techniques based on matching special criteria

2a) General techniques

This category includes techniques for identifying program parts which satisfy some
special criteria in relation to some aspect of the development of the software system.
For example, the purpose may be the identification of:
• Y2K incompliant pieces of code (Hart & Pizzarello, 1996; van Deursen et al., 1997;

Martin, 1997; Wilde et al., 1998);
• other problematic features, see for example (Eyre-Todd, 1993);
• architectural features (Harris et al., 1995; Fiutem et al., 1996);
• reusable components (Caldiera & Basili, 1991; Creech et al., 1991; Canfora et al.,

1993; Ning et al., 1993; Faustle et al., 1996; Yang et al., 1997);
• abstract data types (Canfora et al., 1993; 1996b); and
• differences between versions of a program (Horwitz, 1990a; Yang, 1991).

2b) Metrics

Software metrics are calculated measures, which could be used while retrieving soft-
ware components matching specific criteria in relation to:
• program complexity and general maintainability (McCabe, 1976; Kafura &

Reddy, 1987);
• modifiability (Yau & Chang, 1988);
• testability (Khoshgoftaar et al., 1995);
• cohesion (Bieman & Ott, 1994; Ott & Bieman, 1998); and
• coupling (Briand et al., 1997).

92

3) Text and documentation analysis

This category entails a wide set of techniques which can be used in conjunction (espe-
cially in relation to the analysis of software documents and comments) with more spe-
cialized techniques of program analysis. Examples of available techniques include:
• text analysis and free text retrieval (Salton et al., 1990; Schwartz, 1990; Baeza-

Yates & Gonnet, 1992; Wu & Manber, 1992; Dunlop & van Rijsbergen, 1993; Sal-
ton et al., 1994; Zhou & Tompa, 1998);

• comment analysis (Matwin & Ahmad, 1994);
• data mining and concept extraction (Moulin & Rousseau, 1992; JASIS, 1998;

Computer, 1999); and
• pattern matching (Aho, 1990; Pirklbauer, 1992; Kontogiannis et al., 1995; Gris-

wold et al., 1996).

4) Formation of trees and graphs

The structure and operation of programs can be described for the purposes of program
visualization and storage of program information by using various (graphical) dia-
grams (trees and general graphs), including
• abstract syntax trees (Noonan, 1985);
• production trees (Waddle, 1990);
• call graphs (Hall & Kennedy, 1992; Lakhotia, 1993b; Grove et al., 1997);
• data flow graphs (Benedusi et al., 1989);
• control dependency graphs (Cytron et al., 1991); and
• program (dependency) graphs (Cimitile & Carlini, 1991; Horwitz & Reps, 1992;

Harrold et al., 1993).

5) Program dependency analysis

Sa) General analysis

Most notably, program dependency analysis includes data flow and data dependency
analysis, and other variants. More precisely, the research include
• definitions of data models, for instance: Chen, Y.-F. et al. (1990) (for C), Chen,

Y.-F. et al. (1998) (for C++), Rayside et al. (1998) (for Java) and Moser (1990) (for
Ada);

• general data flow and data dependency analysis (Bergeretti & Carre, 1985; Ryder
& Paul, 1988; Pollock & Soffa, 1989; Burke, 1990; Burke & Ryder, 1990; Choi et al.,
1991a; 1991b; Lee & Hurson, 1993; Chen, T. & Low, 1997; Ashley & Bybvig, 1998);

• interprocedural dependency analysis (Johmann et al., 1995; Harrold et al., 1998);
• intermodular data flow analysis (Canfora & Cimitile, 1992);
• side-effect-, change- and impact- analysis (Moriconi & Winkler, 1990; Landi et al.,

1993; Jackson & Ladd, 1994; Al-Zoubi & Prakash, 1995; Bohner & Arnold, 1996;
Wang et al., 1996; Yur et al., 1997);

• determination of definition-use dependencies (Harrold & Soffa, 1990; Pande et
al., 1994);

• alias analysis (Marlowe & Ryder, 1991);
• reachability analysis (Pezze et al., 1995; Reps, 1998);

93

• array dependency analysis (Pugh, 1992}; and
• dead code detection (Bodik & Gupta, 1997; Chen, Y.-F. et al., 1998}.

5b) C program analysis

The research on the language area of HyperSoft includes
• representation models (Heisler et al., 1993; Kinloch & Munro, 1993};
• program analysis techniques (Pande et cil., 1994; Wilson & Lam, 1995; Gannod &

Cheng, 1996; Yur et al., 1997}; and
• tools, most notably those represented in (Chen, Y.-F. et al., 1990; Jiang et al., 1991;

Plato££ & Wagner, 1991; Gallagher, 1992; 1997; Linos et al., 1993a; 1993b;
Samadzadeh & Wichaipanitch, 1993; Venkatesh, 1995; Jackson & Rollins, 1996).

6) Program slicing

6a) Variants of program slicing

There exists several variants of program slicing. Algorithms and solutions related to
specific variants include the following:
• static slicing (Choi & Ferrante, 1994};
• dynamic slicing (Gopal, 1991; Kamkar, 1993; Korel & Rilling, 1998};
• hybrid slicing combining static and dynamic analysis (Gupta et al., 1996};
• parametric program slicing (Field et al., 1995};
• pictorial slicing (Jackson & Rollins, 1996};
• slicing based on dependency graphs (Horwitz et al., 1990};
• dicing (Chen, T. & Cheung, 1993; Samadzadeh & Wichaipanitch, 1993};
• generalized slicing (Sloane & Holdsworth, 1996};
• sliving (Gupta, 1997); and
• chopping (Reps & Rosay, 1995).

6b) Solutions in the problem areas of slicing

The special problem areas of slicing are discussed and solutions proposed in:
• analysis of unstructured programs (Ball & Horwitz, 1992; Agrawal, 1994; Choi &

Ferrante, 1994; Harman & Danicic, 1998);
• pointer analysis (Wilson & Lam, 1995; Atkinson & Griswold, 1998; Hasti & Hor-

witz, 1998; Fiutem et al., 1999; Liang & Harrold, 1999};
• comparison of program slices (Horwitz & Reps, 1991); and
• slicing as used in program integration (Horwitz et al., 1989}.

7) Query mechanisms

Query mechanisms have been studied extensively. These mechanisms can be used
when specifying information requests to be passed to the support environment. The
research includes
• general query languages used in programming, e.g. QBE (Zloof, 1977}, SQL

(Date, 1987);

94

• mechanisms for specifying information requests for structured documents (Mac
Leod, 1991a; 1991b; Burkowski 1992; Clarke et al., 1995; Kuikka & Salminen,
1997);

• query mechanisms for reverse engineering (Consens et al., 1992; Mendelzon &
Sametinger, 1995);

• query languages for programming environments (Horwitz, 1990b; Paul &
Prakash,1994a;1994b;1996);and

• query mechanisms for hypertext environments (Bertino et al., 1988; Beeri & Kor-
natzky, 1990).

95

APPENDIX2 Surveyed sources

This appendix lists the journals, bulletins and conference proceedings which have been
checked in relation to the literature survey in Section 2.3, see (Koskinen, 1999d}. In Ta-
ble 3 the sources are ordered according to the number of relevant articles found. Sec-
ond column denotes the status of the survey, the meanings being: * most of the 90's
checked, + most of the recent (97-99} volumes checked,- volumes not checked system-
atically (citations received from elsewhere). The found articles have been classified.
The meanings of the other column labels are as follows: PC (program comprehension
issues), RE (reverse engineering issues), HT (hypertext issues}, Gen. (general mainte-
nance issues or surveys), Other (unclassified material), and Sum (total number of
sources.

TABLE 3 Surveyed sources

Sources s PC RE HT Gen. Oth. Sum
100 279 164 65 156 764

Journals 59 160 99 37 83 438
Communications of the ACM (CACM) * 10 15 18 0 7 50
IEEE Transact. Software Engineering (IEEE * 5 26 1 3 15 50
TOSE)

Int. f. Human-Computer Studies (IJHCS/ * 18 1 3 0 8 30
IJMMS)

IEEE Software * 2 11 6 2 7 28
Computer (IEEE Computer) * 1 12 3 5 5 26
Information Processing and Management * 1 0 19 0 5 25
J. of Software Maintenance (JSM) * 3 12 1 2 6 24
Information and Software Technology * 1 10 1 0 7 19
Software - Practice & Experience * 0 14 2 0 2 18
ACMTOPLAS * 0 15 0 0 0 15
The f. Systems and Software + 6 7 0 0 0 13
ACM Transact. Information Systems (TOIS/ * 0 1 9 1 1 12
TOOlS)

J. Amer. Soc. for Information Science (JASIS) * 1 1 6 2 2 12
J. Algorithms * 0 1 3 0 6 10
Advances in Computers (AIC) * 1 3 0 4 0 8
The Computer J. + 0 1 4 0 2 7
ACM Tr. Software Eng. and Methodology * 0 6 0 0 0 6
(TOSEM)

ACM Computing Surveys * 1 3 0 2 0 6
IBM Systems J. * 0 0 1 3 1 5

continues

96

TABLE 3 continued

Sources (journals ...) s PC RE HT Gen. Other Total
Int. J. of Software and Knowledge * 0 3 2 0 0 5
Engineering

J. of Object-Oriented Programming (JOOP) + 0 0 1 2 2 5
J. oftheACM + 0 0 0 0 5 5
ACM SIGSOFT Software Engineering Notes + 1 0 0 4 0 5
(bulletin/excl. conf proc:s)

Human-Computer Interaction + 1 0 2 1 0 4
Interacting with Computers 0 0 3 1 0 4
IEEE Expert/ Intellig. Systems and their + 0 0 3 0 1 4
Application

ACM Letters on Progr. Lang. and Systems * 0 3 0 0 0 3
(LOPLAS)

Software - Concepts and Tools * 0 3 0 0 0 3
Software Engineering J. + 1 1 1 0 0 3
Structured Programming * 0 3 0 0 0 3
ACM SIGPLAN Notices (bulletin/excl. conf + 2 1 0 0 0 3
proc:s)

ACM Transact. Computer-Human * 0 1 1 0 0 2
Interaction (TOCHI)

-Other journals--- 4 6 9 5 1 25

Proceedings 36 84 38 8 45 211
ICSM (Int. Conf Software Maintenance) * 6 24 2 2 3 37
IWPC (Int. Ws. Program Comprehension) * 10 6 1 0 5 22
ICSE (Int. Conf Software Engineering) * 4 12 1 0 2 19
ESP (Workshop on Empirical Studies of * 8 1 1 0 2 12
Programmers)

HT (ACM Hypertext Conf) * 0 0 11 0 0 11
WCRE (Working Conf Reverse Engineering) * 3 7 0 0 1 11
SIGIR (ACM SIGIR Ann. Int. Conf R. & D. * 0 1 5 2 3 11
Inf Retr.)

POPL (ACM SIGPLAN Symp. Prine. of 0 5 0 0 4 9
Progr. Lang.)

CHI (Conf Human Factors in Computing + 2 2 0 0 3 7
Systems)

PLDI (ACM SIGPLAN Conf Progr. Lang. + 0 7 0 0 0 7
Des. & Impl.)

continues

97

TABLE 3 continued

Sources (proceedings ...) s PC RE HT Gen. Other Total
ECHT (European Conf Hypertext/ 0 0 5 0 1 6
Hypermedia Techn.)

FSE (ACM SIGSOFT Int. Symp. Found. Sw. 0 6 0 0 1 6
En gin.)

CASCON (IBM Centre for Advanced Studies 1 2 0 0 2 5
Conf)

HICSS (Hawaii Int. Conf System Sciences) 0 2 3 0 0 5
ACM SIGSOFT/SIGPLAN Symp. Pract. 0 3 0 0 0 3
Progr. Env.

ISST A (ACM SIGSOFT Int. Symp. Sw. Test. + 0 3 0 0 0 3
and Anal.)

SIGMOD (ACM Conf Management of Data) - 0 0 0 0 3 3
OOPSLA (Conf Object-oriented Systems and - 0 1 0 0 2 3
Lang.)

RIAO (Conf Intellig. Text and Image 0 0 2 1 0 3
Handling)

SEKE (Int. Conf Software Eng. and Know[. 0 1 1 0 0 2
Eng.)

---Other proceedings--- 2 1 6 3 13 20

Other sources 5 35 27 20 28 115
Books 0 7 6 17 15 45
Reports 2 24 7 0 4 37
Articles in books 3 0 9 3 3 18
Ph.D. theses 0 4 5 0 6 15

98

YHTEENVETO (FINNISH SUMMARY)

Tutkimuksen tavoitteena on kehittaa hypertekstiperusteinen lahestymistapa
vanhojen ohjelmistojen (legacy systems) yllapidon tukeen seka arvioida lahesty-
mistapaa. Yllapidon suuri kustannusvaikutus ohjelmistotuotantoon on yleisesti
tunnettu. Ohjelmateksti on keskeinen resurssi pyrittaessa ymmartamaan ja
yllapitamaan vanhoja ohjelmistoja kaanteistekniikkatyokalujen avulla.
Toisaalta, World Wide Webin kasvu kuvastaa hypertekstin tarkeytta tekstimuo-
toisen informaation yleiskayttoisena esityskeinona.

Lahestymistavassa ohjelmatekstia tarkastellaan valiaikaisena hyperteks-
tina, joka koostuu ohjelmanosista, joiden valiset linkit mahdollistavat nopean
epalineaarisen selauksen. Valiaikaiset hypertekstihakurakenteet (transient hy-
pertextual access structures; THAS) muodostetaan tyydyttamaan ohjelmien
yllapitajien tilannekohtaisia tietotarpeita. Hakurakenteiden automaattinen
muodostus eliminoi tyolaan manuaalisen linkityksen, mika on erityisen ongel-
mallista vanhojen jarjestelmien ja usein muutettavan lahdekoodin ollessa
kyseessa. Tyossa on kehitetty tasoittainen HyperSoft -niminen malli tahan tar-
koitukseen, toteutettu malliin perustuva tyovaline ja arvioitu sen oletettua
hyodyllisyytta empiirisesti.

Malli erottaa ohjelmatekstista nelja tasoa: lahdekooditaso, syntaktinen
taso, hakurakennetaso ja kayttOliittymataso. Syntaktinen taso sisaltaa lah-
dekoodin jasennyspuuna. Hakurakennetaso taas sisaltaa joukon erilaisia
hakurakennetyyppeja, jakautuen viittauksiin, listoihin, joukkoihin, puihin ja
yleisiin verkkoihin. Hakurakenteiden automaattinen muodostus perustuu
ohjelma-analyysitekniikoiden soveltamiseen. Ohjelmanosien valiset linkit muo-
dostetaan perustuen ohjelmariippuvuuksiin. Ohjelmariippuvuuksien olen-
naisten ominaisuuksien selvittamiseksi ne on karakterisoitu ja luokiteltu
ohjelmaosien valisina relaatioina. Ohjelma-analyysitekniikoita on kartoitettu.

Lahestymistavan toteutus on HyperSoft -jarjestelma, joka on kokeellinen
ohjelmien yllapidon tukivaline. Jarjestelman toteuttamista ohjasivat tyohon liit-
tyneen projektin yhteistyoryhmayritysten (Nokia Tutkimuskeskus, Novo-
ryhma ja TT-Tieto) edustajat. Jarjestelmassa tuettu kieli (C) ja toteutettu
hakurakennejoukko on valittu yhteistyoyritysten tarpeiden perusteella. Toteu-
tettu hakurakennejoukko sisaltaa maarittelyviittaukset, esiintymalistat, kutsu-
kaaviot ja ohjelmaviipaleet.

HyperSoft -lahestymistavan, -jarjestelman ja toteutettujen hakurakenne-
tyyppien hyodyllisyytta tyossa arvioidaan kolmella tavalla. Ensinnakin, jar-
jestelma annetaan arvioitavaksi yhteistyoyrityksiin. Toiseksi, HyperSoft:in
tarjoamia mahdollisuuksia verrataan aikaisemmissa empiirisissa tutkimuksissa
esiin tuotuihin ohjelmien yllapitajien keskeisiin tietotarpeisiin. Kolmanneksi,
hyodyllisyytta arvioidaan tilastollisesti kahdessa erillisessa testisarjassa. Tes-
tisarjat vertailevat tietojenkasittelytieteiden opiskelijoiden tiedonhakutehtavien
suorituksen tehokkuutta kaytettaessa HyperSoft:ia ja Borland C/C++ -ym-
paristoa. Tulokset tukevat selkeasti hypoteesiamme lahestymistavan hyodylli-
syydesta. Tutkimuksessa tuodaan myos esille mahdollisen jatkotutkimuksen
keskeiset kohdealueet ja niihin liittyvia tutkimusongelmia.

ORIGINAL ARTICLES

I

PROGRAM TEXT AS HYPERTEXT: USING PROGRAM
DEPENDENCES FOR TRANSIENT LINKING

Koskinen, L Paakki, J. & Salminen, A. 1994. In Proceedings of the 6th International
Conference on Software Engineering and Knowledge Engineering (SEKE'94). Skokie,
IL: Knowledge Systems Institute, 209-216.

(C) 1994, KSI. Reproduced with permission.

Program Text as Hypertext:
Using Program Dependences for Transient Linking

Jussi Koskinen, Jukka Paakki and Airi Salminen
Department of Computer Science and Information Systems

University of Jyvaskyla
P.O.Box 35, SF-40351 Jyvaskyla, Finland

email: { koskinen, paakki, airi} @ jytko.jyu.fi

Abstract
Hypertext is text with nonlinear browsing capabilities.
The program comprehension process typically involves
viewing the source code in various nonlinear ways which
hypertext represelltation can support. In this paper we
will describe program text as a two-level structure
consisting of a static, hierarchic structure and a dynamic
access structure. In the access structure, the nonlinear
browsing is supported by transient links created
dynamically by the user during the work process. The
paper explores the possibilities to create transient links
based on well-known program dependences, and to use
the links in the static and dynamic program analysis.

1. Introduction
Hypertext consists of text fragments called nodes. Links
exist connecting these nodes so that data access is driven
by the user viewing successive text fragments by
following the links. The creation of hypertext means
creating a set of nodes each containing a piece of text,
and links between the nodes. The creation can be done
basically in two different ways: either directly in a
hypertext framework where text is handled as a set of
nodes all the time, or by converting an existing linear text
to hypertext. Considering software · engineering
environments, an example of the first approach is the
HyperPro environment representing software as a set of
nodes and links, instead of traditional files [29]. In this
paper we are going to study the second approach: the
possibilities to convert an existing program text to
hypertext. In the conversion the key problem is to
determine the text fragments to represent nodes and the
links between them. Thus we are going to explore the
potential hypertext nodes and links over a program text.

A hypertext conversion may be a single process
creating from a given text a set of static nodes and links
[II] or it may be a more dynamic process where the
reader may specify a set of transient nodes and links
during text reading for his or her current information

needs [21], [24]. A static hypertext structure is possible if
there is a clear fragmentation in the original text following
the golden rules of hypertext [22]:

* there is a large body of information organized into
numerous fragments,

* the fragments relate to each other, and
* the user needs only a small fraction at a time.

However, there seldom is one unique fragmentation and a
unique set of links which is suitable for different readers
in their different information needs. For example, [20]
showed that the static fragmentation and linking of the
Oxford English Dictionary was not possible.

Program text as an application area for hypertext
conversions is interesting because program text fragments
and their relationships to each other have been extensively
studied within programming language research and there
are lot of methods and tools for automatic recognition of
the fragments and their relationships. These methods and
tools offer support for the automatic conversion of
program text to hypertext as well. In this paper we are
going to describe a model for viewing program text as
hypertext and to show what kind of hypertext structures
may be created using well-known program dependences,
i.e. relationships between program parts. We are not
looking for a static set of nodes and Jinks but different
possibilities for dynamic specifications of structures to
support hypertext access.

2. Why hypertext reading capabilities for
program text
Software maintenance is the largest cost element in the
life of a software system and the process of program
comprehension takes about 50 % of the time spent on it
[7]. Program comprehension is a prerequisite for various
programming tasks and it is laborious while working with
unfamiliar, poorly documented or large source code
collections [8]. Thus there is a continuous and recognized
need for automated support of program comprehension,

209

maintenance assistance, metrics and information
abstraction.

Programmers tend to group program parts in a
non-sequential order while auempting to understand
programs [15]. Hypertext can aid program comprehension
by providing an easy mechanism for a programmer to
shift between program parts which create and satisfy
information needs emerging during the work process.
Relations between the parts are based on program
dependences [e.g. 18] and their relevance depends on the
task a programmer is working on. The selection of
dependences to be supported and the way they are
supported is important in order to avoid the problem of
too intense link-structures in hypertext.

According to an evolutionary model of software
development, such as the spiral model, source code is
created; modified and maintained throughout the
development process. The following traditional
classification of maintenance types [e.g. 19] is relevant to
both initial creation and enhancement of program text: 1)
corrective maintenance (debugging) includes the
diagnosis, localization and correction of errors based on
effects they introduce, 2) adaptive mailltenance includes
modification of software to properly interface with a
changing environment, 3) petfective maimenance includes
addition of new capabilities, modifications to existing
functions and general enhancements based on
recommendations received from users, and 4) prevemive
mailltenance comprises changes to improve the future
maintainability or reliability, or to provide a better basis
for future enhancements. All of these maintenance types
include various common tasks related to the
comprehension of program text and to the localization of
its specific parts.

3. Two levels of program text: syntactic structure
and access structure
Program text with hypertext access capabilities may be
modelled as a two-level structure where the syntactic
structure is separated from the access structure [21].
Program text with hypertext access capabilities is a triple
(G, X, A) where G is a context-free grammar, X a
symactic structure, and A an access structure.

Syntactic structure
The syntactic structure X is a parse tree for the program
with respect to the grammar G. (The basic notions
concerning grammars and parse trees may be found e.g.
in [1]). The linear character string representation of the
whole program text is the string consisting of the terminal
symbols in X, from left to right. Each nonterminal of the
grammar represents a set of text entities in X. Therefore,

210

a nonterminal is called a text type. For example, we may
have text types like statement, type_declaration, or
identifier if these symbols appear as nonterminals in the
grammar. The text entities associated with a text type t in
the syntactic structure X are called parts of type t and they
are represented by nonterminal nodes (and the respective
subtrees) in X. Since we wish each of the parts correspond
to an identifiable substring in the character string
representation of the whole program text, we regard a
nonterminal node n a part of X only if it is not a single
child of its parent. The string produced by concatenating
the terminal symbols of the subtree with a part 11 as its
root (from left to right) is the value of n. The nonterminal
node labels indicate types of parts such that the label of a
single child of a parent renames a part.

Access structure
For browsing purposes hypertext is often modelled as a
directed graph, i.e. a pair (Z, E) where Z is a set of
elements called nodes and E a set of node pairs called
links. For more general data access capabilities hypertext
has been modelled by a hypergraph [21], [25], [26]. A
hypergraph is also a pair (Z, E), where Z is a set of
nodes. The members of E are however now any subsets of
Z, not only binary subsets. We will use the term edge for
the members of E in a hypergraph and the term link for
binary edges. An edge represents a relationship between a
number of nodes. For example, in an access structure of a
program text there may be an edge consisting of all output
statements of the program. All nodes of the edge share the
common property that they are of the text type
or1tput_stateme11t. If a hypergraph is regarded as a state of
a search session then it may be called a transient
hypergraplz [26]. During a session, the user changes the
hypergraph by generating new edges corresponding to his
or her information needs.

In this paper we consider the access structure A of a
program text (G, X, A) as a transient hypergraph whose
nodes are parts of the syntactic structure X. The nodes of
the access structure thus stand for subroutines, variables,
declarations, statements, etc. The access structure may be
more or less static but the idea behind the model is to
allow the reader to change the access structure
dynamically e.g. by specifying a new access structure as
a special kind of graph, or by extending an old access
structure by new edges.

4. Access structures for static analysis
Analysis of computer programs is a well-established field
with a large number of powerful methods, algorithms, and
tools. The analysis activities can be roughly divided into
two categories: static analysis which is made without

running the program, and dynamic analysis which is
made interleaved with the execution. Static analysis
involves typical compiler-oriented tasks, such as lexical
analysis (scanning), syntax analysis (parsing), name
analysis, and type resolving and checking. Dynamic
analysis also covers certain validation activities, such as
checking of array indices and data references, but also
tasks pertaining to the run-time behavior of the program.
These include e.g. tracing of data and control flow, and
bookkeeping of variable updates. Dynamic validation
activities are necessary in cases when they cannot be
done statically by the compiler, while behavioral tasks are
needed when the user wants to experiment with the
program, a typical example being the debugging of
program errors.

Results obtained from static analysis are valid for
each execution of the program, and therefore they need to
be computed only once for a program. The price of such
generality is the imprecise character of the analysis.
Dynamic analysis, on the other hand, only concerns one
particular execution of the program with precise results.
As a drawback, this approach inevitably introduces some
run-time overhead due to separately computing the
statistics for each execution of the program.

In this section we discuss standard concepts belonging
to the static program analysis category, and in the next
section we will explore the dynamic analysis category.
We concentrate especially on such concepts that are of
obvious use when considering programs as a hypertext
structure with graph-like features. The presented graph
structures are well-known to the extent that they are used
in standard literature on. programming, compiler
construction, and software engineering. For a broader
discussion on the general applications of the graphs, refer
e.g. to [1] and [19].

4.1. Structural links
The syntactic structure of programs is conventionally
described as a parse tree. A parse tree represents the
hierarchy of language elements in a program, according
to a context-free grammar. A parse tree (or its
compressed variant, im abstract synta.JC tree) is the central
data structure underlying any language processing task.
Hence, it is a natural choice to consider the parse tree
also as a basis for a hypertext structure over a program.

Usually a maintainer is not interested in the whole
program but instead wants to focus his/her attention on
some relevant entities only. One straightforward way to
support this is to restrict the nodes of the access structure
to be of some specific type. Then a (preorder, postorder)
traversal over such a partial tree would yield a focused
and abstracted view of the program. An example case
which is typical in software engineering would be to

211

select the parts standing for modules as the access nodes,
giving an overall design architecture of the program: In
general, this restriction facility provides a means to
produce a hierarchic abstraction of the program in terms
of ~;~n arbitrary text type.

The problem of building a parse tree for an input
according to an underlying context-free grammar has been
one of the most important issues in computer science, the
reason being its central role in any kind of language
processing. Thus, there exists a large variety of parsing
algorithms that can be employed as a basis for
constructing a hypertext access structure. The hypertext
construction (e.g. with vertically and horizontally restricted
parts) can be made either incrementally, interleaved with
the parsing process, or as a separate phase, after building
the parse tree by a parser. In this paper we do not further
discuss the algorithmic aspects of constructing a parse tree
-based access structure, but refer to standard literature on
parsing, such as [1].

4.2. Module dependence graphs
An important aspect of software quality is modularity; that
is, the construction of software as an architecture of
independent and yet interrelated components. An
effectively modular architecture provides a solid
framework for the whole software engineering process,
from analysis down to testing and maintenance.

Effectivity of modularity can be measured with two
conventional criteria, cohesion and coupling. Cohesion
characterizes the relative functional strength of a module,
and coupling measures the relative interdependence among
modules. A cohesive module ideally performs just one
task; hence, high cohesion is preferred in software
engineering. Coupling, on the other hand, should be low
since in that case modules are just loosely dependent on
each other's services and thus more autonomous and
easier to manage.

While the concepts of cohesion and coupling are rather
abstract, it is possible to approximate them quantifiably. A
metric system, as demonstrated for cohesion e.g. in [6]
and for coupling e.g. in [16], can then expose those
modules that have been poorly designed or implemented
and that should be rebuilt for better testability and
maintainability.

Since cohesion and coupling are related to module
collaboration, it is essential to grasp the dependences
between program modules. These dependences take the
form of a directed graph whose nodes are modules and
whose links are the client-supplier dependences. Hence,
the term module depe11dence graph (or "package diagram"
[4]) can be coined for this structure. The module
dependence graph can be constructed automatically for a
given program and it can be directly employed as a

hypertext access structure. Besides providing a basis for
an analysis of coupling, such an access structure is useful
in ordinary maintenance tasks as well since it exhibits the
dependences among the software modules and their
externally relevant components. For instance, such an
information is most valuable in designing a focused black
box strategy for integration and validation testing in
connection with a maintaining change ovar a certain set
of modules.

5. Access structures for static and dynamic
analysis
In the previous section we presented graph structures
originally defined for static analysis of programs. When
considering the different maintenance classes introduced
in Section 2, the access structures for static analysis most
notably support preventive maintenance for improving
future maintenance and reliability. The construction
process of the access structures can be characterized as
reverse engineering or re-engineering, two paradigms
associated with the preventive maintenance class. For an
overview of these techniques, refer to [19].

In this section we discuss graph structures that not
only concern static properties of programs but its
dynamic aspects as well. That is, the graph structures
represent such relationships and dependences between
program parts that approximate the run-time behavior of
the program. When reflecting these graphs and the
corresponding access structures into the maintenance
classification, support for corrective and perfective
maintenance especially is provided. From a more concrete
point of view, these access structures for dynamic
analysis most notably assist the debugging phase of
maintenance, providing facilities both for locating a bug
in the program and for preventing the-introduction of new
bugs due to correcting an old oite.

5.1. Call graphs
Call graphs are a standard structure describing the
run-time behavior of programs. A call graph abstracts
program execution by representing it on the level of
procedure and function calls and their interdependences.
When associated with an underlying parse tree, a call
graph includes a link from each node standing for a
procedure call to the node standing for the declaration of
the called procedure. Such a graph makes it possible to
trace the execution of the program forwards in terms of
the sequence of procedure calls.

Call graphs are utilized in a number of maintenance
support tools, e.g. [3], [7], [17]. A hypertextual access
structure generated from a call graph makes it possible to
understand the overall execution pattern of the program,

212

a prerequisite for any maintenance activity. · A
two-directional annotated linking structure provides for
both forward and backward tracing of interprocedural
execution with also a possibility to study the parameter
passing strategy. Moreover, a forward access policy makes
it possible to analyze how the execution behavior would
be affected by an update within a certain procedure. An
example of a call graph is given in Figure Ia.

5.2. Graphs representing control and data flow
information
The two most important dependences existing between
program parts are control flow and dataflow dependences.
Control dependences are features of a program's control
structure, and data flow dependences are features of its
use of variables [18]. Control dependences are determined
by using control flow analysis and data dependences by
data flow analysis [e.g. I] or incremental data flow
analysis [9] of program text. These dependences can be
represented in various graphs.

A dataflow graph can be used e.g. in optimization. In
program design the analogous form is a dataflow diagram
which typically depicts interprocedural data flow
information. These forms have their limitations because of
the difficulties to relate them with the control flow
information representations.

A control flow graph is a directed graph whose nodes
represent program statements/parts and whose links
represent possible transfers of control between them. In
program design the equivalent form is known as a flow
chart. Control flow could be represented as the access
structure of hypertext so ·that nodes correspond to
statements/statement blocks and links correspond to the
transfer of control. The analogy to hypertext is seen in e.g.
[I, p. 591]. Further, control flow may be structured or
non-structured (containing gotos, breaks and exits).

Possible hypertext access structures can be derived
from the graphs described above either by first choosing
a set of nodes to create an edge and then ordering the
nodes of the edge (e.g. on linear or execution order), or by
creating a set of new links directly between the nodes of
the graph.

5.3. Graphs created by slicing
Experience has shown that even the abstracted
representations for programs, such as parse trees and
graphs presented above, tend to become very large for
sizable programs. Too large a volume of support data soon
becomes a burden on the maintainer to extract the specific
information that is needed in the particular activity at
hand. That is why there must be some way to focus one's

deque::deque(fype sz) I
seq=new Type[sz+l];
size=sz;left=right=O; I

Type deque::remove_right() I
if(left=right) underflow();
Type item=seq[right];
if(right>O) right--; else right=size;
return item; I

int main(void) I

I

int i,s=STACK_SIZE, error_cnt=O;
Type a[ARRA Y _SIZE];
stack sta(s);

for(i=O;i<=ARRA Y _SIZ ,1++) 1
a[i]=pow(2,i); st . lish a[i));

I
for(i=ARRA Y _SIZE-I ;i>=O;i--) 1

if((sta.pop()) != a[i])
++error_cnt;

return error_cnt;

class deque 1
Type* seq;
Type size,left,right;
void underflow() (};
void overflow() 1 1;

public:
deque(fype sz=STACK_DEF _SIZE);
void insert_left(fype item);
void insert_right(fype item);
Type remove_right();

J ;

class stack:private deque 1
public:
stack (Type sz=STACK_DEF _SIZE):

deque(sz) (}
void push(fype item)
I deque::insert_right(item); 1

Type o
eturn deque::remove_right();

deque::deque(fype sz) {
seq=new Type[sz+ 1];
size=sz;left=right=O; I

void deque::insert_right(fype item) {
if(right<size) right++; else right=O;
if(left=right) overflow();
seq[right]=item; 1

int main(void) I
int i,s=STACK_SIZE, error_cnt=O;
Type a[ARRAY_SIZE];
stack sta(s);

(Ia) Call graph (!b) Forward slice

Figure 1. Access structures for a C++ program

213

attention to that sub-infonnation only that is relevant for
solving the current maintenance problem.

Program slicing is one powerful automated method
that has been suggested for minimizing a program
representation. As proposed already in the original
introduction of slicing [27], the method has mostly been
applied in debugging for extracting a piece of the
program as the suspect for an externally visible symptom
of a bug. Later adaptations of slicing within the
debugging area are presented e.g. in [10].

Intuitively, a program slice (in its original meaning)
consists of all those statements of a program that might
affect the value of a given variable at a given program
point. When integrated with debugging, the slice is
constructed with respect to an output variable whose
value has been manifested as being incorrect at some
externally observable program point, such as the end of
the program. Since the process starts from the result and
flows backwards with respect to the execution, the
method is called backward slicing. An alternative scheme
is forward slicing that extracts those statements of a
program that might be affected by a variable (at some
program point). When related to the maintenance
classification, slicing therefore most naturally fits with the
corrective and perfective maintenance categories. General
ideas of applying slicing in program maintenance are
discussed e.g. in [18) and in [12]. Special application
areas, in addition to debugging, include e.g. analysis of
cohesion, static testing, regression testing, incremental
testing, and program integration.

Slices can be constructed statically for all the
executions of the program or dynamically for one
particular execution only. Usually a slice is generated
from a unified program representation, a program
dependence graph [13]. The nodes of a program
dependence graph represent the statements and predicates
(e.g. the control expressions of conditional statements).
The links represent several kinds of control and data
dependences.

While a slice has originally been defined in terms of
a variable (and some program point), the concept can be
rather easily and naturally generalized. Such an extended
view is taken e.g. in [2] where a slice is defined in terms
of any exported component of a module, such as a
procedure, providing assistance for optimal program
understanding at preventive maintenance and reverse
engineering. In the same style, the slicing criterion can
actually be defined as a transitive property of any
program component. From a simplistic graph-oriented
point of view, a slicing criterion can be given as any
node in a directed graph, and a slice generated according
to that criterion is the transitive closure of the graph over
that node. When reflecting this view into the dual slicing

classification, a backward slice includes all those nodes of
the graph that have a directed path to the indicated
criterion node, and a forward slice contains all those nodes
that reside on a directed path from the criterion node.

Such a general view provides for employing slices as
a hypertextual access structure for a broader class of
maintenance tasks than mentioned above. For instance, a
forward slice over a node for a type definition would
consist of all those statement nodes that contain an
element of that type and that should therefore be checked
when modifying the type definition.

As an example Figure I shows two access structures
for hypertext, created from a call graph (Figure Ia) and
from a forward slice (Figure !b) over a C++ program. The
call graph illustrates how the call of procedure push
(indicated with an emphasized oval) propagates through
the program via other procedure calls. The access structure
can be used e.g. to extract the functional decomposition of
the procedure push during preventive maintenance, and to
trace its behaviour during corrective maintenance. The
forward slice, with the emphasized part as the slicing
criterion, shows how the item value produced in the
assignment statement propagates through the program.
Hence, traversing this access structure makes it possible to
analyze how a maintaining modification on the indicated
statement would affect the rest of the program.

5.4. Class hierarchies in object-oriented programs
The object-oriented programming paradigm is most
notably founded on the principles of classification and
inheritance. These concepts make the object-oriented
approach a most powerful one in abstracting common
behavior as a collection of reusable and related classes.
Software economy is enhanced by (ideally) describing
each property in a single (super)class only and by directly
inheriting it to those related (sub)classes that also share
that property.

An access structure based on class hierarchies collects
the program parts for related classes into a graph. Since a
class can be considered as a variant of a (static) module,
this facilitates the analysis of a general software
architecture in the manner discussed in Section 4.2.
However, in contrast to conventional modules, classes
have dynamic properties as well since they give rise to
active objects during the execution of the program. Hence,
an access structure founded upon the class hierarchy
provides for a more flexible maintenance framework than
that based on static modules.

One well-known special problem encountered in
object-oriented programming is the so called "yoyo"
phenomenon [23]. This happens when an inherited

214

operation is applied on an object, and the execution of
that operation sends the control back to the object itself
using the "self' ("this") reference associated with another
inherited operation, etc. Resolving of inherited operations
traverses the class hierarchy bottom-up (that is, from
subclasses towards superclasses), whereas following the
self references makes the traversal flow top-down. As a
consequence, the resolving process moves like a yoyo up
and down over the class hierarchy.

Understanding the behavior of a program is hard if it
exhibits the "yoyo" phenomenon and the class hierarchy
is deep. The access structure in hypertext can be tuned to
support the analysis of this anomaly by including
two-direCtional links between the class parts. In that way
both top-down and bottom-up analysis of the problematic
class hierarchies is supported.

6. Access structures based on common properties
of text parts
In Sections 4 and 5 we considered potential access
structures which were different graph-like representations
of programs. In Section 4.1 we mentioned the need to
restrict the nodes of a graph structure e.g. to be of a
specific text type. By modelling the access structure as a
hypergraph we have a chance to use an edge to represent
the set of nodes relevant to a reader at a moment. The
edge may then be further used to create a transient
linking for browsing purposes, either automatically or by
the specification of the reader. In the following
paragraphs we will consider some properties for parts of
potential interest in specifying edges. At the end of the
section we will discuss ways to use the edges to create
transient linking. By a property we mean a predicate
whose truth value for a part in a parse tree may be
determined by an algorithm. As predicates properties may
of course be combined with logical operators. On the
other hand, specified edges can easily be handled with set
operations.

There is quite a number of different properties which
may be specified for parts of any structured text (i.e. text
defined by a grammar; for example, SGML text).
Examples of this kind of general properties are the above
mentioned properties testing the text type of a part, or
properties testing the value of a part. With these
properties a programmer is able to create e.g. an edge for
all occurences of a given identifier. For preventive
maintenance and restructuring of a program it is
important to identify the textual similarities of program
parts. Identical parts should be abstracted so that needless
redundancy is eliminated. Similarity properties could be
defined based on the values of parts.

Properties of usual interest in structured text concern
the containment structure. (A part can be defined to-be
contained in another part if it is a node in tlie subtree
whose root the other part is.) The properties are needed
e.g. for finding specified parts inside or outside some
c;>ther specified parts. Properties testing the level of
internesting of parts may be defined for any structured
text but in case of program text they are especially
interesting. With such properties e.g. innermost loops,
having potential time-criticality, can be identified for
optimization.

Complexity metrics and algorithms, such as described
in [14) have been developed to determine program parts
that are excessively complex. With these metrics the
complexity may be used as a criterion for finding parts
needing redesign. Also algorithms for identifying language
specific, non-standard features have been developed [19).
Such features rnay cause problems e.g. in porting. In a
software engineering environment supporting the
identification of the parts with non-standard features the
programmer may properly comment these parts.

After an edge consisting of a number of nodes has
been specified, there are, in principle, different ways for
creating transient links between the nodes. For example, it
is possible that the edge is applied as a filter to a given
graph. The result of the filtering is a new graph whose
nodes are those nodes of the old graph which also occur
in the edge. For determining the links of the new graph
there are two straightforward methods. First, if the old
graph is a chain (consisting of connected links), then the
new graph is a chain where links occur between the
chosen nodes. Another possibility is to choose the links of
the new graph as those links of the old graph whose both
nodes appear in the filter. The first case means ordering
the nodes of the edge according to the order specified in
the old graph. There are of course also other possibilities
to specify an order on the nodes of an edge and thus to
create linking between the nodes. For example, the
programmer might have a possibility to order, and thus
also to browse, a set of subroutines in the alphabetic order
of their names. In using the complexity of program parts
as a selection criterion, the order of the nodes could be
based on the complexity metrics values. In many cases a
useful order is the textual order of parts.

7. Related and future work
Many of the current program maintenance environments
and tools include capabilities to find some of the program
dependences and to support program comprehension. Thus
many of the dynamic access structures proposed in this
paper have already been implemented. Related works
include: [3], [5], [7], [17], [28], and [29]. Our goal
however is to build an environment according to the

215

two-level model. TI1e implementation will be made using
some appropriate metacompiler based on attribute
grammars. The environment is intended to be such that it
will make possible to test different access structures, their
implementation and use for different program
maintenance tasks.

8. Summary and conclusions
We described program text as a two-level structure
consisting of a syntactic structure defined by the
programming language grammar and an access structure
defined dynamically by the reader of the program text.
The syntactic structure was a hierarchy of parts and the
access structure was a hypergraph, consisting of nodes
and edges. The edges of the hypergraph were any sets of
nodes, not only binary sets (i.e. links). We explored the
potential of the well-known program dependences to be
used for creating access structures. First we considered
the known graph structures originally introduced in the
programming language literature as potential access
structures. Secondly we discussed using common
properties of program parts as criteria in specifying an
edge for an access structure, and different ways to create
transient links from such an edge.

For programming environments the hypertext
approach based on the two-level model is prom1smg
because automatic transformation of program text into
hypertext is possible by using the syntax of the
programming language together with the methods and
tools developed for the automatic program analysis. Our
approach answers to the request for task-orientation by
making it possible to use different access structures for
different information retrieval purposes, both for general
comprehension support and for localization of interesting
program parts.

9. References

{I] Aho, A.V., Sethi, R., & Ullman, J.D., "Compilers - Principles,
Techniques, and Tools", Addison-Wesley, 1986.

{2] Beck, J. & Eichmann, D., "Program and Interface Slicing for
Rever>e Engineering", In: Proc. 15th Int. Conf. on Software
Engineering, Baltimore, Maryland, IEEE Computer Society Press,
1993, 509-5 I 8.

{3] Bigelow, J. & Riley. V., "Manipulating Source Code in
DynamicDesign", In: Hypertext '87 Papers, 397·"108.

{4] Booch, G., "Software Engineering with Ada", (2nd ed.),
Benjamin-Cununings, 1986.

{5] Brown, P., "Integrated Hypertext and Program Understanding
Tools", IBM Syst. J. 30, 3, 363-392.

[6) Calliss, F. & Cornelius, B., "Potpourri Module Detection", In: Proc.
1990 Conf. on Software Maintenance, IEEE Computer Society
Press, 1990, 46-51.

[7) Cleveland L., • A Program Understanding Support Environment",
IBM Syst. J. 28, 2, 324-344.

[8] Corbi~ T., "Program Understanding: Challenge for the 1990's", IBM
Syst. J. 28, 2, 294·306.

[9] Ferrante, J., Ottenstein, K. & Warren, J., "The Program Dependence
Graph and Its Use in Optimization", ACM Trans. Program. Lang.
Syst. 9, 3, July 1987, 319-349.

{10) Fritzson, P., Gyimothy, T., Kamkar, M., & Shahmehri, N.,
"Generalized Algorithmic Debugging and Testing",ln: Proc. ACM
SIGPLAN'91 Conf. on Programming Language Design and
Implementation, Toronto, Ontario, SIGPLAN Notices 26, 6,
317-326.

[II) Furuta, R., Plaisant, C., & Shneiderman, B., "Automatically
Transforming Regularly. Structured Linear Documents into
Hypertext", Electronic Publishing 2, 4, (Dec. 1988), 211-229.

{12) Gallagher, K.B. & Lyle, J.R., "Using Program Slicing in Software
Maintenance", IEEE Trans. Softw. Eng. 17, 8, (Aug. 1991),
751-761.

[13]

[14)

(15)

(16]

[17)
{18]

.{19]

[20]

{21]

{22]

[23]

{24]

{2S]

{26]

(27)

{28]

{29]

216

Horwitz, S. & Reps, T., "The Use of Program Dependence Graphs
in Software Engineering", In: Proc. 14th Int. Conf. on Software
Engineering, Melbourne, Australia, 1992, IEEE Computer Society
Press.
Kafura, D. & Reddy, G., "The Use of Software Complexity
Metrics in Software Maintenance", IEEE Trans. Softw. Eng. 13, 3,
(Mar. 1987), 335-343.
Letovsky, S. & Soloway, E., "Delocalized Plans and Program
Comprehension", IEEE Software 3, 3, 41-49.
Offut~ A.J., Harrold, M.J., & Kolte, P., "A Software Metric
System for Module Coupling", J. Syst. Softw. 20, 3, (1993),
295-308.
Oman, P., "Maintenance Tools", IEEE Software, 1990 (5), 59-64.
Podgurski, A. & Clarke, L.A., • A Formal Model of Program
Dependences and its Implications for Software Testing,
Debugging and Maintenance", IEEE Trans. Softw. Eng. 16, 9
(Sep. 1990), 965-979.
Pressman, R.S., "Sortware Engineering • A Practitioner's
Approach" (3rd ed.), McGraw-Hill, 1992.
Raymond, D.R. & Tompa, F. Wm., "Hypertext and the Oxford
English Dictionary", Commun. ACM 31, 7, (July 1988), 871-879.
Salminen, A. & Watters, C., "A Two-level Structure for Textual
Databases to Support Hypertext Access", J. American Society for
Information Science 43, 6 (July 1992), 432-447.
Shneiderman, B., "Reflections on Authoring, Editing, and
Managing Hypertext", In: The Society of Text, Barret, Ed. (ed.),
MIT Press, Cambridge, MA, 1989, 115-131.
Taenzer, D., Ganti, M., & Podar, S., "Object-Oriented Software
Reuse: The Yoyo Problem", J. Object-Oriented Program. 2, 3,
(1989), 30-35.
Tague, J., Salminen, A. & McClellan, C., • A Complete Formal
Model for Information Retrieval Systems", Proc. ACM SIGIR'91,
ACM-Press, 14-20.
Tompa, F. Wm., • A Data Model for Flexible Hypertext Database
Systems", ACM Trans. on lnf. Syst. 7, I (Jan. 1989), 85-100.
Watters, C.R, & Shepherd, M.A., • A Transient Hypergraph-based
Model for Data Access", ACM Trans. on lnf. Syst. 8, 2 (April
1990), 77-102.
Weiser, M., "Programmers Use Slices When Debugging", Conun.
ACM 25, 7, (July 1982), 446-452.
Wilde, N. & Thebaut, S., "The Maintenance Assistant: Work in
progress", J. Syst. Softw. 9, I, 3-17.
fllsterbye, K. & N~rmark, K. (1993) "The Vision and the Work in
the HyperPro Project", Technical report, Institute for Electronic
Systems, Department of Mathematics and Computer Science.

II

HYPERSOFT: AN ENVIRONMENT FOR
HYPERTEXTUAL SOFTWARE MAINTENANCE

Salminen, A., Koskinen, J. & Paakki, J. 1994. In B. Magnusson, G. Hedin & S.
Minor (Eds.) Proceedings of the Nordic Workshop on Programming Environment Re­
search (NWPER'94). LU-CS-TR: 94-127. Lund, Sweden: Lund Univ.,25-37.

Reproduced with permission.

Abstract

HyperSoft: An Environment for
Hypertextual Software Maintenance

Airi Salminen, Jussi Koskinen, Jukka Paakki
Department of Computer Science and Information Systems

University of Jyvllskylii
P.O. Box 35, SF-40351 Jyvliskylli, Finland

email: {airi, koskinen, paakki) @jytko.jyu.fi

HyperSoft, an environment for program maintenance is introduced. In HyperSoft, program
text is viewed as a two-level structure consisting of a static, hierarchic, syntactic structure
and a dynamic access structure. HyperSoft is directed to supporting program comprehension
by providing a maintainer with capabilities to view programs as hypertext and to
dynamically (during the session) specify the required access structures. The access
structures most notably assist systematic program maintenance by providing a flexible
navigation over related program parts. In this paper the emphasis is laid on the architectural
and technical aspects of the environment.

I. Introduction and background

Software maintenance is the largest cost element in the life of a software system. Program
comprehension is a prerequisite for various maintenance and programming tasks and it is
laborious while working with unfamiliar, poorly documented or large software. Thus there
is a continuous and recognized need for automated support of program comprehension and
maintenance.

Hypertext is text with non-linear browsing capabilities. It consists of text fragments
called nodes and links connecting these nodes. Data access is driven by the user who is
viewing successive text fragments by following the links. Hypertext provides an easy-to-use
mechanism to view related (and possibly very distant) program fragments together on a
screen. It is a natural way of complementing the linear program representation because
programmers tend to group program parts in a non-sequential order while trying to
understand programs [Wei82, LeS86]. Especially in the case of old and large (legacy)
systems the source code is often the only accurate description of the system. This means
that program comprehension needs to be done solely on source code viewing anc browsing.
Attempts to comprehend programs take up to half of the time spent on software
maintenance [Cle89], emphasizing the need for automatic support.

Viewing program text as hypertext is especially interesting because program text
fragments and their relationships to each other have been extensively studied within
programming language research, and because there are lots of methods and tools for
automatic recognition of the fragments and their relationships. Therefore, in the HyperSoft
method the approach is to automatically extract relevant relationships between the elements
of a source program, and to evolve these relationships into a hypertextual access structure.

The HyperSoft method was originally introduced in [KPS94] and [PSK94]. HyperSoft
is aimed at supporting program comprehension and maintenance by enhancing hypertextual
source code viewing and browsing. The rest of the paper is organized as follows. The
HyperSoft method is briefly discussed in Section 2. The general architecture of the

25

HyperSoft system is described in Section 3, followed by a more detailed description of its
two central components, the program data base (Section 4) and the generic user interface
(Section 5). Related work is discussed in Section 6, and conclusions are drawn in Section
7.

2. The HyperSoft method

Although the hypertext approach, i.e. regarding text as a set of fragments and links between
them, is clearly applicable on program text [cf. Shn89], one major problem is the fact that
there is no single universal fragmentation nor a unique set of links which would be suitable
for all the possible maintenance tasks. Therefore, in the HyperSoft method program text is
considered as dynamic hypertext. This means that the maintainer may dynamically specify
a set of transient nodes and links to meet his or her current information requests and to
view the source code collection accordingly.

A hypertext structure is usually considered as an alternative, or an addition, to a linear
text structure. From the point of view of program understanding, the most important
structure is the hierarchic structure of the program, defined by the grammar of the
programming language. Therefore, in the HyperSoft method we model program text with
hypertext access capabilities as a two-level structure where the hierarchic syntactic structure
is separated from the access structure [SaW92].

Syntactic structure
The syntactic structure of our hypertext is a parse tree for the program with respect to its
context-free grammar. The linear character string representation of the whole program text
is the string consisting of the terminal symbols of the parse tree, from left to right.

Each nonterminal of the grammar represents a set of program text parts. Therefore, we
call a nonterminal of the grammar a text type. In a C grammar, for example, there may be
text types 'program', 'function-definition', and 'declaration'. Given any C program, each
of the names stands for a set of text parts. In the parse tree, the parts are represented by
nonterminal nodes (and the respective subtrees). Each program contains one part of type
'program' which is represented by the root node of the corresponding parse tree. Since we
wish each part in the parse tree correspond to an identifiable substring in the program text,
we regard a nonterminal node a part only if it is not a single child of its parent. The labels
of nonterminal nodes indicate types such that the label of a single child of a parent renames
a part.

Access structure
For browsing purposes hypertext is often modelled as a directed graph, i.e. a pair (Z, E)
where Z is a set of elements called nodes and E is a set of node pairs called links. For
more general data access capabilities, hypertext has also been modelled by a hypergraph
[SaW92]. A hypergraph is also a pair (Z, E), where Z is a set of nodes. The members of
E are however now any subsets of Z, not only binary subsets. We will use the term edge
for the members of E in a hypergraph and the term link for binary edges. An edge thus
represents a relationship between a number of nodes.

In HyperSoft, the hypertextual access structure of a program text is a hypergraph whose
nodes are parts in the syntactic structure of the program. The hypertext nodes thus stand for
such program elements as variables, declarations, statements, etc. Some portion of an access
structure may be created at the time of program parsing. The approach behind the
HyperSoft method is, however, that of dynamic hypertext allowing the reader to change the

26

access structure dynamically, e.g. by specifying a new access structure as a special kind of
graph or an edge consisting of nodes sharing a common property. Since edges are sets, set
operations may be applied to them. At the moment of browsing, the current access structure
is a directed graph.

Automatic generation of hypertext
The program analysis methodology provides for a large selection of techniques that can be
applied for automatically creating different kinds of hypertextual access structures to
support different kinds of maintenance tasks. Notice the emphasis on flexible and dynamic
creation of the relevant access structure(s): instead of restricting to a fixed and unadjustable
access structure (as in the manual case), the automated method makes it possible to obtain
exactly that (and only that) access structure which most properly fits with the particular
maintenance task at hand.

The idea behind applying program analysis techniques on the creation of a hypertext
structure is rather simple: well-known program dependences, i.e. relationships between
program parts, are extracted either as a set or as a graph. We have investigated graph
structures that, when represented in a hypertext format, can be applied as a navigation tool
in common maintenance tasks. These graphs are standard tools within the disciplines of
programming, language implementation, and general software engineering [Pre92, ASU86].
Graph-like structures that are generally used to represent programs and whose implications
to hypertext formation we have analyzed in [KPS94] include the following:

* parse tree (as a general framework for program analysis and navigation),
* call graph (representing possible chains of procedure calls),
* control flow graph (representing possible execution orders of statements),
* definition/usage graph of program variables (linking defining occurrences of symbols

with applied ones),
* data flow graph (demonstrating the propagation of data through the program),
* program dependence graph (unifying control and data flow),
* forward slice (showing how program statements are affected by a computed data value),
* backward slice (showing which statements may affect a specific data value),
* module dependence graph (specifying the static software architecture),
* class hierarchies in object-oriented programs (representing the inheritance relationships

between the objects in the program).

In addition to the well-known graph structures, there are program dependences determined
simply by a common property shared by a set of parts. The property may be, for example,
the type of the parts, the complexity metric of the parts, or the layout of the parts. Several
of such potentially interesting properties are studied in [KSP94] as well as ways to use an
edge as a basis for a new graph.

The most useful access structures to purposes of the industrial partners we are
collaborating with include: forward slices, call graphs, inpul/output access structures, and
backward slices. Therefore we are first concentrating on these in our implementation of
HyperSoft. In order to automatically generate the access structures, program parts belonging
to a certain fragmentation and relations between these fragments need to be identified. We
will employ the existing algorithms [Ryd79, HaS90, HoR90, HoR92, HMR93, Kam93] to
form these structures, when applicable. These graphs may serve as our access structures as
such or after some modifications.

27

3. The system architecture

The HyperSoft method is founded on the combination of static program analysis and
dynamic hypertext access. The method is intended to support software maintenance; hence
the capabilities to change the program have to be included in a HyperSoft maintenance
environment. In such an environment, the source code update may be more or less
integrated with the hypertextual program reading. In the first HyperSoft environment we are
designing, the source code will be edited using a general purpose text editor. While the
HyperSoft method is language independent, the environment will support the maintenance
of software systems whose implementation language is C with or without embedded SQL
fragments.

The general architecture of the HyperSoft environment is shown in Figure l. It consists
of three process components: Static Program Analyzer (SPA), Generic User Interface
(GUI), and Editor. SPA analyses the source code collection using the C and SQL
grammars, and stores the analysis information in the Program Data Base (PDB). The
implementation of SPA is carried out with automated tools, based on the principles
mentioned in the previous section. GUI is used by the maintenance programmer for source
code reading. The maintainer will start the reading by specifying which category of access
structures shaJl be provided to support the current maintenance activity. Genericity in the
user interface component means that the current access structure category determines the
specific user interface to be used for navigation. An access structure request causes· the
update of the PDB. For the source code changes general purpose editors will be available
within the environment After the changes in the code, SPA is used to update the PDB. A
more detailed description of PDB and GUI will be given in the following sections.

C andSQ
grammars

ource modification

Figure I. General architecture of HyperSoft

28

4. The program data base

The program data base component (PDB) of the HyperSoft system stores the information
necessary for dynamically creating and traversing the access structures for the program
under maintenance. Since PDB captures static properties of a program, it closely resembles
an architecture found in conventional compilers: the syntactic structure of the program is
presented as a parse tree (for each program file), and the static semantic properties are
stored in a symbol table. The third central component of PDB is a selection of access
structures one of them being considered as the currently active one. Finally, the program
text must be connected with the actual PDB so as to provide actual program views to the
user.

Since a complete exhaustive analysis of the program for each dynamic access structure
would obviously be too expensive in practice, the parse tree and the symbol table will be
available in the program data base for the whole maintenance session. They are created
while constructing the first access structure by a user's request, and will be consulted for
constructing the subsequent ones due to additional needs of information. In other words,
once created, PDB will contain all the information that is needed for constructing the
requested access structures, without having to re-invoke the exhaustive static analyzer.
Modifications in the program will be reflected into the persistent data structures efficiently
as incremental updates.

It is also possible to have some central access structures, such as architectural
descriptions of the program, constantly available in PDB. Most access structures, however,
are sensible to be created just by need because they involve a specification of construction
criteria. A call graph, for instance, is often needed for one specific subroutine only, and a
slice is usually constructed with respect to a specific variable at some program point.

The main internal components of the program data base, the parse tree, the symbol
table, and the (current) access structure(s), form an interconnected whole where the
different characteristics of the program are stored in the most convenient component. The
complete set of properties for a program element can thus be found by collecting all the
information fragments from the integrated PDB components. As an external component, the
actual program (files) are linked with the internal components of PDB.

The connection between the PDB components is sketched in Figure 2. The parse tree
is attributed e.g. with links from its parts to the corresponding concrete program fragments
(by indicating the enclosing textual positions in the program file) and with links from the
symbolic parts to their symbol table entries. The symbol table contains information needed
for analyzing the symbolic entities of the program during the construction of access
structures. This includes normal compiler oriented information, such as the name of the
entity and its type (if any). For effectively creating an access structure of successive
program parts for a given symbol, each symbol table entry is also associated with a linked
list of applied nonterminal instances (i.e., parts) in the parse tree. As an example, Figure 2
depicts with thick arrows how a flow-dependence access structure from the declaration of
variable 'error_cnt' to all its applied occurrences in the program can be directly obtained
from the program data base.

To be effective, the program data base provides an optimized implementation for some
central operations. A complete (attributed) parse tree is usually too large for a practical
internal representation of the program, as verified by practical experiences with multi-pass
compilers and compiler writing systems~ Therefore, the parse tree is abstract in the sense
that it contains only the central nonterminal nodes (that is, the parts) and no terminal nodes.
Since the default order of nodes within an edge of a hypergraph is usually their textual

29

Parse tree Program

(in file "example.c")

int error_cnt = 0;

if(...)

Symbol table
Kind
type

var

Figure 2. Program data base.

30

order of appearance in the program, the nodes of a parse tree are associated with an ordinal
number with respect to a total preorder. This provides for fast linear analysis of control and
data flow (both forward and backward). Some access structures are founded on the
structural properties of the program; e.g. one often needs to know whether an indicated
'assignment' part is contained by an 'if-statement' part. The program data base implements
a fast mechanism to deduce such structural properties for parts of the central text types.
Similarly, a fast mechanism is provided to locate all the parts of a given text type in the
parse tree. Finally, in order to resolve certain user-given access structure specifications that
depend on some particular program point, the system also maintains links from program
files to the parse tree. This facility is needed e.g. when computing a slice with respect to
a given variable occurrence in the program. Consequently, HyperSoft connects the textual
variable occurrences to their corresponding parts in the parse tree.

The access structures within the program data base run over nodes of the parse tree.
While only one access structure at a time is actively on the screen of the user interface (see
Section 5), all the possible access structures are potentially available. Hence, a node may
be contained in several access structures, depending on the text type of the node. To
support such a multi-directional character of nodes, they can be seen as possessing a set of
text type dependent links. Some examples of links for different types of nodes are given in
Table 1.

I Link type I Source node I Target node I
NextSimilarStat, e.g. output statement next (or previous) output statement
NextOutputStat in preorder

IsDefinedAs variable, constant, corresponding definition, de-
function occurrence claration or prototype

IsUsedln variable, constant, variable, constant application,
function function call
definition or
declaration

IslmplementedAs function call function code/implemention

AffectsFWS statement in a statement in the same forward
forward slice slice that is affected by the source

node

IsAffectedByBWS statement in a statement in the same backward
backward slice slice that affects the source node

Table 1. Examples of link and node types.

31

S. The generic user interface

User interface issues are important in all hypertext systems, and especially in tools intended
for reading large programs. The well-known problems in hypertext systems are
disorientation and cognitive overhead [Con87]. Disorientation means the tendency to lose
one's sense of location in the hyperspace. Cognitive overhead refers to the additional effort
and concentration necessary to retain several tasks or trails at one time. Browsing of source
code and navigation through it should be made as easy as possible so that the user can
concentrate on the maintenance task instead of technical details.

A method extensively used for solving the disorientation problem is to impose a
hierarchic structure on the hypertext, see e.g. [AMY88] and [RBS94]. This is the approach
in the HyperSoft method as well: a hypertextual access structure is always defined over a
hierarchic structure and the hierarchic structure is always a basis for a potential new access
structure.

The dynamic creation of the current access structure, based on the current information
request by the maintainer, is our way to reduce both the disorientation and the cognitive
overhead problems. In many systems, cognitive overhead occurs in the process of reading
hypertext, which tends to present the reader with a large number of choices about which
links to follow [Con87]. In our approach, a generic user interface supports different access
structures, and appropriate browsing strategies [SSR86] are designed for the specific access
structure categories. The number of possible available links is minimized by showing in a
window only those which support the specific information needs, one immediate solution
being to assign one access structure to one window. Focusing the attention of the
maintainer on one specific access structure at a time also helps in orientation.

A graphical user interface with multiple windows will be used. The main menu of the
system will provide access to file loading routines, a possibility to open a standard editor
window for changing the program text, standard search functions, and a menu of access
structures that are available for generation at the moment. Program text is represented
within the windows. Figure 3 illustrates possible windows associated with the access
structures. The figure shows a situation where a user has opened windows to view program
text based on access structures of general architectural composition (a), calling dependences
(b), flow-dependences (c), and forward slicing (d). In maintenance, the access structure in
(a) illustrates the general module architecture of the program and thus helps understanding
it The call graph in (b) shows how the emphasized function call (indirectly) activates other
functions, thus supporting both program comprehension and tracing. The structure in (c)
specifies which program parts are affected by a modification on the emphasized type
definition, while (d) approximates the propagation of the value at the emphasized
computation through the rest of the program.

Program parts providing non-linear browsing capabilities, corresponding to hypertext
button areas, are represented in Figure 3 as ovals. Note that for illustrative purposes, the
windows (a)-(d) in Figure 3 contain a chain of access nodes, while actually only one of
them (with some surroundings for contextual orientation) is visible at a time. Note also that
a node may be contained in several access structures, as is the case in (c) and (d). The
access structures (b), (c), and (d) involve a generation criterion which is indicated by
shadowing the corresponding node. The user navigates through the program by first
indicating a part that serves as the starting point for the specific kind of browsing. Because
browsing is often possible to two directions there need to be an easy way to specify the
order of browsing. Direct transfer to the first and last node of the access structure is also
provided.

32

(a) Architectural access structure

#include <conio.h>

typedef int Type;

class deque I
l

class stack:private deque I
l

deque::deque(int sz) I

void deque::insert_right(Type item) {

Type deque::remove_right() {

int main(void) 1

(b) Call graph

#include <conio.h>

class deque {

(c) Flow-dependence graph

(d) Forward slice

void push(Type item)
I deque::insert_right(item); l

Figure 3. Access structure windows.

33

Clicking on the button areas will (as a default) cause a new window to be opened (for
the reasons of representation this is not depicted in Figure 3). The source text related to this
button, and to the corresponding access structure is loaded onto the window. This process
can be continued, or backtracked by the user by closing the windows. Opening of new
windows helps to keep track of the user's orientation, but also the current window can be
used to represent new text if the user so decides. There should be a mechanism to store the
current navigation positions within the program files and the access structures for recalling
the same navigation procedure later. Requests for generation of access structures are made
through the main menu. If a program part needs to be specified by means of a generation
criterion, the user is advised to select the corresponding program part from the program text
on the active window.

The user should have information about the relative location of each text fragment on
the screen. Hence, information about the context which a program part belongs to needs to
be expressed somehow. In case of large nodes, information should be abstracted (elision)
such that unnecessary details are hidden. Examples of the possible ways to economically
represent program text on the screen are given in e.g. [San89, OmC90, Bro91, Ray92].

6. Related work

Our work is related with software hypertext systems and more generally with program
comprehension support tools. In most software hypertext systems [BiR87, GaS90, CyR92]
the emphasis is on providing support for linking separate documents, source files,
requirements etc. together. In contrast, our approach concentrates on providing support for
program viewing and browsing on the intra-modular source code level.

One of our central aims is to provide hypertextual fragmentation and access structures
automatically in order to eliminate the need for manual linking. This kind of approach is
employed e.g. in DynamicDesign [BiR87, Big88] in which source code is represented in a
hypertext format, based on a call tree. Another related system is CodeNavigator [Bro91] in
which flow relationships are represented as directed graphs. As a more general solution, our
method makes it possible to produce multiple links and fragmentations for various tasks by
automatic generation of access structures.

Various access structures are also supported in the Mj0lner BETA System [San89]. The
base language is BETA, an object-oriented programming language. In this system the
supported links include also so-called program semantical links. Structured objects are
represented as abstract syntax trees and semantical links are generated automatically.
Supported link types of this category include definition-use and superclass relationships.

The work in the HyperPro project [0sN93] has concentrated on data modelling and
storage aspects of hypertext. Based on these results a prototype environment called
HyperPro has been implemented. A set of node and link instances form a network which
is called the program network or the hyperstructure. HyperPro is a generic (language-
independent) environment, which is accommodated to a specific programming language. A
key problem is to decide the criteria for fragmenting the source code. A convenient level
of granularity is suggested to be at the procedure (method) level.

A similar approach as ours is employed in PUNS (Program Understanding Support
Environment) [Cle89] which produces multiple views of source code collections to support
the program comprehension process. Functionally this is very close to what we aim at. In
addition, our.approach includes a model to represent different access structures consistently
as hypergraphs. We also concentrate on providing transient access structures created by the
user in order to save memory and processing time during hypertext formation, as well as

34

to provide customized support for varying information needs of the maintainer.· This
emphasis on dynamic creation of a hypertextual program representation reflects the central
role of the source program in the HyperSoft method. Note that this is in contrast to
programming environments that emphasize the linking of the static documentation with the
source code, in which case it is a natural choice to create a persistent hyperstructure already
during program development.

A recent work on hypertext tools for software maintenance is Whorf [BGS94] which
provides explicit hypertextual support for visualizing and understanding delocalized plans
while using an as-needed strategy. Strategy is supported through multiple, concurrent views
of the software with instant, easy access to additional views.

Because most access structures we have proposed as a part of the HyperSoft method are
based on well-known program dependences, they have been implemented in various ways
in many program comprehension support tools, of which the nearest to our work are the
following.
* Dependence Analysis Tool Set [0ma90b] provides a basis for determining program

dependences and to understand the complex interrelationhips in large C programs.
* The Smart System environment for the C language [0ma90a] generates call graphs and

data dependence trees to document the program structure.
* Surgeon's Assistant [0ma90b] slices up C programs, extracts pertinent information, and

displays data links and related characteristics such that changes and influence of
selected structures can be tracked.

* EDSA (Expert Dataflow and Static Analysis Tool) [Oma90b] statically analyzes and
slices Ada programs. It can be used to determine the effects of changes and possible
side-effects.

7. Conclusions

The hardest problems in software maintenance are

* to understand the program and
* to localize the program parts that should be modified.

These problems are most serious when maintaining large legacy systems that have evolved
in various versions, often without any proper documentation. When the size and complexity
of the systems grow and original programmers are no longer available, an increased portion
of human resources is bound to the maintenance. Because of the capital invested on these
systems and because of knowledge they contain it is hard to justify throwing them away
although their maintenance may be very hard and costly. This emphasizes the need for
comprehension support tools. An advanced solution to manage the complexity of software
maintenance is to provide support for automatically extracting the relevant parts from the
program and for flexibly navigating through such a focused view.

Since the HyperSoft method presented in this paper is founded on the combination of
hypertext and static program analysis, its implementation as the HyperSoft system will be
based on these two techniques. The maintainer will start program reading by specifying
which category of access structures shall be provided to support the current maintenance
activity. The system will analyze the software and produce the requested dependence
graphs. The graphs will be elaborated into a hypertextual access structure which is provided
to the user through a generic user interface. Finally, the user imerface makes it possible to
flexibly navigate through the program and simultaneously introduce the maintaining actions

35

into the program ~xt with an editor. In principle, it would be possible to integrate
incremental updating of the program data base with program navigation and editing, based _
on the techiliques developed in the context of language-based editors (see e.g. [ReT89]).
This advancement would, however, make the implementation more complex and inefficient
and is therefore left for further study.

The HyperSoft system will be targeted to industrial legacy systems under extensive
maintenance. We are currently collecting legacy systems that will be supported by the
concrete HyperSoft system, and starting the implementation of the HyperSoft system, based
on the design presented in this paper.

Acknowledgements. The comments of the referees have been helpful for improving the
presentation.

References

AMY88 Akscyn, R.M., McCracken, D.L. & Yoder, E.A., "KMS: A Distributed
Hypermedia System for Managing Knowledge in Organizations", Commun. ACM
31, 7, (July 1988), 820-835.

ASU86 Abo, A.V., Sethi, R., & Ullman, J.D., "Compilers- Principles, Techniques, and
Tools", Addison-Wesley, 1986.

BGS94 Brade, K., Gudzial, M., Steckel, M. & Soloway, E., "Whorf: A Hypertext Tool for
Software Maintenance", International Journal of Software Engineering and
Knowledge Engineering 4, 1, (Mar. 1994), 1-16.

Big88 Bigelow, J., "Hypertext and CASE", IEEE Software, Mar. 1988, 23-27.
BiR87 Bigelow, J. & Riley, V., "Manipulating Source Code in DynamicDesign", In:

Hypertext'S? Papers, 397-408.
Bro91 Brown, P., "Integrated Hypertext and Program Understanding Tools", IBM Syst.

J. 30, 3, 363-392.
Cle89 Cleveland L., "A Program Understanding Support Environment", IBM Syst. J. 28,

2, 324-344.
Con87 Conklin, J., "Hypertext: An Introduction and Survey", Computer (IEEE) 20, 9,

(1987) 17-41.
CyR92 Cybulski, J.L. & Reed, K., "A Hypertext-based Software-engineering

Environment", IEEE Software, Mar. 1992, 62-68.
GaS90 Garg, P.K. & Scacchi, W., "A Hypertext System to Manage Software Lifecycle

Documents", IEEE Software, May 1990, 90-98.
HaS90 Harrold, M., & Soffa, M., "Computation of lnterprocedural Definition and Use

Dependencies", In: Proceedings of the IEEE Comput. Soc. 1990 Int. Conf. on
Comput. Languages, New Orleans, LA, Mar. 1990, 297-306.

HMR93 Harrold, M., Malloy, B. & Rothermel, G., "Efficient Construction of Program
Dependence Graphs", In: ISSTA'93, Proc. of the 1993 Int. Symp. on Software
Testing and Analysis, 160-170.

HoR90 Horwitz, S., Reps, T., & Binkley, D., "lnterprocedural Slicing Using Dependence
Graphs", ACM Transactions on Programming Languages and Systems 12, l, (Jan.
1990), 26-60.

HoR92 Horwitz, S. & Reps, T., "The Use of Program Dependence Graphs in Software
Engineering", In: Proc. 14th Int. Conf. on Software Engineering, Melbourne,
Australia, IEEE Computer Society Press.

36

Kam93 Kamkar, M., "Interprocedural Dynamic Slicing with Applications to Debugging
and Testing", PhD thesis, Linkoping Studies in Science and Technology
Dissertations No. 297, Department of Computer and Information Science,
Linkoping Univ.

KPS94 Koskinen, J., Paakki, J. & Salminen, A., "Program Text as Hypertext: Using
Program Dependences for Transient Linking", SEKE'94, Software Engineering
and Knowledge Engineering Conference, Jurmala, Latvia, June 21-23, 1994, to
appear.

LeS86 Letovsky, S. & Soloway, E., "Delocalized Plans and Program Comprehension",
IEEE Software, May 1986,41-49.

Oma90a Oman, P., "CASE Analysis and Design Tools", IEEE Software, May 1990, 37-
43.

Oma90b Oman, P., "Maintenance Tools", IEEE Software, May 1990, 59-65.
OmC90 Oman, P. & Cook, C.R., "The Book Paradigm for Improved Software

Maintenance", IEEE Software, Jan. 1990, 39-45.
Pre92 Pressman, R.S., "Software Engineering - A Practitioner's Approach" (3rd ed.),

McGraw-Hill, Singapore, 1992.
PSK94 Paakki, J., Salminen, A. & Koskinen, J., "Automated Hypertext Support for

Software Maintenance", submitted for publication.
Ray92 Raymond, D.R. "Flexible Text Display with Lector", Computer (IEEE) 25, 8,

(Aug. 1992), 49-60.
RBS94 Rivlin, E., Botafogo, R. & Shneiderman, B., "Navigating in Hyperspace:

Designing a Structure-based Toolbox", Commun. ACM, 37, 2, 87-96.
ReT89 Reps, T. & Teitelbaum, T., "The Synthesizer Generator", Springer-Verlag, 1989.
Ryd79 Ryder, B., "Constructing the Call Graph of a Program", IEEE Transactions on

Software Engineering, SE-5, 3, (May 1979), 216-225.
San89 Sandvad, E., "Hypertext in an Object-Oriented Programming Environment", In:

WOODMAN'89: Workshop on Object-Oriented Document Manipulation, Rennes,
France, 1989.

SaW92 Salminen, A. & Watters, C., "A Two-level Structure for Textual Databases to
Support Hypertext Access", J. American Society for Information Science 43, 6
(July 1992), 432-447.

Shn89 Shneiderman, B., "Reflections on Authoring, Editing, and Managing Hypertext",
In: The Society of Text, Barret, E. (ed.), MIT Press, Cambridge, MA, 115-131.

SSR86 Shneiderman, B., Shafer, P., Roland, S. & Weldon, L., "Display Strategies for
Program Browsing- Concepts and Experiment", IEEE Software, May 1986,7-15.

Wei82 Weiser, M., "Programmers Use Slices When Debugging", Commun. ACM 25, 7,
(July 1982), 446-452.

0sN93 0sterbye, K. & N0rmark, K., "The Vision and the Work in the HyperPro Project",
Technical report, Institute for Electronic Systems, Department of Mathematics and
Computer Science, 1993.

37

III

CREATING TRANSIENT HYPERTEXTUAL ACCESS
STRUCTURES FOR C PROGRAMS

Koskinen, J. 1996. In Proceedings of the 7th Israeli Conference on Computer Systems
and Software Engineering (ICCSSE'96). Los Alamitos, CA: IEEE Computer Soc.,
56-65.

(C) 1996 IEEE. Reproduced with permission.

Creating Transient Hypertextual
Access Structures for C Programs

Jussi Koskinen
Department of Computer Science and Information Systems

University of Jyviiskylii
P.O. Box 35, SF-40351 Jyviiskylii, Finland

Internet: koskinen @cs.jyu.fi

Abstract

The paper describes how hypertextual access structures
can be formed to support the maintenance of C programs.
The access structures are formed automatically based on
the HyperSoft model and method developed earlier. The
automatic creation is based on syntactical fragmentation
of program text and on relationships between these
fragments. The access structures are transient, meaning
that instead of storing them permanently they are created
on user request. HyperSoft enables flexible navigation
between the program parts which are relevant to a certain
maintenance situation. The HyperSoft system currently
supports C language and five access structures:
occurrence lists for variables and functions, forward and
backward calling dependence structures, intraprocedural
backward slices, and interprocedural forward slices.
Access structures are represented to the user as a set of
highlighted nodes and graphical links on top of the
original program text. The HyperSoft system has been
developed in co-operation with the four largest software
houses in Finland.

1. Introduction

HyperSoft is an ongoing project during which a hyper-
text model and method [13], [19] and a system have been
planned [21] and implemented. HyperSoft method com-
bines the hypertext modeling and program analysis ap-
proaches to produce automatically various access
structures which can be used to support tasks like program
comprehension, debugging, and impact analysis. While us-
ing HyperSoft, the maintainer initiates the access structure
generation by pointing some relevant program part and the
desired operation. HyperSoft then generates the structure
and shows it to the user as hypertext. The HyperSoft sys-
tem consists of three relatively independent main

56

components suggested by the model. The static program
analyzer creates parse trees (abstract syntax trees) [2] and
other relevant static structures which are stored into the
static program database. The access structure generator
then uses that information to produce various access struc-
tures, which are stored into the dynamic program database.
Finally, these structures are represented to the user as hy-
pertext through the generic user interface.

The four largest software houses in Finland:
KT-Tietokeskus, Nokia Research Center, Tietotehdas and
VTKK-Kuntajarjestelmat, have co-operated with us during
the project. The steering group of the project have
partaken to the guidance of the project by reviewing the
suggested HyperSoft functionalities. Since most of the
maintenance problems of the partner enterprises are related
to legacy systems written in C [11], C was chosen as the
first language to be supported in the system. The system
runs on IBM-PC & compatibles and its user interface
works under Microsoft Windows. Five access structures
which were considered most relevant to the needs of the
partner enterprises have been implemented.

HyperSoft is targeted to software maintenance support.
The problems related to software maintenance are
prominent and well-known [18]. The software maintainer
has to somehow grasp the understanding over the existing
software so that required maintenance tasks can be
performed. The identification of the relevant program parts
and their interdependences is a generic task required for
example in impact analysis, debugging, and testing.
Moreover, in a certain maintenance situation, the
maintainer has specific information requests, which should
be satisfied. So there should be a versatile set of access
structures of which the maintainer could select the one that
is most appropriate to the situation. Because the nature of
software maintenance is interactive, there should be
effective and flexible mechanisms to specify the foci of
interest and to view the relevant program parts.

This paper concentrates on the back-end issues of
forming hypertextual access structures. First, the main

concepts of the Hyper Soft model are provided in Section 2
and the general architecture of the implemented HyperSoft
system is described in Section 3. The needed static
structures to form the hypertextual access structures are
described in Section 4 and the implemented access
structures in Section 5. Since the slices are the most
complex of the implemented access structures, they are
described in a more detailed level. HyperSoft's slicing
capabilities are compared with other existing slicing tools.

2. Creating access structures based on the
HyperSoft model

Program text is modelled in HyperSoft as a two-level
structure where the syntactic structure is separated from
the access structure [22]. This basic model is adapted to
the needs of software engineering context. Program text
with hypertext access capabilities is a triple (G, X, A)
where G is a context-free grammar, X a syntactic structure,
and A an access structure. The syntactic structure is a parse
tree for the program with respect to the grammar G. In
HyperSoft parse trees represent the hierarchic structure of
the program text, so that non-terminals of the parse tree are
called text types. The corresponding text entities are called
parts of that type. For browsing purposes hypertext is
modelled as a directed graph (Z, E) where Z is a set of
nodes, and E a set of node pairs, called links. The access
structure is a transient (hyper)graph whose nodes are parts
of the syntactic structure. These access structures may be
formed automatically according the HyperSoft method by
using various program analysis techniques. The HyperSoft
model and method are described in detail in [13].

2.1. Access struclure nodes

Parts of the access structure have their value and type. In
case of C programs the syntactical text type may be, for
example identifier, function call, function definition or ex­
pression (see [11], Section Al3). The value is the corre-
sponding string in the program text. The elementary nodes
may be collected into a set of nodes, thus forming a com-
pound structure. These compound structures are viewed in
HyperSoft as access structures. The set of relevant text

Examples

types is dependent on the access structure and the software
maintenance task that it should support.

2.2. Access struclure dependences

There is a multitude of possible relations (dependences)
between the elementary and compound fragments of
programs. The typical relations include the data flow,
control flow, and calling dependences. These relations and
their variants are also supported in many program
comprehension support tools, like CIA [4] and EDATS
[25]. In principle, a system based on the HyperSoft model
can support any dependences which may be specified
between the program fragments. Note that HyperSoft
differs from the so-called software hypertext systems, like
[5] and [6] in a sense that the hypertextual structures are
formed automatically. So, no manual linking is needed in
Hyper Soft.

2.3. Combining sets of related nodes as access
structures

Access structures may be simple references, sets, chains,
trees, or graphs. Some of the possible access structures
have been categorized in Table 1. Structures that are
currently implemented in HyperSoft are denoted with an
asterisk. The singleton kind structures simply give the user
a single (reference) link through which he or she can
navigate within the program text, sets contain associated
but not ordered elements, lists link a set of related
elements together, trees provide a basis for versatile
browsing and finally graphs often require associated
map-views to manage with the structure. A single access
structure may be composed of nodes which are connected
based on various program dependences. For example the
calling dependence structures of HyperSoft consist of two
types of nodes (function call and implementation) and
dependences (data flow and structural) binding them.
Slices in turn consist of many types of nodes bound
together based on two main program dependences (data
flow and control flow dependence).

Form
Singleton: *Declaration, Context-Function, Structure Beg.!End Reference
Sets/Lists:
Trees:
Graphs

*Occurrence-, Instance-, Definition-, Usage-, Global-Variable-, Modification-Lists
*Forward *Backward and Intermodular Calling Dependence Structures
*Backward and *Forward Slices

Table 1. Examples of different access structure types.

57

3. HyperSoft architecture

The general architecture of the HyperSoft system is
represented in Figure 1. The analyzer component supports
the analysis of error-free C programs and produces the
static program database for the source programs. The
analyzer is built using the AnaGram metacompiler [17)
and C preprocessor package delivered with AnaGram. The
generator creates the transient hypertextual access
structures. The program database is a repository storing
the information passed between the analyzer and the
generator. The generator and interface components are
separated in a sense that the interface is language
independent. Multi-windowed browsing of source code is
supported. HyperSoft is also integrated to the
Programmer's File Editor (PFE). HyperSoft currently
constitutes about 30,000 lines of code. The implementation
of the back-end part of the HyperSoft system is more
widely reported in [12) and the development of the
interface component and its special features in [16).

The general order of forming and representing the
necessary data structures within the HyperSoft is shown in
Figure 2., Most notably the parse tree and symbol table
generation functionalities are separated. This sort of a
separation makes radical parse tree pruning easier, because
the pruning can be based on the contextual information
stored into the parse tree.

4. Creation of the static structures

The structure of the analyzer component and its
relationships to other components is depicted in Figure 3.
A parser using the Kernighan & Ritchie [11] (Section A13)

Figure 1. The general architecture of HyperSoft.

58

style C grammar is extended to produce the needed static
information. The program database consists of the static
and dynamic parts. The static database consists of the
global symbol table, local symbol tables, and abstracted
parse trees. The choice of using parse trees to hold most of
the necessary static information is based on the HyperSoft
model, where the syntactic structure of the program is
represented as a parse tree. Access structures which are
created during the maintenance session are stored into the
dynamic database, which is separated from the analyzer
component. The program database is implemented as a
collection of DOS files.

AnaGram metacompiler and the C preprocessor
package: AnaGram metacompiler contains an LALR(l)
parser generator which creates a parser based on a
grammar. Like most parser generators it creates a parser
file, written in C or C++ based on the user -defined syntax
files. This parser file is then compiled with some C/C++
compiler in order to form the executable parser. In
HyperSoft, the generated parser is used to form the
program database. The preprocessor and C parser
constitute together about 580 productions.

Forming the static program database: In HyperSoft, the
access structures are transient, meaning that they are
generated during the maintenance session. This helps to
reduce the size of the needed static database. Information
which have to be stored statically in order to form the
hypertextual access structures include: textual positions
and types of the relevant program parts (stored into parse
trees}, category of the symbols (stored into symbol tables)
and occurrences of those symbols (stored into occurrence

I) Preprocessing, parsing, parse tree fonnation
and validation.

2) Parse tree abstraction and compression.
3) Creation of symbol tables, based on the forward

preorder traversal of the already formed parse
trees.

4) Access structnre generation, based on the
static program database produced in the phases
I and3.

5) Access structnre representation to the user via
a generic, language independent, graphical
user interface, including text and navigation
views.

Figure 2. The process of forming
hypertext structures in HyperSoft.

lists). The definitions for the elements of these structures
are given in Figure 4.

The static information is stored into the database during
a batch process. There exists static linkages I) from each
symbol definition node of the parse tree to the adequate
symbol table row, 2) from each occurrence list element to
the corresponding parse tree node, and 3) a position
reference from each parse tree node to the original
program text The local symbol table contains the local
variables and scope information, whereas the global table
gathers all the intermodular information, that is, global
variables and functions which are not preceded by the
static keyword. Table 2 summarizes the elementary
syntactical structures that are needed in forming the
currently implemented access structures.

5. Creation of the dynamic structures

The dynamic access structures of the HyperSoft are
formed by the access structure generator (see Figure 5).
The generator uses the static information stored into the

Source
program
collection

database and passes information about the formed access
structures to the interface component. The MVC model
[14] is used to separate the access structure manipulation
and representation to the user. Currently the generator
supports five access structures: 1) occurrence lists, 2)
forward calling and 3) backward calling dependence
structures, 4) intraprocedural backward slices, and 5)
interprocedural forward slices. Occurrence lists and calling
structures are useful in many different maintenance
situations. Backward slices are useful in debugging and
forward slices, for example, in attempts to estimate the
possible side-effects of a proposed change. All the access
structures consist of nodes of a similar type.

5.1. Occurrence lists and call graphs

An occurrence list (see Figure 6, left pane) is an example
of a Set/List kind structure containing the occurrences of a
specified symbol. Presently occurrence list is available for
variables, functions and macro-usages. Symbols having
different scopes are separated in the structure. The links
can be used to move to next occurrence. All access

Figure 3. Components producing the static information In HyperSoft.

typedef struct ST_ENTRY I II Symbol table entry
typedef struct PT_NODB I II Parse tree node type char name[MAX...NAMB_LBN]: II Symbol name
long int index; II PT -node index int category; II Var, Func, Macro etc.
unsigned int file!D; II File number struct OCCUR *foccur; II Head of the OL
short int type; II Symbol type struct OCCUR *!occur; II Tail of the OL
short int xl,yl,x2,y2; II Start and end positions JST_ENTRY;
short int stlndex; II Symbol table entry index typedef struct OL_BLBMBNT I II Occurrence list element short int childs; II Number of the chiW nodes
structPT_NODB *child[]; II Pointers to the child nodes long int ptlndex; II PT·node index

struct PT_NODB *parent; II Pointer to the parent node unsigned short int ptFileiD; II PT-file index

}PT_NODB; OL_ELBMBNT *next; II Next OL-element
} OL_ELBMBNT;

Figure 4. Central data structures of the static program database.

59

Needed static structures (types of the parse tree nodes)
identifier
+ function-call, function-definition

Access structure
Occurrence list
Calling structures
Slicing structures +statement, declaration, expression, type-definition, parameter-list, pointer-id,

statement-category

Table 2. The needed minimal syntactical information to form some of the access structures.

l'rogram databru e Generator Interface

Static database s
~ Functions for !be~~ Mode View

manipulation of
the static structure Source

·~t
Parsetn:es
Global symbol table w Hyp011
Local symbol tables Functions for crea g Mapv dynamic structures WS

occurrence lisu

~
s

calling structures res Navigat\
fDynamic databas slices gen on
Access structures rr etc. ests

~ Controller r USER

Figure 5. Components using the static and dynamic information in HyperSoft.

•l•• p•:
c-d;rf+;
if(>-) (

.-!!,. ,
I el•• (

while (d<sl) (
~c+1;while dl<a2)

Figure 6. Occurrence list and calling structures.

60

structure nodes are represented as highlighted screen
elements bound together with links enabling a fast
transition between them. If there exists only one link
related to a certain node, HyperSoft performs the transition
when the screen element is activated. This is the case for
occurrence lists. If there exists multiple target nodes, a
pop-up menu is shown from which the selection is made.
Note that HyperSoft supports different levels of showing
the links, either 1) only links originating from the active
node are shown, or 2) only the interprocedural links are
shown, or 3) all intra-modular links are shown. In most of
the oncoming figures all defined links are shown.

The calling dependence structures are useful for example
in attempts to estimate the effects of changing a function.
In HyperSoft, all access structures concentrate on the area
specified by the user. Both calling structures contain nodes
corresponding to function calls and function
implementations. In a forward calling structure (Figure 6,
central pane) there exists links from the relevant function
calls to the corresponding implementations. For each of
these implementations links are then formed to the function
calls within their body based on the structural information.
The backward calling structure (Figure 6, right pane)
shows where a certain function may have been called from.
Relevant function implementation nodes corresponding to
the function names of the function implementation are
linked to the calls of that function based on a backward
calling dependence. These nodes in turn are linked to their
context function implementations based on a structural
dependence.

5.2. Slicing structures

Slicing [26] means the extraction of relevant statements
from the source programs into the slice. The focus of
interest is specified by the slicing criterion, which typically
is a variable occurrence within the program text. Slicing

Dimensionffool Kamkar's tool Spyder Schatz' tool

Direction Backward B B

Type of analysis Dynamic D/Static s
Static structures PDG PDG SDG

Slicing criterion FunctionMlevel Variable v

then proceeds backwards or forwards, and possibly spreads
into other functions (interprocedural slicing). Backward
slicing is typically used as an aid to debugging, whereas
the main application area of the forward slicing .is impact
analysis. Slicing systems can be differentiated from each
other by the main characteristics, which are summarized in
Table 3, adapted from [7]. Note, however, that unlike the
other systems, HyperSoft is not a pure slicing system.
Instead, slices are simply one category of possible access
structures within HyperSoft. Boxes whose content is typed
in boldface indicate similarities between HyperSoft and
other systems supporting slicing.

HyperSoft currently supports intraprocedural backward
slicing and interprocedural forward slicing. Slicing is
variable based and the linkages are formed mainly on
"statement" level. The slice is represented embedded
within its original context by using both textual and
graphical views. HyperSoft currently does not support the
analysis of pointer variables (except in function calls) [8]
or the analysis of unstructured flow of control (goto
statements) [3].

Program parts: Program fragments which may be in-
cluded into the slice are of types (see [11]): statement; ele-
mentary statements, init-declarator; initializations of the
assigrunent statement set, and expression; for example
predicate conditions. In some special cases also nodes of
the type identifier are included into the slice.

Dependences: The relevance of each statement is
determined by its data- and control flow dependences to
the slicing criterion. Let x and y be variables in certain
program points within the source code, then if the changes
of the value of y have effect on the value of x (through
assignment statements), then xis data- dependent on y, and
if y occurs in a predicate controlling whether some or any

FOCUS WPIS HyperSoft

B Forward!B Forward/Backw.

s s Static

CFG PDG Parse trees
v v Variable

Scope lnterproced. Inter- Intra procedural Intra- Inter· Inter-/Intra-

Language Pascal subset c Fortran subset C subset Pascal-like c
ViewsText/Graph. T/G, Extracted T,Embedded T, Extracted T,Embedded T,Extracted T/G, Embedded

Linkage Block-level Statement level

Focus Deb.!festing Debugging Not stated Debugging Program integr. Impact analysis

Reference [10] [I] Based on [23] [15] Based on [201 [12]

Table 3. Slicing dimensions and implementations

61

statement which has effect on x will be executed or not,
then x is control-dependent on y.

Formation of the slice: Construction of the slice requires
the traversal of the structured program text started from the
slicing criterion point, by following the programs's control
flow and the determination of whether the traversed
statements are parts of the slice. The necessary information
can be stored in parse trees [2], abstract syntax trees,
production trees [24] or in different kinds of program
dependence graphs (PDGs) [9], such as control flow
graphs (CFG) or system dependence graphs (SDG). In
HyperSoft the slicing is based on static iterative solving of
data flow equations via the backward or forward preorder
traversals and analyses of the parse subtrees corresponding
to the relevant functions. In case of intermodular function
calls, the corresponding new active parse tree and local
symbol table are recreated from disk. There are three main
reasons to the selection of the applied parse tree based
approach: 1) it is consistent with the HyperSoft model, 2)
slicing structures are only one category of possible
HyperSoft access structures, whereas the PDG:s are
tailored for slicing, 3) the updating of the program
database after modification of the sources is more
straightforward than in case of using the PDG:s.

Representation of the slices: Slices are traditionally
represented to the user as a set of program statements
extracted from the original program text. This is not the
case in HyperSoft, because we feel that the context
information about the original program text is important in
order to understand the slice contents. Therefore, in
Hyper Soft the slices are represented as a set of highlighted
screen elements inside the program text. The idea of
representing the internals of slices to the user as graphical
links set on top of the program text is not applied in other
slicing tools. In most slicing tools the slice is just
represented as a set of statements.

Linkages: The use of intra-slice linkages necessitates the
restriction of the number of links to those which are most
useful to the maintainer. Therefore we have decided to
apply the statement level linkage instead of variable based.
The control dependence linkages are excluded from the
slicing structures, since these links are implicit in a sense
that the variable names inside the predicates reveal the
reason why a certain (compound) statement is included
into the slice. Informally, the linkages are formed so that
they reveal the reason why a certain statement is included
into the slice. Formal definition, and the rules for the
formation of a slice can be found from [12].

Intraprocedural backward slices: A backward slice is a
set of statements which may have influence to the slicing

62

criterion. Figure 7 represents a part of an intraprocedural
backward slice as seen through the HyperSoft interface.
Slicing has been initiated from the occurrence of variable x
in statement x=d+k. The slice can be used to find out the
statements affecting a certain statement or to gain general
comprehension about the purposes of the variables.

Interprocedura1 forward slices: A forward slice consists
of a set of statements to which the slicing criterion may
have influence on. Interprocedural slicing analysis is rather
complex. The well-known "calling context problem" [9] is
related to the static upward slicing. Informally, downward
slicing means the analysis of functions which are called
from a certain function, wheras the upward slicing means
the analysis of functions from which a certain function is
called from. During the static analysis, all the upward
calling chains of the initial function (from which the slicing
has been started) have to be checked out. This is the main
cause of the efficiency problems related to the static
interprocedural slicing. Figure 8 shows the originating
module of an interprocedural forward slice whose
formation is based on complete slicing analysis. The
slicing has been initiated from the variable occurrence
j2pi3 within the function j22. A certain function can have
been included to the slice based on both the upward and
downward slicing analyses. There are several ways which
cause a linkage to be formed, including direct or indirect
dependences, downward and upward slicing analysis and
the usages of global variables.

6. Summary and conclusion

We represented the architecture of the HyperSoft system
which enables viewing program text as hypertext. The
architecture is suggested by the Hyper Soft model where the
static syntactical structure and dynamic access structures
are separated from each other. Ways to produce the
necessary static and dynamic information, needed to view
C programs as hypertext, were given. Five actually
implemented access structures selected by the industrial
steering group of the project were described. The access
structures enable fast viewing of relevant program parts
and transition between the dependent program parts. All
hypertextual access structures of HyperSoft are represented
as set of nodes within the original program text, which
makes the investigation of the node surroundings easy.
Also the intra-slice dependences are represented both
graphically and hypertextually as embedded into the
program text.

The HyperSoft system has been implemented in order to
investigate the practical possibilities of applying the
HyperSoft model and method. The first phase of the
HyperSoft project has shown that the idea of representing

. \hlr0ftti.a(2) b-

. \hsoft6.a(2) c-

. \hao:ft6.c(2) g-
• \haoft6.a(3) k-a+c
. \baoft6i.c(3) 1-
. \bacft6.c(3) -
. \haaft6.a(3) .-
. \haoft6.c(6) z3-x
. \hscfU.a(8) d-x

Figure 7. lntraprocedural backward slice.

"'NIA
"'00:01:60
"'00:00:43
"'00:00:34
.. 00:00:21
.. 00:00:22
.. 00:00:18
-oo:oo:1a
.. 00:00:16
.. 00:00:14
.. 00:00:12
"'00:00:24
"'00:00:26
.. 00:00:22
"'00:00:20
"'00:00:24
.. 00:00:22
"'00:00:19
"'00:00:16
"'00:00:1~

"'00:00:11
"'00:00:09
"'00:00:0&
"'00:00:01
"'00:00:0~

Figure 8. lnterprocedural forward slice.

63

. (44nodes)
(BOnodes)
(100nodes)
(113nodes)
(113nodes)
(113nodes)
(116nodes)
(144nodes)
(1~6nodes)

'mllin' (150nodes)
'mllin' (157nodes)
'fo1' (224nodes)
'tl' (224nodes)
'mllin' (224nodes)
'mllin' (224nodes)
'fll' (224nodes)
'19' (224nodes)
't6' (224nodes)
'1-4' (22~nodes)
'fl' (224nodes)
'mllin' (224nodes)
'main' (224nodet)

(224nodes)
(224nodes)
(224nodes)
(224nodes)

the program text and its internal dependences as hypertext
is working in practice. The preliminary experiences with
the HyperSoft system among the representatives of the
partner enterprises and the involved professional
maintainers have been positive. The idea of transient
hypertext, that is, generating the hypertextual access
structure on user request, makes it possible to reduce the
amount of needed statically stored information.

The efficient implementation of full static slicing in case
of very large programs is difficult. This means that in these
situations the slicing has to be performed as a batch
process, emphasizing the importance of supporting flexible
slicing criteria and partial formation of the slices. The
partial formation based on the user -defined number of
upward and downward slicing levels is already supported
in the latest version of HyperSoft. Since parse trees are
needed in forming the versatile set of HyperSoft access
structures, and because they constitute most of the static
program database, their abstraction is the most promising
way of boosting the efficiency of the system. Different
strategies of developing the system performance are
described in [12].

The main emphasis during the next phase of the project
is targeted to the further refinement of the C language
support. Also support for the incremental updates of the
static database and an editor integration will be provided.
Although the currently implemented access structures are
mainly based on data-flow kind dependences, the general
idea of representing the dependent program parts as
hypertext could also be used to deal with, for example, the
differences between different versions of a single program.
Possibilities to extend the current access structure set are
discussed in [12]. Because the generator and interface
components are separated from each other, the
introduction of new languages is in principle
straightforward. The implementation of an analyzer for
embedded SQL database queries has been started in form
of a spin-off project.

Acknowledgements: The financial support of TEKES
(Technology Development Center of Finland), Jyviiskyliin
Kauppalaisseuran Siiiiti6, KT-Tietokeskus, Nokia Research
Center, TT-Tieto (formerly Tietotehdas) and
VTKK-Kuntajiirjestelmiit is gratefully acknowledged.

References

[I] Agrawal, H. Towards Automatic Debugging of Computer
Programs. Ph.D. thesis, Purdue Univ., West Lafayette,
Indiana, USA, 1991.

[2] Abo, A., Sethi, R. & Ullman, J. Compilers - Principles,
Techniques, and Tools. Addison-Wesley, 1986.

64

[3] Choi, J.-D. & Ferrante, J. "Static slicing in the presence of
goto statements". ACM TOPLAS 16, 4 (July 1994), pp.
1097-1113.

[4] Chen, Y.-F., Nishimoto, M. & Ramamoorthy, C. 'The C
information abstraction system". IEEE Transactions on
Software Engineering 16, 3 (March 1990), pp. 325-334.

[5] Cybulski, J. & Reed, K. "A hypertext-based
software-engineering environment", IEEE Software, Mar.
1992, pp. 62-68.

[6] Garg, P. & Scacchi, W. "A hypertext system to manage
software lifecycle documents", IEEE Software, May 1990,
pp. 90-98.

[7] Hoffner, T. Evaluation and Comparison of Program
Slicing Tools. Technical report, LiTH-IDA-R-95-01,
Linkoping University, Linkoping, Sweden, 1995.

[8] Horwitz, S., Pfeiffer, P. & Reps, T. "Dependence analysis
for pointer variables". Proc. SIGPLAN'89 Conf
Programming Language Design and Implementation,
ACM SIGPLAN Notices 24, 7, pp. 28-40, 1989.

[9] Horwitz, S., Reps, T. & Binkley, D. "lnterprocedural
slicing using dependence graphs". ACM TOPLAS 12, I,
pp. 26-60, 1990.

[10] Karnkar, M. Interprocedural Dynamic Slicing with
Applications to Debugging and Testing. Ph.D. thesis,
Linkoping Studies in Science and Technology
Dissertations, No. 297, Dept of Computer and Information
Sc., Linkc;ping Univ., Linkoping, Sweden, 1993.

[11] Kernighan, B. & Ritchie, D. The C Programming
Language, 2nd ed. Prentice Hall, 1988.

[12] Koskinen, J. HyperSoft: Static Program Analyzer,
Program Data Base and Access Structure Generator
Components. Computer Science and Information Systems
Reports, Working Paper WP-35, Dept of Computer
Science and Information Systems, University of Jyviiskyla,
Jyvaskyla, Finland, 60 p., 1996.

[13] Koskinen, J., Paakki, J. & Salminen, A. "Program text as
hypertext - using program dependences for transient
linking". SEKE'94, 6th Int. Conf Software Engineering
and Knowledge Engineering, Jurmala, Latvia, pp.
209-216, 1994.

[14] Krasner, G. & Pope, S. "A cookbook for using the
model-view-controller interface paradigm in
Smalltalk-80". Journal of Object-Oriented Programming
I, 3 (Aug./Sept. 1988).

[IS] Lyle, J., Evaluating Variations on Program Slicing for
Debugging. Ph.D. thesis, Univ. of Maryland, ML, USA,
1984.

[16] Nieminen, M. HyperSoftji.irjestelmi.in ki.iyttoliittymi.ija sen
kehitti.iminen (HyperSoft System: The User Interface),
Master's thesis (in Finnish), Department of Computer
Science and Information Systems, University of Jyviiskyla,
Jyviiskyla, Finland, 1996.

[17] AnaGramTM - User's Guide. Parsifal Software, Wayland,
MA, USA, 1993.

[18] Pressman, R. Software Engineering - A Practitioner's
Approach, 3rd ed. McGraw-Hill, 1992.

[19] Paakki, J., Salminen, A. & Koskinen, J. "Automated
hypertext support for software maintenance". Submitted
for publication.

[20] Reps, T. & Teitelbaum, T. The Synthesizer Generator, a
System for Constructing Language-Based Editors,
Springer-Verlag, 1989.

[21] Salminen, A., Koskinen, J. & Paakki, J. "HyperSoft: an
environment for hypertextual software maintenance",
NWPER'94, Nordic Workshop on Programming
Environment Research. Lund, Sweden, pp. 25-37, 1994.

[22] Salminen, A. & Watters, C. "A two-level structure for
textual databases to support hypertext access". J. American
Society for Information Science 43, 6 (July 1992), pp.
432-447.

[23] Smith, K. PAT: An Interactive Fonran Parallelizing
Assistant Tool. Ph.D. thesis, Georgia Inst. of Techuology,
GA, USA, 1988.

[24] Waddle, V. "Production trees: a compact representation of
parsed programs". ACM TOPLAS 12, 1 (Jan. 1990), pp.
61-83.

[25] Wilde, N., Chapman, A. & Richardson, R. "The extensible
dependency analysis tool set: a knowledge base for
understanding industrial software". J. Software
Engineering and Knowledge Engineering 4, 4 (Dec.
1994).

[26] Weiser, M. "Program slicing". IEEE Transactions on
Software Engineering SE-10, 4 (July 1984), pp. 352-357.

65

IV

AUTOMATED HYPERTEXT SUPPORT FOR
SOFTWARE MAINTENANCE

Paakki, J., Salminen, A. & Koskinen, J. 1996.
The Computer Journal39 (7), 577-597.

(C) 1996 The British Computer Soc. Reproduced with permission.

Automated Hypertext Support for
Software Maintenance

JUKKA PAAKKI1, AIRI SALMINEN2 AND JUSSI KOSKINEN2

1 Department of Computer Science, PO Box 26, FIN- 00014 University of Helsinki
2 Department of Computer Science and Information Systems, University of Jyviiskylii, PO Box 35,

FIN- 40351 Jyviiskylii, Finland '
Email: koskinen@cs.jyu.fi

A model called HyperSoft is presented, which can be used for viewing programs as hypertext.
The main goal in developing the model has been to offer a framework for new program browsing
tools to support the maintenance of legacy software in particular. The model consists of four
layers: source code as such, its syntactic structure, hypertextual access structures based on
the source code and its syntax, and the user interface for viewing and manipulating the source
code and the access structures. The access structures are based on a general relational model
of program dependencies. Both the hypertextual software model and the program dependency
model are language independent and provide for a systematic and automated way of representing
programs as different kinds of dependency graphs. The models are implemented in a program
browsing tool which analyses C programs and automatically generates relevant hypertextual

representations for them, according to requests of the maintainer.

Received July 14, I995; revised October 28, 1996

1. INTRODUCTION

Software maintenance captures all those tasks in software
development that are needed after the software has been
released for the first time. Maintenance has become the
most expensive phase of software engineering, due to the
large number of old legacy systems still evolving and to
the immature state of software reuse. Systematic and
automated approaches to software maintenance are thus of
great practical importance, as proposed for example in [1].

Hypertext integrates text with non-linear navigation
capabilities. This makes it possible to read a textual
representation flexibly in an arbitrary order by following
links between related nodes for text fragments. Therefore,
an access structure based on hypertext can be used as
an aid both for program understanding and for systematic
maintenance, provided that the nodes and links of the access
structure over the program are properly selected to support
the comprehension and maintenance activities.

Viewing programs as hypertext is especially interesting
because program text fragments and their relationships
to each other have been extensively studied within
programming language research, and because there are
many methods and tools for automatic recognition of the
fragments and their relationships. These relationships
are often called program dependencies. For example
EDATS [2] is an extensible dependency analysis tool set
recognizing a number of different dependencies between
entities in object-oriented programs (dependencies like
'isParameterOf', 'isReadBy', 'isLocalOf', 'isOfType',
'sendsMessage', 'superClassOf'). Useful dependencies

also include definition-use relationships [3] and calling
dependencies. Calling dependencies are often represented in
the form of call graphs, which can be formed automatically
[4, 5]. Call graphs typically contain nodes representing
functions of the program, and directed arcs between the
nodes representing the existence of function call(s). Program
slicing means the extraction of relevant statements from the
source programs into a slice. Slicing is typically based on
data and control flow analysis. Techniques for forming the
slices are represented, for example, in [6, 7, 8, 9].

Thus, there exist numerous methods and tools offering
support for linking program parts. In principle, these
methods may be used for the automatic conversion of
program text to hypertext. In practice, however, it is not
always clear what the program parts are in different cases
of dependencies, how they can be linked and what benefits
the linking could offer to a person reading the program text.
The links should be used to support effective navigation of
the source code. In case of large programs, it is far from
clear what effective navigation support means.

In the HyperSoft project our aim is to develop an envi-
ronment in which we are able to study and evaluate differ-
ent hypertextual access structures for program text. Instead
of ad hoc solutions, we want to express the hypertext fea-
tures based on a clear model where the navigation interface
is clearly separated from the hypertextual access structure,
and the access structure from the hierarchic program struc-
ture. In this paper we are going to describe our model for
viewing programs as hypertext, and to discuss what kind of
hypertextual access structures may be created in terms of
well-known program dependencies. We are not looking for

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

578 J. PAAKKI etal.

a static set of nodes and links but different possibilities for
dynamic specifications of structures to support hypertext ac-
cess. The HyperSoft method was originally introduced in
[10], and the architecture of the HyperSoft system in [11].

The background and motivation of our work is given in
Section 2 followed by a short overview of the HyperSoft
model in Section 3. The four layers of the model are
described in Section 4. Another general model, for program
dependencies, is presented in Section 5. Section 6 introduces
a tool based on our general models. Finally, the main
contributions of the approach are summarized in Section 7.

2. MOTIVATION AND RELATED WORK

The HyperSoft system will be targeted to industrial legacy
systems that are currently under extensive non-automated
maintenance. As a preliminary case we have studied the
maintenance of a large distributed administrative system.
The system has the following characteristics of a typical
legacy system.

The system has been developed in a period of 15 years;
the system has several customized versions which all have
to be maintained all the time; the system is large, consisting
of about 14,000 program files and several millions of source
code lines; the system has been implemented using several
languages (mostly C and SQL) and a number of different
programming styles; the system has a large number of
devoted customers, and a complete re-design is out of the
question; the documentation is for the most parts outdated;
the system is assigned a dedicated maintenance group of
about 10 programmers, thus implying significant cost.

Software maintenance has often been divided into
categories based on the nature of the related maintenance
requests, see for example [12]. Considering the maintenance
activities applied to the sample system, it was found that
most of the activities belong to the adaptive class of
maintenance reflecting changes in the system environment.
The system provides, for example, complete management
of personnel and salary information for an organization.
The information is strictly based on existing Jaws and
regulations, and must therefore always be correct and up
to date. Hence, most of the maintenance effort is laid
on introducing regularly appearing official re-regulations
into the system. Another frequently occurring maintenance
request is to provide a more friendly interface or better
reports to the users. Such activities belong to the perfective
maintenance category. The term corrective maintenance
refers to corrections of errors, while the term preventive
maintenance has been coined for those modifications that
raise the quality of the software and thus make it easier
to maintain in the future. In the evaluation of the sample
system it was found that corrective maintenance is rather rare
since the general behaviour of the system is quite stable. On
the other hand, many programming resources are needed for
preventing the maintaining modifications causing new errors
in the software.

In software hypertext systems, hypertextual access
structures often connect various program documents to each

other and to the source code. Examples of such systems are
the tools reported in [13, 14]. In the case of legacy software,
however, there probably is no documentation or" the
documentation is outdated. This emphasizes the problems of
localizing the relevant program parts and of understanding
their dependencies. Soloway and his co-workers have
carried out studies with professional programmers engaged
in a maintenance task [15]. They observed that the
programmers had difficulty in understanding delocalized
plans-that is, pieces of code that are conceptually related
but physically located in different regions of the program.
The subjects often did not realize that there were more
pieces fragmented in the plan and hence the enhancements
they made often turned out to be incorrect. A system
called Whorf [16] was designed to support the programmer
in recognizing delocalized plans. Whorf is a program
visualization tool where different windows are generated,
showing different representations and views of the program.

Whorf as well as some other program browsing and
visnalization tools, like DynamicDesign [17], PUNS [18],
CARE [19] and EDATS [2], identify program dependencies
which are (or can be) provided in the HyperSoft environment
as well. Several systems are able to show call and class
hierarchies, for example the class browsers for Smalltalk
[20] and for C++ [21]. It has, however, been noticed
that representing well-known program dependencies as
separate windows-either graphically or textually-may
lead to techniques which are not used by the programmers.
Lakhotia [22] reports some experiments on program
maintenance and concludes that tools displaying call graphs
have not been very useful. Instead, he suggests capabilities
for database queries or hypertext-oriented browsing.

In the H yperSoft project our aim is to combine query
capabilities with hypertextual navigation capabilities; a
query creates a new access structure which the programmer
may then navigate on the source code. The HyperSoft
model provides a basis for developing and testing different
hypertextual access structures and navigation techniques.
With the clear separation of different layers we are
able to evaluate the interface and the access structures
separately in the HyperSoft system. Also the access
structures are autonomous, and can be generated and studied
independently.

3. AN OVERVIEW OF THE HYPERSOFT MODEL

The HyperSoft model divides a software system into four
layers: the interface layer, the access structure layer, the
syntactic structure layer, and the source code layer, as
illustrated in Figure I. The HyperSoft layers have a
correspondence to the layers of the Dexter model [23]. The
layers of the Dexter model are the run-time layer, the storage
layer and the within-component layer. The Dexter run-
time layer as well as the HyperSoft interface layer deal
with the presentation of the hypertext and user interaction.
The Dexter storage layer models the basic essence of
the hypertext in the same way as the HyperSoft access
structure layer, containing the nodes and links. The Dexter

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

HYPERTEXTUAL SOFTWARE MAINTENANCE 579

Interface layer
Text representation;
access structure specifications; I+-
hypertext representation; Source
interface code layer

f Linear
Access structure layer representation

Dynamically created access in files;
structures; access structure file operations
operations

f
Syntactic structure layer
Parse tree representations;

I+-parse tree operations

FIGURE 1. Layers of the HyperSoft model.

within-component layer is concerned with the contents and
structure inside the nodes. In the HyperSoft model, there are
two layers corresponding to the Dexter within-component
layer: the syntactic structure layer describes the hierarchic
structure of the whole program text and the source code layer
contains the source code files.

The purpose of developing the Dexter model has been to
capture the important abstractions found in a wide range of
existing and future hypertext systems [23]. The HyperSoft
model instead is an attempt to capture the important
abstractions found in program text and combine them to the
abstractions concerning dynamic hypertext. The similarities
and differences between the HyperSoft model and the Dexter
model will be discussed more in Section 4.

The HyperSoft model is derived from a hypertext model
defined for structured text in general, meaning text defined
by a grammar [24]. In the HyperSoft model, the data
of a hypertextual software system consists of a set of
files, each containing a piece of linear program text. This
original text is considered at the source code layer. The
linear text contains the program in the form the original
programmer has authored it. From the viewpoint of program
understanding, an important structure in program text is
its hierarchic structure, defined by the grammar of the
programming language. The maintainer of the program has
to understand the components in the hierarchic structure.
In the HyperSoft model, this structure is expressed at the
syntactic structure layer as a parse tree with respect to the
grammar. The syntactic structure layer also contains other
compiler-oriented data structures describing the program's
components, most notably a symbol table. Imposing a
hierarchic structure on hypertext is a method extensively
used for solving disorientation problems, see for example
[25, 26]. In the HyperSoft model, a hypertextual access

structure is always defined over a hierarchic structure.
Since the dynamic nature of hypertext is essential to the

HyperSoft model, the access structure layer is regarded
as a dynamic component of the system. During program
reading, the programmer may create new access structures.
The access structure layer contains a set of different access
structures which the user is able to operate on. Each of the
access structures may be regarded either as a set of nodes or
as a set of nodes and links. The nodes of the access structure
are always nodes of the parse tree, each representing a part
in the hierarchic text structure. An access structure describes
a specific kind of dependency between program parts. The
dependency may be as simple as a common property of the
parts; for example, an access structure may consist of the
output statements of the program. On the other hand, the
dependency may also be a more complicated relationship
expressed as a graph, such as a slice or a call graph.

The interface layer allows the user of the system to
display source code on windows, specify access structures,
manipulate access structures, and navigate in the current
access structure. The dynamic creation of access structures,
based on the current information requests of the maintainer,
is our way to reduce both the disorientation and the cognitive
overhead problems. In many systems, cognitive overhead
occurs in the process of reading hypertext which tends to
present too many choices about which links to follow and
which not to follow [27]. In our approach the generic
user interface supports different access structures, and
appropriate browsing strategies [28] are designed for the
specific access structure categories. The number of possible
links available is minimized by showing in a window only
those which support the specific information needs. Another
practical decision is to present the source program in its
original textual form, so as to map the nodes of an access
structure directly to the program components subject to
maintenance.

4. PROGRAMS AS HYPERTEXT

In the previous section we gave an overview of the four
layers of the HyperSoft model, illustrated in Figure l. The
figure also showed how the data is transferred between the
layers. In this section we will address each of the layers and
the data transfer between them in more detail.

4.1. Source code

The basis of the text handled in a software system consists
of a set of source code files. Hence any software system
needs capabilities to read and update text in the files. In
the HyperSoft model, the source code files as well as the
capabilities for handling them are included in the source
code layer. Central questions related to this layer include:

• How is the source code stored on disk, using either file
systems or database systems?

• What are the mechanisms to retrieve the source code
from disk?

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

580 J. PAAKKI et al.

In hypertextual program reading, the functions retrieving
pieces of the source code are needed at two other layers.
For creating the hierarchic parse tree, the syntactic structure
layer needs to analyse the original source code. It retrieves
the text from the source code layer, as shown in Figure I.
Also, when the text is displayed on windows by the interface
layer, the text is retrieved from the original files. Thus there
is data transfer from the source code layer to the interface
layer as well.

4.2. Syntactic structure

Program text is a case of a currently quite common type of
electronic text, i.e., text defined by a context-free grammar.
For example, all SGML documents are defined by a context-
free grammar [29]. The basic notions concerning grammars
and parse trees may be found for example in [30]. The
notions of the syntactic structure layer in HyperSoft are
taken from a general grammar -based text model described in
[24, 31]. The central questions which have to be answered
at this level in order to form the hypertext include the
following:

• What is the information that should be statically
(permanently) stored in the program database in order
to make the hypertext generation possible and efficient?

• What is the method of creating the program database?
• What is the storage form of the program database

information?

The grammar of a programming language specifies the
character strings accepted as programs of the language, and
the hierarchic structure of a program is expressed in its parse
tree representation. In the language compiler, the meaning
of program text is expressed by associating semantic
specifications with the elements of the hierarchic structure.
To be able to understand the program, the maintainer has
to be able to identify the elements in the structure defined
by the grammar. In the HyperSoft model, the syntactic
structure layer contains the parse tree and the symbol table
representations of a program, the capabilities for creating
them, and the operations for retrieving information from
them.

As a sample program throughout the paper we will
consider the C program shown in Figure 2. Its parse tree
is sketched in Figure 3. The parse tree is represented
only partially, so that the non-terminals whose content is
represented as triangles (and the associated program text) are
not further elaborated in the figure. The associated source
code text is written in boldface.

The parse tree is created by analysing the source
code shown in Figure 2 with respect to a context-free
grammar with the following productions (only the relevant
productions are listed):

(1) program~ translation-unit eof
(2) translation-unit ~ external-declaration I translation-

unit external-declaration
(3) external-declaration ~ declaration

definition
function-

int main(void) {
/* This ~aginary SPC i~ used to */
/* illustrate the generation and use of */
/* HyperSoft access structures */

)

int in=O,out=O;
printf ("Input: rr) ; scanf ("%d", &in);
out=fl (:i.n) +f2 (:i.n);
printf("\nOutput=%d",out);
return 0;

:i.nt fl (:i.nt pl) {
return pl-g3+f4(pl,gl,g2);

:i.nt f2 (:i.nt pl) {
int g1=g2+pl;
return gl;

i.nt f3 (int *pl,int *p2) {
int t=*pl;*pl=*p2;*p2=t;
return(*pl>*p2);

FIGURE 2. A sample C program.

(4) declaration~ ...
(5) function-definition ~ declaration-specifiers declarator

compound-statement
(6) declaration-specifiers ~ type-specifier
(7) type-specifier ~ 'int' I 'void' I .. .
(8) declarator ~ direct -declarator I .. .
(9) direct-declarator ~ identifier I direct-declarator '('

parameter-type-list ') '
(10) identifier~ ...
(11) parameter-type-list~ type-specifier I
(12) compound-statement--> '{' declaration-list statement-

list'}'
(13) declaration-list--> ...
(14) statement-list--> statement I statement-list statement
(15) statement--> expression-statement I ...
(16) expression-statement --> ';' I expression ';'
(17) expression --> assignment-expression I ...
(18) assignment-expression --> unarycexpression

assignment-operator assignment-expression I ...

Non-terminal symbols are indicated with alphabetic
names, terminal symbols are embedded within a pair
of apostrophes ('), --> separates the left-hand side of a
production from its right-hand side, and alternatives are
indicated by the symbol I. The grammar is not further refined
for the non-terminals that are not relevant to the examples.

The parse trees handled in software systems usually
follow the abstract syntax of the program text; not the
concrete syntax. The delimiters needed for analysing textual
elements, not carrying any semantic information, are not
needed in the parse tree. For example, in Figure 3 the braces
surrounding a compound statement can be excluded from
the tree. Thus the actual grammar defining the parse tree is

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

HYPERTEXTUAL SOFTWARE MAINTENANCE 581

program

/~
translation. unit eo f
/............__ .

translation-urn! external-declaration

/ ~ . --------- . . . translation-umt external-declaration function-defulition

./__ ·-------· .. ~ translation-umt external-declaration function-defulitwn _ int f3~ 'P2) { .. }

trans~-~emal-declarati~ction-defulition ~L______C_
I ~ ~----mt~{ ... J

external-declaration function-defulition
; ----~-------- n.(' Il c ... J

declaration declaration-speciflers decla!ator compound-statement

. A type-s~fter direct{.ctamor { ~Jtion~)
Uri~""' / /I ~------ k k int direct-declarator (parameter-type-list)

I I in =0, o; p tf("I,.. · "); ...
ideotifier type-specifier
I I

main wil

FIGURE 3. A partial parse tree for the program in Figure 2.

usually a transformation of the grammar used for analysing
the source code. For example, in the grammar describing
an abstract form of the parse tree in Figure 3, production
(12) of the original grammar above would be replaced by
the production

(12) compound-statement--+ declaration-list statement-list

Grammar transformations and corresponding text trans-
formations are discussed for example in [30]. We suppose
that the parse tree X at the syntactic layer of HyperSoft ei-
ther describes the concrete syntax, or is created such that any
subtree in X always has a unique counterpart in the parse tree
X' that completely describes the concrete syntax correspond-
ing to the original grammar. Thus for any subtree in X we
are able to specify a corresponding substring in the original
source code. The substring consists of the terminal symbol
labels in the subtree of X'.

Each non-terminal of a grammar represents a set of textual
entities. Therefore, a non-terminal of the grammar is called
a text type. In the C grammar there are, for example,
text types program, external-declaration, and function­
definition. Given any program, each of the non-terminals
stands for a set of text parts in the program. In the parse tree,
the parts are represented by nodes labelled by non-terminal
symbols (and the respective subtrees). Since each part in the
parse tree should correspond to an identifiable substring in
the source code, a node is regarded as a part only if it is not
the single child of its parent. The node labels indicate types
of parts such that the label of a single child renames a part.

HyperSoft's syntactic structure layer together with its
source code layer correspond to the within-component layer
of the Dexter modeL The within-component layer is

concerned with the content and structure of the components
in the hypertext network. A node might be, for example,
an SGML document or a program text. The HyperSoft
model starts the building of a hypertextual access structure
from a program which may be very large (millions of lines,
thousands of files). The files and their handling are described
at the source code layer. The analysis of the files and
the creation of the syntactic structure may be incrementaL
The abstract model, however, is based on the idea that
the parse tree at the syntactic structure layer describes the
whole program. The hypertextual access structure is then
defined on top of the syntactic structure. This provides us
the flexibility we need for defining different kinds of access
structures for one program.

4.3. Access structure

The access structure layer contains a set of access structures,
algorithms for creating them, and operations on them.
For creating the access structures, the access structure
layer retrieves data from the parse tree of the syntactic
structure layer. Potentially useful access structures for
a program text, corresponding to different categories of
program dependencies, will be discussed in Section 5. The
questions related to this layer include the following:

• What are the useful access structures?
• What is the type of seed for each access structure type

(variable, function, syntactic type, or something else)
and the way to define it (using a reference, complex
expressions, a query language)?

THE COMPUTER JOURNAL, VoL 39, No.7, 1996

582 J. PAAKKietal.

~nt gl=l,g2=2,g3 3;

int main (oid) (
I* This iJ agi.nary SPC is used to +I
/* illust ate the generation and use of */
/"' HyperS ~t access structures *I

i.nt in ,out~

print£ ('(ltinput: ") ; scan£ ("%d", &in);
out fl(in)+f2(in
pri.ntf (noutput id", out);
return

int fl (in pl) (
return 1-g3+f4 (pl,gl,g2);

int f2 (in pl) (
int gl g2+p 1;
return 1;

int £3 (i *pl,int *p2)
lint t "*pl;l*pl ""p2;l*p2 €;1
return(*pl>*p2);

FIGURE 4. A simple access structure.

• Should different node and link types be used within a
single access structure type?

• Would it be useful to combine the access structures and
how could this be done?

• Should it be possible to store the access structures for
later use?

For browsing purposes hypertext is often modelled as a
directed graph, i.e. a pair (Z, E) where Z is a set of elements
called nodes and E is a set of node pairs called links. The
nodes of a link are called the start node and the destination
node. In H yperSoft, the access structure the end user is
navigating is also a directed graph. The access structure is
called a navigation structure. The nodes of the graph as well
as the nodes in all access structures are parts in the hierarchic
text structure, in other words, nodes in the parse tree of the
syntactic structure layer.

Figure 4 shows an access structure for the sample program
of Figures 2 and 3. The navigation structure is denoted on
top of the source code text. A part appearing as a hypertext
node is indicated by a frame around the value of the part
in the source code. Links are indicated by arrows. The
navigation structure consists of the parts of type declaration
or assignment-expression in the program, linked according
to their preorder in the parse tree. The purpose of this
navigation structure is to capture all those elements in the
program where a variable can be given a value.

The user creates an access structure for specific
information needs. The new structure may be a navigation
structure with links. On the other hand, the user may
also specify an access structure simply as a set of parts
of the program text. Considering an access structure as
a set allows the application of hypergraph-based hypertext
models represented in [24, 32], which offer operations on

node sets. For example, considering two access structures
as sets it is possible to create their union, intersection or
difference. A navigation structure can be derived froni a set
of nodes by specifying the way links are created between
the nodes. A simple way to specify the links is to define
an order among the nodes. The order may be based, for
example, on the preorder of the nodes in the parse tree. If
the text corresponding to the nodes is located in the same
file then the order is the same as the textual order in the file.
If the parse tree has been created from a program consisting
of a set of files then a link may connect parts whose values in
the source code are located in different files. The navigation
structure shown in Figure 4 might be created in the following
steps:

I. create an access structure consisting of the parts of type
declaration,

2. create an access structure consisting of the parts of type
assignment-expression,

3. create the union of the two access structures,
4. create the links between the nodes according to their

preorder in the parse tree.

The access structure layer of the HyperSoft model
corresponds to the storage layer of the Dexter model; in
both cases the nodes and links are expressed at this level.
In the Dexter model the term node is used sometimes
but the fundamental entity and basic unit of addressability
in the storage layer is a component. In HyperSoft, the
fundamental entity is a program part, i.e. a node in a
parse tree. In the Dexter model a component is either an
atomic component, a link or a composite entity made from
other components. Since the within-component layer is
intentionally not elaborated within the Dexter model, the
model needs a special mechanism for the interface between
the storage layer and the within-component layer. This
mechanism is called anchoring. The HyperSoft model is
specially designed for structured text, i.e. text defined by a
grammar. The syntactic structure layer contains the program
text as a hierarchy of parts such that each part is uniquely
addressable. Therefore no special mechanism is needed
for handling the interface between the two layers. The
hypertext nodes are always program text parts, and a link
is a relationship between parts. The way nodes and links are
expressed on the screen is determined at the interface layer.

4.4. Interface

The interface layer of HyperSoft allows the display of
the source code in windows, the specification of access
structures, the manipulation of the access structures and
the navigation in the current access structure. In principle,
the source code is supposed to be displayed as it has been
written. In addition to the text itself, the nodes and links have
to be visualized somehow. A node of an access structure is
represented on the screen by the value of the part, i.e., the
source code substring corresponding to the part in the parse
tree. The following are examples of the central questions
which have to be answered at the interface layer:

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

HYPERTEXTUAL SOFTWARE MAINTENANCE 583

•
•

•
•
•

What kind of windows are created?
What is the technique for specifying specific access
structures?
How are the nodes of the current access structure shown
on the screen?
How are the links expressed on the screen?
How is navigation achieved?

Concrete examples of the interface layer will be given in
Section 6 where we present different navigation structures as
currently provided in the HyperSoft prototype.

5. RELATIONAL DEPENDENCY MODEL

The core of accessing software in the HyperSoft model
is to extract potentially useful dependencies automatically
from the program at the access structure layer. These
dependencies are then evolved into navigation structures and
provided to the user in the form of hypertext at the interface
layer.

The central problem in this kind of approach is to select
the useful dependencies to be provided to a maintainer. The
research of software analysis and compilation techniques
has invented a large number of program dependencies, all
more or less relevant in their application area, e.g. [12, 33].
An investigation into well-known program dependencies
that have significance especially in the context of software
maintenance is given in [10].

To capture the essence of program dependencies, we
present a classification of them in this section. Our
classification is based on considering dependencies as
relations between text parts; recall from Section 4 that
each text part stands for a specific syntactic element in the
program and for a node in its parse tree. We will discuss just
the main principles of regarding program dependencies as
relations; a more detailed characterization is given in [34].

As usual in modelling, the classification is abstract and
general in the sense that it does not directly express the
concrete particular program dependencies but instead their
common characteristics and relationships as dependency
categories. Hence, in object-oriented terminology, a
category corresponds to a class, while each actual
dependency corresponds to an object (an instance of its
category). Finally, a hypertextual access structure is derived
from the dependency instances using standard relational
primitives.

Our classification introduces different categories of
dependencies. General (super)categories are refined
into subcategories on several levels according to certain
criteria. The categories can be characterized in terms of
their relational properties, such as (RI) reflexivity, (R2)
symmetry, (R3) transitivity, and (R4) antisymmetry which
are defined as follows:

(Rl) xRx for each partx in the relation R;
(R2) xRy => yRx;
(R3) xRy 1\ yRz => xRz;
(R4) There are no parts x andy, x # y, such that xRy and

yRx.

Besides expressing the essential differences between the
dependency categories, these relational characteristics also
have significance in suggesting both how to extract the
corresponding access structures from the program and how
to explicitly present them at the interface layer of HyperSoft.

5.1. Classification

Our classification of program dependencies is shown in
Figure 51. The classification is given in the OMT
notation [35] where the refinement of a supercategory into
subcategories is expressed with a triangle. Each category is
specified by giving its name and properties. (For simplicity,
we do not make a notational distinction between data
properties and algorithmic properties.) Each subcategory
inherits the properties of its supercategories.

Since we express a (binary) dependency as a hypertextual
link, each dependency involves a start node and a destination
node. For different kind of dependencies, the nodes
may be of different text type. This is modelled in the
classification by the properties Start types and Destination
types, respectively, that are inherited from the root category
Dependency to all the subcategories. These properties are
related to navigation structures and will be discussed in
Section 5.2.

Each dependency instance also involves a specific
algorithm to find all the pairs of program parts that are in
the particular dependency relation. This is modelled by the
property Algorithm. Let a R b denote that parts a and b
are in the dependency relation R. Then Algorithm of the
dependency instance R can be exploited to automatically find
all such pairs (a, b) from the program and, as a consequence,
to build the access structure corresponding to R.

5.1.1. Matching dependencies
At the top level of the classification the dependencies are
divided into Matching and Subordination ones. Intuitively,
a relation R1 belongs to the category Matching if a R1 b
implies that the parts a and b are somehow similar in their
syntax or semantics, while a relation R2 belonging to the
category Subordination means c R2 d to imply that part
c dominates or has control over part d. The Matching
relations are reflexive (Rl), symmetric (R2) and transitive
(R3) (hence, equivalence relations).

For a Matching dependency a R b, the similarity of a and
b can be defined on either a lexical, syntactic or semantic
basis. If R is Lexical, then a and b have a similar pattern
of pure text; in other words, a and b can be defined with
the same regular Pattern expression over characters. The
involved property Algorithm then finds all those parts from
the program that are textually similar, as proposed e.g. in
[36]. For instance, a Lexical relation might include all the
occurrences of names starting with the string 'foo': 'f' 'o'
'o' any* where any stands for any letter or digit.

Property Pattern for a relation R in subcategory Syntactic
specifies the syntactic shape of the parts. In other words,

1 For simplicity, we have omitted some categories that are not essential
for the main subject of this paper.

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

584 J. PAAKKI eta!.

FIGURE 5. Classification of program dependencies.

a R b implies that the syntax of parts a and b is defined
with the same (abstract) context-free grammar, and that the
subtrees for a and b are isomorphic in a parse tree. Property
Algorithm for a Syntactic category typically applies pattern
matching in {parse) trees, as suggested e.g. in [37, 38]. For
instance, a Syntactic relation might extract from the parse
tree all the parts of the same Syntactic type, as was illustrated
in Figure 4.

Two parts a and b in a Semantic relation either express
the same computation (subcategory Computation) or two
program structures with the same software engineering
quality (subcategory Quality). In the former case, the
semantic property Pattern may stand e.g. for a data-flow
computation [7] or a specific algorithm (a cliche) [39].
For instance, a Computation relation might capture all the
different sorting algorithms used in the software. Two parts
are in a Quality relation if they have the same Threshold
value characterizing some quality factor. Cohesion and
coupling, for instance, are two well-known approximations
for the quality of modules [12] and cyclomatic complexity
[40] is a standard metrics for computational and mental
complexity of programs. Thus, a Quality relation might e.g.
hold between subprograms that are too complex for a sound
maintenance, being at the Threshold level 10 or higher in
their cyclomatic complexity.

The similarity of the parts in a Matching relation can be
graphically illustrated with a special spatial arrangement of
them at the interface layer. For instance, an affinity browser
[41] has been proposed for visualizing a relative Syntactic
or Semantic similarity of the classes in an object-oriented
program.

5.1.2. Subordination dependencies
As characterized above, one part somehow dominates the
other in a Subordination relation. For instance, a R b might
mean that part a contains part b as one of its components (in
the case of structured types), that a is a superclass of b (in the
case of classes of an object-oriented program), or that a calls
b (in the case of functions). The Subordination relations

are transitive (R3) and usually antisymmetric (R4) as well.
However, the flexibility of functions in most programming
languages makes, for instance, the calling relationship non-
antisymmetric in the general case: there may well exist a
mutual calling dependency (a Calls b, b Calls a) between
two functions a and b of the same program. Hence,
the non-antisymmetric domination dependencies (such as
Calls) belong to the category Subordination, whereas the
antisymmetric ones (such as Contains and IsSuperclassOf)
are located in its subcategories.

Unlike a Matching dependency, a Subordination depen-
dency is not symmetric. Therefore it always has a meaning-
ful inverse dependency relation that can be generated in a
straightforward manner from the original one. For instance,
the inverse of aisSuperclassOfb is b IsSubclassOfa, and the
inverse of a Calls b is b IsCalledBy a. The inversion property
of Subordination dependencies is utilized in the HyperSoft
prototype for some central navigation structures (see Sec-
tion 6).

In general, a (non-equivalence) relation a R b is either
of type 1-to-1, 1-to-n, m-to-1 or m-to-n, depending on the
possible arity of a and b. In the context of HyperSoft the
'arity' means how many different parts for a and b there are
such that a R b holds. For example, a dependency R is of
arity 1-to-1, if there is a single part a and a single part b in
a R b, and of arity 1 -to-n if a is unique but there may be
several different bs in a R b. The arity of a dependency is
represented in our model by the property Arity associated
with the Subordination category.

Notice that the inverse of a 1-to-n dependency belongs
to the m-to-I category and, accordingly, the inverse of an
m-to-1 dependency is of arity 1-to-n. The inverse of a 1-
to-1 dependency is also 1 -to-I, and the inverse of an m-to-n
dependency remains in the arity type m-to-n.

Subordination is specialized into two direct antisymmet-
ric subcategories, Parametric and Non-parametric. A Para-
metric dependency R entails some additional information to
make a R b hold, while there is no such parameter for the
Non-parametric relations.

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

HYPERTEXTUAL SOFTWARE MAINTENANCE 585

For example, the /sSuperclassOf dependency mentioned
above, mapping a class with its subclasses in an object-
oriented program, is of category Non-parametric with arity
/-to-n in the case of single inheritance. Therefore the inverse
dependency, IsSubclassOf, is Non-parametric with arity m­
to-1. The Subordination dependency Calls and its inverse
1sCalledBy are usually of arity m-to-n; this shows the fact
that a function may call several functions and may itself be
called from several functions. Hence, a conventional call
graph usually takes the form of a general graph where a node
may be connected to several other nodes in both directions.
The same holds for multiple inheritance in object-oriented
programs: in that case both the dependency 1sSuperlassOf
and its inverse JsSubclassOfare of arity m-to-n rather than of
arity 1-to-n and m-to-1 as in the case of single inheritance.

5.1. 3. Control and data dependencies
When a program is executed, it basically involves merely
control (determining the applied statements and their
relative invoking order) and data (capturing the computed
values). In our model, these fundamental concepts appear
as dependency categories Control and Data, respectively.
The dependencies in these categories are associated with
parameter information, as expressed by their common
supercategory Parametric.

The property Condition of Control denotes a Boolean
expression c whose value shall be True in order to realize
an instance of the dependency during program execution.
In other words, a Control relation a R b with Condition c
means that the part b will be executed immediately after
the part a only if the involved condition c yields True
when executing the program. Notice that an unconditional
flow of execution from a to b is not represented by a
Control dependency but rather by a Non-parametric one.
Hence, in a conventional control-flow graph each pair
of successive parts is either in relation Non-parametric
of arity 1-to-1 (statement sequences), Non-parametric of
arity m-to-1 (unconditional loops), or Control of arity
1-to-n or m-to-n (conditional statements and controlled
iterations). Such a many-faced graph can be characterized
as a hypertextual navigation structure by combining the
individual elementary dependencies (here: Non-parametric
11-to-1, Non-parametric /m-to-1, Control 11-to-n, Control
lm-to-n) into a compound dependency (see Section 5.2
below).

The property Variables represents the set of variables that
move data from part a into part b for a Data dependency
aRb. Usually, an instance of such a dependency expresses
an immediate !low of data from statement a to statement b
during the program's execution. Notice that in this sense a
data flow from a to b always implies that a and b are in a
(transitive) Control relation as well.

Since the Parametric relations R stand for possible
execution flows within a program, they are, besides transitive
and antisymmetric, also irreflexive:

(R5) There is no part x such that xRx.

Notice especially that a direct loop from a statement

into itself is always an unconditional jump and thus not
of category Control or Data but rather of category Non-
parametric with arity m-to-1.

5.2. Dependencies as navigation structures

Having set up the dependency model, we can precisely
define what a navigation (access) structure means in
HyperSoft. First, the basic dependencies presented above
are generalized into a joint compound dependency:

Let R1, R2 ... , Rn(n :=:: I) be concrete dependencies, that
is, instances of the dependency categories given in Figure
5. A compound dependency Rc is defined as a relational
expression over the elementary dependencies:

where each occurrence of the symbol o stands for one of the
set operations U (union), n (intersection), (difference)2 .

As a set expression, a compound dependency defines the
nodes for an access structure. To obtain a hypertextual
navigation structure as a graph, the directed links have to
be defined as well. For the antisymmetric Subordination
dependencies R, the linking is obvious. For each relation
a R, b, a will be the start node and b the destination
node; hence, there will be a directed arc from a to b
in the navigation structure. For the symmetric Matching
dependencies Rm the direction is not that obvious. In the
HyperSoft prototype, the usual choice is to apply the textual
order of the nodes: For a relation a Rm b, a will be the
start node and b the destination node if a precedes b in the
preorder over the parse tree; otherwise b will be the start
node and a the destination node3

In the simplest case a compound dependency consists of a
single elementary dependency (n = I) which directly yields
the corresponding navigation structure. Often, however, the
navigation structure is a hybrid one and formed in terms of
several elementary program dependencies. For instance, the
navigation structure shown in Figure 4 is spanned by the
compound Syntactic dependency lsOjType (declaration) U
IsOjType (assignment-expression).

Usually a hypertextual navigation structure has a specific
program part r that the user has selected as the root when
dynamically specifying the access structure in which she
or he is interested. As an example, the mandatory slicing
criterion (usually a variable occurrence) is the root of a
conventional forward or backward slice. There might be an
implicit root even in cases when the user has not explicitly
defined one. For instance, applying the pre-order for
linking has introduced a root node in the navigation structure
of Figure 4. For a user-specified criterion, a navigation
structure is the retlexive transitive closure of a compound
dependency relation R· with respect to the specified root
part r: The navigation structure contains all those parts
for which the relation r R; holds. The initial node a0 in

2Negation (-.) is not applied since it is not useful in this context.
3Note, however, that the HyperSoft model deos not fix the linking

direction for symmetric relations.

THE COMPUTER JOURNAL, Vol. 39, No.7, !996

586 J. PAAKKJ eta/.

the navigation structure is r, and the directed graph ao --->
a1 ---> a2 •.• is constructed from the chain of dependencies
r = anRcat R,a2R, ...

For instance, if Rc is the IsSuperclassOf relation and r
represents the root of an object-oriented class hierarchy,
then the navigation structure corresponding to Rc comprises
all the direct and indirect subclasses of the class r. Thus
our dependency classification in Figure 5 can be regarded
as a hypertextual navigation structure over dependency
categories, with Dependency as the rool. Combining a
Subordination dependency with its inverse makes it possible
to traverse the navigation structure in both directions. For
instance, having Rc = IsSuperclassOf U IsSubclassOf
makes it possible to trace the intricate 'yoyo' phenomenon
in object-oriented programs where control moves up and
down the class hierarchy along inherited operations and self
references [42].

The special relational properties of the underlying
elementary and compound program dependencies affect,
besides the navigation structures at the access structure layer
of HyperSoft, also their appearance at the interface layer.
For instance, one solution to the disorientation problem of
large hypertexts is to associate each node in the navigation
structure with a direct backtrack link to the root node r.
Another reflection is to have several alternative hypertext
links both from a start node for dependencies of arity I -to­
n as well as to a destination node for dependencies of arity
m-to-1. For dependencies of arity m-to-n, both start nodes
and destination nodes may have alternative links. Hence, the
nodes in a navigation structure over an object-oriented class
hierarchy with multiple inheritance would have alternatives
both as incoming and outgoing links.

In addition to the notion of a root, other useful concepts
can also be defined in terms of the relational properties of our
dependency classification, examples being cycles, strongly
connected components and the distance between two parts.
We do not discuss these concepts here in more detail but
refer instead to [34].

Since our hypertextual dependency model is relational,
it could well be supported by a special query language,
for example in the style provided in EDATS [2]. Such a
relational query language is not included in the HyperSoft
prototype where the dynamic specifications are given as
direct indications on the source code. The development of
a query language is one of the possible research directions
in the future, as well as e.g. the design of a pattern definition
language for dependencies in the Matching category.

In addition to the HyperSoft classification presented in
this section, a number of other dependency classifications
have been proposed, for instance in [2, 19, 41]. The
main contribution of our approach is to have a general
classification of possible program dependencies, whereas
the other ones can be seen as particular classifications in a
concrete sense. In other words, the classifications mentioned
above can be characterized as being defined over instances
of our universal classification of dependency categories.
Another general approach to program dependencies is
provided in PegaSys [43]. The main difference to our

formalization is that PegaSys is based on a logical calculus
whereas HyperSoft applies a relational model.

6. THE HYPERSOFT SYSTEM

A prototype maintenance support tool based on the
HyperSoft model has been constructed at the University of
JyviiskyHi in an ongoing project, started in 1994 and funded
mainly by the Technology Development Centre of Finland
(TEKES). The project is guided and partially financed
by an industrial steering group having representatives
from the four largest software houses in Finland: KT-
Tietokeskus, Nokia, TT-TietoNaltionjarjestelmat and TT­
Tieto/Kuntajarjestclmiit (formerly VTKK). The design and
implementation decisions concerning the system have been
discussed and agreed in the steering group. A significant
number of the maintenance problems in the partner
enterprises are related to legacy systems written inC [44].
Hence C was chosen as the first language to be supported
in the system. The system supports the examination of
complete C programs. The needs of the partner enterprises
have also determined the selection of PCs as the platform
and Microsoft Windows as the operating system under
which the user interface operates. In Section 6.1 we will
first shortly characterize the access structures chosen for the
prototype. Then the use of the system, its implementation,
and its usability evaluation will be discussed in Sections 6.2,
6.3 and 6.4 respectively.

6.1. Current access structures

In the beginning of the HyperSoft system design, several
potential access structures were introduced to the industrial
steering group. Of the structures, five were regarded as the
most appropriate for attacking the maintenance problems of
the participating companies. In the following each of the
chosen structures is briefly described; their use in the system
will be described in Section 6.2. In the current system, all
five access structures are created and stored as navigation
structures. In other words the links intended for browsing
are included in the access structures. So far no general
access structure manipulation capabilities are provided in the
system.

An Occurrence list (set) is an access structure which
contains the occurrences of a specified symbol. Thus
there exists a Semantic Matching dependency among the
parts. The set may contain links between the elements.
The nodes within the structure are currently ordered based
on their preorder in the underlying parse tree. Also,
more complex dependencies could be formed, such as
Subordination between the definition and use parts. The
symbol may stand for a variable, function or macro. Both the
start and destination nodes bounded within this structure are
of type identifier [44]. This structure, as well as the others,
could be combined with other access structures to produce
more confined or extended compound navigation structures.

An occurrence list is a useful access structure in many
different kinds of maintenance situations, by providing

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

HYPERTEXTUAL SOFTWARE MAINTENANCE 587

starting points for further browsing. The occurrences
of familiar symbol names serve as beacons [15] to the
attempts of gaining general comprehension over the program
text. The conventional text search is often not sufficiently
accurate, especially in the case of overloaded short symbol
names, like i. In addition to general comprehension support
an occurrence list can he used, for example, to find the
occurrences of a variable whose value should he changed
(adaptive maintenance) or to rename poorly named symbols
(preventive maintenance).

Forward and backward calling structures contain parts
of the dependency chains traditionally represented in call
graphs. Each of the structures is created for a function
chosen by the user. As noted in Section 5, in terms of
our dependency classification forward and backward calling
access structures contain Subordination dependencies. As
an access structure pair, forward and backward calling
structures (as well as forward and backward slices described
below) are an example of a dependency relation and its
inverse relation.

When using systematic comprehension strategies the
maintainer tries to gather sufficient information about the
program structure and behaviour before making changes to
it. This information gathering is often based on tracing the
control and data flows of the program. Because program
execution follows the control flow and the functional
decomposition splits it, there is a need to find the associated
function calls and implementations. The often followed
top-down comprehension strategy necessitates finding the
function implementations (and the associated comments).
The automatic methods of showing the call graphs help in
this task. In HyperSoft, the forward calling structure is
formed only for the function(s) that the maintainer considers
relevant to the current maintenance task. Similar to an
occurrence list, this structure is useful in a wide range
of maintenance situations. It is important to evaluate the
possible effects of the intended changes on the functions
which use the modified function (ripple-effect analysis),
especially when making changes to a lower-level function
of a large system. Also, when identifying a usage of
a global variable, it would be useful to be able to trace
the control flow back to the points where the variable has
previously been used. These types of information requests
can be satisfied by backward calling structures, as well as by
backward slices, described below.

Backward slicing is the more conventional form of slicing
introduced by Weiser [45]. Some of the main ideas
behind the forward slicing were introduced in [46] and
the terminology was systematically first used by Horwitz
et at. [6]. Forward and backward slices provide a view
of a program based on the extraction of somehow relevant
statements during tracing of the program's control and data
flow. Since control flow can be traced to two directions, it
is possible to form both backward and forward slices. Since
slices involve both data flow and (dominating) control flow,
backward and forward slices are in our dependency model
produced from compound dependencies of the form D U C,
where D is of category Data and C is of category Control.

The slicing structures of HyperSoft support variable-based
slicing and statement-level linkaging. The slicing criterion
is always taken as the root of the corresponding navigation
structure.

One main approach to find the programming errors is
to trace the control flow of a program backwards from the
point where the erroneous (output) value has been identified.
Backward slicing is specially tailored for this purpose. A
backward slice consists of the statements which may have
effect on the slicing criterion, i.e. a symbol of interest, thus
helping to locate the cause of the error. In the style of
Weiser [45], an intraprocedural backward slicing structure
is constructed at the access structure layer of HyperSoft by
iteratively solving data-flow equations. Each statement is
analysed (without approximations) in both types of slicing
in HyperSoft.

Forward slicing has shown its value in two most intricate
problems of software maintenance: side-effect analysis of
modifications and optimized regression testing. Forward
slicing structures of HyperSoft reveal the program parts
that can he affected by the modifications, thus helping the
user to focus side-effect analysis on those relevant program
parts only. A forward slice also shows the magnitude
of the effects of a planned change, thus capturing those
modules that must be regression tested in connection with
maintenance. Our implementation correctly solves the well-
known 'calling context' problem [6], which is a problem
both in backward and forward slicing. Since we want to
give the user the option to choose between preciseness of
the slice and its effective formation, no approximations of
the interprocedural information are necessarily used.

6.2. The use of the HyperSoft system

When using HyperSoft, the user opens relevant files on the
screen, and uses either the mouse or the keyboard to browse
the program text, to select a program part to serve as the root
of an access structure, and to make a request for an access
structure generation. Each source file is displayed in its
own window. Program parts belonging to the current access
structure are emphasized by using either reverse colour or
boundary boxes. Different shades are used to separate start
nodes from which zero, one or several links originate as well
as those that have already been traversed. The links may be
graphically visualized as arrows. The user navigates through
the access structure either by clicking the emphasized parts
of the program text or by pressing the forward and backward
buttons or keys. There is a special button for the root node
of an access structure.

6.2.1. Occurrence lists
Global variables are considered quite problematic in
software maintenance. Figure 6 shows an example
occurrence list for the global variable gl declared in the
module hsoftl.c of a sample C program. The user has first
selected a gl occurrence by double clicking it within the
program text, and then the occurrence list access structure
from the pop-up menu of the alternative access structures.

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

588 J. PAAKKI et al.

----"' llypt>rSJft[OcdH! Gllce lts1 /1sc ttl c <UnknownJj

aai.n(void) {
Thb imaQi.nary Sl'C :1.1 used
illut1tnte the qeneration
Byp•:rSoft access 1t:ruc::tw:ea

int in-O,out-0;
p:rintf("Input:") ;lcanf("%d"
out•f1 (in) +f'2 (in) ;
printf ("\n0utput=%d", out) ;
retw:n O;

FIGURE 6. Occurrence list.

- Hyper Soft [f ot\JOrd cdlls hs Jftl c ntamJ

FIGURE 7. Forward calling structure.

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

HYPERTEXTUAL SOFTWARE MAINTENANCE 589

FIGURE 8. Backward calling structure.

This has activated the generation of the access structure
which is then shown in the windows. In this case the user
has decided not to get the links explicitly on the screen. The
analysed program files are listed in the Project Files window
and can be opened via it. Files containing parts of the current
access structure are emphasized with exclamation marks.

6.2.2. Forward calling structures
Figure 7 depicts a situation in which the user needs to find
out which functions a certain function uses (forward calling
dependencies), thus grasping a general functional view over
the program. The generation of the access structure has in
this case been initiated from the main function, which has
therefore become the root of the navigation structure. The
linkage is formed such that there are links from a relevant
function implementation to the function calls it contains.
These function calls in turn are linked to the corresponding
implementations. This process is repeated so that a tree
consisting of the function calls and implementations related
to the original function is formed (in the described manner).

HyperSoft shows the links outgoing from a start node as
arrows immediately when the mouse cursor is moved on
an anchor, a special piece of program text that represents
the node. These arrows can also be activated as one kind
of bookmark, helping to keep the orientation. If the user
decides, all the arrows can be triggered on. By this, the
system forms an explicit dependency graph over the program
text as shown in the figure. The arrows may exceed the

size of the visible window area, in which case the user may
follow them by scrolling the window.

If there is exactly one link from a start node, the
destination node is reached by double-clicking the anchor
of the start node. If there are several links, the alternative
links are displayed in a pop-up menu. If the activated link
leads into another module, the corresponding window is
either opened or fetched at the foreground. For intramodular
function calls the link may also be represented graphically
as an arrow.

6.2.3. Backward calling structures
The access structure depicted in Figure 8 shows where
the function j9 can be called from (backward calling
dependencies). Any relevant function implementation node
is linked to the corresponding function calls. These in
turn are linked to their context function. The whole
process is then repeated like in the case of forward calling
dependencies.

In order to support the overall comprehension of (large)
programs, some special outline capabilities have been
implemented. In HyperSoft, there are (hyper)text views,
map views, and graphical views complementing each other,
all appearing in Figure 8. A structured map view, resembling
the representation style of conventional code browsers, lists
in a hierarchic fashion the nodes belonging to a certain
access structure so that these can be quickly checked out.
Dependency levels within the map view can be opened and

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

590 J. PAAKKI eta/.

.Qeclaration
Qccurrence

F2rward Calls
B.ackward Calls
forward Slice

(x,y)+fB(x,y) F

FIGURE 9. Backward slicing structure.

closed using the '+' and '-' buttons. A map view shows
the related program text in a separate window as well as
making it possible to directly move into any part within
the access structure. Global module dependency views
and global function dependency views also support program
comprehension by graphically outlining the access structure
on the abstract module and function level, respectively.
There may be multiple outline views simultaneously opened,
which makes the parallel investigation of access structures
possible. Components appearing in the graphical views are
linked to the original program text.

6.2.4. Backward slices
Figure 9 illustrates a situation in which the user needs to find
out where the (erroneous) return value x of the functionjLast
has been produced. Only those statements, that might have
a data-flow effect on the slicing criterion (variable x) in the
return statement, are included in the access structure. Thus
the user is provided with an exact view of the factors relevant
to the current corrective maintenance situation.

6.2.5. Forward slices
Figure I 0 shows two intraprocedural forward slices for the
functionjLast. On the left, the user is interested in where the
value of the variable c is (indirectly) used. Slicing is started
from the declaration of this variable. On the right, the user
is interested in the ways a modification of the variable z3 at
the first assignment statement of it might affect the program.

The arrows illustrate the progress of data flow. Because the
number of links easily becomes too large and since control
dependencies are in most cases not as important as data
dependencies, the control dominance on data flow is not
explicitly included in the access structure. The forward-
slicing access structures can be used both to estimate the
effects of a proposed change and to systematically reduce the
resultant side effects. The figure also illustrates how multiple
access structures can be compared on the screen in parallel.
This is a useful feature when making major changes to the
source code.

Figure 11 shows a situation in which the user is interested
in the magnitude of the effects that a modification of the
variable in in the main function would have to the rest
of the program. The access structure expands into three
program files, hsoftl.c, hsoft2.c and hsoft3.c. lntramodular
interprocedurallinks (that is, links between two procedures
within the same module) are graphically represented as
arrows. The figure also shows Debug window, which is used
to represent various information to the user during the access
structure generations.

6.3. Implementation of HyperSoft

The main components of the HyperSoft prototype are
the syntactic program analyser (SPA), the access structure
generator (ASG), and the graphical user interface (Gill), as
illustrated in Figure 12. These main components correspond
to the syntactic structure layer, the access structure layer,

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

z.!aoz:;
z2-h;
IJ=h;O.x;
z~;z6•:z;

i•x:
zS-x:
f=CJ;

HYPERTEXTUAL SOFTWARE MAINTENANCE 591

FIGURE 10. Forward slicing structures.

FIGURE 11. Interprocedural forward slice.

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

592 J. PAAKKI et al.

FIGURE 12. General architecture of the HyperSoft system.

TABLE 1. Required disk space and time related to the static analysis.

Process/abstraction mode Relative Size of the program database/ Static analysis
tree size source programs speed (LOC/s)

1. Pure parsing N/A N/A 490
2. Complete parse tree 1.00 50 170
3. Tree for slicing 0.25 20-25 180
4. Tree for simple access structures 0.12 8-12 90

TABLE 2. Test projects.

Project Size (kbyte) Static analysis time (minis) Static program database size (Mbyte)

I. Simple project (10 files) 6.1 0.05 0.168
2. Chess program 58.0 0.16 1.233
main.c 16.2 0.04 0.201
opening.c 5.3 0.03 0.125
dialog.c 11.4 0.04 0.203
eval.c 17.9 0.05 0.321
try.c 7.2 0.04 0.178
3. File management system 240.4 0.58 3.751
main.c 58.7 0.14 0.654
setup.c 14.0 0.09 0.377
file.c 51.3 0.14 0.714
key.c 20.7 0.06 0.283
view.c 49.1 0.14 0.695
screen.c 46.6 0.14 0.759

THE COMPUTER JOURNAL, Vol. 39, No.7, !996

HYPERTEXTUAL SOFTWARE MAINTENANCE 593

and the interface layer of the HyperSoft model, respectively.
The implementation of the back-end components (SPA and
ASG) is described in more detail in [47].

Given the subject software as input, SPA produces a
program database, which is used by the ASG. Gill in turn
represents the access structures created by the ASG to the
user. In addition, HyperSoft is currently integrated to the
programmer's file editor (PFE). The integration approach
makes it possible, in principle, to use also other integrated
text editors. After the user has made changes to one module
through the editor, the program database is updated to reflect
these changes. The prototype runs on PCs under MS
Windows and supports the ANSI-C language. The objective
of the first phase of the HyperSoft project (9/94-12/95) was
the production of a working prototype demonstrating the
ideas of transient hypertext. During the second phase (1196-
12/96) the system has been refined, optimized and extended.
Our test configuration consisted of a Pentium 66 MHz,
16/428 MB micro, with MS-Windows 3.1. The SPA was
compiled as a DOS-program with 32-bit Gnu-C compiler
and other components with the 16-bit Borland CIC++ 4.5
compiler as a Windows program.

6.3.1. Source code
The original program text is fetched from mass memory
for the analysis by the SPA and for the representation
by the GUI. The source program collection contains the
source files for which the program database has been or will
be produced. Also other source modules may be viewed
through GUI, but no access structure generations are allowed
for them. The modules are stored on disk as conventional
DOS files and the textual information is manipulated by
standard C functions.

6.3.2. Syntactic program analyser and program database
The SPA creates the program database for the source
programs that need to be (re)analysed. This is a preliminary
action preceding the access structure generations. The
speed of the static program analysis and program database
formation is currently between 90 and 180 lines of code/s
(see Table 1). Included header files are not taken into
account, since currently access structures cannot be formed
from them (unless they are analysed apart from their main
files). For example, in case of project 2 (see Table 2) there
would be about 2. 7 times more code if standard header
inclusions were also counted. The analysis time is also
dependent on how elaborate parse tree restructurings and
prunings are performed. On average approximately 3-5
times more time is needed to form the static structures than
pure parsing would take. Note that the analysis times for
the individual files in Table 2 are measured related to the
incremental updating of the program database after changes
are made to the sources.

The analyser is implemented using the AnaGram parser
generator [48] employing C++ as the implementation
language. Despite the term, the program 'database' is
not currently implemented as a real database but instead

as a collection of DOS files. The database consists of
an abstract syntax tree and a local symbol table for each
module. Moreover, there is a global symbol table gathering
global data. An abstract syntax tree describes the syntactic
hierarchic structure of the source program parts related to a
module. The tree also contains the information needed to
map the nodes into the symbol tables and into the original
program text.

Abstract syntax trees constitute approximately 88% of
the current static program database. Position, type and file
information is needed for each relevant sylltax tree node.
Also linkage to both directions (to the child and parent
nodes) has been implemented to support the creation of
slicing structures. It is possible to generate variant versions
of the program database depending on the need to generate
various access structures. These variants and their disk space
consumption are described in Table l, related to the projects
2 (about 2,700 LOC) and 3 (about 11,000 LOC) described
in Table 2. Disk space consumption varies to some extent
depending on the properties (e.g. complexity, amount of
comments) of the analysed programs. The variant which
supports all of the currently implemented access structures
takes disk space approximately 20-25 times the size of the
original C sources. The ratio is of the same magnitude as, for
example, in SAMS, a tool for corrective maintenance [1].

The ratio could, in principle, be further reduced by
e.g. using efficient compression methods or tools, see
[49]. However, the employment of the appropriate variant
version of the program database is a more desirable solution
because the compression and decompression would reduce
the speed of access structure generations. Most of the
static information is needed only when creating the slicing
structures. For occurrence lists only the nodes which are
of type identifier are relevant. The calling dependency
structures require information about the function scopes, in
addition to the identifier information.

6.3.3. Access structure generator
The access structure generator receives requests for access
structure generation from the user interface, generates the
structure and returns a pointer to it. In order to support
incremental modifications of the source programs, we have
decided to gather all of the intermodular information within
the global symbol table. For efficiency reasons this table
has to be kept within RAM during the session. The size
of the global symbol table related to the largest test project
(see Table 2, project 3) was 270 kbyte. In the worst case,
this table and the local program database information (759
kbyte) of the largest module had to be kept simultaneously
within RAM, occupying about 1 Mbyte. This is a quite
managable outcome. Access structures as such take only a
marginal portion of memory: 44 + 32 m + 42 n + 4 l bytes,
where m is the number of modules, n is the number of nodes
within the access structure, and l is the average number of
links.

Table 3 represents access structure generation times for
the projects 2 and 3. Results for the occurrence lists and

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

594 J. PAAKKI eta/.

TABLE 3. Access structure generations.

Type of the access structure Formed nodes Needed module swaps Generation time (minJs)

Proj. 2 Proj. 3 Proj. 2 Proj. 3 Proj. 2 Proj. 3

Occurrence lists for local variables 12 < O.Ql < 0.01
Occurrence lists for global variables 51 24 5 0.06 0.10
Worst case forward caJI graph 280 340 63 22 0.51 1.36
Worst case backward caJI graph 74 189 15 40 0.16 3.00
Intraprocedural backward slices 19 4 0 0 O.Ql 0.02

TABLE 4. Interprocedural forward slicing-example structure generations related to project 2.

Upward Analysed
calling (total)

levels contexts

I (I)
2 I (I)
3 2 I (I)
4 7 1(254)
5 7 254(254)
6 4 2(5)
7 3 3(3)
8 3(3)
9 7 52(610)
10 7 610(610)

backward slices are counted as averages of 10 typical cases
and for the calling structures for the largest (worst case)
structures. The module swap column in Table 3 (and in Table
4) represents the number of the needed recreations of the
local program database elements (abstract syntax tree and
local symbol table). The creation of the occurrence lists is
based on the information received from the symbol tables.
During the formation of the calling structures also parts of
the parse trees are traversed.

Table 4 represents I 0 cases of the interprocedural forward
slices formed for the project 2. The number of upward
calling levels in the table represents the longest path to main
function from the starting point of the slicing. Each function
occurrence within any calling path to main is counted as
a separate context (function). Slices are formed based
on iterative solving of data-flow equations and preorder
traversals of the relevant subtrees of the syntax trees. This
means that all the possible function calling paths from the
starting point of the slicing to the main function have to
be checked. Therefore, it is not possible to form complete
slices for realistically large programs in all cases within a
reasonable time-span.

Intermodular function calls necessitate the retrieval and
recreation of the local program database information (if it
cannot be kept within the available RAM). Therefore, the
compression of the syntax trees is useful and will directly
have an effect both on space and time efficiency of the
system. Slices could be formed more effectively if structures
like program dependence graphs [7] would be used as a basis

Formed Needed Needed
nodes module time

swaps (minJs)

609 46 1.13
369 74 1.35

11 74 1.13
127 18 0.21
127 144 5.27
186 7 0.13
II 5 0.05

557 59 1.26
193 68 1.22
193 360 8.36

for them.
The user is given the option of selecting how many

(ascending and descending) calling levels are taken into the
slicing analysis, thus making it possible to trade off between
the preciseness of the slice and fast response time. In Table
4 cases 5 and I 0 represent the worst case situations, where
slicing is started from the bottom of the calling hierarchy.
Cases 4, 6 and 9 represent partial slices formed for the most
immediate upward calling level.

HyperSoft also supports partial multiprocessing which
makes it possible to, for example, browse the source code
and to navigate through the already formed access structures
during the formation of the new access structures. A time-
estimate for the formation of the access structure is given at
the beginning of its formation. The estimate can be used to
decide whether it is sensible to form the structure.

The time needed to form an access structure is heavily
dependent on many factors, like the size of the programs,
the number of the relevant program files, the existing
intermodular relations, the point from which the access
structure generation has been initiated and (in the case of
interprocedural slicing) on the nature of the existing calling
dependencies and the use of global variables. The number
of formed nodes has only a marginal effect on the time
consumption.

6.3.4. Graphical user inteiface
The interface runs under MS Windows and is implemented
with Borland's C++ class libraries. The interface is generic,

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

HYPERTEXTUAL SOFTWARE MAINTENANCE 595

meaning that its operations are designed to be as independent
of the target language as possible. Special attention has
been paid to separate the GUI and the ASG components, so
that they can be developed separately. If, for example, new
access structures are implemented or the system is ported to
other environments, the modifications needed on the system
will be rather small.

6.4. Evaluation of the system

The first prototype version of HyperSoft was industrially
evaluated during summer I 995 with small test programs; see
Table 2, project I. The information gathered during the first
evaluation phase consisted mostly of free-form comments
concerning the usefulness of the implemented HyperSoft
capabilities and the possible ways to improve them. The
gained experiences guided the further development of the
system. Eight persons within the steering companies
participated in the evaluation. Another session of evaluation
was performed during summer I 996, containing also larger
programs; see Table 2, projects 2 and 3. The results
given in the table are based on using the normal variant
of the program database, supporting all of the currently
implemented access structures. Three professional software
maintainers from the partner enterprises, selected by the
steering committee, participated in this latter evaluation.
The largest test project was a real file management system
consisting of 6 files and 47 non-standard header files. All the
projects could be processed easily within 16 Mbyte of RAM.

During the latter evaluation the information was gathered
by using a questionnaire containing 22 questions. Most
of the questions concerned the perceived quality of the
functionalities that HyperSoft provides. Due to the small
number of persons involved, the results obtained should be
interpreted with some caution. The general impression of the
idea of transient hypertext over programs has been positive
during both evaluation periods. Especially the optional
graphical visualization of hypertextuallinks as arrows on top
of the original source code has been considered as a good
idea. All the current access structures have been considered
useful and the set of implemented access structures
sufficient for supporting the maintenance situations that the
respondents are facing. The efficiency of the access structure
generations was considered adequate for the occurrence lists
and for the calling structures. Complete interprocedural
slicing obviously cannot be performed interactively for large
programs, but the possibility of forming partial slices was
still considered useful.

The amount of the formed linkage within the current
access structures is quite extensive. In the case of
interprocedural slices, the capability of showing the linkage
only partially (related to the current node or by showing
only the interprocedural links) is useful. Especially in the
case of long statements the variable level linkage (as an
alternative to the statement level linkage) is also justified.
The formation of permanent, static linkages would not be
practical except possibly for function calls. An increase
in the amount of static links would make the support

for incremental modifications of source files less flexible.
Features that had been hoped for and were implemented
during the second phase of the project included: (a) seamless
integration of the SPA with the rest of the system, (b) support
for on-line incremental modifications to source code, (c)
specification of sets of modules (sub-projects) as basis
for the access structure generation and (d) the level-wise
formation of interprocedural slices (mentioned in Subsection
6.3).

7. CONCLUSIONS

We have presented a language-independent HyperSoft
model of representing programs as hypertext. The model is
layered according to abstracting a program into source code,
syntactic structure, access structures and user interface. On
one hand, the model is founded on the well-known principles
of language processing, and on the .other hand the general
concepts of hypertext. Thus, the model effectively combines
two mature areas into a flexible software engineering
discipline.

We have also presented a general and language-
independent model of hypertextual access structures as
program dependencies. The model is based on treating
program dependencies as relations between program parts.
The dependencies have been classified according to their
fundamental characteristics, taking into account both the
relational properties of the dependencies and the way they
appear in programs.

In addition to representing software abstractly in terms
of hypertext, the HyperSoft model has also practical
significance by suggesting how systematically to construct
automated tools for software engineering. The layering of
the model has been directly used as the basis for the reusable
architecture of a prototype for software maintenance. By
having a clean separation between the main components
of the prototype we can independently implement and
study different kinds of access structures and user interface
solutions.

With respect to usability, the main contributions of the
HyperSoft system are dynamic specification of the access
structures needed by the user, automatic generation of
the access structures and graphical representation of the
corresponding hypertextual navigation structures on top
of the original source code. We think that dynamic
specification and automated generation are absolutely
essential facilities when viewing (large) programs as
hypertext; a statically fixed or manually produced selection
of access structures would be both too restricting and too
laborious for practical applications. The dynamic facilities
also attack the well-known hypertext problem of cognitive
overhead.

The style of representing the navigation structures at
the user interface of HyperSoft is quite similar to that
used in most hypertext systems, thus making it easy to
adopt. Embedding the hypertextual structures directly
on top of the source code makes it easy to map them
together, thus following the 'direct manipulation' metaphor

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

596 J. PAAKKJetal.

of user interfaces. Notice that this solution is in contrast
with conventional program browsers where the abstract
(hypertextual) representation of the program is physically
separated from its code. Our solution to have the
whole original source code integrated with the hypertextual
representation also helps to keep track of the context during
program reading, thus solving the common disorientation
problems of large hypertexts.

Most efficiency problems within the HyperSoft system
relate to interprocedural slices, which are the most complex
of the access structures. Most existing slicing tools, like
those reported in [50, 51], are also research prototypes with
some problems in their efficiency. In our approach, the
main factor having an effect on the efficiency of generating
slices (and other access structures as well) is the content
of the abstract syntax trees. Possible ways to promote the
slicing performance include: usage of intermediate program
representations which are specially tailored for slicing [7, 8,
52], batch processing when necessary, usage of subsets of
modules and usage of flexible slicing criteria.

HyperSoft applies entirely static analysis, whereas most
other slicers use also dynamic run-time information of the
program. The reason for our choice is that the main intended
application area of HyperSoft is software maintenance
where the modifications on the software must be general
and not tied to any particular test case. The only notable
exception is corrective maintenance where the software has
to be debugged with respect to errors found in one specific
execution. Notice, however, that static analysis facilitates
debugging even though static analysis usually is less precise
than dynamic analysis.

The kind of model and tool we have presented is probably
most useful when maintaining legacy systems that are
too large for being manually managed and that lack a
decent documentation. Since another common feature of
legacy systems is a multi-language implementation, the
maintaining tool should support several languages. An
explicit separation of the components in HyperSoft makes
it quite straightforward to extend the system with new
languages. One of the future directions of developing the
HyperSoft system will be to extend its selection of source
languages. At the moment, there is an on-going spin-off
project to support the (embedded) database language SQL.

For languages based on different programming
paradigms, the set of useful access structures may slightly
vary. For instance, object-oriented programs expose de-
pendencies not appearing in purely imperative programs.
Currently, when most of the legacy software is written
in languages like Cobol and C, the need for hypertextual
browsing capabilities of object-oriented programs concerns
the engineering of new software rather than the maintenance
of old software. To solve maintenance problems of the
future, the access structures supporting the hypertextual
reading of object-oriented programs should be investigated
more thoroughly.

ACKNOWLEDGEMENTS

The active project participation of the industrial steering
group has greatly affected the interface solutions in the
HyperSoft system. The user interface of HyperSoft has
been implemented by Mika Nieminen. The comments of
the anonymous referees have been helpful in improving the
presentation of the paper.

REFERENCES

[I] Jambor-Sadeghi, K., Ketabchi, M. A., Chue, J. and Ghiassi,
M. (1994) A systematic approach to corrective maintenance.
Comput. J., 37,764--778.

[2] Wilde, N., Chapman, A. and Richardson, R. (1994) The
extensible dependency analysis tool set: a knowledge base
for understanding industrial software. Int. J Software Engng
Know!. Engng, 4, 521-534.

[3] Harrold, M. and Soffa, M. (1990) Computation ofinterproce-
dural definition and use dependencies. In Proc. IEEE Comput.
Soc. 1990 Int. Conf on Computer Languages, New Orleans,
LA, pp. 297-306.

[4] Ryder, B. (1979) Constructing the call graph of a program.
IEEE Trans. Software Engineering, 5, 216-225.

[5] Murphy, G., Notkin, D. and Lan, E. (1996) An empirical
study of static call graph extractors. In: Proc. 18th Int. Conf.
on Software Engineering, Berlin, Germany. IEEE Computer
Soc. Press, pp. 90-99.

[6] Horwitz, S., Reps, T. and Binkley, D. (1990) Interprocedural
slicing using dependence graphs. ACM Trans. Progr. Langs
Syst., 12, 26-60.

[7] Horwitz, S. and Reps, T. (1992) The use of program
dependence graphs in software engineering. In Proc. 14th Int.
Conf on Software Engineering, Melbourne, Australia. IEEE
Computer Soc. Press, pp. 392-410.

[8] Kamkar, M. (1993) Interprocedural Dynamic Slicing with
Applications to Debugging and Testing. Ph.D. thesis,
Linkoping Studies in Science and Technology Dissertations
No. 297, Department of Computer and Information Science,
Linkoping University, Sweden.

[9] Tip, F. (1995) A survey of program slicing techniques. J.
Program. Lang., 3, 121-189.

[10] Koskinen, J., Paakki, J. and Salminen, A. (1994) Program
text as hypertext: using program dependences for transient
linking. In Proc. 6th Int. Conj on Software Engineering
and Knowledge Engineering (SEKE'94), Jurmala, Latvia.
Knowledge Systems Institute, pp. 209-216.

[11] Salminen, A., Koskinen, J. and Paakki, J. (1994) HyperSoft:
an environment for hypertextual software maintenance.
In Proc. Nordic Workshop on Programming Environment
Research (NWPER'94), Lund, Sweden. Report LU-CS-TR:
94-127, Department of Computer Science, Lund University,
pp. 25-37.

[12] Pressman, R. S. (1992) Software Engineering-A Practi­
tioner's Approach, 3rd ed. McGraw-Hill, New York.

[13] Garg, P. K. and Scacchi, W. (1990) A hypertext system to
manage software lifecycle documents. IEEE Software, May,
90-98.

[14] Cybulski, J. L. and Reed, K. (1992) A hypertext-based
software-engineering environment. IEEE Software, March,
62-68.

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

HYPERTEXTUAL SOFTWARE MAINTENANCE 597

[151 Letovsky, S. and Soloway, E. (1 986) Delocalized plans and
program comprehension. /t-EE Software, May, 41-49.

[16] Brade, K., Guzdial, M., Steckel, M. and Soloway, E. (1994)
Whorf: a hypertext tool for software maintenance. Int. J.
Software Engng Know!. Engng, 4, 1-16.

[17] Bigelow, J. (1988) Hypertext and CASE. IEEE Software,
March, 23-27.

[18] Cleveland, L. (1989) A program understanding support
environment. IBM Systems 1., 28, 324-344.

[19] Linos, P., Aubel, P., Dumas, L., Helleboid, Y., Lejeune, P. and
Tulula, P. (1993) CARE: an environment for understanding
and re-engineering C programs. In Proc. Conf on Software
Maintenance, Montreal, Canada. IEEE Computer Society
Press, pp. 130-139.

[20] Goldberg, A. (1984) Smalltalk-80: The Interactive Program­
ming Environment. Addison-Wesley, Reading, MA.

[21] SunPro (1992) SparcWorks (v. 2.0) Browsing Source Code.
SunPro, Sun Microsystems, Inc. Business, Mountain View,
CA.

[22] Lakhotia, A. (1993) Understanding someone else's code:
analysis of experiences. J Systems Software, 23, 269-275.

[23] Halasz, F. and Schwartz, M. (1994) The Dexter hypertext
reference model. Commun. ACM, 37, 29-39.

[24] Salminen, A. and Watters, C. (1992) A two-level structure for
textual databases to support hypertext access. 1. Am. Soc. Info.
Sci., 43,432-447.

[25] Akscyn, R. M., McCracken, D. L. and Yoder, E. A.
(1988) KMS: a distributed hypermedia system for managing
knowledge in organizations. Commun. ACM, 31, 820-835.

[26] Rivlin, E., Botafogo, R. and Shneiderman, B. (1994)
Navigating in hyperspace: designing a structure-based
toolbox. Commun. ACM, 37, 87-96.

[27] Conklin, J. (1987) Hypertext: an introduction and survey.
Computer(IEEE), 20, 17-41.

[28] Shneiderman, B., Shafer, P., Roland, S. and Weldon, L.
(1986) Display strategies for program browsing--{;oncepts
and experiment. IEEE Software, May, 7-15.

[29] Goldfarb, C. F. (1990) In Rubinsky, Y. (ed.), The SGML
Handbook. Oxford University Press, Oxford.

[30] Aho, A. V. and Ullman, J. D. (1972) The Theory of Parsing,
Translation and Compiling. Prentice Hall, Englewood Cliffs,
NJ.

[31] Salminen, A., Tague-Sutcliffe, J. and McClellan, C. (1995)
From text to hypertext by indexing. ACM Trans. Infor. Syst.,
13,69-99.

[32] Watters, C. and Shepherd, M. A. (1990) A transient
hypergraph-based model for data access. ACM Trans. Infor.
Syst., 8, 77-102.

[33] Aho, A. V., Sethi, R. and Ullman, J. D. (1986) Compilers­
Principles, Techniques and Tools. Addison-Wesley, Reading,
MA.

[34] Paakki, J., Koskinen, J. and Salminen, A. (1996) From
relational program dependencies to hypertextual access
structures. Nordic J. Comput., submitted.

[35] Rumbaugh, J., Blaha, M., Premcrlani, W., Eddy, F. and
Lorensen, W. (1 991) Object-Oriented Modeling and Design.
Prentice Hall, Englewood Cli!fs, NJ.

[36] Baker, B. S. (1993) A theory of parameterized pattern
matching: algorithms and applications. In Proc. 25th ACM
Symp. on Theory of Computing, San Diego, CA. ACM Press,
pp. 71-80.

[37] Yang, W. (1991) Identifying syntactic differences between
two programs. Software Pract. Exper., 21, 739-755.

[38] Kilpeliiinen, P. and Mannila, H. (1994) Query primitives
for tree-structured data. In Proc. 5th Annual Symp. on
Combinatorial Pattern Matching (CPM'94), Asilomar, CA.
LNCS 807, Springer-Verlag, pp. 213-225.

[39] Rich, C. and Wills, L. M. (1990) Recognizing a program's
design: a graph-parsing approach. IEEE Software, January,
82-89.

[40] McCabe, T. J. (1976) A complexity measure. IEEE Trans.
Software Engng, 2, 308-320.

[41] Gibbs, S., Tsichritzis, D., Casais, E., Nierstrasz, 0. and Pin-
tado, X. (1990) Class management for software communities.
Commun. ACM, 33,90-103.

[42] Taenzer, D., Ganti, M. and Podar, S. (1989) Object-oriented
software reuse: the yoyo problem. 1. Object-Oriented
Program., 2, 30-35.

[43] Moriconi, M. and Hare, D. F. (1986) The PegaSys system:
pictures as formal documentation of large programs. ACM
Trans. Program. Lang. Syst., 8, 524-546.

[44] Kernighan, B. and Ritchie, D. (1988) The C Programming
Language, 2nd ed. Prentice Hall, Englewood Cliffs, NJ.

[45] Weiser, M. (1984) Program slicing. IEEE Trans. Software
Engng, 10, 352-357.

[46] Bergerctti, J. -F. and Carre, B. (1985) Information-flow and
data-ftow analysis of while-programs. ACM Trans. Program.
Lang. Systems, 7, 37-61.

[47] Koskinen, J. (1996) Creating transient hypertextual access
structures for C programs. In Proc. 7th Israeli Conf on
Computer Systems and Software Engineering, Herzliya,
Israel. IEEE Computer Society Press, pp. 56-65.

[48] Parsifal Software (1993) AnaGramTM-User's Guide. Parsi-
fal Software, Wayland, MA.

[49] Katajainen, J. and Makinen, E. (1990) Tree compression and
optimization with applications. Int. 1. Foundations Comput.
Sci., 1, 425-447.

[50] Samadzadeh, M. and Wichaipanitch, W. (1993) An interactive
debugging tool for C based on dynamic slicing and dicing. In
Proc. 21st Annual Computer Science Corif., Indianapolis, IN.
ACM Press, pp. 30-37.

[51] Hoffner, T., Kamkar, M. and Fritzson, P. (1995) Evaluation
of program slicing tools. In Proc. 2nd Int. Workshop on
Automated and Algorithmic Debugging (AADEBUG'95), St
Malo, France. IRISA-CNRS.

[52] Binkley, D. W. and Gallagher, K. B. (1996) Program slicing.
In Adv. Cornput., 43, 1-50.

THE COMPUTER JOURNAL, Vol. 39, No.7, 1996

v

FROM RELATIONAL PROGRAM DEPENDENCIES
TO HYPERTEXTUAL ACCESS STRUCTURES

Paakki, J., Koskinen, J. & Salminen, A. 1997.
Nordic Journal of Computing 4 (1), 3-36.

Reproduced with permission.

Nordic Journal of Computing 4(1997), 3-36.

FROM RELATIONAL PROGRAM DEPENDENCIES
TO HYPERTEXTUAL ACCESS STRUCTURES

JUKKA PAAKKI
Department of Computer Science

P.O. Box 26, FIN- 00014 University of Helsinki, Finland
paakki@cs.helsinki.fi

JUSSI KOSKINEN AIRI SALMINEN

Department of Computer Science and Information Systems
University of Jyviiskylii

P. 0. Box 35, FIN- 40351 Jyviiskylii, Finland
{koskinen,airi}@cs.jyu.fi

Abstract. Several important aspects of software systems can be expressed as de-
pendencies between their components. A special class of dependencies concentrates
on the program text and captures the technical structure and behavior of the tar-
get system. The central characteristic making such program dependencies valuable
in software engineering environments is that they can be automatically extracted
from the program by applying well-known methods of programming language im-
plementation. We present a model of program dependencies by considering them as
relations between program elements. Moreover, we show how dependency relations
form the basis of producing a graph-like hypertextual representation of programs
for a programming environment. Having a general and well-defined model of pro-
gram dependencies as a foundation makes it easier to systematically construct and
integrate language-based tools. As an example application, we present a hypertex-
tual tool which is founded on our relational dependency model and which can be
used to maintain programs written in the programming language C.

CR Classification: G.2.2, D.2.2, D.2.5, H.5.1

Key words: program dependencies, hypertext, software maintenance, reverse en-
gineering

1. Introduction

Modern software systems are large and complicated. A software-engineering
lifecycle is typically confronted with the problems of team work, heteroge-
neous operating platforms, constantly changing requirements, and a long
chain of different development phases. To completely cover a system for
further advancement and maintenance, its documentation should record the
whole development history as well as all the technical design and implemen-
tation decisions. Managing such a huge amount of dispersed, yet interrelated
information is impossible in practice without automated means.

Received August 18, 1996; accepted December 5, 1996.

4 J. PAAKKI J. KOSKINEN A. SALMINEN

While documentation is most essential for both using and modifying a
software system, an unfortunate fact is that a complete and up-to-date doc-
umentation is usually not available. This is most common for legacy sys­
tems [23] having a long history with numerous software releases on different.
hardware and software architectures, alternating design and implementation
styles, and various development and maintenance teams. For such systems,
the only reliable documentation is the source code, which often makes it
necessary to apply special reverse-engineering or re-engineering techniques
[1] for obtaining, e.g., an approximated system design to support further
maintenance. Notice that managing the internals of source code is. useful
not only for legacy systems but for any software system that is subject to
repeated modifications; after all, the final target of software modification is
always the source code.

Re(verse)-engineering and other program analysis techniques are based on
finding the relevant code fragments and their relationships. Being formally
defined artifacts, these program dependencies can be automatically extracted
from the software which is a significant advantage over documentation-level
software representations that usually must be produced manually. Program
dependencies are relationships holding between the parts of programs and
can be determined from a program's text, see for example [38]. Well-known
and widely used examples of program dependencies are the dependencies
included into the definition-use chains and call graphs. Many of such depen-
dencies have originally been developed for the needs of compiler construction
(see e.g., [4]) from where they have been adopted into more general software
engineering tools, such as debuggers and maintenance assistants. Having a
unified software representation in terms of fine-grained program components
and their interdependencies makes it also easier to integrate the different lan-
guage tools into a seamless environment for collaborative (or "concurrent")
software development (see, e.g., [13] and [30]).

One technical solution suggested for managing the external and internal
documentation of software systems is hypertext, or more generally, hyperme­
dia (e.g., [14], [3], [17], [15]). Hypertext and hypermedia make it possible to
link together pieces of related information and to navigate in the resulting
information space. A versatile hypertextual software engineering environ-
ment typically connects together items in software requirements, designs,
source code, test material, etc., making it easier to map a certain element
to other elements somehow related to it. For instance, there might be a
hypertext link from a module in the source code to other modules using it,
to a chapter in the requirements document describing the module's external
functionality, to a chapter in the design document defining the module's
internal structure, and to the test document describing how the module has
been tested. All this information related to the module is useful when, for
some reason, modifying it.

HyperSoft is an automated tool supporting the understanding and main-
tenance of software. HyperSoft is based on representing the internal source
code of a software system as hypertext, concentrating on program dependen-

RELATIONAL DEPENDENCIES 5

cies that are useful in typical maintenance tasks. Instead of ad hoc solutions,
HyperSoft provides the hypertextual features in terms of a clear model that
makes a separation between the program, its internal dependencies, and the
user interface. The organization of the system follows the model and makes
it possible to flexibly explore different kinds of solutions by modifying just
one component of the system. The HyperSoft method and the possibilities
of using program dependencies in software maintenance were originally in-
troduced in [27], and the technical architecture of the HyperSoft system was
presented in [44]. Notice that HyperSoft concentrates solely on the program
code and does not provide links to any external documentation.

In this paper we study the nature of program dependencies. In order to get
a solid framework for (hypertextual) programming environments, we have
classified the potential dependencies in terms of their relational characteris­
tics. Hence, in our model of software a program dependency is considered as
a binary relation between two program components. The model is general
and not tied to the special solution in HyperSoft which is merely introduced
as a constructive example of applying the approach in practice.

Our relational model provides a systematic base for selecting and imple-
menting the program dependencies in software tools. By precisely stat-
ing the inherent characteristics of the various dependencies, the model also
makes it easier to design the external representation of the dependencies
in a graphical user interface. Finally, the model makes it possible to ana-
lyze programming environments with respect to how extensive and coherent
support they provide for program dependencies.

The paper is organized as follows. First, the connection between programs
and hypertext is introduced in Section 2 and the relational properties of pro-
gram dependencies in Section 3. Then, a relational classification of program
dependencies is presented in Section 4. Section 5 discusses how program
dependencies can be joined into compound dependencies and evolved into
hypertextual access structures. Section 6 addresses the related and useful
graph theoretical concepts. Section 7 introduces HyperSoft as a tool based
on the dependency model. Finally, the paper is concluded and related works
are discussed in Section 8.

2. Programs and hypertext

Software engineers must read programs in connection with many daily du-
ties, such as maintenance, debugging, code reviews, and testing. As is well
known [43, 9], the task of understanding the meaning of a program is men-
tally quite demanding due to acquiring large amounts of domain-specific
knowledge. The problem is made even harder by the fact that usually the
knowledge in demand is not physically centralized in one module but spread
throughout the program as a "delocalized plan" [29].

The technical means attacking the program comprehension problem can
be roughly divided into two categories: One can apply the techniques of

6 J. PAAKKI J. KOSKINEN A. SALMINEN

artificial intelligence for finding semantic chunks or algorithmic cliches from
the program (e.g., [51]), or one can use compiler-oriented analysis algorithms
for constructing a characteristic dependency graph over the program (e.g.,
[21]). Such higher-level program representations reduce the engineer's search ·
space by hiding the uninteresting details and thus make it easier for the
engineer to concentrate on the relevant aspects only.

Whatever the technique, the essence in constructing a high-level program
representation is to extract the useful pieces of the program and to find out
how they are related. When expressing relations over textual information
(such as program code), a convenient and popular technique is hypertext.
Hypertext integrates text with nonlinear navigation capabilities, making it
possible to study the program fragments in an arbitrary order by following
links between them. Thus, the central idea of hypertext conforms well with
the dispersed nature of delocalized plans, chunks, cliches, and dependency
graphs.

Hypertext is often modeled as a directed graph, that is, as a pair (N, L)
where N is a set of nodes and L is a set of ordered node pairs called links.
We will here use the terminology that we have used in our previous papers
[42, 27, 44, 26]. The links as well as the nodes may be associated with a
label. The nodes of a link are called the start node and the destination
node. Having graphs as a mathematical model in the background makes
it possible to apply the advanced concepts of graph theory on hypertext,
as will be demonstrated in this paper. In our approach a hypertextual
representation for a program is a directed graph constructed in terms of
one or more program dependencies. The graph is called an access structure.
Some node of the access structure (usually the one which is formed first)
may have special status, and is called the root (or home) node.

The central problem when creating hypertext is how to select the nodes
and the links to properly support the application. While being quite hard
for arbitrary text, the problem can be tackled in software engineering by
utilizing the special characteristics of program text: Most notably, each pro-
gram has a (context-free) grammar which formally defines its structure as
a (parse) tree [2]. The parse tree contains all the elements of the program
hierarchically organized, thus providing a natural basis for inducing hyper-
textual access structures for the program. 1

Our technique of transforming a program into an access structure is based
on the context-free grammar for the programming language and on the parse
tree for the program. Each nonterminal of the grammar represents a set of
textual entities (its instances) in the program. Therefore, in our terminology
a non terminal in the grammar is called a (text or program) type and each
of its instances in the program is called a (text or program) part. In a parse
tree, each node for a text part is labelled by the corresponding text type

1 Notice that even ordinary text may in some special cases have a formal structure en-
hancing its automatic processability. For example, all SGML documents are defined by a
context-free grammar (18].

RELATIONAL DEPENDENCIES 7

(nonterminal symbol), and the leaves in the subtree for the node, concate-
nated from left to right, form the textual representation of the part. This
representation is called the value of the part. Notice that since a context-free
grammar typically includes a number of unit productions of the form A --+
B where A and B are nonterminals, a value may stand for several text types
(here A and B). In order to make the part- value mapping unique, a node
in the parse tree is considered a part only if it is not the single child of its
parent. For the same reason, and for being able to visualize each part to
the user as a character string, we restrict our grammars such that the pro-
duction of empty strings is not allowed. This formulation of grammar-based
text follows the model originally presented in [42].

An access structure over a program text shows dependencies between pro-
gram parts. The dependencies are binary relations among parts and may
thus be expressed as hypertextual links. Each access structure node stands
for a program component which is represented: (1) as one or more nonter-
minal symbols in the grammar for the programming language and (2) as a
piece of code in the program. Accordingly, a node has both (1) one or more
types and (2) a value. In the following we will use the terms "node" and
"part" interchangebly.

As an example, Fig. 1 depicts a simple access structure over a C program.
Nodes are indicated as frames around their value and links are indicated as
directed arrows.

Suppose that the program in Fig. 1 conforms to the following context-free
grammar. Nonterminal symbols are given as alphabetic names, terminal
symbols are embedded within a pair of apostrophes ('), --+ separates the
left-hand side of a production from its right-hand side, and alternatives are
separated by the symbol I· Only the relevant productions are given.

program --+ translation-unit
translation-unit external-declaration

translation-unit external-declaration
external-declaration --+declaration I function-definition
declaration --+ init-declaration I ...
ini t-declaration --+ type-specifier identifier '='

initial-value ';'
type-specifier --+ 'int' I 'void' I
identifier --+ ...
initial-value --+ ...
function-definition -+type-specifier identifier

compound-statement
compound-statement --+ '{' declaration-list statement-list '}'
declaration-list --+ declaration I declaration-list declaration
statement-list --+ statement I statement-list statement
statement --+ assignment ';' I ...
assignment --+ identifier '-' expression
expression --+ ...

8 J. PAAKKI J. KOSKINEN A. SALMINEN

int global=!;

int main(void) {
I int in=O;

int out=1000;
printf (11 Initial: 11) ;

printf(11 %d 11 ,out);
out= f1(in) + f2(in);
printf(11 Final: %d 11 ,out);
return 0;

}

int fi(int p) {
return global+p;

}

int f2(int p) {
I int local=global*p;

return local;
}

Fig. 1: A sample access structure.

Now the parts in the access structure in Fig. 1 are of type init-declaration or
assignment, linked to each other according to their preorder in the parse tree.
Hence, the access structure captures all those parts of the program where a
variable can be given a value. In this case the parts can be automatically
found from the underlying parse tree by simply consulting the label of its
nodes, but for more advanced cases the process is more complicated. In
general, the relevant nodes are found by applying a part-selection algorithm
during a traversal over the parse tree.

This access structure might be created roughly in the following steps. A
formal account will be given in Section 5.

(1) Construct the init-declaration relation by finding all the parts of type
init-declaration in the underlying parse tree.

(2) Construct the assignment relation by finding all the parts of type as­
signment in the parse tree.

(3) Form the union of the init-declaration and assignment relations.
(4) Induce a preorder relation over the parts in init-declaration U assign­

ment.

(5) Develop the preorder relation into a directed graph by taking the parts
as nodes and the binary relations between the parts as links.

RELATIONAL DEPENDENCIES 9

3. Relational properties of program dependencies

In this section we introduce the common relational properties of program
dependencies. These properties have influence on the way that- program
text should be represented as hypertext and they can be used as a basis to
classify the program dependencies as is done in the following section. Their
main implications to the formation of the hypertextual access structures are
represented here and are explored in more detail in the following Sections
4-7.

Program dependencies can be characterized in terms of (Pl) reflexivity,
(P2) symmetry, (P3) transitivity, (P4) irreflexivity, (P5) antisymmetry, and
(P6) intransitivity, which are defined as follows. R denotes a dependency
relation in a set S of parts, and x, y, and z are parts in the set S.

(Pl) V x E S : x R x;

(P2) V x, yES: x R y:::::} y R x;

(P3) V x, y, z E S: (x R y) 1\ (y R z):::::} (x R z);

(P4) 'VxES:•(xRx);

(P5) V x, yES: (x R y) 1\ (y R x):::::} (x = y);

(P6) V x, y, z E S: (x R y) 1\ (y R z) *...., (x R z).

As described in Section 2, hypertextual access structures can be formed
rather straightforwardly by bounding together program parts (and the cor-
responding program text) based on various program dependencies existing
between them. In order to avoid navigational problems due to exceedingly
dense or uninformative linkage, some linking conventions, however, need to
be applied. The following cdnventions can be applied and are applied, for
example, in HyperSoft:

o Reflexivity. In hypertext, links are used by a reader to move from a
currently visible node to another node. A link from a node to itself is
not useful in hypertext. Thus indication of reflexive relations x R x by
hypertextual links is not needed.

o Symmetry. In hypertext two nodes may be connected by bidirectional
links to allow return to previous node. On the other hand, most hy-
pertextual systems offer automatically a backtracking capability in the
user interface. Thus symmetric relationships may be represented with
uni-directional links. Navigation to reverse direction (backtracking)
becomes possible after a link has been used to move to its destination
node.

o Transitivity. In transitive relations, we can separate the direct and in-
direct dependencies. Indicating all of them by links easily leads to an
exceedingly dense linkage. Restricting the linkage to the direct depen-
dencies simplifies the hypertextual structure. Then only the reach-
ability of a node from another node by link traversal indicates the
(indirect) dependency between the nodes.

10 J. PAAKKI J. KOSKINEN A. SALMINEN

Dependency

Start types

Destination types

Arity

Relations: (s,s,s)

Fig. 2: Classification of program dependencies.

4. Relational classification of program dependencies

Our classification of program dependencies is based on considering them
as relations between program parts. Recall from Section 2 that each part
stands for a specific element in the program text and for a node in the parse
tree of the program. The classification is shown in Fig. 2 as a lattice. It is
represented in order to capture the essence of program dependencies and to
establish a basis for systematically discussing the major dependencies and
the possibilities to consider them as a foundation of forming hypertextual
access structures over the program text.

In addition to classifying the concrete elementary program dependencies,
the lattice also supports the classification of compound dependencies (de-
scribed in Section 5) and the corresponding hypertextual access structures.
Elementary program dependencies are listed in [47], [11], [28], and [38]. The
sensibility of the combined structures can be evaluated based on the types
of the elementary dependencies. The classification could also be used to
analyze programming environments based on the categories of program de-
pendencies that are included. It also enhances the possibilities to represent

Level4

Leve13

Levell

Levell

Level 0

RELATIONAL DEPENDENCIES 11

profoundly similar program constructs in a consistent way at the interface
level of the support environments.

As usual in modelling, our classification is abstract and general in the
sense that it does not directly express the concrete particular program de-
pendencies but instead their common characteristics as dependency cate­
gories. Hence, in object-oriented terminology, a category corresponds to a
class, while each actual program dependency corresponds to an object (an
instance of its category). The central properties of a program dependency
are specified by its category, and each category typically includes several
program dependencies with similar properties. General (super)categories
are refined into subcategories on several levels according to certain criteria,
usually manifesting the relational properties described in the previous sec-
tion (the most important dependency subcategories are further specialized
based on other criteria also). Lower level subcategories inherit the proper-
ties of the supercategories. The properties can, however, also be overridden
(redefined) in the subcategories when necessary. Since the classification hi-
erarchy is a lattice, multiple inheritance is the common case.

Because our classification is abstract and total, all the represented de-
pendency categories are not necessarily (at least currently) of practical im-
portance. The most important categories are named in the figure. Most
practical program dependencies belong to the leaf categories of the classifi-
cation (Level 1), but even the higher-level categories hold some dependen-
cies, which are commonly cited in the programming literature and provided
in software tools. In this section we concentrate on the explicitly named
dependency categories.

The categories hold properties, that is, attributes and methods. In the
following we will describe the properties specified for the top category -
Dependency. Since we are dealing with pairs of program parts, the depen-
dencies are considered as binary relations. Since a (binary) dependency is
expressed in our model as a hypertextual link, each dependency involves a
start node and a destination node. For different kinds of dependencies the
nodes may be of different text type, and a certain dependency may involve
several text types. This is modelled in the classification by the properties
Start types and Destination types, respectively. Programming environments
(related to procedural languages) most typically support the investigation of
program dependencies between components like: files, functions, variables,
types, and macros [11], which typically have a corresponding syntactical
type in the grammar of the language.

The arity (cardinality) of a dependency is represented in the model by the
property Arity. In general, a relation a R b is either of type 1-to-1, 1-to-n,
m-to-1 or m-to-n, depending on the possible arity of a and b. In this context
an "arity" means how many different parts for a and b there are such that
a R b holds. For example, a dependency R is of arity 1-to-1 if there is a
single part a and a single part b in a R b, and R is of arity 1-to-n if a is
unique but there may be several different b's in a R b.

12 J. PAAKKI J. KOSKINEN A. SALMINEN

The attribute Relations(degreereflexivity, degree symmetry, degreetransitivity)
specifies whether all (a), some (s) or none (n) of the dependencies within a
certain category are reflexive, symmetric, and transitive, respectively. For
example the value of the attribute R: (s,n,a) of the category Subordinative·
denotes that some of the program dependencies belonging to that category
are reflexive (and some are not), none of the dependencies are symmetric
(i.e. all of them are antisymmetric) and all the dependencies are transitive.
The value of the Relations attribute is overridden in each more specific
subcategory. The top category of the hierarchy, at Level 4, is the most
indetermined case where all the relational properties and their opposites
hold for some concrete dependencies. At Level 3 only two properties may
vary freely and at Level 2 only one property. At Level 1 (the leaf category
level) each of the three relational properties hold either for all or for none
of the dependencies within a category. The purpose of the bottom category
Nil is explained in Section 5 (definition 5.2).

Each dependency involves a specific algorithm to find all the particular
program parts. This is modelled by the method Algorithm, associated with
the top category and inherited to all the descendant categories. Let a R b
denote that parts a and b are in the dependency relation R. Then all such
pairs (a, b) may be retrieved from the program by applying the Algorithm
of the dependency instance R.

4.1 Essential dependencies, R: (s,s,a)

Most of the common, useful program dependencies belong to some of the
subcategories of the abstract category named Essential. All the program
dependencies within this category (and within its descendants) follow tran-
sitivity. While the Essential category itself is rather general by just requiring
transitivity, it still captures some frequently used program dependencies and
structures representing these dependencies. Most notably, the general form
of well-known call graphs can be allocated in this category: A conventional
call graph for a program contains its subroutines (procedures and functions)
as nodes and the calling relationships as links. In other words, there is a
link from subroutine a to subroutine b if a calls b (directly) in the program.
In our model, this is represented by a binary relation a Calls b. The relation
is transitive since a Calls b and b Calls c means that the subroutine a calls
the subroutine c indirectly via b.

Besides transitivity, such a notion of call graph does not have the other
relational properties in a general case: for recursive subroutines (a calls
itself) reflexivity holds (a Calls a), whereas for non-recursive subroutines
it does not hold. For subroutines mutually calling each other, symmetry
holds (a Calls b, b Calls a), whereas it does not hold for other pairs of sub-
routines. Since all these different cases can appear in the same program,
the total dependency is neither (ir)reflexive nor (anti)symmetric. Since, for
example, in Fortran, recursion is not allowed, the call graph of a Fortran pro-
gram could be placed (as a more specific case) into the category Imperative,

RELATIONAL DEPENDENCIES 13

R: (n,n,a') {the transitivity property a' will be explained in Section 4.5).
The call graph of a program written in a {hypothetical) programming lan-
guage where direct recursion (causing a reflexive relation) is forbidden but
indirect recursion allowed would consequently belong to the category R: · -
(n,s,a').

A "call graph" is actually quite overloaded as a term and appears in a
surprisingly large number of different forms in software tools [32]. These
alternative forms typically aggregate more information about subroutines
than just the calling relationship between subroutine names, for instance
parameters and their data flow. In HyperSoft the access structures for call
graphs link together subroutine calls and definitions, and actually combine
two different dependencies. As a result, the calling access structures in
HyperSoft belong to the category Subordinative, R: (s,n,a) rather than to
Essential (see Section 7).

4.2 Incidental dependencies, R: (a,a,s)

While most practical program dependencies are transitive, this is not always
the case. Consider for instance the relation Shares, where a Shares b holds
whenever the subroutines a and b use a common global variable. Now it
might be that a Shares b because both a and b use the variable x, while b
Shares c because both b and c use the variable y. But then {assuming that
a and c do not use other global variables) a Shares c does not hold, and the
relation is not transitive. In the general case total intransitivity does not
hold either, because three other subroutines of the same program, say d, e,
and J, might well use the same variable z.

Such dependencies without definite {in)transitive properties are captured
in the category Incidental. The dependencies in this category are reflexive
and symmetric, and can therefore be characterized as compatibility relations.
A consequence of nontransitivity is that an Incidental dependency classifies
the program parts into nondisjoint compatibility classes that can be provided
special support in a {hypertextual) programming environment. For instance,
the most tightly coupled block of subroutines could be handed over to a
software engineer by generating a compatibility classification over the Shares
dependency, and by extracting the class with the largest number of elements.

4.3 Symmetrical dependencies, R: (s,a,a)

Intuitively, a relation R belongs to the category Symmetrical if a R b implies
that the parts a and b are somehow similar in their syntax or semantics. The
Symmetrical category is abstract in the sense that its role is just to express
the general symmetry of dependencies actually falling into categories lower
in the hierarchy. The most prominent descendant category of Symmetrical
is Matching, R: (a,a,a).

14 J. PAAKKI J. KOSKINEN A. SALMINEN

4-4 Matching dependencies, R: (a,a,a)

The dependencies in the Matching category are reflexive, symmetric, and
transitive, and thus correspond to the special class of equivalence relations.
The Matching category is further specialized into the subcategories Lexical,
Syntactic, Semantic, and Qualitative. For a Matching dependency a R b, the
similarity or equivalence of a and b can be induced either on lexical, syn-
tactic, or semantic basis. Intuitively, this division corresponds to classifying
the programming language issues into "lexical", "syntactic" and "seman-
tic" ones, each involving specific definition and implementation techniques
of different power.

If R is Lexical, then a and b have a similar textual representation; in other
words, a and b can be defined with the same regular Pattern expression over
characters. The involved Dependency method Algorithm then finds all those
parts from the program that are textually similar, as proposed e.g. in [6].
For instance, a Lexical relation might include all the occurrences of names
starting with the string "foo" :

'f ' 'o' 'o' any*

where any stands for any letter or digit. Then the relation would include,
among others, the name-parts with value foo, foolish, and food2much.

The property Pattern for a relation R in the subcategory Syntactic specifies
the syntactic shape of the parts. In other words, a R b implies that the
syntax of parts a and b is defined with the same context-free grammar, and
that the subtrees for a and b are isomorphic in a parse tree. The method
Algorithm for a Syntactic category typically applies pattern matching in
(parse) trees, as suggested e.g. in [52] and in [24]. For instance, a Syntactic
program dependency might extract from the parse tree all the parts of the
same program type, as was illustrated in Fig. 1.

The context-free grammar of the programming language can also be ex-
tended to hold information about the more stylistic aspects of the program,
typical examples being layout (indentation, empty lines, etc.) and com-
ments. These kind of components cannot be executed and are "white space"
in the dynamic respect. However, for user-centered software tools the lay-
out and comments are absolutely necessary and must be included in the
internal representation of the program (for special techniques, see e.g. [10]).
We therefore assume that the context-free grammar of the language and
the underlying parse tree of the program include even these kind of "stylis-
tic" components, which can be managed in the same manner as the more
ordinary ones.

The parts in a Semantic relation express the same computation or a sim-
ilar behavior when running the program. Now the property Pattern may
stand e.g. for a data-flow computation [21], a specific algorithm [40], or
fuzzy functionality [16]. For instance, a Semantic relation might capture
all the different sorting algorithms or all the non-reachable regions ("dead
code") in the program or the different ways, aliases, that are used to refer to

RELATIONAL DEPENDENCIES 15

a specific memory location, thus inducing a SharesMemory relation. Since
semantic issues of programming languages are much more complex than lex-
ical and syntactic ones, this category calls for powerful definition formalisms
for its properties. The Semantic Patterns and Algorithms may be founded
on purely static techniques with no actual execution of the program (such
as attribute grammars [25]) or on more dynamic ones with an approximated
execution (such as abstract interpretation [12]).

Two parts are in a Qualitative relation if they have the same Threshold
value for some quality factor of software engineering, such as testability,
maintainability, understandability, or portability. Cohesion and coupling,
for example, are two well-known approximations for the quality of modules
[39], and cyclomatic complexity [31] is a standard metric for the compu-
tational and mental complexity of programs. For instance, a Qualitative
dependency might hold between subprograms that are too complex for a
sound maintenance, being at the Threshold level 10 or higher in their cyclo-
matic complexity. Notice that the analysis of software quality can be based
either on lexical, syntactic or semantic properties. For instance, cyclomatic
complexity of loops can be roughly approximated by counting their nesting
level on purely syntactic basis, while a more precise measure can be obtained
by computing on semantic basis even the number of loop iterations.

4.5 Extrovert dependencies, R: (n,a,a')

The Extrovert program dependencies are symmetric, transitive, and irrefiex-
ive. In terms of the relational properties (P 1) - (P6) such a combination
is quite peculiar. Suppose that R is an Extrovert dependency such that
a R b holds (a f. b since R is irrefiexive). Symmetry implies that b R a
holds as well and transitivity yields (a R b) 1\ (b R a) =?- (a R a), which
would be a contradiction with respect to irrefiexivity. In order to make the
relational characterization of Extrovert sensible, we modify the requirement
of transitivity as follows:

(P3') \fx,y,z E S,x f. z: (x R y) 1\ (y R z) =?- (x R z).

This kind of modified transitivity is indicated by the a' in Fig. 2 and is
used also in the category Imperative (Section 4.8) as well as in the common
superclass of these two categories. Even after this modification the Extrovert
category is rather esoteric and contains program dependencies of marginal
interest only. An example is the rendezvous synchronization mechanism of
concurrent processes, as applied, e.g., on Ada tasks: a Rendezvous b holds if
the task-parts a and bare synchronized by a call-accept pair of statements.
The dependency is clearly symmetric, and also transitive since b may be
further synchronized with a task c during its rendezvous with task a, making
both b Rendezvous c and a Rendezvous c hold. For precluding deadlock, a
task must not synchronize with itself, making the Rendezvous dependency

16 J. PAAKKI J. KOSKINEN A. SALMINEN

irreflexive.2 Another example is the sibling relationship between classes in
an object-oriented hierarchy: Two classes are siblings if they are different
subclasses of the same superclass. For instance, Matching and Extrovert are
siblings in the category hierarchy of Fig. 2 by having Symmetrical as their
common supercategory.

4.6 Subordinative dependencies, R: (s,n,a)

For Subordinative relations, a R b implies that part a somehow dominates or
has control over part b. Since one part dominates the other, these relations
are antisymmetric. For instance, part a may contain part b as one of its
components (in the case of structured types), or a might be a superclass of b
(in the case of classes of an object-oriented program), or the expression-part
a might control the execution of the statement-part b (in the case of condi-
tional statements). Also, the general IsUsedToCompute relation belongs to
this category, since the relation can be either irreflexive, as in the case of
x=y; or reflexive as in the case of x=x+y; The IsUsedToConstruct relation
holds between a definition and another structure that uses that definition
while defining itself. For example in C: typedef TYPE1 int; defines that
TYPE1 corresponds to the integer type. This definition can further be used
e.g. in: typedef TYPE2 TYPE1 . So, here exists the following relations:
int IsUsedToConstruct TYPE1 and TYPE1 IsUsedToConstruct TYPE2.

Because a Subordinative dependency is antisymmetric, it always has a
meaningful inverse dependency relation that can be obtained in a straight-
forward manner from the original one. For instance, the inverse of a IsSu­
perclassOf b is b IsSubclassOf a (for object-oriented class hierarchies), and
the inverse of a Controls b is b IsControlledBy a (for general domination).
The inversion property of Subordinative dependencies is utilized in the Hy-
perSoft tool for some central access structures (see Section 7). Notice that
the inverse of a dependency with Arity 1-to-n belongs to an m-to-1 category
and, accordingly, the inverse of an m-to-1 dependency belongs to a 1-to-n
category. The inverse of a 1-to-1 dependency is also of Arity 1-to-1, and the
inverse of an m-to-n dependency remains in the Arity class m-to-n.

Subordinative is specialized into two subcategories, Structural (reflexive)
and Imperative (irreflexive) which will be discussed in the following Sections
4. 7 and 4.8. Most Subordinative dependencies fall into the specialized subcat-
egories, but in some cases the general category has to be applied. Consider,
for instance, the modelling of unconditional jumps: a Goes To b holds if a is
a "goto" statement whose target is the statement b. Now GoesTo is clearly
transitive and antisymmetric. In most cases the relation is irreflexive as
well but in the following (rather anomalous) case reflexivity holds instead,
making GoesTo thus belong to the general Subordinative category:

Loop: goto Loop;
2 Notice, however, that (reflexive) deadlocking may not be explicitly prohibited in the
definition of a programming language (such as Ada).

RELATIONAL DEPENDENCIES 17

4. 7 Structural dependencies, R (a,n,a}

The dependency category Subordinative is refined into Structural (reflexive)
and Imperative (irreflexive). Since the Structural program dependencies are
transitive, antisymmetric, and reflexive, each of them induces a weak par­
tial order over its parts which form a partially ordered set. Partial orders
are particularly useful for modelling data types with a number of intuitive
representations.

For example, the IsSuperclassOf dependency mentioned in Section 4.6,
mapping a class with its subclasses in an object-oriented program, is of cat-
egory Structural with Arity 1-to-n in the case of single inheritance. There-
fore the inverse dependency, IsSubclassOj, is Structural with Arity m-to-1.
In the case of multiple inheritance both the dependency IsSuperlassOf and
its inverse IsSubclassOf are of Arity m-to-n. The arity of these program
dependencies directs their (graphical) representation: for single inheritance
the natural choice is to illustrate a class hierarchy as a tree, whereas for
mtltiple inheritance a general lattice has to be used [19].

Another example of a Structural dependency is the Includes relation, i.e.
the me between a file and an included (header) file. Depending on the exact
defir. ition of the relations IsSuperClassOj, IsSubClassOJ, and Includes they
could also be considered as being irreflexive or nonreflexive. Note that these
different interpretations could easily be taken into consideration by plac-
ing the relations in the categories Imperative, R: (n, n, a') or Subordinative,
R: (s, n, a), respectively. Note also as a curiosity, that the relation IsDirect­
SuperClassOf would fall into the (most esoteric) category R: (n, n, n}.

4.8 Imperative dependencies, R (n,n,a')

When a program is executed, it basically involves merely control (deter-
mining the applied statements and their relative invoking order) and data
(capturing the processed values). In our model, these fundamental concepts
appear as the Imperative subcategories Control and Data, respectively. Since
these dependencies involve a directed flow of control and data, they are ir-
reflexive by nature, defined by their common supercategory. Being irreflex-
ive, antisymmetric, and transitive, the Imperative program dependencies
induce a strict partial order as a relation. For the same practical reasons
as discussed for the Extrovert category (Section 4.5), irreflexivity makes it
necessary to have relational transitivity in the modified form of (P3').

The property Condition of Control denotes a Boolean expression c whose
value shall be True in order to realize an instance of the dependency during
the program's execution. In other words, a Control relation a R b with Con­
dition c means that the part b will be executed immediately after the part
a only if the involved condition c yields True when executing the program.
The property Variables represents the set of variables that move data from
part a into part b for a Data dependency a R b. Usually a dependency in
the Data category expresses a direct flow of data from a statement a to a

18 J. PAAKKI J. KOSKINEN A. SALMINEN

statement b during the program's execution. Notice that in this sense a data
flow from a to b always implies that a and b are in a (transitive) Control
relation as well.

The investigation of the concrete dependencies belonging to this category
is the most typical target of automatic support within programming environ-
ments. The Data dependencies could further be classified based on various
criteria, e.g. based on the type of the structures between which the rela-
tion holds or on the semantics of the data-flow. For example, the following
subtypes can be distinguished (see e.g. [47]):

o IsMovedTo, the relation between two variables, when data value is
directly passed into another variable, but not altered, e.g. in the case
of x=y; but not in the case of x=y+1;

o Parameterin, the relation between the actual and formal parameter in
function calls.

o ParameterOut, conversely, the relation between the formal and actual
parameter.

o IsReturned, the relation between the expression that is used to calcu-
late and pass the value of the function and the variable into which it
is assigned at the calling level.

o IsSubScriptOJ, the relation between the index of an array and the
array, e.g. in statement A [k] =x;

The most well-known examples of structures containing Data dependencies
are the widely used data-flow graphs and program slices [49] which will be
analyzed in more detail in Sections 5 and 7.

5. Compound dependencies as a basis for hypertextual access
structures

Many useful program representations can be expressed as a compound de-
pendency created from elementary dependencies. For example, in a general
control-flow graph each pair of successive statement-parts is either in an
Imperative dependency of Arity 1-to-1 (statement sequences), Subordinative
of Arity m-to-1 (unconditional jumps), Control of Arity 1-to-n (conditional
statements), or Control of Arity m-to-n (controlled iterations). This kind of
a hybrid composition can be developed by joining the individual elementary
dependencies (here: Imperative I 1-to-1, Subordinative I m-to-1, Control I
1-to-n, Control I m-to-n) into a whole. Such a compound dependency is
defined as follows:

DEFINITION 5.1. Let Rt, R2, ... , Rn (n ~ 2) be concrete program dependen­
cies, that is, instances of the dependency categories shown in Fig. 2. A
compound dependency Rc is a relational expression over the elementary de­
pendencies:

RELATIONAL DEPENDENCIES 19

where each occurrence of the symbol • stands for one of the operations U

(union), n (intersection), \ (difference), and I (restriction). Union, in­
tersection, and difference are ordinary set operations over elements of type
a Ri b. The restriction R I Ri+l yields those elements a Ri b of the depen­
dency R whose parts a and b occur also as parts in the dependency Ri+ l· 3

For grouping, subexpressions of Rc may be enclosed in parentheses.

When reaching for a condensed and connected access structure, it is most
useful to apply the restriction operation in the underlying dependency speci-
fication. For instance, the access structure of Fig. 1 is defined by the expres-
sion Pre Order I (IsOfType(init-declaration) U IsOfType(assignment)), where
PreOrder (being irreflexive, antisymmetric, and transitive) denotes the total
preorder relation of the parts in the parse tree.

As another example, the above mentioned control-flow dependency (graph)
CFG is defined by the expression

CFG =Sequence U Jump U Conditional U Iteration

where Sequence is of category Imperative (Arity 1-to-1), Jump is of category
Subordinative (m-to-1), Conditional is of category Control (1-to-n), and It­
eration is of category Control (m-to-n).

Each program dependency R, be it elementary or compound, defines a
directed graph consisting of a set of nodes and a set of links. The nodes are
the parts in the dependency, and the links are the pairs (a, b) for which a R b
holds. Let us consider the following program fragment where 81, 82, ... , 810
are statements, and E1, E2, E3 are control predicates (Boolean expressions):

81; 82;
if E1 then begin

83; 84; 85; 86
end else begin

87;
while E2 do begin

88;
if E3 then 89 else 810

end
end

When considering the fragment's control flow as defined by the compound
dependency CFG, the directed graph in Fig. 3 is obtained. The nodes are
expressed in this and in the following graphs as rectangles and the links
as arrows from start nodes to destination nodes. Note that this way of

3 Union is typically applied for combining specialized and narrow dependencies into more
general and extensive ones, intersection is used for finding program parts with several
interesting properties, and difference is used for pruning of marginal cases. By restriction
a given dependency is bounded to include the parts specified by another dependency.

20 J. PAAKKI J. KOSKINEN A. SALMINEN

Conditional (not El)

Conditional (E2) Conditional (E2)

Iteration (not E3)

Fig. 3: Control-flow dependency graph.

representing the structures here is selected (among other reasons) because
of its compactness as opposite to the representation of actual hypertext (as
represented at the interface level of the support environments). The interface
level representation of hypertext is discussed in Section 7.

Each link is labelled by the name of the elementary program dependency
between its nodes. For the Control dependencies the Condition property is
given in parentheses. In this case the nodes stand for the program statements
only (here 81, ... , 810); another choice would be to include also the conditions
(here E1, E2, E3) as nodes.

When focusing on the problematic case of conditional branching, a more
specialized graph can be generated by the expression

BFG = CFG \ Sequence \ Jump.

The resulting reduced graph for the program fragment is shown in Fig. 4.
We call the directed graph specified by a program dependency an access

structure. The links of an access structure may be labelled or unlabelled.
For instance, the graph in Fig. 3 is the access structure specified by the
(compound) dependency CFG, and the graph in Fig. 4 is the access structure
specified by the (compound) dependency BFG.

For usability, it is crucial to select a suitable dependency specifying the
access structure. Undisciplined dependency expressions quite easily lead to
graphs that are too dense and messy for a user trying to study the under-

RELATIONAL DEPENDENCIES 21

Conditional (El)

Conditional (E2) Conditional (E2)

Iteration (not E3)

Fig. 4: Branching-flow dependency graph.

lying program. For instance, consider the sample program in Fig. 1. Sup-
pose that an access structure over the program would be specified by the
compound dependency IsOfType(init-declaration) U IsOfType(assignment),
collecting all the variable declarations and assignment statements of the
program. The IsOJType dependency belongs to the category Syntactic and
is reflexive, symmetric, and transitive, thus being an equivalence relation.
The compound dependency would therefore give rise to the access structure
shown in Fig. 5. Symmetric dependencies are depicted by dual-headed ar-
rows. Only the program parts of the compound dependency are included in
the graph.

This example gathers many of the problems of forming hypertextual ac-
cess structures based on program dependencies. By applying the rules given

Fig. 5: Undisciplined access structure.

22 J. PAAKKI J. KOSKINEN A. SALMINEN

in Section 3 most of the problems can be avoided. For structures based on
equivalence relations an additional problem is that the order between the
nodes is not determined by the relation itself. The standard solution in Hy-
perSoft is to regard them as sets ordered in terms of their preorder in the
parse tree of the program. For the equivalence relations the order often is
not crucial/important and if compound dependencies containing also other
than equivalence relations are formed, the order of the nodes may be partly
determined by the other components of the compound dependency. The
ordering problem also emerges, in general case, while forming access struc-
tures based on compound dependencies which produce disjoint subgraphs.
In that case the separate graphs can be joined by forming an additional root
node having links to the first nodes (in preorder) of the separate subgraphs.

In the example of Fig. 1, the elementary dependencies IsOfType(init­
declaration) and IsOfType(assignment) are of the same category Syntac­
tic, which obviously is the category of the union dependency IsOfType(init­
declaration) U IsOfType(assignment) as well. But what if the elementary
dependencies are in different categories, as in the control-flow example of
Fig. 3?

The problem of categorizing a compound dependency and its access struc-
ture is analogous to the issue of type rules in programming languages: The
dependency expression Rc = R1 • R2 • ... • R, is valid if the categories of the
dependencies Ri (i = 1, ... , n) are "compatible", in which case the "result
category" of the expression is also the category of Rc. In our case all the
dependencies are considered "compatible" as they reside in the same hier-
archy of categories. The category rule for compound dependencies is given
below. The evaluation order of the (binary) operations in the dependency
expression is from left to right unless changed with parentheses. Thus, the
operation Rn-1 • R, yields the category of Rc.

DEFINITION 5.2. Let Rc = R1 • R2 be a compound dependency, let C1 and
C2 denote the category of R 1 and R 2, respectively, and let Cc denote the
category of Rc.

1. If Rc = R1 U R2, then Cc is the lowest common ancestor of C1 and C2

in the lattice of Fig. 2.

2. Let Rc = R1 n R2. If C1 = C2, then Cc = C1. Otherwise Cc = Ci,
where Ci is a descendant ofCj in the lattice of Fig. 2 (i = 1, 2; j = 1, 2;
i -=f. j). If neither of these holds, then Cc =Nil where Nil is a common
virtual subcategory of all the leaf categories in Fig. 2.

3. If Rc = R1 \R2, then Cc = C1.

4· If Rc = R1 I R2, then Cc = C1.

For a union of two program dependencies (case 1), it is natural to have
their closest joining specifier as the category of the compound dependency.
For difference (case 3), the category of the first dependency represents the
properties that will be retained when removing a set of relational elements.

RELATIONAL DEPENDENCIES 23

For restriction (case 4), the first dependency dominates by neglecting those
program parts that are not included in it; therefore its category is the cat-
egory of the compound dependency as well. Intersection of two different
dependencies (case 2) is the most complicated case. The sensible way of
applying intersection is over two dependencies that have something in com-
mon; in other words when one of C1 and C2 is an ancestor of the other
(or when they are the same). In that case it is possible for the resulting
compound dependency to be nonempty by including program parts in the
more specialized category. In an extreme case the dependencies R1 and R2
are unrelated, and their intersection necessarily yields an empty set. This
possibility is captured in the lattice by the technical category Nil whose
only purpose is to provide a sound interpretation even for such peculiar
combinations of program dependencies.

For example, the compound dependencies CFG and BFG discussed above
belong to the category Subordinative, and the dependency PreOrder I
(IsOJType(init-declaration) U IsOJType(assignment)) underlying the access
structure in Fig. 1 is of category Imperative. Notice that our definition of
compound categories is conservative and in some cases just an approxima-
tion. A more precise categorization would be reached by analyzing the set of
relational elements in Rc instead of analyzing the categories of R1 and R2,
similar to "dynamic typing" of programming languages. Then, for instance,
the CFG in Fig. 3 would be of category Imperative and the BFG in Fig. 4
of category Control.

6. Graph theoretical characterizations

Being (directed) graphs, the hypertextual access structures can be charac-
terized by applying the well-known concepts of graph theory. These charac-
teristics can be used for deriving additional information for the user about
the access structures, making it easier for her to study them. This derived
information may be directly associated with the access structures, or it may
be provided externally in the user interface of the programming environ-
ment. User interface issues, such as window management, anchoring styles,
and dialogue policies, are not discussed in this paper; for a general account
of interaction in hypertext, refer, e.g., to [35]. In the following we give some
examples of graph-theoretic concepts that are useful in the context of hy-
pertextual access structures. A more extensive list can be deduced from
standard literature on graph theory, such as [7].

A path is a finite sequence of links where the destination node of each link
is the start node of the next link (if any). There is a path from node m
to node n if m is the start node of the first link and n is the destination
node of the last link in some path. The number of links in the path is called
its length.4 If there are paths from node m to node n, then the minimum
length of such paths is called the distance between m and n. For instance,

4 Usually a node is defined to have a path of length 0 to itself. ·

24 J. PAAKKI J. KOSKINEN A. SALMINEN

the distance between the first node "int global=1;" and the last node "int
local=global*p;" in the access structure of Fig. 1 is 4 (the length of the
only path between the nodes). Now an access structure might provide a
direct crosscut from a node to all the nodes at a given distance from it. For
instance, the user might reach the last node of Fig. 1 directly from the first
node by a crosscut of distance 4.

Often an access structure contains a specific program part r that the user
has selected as the root when specifying the access structure she is interested
in. For instance, the mandatory slicing criterion (usually a variable occur-
rence in the target program) is the root of a conventional slice. The length
of the path between the root and a specific node can be used to restrict
the access structure (and its formation) while it is being constructed. This
strategy is used in HyperSoft to form partial slices (see Section 7). There
might be an implicit root even in cases when the user has not explicitly
defined one. For instance, the preorder dependency has introduced the root
node "int global=1;" in the access structure of Fig. 1. For a user-specified
criterion, an access structure is the reflexive transitive closure of a compound
dependency relation Rc with respect to the specified root part r: The access
structure contains all those parts for which the relation r R~ holds. The
first node ao in the structure is r, and the directed graph ao -+ a1 -+ a2 -+
... is constructed from the chain of dependencies r = ao Rc a1 Rc a2 Rc ...

Even though in the general case it is not useful to form hypertextual
links describing indirect transitivity, in some cases a hypertextual structure
showing whether there exists a certain transitive dependency between two
nodes can be useful. For example in slicing (see Section 7) it would be faster
to determine whether there exists a data or control flow dependency between
two distant nodes (or nodes within certain larger contexts, e.g. modules)
than to form a complete slice. Likewise, in the case of access structures
based on compound dependencies it could be useful to be able to determine
whether a certain node can be reached from another node by following links
corresponding to certain kind of dependencies.

In terms of closures, another characterization for the existence of a path
between a node m and a node n is that the relation m R~ n holds. Accord-
ingly, the distance between m and n is the minimum number d such that
m R~ n holds. Given a (compound) dependency Rc for an access structure,
a (root) node r, and a distance e, the local e-neighborhood of r contains all
the nodes n for which r R~ n holds such that d :S e. The concept of lo-
cal neighborhood is useful in the case of large access structures: Instead of
trying to manage the whole access structure at once, one can concentrate
on a narrow local e-neighborhood of some suitable range e and study only
that. Conversely, the global e-neighborhood of r contains all the nodes m for
which r R~ m holds such that d > e. Besides capturing the distant and
often uninteresting connections, a global neighborhood can be utilized for
finding anomalous parts of a program. For instance, it is well known that
deep loops are problematic both for program comprehension and for code
performance. If a loop of depth, say 5, is considered anomalous, then all of

RELATIONAL DEPENDENCIES 25

them can be extracted as a global 5-neighborhood of loop statements with
Rc being the containment relation (of category Structural).

A node with no incoming links is called an initial node of the access struc-
ture, and a node with no outgoing links is called a final node. These can be
easily found: Given a dependency Rc for the access structure, i is an initial
node if n Rc i does not hold for any node n (n =J- i), and f is a final node if
f Rc m does not hold for any node m (m =J- /). Since initial and final nodes
make up the borderline between the program parts under analysis and the
rest of the program, they should have a special representation in the user
interface.

Another class of nodes subject to special linking in the access structure
and a special representation in the user interface are the cyclic ones. A
path that originates and ends in the same node is called a cycle, and all the
nodes residing in a cycle are called cyclic. In relational terminology, a node
n is cyclic if n Hj; n holds for the given dependency relation Rc. Having
each cyclic node explicitly visualized in the user interface makes it easier for
the user to avoid repeatedly traversing over the same sequence of program
parts. Also, the notion of cycles may be utilized for discovering intricate
programming idioms in the code, such as indirect recursion. For example,
in the HyperSoft system recursive calling dependencies are identified based
on the already formed access structure and a single link closing the cycle is
formed.

Dependencies Rc of arity 1-to-n and m-to-n introduce branches in the
hypertextual access structure. The degree of branching can be measured by
the outdegree giving the number of links starting from a node, and by the
indegree giving the number of links leading to a node. In other words, the
outdegree of a program part a is the number of parts b for which a Rc b
holds, and the indegree of a part d is the number of parts c for which c Rc d
holds. The sum of the outdegree and the indegree of a node is called its
total degree. For an isolated program part the total degree is 0, and for each
part in a function-like access structure the outdegree is 1. Note that since
the access structures in HyperSoft are formed so that node pairs are always
bound together, the process does not introduce disconnected subgraphs.
However, parts of the structure may be isolated in the sense that the total
degree related to a certain elementary dependency of a node may be 0.

The concepts discussed above are demonstrated in the access structure of
Fig. 6. A is an initial node with indegree 0, G is a final node with outdegree
0, and His an isolated node with total degree 0. The other nodes have
both indegree and outdegree greater than 0; for instance, both indegree and
outdegree of B is 2. The nodes B, C, D, and E are cyclic. The (branching)
nodes B, C, and F have several destinations. This is illustrated with links
of different style (type [45]). There is an infinite number of paths from A
to G (due to cyclic and branching nodes), and their distance is 3. The
local 2-neighborhood of A consists of A, B, C, and F, and the global 2-
neighborhood of A consists of D, E, and G. Finally, notice that the double

26 J. PAAKKI J. KOSKINEN A. SALMINEN

Rl o R2

R3

R4

Fig. 6: Rich access structure.

linkage between F and G makes the access structure a multigraph, and that
there is an induced composition relation Rl o R2 between C and E.

Finally, following the style of conventional software metrics [31, 20], the
(graph- theoretic) complexity of hypertext can be measured. These metrics
can be used to approximate the readability, usability, and maintainability
of access structures and to estimate the effort needed to explore them. Note
that since each access structure addresses some aspect of the software, the
hypertext metrics in this case strongly correlate with the corresponding
software metrics. We omit a further discussion of hypertext metrics and
refer instead to [22] where the topic is elaborated in more detail.

7. Access structures in HyperSoft

HyperSoft is an automated assistant for software maintenance, providing fa-
cilities for (a) locating the relevant pieces of the software, (b) systematically
navigating over it, and (c) modifying it. HyperSoft is technically based on
hypertextual access structures as described in Sections 4 and 5, and is thus
an example of a software tool where relational program dependencies are in
the central role.

HyperSoft is organized into an architecture of four layers, as shown in
Fig. 7. The source code layer contains the target program code in its original
form (as written by a programmer). The syntactic structure layer captures
the hierarchical structure of the target code as a parse tree and a symbol
table. The access structure layer provides the facilities for creating access
structures by user demand. Finally, the interface layer considers the visual
representation of the access structures and the interaction with the user.

HyperSoft is implemented in C and C++ and it runs on PC under Mi-
crosoft Windows. HyperSoft supports the maintenance of programs written
in C (an extension into embedded SQL is currently under development).

RELATIONAL DEPENDENCIES 27

Interface layer
Text representation;
access structure specifications; I+-
hypertext representation;
interface

t Source
code layer

Access structure layer Linear
Dynamically created access representation
structures; access structure in files;
operations file operations

t
Syntactic structure layer
Parse tree representations; f+-
parse tree operations

Fig. 7: HyperSoft architecture.

The C parser of the syntactic structure layer has been implemented using
the AnaGram metacompiler [37]. The technical architecture of HyperSoft is
described in more detail in [44], the implementation of the syntactic struc-
ture layer and the access structure layer (including the necessary set of
statically and dynamically stored information) in [26], and the design of the
interface layer in [34].

The access structures provided by the current version of HyperSoft are oc­
currence lists, forward and backward call graphs, and forward and backward
slices; a couple of others are being considered for the future versions. The
access structure layer contains a generation process for each of the access
structures. Each process basically traverses the parse tree, extracts from it
the nodes of the access structure (assisted by the information in the symbol
table), and generates the linkage of the access structure. The most com-
plicated access structures, forward and backward slices, are produced using
iterative solving of data-flow equations during the parse-tree traversal, as
originally suggested in [48].5

5 We prefer this solution to the more popular slicing technique of program dependence
graphs [21], because the dependence graphs would not be very useful for the generation
of the other access structures of HyperSoft.

28 J. PAAKKI J. KOSKINEN A. SALMINEN

All the access structures have alternative visual representations in the
user interface. The user can study several access structures at the same
time in which case each distinct structure is contained in a window of its
own. HyperSoft provides facilities for managing projects as collections of
program files. Only the files included in the indicated project are subject to
analysis, and each project file is shown in its own window.

Occurrence lists

An occurrence contains all the occurrences of a specified symbol (variable,
function, type) in the program. There exists a Semantic Matching depen-
dency among the program parts (since they cannot be identified purely on
syntactic or lexical basis, without taking context into account), which there-
fore form an equivalence class. The nodes within the access structure are
linked as a list based on their preorder in the underlying parse tree.

Calling structures

HyperSoft provides calling dependencies for (an occurrence of) a function f
to two directions: the hypertextual structure resembling a forward call graph
contains those functions that f calls, whereas the structure corresponding to
a backward call graph contains those functions where fis called from. Hence,
this pair is an example of a dependency relation and its inverse relation.

Fig. 8 gives an example of the backward calling dependency structure,
generated with respect to function f9 in the program. The access struc-
ture extends into three program files, each contained in a window in the
background of the figure. These hypertextual windows illustrate the basic
representation style of access structures in HyperSoft. The textual content
of the nodes belonging to an access structure are emphasized with a reverse
color in the windows. The links are (in this case) represented graphically as
arrows. Note that the user can browse the program fragments nodewise by
selecting the links with the mouse (in case of multiple destination nodes, a
pop-up menu is shown). After the selection of a link, the HyperSoft system
automatically follows it to the destination node. Links between files are not
shown in the hypertextual views as graphical arrows but if such a link is
selected, the corresponding text window is either opened or fetched at the
foreground.

Fig. 8 also demonstrates alternative dependency representations of access
structures which are used to supplement the hypertextual representation.
Note that also these views are linked to the source code so that selecting
an object within a view causes the corresponding part of program text to
be fetched to the active hypertextual view. A structured map view (bottom
left in the figure) shows the access structure in hierarchical fashion based
on the modular and functional decomposition of the program. The other
two representations are used to give the user an abstracted view of the ac-
cess structure: a global function dependency view (bottom right) provides

RELATIONAL DEPENDENCIES

- llypcr<)oft [Rnckwa.rd (ill Is hsofU (; tYj

{
. (p1,gl,g2);

fS(int x,int y) (
y=y-x+g2 ; g2++; g3++; g3++;
ymy+f8 (x, y) -fLast (y) ;
return y;

Fig. 8: Backward call graph.

29

the abstraction in terms of the included functions, and a global module de­
pendency view (middle right) in terms of the involved modules (inC: files).
From these dependency views it is easy to see that the root function f9 (in
module hsoft3. c) is directly called from the functions f4 and f6 (in mod-
ule hsoft2. c) and indirectly from the functions f 1 and main (in module
hsoft1. c). These views are formed in the following way: if there exists
an access structure node within the larger context (at the selected level of
abstraction) an abstract node for that context is created. The node-pairs
bound together based on the existing dependencies are checked out and if
the destination node is within another context than the start node (and no
link between the contexts is already formed), a connecting link is formed.

While the different views stand for the same calling structure, they can be
regarded as access structures of different category. The basic call graph on
top of the source code links together call statements within function bodies
and the enclosing function definitions (their headings). Thus the access
structure is induced by the union of the IsCalledln dependency and the
IsDefinedBy dependency, both of category Subordinative. On the other hand,
the global function dependency view corresponds to the "conventional" form
of call graphs by just containing the calling relationships between functions
and therefore belongs to the category Essential, as observed in Section 4.1.
The same applies to the global module dependency view that captures the
intermodular links within the call graph.

30 J. PAAKKI J. KOSKINEN A. SALMINEN

Fig. 9: Complete forward slice.

Slices

Intuitively, a slice with respect to a certain variable occurrence v in the
program includes either all those statements that use the value of v, or all
those statements that may affect the value of v. In the former case the
program fragment is called a forward slice and in the latter case a backward
slice, the terms characterizing the direction of data-flow analysis with respect
to v. (Backward) slices were originally proposed for debugging [48], and later
application areas include program integration, program differencing, impact
analysis, testing, and compiler optimization. A survey of program slicing is
given in [46].

As mentioned in Section 4.8, a slice combines data flow and control flow.
Consequently, the dependency for a slice is of the form DataFlow U Con­
trolFlow, where DataFlow is of category Data and ControlFlow is of category
Control. Thus a slice as a whole belongs to the category Imperative (cf.,
Definition 5.2). Within the interprocedural slices, the parameters for which
either the relation Parameterln or ParameterOut (see Section 4.8) holds so
that the passed Variable was relevant (at least related to one call of that
function) are also appended into the access structure.

Slicing structures can be very large and complicated, as illustrated in Fig. 9
by the hypertextual forward slice with an occurrence of variable f2pi3 in
the function f22 as the root. The practical value of these kind of large and

Creating e. forward slice.
PLEASE WArT ...
Counting the contexts.
10 upward slicing level(s).
22 altern!!tive context fundion(s).
1(22~ -N/A j22' (42 nodes)
2(22). -oo:00:39 j21' (65 nodes)

RELATIONAL DEPENDENCIES

Note that only the specified set (the most immediate)
of the upward contexts were analyzed.
74 statement(s) analyzed.
25 module che.nge(s) performed.
Bl access structure node(s) formed.
Elapsed time: 00:00:04

Fig. 10: Partial forward slice.

31

complex webs is questionable6 , and therefore it is necessary to have addi-
tional abstraction capabilities for them. In addition to the global function
and global module dependency views, HyperSoft provides a miniature over
an access structure for grasping an overall view of the structure and its fo-
cus. A partial miniature of the example slice is shown bottom left in the
figure as windows over three project files.

Even under abstracted views, a complete slice may be incomprehensible
for a user. Therefore HyperSoft makes it possible to generate a partial access
structure as a local neighborhood of the root node (see Section 6). Fig. 10
contains such a neighborhood for the same forward slice as depicted in Fig. 9.
In this case the (interprocedural) slice contains only the relevant statements
that reside in functions within one upward-calling level from the function
f22 or within one downward-calling level from those functions. 7 Moreover,
only interprocedural links are shown. Notice the simplicity of this partial
structure when compared to the complete one in Fig. 9. The Debug Mes­
sages window contains run-time information of HyperSoft. A destination
(target) node list provides a menu of alternative links starting from the node
which is currently pointed by the mouse cursor. Finally, a (local) June-

6 Especially since the space and time complexity of complete program analysis algorithms
(such as slicing) may be prohibitive for large programs [5).
7 Notice that the drawback of this kind of optimization is the impreciness of the resulting
partial access structure.

32 J. PAAKKI J. KOSKINEN A. SALMINEN

tion dependency view and a (local) module dependency view contain relative
navigation information as the immediate predecessors and successors of the
function/module currently active. For instance, the function dependency
view in the figure tells that the access structure contains direct links from·
the function df1 to the active function f22, and from there to the functions
df1, f23, and f21. Also these views are linked to the actual program text.

8. Related work and discussion

We have presented a general language-independent model of program de-
pendencies. The model is based on treating program dependencies as re-
lations between program parts. The dependencies have been classified ac-
cording to their fundamental characteristics, taking into account both the
relational properties of the dependencies and the way they typically appear
in programs. The classification is complete in the sense that all the possible
program dependencies can be classified based on it. Most of the currently
common practical dependencies belong to the represented Matching, and
Imperative categories.

We have also described how program dependencies can be systematically
transformed into hypertextual access structures. An access structure is a
directed graph defined by a relational expression over program dependen-
cies, such that the nodes of the graph stand for the program parts in the
compound dependency and the links represent the relations between the
parts. In addition to the relational properties manifested by the underlying
program dependencies, the access structures have structural characteristics
that can be analyzed in terms of well-defined concepts of graph theory.

The model can be applied for constructing and evaluating language-based
software tools. As an example, we have presented the hypertextual Hyper-
Soft tool for software maintenance. HyperSoft follows the model by automat-
ically extracting from the program the relevant parts and their relationships,
and by transforming them into an access structure. The access structures
are provided to the user in a graphical user interface. In addition to the de-
fault representation as hypertext, HyperSoft visualizes the access structures
in a number of alternative abstract forms.

A number of other program dependency models and classifications have
been introduced in the literature. For instance, both [11] and [28] describe
a conceptual model of programs written in C. The models are based on
entities of C (such as variables, constants, data types, and functions) and
on their relationships (such as calls, uses, defines, and includes). A similar
model for object-oriented programs has been presented in [50], emphasizing
especially the specific object-oriented entities (such as classes and messages)
and relationships (such as inherits and understands).

These models are more restricted than our model by being based on a
particular programming language or paradigm, whereas our model is based
on general relational properties of the dependencies with no commitment to

RELATIONAL DEPENDENCIES 33

any implementation method. Another essential difference is that the models
mentioned above are based on concrete program dependencies, whereas our
model is based on their conceptual categories. From this perspective, the
other models and classifications can be seen as founded on dependencies
that are instances of our general dependency categories. The same applies
to the extensible and language-independent model presented in [47], where
a large number of entities and relationships appearing in typical programs
and conventional programming languages is collected.

A more formal approach is presented in [38] by analyzing the general
properties of control-flow and data-flow dependencies in programs. Various
different forms of these dependencies are discovered and defined in terms of
their syntactic and semantic properties. With respect to our classification,
the model is restricted to the Control and Data dependencies only and does
not discuss the formal properties of the other categories. Another formal-
ization of control-flow and data-flow aspects is given in [33]. The described
system is based on a number of predefined language entities and dependen-
cies that can be used to express control-flow and data-flow properties of
a program as formulas in first-order logic. The essential difference to our
approach is that a high-level representation of the program is not produced
automatically but instead by the user, and the task of the system is to ver-
ify that the high-level representation is consistent with the program code in
terms of the underlying logical formulas.

Hypertextuallanguage-based tools are described, e.g., in [41], [8], and [53].
As HyperSoft, all these provide high-level views over source code as hyper-
text. The main difference to HyperSoft is that the models underlying the
high-level views are tied to some particular programming language, whereas
our dependency model is language-independent (even though HyperSoft ap-
plies the model to C).

Since HyperSoft is founded on a relational model of programs, it could
well be equipped with a (relational) query language as described in [8] and
in [36]. The current way of generating the access structures in HyperSoft
is by direct manipulation over the source code using a mouse and a menu
of available alternatives. A (textual) query language is one of the possible
future extensions for HyperSoft. Other improvements under consideration or
implementation include performance optimization, extension into languages
other than C, and the support for additional access structures based on our
program dependency model.

Acknowledgements

This research is part of the HyperSoft project which is funded by the Tech-
nology Development Centre of Finland (TEKES) and by an industrial steer-
ing group. The user interface of HyperSoft has been implemented by Mika
Nieminen. The comments of the reviewers have been very helpful for im-
proving the style and focus of the paper.

34 J. PAAKKI J. KOSKINEN A. SALMINEN

References

[1] Communications of the ACM 37, 5, 1994. Special Issue on Reverse Engineering.
[2] AHo, A. V. AND ULLMAN, J.D. The Theory of Parsing, Translation, and Compiling.

Prentice-Hall, 1972.
[3] AKSCYN, R. M., McCRACKEN, D. L., AND YODER, E. A. KMS: A Distributed

Hypermedia System for Managing Knowledge in Organizations. Communications of
the ACM 31, 7, 820-835, 1988.

[4] AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers - Principles, Techniques,
and Tools. Addison-Wesley, 1986.

[5] ATKINSON, D. C. AND GRISWOLD, W. G. The Design of Whole-Program Analysis
Tools. In Proc. 18th Int. Conference on Software Engineering, Berlin, Germany, 1996.
IEEE Computer Society Press, 16-27, 1996.

[6] BAKER, B. S. A Theory of Parameterized Pattern Matching: Algorithms and Ap-
plications. In Proc. 25th ACM Symposium on Theory of Computing, San Diego, CA.
ACM Press, 71-80, 1993.

[7] BERGE, C. Graphs and Hypergraphs (2nd ed.). North-Holland, 1976.
[8] BRADE, K., GUZDIAL, M., STECKEL, M., AND SOLOWAY, E. Whorf: A Hypertext

Tool for Software Maintenance. International Journal of Software Engineering and
Knowledge Engineering 4, 1, 1-16, 1994.

[9] BROOKS, R. Towards a Theory of the Comprehension of Computer Programs. Inter­
national Journal of Man-Machine Studies 18, 6, 543-554, 1983.

[10] VAN DEN BRAND, M. AND VISSER, E. Generation of Formatters for Context-Free
Languages. ACM Transactions on Software Engineering and Methodology 5, 1, 1-41,
1996.

[11] CHEN, Y.-F., NISHIMOTO, M. Y., AND RAMAMOORTHY, C. V. The C Information
Abstraction System. IEEE Transactions on Software Engineering 16, 3, 325-334,
1990.

[12] CousoT, P. AND CousoT, R. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Conference Record of the 4th ACM Symposium on Principles of Programming
Languages (POPL'77), Los Angeles, CA, 1977. ACM Press, 238-252, 1972.

[13] Computer 26, 1, 1993. Special Issue on Computer Support for Concurrent Engineer-
ing.

[14] CONKLIN, J. Hypertext: An Introduction and Survey. Computer20, 9, 17-41, 1987.
[15] CYBULSKI, J. L. AND REED, K. A Hypertext-Based Software-Engineering Environ-

ment. IEEE Software 9, 2, 62-68, 1992.
[16] FAUSTLE, S., FUGINI, M. G., AND DAMIANI, E. Retrieval of Reusable Components

Using Functional Similarity. Software- Practice and Experience 26, 5, 491-530, 1996.
[17] GARG, P. K. AND SCACCHI, W. A Hypertext System to Manage Software Lifecycle

Documents. IEEE Software 7, 3, 90-98, 1990.
[18] GOLDFARB, C. F. The SGML Handbook (Y. Rubinsky, ed.). Oxford University Press,

1990.
[19] GoDIN, R. AND MILl, H. Building and Maintaining Analysis-Level Class Hierarchies

Using Galois Lattices. In Proc. OOPSLA '93, Washington, DC. ACM SIGPLAN No­
tices 28, 10, 394-410, 1993.

[20] HALSTEAD M. Elements of Software Science. Elsevier, 1977.
[21] HORWITZ, S. AND REPS, T. The Use of Program Dependence Graphs in Software

Engineering. In Proc. 14th Int. Conference on Software Engineering, Melbourne, Aus-
tralia. IEEE Computer Society Press, 392-410, 1992.

[22] HATZIMANIKATIS, A., TSALIDIS, C., AND CHRISTODOULAKIS, D. Measuring the
Readability and Maintainability of Hyperdocuments. Journal of Software Mainte­
nance: Research f:f Practice 7, 2, 77-90, 1995.

[23] IEEE Software 12, 1, 1995. Special Issue on Legacy Systems.
[24] KILPELAINEN, P. AND MANNILA, H. Query Primitives for Tree-Structured Data. In

Proc. 5th Annual Symposium on Combinatorial Pattern Matching (CPM'94) Asilo-

RELATIONAL DEPENDENCIES 35

mar, CA. LNCS 807, Springer-Verlag, 213-225, 1994.
[25] KNUTH, D. E. Semantics of Context-Free Languages. Mathematical Systems Theory

2, 2, 127-145, 1968.
[26] KOSKINEN J. Creating Transient Hypertextual Access Structures for C Programs. In

Proc. 7th Israeli Conference on Computer Systems and Software Engineering, Her-
zliya, Israel, 1996. IEEE Computer Society Press, 56-65, 1996.

[27] KOSKINEN, J., PAAKKI, J., AND SALMINEN, A. Program Text as Hypertext: Using
Program Dependences for Transient Linking. In Proc. 6th Int. Conference on Software
Engineering and Knowledge Engineering (SEKE'94), Jurmala, Latvia. Knowledge
Systems Institute, 209-216, 1994.

[28] LINOS, P., AUBET, P., DUMAS, L., HELLEBOID, Y., LEJEUNE, P., AND TULULA,
P. CARE: An Environment for Understanding andRe-engineering C Programs. In
Proc. 1993 IEEE Conference on Software Maintenance, Montreal, Canada. IEEE
Computer Society Press, 130-139, 1993.

[29] LETOVSKY, S. AND SoLOWAY, E. Delocalized Plans and Program Comprehension.
IEEE Software 3, 3, 41-49, 1986.

[30] MAGNUSSON, B., ASKLUND, U., AND MINOR, S. Fine-Grained Revision Control for
Collaborative Software Development. In Proc. 1st ACM SIGSOFT Symposium on
the Foundations of Software Engineering, Los Angeles, CA, 1993. ACM SIGSOFT
Software Engineering Notes 18, 5, 33-41, 1993.

[31] McCABE, T. J. A Complexity Measure. IEEE Transactions on Software Engineering
2, 4, 308-320, 1976.

[32] MuRPHY, G. C., NOTKIN, D., AND LAN, E. S.-C. An Empirical Study of Static Call
Graph Extractors. In Proc. 18th Int. Conference on Software Engineering, Berlin,
Germany, 1996. IEEE Computer Society Press, 90-99, 1996.

[33] MoRICONI, M. AND HARE, D. F. The PegaSys System: Pictures as Formal Docu-
mentation of Large Programs. ACM Transactions on Programming Languages and
Systems 8, 4, 524-546, 1986.

[34] NIEMINEN M. Developing the User Interface of the HyperSoft System. Master's thesis
(in Finnish), Department of Computer Science and Information Systems, University
of Jyvaskyla, 1996.

[35] N0RMARK, K. AND 0STERBYE, K. Rich Hypertext: A Foundation for Improved
Interaction Techniques. International Journal of Human-Computer Studies 43, 3,
301-321, 1995.

[36] PAUL, S. AND PRAKASH, A. A Query Algebra for Program Databases. IEEE Trans­
actions on Software Engineering 22, 3, 202-217, 1996.

[37] Parsifal Software: AnaGram TM - User's Guide. Parsifal Software, 1993.
[38] PODGURSKI, A. AND CLARKE, L. A. A Formal Model of Program Dependencies and

Its Implications for Software Testing, Debugging, and Maintenance. IEEE Transac­
tions on Software Engineering 16, 9, 965-979, 1990.

[39] PRESSMAN, R. S. Software Engineering - A Practitioner's Approach, 3rd ed.
McGraw-Hill, 1992.

[40] RICH, C. AND WILLS, L. M. Recognizing a Program's Design: A Graph-Parsing
Approach. IEEE Software 7, 1, 82-89, 1990.

[41] SAMETINGER, J. AND POMBERGER, G. A Hypertext System for Literate C++ Pro-
gramming. Journal of Object-Oriented Programming 4, 8, 24-29, 1992.

[42] SALMINEN, A. AND WATTERS, C. A Two-Level Structure for Textual Databases to
Support Hypertext Access. Journal of the American Society for Information Science
43, 6, 432-447, 1992.

[43] SHNEIDERMAN, B. AND MAYER, R. Syntactic/Semantic Interactions in Programmer
Behavior: A Model and Experimental Results. International Journal of Computer
and Information Sciences 8, 3, 219-238, 1979.

[44] SALMINEN, A., KOSKINEN, J., AND PAAKKI, J. HyperSoft: An Environment for Hy-
pertextual Software Maintenance. In Proc. Nordic Workshop on Programming Envi­
ronment Research (NWPER'94), Lund, Sweden. Report LU-CS-TR: 94-127, Depart-
ment of Computer Science, Lund University, 25-37, 1994.

36 J. PAAKKI J. KOSKINEN A. SALMINEN

[45] SNAPRUD M. AND KAINDL. H. Types and Inheritance in Hypertext. International
Journal of Human-Computer Studies 41, 1/2, 223-241, 1994.

[46] TIP, F. A Survey of Program Slicing Techniques. Journal of Programming Languages
3, 3, 121-189, 1995.

[47] WILDE, N., CHAPMAN, A., AND RICHARDSON, R. The Extensible Dependency Anal-
ysis Tool Set: A Knowledge Base for Understanding Industrial Software. International
Journal of Software Engineering and Knowledge Engineering 4, 4, 521-534, 1994.

[48] WEISER, M. Programmers Use Slices When Debugging. Communications of the ACM
25, 7, 446-452, 1982.

[49] WEISER, M. Program Slicing. IEEE Transactions on Software Engineering 10, 4,
352-357, 1984.

[50] WILDE, N. AND HUITT, R. Maintenance Support for Object-Oriented Programs.
IEEE Transactions on Software Engineering 18, 12, 1038-1044, 1992.

[51] WILLS, L. M. Automated Program Recognition: A Feasibility Demonstration. Arti­
ficial Intelligence 45, 1-2, 113-171, 1990.

[52] YANG, W. Identifying Syntactic Differences between Two Programs. Software- Prac­
tice and Experience 21, 7, 739-755, 1991.

[53] 0STERBYE, K. Literate Smalltalk Programming Using Hypertext. IEEE Transactions
on Software Engineering 21, 2, 138-145, 1995.

VI

HYPERTEXT SUPPORT FOR INFORMATION NEEDS
OF SOFTWARE MAINTAINERS

Koskinen, J., Salminen, A. & Paakki, J. 1999. University of JyvaskyHi, Jyvaskyla,
Finland. Computer Science and Information Systems Reports, Working paper WP-37.
Submitted (Dec. 1999) for publication to IEEE Transactions on Software
Engineering.

(C) 1999 IEEE. Reproduced with permission.

ABSTRACT

Koskinen, Jussi
Salminen, Airi
Paakki, J ukka

1

Hypertext Support for Information Needs of Software Maintainers
University of Jyvaskyla, Jyvaskyla, Finland, 1999
32 pages
Working paper

Professional software maintainers need various kinds of information about the
software system they are processing. This information is typically scattered
across a variety of sources: human, printed, and digital. Of the digital sources,
the most important are program code and documentation. Hypertext is a natural
representational form for such fragmented digital information, thanks to its
linking facilities. We present a general model and a system for satisfying the in-
formation needs of software maintainers by hypertextual access structures. The
system provides the maintainer with automatically generated access structures
covering a subject software written in the programming language C. While the
system restricts the information to static program code only, we show that the
general hypertextual model makes it possible to utilize multiple sources satisfy-
ing information needs frequently occurring in software maintenance tasks. The
information needs underlying our approach are taken from a series of earlier
empirical software maintenance studies.

Keywords: hypertext, software maintenance, reverse engineering,
program dependencies, program slicing

ACM Computing Reviews Categories:
D.2.2.Software Engineering: Tools and Techniques/

Computer-aided software engineering (CASE), User inteifaces
D.2.5.Software Engineering: Testing and Debugging/ Tracing
D.2.7.Software Engineering: Distribution and Maintenance/

Corrections, Enhancement
H.3.3.Information Search and Retrieval/ Retrieval models
H.5 .1. Multimedia Information Systems/

Hypertext navigation and maps

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

1. INTRODUCTION

2. SOFTWARE MAINTENANCE

2.1. Maintenance tasks

2.2. Program comprehension

2.3. Potential solutions

2

3. THAS-BASED MAINTENANCE SUPPORT

3.1. The HyperSoft model

3.2. THAS-based maintenance support environment

4. INFORMATION NEEDS OF SOFTWARE MAINTAINERS

4.1. Identification of information needs in the studies

4.2. Frequent information needs

4.3. Information sources

5. ACCESS STRUCTURES FOR INFORMATION NEEDS

5.1. References

5.2. Lists

5.3. Sets

5.4. Trees

5.5. General graphs

6. CONCLUSION

REFERENCES

1

2

3

4

4

5

5

7

7

8

10

10

11

14

16

17

18

19

20

23

28

29

3

1. INTRODUCTION

The problems of maintaining large and complicated software systems are
prominent and well-known. Due to the increase in system sizes, the vast bulk of
old code, and changing requirements, reverse engineering techniques are
needed. A combination of reverse-engineering and hypertext techniques can
help to overcome some of the maintenance problems commonly encountered.
In our approach, hypertext over a target software system is formed automati-
cally. The temporary data structures are called transient hypertextual access
structures (THASs). This paper deals with identifying THAS types useful in
fulfilling the information needs of professional maintainers.

We have earlier studied the theoretical possibilities of forming different
THAS types in detail; see [34]. On the other hand, the practical importance and
usefulness of THAS types are also vital aspects. Supporting actual work proc-
esses effectively by information technology necessitates that the information
needs related to those processes are understood. Often, however, the emphasis
is laid on describing the technical possibilities, rather than the user needs. Since
it is often not clear which kind of structures are needed by maintainers, we fo-
cus in this paper on studying the relation between the information needs of soft-
ware maintainers and THASs.

THASs can help the maintainer by providing the needed information in a
useful and informative way. The formation of a THAS should be sufficiently
easy to justify the additional operations and related effort. The benefits come
from making the work-process smoother, thus also sparing mental resources.
Since different programming languages have different characteristics and infor-
mation needs are very heterogenous, we shall focus on the programming lan-
guage C [22] and on the most important information needs as they are
represented within the series of empirical studies conducted by von
Mayrhauser, Vans and Howe [28,29,30,31].

As a contructive proof-of-concept we shall use HyperSoft [35], a hypertex-
tual tool for the maintenance of software written in C. We shall describe THAS
types which cover some of the important information needs of software main-
tainers. The central research questions, which will be studied in this paper, are
as follows.
(1) What are the typical information needs of professional software

maintainers?
(2) What are the central characteristics of the information needs which should

be taken into account when designing hypertextual support for them?
(3) What kind of THAS types can contain the requested information?
(4) Which of the useful THAS types can be automatically produced?

4

The paper is organized as follows. First the general problems of software main-
tenance and their related -solutions are briefly surveyed in Section 2. Then the
nature and benefits of THAS-based software maintenance support are presented
in Section 3. The typical information needs of software maintainers are dis-
cussed in Section 4, and THAS types targeted at satisfying some of the most
important of those information needs are presented in Section 5. Finally, there-
sults are summarized and directions to further research are outlined in Section
6.

2. SOFTWARE MAINTENANCE

Software maintenance and program comprehension are bound together such
that typically program comprehension is a requirement for successfully fulfill-
ing software maintenance tasks. The problems of software maintenance and
program comprehension have been attacked in various ways. Since THASs
combine the notions of hypertext, reverse engineering and program analysis
techniques, only these approaches are briefly surveyed here.

2.1. Maintenance tasks

Software maintenance tasks are characterized by the attributes of their target
system and the requirements for the new behaviour of the target system. The
tasks require the source code to be changed so that the system fulfills the new
requirements. The user of the support environment is a software engineer or
maintainer maintaining the target system. The maintainer has to comprehend
the parts of the program which are relevant to the maintenance task so as to be
able to implement the necessary changes correctly without introducing any
negative side-effects.

There are many different ways to categorize maintenance tasks. Classifica-
tions differ from each other in level of detail. The traditional way, see e.g. [37],
is to classify the maintenance tasks according to the purpose of the activity into
classes of corrective, adaptive, perfective, and preventive maintenance activi-
ties. Tilley et al. [44] and Arunachalam and Sasso [3] have also created abstract
classifications for maintenance tasks. On a more detailed level, software main-
tenance includes activities such as:

• identification of problems, bugs or requirements,
• reading of comments and documentation,
• planning of required changes,
• chunking of the program,
• generation or revision of hypotheses (concerning the purpose of program

components),
• determination of the relevance of program components and their

localizations,

5

• changes to the program,
• manipulation of data, and
• testing the behaviour of the program after changes have been made.

Software maintenance activities as expressed above do not, however, reveal
much of the inherent nature of the information needed. It would also be impor-
tant to study the typical and most time-consuming or problematic elementary
tasks and processes which constitute the more complex tasks. Such processes
have been revealed in studies which will be discussed in Section 4.

2.2. Program comprehension

Program comprehension is a process intertwined with all maintenance activi-
ties. Models for program comprehension have been suggested, for example
[8,27,44]. Comprehension is especially problematic when trying to make sense
out of so-called delocalized programming plans [25] - situations where the
code implementing a certain purpose extends beyond the boundaries of func-
tional components - and while maintaining (undocumented) legacy systems.
Systematic strategies of program comprehension can be roughly classified into
bottom-up and top-down ones. A bottom-up strategy consists of "naming" and
conceptualizing the lower-level, elementary components of the program first.
Conversely, a top-down strategy is based on refining the comprehension by
gradually delving into more detailed levels of the program.

The most problematic situations are related to the adaptive maintenance of
legacy systems, cf. [30], i.e. to making extensive modifications to complex soft-
ware whose documentation is out of date. Making changes without sufficient
prior understanding of the relevant program components often introduces side-
effects. Such situations will easily lead to problems of corrective maintenance,
the other main category of software maintenance. Typical problems related to
the corrective maintenance of C programs are analyzed in detail, for example,
in [14,15].

2.3. Potential solutions

The techniques most related to the THAS techniques of this paper can be di-
vided into three groups: (1) reverse engineering tools for C, (2) program slic-
ing, and (3) hypertext techniques.

(1) Reverse engineering tools

Reverse engineering means the process of identifying the system's components
and their interrelations, and creating representations of the system in another
form or at a higher level of abstraction [11]. Established methods of program
analysis [2,48] are typically used to produce these higher-level representations.

6

Many of the existing reverse engineering tools represent the program to the
user as program dependencies- see for example [34]- which can be automati-
cally recognized from the source code. For example, control and data flow
graphs, and parse trees or abstract syntax trees can be used as a basis for pro-
gram representations. Reverse engineering systems, such as those represented
in [9,10,18,32] typically extract information from a source program as program
dependencies between its components and use a program database as an infor-
mation repository to store the extracted information. Some tools, such as
EDATS [49], focus on back-end issues and provide a special query language,
while others, such as CARE [26], focus on providing the user with a versatile
set of graphical program representations.

(2) Program slicing

Program slicing [47,5] means the extraction of relevant statements from the
source program. Slicing helps maintainers to focus their attention on program
parts which are somehow relevant to a certain maintenance situation. The focus
of interest is indicated by the slicing criterion, which typically is a variable oc-
currence within the program text. Slices are formed on the basis of analysis of
the control and data flows of the program, and may be formed either by static
or by dynamic analysis of the program. The information which is needed to
form slices is often stored in program dependency graphs or in some other
similar kind of structures [20,21].

(3) Hypertext techniques

Hypertext [12] is text with nonlinear browsing capabilities, consisting of text
fragments called nodes and links connecting these nodes. In most cases hyper-
text is created manually, although some efforts to form hypertext automatically
have been made; see [1]. Automatic generation of hypertext is seldom applied
to the documentation of a software system, an exception being [16]. Likewise,
the automatic generation in case of program text is rare, exceptions being
[7,33,35]. Some information models [41,42,43,46] support the idea of "tran-
sient" hypertext formation, thus enabling the formation of THASs.

Software hypertext systems support program maintenance activities by allow-
ing the user to create links between the source code and the related documenta-
tion. These systems include those represented in [4,13,39,52]. This kind of
linkage, especially between different documents, is generally considered an im­
portant form of supporting the maintenance process; see e.g. [28]. Although the
capabilities of these systems are clearly useful in providing associations be-
tween the source code and the documentation, they are not applicable in the
maintenance of legacy systems which either lack documentation or where the
documentation is out-of-date.

7

Most of the hypertext techniques in software engineering environments fo-
cus on supporting forward engineering. The system most related to THAS-
based maintenance support, and to the HyperSoft system in which THAS-based
maintenance support is implemented, is Whorf [7]. Both HyperSoft and Whorf
aim to provide automated hypertext support for C language. Furthermore, they
both provide a variety of graphical views to supplement the hypertext. The de-
velopers of Whorf emphasize the importance of links between different views.
Whorf focuses on supporting variable and function cross-references, call graphs
and containment. N!Zirmark and 0sterbye [33] have in their HyperPro system es-
pecially focused on demonstrating the typing of nodes and links and the inter-
nal structures of hypertext nodes. We have aimed at systematically enabling
versatile support via a set of THAS types based on our model of hypertext
support.

3. THAS-BASED MAINTENANCE SUPPORT

Transient hypertextual access structures (THASs) are automatically formed,
temporary data structures enabling hypertextual browsing capabilities over the
program text. They are the cornerstone of the HyperSoft model, introduced in
[35].

3.1. The HyperSoft model

In the HyperSoft model a THAS is modeled as a directed graph, that is, as a
pair (N, L) where N is a set of nodes and Lis a set of ordered node pairs called
links. Typically, the nodes are parts of specific syntactical types and the link
types correspond to program dependencies. The links are formed for enabling
unlinear text browsing. We have described and classified program dependen-
cies potentially applicable for creating links in [34].

The HyperSoft approach describes a hypertext support environment in four
layers: source code, syntactic structure, access structure, and user interface lay-
ers (see Figure 1). It is characteristic of the approach that the access structures
are transient (temporary), are generated automatically, the source code is the
main input, and maintenance support of legacy systems is the main target area.
The syntactic parts of the program text serve as the basis for forming the nodes,
program dependencies serve as the basis for forming the links, and both the
nodes and the links are generated by automatic analysis. It is important within
the appoach to be able to focus on the relevant program parts and on the impor-
tant dependencies. At the interface layer, graphical representations and abstract
views are used to deal with the disorientation and cognitive overhead problems
[50] often associated with hypertext systems.

Since legacy software often lacks reliable documentation, the source code
has been taken as the primary source of information in the maintenance

8

environment. The model itself covers documentation as well if it is systemati-
cally structured, for example, by using rules regulated by a Document Type
Definition of SGML [19]. In that case the linear text of the documentation
would be part of the source code layer, the parse tree for documentation would
be part of the syntactic structure layer, and the access structures would cover
the documentation as well as the source code. In addition, comments [40] em-
bedded within the source code could be structured systematically and thus han-
dled within the model.

Interface layer
Text representation;

~ access structure specifications;
hypertext representation; Source
interface code layer

t Linear
Access structure layer representation

Dynamically created access in files;
structures; access structure file operations
operations

f
Syntactic structure layer
Parse tree representations;

~ parse tree operations

Figure 1. Layers of the HyperSoft model.

3.2. THAS-based maintenance support environment

The THAS-based maintenance support environment HyperSoft [35] has been
implemented in the Universities of Jyvaskyla and Helsinki and in co-operation
with Finnish software houses. Figure 2 shows part of an example THAS within
the HyperSoft system. There is a single THAS whose nodes reside in three
modules. The three windows contain some of the C source code in the modules.
The example THAS is a partial forward call graph initiated from the function
identifier find_moves (top-left window). The THAS contains a node for each
call and implementation of the functions reachable from the find_moves
function by following function-calling dependencies. The high-lighted text
blocks represent the hypertextual nodes and the arrows indicate the links be-
tween the nodes.

The example THAS can be browsed in various nonlinear ways by following
the links provided by the system. The selection of a node causes the cursor to
move to the appropriate target/destination node. In the case of multiple links
originating from a node, a pop-up window for making a selection is shown (as
in the bottom-left pane of Figure 2). Navigation is supported via various

9

mechanisms, including the home node link, back -tracking, history lists and ab-
stract and graphical views. The choices regarding applied visual representations
and, for example, colors belong to the interface layer of our model (as repre-
sented in Figure 1). The way that the user interacts with the system will be fur-
ther clarified in Section 5. The THAS types currently supported by the
HyperSoft system are definition references and occurrence lists for variables,
functions and user-defined type names, instance lists of syntactical types, com-
plete and partial forward and backward call graphs, intraprocedural backward
slices, and complete and partial interprocedural forward slices.

- HyperSoft (Forwdrcl calls m<:un c llldtn}

ftle Havtqntton _Query Y._tew Y{tndow Help

po••ib1a aova• of a pi.oeo
co1~ 'X' and row 'y',

' aatrix
the type of the pi.ece, then ca
fWlction

Figure 2. Visualization of a forward call graph in the HyperSoft system.

The usefulness of the THAS types in a maintenance support environment is de-
pendent on their coverage of information needs. Other factors affecting useful-
ness include the potential accuracy and completeness of the THASs. There also
are costs related to forming the THASs, namely issues of technology (time and
space complexity) and psychological boundary conditions (cognitive complex-
ity). These issues may make the forming and using of very large and complex
THASs inconvenient. In laboratory tests the hypertext support offered by the
HyperSoft system was found useful in performing a set of given tasks [23,24].

10

4. INFORMATION NEEDS OF SOFTWARE MAINTAINERS

Professional software maintenance work has been investigated in a series of
empirical studies by von Mayrhauser, Vans, and Howe [28,29,30,31]. These
studies have analyzed the general understanding process underlying typical
software maintenance activities, as well as the information needs of software
maintainers during the performance of their tasks. From the information needs
revealed, tool capabilities have been derived that would help them to be more
productive. The studies cover the conventional classes of software maintenance
quite extensively: a detailed analysis is given for corrective maintenance [29],
perfective or enhancing maintenance [31], adaptive maintenance [30], and com-
binations of these [28]. The studies represent observational field studies of pro-
fessional software maintainers working on software. Each observation involved
a programming session in which the programmer was working with large code
consisting of at least 40,000 lines. Sessions were typically two hours long.
Thus, one can conclude that these studies constitute a valid and general refer-
ence to the maintenance processes that professional software engineers apply
when maintaining a production-quality code. They also lay an interesting foun-
dation for analyzing to what extent transient hypertextual access structures in
maintenance tools can support maintenance work.

4.1. Identification of information needs in the studies

The series of four above-mentioned studies analyzes and explains the activities
of software maintainers, their understanding processes, and their information
needs during the performance of their tasks. The purposes of the maintenance
tasks were general program understanding, understanding one module, under-
standing a program bug, fixing a bug, and adding a functionality. The partici-
pating maintainers were asked to think aloud while working on the code. The
thinking aloud was audio-taped and the tapes were transcribed. The total num-
ber of participants in the four studies was 17.

The basis of the protocol analysis of the four studies was the integrative
comprehension model [27 ,28] in which the program comprehension is regarded
as a process where the programmer builds and uses three kinds of models: the
domain model, the program model, and the situation model. The protocol
analysis varied in minor details, but basically consisted of two phases. In the
first phase the cognitive activities of the participants and the relationship of
these activities to the three models were identified. The second phase identified
tasks at a finer level of granularity as well as the information needs for com-
pleting the tasks.

Information needs were defined as information and knowledge items that
support the successful completion of maintenance tasks. A classification of in-
formation needs was developed and the programmer utterances in the protocols

11

were associated with these categories. For example, the utterance " ... because it
calls SPOOL-INTO, yeah. So I was at the right place. A long time ago ... " was
inferred to belong to the class "List of browsed locations" [31]. The reported
data on information needs in [28,29,30,31] is based on the analysis of 13 proto-
cols. These studies do not describe what kinds of tools the subjects used during
the programming sessions and what kinds of material the subjects had avail-
able. Thus, we do not know whether their utterances were responses to pieces
of code on the screen or to other data items.

4.2. Frequent information needs

We collected the information needs reported in the four studies and have sum-
marized the most frequent information needs in Table 1. Needs are ranked ac-
cording to their total frequency in the studies. The table describes the 24 most
frequently occurring information needs in five columns. The first column gives
the rank of the information need. The second describes the information as it is
described in the source studies. The third states how often the subjects needed
the information. The fourth column refers to the sources from which the infor-
mation could be found in a maintenance environment. The sources will be dis-
cussed further in the following subsection. The fifth column refers to the
hypertextual access structures we regard as suitable support for finding the
needed information. The column will be explained in Section 5.

Some of the information needs are expressed more disambiguously than oth-
ers. In some cases it is not clear whether the information need means single or
multiple pieces of information to be retrieved at any one moment (#1,2,12,19).
The specificity of the expressed information needs also varies. Some informa-
tion needs (#13,16,23) deal with locations only and are thus very general in
their nature, whereas some (#2,10,12,17,22) are very precise dealing explicitly
with the specific occurrences or values of variables. The information needed in
the former case can be provided in many different ways. In relation to many in-
formation needs (e.g. #4,5) there are simple further specifications, which make
the expression more precise; some others (#3,6,21) include even more elaborate
descriptions.

It has to be noticed that from Table 1 we cannot draw any direct conclusions
about the ranking of programmers' needs for information from external sources.
People tend to talk about things they know. In their study [29] concerning cor-
rective maintenance the researchers were surprised that domain concept de-
scriptions were top of the list of needs when they expected finding and
removing bugs to require a considerable amount of information at the code
level. This unexpected result was explained by the expertise of the subjects:
three of the four subjects were domain experts.

12

Rank Information need F Source Example
St Dy Do 0p id.

1 Domain concept descriptions 68 X X T1
2 Location and uses of identifiers 54 X S1
3 Connected domain-program-situation model knowledge 41 X X X -
4 List of browsed locations 33 X L1
5 List of routines that call a specific routine 29 X L1,S1,Gl
6 A general classification of routines and functions such that if 19 X X G1

one is understood, the rest in the group are understood

7 Format of data structure plus description of what field is used 18 X XX R1
for in program and application domain, expected field values
and definitions

8 History of past modifications 18 X X X L1
9 Bug behaviour isolated 18 X X G2
10 List of executed statements and procedure calls, variable values 17 X L1,Gl
11 Call graph display 16 X G1
12 Variable definitions, including why necessary and how used, 14 X X X R1

default and expected values
13 Location of desired code segment 12 X X G2,G3
14 Directory layout/organisation: include files, main file, support 12 X T1

files, library files; file structures

15 Highlighted begin/ends of control blocks llX T2

16 Location of where to put changes lOX X X G2,G3
17 Conditions under which a branch is taken or not: include 9X X T2,G2,G3

variable values
18 Exact location to set breakpoint 7X X X G2
19 Location and description of library routines and system calls 7X X R1,S1
20 Ripple effect 7X X G3
21 Naming conventions separated by systems or library objects that 7X X -

use them; rules for naming new procedures

22 Expected program state, e.g. expected variable values when 7X XX G2,G3
procedure is called

23 Good direction to follow given what is already known, possible 7X XX G2,G3
program segments to examine

24 Nesting level of a particular procedure 7X T2

Table 1. Frequent information needs.

13

Information need S1 S2 S3 S4
Gen. Corr. Perf. Ad.

1 Domain concept descriptions I I

2 Location and uses of identifiers IV III n
3 Connected domain-program-situation model knowledge n IV

4 List of browsed locations IV I

5 List of routines that call a specific routine n v
6 A general classification of routines and functions such that if one is v

understood, the rest in the group are understood
7 Format of data structure plus description of what field is used for in v

program and application domain, expected field values and definitions
8 History of past modifications III

10 List of executed statements and procedure calls, variable values v
12 Variable definitions, including why necessary and how used, I

default and expected values
14 Directory layout/organisation: include files, main file, support files, IV

library files; file structures
15 Highlighted begin/ends of control blocks III

16 Location of where to put changes III

20 Location and description of library routines and system calls n

Table 2. The five most frequent information needs in the four studies.

They probably already had knowledge of the things they were talking about and
did not lack all of the domain information they referred to. It is also possible
that the subjects as experts recognized pieces of important information which
for non-domain experts should be available in the documentation, even though
that themselves did not lack this information. In our interpretation the informa-
tion needs listed in Table 1 do not necessarily indicate lack of information in
the case of the subject, but they refer to useful item of information which many
potential programmers, given that sort of task, would lack.

The four studies showed, as expected, that the information needs of different
people engaged on different maintenance tasks differ. Table 2 summarizes from
the information needs given in Table 1 the five most important to emerge in
each of the four studies. The table contains six columns. The first gives the total
rank in Table 1. The second describes the information. The columns from the
third to the sixth show the rank of the information need in the individual stud-
ies. The third column refers to the study [28] in which different maintenance
tasks were involved (Sl). The results concerning that study were based on the
analysis of five protocols. The fourth column refers to the study [29] which
concerned corrective maintenance (S2), and had four subjects. The fifth column
refers to the two-subject study [31] concerning perfective or enhancing

14

maintenance (S3). And finally, the sixth column refers to the adaptive mainte-
nance study [30] (S4), which also had two subjects. Table 2 shows that the or-
der of importance of information needs clearly varies with different types of
tasks. Each of the five most important information needs in Table 1, however,
also occurs among the five most important ones in at least two of the four indi-
vidual studies.

4.3. Information sources

Above, we discussed the information needs of software maintainers as these
were identified and expressed in the series of four studies. The information
needs were defined as "information and knowledge items that support the suc-
cessful completion of maintenance tasks". Such support can only exist if the
items are available and make sense to the individual in the specific situation.
The items may, at least partly, be in the mind of that individual. The remainder
should be found from external sources.

The information sources available to a software maintainer outside his or her
own head can be classified into three major categories: other persons, digital in-
formation available in the computer-aided maintenance environment, and literal
information outside the maintenance environment. A goal in the development
of computer-aided maintenance environments has been to improve the avail-
ability of useful information by the tools of the environment. The digital infor-
mation sources of a computer-aided maintenance environment can be divided
into four major groups. First, the source code and the information made avail-
able by the static analysis of the code. Second, information made available by
the execution of the code. Third, the software documentation and other literal
material available in the environment, as well as the information made avail-
able through the analysis of that material. And fourth, the session history. Be-
low, we shall discuss the information needs related to these classes. The
sources of the different needs are summarized in the fourth column of Table 1.

4.3.1. The source code

A great deal of the information needs in Table 1 concern program parts of a
specific syntactic type: variable definitions (#12), routine or function names
(#5,6,11), identifiers (#2), statements within program slices (e.g. #9,20), begin-
nings and ends of control blocks (#15), data structure definitions (#7), branch
conditions (#17), and library routines and system calls (#19). In some cases the
information need can be satisfied only if the parts are seen in the code context.
In other cases the values of the parts can be accessed and listed, or graphically
represented out-of-code. For example, the beginnings and ends of control
blocks (#15), and location and uses of identifiers (#2) have to be seen in the
code context. On the other hand, a list of routines that call a specific routine

15

(#5) can be given as a separate list. Call graph display (#11) requires showing
the calling dependency graphically.

Information about the environment- local or global scope (#12) - is an ex-
ample of a need which does not involve a specific syntactic structure, but which
to fulfill the programmer has to see the code surrounding the current position.
The needs for function call count (#5) and count of variable use (#2) concern
information which is not directly in the source code text but has to be counted
from the occurrences of function calls and variables, respectively. This kind of
scope and count information has been regarded as important in the study of
[28]. Similarly, the nesting level of a procedure (#24) and metric values are
based on additional analyses and calculations. Information about past modifica-
tions (#8) may be included in program comments. If the program database con-
tains several versions, modification history can be retrieved from the database.

4.3.2. Code execution

Information about executed statements and procedure calls (#10), and variable
values (#10,17,22) can be accessed only if the maintenance environment also
includes run-time capabilities. Some information needs may be satisfied only
partially via static analysis (#7, 17). Finally, the support of many information
needs (#9,12,18,20,23) is leveraged beyond the limits of static analysis via the
application of dynamic (run-time) analysis of the software.

4.3.3. Documentation and other literal material

Program documentation usually consists of comments in the source code and
other related documents. In case of legacy software, a well-known problem is
unreliable or lacking documentation. Thus program documentation as an infor-
mation source is not always available. There will, of course always be some lit-
eral material concerning the task always available, such as programming
manuals, operation system manuals, and literature about the special domain of
the software.

The most frequent information needed in the four studies concerned domain
concept descriptions. This information need occurred most often in adaptive
and corrective maintenance (see Table 2). As discussed above we do not know
how often a need occurrence in one of the four studies concerned a need for a
new information item and how often the need actually said something about the
knowledge the subject already had. Nonetheless, even programmers familiar
with the domain may lack much of the domain information and to the maintain-
ers of legacy software the domain and its notions at the time the software was
written may be very unfamiliar.

Naming conventions (#21) are typically information items which the pro-
grammer does not know undertaking the maintenance of an unfamiliar soft-
ware. In some cases the naming conventions may be inferred from the code.

16

Specification of the naming conventions, acronyms, and other agreements
about the way the code is written are of course helpful in the maintenance situa-
tion. Hence, information stored in documentation and other literal material is
often needed together with information in the code.

4.3.4. Session history

Some of the needed information is created during the maintenance session. In-
formation about browsed locations (#4) has to be collected during the code
reading. Also, support for checking the history of past modifications (#8), de-
termining the location of where to put changes (#16), and finding the location
to set a breakpoint (#18) may require analysis of the user operations.

4.3.5. Combining multiple sources

An important result in the studies by von Mayrhauser and Vans is that program-
mers use a multilevel approach to program understanding, switching between
program, situation, and domain models, and flexibly needing different kinds of
information. A specific information need called "Connected domain-program-
situation model knowledge" (#3) related to the different layers was identified.
Fulfilling this need typically requires multiple sources. Also many other infor-
mation needs (e.g., #6,7,8,12,16,18,22,23) relate to multiple sources. In their
papers von Mayrhauser and Vans suggest rich cross-referencing between differ-
ent kinds of information and information sources. Recall that our hypertextual
software maintenance environment applies source code and session history as
information sources. However, the environment could well be extended by in-
corporating capabilities for code execution and partially for systematically
structured documentation as well.

5. ACCESS STRUCTURES FOR INFORMATION NEEDS

As defined in Section 4, an information need consists of information and
knowledge items that support the successful completion of a maintenance task.
As further discussed in Section 4, these items can be obtained from a number of
sources, either by human or automated means. In this section we shall go one
step further by analyzing which kinds of concrete access structures based on the
information and knowledge items can be provided in a software maintenance
environment. We use the HyperSoft system as a case environment, and thus the
information needs are mapped onto the special forms of transient hypertextual
access structures.

The access structures are classified according to their structural topology:
references are discussed in Section 5.1, lists in Section 5.2, sets in Section 5.3,
trees in Section 5.4, and general graphs in Section 5.5. These topological ac-
cess structure types and their relational foundations are analyzed in more detail

17

in [34]. Each topological type is illustrated with sample access structures. The
access structures are mapped together with their target information needs by
giving the identifiers (e.g., R1) of the relevant access structures in the last col-
umn of Table 1.

5.1. References

References are the most simple form of access structures: a link is provided
from an information or knowledge item to its definition. Although being very
simple, the usefulness of references has been shown both by the empirical stud-
ies of von Mayrhauser et al. and in studies made by ourselves [23,24,35].

(Rl) Definition references

Any occurrence of an item in the source code that needs explicit definition im-
mediately raises the need for a reference access structure - a direct link from an
occurrence to its definition. The named items of programming languages (con-
stants, variables, types, routines, procedures, and functions) are the basic ele-
ments in any program; hence their meaning must be frequently studied in
typical maintenance tasks.

The descriptive information needs over data structures, variables, and rou-
tines supplied in Table 2 (#7, 12,19) can be served by definition references. As
an example, Figure 3 illustrates a hypertextual access structure for information
need #12: "variable definitions, including why necessary and how used, default
and expected values". In the figure, the maintainer wants descriptive informa-
tion for the variable s in trying to understand a statement in a chess program.
Notice that the information may be spread over multiple sources. In this case
the information items are found in the source code (by static analysis) and in
the program's documentation.

s:
side of move.
Expected values:
+l:WHITE
-I: BLACK

Figure 3. Definition references for a variable.

In the case of a structured variable (#7), such as a record, the access structure
would contain the same information but the link leading to the type (int in
Figure 3) would then lead to descriptions of its fields. In the case of library and

18

system routines (#19) the descriptive information would mostly be found in lit-
eral documentation or in software libraries.

HyperSoft provides definition references for variables, user-defined types,
and function identifiers. Thanks to the use of a static program database, these
access structures can be formed very rapidly. Note that since HyperSoft only
applies static program analysis over a context-free grammar, documentation
and comments are excluded from its access structures.

5.2. Lists

A list is composed of an ordered sequence of items. In a software maintenance
session, the order of the user's operations is a most natural criterion for order-
ing the items over time (cf Section 4.3.4). The source code also spans a number
of natural ordering criteria, such as the textual ordering of the statements in the
program (or, the preorder of the statement nodes in the parse tree over the pro-
gram). A list is also often a natural representation also for (partial) hypertextual
access structures that by their inherent nature are sets, trees, or graphs. This as-
pect will be explored in Sections 5.3, 5.4, and 5.5, respectively.

(Ll) History information

Information about browsed program locations (#4) and past program modifica-
tions (within a session) (#8) has to be collected during the maintenance session.
Session-specific history traversal is a standard facility in hypertext systems, be-
ing supported in various ways such as links to the previous node, next node,
and home node. In HyperSoft the user generates a transient path when browsing
the source code along an access structure, and this path can be traversed in a
standard hypertextual manner. Notice that such a path always forms a special
route (i.e., a subpath) in the access structure.

Figure 4 depicts a situation where the maintainer is browsing the occurrences
of variable s and is only interested in those statements where s is assigned a
value. The browsed program locations are emphasized.

!returns;

Figure 4. List of browsed locations.

19

Code execution also induces a temporal order among information items. For in-
stance, information need #10 in Table 1 calls for a list of executed statements
and procedure calls. The information need can be satisfied with a similar list
over program statements as shown in Figure 4. Now the items in the list would
stand for the statements that have been executed when running the program, in
their execution order (thick frames in Figure 4), while the unexecuted state-
ments would remain outside the list (thin frames in Figure 4), i.e. t=s; and
return s;.

The history mechanism could even be extended beyond session boundaries.
For instance, by comparing two versions of a program in terms of their parse
trees [51] one could automatically find the program deltas for a source code
control system or a configuration/version management system (#8). The pro-
gram parts would then be arranged in a linear list according to their age.

5.3. Sets

In many cases the maintainer needs a collection of information or knowledge
items that share a certain property. For instance, need #2 in Table 1 calls for a
set of identifiers in the program, with no particular preference among the occur-
rences. In relational terminology such a set of similar items forms an equiva-
lence relation; see [34]

Representing a set-based access structure as hypertext introduces a problem:
how should the items in the set be linked? In most cases a complete n-to-n link-
age over the access structure, from each item to each item would not be sensi-
ble, even though this solution would in fact match with the
equivalence-relational property of the access structure. Inducing an order be-
tween the items in the access structure effectively transforms its representation
into a list, whereby the maintainer will browse the items of the set via the or-
dered links between them.

(Sl) Variable occurrences

As was shown by the tables in Section 4, identifiers (#2) in the program are a
central information source for a professional maintainer. This information need
is served in HyperSoft with an access structure that contains all the occurrences
of a selected variable or user-defined type. The access structure can be entirely
generated by static analysis of the source code. As additional information, Hy-
perSoft also gives the size of the access structure as the number of occurrences
in it. According to our reference studies, count information is freqently needed
by maintainers when estimating the efforts of their comprehension and mainte-
nance processes.

As discussed above, the occurrences of an identifier conceptually form a set
with no specific ordering. To make the access structure usable, HyperSoft links

20

the occurrences into a directed list starting from the occurrence selected by the
maintainer as the seed. The linkage follows the textual order of the occurrences
within the program. Note, however, that this choice is not the only one possi-
ble: one could, for instance, link occurrences according to their nesting level
(first global occurrences, then local occurrences), or according to the order of
execution of the statements that access the occurrences. Figure 5 gives an ex-
ample of an occurrence list, starting from an occurrence for variable s. Since
the relevant information can be found directly from the static program database,
the generation of occurrence lists is very fast. On the right, the figure shows the
names of the files of the project currently being processed (project files win-
dow) and status information generated during the formation of the THAS (de-
bug messages window).

Other frequent information needs that can be served as list-represented sets
of information or knowledge items are routines that call a specific routine (#5),
and location of library routines and system calls within the source code (#19).

=I HyperSoft [Occurrence list: dlalog.c- <Unknown>) H~
Ble Navigation .Query)liew Window Help

~ l§ll~l<fl..li~Ji I~ I I I 0
=I c:'ohsoftVnput\chplmaln.c I· & ~

ml•l;UDdo-Q; ~ 1-=I Project Ales I· &
~~1~:'77 :re ~I --1 u black-'HUK)) "' pha:Je!•JIA.

g c:\hsofl\lnpui\Chp\dlalog.c ~

reacl_JIIDVe (move:atr) ; g c:\hsofl\input\chp\cval.c
xy(mcvezstr, 'xl, 'Yl, 'x2,' ' g c:\hsoft\lnpui\Chp\mlln.c
1'! (SGN(bcard[x2] [y2] capt-YES; I• :mave:str[2]••••; •1 c:\hsofl\lnpui\Chp\maln.h
Chl!cll.-is_check:(' :strcpy (movest cr(xl,yl,x2,y2,capt,check,JirOIIK)tian)); c.'\hsoft\input\chp\opcnlng.c

+ atrcpy(s[~] ,l'llOVestr);
lii::IW:!!I[O] [O ,xl•xl;movea(O] [O],yl•yl;
movea[O]] .x2•x2;moves[O] [D] .y.2•J2; t [qucmgve:)•QIIIIIIeCOWlt(QUeJriOVe:-1]; =I Debug Messages 1·1& real Y!S;do_raove(O,O); .. NO;clrscr () ;s:taov_bosrd.(); Ble fdlt .Qptlons Help . V_QIImi!(H·Z• ((1nt) (ql!llleiiiOVe:+l) /2) -BOVEHIST_AR!A);

~

' IIIOVe+t; +
+ .. Creating 1m occurrence list

Found 57 occurrences. =I c:\hsoftVnput\chp\dlalog.c I· & 7 module che.nga(s) performed.

U (strcmpLII!I!'ft (llllVe,.loDQCe.st) >-5) (~
57 access structure node(s) formed.

1<1 VHITEI strcp-v[J~~DVe,."el-cl");
Elopsed time: 00:00:10

el st.rcpy [move. "e8-c8 ") :
I + else f (strCJ~q~Left (JDDVe, :~hDrtCet) >-31 (

+ .. ,. -niT!) strcpy (move, "el-ql");
else rcpy (IIIOVe, "e8-q8");

I

if(mDVe[D]-'x'J
printf["Exitinq o request.\n") ;exit (1);

I
it! (strleD.(I'IIOVe) <51 erro ' else (

if(move[D]<'a' II move[D]>'h error-1;
el111e u: (lllOVt![l] <'1' II move(l]> 'I error-Z; "i"

main.c(186) s 0:00:10 0:00:01 186:36

Figure 5. Occurrence list for a variable.

5.4. Trees

If certain information or knowledge items have dominance over other items, a
convenient representation for the access structure is a tree, or hierarchy. In such

21

cases the items are in an antisymmetric relation; cf. [34]. Tree-formed access
structures are quite useful in software maintenance environments, especially
when the source code is a central information source whose standard internal
representation takes the shape of a dedicated tree: a parse tree. This is also the
case in HyperSoft where the whole source code could actually be represented to
the maintainer as a hypertextually linked tree. Such a huge tree would, of
course, not be usable; hence some filtering mechanisms must be applied to ab-
stract the parse tree in order to create a more compact access structure.

(Tl) Domain concept descriptions

Professional maintenance engineers, especially those familiar with the applica-
tion domain, frequently make assumptions about the module and control struc-
ture of the program they are working on. Such assumptions are based on
general concepts of the domain and standard solutions as given in text books
and other documentation. For instance, a person responsible for the mainte-
nance of a compiler can usually safely assume that it is organized as a sequence
of "phases" such that a "parser" calls a "scanner", a "semantic analyzer" and a
"code generator".

These kind of frequently arising opportunistic information needs (#1 in Ta-
ble 1) can be served by an access structure that contains the main components
of the software organized into a hierarchy according to their structural or call-
ing relationships. For instance, the access structure in Figure 6 exemplifies the
domain concepts of a typical compiler. In cases where the links stand for call-
ing relationships, the access structure is commonly termed a "call graph" (cf.
Section 5.5), while the access structure would be termed a "module dependency
graph" or "class diagram" in the case of a structural containment relationship.

parser)o scanner

~ semootio ooalyze' ~ symbol table manage'

code generator)o code optimizer

Figure 6. Domain concept description for a compiler.

If documentation is available in digital format, the code-level access structure
can also contain links (references) from its nodes to the documentation that ex-
plains how the concepts are typically or in this particular case implemented.
Note that links to documented standard practices are quite useful, e.g. when
analyzing the quality of the particular solutions in the system under mainte-
nance by comparing the actual software architecture with the standard concep-
tual architecture; e.g. [6]. Tree-formed access structures are natural

22

representations also for other kinds of organized information, such as directory
and file structures (information need #14).

The HyperSoft system supports the information needs of domain concept de-
scriptions by the view of "global module dependencies". Views are provided in
HyperSoft to supplement the hypertextual browsing. An example is given in
Figure 7, with the module dependency view on the right. The view has been
formed automatically for the active access structure - in this case the call graph
used as an example earlier in Figure 2. The upper part of the view shows the in-
terrelations on the module level and is thus rather abstract, whereas the lower
part shows them on a more detailed level (as individual functions which gener-
ate the existence of module-level relationships). The items may be ordered in
many ways - in this case they are ordered on the basis of calling dependencies.
The view shows, among other things, that f ind_moves (implemented in the
module eval. c) calls the function try _piece (implemented in the module
try. c) (which were the two first levels in Figure 2). Note that the user can col-
lapse the details within the boxes. For example, if the user wants an abstracted
view of the content of the module eval . c, only its external interface would be
shown. As the figure suggests, at the detailed level the conceptual information
tends to form a general graph, which is discussed in Section 5.5.

=I HyperSoft (Forward calls: main.c- main] H;
file Navigation .Query Ylew ,Window Help

~ [§] lEl.l~l [E I~ I~ I':) I 10
=I Module Dependency 1~1·

= c:\hsoft\inputlchplmain.c Forward calls: main.c - main

~c kc{•"• ~ =I c:\hsoft\inputlchpldlalog.c ~ ci<lll.c .
~ ·----- ------------------------------------ --- - ' . =I dhsoft\inputlchpleval.c ~;;~~--~~--~-_-_) (

• T) ·--
inc

int eval move(int xl,int yl,int xZ,lnt y2) { . ---___ : --
inc • Ope:ration: Stlltically evaluates a propo~ed. nove <••

nc . 'VALUE*' macro:!!) lnc : ;:~:~: ~~=r~a::: ~:r:~n~;~i~!:: ~! ~h:1:~erl

~~~ 
e * (it any) and some static analysii!l based 

tte • changel!l ~ find_ldngs try_piece 
:te • OUtput: The moves[ml] [n] .value iZI updated. sccord Is clu:ck 

dO move je:xte ·~-------------------------------------------------- .. ,..~ ~-·~- . ., •.. jexte 1nt pl""bosrd[xl] [yl]; int p2-bosrd[x2] [y2]; 
I game end sort move " :~ jexte int piece-ABS (pl) ,captPiece•ABS (p2J ; 
read_ffiove find-max output_mo ~xte int check_ in-0; I• Numl:ler of piece:!!~ check 
X¥ undO move show_board jexte int check_out•O; 1• Number of piece:!!~ c::heck 

strcm-pleft jexte int c,kx,k:y,k,n, i,:!!lame•O; 
xte ft print't("here "); •! 

• ~p~nl~c ~~Tr.~:C f;'l Fxte if(SGN(pZ)-s) return -1; !• Cspture of own piece""/ find opening 11 set move 
bd EE it (piece-KINO) I 

~r +- k~ngx[-(SGN(pl))]""XZ; 
k1nqy[ (SGN(pl) )]•yZ; try_king 

) try_cosdlng 

+ try_roolc 
try_blshop 
try_lcnlght 
try_pawn 

0:01:31 0:00:00 113:4 

Figure 7. Global module dependencies. 



23 

(T2) Control blocks 

The boundaries of control blocks help a maintainer in grasping a general under-
standing of the program's internal structure (information need #15 in Table 1). 
Since the control blocks can be found by pure static analysis of the source code 
and are nested within the underlying parse tree, a natural access structure for 
them is a tree where the levels stand for the textual containment of the blocks. 
For a control block standing for a procedure, its nesting level can also be indi-
cated in the access structure, so as to serve information need #24. Moreover, 
the blocks for conditional and iterative statements can be automatically associ-
ated with a link to the predicate that controls the branching within the state-
ment, so as to serve information need #17. Although HyperSoft currently 
supports the representation of control blocks explicitly in the form of a simple 
list only, it also provides a more general solution, program slicing, which is dis-
cussed in next section. 

5.5. General graphs 

The flow of control and data, two of the most central aspects in a software sys-
tem, are usually presented as control- and data-flow graphs (or their variants). 
Accordingly, graphs are quite often needed by a software maintainer who has to 
understand the internal flow of information within the target software. 

(Gl) Call graphs 

Call graphs are one of the most well-known abstract representations of a pro-
gram. A call graph visualizes the calling dependencies between the subroutines, 
procedures, and functions of the program, and by this expresses its overall con-
trol flow. HyperSoft supports control-flow understanding to two directions: 
backwards with respect to the selected routine, and forwards with respect to 
that routine. A backward call graph shows how program execution has reached 
the current point of interest, while a forward flow graph shows how the execu-
tion will proceed from the current point. A forward call graph was depicted in 
Figure 2. 

Software maintainers quite often need a total call graph over the program, 
such as the one in Figure 2, in order to obtain a general understanding of its 
functional behavior (information need #11 in Table 1). In more specific mainte-
nance situations, however, more detailed views may be more helpful. Most no-
tably, information need #5 calls for a partial graph: the routines that call the 
routine of interest. Such partial call graphs are also provided in HyperSoft since 
the user may specify the extent of the graph to be produced. 



24 

~I HyperSoft [Backward calls: eval.c - eval move] 

Ble Navigation .Query Ylew ~ndow Help 

-I c:Vlsoft\lnput\chp\u -I Function Dependency 

lnt -~ !latx,y) < Backward calls: eval.c- eval move 

1:-~~::i, --:~-~~~~ -~:~;;:~~::~~-;~~~~~~~-~~~!-'::=~:~=~,=~=,=~~,:::.:~::..;~;::;":::' =..,=';='~tr~~;='-c =ji,ece=:;-----;:::~nd=,,=~=~=, :;------;:::~=-~c==--11 
fl" lletho ~ •Ml_:n.:w.!!' for each pas ~ckni 
" Note: u be good 'for efficiency if 

o be removed from. all 'try ' rv.c. t!\l.c ;;;;.;··--·-···: 
e to de tine the board maer 1 r bisho ueen :tr.Y-Pj!9.!!'. --- _; 

~~~~-~=-~~--------------- ~ 
if:(x<KX_X I! ~(x,y,x+l,y); ~;;··-------····

1t:07<ll. X_Y) ;vl!l ~~ (x,y,x,y+l);
if(x>l e mol-e' ~,x-l,y); ~~J~.L .. J
i:!(y>l) eval~l~~Cj e , ,y-1);
if(x>l ~' y>l) v _ (x,y,x-l,y-1);

<-1 I
-I c:Vlsoft\lnputlchpleval.c I ~ •

t-~==b;J;:grAR@G~ET~NO~OE~L~IS[:r ~-p===-------_i_-t't~ =f Debug Messages

'~~-~~~~ ~~~~~-~~~~- 't -~----------------------------------- Ble .!;;dlt Qptlons !jelp
: Operation: 7~ try,c(54) eval_move :Sed %liWe (!lee!: 'Value(] 1 &nd

* Input: St try.C(55) eval_move t a piece
* l!lethod: Th try.c(56) eval_move n the material valu!! ot a capture

(1 try.c(57) eval_move lysis ba!led on the game position

• Output: :: try.c(50) eval_move dated accordingly
•-------------- try.c(59) eval_move ------------------------------------•
int pl•board[x try.c(o7) eval move "' 1:
int piec~ABS (+ •
int check_!n-0,
lnt check_out•O;

ieee:~ checl!:inQ' kiDQ ot the currently
!• Number ot pi!!ce:~~ checklnq king ot the: oppo:site :s

Creating new access structure.
Levell completed (1 nodes)
Leve12 completed (40 nodes)
Level3 completed (51 nodes)
Level 4 completed (54 nodes)
LevelS completed (SB nodes)

6 module cho.nge(s) perlormed.
SB access structure node(s) formed.
3 alternate or recursive function call path(s).
Elapsed time: 00:00:07

int c,kx,ky,k,n, i,same•O;
~ ILi-~~==============~·bd ~ .. ~~~~~~-----------------------------.~.~-

33 links defined. 0:01:57 0:00:00 92:10

Figure 8. Partial backward call graph.

For example, the partial backward call graph in Figure 8 serves information
need #5 by showing (as a target node list) links to the places from where these-
lected function eval_move is called from (in the pop-up window). The figure
is supplemented by a graphical function dependency view showing the linkage
graphically in abstracted form.

When going beyond one calling level, larger partial call graphs can be ob-
tained. This HyperSoft mechanism can be used, for instance, in the classifica-
tion of routines into calling-coupled groups (information need #6). As in the
usual case, a call graph can be shown to the user both as hypertext and as an ab-
stract graphical view, whichever variant it may take (forward, backward, com-
plete, partial). The rich selection of different call graphs in HyperSoft is quite
competitive with dedicated call graph extractors that usually just generate a sin-
gle variant of them [32]. A further improvement would be to involve dynamic
code analysis as well, for instance to generate a list of executed procedure calls
(information need #10).

(G2) Backward slices

When more detailed information about program execution is needed, it can be
provided by access structures commonly known as program slices. The concept

25

of slices were originally introduced by Weiser [47] to support program compre-
hension and, especially maintenance tasks related to debugging. Since, slices
have found useful applications in a number of other software engineering areas
as well, examples being impact analysis, testing, and compilation. An extensive
survey of slicing techniques is given in [45].

A slice combines the representations of control flow and data flow, usually
with respect to occurrence of a variable in the program under investigation. The
original notion of a slice, currently known by the special term backward slice,
contains all those statements of the program that may affect the indicated vari-
able occurrence (the slicing criterion). Slices may be generated by pure static
analysis, or by a combination of static and dynamic analysis. Static slices are
more general (since they apply to all the possible executions of the program),
whereas dynamic slices are more precise (since they grasp precisely the rele-
vant statements for a specific execution).

Since HyperSoft is a general software comprehension and maintenance tool,
it produces the slices by static analysis. The backward slices are provided in in-
traprocedural form, that is, they express the data flow within the current C func-
tion. The slicing criterion is a certain variable occurrence in the function, and
the access structure includes all the occurrences of the identifier, within the
function, whose value may have an effect on the value of the slicing criterion.
The analysis can be extended to macros in HyperSoft: in addition to variables,
the identifiers in the slice may stand for macros as well.

Figure 9 shows an example of a backward slice in HyperSoft, with the last
occurrence of variable x as the slicing criterion. The slice reflects the order of
computation within the program and shows how the computed values proceed
towards the criterion. As noted above, backward slices are useful especially in
debugging and related activities - in this case the slice includes those parts of
the program that might be the origins of the incorrect (output) value for x.
Hence, the person maintaining the program can focus on analyzing and debug-
ging the slice only (information needs #9,13,16,18,23), and omit the rest of the
program. Note that HyperSoft uses highlighting and colors to convey session-
specific information, in this case the currently visited node is z3=z5+x-f+a,
from which four links originate to points were a, x, z5, and f obtain their
values.

The analysis could be supported further by a sophisticated "algorithmic" de-
bugger that would automatically execute the program and stop for user interac-
tion at those statements that are included as breakpoints in the slice [17]. Such
an access structure extension to HyperSoft would support information needs
where knowledge about code execution is most essential (#17,18,22).

26

-I HyperSoft [Backward Slice: tmac l.c - macrotestl]

file Navigation .Query .lliew Window Jjelp

=I Project Ales I· &

Ill c."\hsofl\lnput\hsoft3.c +
11 c."\hsofl\lnput\hsoft&.c

9 c."\hsofl\inpul\tmacl.c
Ill c:\hsofl\inpul\tmac2.c
l1 c:\hsofl\lnpu1\tmac3.c

""

-I Debug Messages 1·1·
Ble fdlt ~tlons Jjelp

Creating new access stmdure. +
t module change(s) performed
14 ~cess structure node(s) formed
Elapsed time: 00:00:01

"" + +

+
0:00:00 0:00:01 16:10

Figure 9. Backward slice.

(G3) Forward slices

As characterized above, a backward slice contains those parts of the program
that may affect the value of the slicing criterion. This analysis can be reversed,
so as to generate those parts that may be affected by the slicing criterion (occur-
rence of a variable). In such a case the resulting access structure is called a for-
ward slice, the term emphasizing the direction of the data flow within the slice
with respect to a value of the indicated variable.

Forward slices are useful especially in ripple effect analysis (information
need #20), since they contain those parts of the program whose behavior might
be crippled when modifying the slicing criterion; see e.g. [38]. Forward slices
also support maintenance tasks that utilize a sequence of relevant program parts
on the basis of the program's control and data flow (information needs
#13,16,23). Akin to backward slices, forward slices can be generated by static
or dynamic means. Dynamic slices are useful especially in cases when it is im-
portant to know the program's precise flow of execution forwards from the slic-
ing criterion (information needs #17 ,22).

HyperSoft provides (static) forward slices in interprocedural form, that is,
over the whole program across procedure and function borders. An example is

27

given in Figure 10, with the first occurrence of variable gl in function f21 as
the slicing criterion. The slice can be used, for instance, in analyzing what parts
of the program would be affected if the value of the criterion gl would be
modified during maintenance. As noted earlier, colors are used to represent in-
formation. In this case, the reverse color denotes nodes within a slice from
which originates a link to at least one relevant program part. Note that the com-
plete slice can be very complex. Large blocks of code can be parts of the slice.
In such cases only the most important links are shown. There are, for example,
links to places where gl or some other relevant variable obtains its value, links
to the called relevant functions and links from a function to the function where
it is called from. In the case of multiple (different kinds of) links originating
from a node, a pop-up window will list the link type and destination alterna-
tives. The user may choose the level of detail shown. Since the generation of
this data may take much time, the user is provided with time estimates and in-
termediate information about the rate and status of the generation (in the win-
dow on the right).

=I HyperSott [Forward Slice: hsofl20.c - 121) H;
Ble Navigation Query .lllew .l/ilndow Help

~f§l[JJ[EJI l!il I 10
=I c:\hsoft\input1hsofl20.c IT .
~xtern int ;ol•0,;-2•0,q3•0,Q'l•O,q~O; .. =I Project Ales IT .
>nt:~t") (Q C:\hsofl\input\hsoftl O.c .. int il,m.12,mi5;

int 3, *pmi4; Q c.'\hsoft\input\hsoft2.c

~ ·"~·-,~-~·~·--"
Q c.'\hsofl\input\hsoft20.c

; Q c.'\hsoft\inpu1\hsoft21.c
1++; ++; q3++; ++; Q C:\hsoft\lnput\hsoft3.c etu n O; ~

)

,. (int fl.il,~nt ll2,J.nt *'f1pi3) =I Debug Messages IT I·
nt 11•1, lZ•Z, 13•3;
~~ 1:111++; !112++; '*flpi3++; Ble Edit .Qptlons Help
112•1:111; tlp13•-.t111;

8(21). "00:00:13 '11' (86 nodes) ..
~··"~

9(21). "00:00:11 'main' (89 nodes)

1++; 12++; 1 ++; 1 0(21). "00:00:1: '14' (95 nodes)

3..:.-~q!J; 1 •df3 (qi) 12- 3 (13); 11 (21). "00:00:12 '11' (106nodes)
12(21). "00:00:1: 'mo.in' (106 nodes) 1++ 12++; 13 ;
13(21). "00:00:09 '111' (106nocles) 4++ 1:111++;1' pi3 ;d (*flpi3) ;q4++;

etu n 0; 14(21). "00:00:08 '19' (106 nodes)

:. f2 (int t2il ' f2i2~ int •t2pi3). (

15(21). "00:00:07 l6' (106 nodes)
16(21). "00:00:06 '14' (106 nodes)
17(21). "00:00:05 '11' (106 nodes)

l++: 18(21). "00:00:03 'main' (106 nodes)

'
19(21). "00:00:02 '14' (106 nodes)

r~ ~'
20(21). "00:00:02 '11' (106 nodes)

O; 21 (21). ·oo,oo:o1 'mo.in' (106 nodes)
}

1636 statement(s) o.no.lyzed.

int dt1 (1 pl) { 93 module cho.nge(s) performed.
q4++; 2•Ql;Q2++; 106 occess structure node(s) formed.
q2++; Elo.psed time: 00:00:22

retur pl;
~

} ~ +I I I• +I I I•

hsoft20.c(26) g1 0:00:22 0:00:01 14:3

Figure 10. Forward slice.

Since complete slices for large programs may be very large, slow to generate,
and therefore factually useless in practise, HyperSoft can provide them in a

28

partial form as well. The mechanism is the same as for call graphs: the user can
indicate how many calling levels between functions the slice shall cover. The
drawback of such an incomplete analysis is a possible loss of precision, be-
cause some of the relevant parts of the program might be left out of the partial
slice. Another way to make large slices more comprehensible is to use the gen-
eral visualization facilities of HyperSoft, and study the (forward) slices on the
module or function level only.

6. CONCLUSION

In this paper we have analyzed the information needs of software maintainers
as represented in the series of empirical studies by von Mayrhauser, Vans and
Howe, which provide data on the information needs of professional C program-
mers on the most detailed and comprehensive level that is currently available.
We have described how the most typical information needs relate to the form-
ing of transient hypertextual access structures. We have represented five large
access structure categories - references, lists, sets, trees, and general graphs - as
a way of gathering the information satisfying the most prominent information
needs.

The last column in Table 1 shows that all the access structure types (R1, L1,
Sl, Tl, T2, G1, G2, G3) described in Section 5 are useful in fmding the listed
information. However, the table contains two information needs for which our
approach does not seem to offer any help: "Connected domain-program-
situation model knowledge" (#3) and "Naming conventions separated by sys-
tems or library objects that use them; rules for naming new procedures" (#21).
Both of these needs are related to information stored at least partly in documen-
tation. As we discussed earlier, our research so far has been focused on improv-
ing capabilities to obtain information in the source code using static program
analysis. The HyperSoft model underlying our approach, however, allows for
the extension of access structures to cover documentation as well, and the use
of dynamic analysis for identifying needed program parts. The automatic for-
mation is here essential in order to enable the formed documentation-based
structures to be useful after program modifications.

On the basis of their information needs data von Mayrhauser and Vans
[28,29] suggest certain maintenance-tool capabilities. The three most important
categories are: pop-up object definitions with hypertext capabilities, cross-
references with keyword search, and user-guided call graph representation.
Supplementing hypertextual navigation with search would obviously be the
first step towards querying, which has been investigated in depth by, for exam-
ple, Paul and Prakash [36]. The formation of call graphs is user-guided within
HyperSoft. Von Mayrhauser and Vans hope especially for features related to
the process of comprehension (such as defining hypotheses) which current tools

29

frequently lack, as well as support for the different layers of their comprehen-
sion model. These capabilities could be based on recording user operations and
session history and on providing hypertextuallinks between nodes within dif-
ferent fragmentations, as was discussed in Sections 4.3.4 and 4.3.5,
respectively.

Our investigation into the potential usefulness of transient hypertextual ac-
cess structures in software maintenance has been empirically validated in a
number of studies with HyperSoft as the support tool [23,24,35]. These studies
have clearly shown the practical value of the access structures currently pro-
vided in HyperSoft. However, as indicated in this paper, the tool can signifi-
cantly be further improved by extending the sources of the hypertextual access
structures to documentation and run-time information, and by making it possi-
ble to flexibly combine multiple sources and to navigate the resulting combined
access structures.

REFERENCES

[1] M. Agosti and J. Allan, "Introduction to the special issue on methods and
tools for the automatic construction of hypertext", Information Processing
& Management, vol. 33, no. 2, pp. 129-131, 1997.

[2] A.V. Aho, R. Sethi, and J. Ullman, Compilers - Principles, Techniques,
and Tools, Addison-Wesley, 1986.

[3] V. Arunachalam and W. Sasso, "Cognitive processes in program compre-
hension: an empirical analysis in the context of software reengineering",
The Journal of Systems and Software vol. 34, pp. 177-189, 1996.

[4] J. Bigelow, "Hypertext and CASE", IEEE Software, vol. 5, no. 2, pp.
23-27, 1988.

[5] D. Binkley and K.B. Gallagher, "Program slicing", Adv. Comput., vol. 43,
pp. 1-50, 1996.

[6] I.T. Bowman, R.C. Holt, and N. Brewster, "Linux as a case study: its ex-
tracted software architecture", Proc. 21st Int. Conf Software Engineering
(ICSE'99), pp. 555-563. Los Angeles, CA, IEEE Computer Society Press,
1999.

[7] K. Brade, M. Guzdial, M. Steckel and E. Soloway, "Whorf: a hypertext
tool for software maintenance", International Journal of Software Engi­
neering and Knowledge Engineering, vol. 4, no. 1, pp. 1-16, 1994.

[8] R. Brooks, "Towards a theory of the comprehension of computer pro-
grams", Int. J. Man-Machine Studies, vol. 18, no. 6, pp. 543-554, 1983.

[9] G. Canfora, A. Cimitile, U. De Carlini, and A. De Lucia, "An extensible
system for source code analysis", IEEE Transactions on Software Engi­
neering, vol. 24, no. 9, pp. 721-740, 1998.

30

[10] Y.-F. Chen, M, Nishimoto, and C. Ramamoorthy, "The C information ab-
straction system", IEEE Transactions on Software Engineering, vol. 16,
no.3,pp.325-334, 1990.

[11] E. Chikofsky, and J. H. Cross II, "Reverse engineering and design recov-
ery: a taxonomy", IEEE Software, vol. 7, no. 1, pp. 13-17, 1990.

[12] J. Conklin, "Hypertext: an introduction and survey", Computer, vol. 20,
no.9,pp. 17-41,1987.

[13] J. Cybulski, and K. Reed, "A hypertext-based software-engineering envi-
ronment", IEEE Software, vol. 9, no. 2, pp. 62-68, 1992.

[14] I. Duncan and D. Robson, "An exploratory study of common coding faults
inC programs", J. of Software Maintenance: Research and Practice, vol.
8,no.4,pp.241-256, 1996.

[15] M. Eisenstadt, "My hairiest bug war stories", Comm. ACM, vol. 40, no. 4,
pp. 30-37, 1997.

[16] J. French, J. Knight, and A. Powell, "Applying hypertext structures and
software documentation", Information Processing & Management, vol.
33,no.2,pp.219-231, 1997.

[17] P. Fritzson, T. Gyimothy, M. Kamkar and N. Shahmehri, "Generalized al-
gorithmic debugging and testing", Proc. ACM SIGPLAN'91 Conf Com­
piler Construction, pp. 317-326, ACM Press, 1991

[18] G. Gannod and B. Cheng, "Using informal and formal techniques for the
reverse engineering of C programs", Proc. Int. Conf Software Mainte­
nance (ICSM'96), pp. 265-274, 1996.

[19] C. Goldfarb, The SGML Handbook, ed. Y. Rubinsky, Oxford Univ. Press,
1990.

[20] M. Harrold and B. Malloy, "A unified interprocedural program representa-
tion for a maintenance environment", IEEE Transactions on Software En­
gineering, vol. 19, no. 6, pp. 584-593, 1993.

[21] S. Horwitz and T. Reps, "The use of program dependence graphs in soft-
ware engineering", Proc. 14th Int. Conf on Software Engineering
(ICSE'92), pp. 392-411, ACM Press, 1992.

[22] B. Kernighan and D. Ritchie, The C Programming Language, (2nd ed.),
Prentice Hall (Software Series), 1988.

[23] J. Koskinen, "Empirical evaluation of hypertextual information access
from program text", Proc. 7th Int. Workshop on Program Comprehension
(IWPC'99), pp. 162-169, IEEE Computer Society, 1999.

[24] J. Koskinen, "Empirical evaluations of hypertextual information access
from program text", Computer Science and Information Systems Reports,
Working paper WP-36, University of Jyvaskyla, Jyvaskyla, Finland, 1999
(Submitted for publication).

[25] S. Letovsky and E. Soloway, "Delocalized plans and program comprehen-
sion", IEEE Software, vol. 3, no. 3, pp. 41-49, 1986.

31

[26] P. Linos, P. Aubet, L. Dumas, Y. Helleboid, P. Lejeune, and P. Tulula,
"CARE: an environment for understanding and re-engineering C pro-
grams", Proc. Conf on Software Maintenance (ICSM'93), pp. 130-139,
IEEE Computer Society Press, 1993.

[27] A. von Mayrhauser and A.M. Vans, "Program comprehension during soft-
ware maintenance and evolution", Computer, vol. 28, no. 2, pp. 44-55,
1995.

[28] A. von Mayrhauser and A.M. Vans, "Industrial experience with an inte-
grated code comprehension model", Software Engineering Journal, vol.
10,no.5,pp. 171-182,1995.

[29] A. von Mayrhauser and A.M. Vans, "Program understanding needs during
corrective maintenance of large scale software", Proc. 21st Annual Com­
puter Software & Applications Conference (COMPSAC'97), pp. 630-637,
Washington, D.C., IEEE Computer Society Press, 1997.

[30] A. von Mayrhauser and A.M. Vans, "Program understanding during soft-
ware adaptation tasks", Proc. Int. Conference on Software Maintenance
(ICSM'98), pp. 316-325, Bethesda, Maryland, IEEE Computer Society
Press, 1998.

[31] A. von Mayrhauser, A.M. Vans, and A.E. Howe, "Program understanding
behaviour during enhancement of large-scale software", J. of Software
Maintenance: Research and Practice, vol. 9, pp. 299-327, 1997.

[32] G. Murphy, D. Notkin, and E. Lan, "An empirical study of static call
graph extractors", Proc. 18th Int. Conf Software Engineering (ICSE'96),
pp. 90-100, IEEE Computer Soc. Press, 1996.

[33] K. N¢rmark and K. 0sterbye, "Representing programs as hypertext", Nor­
dic Workshop on Programming Environment Research (NWPER'94), LU-
CS-TR: 94-127, pp. 11-24, eds: B. Magnusson, G. Hedin, and S. Minor,
Lund University, Lund, Sweden, 1994.

[34] J. Paakki, J. Koskinen, and A. Salminen, "From relational program de-
pendencies to hypertextual access structures", Nordic J. Computing, vol.
4, no. 1, pp. 3-36 (Special issue on Programming Environments), 1997.

[35] J. Paakki, A. Salminen, and J. Koskinen, "Automated hypertext support
for software maintenance", The Computer J., vol. 39, no. 7, pp. 577-597,
1996.

[36] S. Paul and A. Prakash, "A query algebra for program databases", IEEE
Transactions on Software Engineering, vol. 22, no. 3, pp. 202-217, 1996.

[37] R.S. Pressman, Software Engineering - A Practitioner's Approach, (3rd
ed.), McGraw-Hill, 1992.

[38] J.-P. Queille, J.-F. Voidrot, N. Wilde, and M. Munro, M. (1994), "The
impact analysis task in software maintenance: a model and a case study",
Proc. Int. Conf Software Maintenance (ICSM'94), 1994.

32

[39] V. Rajlich and S. Varadarajan, "Using the web for software annotations",
Int. J. Software Engineering and Knowledge Engineering, vol. 9, no. 1,
pp. 55-72, 1999.

[40] R. Riecken, J. Koenemann-Belliveau, and S. Robertson, "What do expert
programmers communicate by means of descriptive commenting", Em­
pirical Studies of Programmers - 4th Workshop (ESP'91), eds: J.
Koenemann-Belliveau, T. Moher, and S. Robertson, Ablex, 1991.

[41] A. Salminen, J. Tague-Sutcliffe, and C. McClellan, "From text to hyper-
text by indexing", ACM Transactions on Information Systems, vol. 13, no.
1, pp. 69-99, 1995.

[42] A. Salminen, and C. Watters, "A two-level structure for textual databases
to support hypertext access", J. American Society for Information Science,
vol. 43, no. 6, pp. 432-447, 1992.

[43] M. Shepherd, C. Watters, andY. Cai, "Transient hypergraphs for citation
networks", Information Processing & Management, vol. 26, no. 3, pp.
395-412, 1990.

[44] S. Tilley, S. Paul, and D. Smith, "Towards a framework for program un-
derstanding", Proc. 4th Workshop on Program Comprehension
(IWPC'96), pp. 19-28, eds: A. Cimitile, and H. Muller, IEEE Computer
Soc. Press, 1996.

[45] F. Tip, "A survey of programming slicing techniques", J. Programming
Languages,vol. 13,no.3,pp. 121-189,1995.

[46] C. Watters and M. Shepherd "A transient hypergraph-based model for
data access". ACM Transactions on Information Systems, vol. 8, no. 2, pp.
77-102, 1990.

[47] M. Weiser, "Programmers use slices when debugging", Comm. ACM, vol.
25,no. 7,pp.446-452, 1982.

[48] J. Welsh and M. McKeag, Structured System Programming, Prentice Hall
(International Series in Computer Science), N.J., USA, 1980.

[49] N. Wilde, A. Chapman, and R. Richardson, "The extensible dependency
analysis tool set: a knowledge base for understanding industrial software",
Int. J. Software Engineering and Knowledge Engineering, vol. 4, no. 4,
pp. 521-534, 1994.

[50] P. Wright, "Cognitive overheads and prostheses: some issues in evaluat-
ing hypertexts", Proc. 3rd ACM Conf Hypertext, pp. 1-12, ACM Press,
1991.

[51] W. Yang, "Identifying syntactic differences between two programs", Soft­
ware- Practice and Experience, vol. 21, no. 7, pp. 739-755, 1991.

[52] K. 0sterbye, "Literate Smalltalk programming using hypertext", IEEE
Transactions on Software Engineering, vol. 21, no. 2, pp. 138-145, 1995.

VII

EVALUATIONS OF HYPERTEXT ACCESS
FROM C PROGRAMS

Koskinen, J. 1999. Submitted (July 1999) and conditionally accepted (Jan. 2000)
to be published in Journal of Software Maintenance: Research and Practice.

(C) 1999 John-Wiley & Sons Ltd. Reproduced with permission.

An earlier version of the paper has been published as: Koskinen, J. 1999. Empiri­
cal Evaluations of Hypertextual Information Access from Program Text. University of
JyvaskyHi, Jyvaskyla, Finland. Computer Science and Information Systems Re-
ports, Working paper WP-36.

The results of the 1st experiment has been published as: Koskinen, J. 1999. Em-
pirical evaluation of hypertextual information access from program text. In Pro­
ceedings of the 7th International Workshop on Program Comprehension (IWPC'99).
IEEE Computer Soc., 162-169.

1

EVALUATIONS OF HYPERTEXT ACCESS FROM C
PROGRAMS

Jussi Koskinen

Department of Computer Science and Information Systems
University of Jyvaskyla
P.O. Box 35, SF-40351 Jyvaskyla, Finland
Email: koskinen@cs.jyu.fi

Abstract

Transient hypertextual access structures (THASs) are temporary graphs formed
automatically on the basis of the situation-dependent information needs of
software engineers. The approach is implemented in the HyperSoft system,
which is a hypertext-based software maintenance support tool. THASs
highlight the relevant parts of the program and enable nonlinear browsing
between them. The system also supports various graphical views whose
elements are linked to the program text. The paper describes the effects of using
these hypertextual structures in two separate experiments. The subjects of both
experiments were computer science students (total N=70). In both experiments,
the subjects performed a series of sample information accesses from a C
program. HyperSoft and conventional text browsing and searching were
compared. The results from the two experiments are well in line with our
hypothesis of the usefulness of the approach and with each other. The results
indicate significantly better task performance while using THASs as compared
to using the information seeking capabilities of a conventional compiler
environment.

Keywords: CASE (Computer Assif?ted/ Aided Software Engineering),
hypertext, software maintenance, reverse engineering, program
comprehension

1 Introduction

The readiness to recognize the importance of software maintenance and program
comprehension has improved during the few recent years partly because of the
potentially great effects of the Y2K problems; see e.g. (Marcoccia, 1998). The
maintenance problems are often most severe in case of large, undocumented
legacy systems. Program comprehension (Brooks, 1983; Letovsky & Soloway,
1986; von Mayrhauser & Vans, 1995) is a process which aims to enhance the
level of knowledge about issues which are important to the fulfillment of

2

programming and maintenance tasks. The relation between software
maintenance and program comprehension is such that typically program
comprehension is needed in order to perform software maintenance tasks
successfully. Although many kinds of complex software maintenance tasks and
ways to categorize them exist, at the basic level most of them require
information access from the program text in order to be performed.

HyperSoft system has been constructed as a proof of the concept of
transient hypertext support for software maintenance and to allow us to test the
effects of different transient hypertextual access structures (THASs). HyperSoft
supports the user by providing various THAS types and view types. THASs are
formed automatically on the basis of situation-dependent information needs
and are transient, which means that they are not stored permanently but are
available only during one session. HyperSoft has been constructed in co-
operation with three large Finnish software companies: Nokia (Research
Center), Novo Group and Tieto corporation. This paper summarizes the results
of the empirical testing of the constructed system within the University of
Jyviiskylii using computer science students as subjects. The study consisted of
two separate experiments (1st experiment: N=23, median=4th year students,
2nd experiment: N=47, median=2nd year students). The 2nd experiment was
basically an iteration of the 1st experiment. The results of the 1st experiment
were published in (Koskinen, 1999). Within the 2nd experiment, the subjects
were not the same and the task-set was varied. This paper summarizes the
results of both experiments.

The paper is organized as follows: first the nature of THAS-based software
maintenance support and the HyperSoft system are outlined in Sections 2 and 3,
then the general layout of the experiments is described in Section 4. Section 5
represents the results of the empirical study, and Section 6 summarizes the
paper.

2 Background and THAS-based information access

Hypertext (Conklin, 1987) is text with nonlinear browsing capabilities.
Hypertext consists of text fragments called nodes, and links connecting these
nodes. The usefulness of hypertext is often motivated by asserting that it
complements the more traditional global search techniques with local
navigation (Nielsen, 1990) based on the linkage that it provides and by that it
provides an open, exploratory information space (Nielsen, 1989).

A qualitative synthetic review of quantitative experimental studies on the
use of hypertext is provided by Chen and Rada (1996). Based on the analyzed
23 studies they have made the following main observations: generally,
hypertext appears to enhance performance (although there is a wide variance
among the studies, partly because of the different "benchmarks", different level
of sophistication of the provided features and different kind of experimental
designs), hypertext appears to benefit the users more in case of open tasks
(which demand e.g. browsing and are typically more complex than closed ones,

3

e.g. simple searches), the effect of cognitive styles appears to be small and the
effect of spatial abilities great. Users clearly benefit from the graphical overview
maps. Another meta-analysis of experimental studies on hypertext is (Nielsen,
1989). There exists comparisons of: hypertext vs (linear) text (McKnight et al.,
1990; Lehto et al., 1995), hypertext navigation vs scrolling (Monk et al., 1988),
hypertext navigation vs boolean search (Dimitroff & Wolfram, 1995; Wildemuth
et al., 1998), and searching vs browsing (Rada & Murphy, 1992; Qiu, 1993) in
information retrieval. In most systems, hypertext is created manually, although
some efforts have been made to form hypertext automatically (Furuta et al.,
1989; Agosti & Allan, 1997). The findings of Dimitroff & Wolfram (1995) and
Tebbutt (1999) suggest that the inclusion of automatically generated semantic
links between documents speeds the location of information, when compared
with the use of search engine alone. The application areas of the above
mentioned systems are varied.

Software hypertext systems support program maintenance activities by
allowing the user to create links between the source code and the related
documentation (Bigelow, 1988; Cleveland, 1989; Garg & Scacchi, 1990; Brown,
1991; Cybulski & Reed, 1992; Brade et al., 1994; 0sterbye, 1995; Oinas-
Kukkonen, 1997). The tool most related to the HyperSoft system is WHORF
(Brade et al., 1994) which is a hypertext tool for maintenance of C programs
targeted at supporting the recognition of delocalized program plans based on
as-needed strategy via multiple, concurrent views of software. The aims of
HyperSoft and WHORF are similar in the following regards: both support C
language, apply hypertext explicitly, aim to support the users related to as-
needed program comprehension strategies and delocalized program plans, and
apply multiple representations which are linked to each other. WHORF does
not include program slicing. The evaluation of WHORF usage as compared to
using paper documentation suggests that the applied approach is useful for
accessing information from software. Related research also includes program
slicing (Weiser, 1982; Binkley & Gallagher, 1996) and reverse engineering tools
for C language (Chen et al., 1990; Linos et al., 1993; Wilde et al., 1994; Gallagher,
1996). For example, CARE (Linos et al., 1993) is a re-engineering tool for C
programs, maintaining a repository of entities and relations (control-flow and
data-flow dependencies). CARE focuses on visualization and supporting
incremental modifications of programs. Nowadays, many commercial tools also
provide some sort of hypertextual browsing capabilities, e.g. Cygnus (Red Hat,
2000), Discover (SET, 2000), Logiscope (Verilog, 2000), and Sniff+ (TakeFive,
2000).

Transient hypertextual access structures (THASs) (Koskinen et al., 1994;
Koskinen, 1996; Koskinen 1997) are automatically formed, temporary data
structures enabling hypertextual browsing capabilities for program text. They
are based on transient hypergraph datamodels (Watters & Shepherd, 1990;
Shepherd et al., 1990; Salminen & Watters, 1992). THASs are graphs consisting
of pieces of program text called nodes. The nodes are connected by hypertextual
links enabling nonlinear text browsing. The links are formed on the basis of the
program dependencies which have been described and classified (Paakki et al.,
1997).

4

The general idea of THASs is to help software engineers to focus their
attention on the relevant program parts. Hypertext makes explicit the structure
of the text and the dependencies between its components, thus supporting its
investigation. Because many different THAS types can be formed, the text can
be viewed from many different points of view within a single paradigm of
information representation. Since THAS types can be tailored to meet the
requirements of specific maintenance tasks, they can effectively aid in focusing
the attention of the user thus sparing mental resources and ensuring that all the
relevant program components are noted. In particular, THASs can help to avoid
the tedious work related to the efforts to comprehend undocumented legacy
systems. Many of the most important concepts in program comprehension
theories are congruent with the nature of THAS-based maintenance support.
THASs are especially suited to helping the user to obtain information related to
situations where delocalized program plans (Letovsky & Soloway, 1986) are
involved, since via hypertext it is possible to quickly examine the dependencies
between various components. Systematic strategies of program comprehension
are supported by providing a way to browse through the relevant program
components. Hypertextual nodes may serve as beacons for further browsing
efforts.

3 The HyperSoft system

The HyperSoft system (Salminen et al., 1994; Paakki et al., 1996; Koskinen, 1997)
can be characterized as a reverse-engineering tool. It supports ANSI-C
(Kernighan & Ritchie, 1988) and embedded SQL and runs under MS-Windows
3.1/95/NT. HyperSoft provides various THAS and view types which can be
used as aids in comprehending programs. THASs are formed automatically by
the tool. For large programs manual formation of many of the hypertextual
structures would be impossible or impractical. The HyperSoft system has
already been evaluated within our partner enterprises, although with a
relatively low number of subjects, and received positive feedback on its
usefulness (Paakki et al., 1996). This study aimed to systematically evaluate
different aspects of the system with a larger number of subjects.

Figure 1 represents part of an example THAS as shown within the
HyperSoft system. The shown representation is the basic hypertextual view
used within HyperSoft. There is one THAS whose nodes belong to three
modules. The three windows contain some of the C source code related to three
modules of the program used within the evaluation experiments. The example
THAS is a partial forward call graph initiated from the function identifier
ftnd_moves (top-left window). The THAS contains a node for each call and
implementation of the functions reachable from the ftnd_moves function by
following function calling dependency. The highlighted text blocks represent
the hypertextual nodes and arrows the links between the nodes. Since (in case
of the basic hypertextual view) the information belonging to a THAS is

5

represented within the original text, the understanding of the context and
surroundings of the nodes is enhanced, compared to the situation in which
there would be only a disconnected additional view.

The example THAS can be traversed in various nonlinear ways by
following the links provided by the system. Selection of a node causes the
cursor to move to the appropriate target/ destination node (and to change the
active module when due). In the case of multiple links originating from a node,
a pop-up window for making a selection is shown (as in the bottom-left pane of
Figure 1). The graphical representations of linkages are optional. Navigation is
supported via various mechanisms, including the home node link, back-
tracking, history lists and abstract, graphical views.

The HyperSoft system supports the following THAS types: (a) occurrence
lists for variables and functions, (b) call graphs (showing both the forward and
backward calling dependencies), and (c) static program slices. The formation of
a program slice is initiated by specifying a slicing criterion, which is - in
HyperSoft- a variable occurrence at a specified program point. There are two
variants of program slices: a backward slice contains the statements which may
have effect on the value of the slicing criterion, and a forward slice contains the
statements which may be affected by the value of the slicing criterion.

FIGURE 1 Visualization of forward call graph THAS in the HyperSoft system

6

The importance of graphical views is noted e.g. by Linos et al. (1993), Chen and
Rada (1996), and Gallagher (1997). HyperSoft provides various views of the
program text and of the THASs formed. The components appearing within the
graphical views are linked such that from within them the user can directly
move to the corresponding place within the basic hypertextual view (and thus
program text). The applied views include: (a) the basic hypertextual view, (b) a
structured map view for hierarchic examination of a THAS showing the
modules, functions and places of the nodes within a THAS, and (c) a function
dependency view, showing the dependencies between the functions of a THAS
graphically. Figure 2 describes the views. The figure shows a project file
window at right, which can be used in moving to the beginning of each module
within the active project, a structured map view on top and a function
dependency view at bottom. The views show part of the example THAS.

The THAS generation requires one preliminary phase- generation of the
so-called static program database for the specified project. The database consists
of a parse tree and symbol table with information about the positions of the
important program components. This phase is needed only once, or after
changes have been made to a certain module, for that module. Since extreme
sizes of well-designed modules are atypical, this does not represent a serious
threat to the upscaling of the approach.

···cfl:o try_quean

! ~~::: ::=~~::op
r 1·-··cfl:o try_knight
[~--ofl:o try_pawn
L~Hj dicllog.c

FIGURE 2 Views of the example THAS within the HyperSoft system

7

4 The experiments

Jn this section we describe the general layout of the experiments. We chose a
laboratory experiment (instead of field testing) since this strategy makes it
easier to obtain sufficient number of participating subjects, a reasonable level of
control over the various aspects of the experiment, and repeatability; see
(Shneiderman, 1986; Benbasat, 1987). Control over the experiment is important
in order to enable a systematic evaluation of the different kind of software
maintenance situations and related information requests.

There were two separate experiments, which will be called as 1st
experiment and 2nd experiment. The experiments aimed to cast light on the
relative usefulness of transient hypertext support (the HyperSoft system) when
compared to the conventional, compiler environment generally used (Borland
C/C++) for seeking information from the source code. We organized a classical
experimentation using a control group and a test task. Related to both
experiments, there were two groups of subjects: HyperSoft group (which used
the Borland environment for performing the test task and the HyperSoft system
for the actual tasks) and control group (which used the Borland environment
for all tasks).

4:.1 Context and procedure of evaluation

~rhe environments compared were Borland C/C++ 5.02 forMS-Windows and
HyperSoft 1.0. The operating system was MS-Windows NT Workstation 4.0.
The technical environment consisted of identical P-II, 350 MHz PCs with 128
MBRAM.

The 1st experiment was conducted in November 1998 and the 2nd
experiment in February 1999. The subjects of the 1st experiment were 23
computer science students at the University of JyvaskyUi (median: 4th year
15tudents). The subjects of the 2nd experiment were similarly 47 computer
15cience students (median: 2nd year students). The 1st experiment was
conducted as part of an advanced computer science course ('Software
Production') and the 2nd experiment as part of a (2nd year) course ('Software
Engineering'). Both experiments were conducted as part of the demonstration
15essions of the courses. The students participated voluntarily in the
experiments. As an incentive, the subjects obtained a point to the final
examination. Assurances of confidence were targeted to the subjects. The
packground of the subjects is detailed in Section 4.2.

The subjects were assigned to the HyperSoft groups (12 and 24 subjects)
tiDd control groups (11 and 23 subjects), which were intended to be similar in
:regard to the subjects' relevant maintenance skills and experience. The
iiSsignment was done primarily on the basis of the results of a test task. The
purpose of the test task was to provide information about the capabilities of the
~ubjects in the situation and consequently to reduce the uncontrolled effects of
variability in performance among them; see e.g. (DeMarco & Lister, 1985). The
test task was performed by using the Borland environment and without

8

HyperSoft. The HyperSoft group performed the actual tasks solely with the aid
of HyperSoft and the control group solely with the aid of the Borland
environment's basic editor capabilities (text browsing and search). HyperSoft
does not currently apply color-shades to high-light different kind of syntactical
structures, as the Borland-environment does, nor does HyperSoft contain a
search function, which reasons may cause a slight bias in favor of Borland.

The subjects were provided with a questionnaire and a one-page
instruction sheet. Instructions for the use of HyperSoft were minimal, consisting
of a 1-hour demonstration session, a one-page list of the basic functions of the
system and general information about the relevant THAS types and view types
related to the tasks. Before the experiments, the students were adviced to read
through the distributed instructions.

The information about the relevant types was given since we aimed to
evaluate the usefulness of transient hypertext support in case where the users
are properly acquainted with it, which is the normal case in the actual use of
any support environment. The exact starting point of a task was provided so
that everyone would be able to start the experiment from the same line. Both
groups participated in the HyperSoft tutorial and the same information was
made available. To both the objective was to maximize the correctness of the
answers to the questions posed within the available time. The tasks were
completed one at a time. The way that HyperSoft was (instructed to be) used
was simple and consisted of the following phases:

(a) searching for the task-related point in the program,
(b) selecting the specified THAS type,
(c) waiting for the generation of the THAS to be completed,
(d) possibly selecting a view type,
(e) using the formed THASs and views to solve the task.
The answer was typically a list of names of variables, functions or

modules. After the task was solved both groups evaluated its difficulty. There
were five missing values (out of 207) related to the difficulty of the 1st
experiment, which were supplemented by the median of the variable for the
task and the group that the subject belonged to.

The HyperSoft group also evaluated the usefulness of the HyperSoft
features used in accomplishing a task. The subjects were individually informed
of the time they had taken to complete each task, which was then written on the
questionnaire. The time needed to form the THASs was included in the time-
values of the HyperSoft group. Since the time required to generate the static
program database was only 6.3 seconds, its generation had no visible effect on
the time estimates discussed later in this paper.

4.2 Independent variables

The competence of the subjects was measured by their experience on the basis
of completed studies, programming work experience, and other relevant
factors. The variables related to the studies included: major-subject, year course,
credit units (cu:s), computer science cu:s, programming language course cu:s,
and programming language course grades. In addition to programming work

9

experience, other relevant factors included experience with tools (Borland
C/C++, HyperSoft, other reverse-engineering tools), the language (C), the
application domain (chess, the chess-program to be comprehended), and the
general operating system environment (MS-Windows).

Tables 1-2 gather the background of the subjects. The values given are
averages within the groups. Table 1 shows the information related to relevant
studies and work experience for the two series and the groups. Table 2 shows
the information about the factors of direct importance to the fulfillment of the
tasks. In Table 2, the values shown are averages of the estimates given by the
subjects on the scale 0-5, with the exception that the lower values in the Borland
and HyperSoft columns indicate experience in hours. The HyperSoft and
control groups were relatively even in regard to the distribution of the values of
the background variables in both experiments. 51 of the subjects were majoring
information systems science, 15 information technology, and 4 other sciences.

TABLE 1 The studying and working background of the subjects

Experim.' N Total Computer Program- Program- Programming
/Group2 cu:s science mingcourse mingcourse work

cu:s cu:s grade experience
(max=3) (weeks)

El/HS 12 100 51 14,3 2,48 19,3
El/BC 11 103 59 15,6 2,60 18,9
E2/HS 24 62 25 5,8 2,09 2,3
E2/BC 23 70 29 6,8 2,01 1,9

TABLE 2 Other experience factors relevant to the experimene

Experim. 1 Tools Lang Application Oper. Total
/Group2 uage domain system weighted

experience
Bor- Hyper RE- c Chess Chess MS-
land Soft tools '93 WIN

El/HS 2,58 1,00 0,75 3,25 2,58 0,25 4,42 0,53
120h. lh.

El/BC 3,27 1,00 0,82 3,55 3,00 0,64 4,45 0,59
139h. lh.

E2/HS 2,29 1,00 0,37 2,25 1,92 0,13 4,25 0,27
59 h. 1 h.

E2/BC 2,00 1,00 0,43 2,22 1,61 0,00 4,30 0,26
93h. lh.

El refers to the 1st experiment and E2 to the 2nd experiment.
HS refers to the groups using HyperSoft, and BC to the groups using Borland C/C++.
The values represented are the averages of the estimates given by the subjects on the scale
0-5, with the exceptions that 1) the lower values in Borland and HyperSoft columns for
each group show the experience in hours, and 2) the last column shows the calculated,
weighted average experience values for the groups.

10

In case of the 1st experiment the subjects' average grade for programming
courses was 2.5 (maximum 3), which means that the subjects were talented. In
case of the 2nd experiment the grade was 2.0, which means that those subjects
were average. All groups had 1 hour experience on the use of the HyperSoft
system (the tutorial). Average experience on the use of the Borland
environment was about 130 hours (1st experiment) and about 75 hours (2nd
experiment).

An additional variable was derived from the background information on
skills relevant to the performance of the experimental tasks. The variable
labelled experience was calculated via weighting programming work experience
(1/3 of the weight), programming courses with their grades (1/3), and
situationally important characteristics of experience (1/3). Within the
situational component, experience on the Borland environment, C, and the
program to be comprehended in particular were weighted. The experience
values were 0.53 (1st experiment) and 0.27 (2nd experiment) for the HyperSoft
group and 0.59 (1st experiment) and 0.26 (2nd experiment) for the Borland
group.

4.3 Dependent variables

A model of the variables to be explained is given in Figure 3. Usefulness of the
tool was modelled by the effect on the efficiency of maintenance task
performance, subjectively felt difficulty of a task (which is parallel to the needed
effort), and subjectively felt usability of the tool. Since efficiency, usability and
difficulty are not commensurable, their combined effect on usefulness can only
be estimated at non-quantitative level. Difficulty and usability were measured
according to the subjects' subjective statements, on a six-point scale (0-5). The
usability information was gathered from the HyperSoft group. In addition, we
gathered information about the HyperSoft system and its features (applied
THAS and view types).

FIGURE 3 Model of the variables to be explained

Of the above-mentioned three estimates, the first is the most important. The
task performance efficiency is affected by the time needed to complete a task

11

and correctness of the conclusions drawn. The correctness of the performed
tasks was judged according to how they conformed to the predefined answers
(Hits in Figure 3 representing the number of correct answers). The derived
variables were calculated as follows:

Completeness= Hits I Items (to be found),
Error rate= Wrong hits I Items (to be found),
Accuracy= Completeness -Error rate,
Efficiency= Accuracy I Time.

4.4 The target program

The sample program was a non-commercial chess program (Chess'93)
consisting of 5 C-modules and 2 user-defined header files. The size of the
program was about 2,700 LOC. For each of the program's functions, there were
comments at its beginning describing its operation, purpose, input, and output.
There was no other documentation and the system was not familiar to the
subjects before the experiment, so in that sense the program resembled a legacy
system.

4.5 The information requests and tasks

In order to be able to evaluate the correctness of the answers that subjects
provide, the tasks need to be strictly defined and have objectively correct
solutions. Therefore, we decided to use elementary information requests as
tasks. More complex software maintenance tasks are inevitably composed of
elementary information requests. The information request types to be
performed were selected according to their relative importance (von
Mayrhauser & Vans, 1995) and on the availability of their support via the
HyperSoft system. From the information needs listed by von Mayrhauser and
Vans (1995) the following were covered by the requests: "call graph display"
(forward call graph THAS), "list of routines that call a specific routine"
(backward call graph THAS), "location and uses of identifiers" (occurrence list,
slices), "count of variable use" (occurrence list), and "list of browsed locations"
(all THASs). The information requests and tasks are detailed in the Appendix.
The task set consisted of a test task (which was the same for the both
experiments), eight actual tasks related to the 1st experiment and five actual
tasks related to the 2nd experiment.

There were 4 demonstration groups related to the 1st experiment and 6
demonstration groups related to the 2nd experiment. Within each
demonstration group the subjects were alloted as evenly as possible to the
HyperSoft group and to the control group. In case of the 2nd experiment, group
1 (10 subjects) was unable to accomplish the tasks T2.4 and T2.5 and group 3 (7
subjects) the task T2.5 within the available time. Moreover, in case of the 2nd
experiment, due to the fact that the subjects were novices, three more complex
tasks could not be accomplished within the available time.

12

The objective of all of the tasks was to find correct component (name)s
from within the C source code. The test task (cf Section 4.1) was to find the
functions which are called from the main function and implemented within
specified modules. Two of the actual tasks dealt with searching for variable
occurrences (Tl.1, T2.1), two with searching function occurrences (Tl.S, T2.2),
three with dataflow analysis (T1.4, Tl.8, T2.5), and six with following calling
dependencies (Tl.2, Tl.3, Tl.6, Tl.7, T2.3, and T2.4).

4.6 Expected results

Since the general idea behind the THAS-based maintenance support is
congruent with many of the issues of program comprehension theories and the
current THAS set of the HyperSoft system with the empirical findings of the
information needs of professional software maintainers (von Mayrhauser &
Vans, 1995), our hypothesis was that transient hypertext support would have a
positive effect on the task performance. Suggestions of the usefulness of the
approach had already been received in form of subjective estimates of
professional software maintainers (Paakki et al., 1996).

Our 1st experiment mainly confirmed our initial hypothesis. Since our 1st
experiment did show only an almost significant difference between the groups
related to used time, we assumed that the 2nd experiment probably would not
reveal a more significant difference, since the subjects of the 2nd experiment
were less experienced. The difference in the rate of correct solutions should be
high if the subjects were able to use the system on the basis of the provided
instruction.

5 Results and discussion

In this section we will represent the general results of the two experiments,
combined results, and task-wise results. We will also discuss on the
experiments and the interpretation of the results and propose further research
areas.

5.1 General results

The main results of both experiments are presented in Tables 3a and 3b. The
tables show the values of the actual dependent variables as averages within the
groups (based on the actual tasks, E1 denoting the 1st experiment, E2 the 2nd
experiment, HS the HyperSoft group, and BC the Borland group), the values of
the scaled test variables testl and test2, and the significance values of a (1-tailed,
independent samples) Student's t-test and Mann-Whitney U test for the
differences in the test variables between the groups. All the variances between
the groups are in favor of HyperSoft's usefulness.

13

TABLE 3a Summarized results of the differences of performance between the groups

Exper.4

test17 HS
BC

test28 HS
BC

t-tese (testl) t
df
p

M-W. 10 (testl) N
p

t-test11 (test2) p

Efficiency
E1 E2

0,26 0,20
0,10 0,07
0,21 0,16
0,04 0,02
0,52 0,69
0,17 0,26
4,39 7,22

21 29
0,000 0,000
(***) (***)

23 31
0,000 0,000
(***) (***)

0,000 0,000
(***) (***)

Accuracy Completeness
E1 E2 E1 E2

0,73 0,76 0,81 0,76
0,32 0,41 0,63 0,44
0,17 0,43 0,23 0,41

-0,26 -0,03 -0,01 -0,00
1,45 2,72 1,62 2,73
0,58 1,47 1,17 1,59
2,66 4,50 1,87 4,61

21 29 21 29
0,008 0,000 0,038 0,000

(**) (***) (*) (***)
23 31 23 31

0,009 0,000 0,040 0,000
(**) (***) (*) (***)

0,000 0,000 0,013 0,000
(***) (***) (*) (***)

TABLE 3b Summarized results of the differences of performance between the groups

10

11

test17 HS
BC

test28 HS
BC

t-tese (testl) t
df
p

M-W.10 (testl) N
p

t-test11 (test2) p

Error rate
E1 E2

0,08 0,01
0,31 0,03
0,06 -0,02
0,24 0,02
0,04 0,00
0,18 0,01

-3,67 -1,37
21 29

0,001 0,091
(***)

23 31
0,000 0,001
(***) (***)

0,001 0,002
(**) (**)

Used time
E1 E2

2,90 4,07
3,63 5,70

-6,59 -5,31
-5,75 -3,47
1,51 1,14
2,10 1,65

-1,98 -2,82
21 29

0,031 0,005
(*) (**)
23 31

0,067 0,004

0,022
(*)

(**)
0,025

(*)

El refers to the 1st experiment and E2 to the 2nd experiment.

Difficulty
E1 E2

0,92 2,35
1,64 3,80

-1,21 -0,65
-0,77 0,44
0,79 0,64
1,30 1,06

-1.33 -3,04
21 29

0,238 0,003
(**)

23 30
0,330 0,003

(**)
0,027 0,002

(*) (**)

Values of the actual dependent variables for actual tasks as averages for the groups.
HS refers to the groups using HyperSoft, and BC to the groups using Borland C/C++.
testl is the value of the actual variable - the result of the test task.
test2 is calculated by scaling the actual performance with the background experience.
This t-test compares the values of testl for HS and BC groups, shown are the t value,
degrees of freedom (dj), and risk level (p). 0.01<= p <0.05 are almost significant results(*),
0.001<= p <0.01 are significant (**), and p<O.OOl are highly significant (***).
This Mann-Whitney U test compares the values of testl for HS and BC groups, shown are
the number of valid cases (N) and risk level (p).
This t-test compares the values of test2 for HS and BC groups, showing the risk level (p).

14

A t-test is a solution to the problem of the comparison of the means of small
samples. The row of t-test represents the significance values of the differences
between the groups. The hypothesis of the equal performance among the
groups can be rejected with the represented risk level (p). The t-test (in its basic
form) assumes the equality of variances between the groups and normality of
the distribution of the test variables. The test and remedy of the (lack of)
equality of variances (Levene's test) is embedded into the applied t-test. For the
t-test of the testl variables, Tables 3a and 3b show the value of t, degrees of
freedom (df>, risk level (p) and the significance of the differences. The
interpretation for the statistical significance of the p values, in general, is as
follows: 0.01 <= p < 0.05 are almost significant and marked with (*), 0.001 <= p <
0.01 are significant, marked with (**), and p<0.001 are highly significant,
marked with (***).

Kolmogorov-Smirnov (exact, 2-tailed, one-sample) test of the normality of
the distribution of the test variables was applied group-wise. The assumption of
the normality can be accepted (with the normal 5% risk-level) with the only
exception that in case of the 2nd experiment the distribution of the error rate is
not normal for the HyperSoft group. There is neither significant differences in
the values of the test variables among the groups in this sense. These results are
probably due to the very low error rate of the HyperSoft group related to the
2nd experiment. Consequently, this does have only a very slight effect on the
derived variables (related to which the differences are highly significant
regardless of the effect of error rate).

The most important variable is the efficiency of performance. The values
of this variable were 0.26 (1st experiment) and 0.20 (2nd experiment) for the
HyperSoft group and 0.10 (1st experiment) and 0.07 (2nd experiment) for the
Borland group. This means that the efficiency of performance of the control
group was less than 50% of the efficiency of the HyperSoft group in both
experiments.

There were no statistically significant differences in the values of the test
task results between the HyperSoft and control groups, which suggests that the
groups were similar in this sense. Due to the nature of the experiments, the
most important quantity is the efficiency of performance "cleaned" with the
possible initial variation among the groups, this is the testl value. In each
column, the value of the testl variable has been calculated by reducing the
result of the test task from the value of the actual variable. Thus, these values
represent the change in performance after HyperSoft had been introduced to
the groups and starting performing the actual tasks. The actual testl values are
dependent on the differences between the test task and the actual tasks and the
availability of the HyperSoft. The differences of testl values between the groups
is dependent only on the availability of the HyperSoft (since the tasks were the
same to the groups). The general performance efficiency values that were scaled
this way were 0.21 (1st experiment) and 0.16 (2nd experiment) for the
HyperSoft group and 0.04 (1st experiment) and 0.02 (2nd experiment) for the
Borland group.

The differences found between the groups were as follows: efficiency of
performance (1st experiment: p=O.OOO (***); 2nd experiment: p=O.OOO (***)),

15

accuracy (p=0.008 (**); 0.000 (***)), completeness (p=0.038 (*); 0.000 (***)), error
rate (1st experiment: p=0.001 (***)), time used (p=0.031 (*); 0.005 (**)), and
difficulty of performing a task (2nd experiment: p=0.003 (**)). Generally, the
differences are clearer in case of the 2nd experiment. The unexperience of the
HyperSoft group with the tool has affected the used time. The clear difference
in time used in case of the 2nd experiment was not quite expected. The
unexpectedly clear difference in efficiency in case of the 2nd experiment
suggests that especially novice programmers benefit from the HyperSoft
system.

As an additional verification of the differences, we have applied a (exact,
non-parametric) Mann-Whitney U test for testl variables for testing the
significance of differences of the means between the groups. The rows show the
number of valid cases (N) and the risk-level (p) as in case of a t-test. The results
of this test are well in line with the results of the t-test, except that the (exact, 1-
tailed) Mann-Whitney test additionally revealed a highly significant difference
in case of error rate of the 2nd experiment; p=0.001 (***), which the t-test could
not recognize.

In Tables 3a and 3b test2 refers to a value calculated by scaling the actual
performance with the value of the experience variable (refer to Section 4.2), thus
also aiming to eliminate the effects of varying experience among the groups.
This test was applied merely to further increase the reliability of the results. The
normality of the distribution of experience was tested by using (exact, 2-tailed)
Kolmogorov-Smirnov test groupwise, independently for the two series, which
confirmed the normality. It should be noted that test2 approximates the effect of
experience by assuming that task performance, in general, is a linear function of
relevant experience (the results of the test task support well this hypothesis; see
Figure 4). The test2 results are in line with the above described results, except
that a significant difference was found in test2 value related to the error rate of
the 2nd experiment, which could not be found based on testl. Within the 1st
experiment, a statistically highly significant difference between the groups was
found related to error rate. The partial failure of duplicating that result in the
2nd experiment is probably due to the very low error rate within the 2nd
experiment, which in turn is most likely due to the relative easiness of the
actual tasks. All the t-tests were performed as 1-tailed, since we assumed -
based on the feedback received during the initial evaluations (Paakki et al.,
1996) (and related to the 2nd experiment, based on the results of the 1st
experiment)- that HyperSoft has positive effect on the measured variables, and
the means of those variables between the groups show the direction of the
variance to be such.

5.2 Combined results

Figure 4 shows the results of the test-task (HyperSoft not in use). The figure also
shows the relation between the relevant background experience and task
performance in case of the test task. In Figures 4-6, triangles represent the
subjects within the HyperSoft groups and the spheres the subjects within the

16

Borland groups. The figures summarize the results of the two experiments. The
larger symbols represent the subjects of the 1st experiment (who were more
experienced). Figure 4 shows that there is no significant differences in average
efficiency values among the groups in case of the test task.

0,100

~
Ill
1':1
t; 0,050

G)
;t:.
>o u
s::::
G) 0,000
·u
IE
G)

-0,050

0 ..

o•
0

0

v

0
~

....
·~ 0 0

•'b
0

o..a. .._o
.... 0

@.
210 ~~ ~ 0

... ~0
.. ..

0 0 ..

0,20 0,40 0,60 0,80

experience

Hsgroup
00

0
.1

Experiment
0

2,00

Cloud is jittered

FIGURE 4 Efficiency of performance, results of the test task

0

1,00

Figure 5 shows the actual values of efficiency for the both experiments and
groups (as averages of the actual tasks). Finally, Figure 6 shows the relation
between the use of the HyperSoft and the "cleaned" performance efficiency
estimate (testl for efficiency). The figure also shows the relation between the
relevant background experience and the efficiency of performance .

0,40
........ Hsgroup

00 .. .1
1i 0,30

..
::J u e

0
~ 0,20 .. .4 a
s::::

Experiment
0 0

2,00 1,00

G) .. 0 ·u o<o IE o.1o .. @ © G) &o d3cP0
•co 0 0 0

0.00
0

0
0,20 0,40 0,60 o.so

experience

FIGURE 5 Efficiency of performance, results of the actual tasks

0,30

>- 0,20 u
s::
G)

·c::;
IE
G)

0,10

0,00

...

0

0

0,20

17

...... Hsgroup
oo
.6.1 Experiment ... 01 ...
02

... •
~

... 6 0 0
0 0

Q) 0 0
0 c9 0 co

00 0 0 ... 0

0,40 0,60 0,80

experience

FIGURE 6 "Cleaned" efficiency of performance, results of the actual tasks

The normality of the distribution of experience and the test task efficiency were
tested by using (exact, 2-tailed, one-sample) Kolmogorov-Smirnov test
groupwise for the combined data, which confirmed the normality. The received
negative efficiency values represent the cases where subjects performed the test
task better than the actual tasks. It can be noted graphically from Figure 6 that
experience has bigger effect on the results of the HyperSoft group than that of
the control group. It can also be noted that, at the same experience levels, the
results of the weakest subjects within the HyperSoft groups are - in most cases -
better than those of the best subjects within the control groups.

Figure 7 shows the variance of testl efficiency as a box-plot. Efficiency is
shown for the four categories formed based on the two experiment series (1st
experiment=1, 2nd experiment=2) and the group (control=O; at left,
HyperSoft=1; at right). It can be noted graphically from the figure that both the
experience (the subjects of the 1st experiment were more experienced) and
HyperSoft use have positive correlation with the amount of variance of
efficiency. The spheres represent the extreme cases.

A two-way variance analysis was performed for the combined data in
order to find out the differences that the experiment (1st/2nd) may have caused
to the performance efficiency. The model consisted of the group (whether a
subject belonged to the HyperSoft group or to the control group), and series
(the 1st/2nd experiment series) as factors and experience as a covariate. Neither
the interaction effect of group and series (p=0.367), nor the series (p=0.842) or
experience (p=0.227) were statistically significant. The best explanatory factor
was the group: F=60.8; N=53; p=O.OOO (***). The explanatory power
(determination coefficient) was 52.8%, which is a good rate for a variance
analysis with a single explaining variable. The variance analysis assumes

18

normality of the distribution of the dependent variables and equality of
variances within the groups. These requirements were tested and met group-
wise.

D,3D

(;' D,2D
c
u
u
E
U D,1D

D,DD

Hsgroup

0

0

0
0

Experiment .1
11112

FIGURE 7 Variance of efficiency related to the experiment series and HyperSoft use

The reliability of the test of the differences within the combined data requires
that the difficulty of the tasks within the two experiments would not differ
significantly. This was tested by (exact, 2-tailed) Mann-Whitney test. First the
combined data was divided into two groups of the same size based on the result
of the test task (the test task was the same for the both experiments). Then,
separately for the formed groups (for the 'good ones' and the 'poor ones') was
applied the Mann-Whitney test to find out the possible differences between the
experiments. There were no significant differences between the experiments
(p=0.395 within the 'good ones' and p=0.802 within the 'poor ones'). The general
performance efficiency values (testl) were 0.18 (for the combined HyperSoft
group) and 0.03 (for the combined Borland group). The results of at-test for the
differences between the groups were: t=7.65; df=52; p=O.OOO (***) for the testl
and t=8.03; df=42.8; p=O.OOO (***) for the test2. Basically, these t-tests represent
another way to test the same thing as in the case of the above-described
variance analysis.

5.3 Task-wise results

The results were as follows. Table 4 summarizes the task-wise, significant
differences in the efficiency of performance between the groups. Similarly, the
following tables summarize the differences related to accuracy (Table 5),
completeness (Table 6), error rate (Table 7), time used (Table 8), and difficulty
(Table 9). The tasks are detailed in the Appendix.

19

TABLE 4 Task-wise differences of efficiency between the groups

Efficiency T1.112 T1.2 T1.4 T1.7 T2.1 T2.2 T2.3 T2.4 T2.5
Actual HS15 0.12 0.63 0.73 0.33 0.24 0.43 0.24 0.32 0.07
13 BC -0.28 0.19 0.33 0.00 0.01 0.16 0.10 0.08 0.03
t-tese• test1 t 3.16 2.76 2.87 3.20 6.37 5.80 7.61 8.42 3.31

df 21 12.2 15.7 16.2 44 45 44 35 30
p 0.005 0.017 0.011 0.005 0.000 0.000 0.000 0.000 0.001

(**) (*) (*) (**) (***) (***) (***) (***) (***)

TABLE 5 Task-wise differences of accuracy between the groups16

Accuracy Tl.1 T1.7 T2.1 T2.2 T2.3 T2.4 T2.5
Actual HS 0.33 0.67 0.75 0.89 0.78 0.86 0.45

BC -1.21 0.05 0.05 0.50 0.51 0.44 0.29
t-test test1 t 3.18 2.26 6.50 4.41 4.45 5.58 2.23

df 21 21 44 45 44 35 30
p 0.005 0.034 0.000 0.000 0.000 0.000 0.017

(**) (*) (***) (***) (***) (***) (*)

TABLE 6 Task-wise differences of completeness between the groups16

ComEleteness Tl.l T1.2 T1.7 T2.1 T2.2 T2.3 T2.4 T2.5
Actual HS 0.75 0.86 0.67 0.79 0.89 0.78 0.86 0.46

BC 0.39 0.58 0.18 0.17 0.52 0.51 0.44 0.31
t-test test1 t 2.12 2.09 2.84 7.30 4.48 4.22 5.81 2.19

df 21 21 21 44 45 44 35 30
p 0.046 0.049 0.010 0.000 0.000 0.000 0.000 0.019

(*) (*) (**) (***) (***) (***) (***) (*)

TABLE 7 Task-wise valid differences of error rate between the groups16

12

13

14

15

16

Error rate T1.1 T2.1
Actual HS 0.42 0.04

BC 1.61 0.13
t-test test1 t -3.13 -2.40

df 21 44
p 0.005 0.011

(**) (*)

Tl.x refers to the tasks of the 1st experiment and T2.x to the tasks of the 2nd experiment.
Values of the actual dependent variable for actual tasks as averages for the groups.
This t-test compares the values of testl for HS and BC groups, shown are the t value,
degrees of freedom (dj), and risk level (p). 0.01<= p <0.05 are almost significant results("),
0.001<= p <0.01 are significant(*"), and p<O.OOl are highly significant(***).
HS refers to the groups using HyperSoft, and BC to the groups using Borland C/C++.
The meanings of the used acronyms are the same as in Table 4.

20

TABLE 8 Task-wise differences of time used between the groups16

Time used T1.2 T1.7 T2.3 T2.4
Actual HS 2.19 2.96 3.51 2.85

BC 3.77 4.88 5.45 5.69
t-test testl t -2.25 -3.91 -2.08 -3.68

df 21 21 44 35
p 0.035 0.001 0.022 0.001

(*) (***) (*) (**)

TABLE 9 Task-wise differences of task difficulty between the groups16

Difficulty T2.1 T2.2 T2.3 T2.4 T2.5
Actual HS 2.38 1.83 2.17 1.78 3.75

BC 3.55 2.96 4.05 4.00 4.93
t-test testl t -2.03 -2.01 -3.24 -3.45 -1.94

df 44 45 42 34 29
p 0.025 0.026 0.001 0.001 0.032

(*) (*) (**) (**) (*)

In the 2nd experiment, the differences in efficiency were highly significant
related to all actual tasks. The differences in accuracy in the 2nd experiment also
were very clear and statistically highly significant, except in the case of task
T2.5. The task-wise results of completeness are rather similar as the results of
accuracy. Related to error rate t-test could reveal the differences only in case of
tasks Tl.1 and T2.1. This is partly due to the abnormality of the test distribution.
Since both of the significant differences appear as first one of a series, the result
should be interpreted with some caution. The HyperSoft group did more errors
than the control group in task Tl.2, where no additional view was specified.
This underlines the importance of views.

Differences in time used and difficulty of tasks are less clear than in case of
other dependent variables. The differences in time used are, however, clear in
case of the most difficult tasks; Tl.7 and T2.4, which suggests that tasks
containing complex searches benefited most from HyperSoft in this sense. Some
of the tasks (Tl.S, Tl.6, Tl.7) had only few predefined correct answers. These
kinds of tasks were used in testing the capabilities of the subjects to end the
search, without wasting time on further speculations. The differences between
the groups in tasks Tl.S and T1.6, which were relatively easy, were small. The
variances in the data-flow/slicing tasks (T1.4, Tl.8, T2.5) were not above the
average. This is probably because the slicing tasks were easy (intraprocedural
slicing) and partly due to technical problems (task T1.8).

The above mentioned reasons reduced the overall variance in performance
between the groups. The difference was weakest in the case of task T1.3. This is
probably because structured map view is not very well suited for representing
calling dependence information (cf. task T1.7). This underlines the importance
of using proper views.

21

5.4 Other results

The average usability values of the HyperSoft system as judged by the subjects
(the HyperSoft groups) were 3.91 (1st experiment, based on 252 received
elementary answers) and 3.82 (2nd experiment, based on 180 received
elementary answers) on a six-point scale; 0-5 (where 0 represents useless and 5
extremely useful). It is reasonable to assume that the point of comparison was at
least partly the Borland-environment, since it was used to complete the test
task.

The combined, weighted usability values for THAS types and view types
were as follows: occurrence lists (3.85), call graphs (3.89), slices (3.56), structured
map views (4.08) and function dependency views (4.39). These usability results
suggest that the usability of the HyperSoft system was sufficient, so that the
weaknesses of some of the tool characteristics have not seriously, negatively
affected the results.

5.5 General remarks, limitations and further research options

The received results suggest that the HyperSoft approach can leverage task
performance as compared to ordinary text browsing and search. The benefits
are probably proportional to the complexity of the tasks. The more complex a
task is, the more prominent will be the related mental overhead (and cognitive
complexity), which can be reduced through process automation. In particular
tasks in which great certainty about the correctness of the outcomes is necessary
(e.g. certainty that all the instances are found) can benefit from the HyperSoft
approach. It is probable that in case of more complex information requests,
more complex tasks and longer use (longer and more "wearing" sessions), the
usefulness of the HyperSoft would be even more evident. Functions which
HyperSoft contains and which are specially tailored for the more complex
situations (but which were not used within these experiments) include: use of
multiple THASs, formation of subprojects, and editor integration. Further
studies would need to be conducted in order to find out more about the
variances in cases of very complex or slightly differing kinds of information
requests.

WHORF (Brade et al., 1994) is in many regards similar to HyperSoft. Thus,
the results received from the evaluation of HyperSoft are relevant to the
development of tools like WHORF as well. Since, WHORF has been evaluated
only with a small program (250 LOC) and only as compared to using paper
documentation, the results with HyperSoft complement the results received
from the use of WHORF. The best evaluated related tool is CARE (Linos et al.,
1993) (with 2,000 LOC program, N=40, comparing the features of the tool).
Their observations of the important features are mostly taken into account
within the implementation of the HyperSoft system: there are links from the
graphical views to the basic hypertextual views (and thus to the program text),
hypertextual nodes are represented as highlighted elements within the program
text and program slices (which are considered as useful) are supported. It

22

should be noted that views are an essential part of the HyperSoft approach. The
importance of a search function complementing browsing has been noted by
(Halasz, 1988; Linos et al., 1993; Storey et al., 1997). HyperSoft currently does not
include a search function, which obviously would be a simple but important
additional feature.

One important aspect affecting the results of the evaluations is the
experience on the use of the tool. The way of using the HyperSoft system is
simple. However, related to more complex tasks, there is also elevated need for
becoming familiar with the tool features. The subjects had only 1 hour
experience on the use of HyperSoft. The effect of this kind of lack of tool
experience could be reduced by organizing a course on the subject, before the
use of the tool or by performing longitudinal studies on the tool usage as
suggested by Chen and Rada (1996).

The experiments aimed to gather data on the usefulness of the HyperSoft
approach as one kind of reverse engineering technique. Comparisons between
different ways of reverse engineering were not performed, except that different
THAS and view types were used and compared. It should also be noted that the
results related to the used time represent the way that it can be reduced related
to information seeking/comprehension tasks solely. Programming and
maintenance naturally includes also other kind of activities, most notably code
modifications, which take time.

6 Summary

Transient hypertextual access structures are automatically formed temporary
graphs satisfying the situation-dependent information needs of software
maintainers. The HyperSoft system is an implementation of the approach. We
evaluated HyperSoft empirically in two separate experiments with computer
science students as subjects. We compared performance between groups using
HyperSoft and groups using the information seeking capabilities of the Borland
C/C++ compiler environment (text browsing and searching). We measured
task performance in sample information requests related to a sample C-
program. The variables by which the performance was modelled were
efficiency, accuracy, completeness, error rate, time used, and the subjectively
felt difficulty of the tasks. In addition, we gathered information about the
usability of the HyperSoft system and its various features. The results support
our hypothesis about the usefulness of the HyperSoft system and of the
transient hypertext support for software maintenance. In general, the subjects
using the HyperSoft system were able to find more complete answers to the
posed questions and to perform the tasks more efficiently and in less time than
the control groups.

23

Acknowledgments

We wish to thank Lecturer, Doctor Annaliisa Kankainen, and Lecturer Anna-
Liisa Lyyra from the Statistics Department, for their methodological guidance,
Professor Airi Salminen for commenting on the manuscript, and Professor
Markku Sakkinen and Professor Jari Veijalainen for their positive attitude
towards the evaluation related to their courses. The study was made possible by
funding from COMAS (JyvaskyHi Graduate School in Computing and
Mathematical Sciences) and by the participation of the computer science
students.

References

Agosti, M. & Allan, J. 1997. Introduction to the special issue on methods and
tools for the automatic construction of hypertext. Information Processing &
Management 33 (2), 129-131.

Benbasat, I. 1987. Laboratory experiments in information systems studies with a
focus on individuals: a critical appraisal. In R.J.Jr. Boland & R.A.
Hirschheim (Ed.) Critical Issues in Information Systems Research. John-Wiley.

Bigelow, J. 1988. Hypertext and CASE. IEEE Software 5 (2), 23-27.
Binkley, D. & Gallagher, K. 1996. Program slicing. Advances in Computers 43, 1-

50.
Brade, K., Gudzial, M., Steckel, M. & Soloway, E. 1994. Wharf: a hypertext tool

for software maintenance. International Journal of Software Engineering and
Knowledge Engineering 4 (1), 1-16.

Brooks, R. 1983. Towards a theory of the comprehension of computer programs.
International Journal of Man-Machine Studies 18 (6), 543-554.

Brown, P. 1991. Integrated hypertext and program understanding tools. IBM
Systems Journal30 (3), 363-392.

Chen, C. & Rada, R. 1996. Interacting with hypertext: a meta-analysis of
experimental studies. Human-Computer Interaction 11 (2), 125-156.

Chen, Y.-F., Nishimoto, M. & Ramamoorthy, C. 1990. The C information
abstraction system. IEEE Transactions on Software Engineering 16 (3), 325-
334.

Cleveland L. 1989. A program understanding support environment. IBM
Systems Journal 28 (2), 324-344.

Conklin, J. 1987. Hypertext: an introduction and survey. Computer 20 (9), 17-41.
Cybulski, J. & Reed, K. 1992. A hypertext-based software-engineering

environment. IEEE Software 9 (2), 62-68.
DeMarco, T. & Lister, T. 1985. Programmer performance and the effects of the

workplace. In Proc. 8th Int. Conf on Software Engineering (ICSE'BS). IEEE
Computer Soc. Press, 268-272.

24

Dimitroff, A. & Wolfram, D. 1995. Searcher response in a hypertext-based
bibliographic information retrieval system. Journal of the American Society
for Information Science 46 (1), 22-29.

Furuta, R., Plaisant, C. & Shneiderman, B. 1989. A spectrum of automatic
hypertext constructions. Hypermedia 1 (2), 179-195.

Gallagher, K.B. 1997. Visual impact analysis. In Proc. Int. Conf on Software
Maintenance (ICSM'96), 52-58.

Garg, P. & Scacchi, W. 1990. A hypertext system to manage software lifecycle
documents. IEEE Software 7 (3), 90-98.

Halasz, F. 1988. Reflections on Notecards: seven issues for the next generation
of hypermedia systems. Communications of the ACM 31 (7), 836-855.

Kernighan, B. & Ritchie, D. 1988. The C Programming Language (2nd ed.).
Englewood-Cliffs: Prentice Hall.

Koskinen, J. 1996. Creating transient hypertextual access structures for C
programs. In M. Kavanaugh (Ed. production) Proc. 7th Israeli Conf on
Computer Systems and Software Engineering. Los Alamitos, CA: IEEE
Computer Soc., 56-65.

Koskinen, J. 1997. HyperSoft: Back-end Components. Univ. of JyvaskyHi, Jyvaskyla,
Finland. Computer Science and Information Systems Reports, Technical
Report TR-17.

Koskinen, J. 1999. Empirical evaluation of hypertextual information access from
program text. In B. Werner (Ed. production) Proc. 7th Int. Workshop on
Program Comprehension. IEEE Computer Soc., 162-169.

Koskinen, J., Paakki, J. & Salminen, A. 1994. Program text as hypertext- using
program dependences for transient linking. In SEKE'94: Proc. 6th Int. Conf
on Software Engineering and Knowledge Engineering. Skokie, IL: Knowledge
Systems Institute (KSI), 209-216.

Lehto, M., Zhu, W. & Carpenter, B. 1995. The relative effectiveness of hypertext
and text. International Journal of Human-Computer Interaction 7 (4), 293-313.

Letovsky, S. & Soloway, E. 1986. Delocalized plans and program
comprehension. IEEE Software 3 (3), 41-49.

Linos, P., Aubet, P., Dumas, L., Helleboid, Y., Lejeune, P., & Tulula, P. 1993.
CARE: an environment for understanding and re-engineering C programs.
In Proc. Int. Conf on Software Maintenance (ICSM'93). IEEE Computer Soc.,
130-139.

Marcoccia, L. 1998. Building infrastructure for fixing the year 2000 bug: a case
study. Journal of Software Maintenance: Research and Practice 10 (5), 333-352.

von Mayrhauser, A. & Vans, A.M. 1995. Industrial experience with an
integrated code comprehension model. Software Engineering Journal 10
(Sept.), 171-182.

McKnight, C., Dillon, A. & Richardson, J. 1990. A comparison of linear and
hypertext formats in information retrieval. In R. McAleese & C. Green
(Ed.) Hypertext: State of the Art. Oxford: Intellect, 10-19.

Monk, A., Walsh, P. & Dix, A. 1988. A comparison of hypertext, scrolling and
folding as mechanisms for program browsing. In D. Jones & R. Winder
(Ed.) People and Computers IV. Cambridge Univ., 421-435.

25

Nielsen, J. 1989. The matters that really matter for hypertext usability. In F.
Halasz & N. Meyrowitz (Ed.) Proc. ACM Conf on Hypertext: Hypertext'89.
ACM Press., 239-248.

Nielsen, J. 1990. The art of navigating through hypertext. Communications of the
ACM 33 (3), 296-310.

Oinas-Kukkonen, H. 1997. Towards greater flexibility in software design
systems through hypermedia functionality. Information and Software
Technology 39 (6), 391-397.

Paakki, J., Koskinen, J. & Salminen, A. 1997. From relational program
dependencies to hypertextual access structures. Nordic Journal of Computing
4 (1), 3-36.

Paakki, J., Salminen, A. & Koskinen, J. 1996. Automated hypertext support for
software maintenance. The Computer Journal39 (7), 577-597.

Qiu, L. 1993. Analytical searching vs browsing in hypertext information
retrieval systems. Canadian Journal of Library & Information Science 18 (4), 1-
13.

Rada, R. & Murphy, C. 1992. Searching versus browsing in hypertext.
Hypermedia 4 (1), 1-30.

Red Hat. 2000. Cygnus Source Navigator v. 4.5. Product information available
in www-form at <URL: http:/ /www.redhat.com/products/cygnus.
html>. Company: Red Hat. Description: a reverse engineering tool. Date:
10-Mar-00.

Salminen, A., Koskinen, J. & Paakki, J. 1994. HyperSoft: an environment for
hypertextual software maintenance. In B. Magnusson, G. Hedin & S.
Minor (Ed.) NWPER'94: Proc. Nordic Workshop on Programming Environment
Research, Lund Univ., Lund, Sweden. LU-CS-TR: 94-127, pp. 25-37.

Salminen, A. & Watters, C. 1992. A two-level structure for textual databases to
support hypertext access. Journal of the American Society for Information
Science 43 (6), 432-447.

SET. 2000. Discover. Product information available in www-form at <URL:
http:/ /www.setech.com/products>. Company: SET Inc. Description: a
reverse engineering tool supporting many languages, including ANSI
C/C++. Date: 10-Mar-00.

Shepherd, M., Watters, C. & Cai, Y. 1990. Transient hypergraphs for citation
networks. Information Processing & Management 26 (3), 395-412.

Shneiderman, B. 1986. Empirical studies of programmers: the territory, paths,
and destinations. E. Soloway & S. Iyengar (Ed.) Empirical Studies of
Programmers. Ablex.

Storey, M.-A., Wong, K. & Muller, H. 1997. How do program understanding
tools affect how programmers understand programs. In P. Storms (Ed.
production) Proc. 4th Working Conf on Reverse Engineering (WCRE'97). IEEE
Computer Soc., 12-21.

TakeFive. 2000. Sniff+. Product information available in www-form at <URL:
http:/ /www.takefive.com/products/sniff+.html>. Company: TakeFive
software. Description: a reverse engineering tool supporting many
languages, including C and C++. Date: 10-Mar-00.

26

Tebbutt, J. 1999. User evaluation of automatically generated semantic hypertext
links in a heavily used procedural manual. Information Processing &
Management 35 (1), 1-18.

Verilog. 2000. Logiscope. Product information available in www-form at <URL:
http:/ /www.csverilog.com/products/logiscop.htm>. Company: Verilog.
Description: a reverse engineering tool supporting 80+ languages. Date:
10-Mar-00.

Watters, C. & Shepherd, M. 1990. A transient hypergraph-based model for data
access. ACM Transactions on Information Systems 8 (2), 77-102.

Weiser, M. 1982. Programmers use slices when debugging. Communications of
the ACM 25 (7), 446-452.

Wilde, N., Chapman, A. & Richardson, R. 1994. The extensible dependency
analysis tool set: a knowledge base for understanding industrial software.
International Journal of Software Engineering and Knowledge Engineering 4 (4),
521-534.

Wildemuth, B., Friedman, C. & Downs, S. 1998. Hypertext vs boolean access to
biomedical information: a comparison of effectiveness, efficiency, and user
preferences. ACM Transactions on Computer-Human Interaction 5 (2), 156-
183.

0sterbye, K. 1995. Literate Smalltalk programming using hypertext. IEEE
Transactions on Software Engineering 21 (2), 138-145.

APPENDIX Information requests

The information requests performed were as follows. There was one test task and eight
actual tasks related to the 1st experiment and five actual tasks related to the 2nd
experiment. Given below are the question, the HyperSoft features to be used (the
THAS types and view type were applicable), the time needed by the HyperSoft system
to generate the THAS and the number of hypertextual nodes within it (parentheses)
and the correct solution to the tasks (curly brackets).

(TO) Test-task: Which of the functions are called directly from main (main.c/line 135)
and are implemented either in opening.c or eval.c?
{read_opening, find_kings, is_check, do_move, find_opening, find_moves,
sort_moves, find_max, undo_move}

(Tl.l) In which functions the variable ml (main.c/line 116) is used?
Occurrence list/ Structured map (3 sec. /94 n.)
{main, output_mlist, eval_move}

(T1.2) Which of the functions which are called from do_move (eval.c/line 300), are
implemented in the module eval.c?
Forward Calls (2 sec./ 38 n.)
{side_index, is_check, move_cast_rook}

(T1.3) From which modules the function is_check (eval.c/line 187) is called from?
Backward Calls/ Structured map (6 sec./ 83 n.)
{eval.c, try.c, main.c, dialog.c}

(T1.4) Which variables inside the main function may be affected by the value of the
variable moves (any of its fields) in line 330, column 10 (main.c)?
(intraprocedural)

27

Forward Slice (1 Sec./27 n.)
{x1, y1, x2, y2, capt, check, promotion, gamevalues}

(Tl.S) In which functions the function find_moves (eval.c/line 33) is used?
Occurrence list/ Structured map (1 sec./ 5 n.)
{main}

(T1.6) Which of the functions called from try_piece (try.c/line 17) calls some of the
functions called from the try _piece?
Forward Calls/ Target node list (5 sec./132 n.)
{try_queen}

(Tl.7) Which function(s), outside the module try.c, call function(s) which call the
function eval_move (eval.c/line 92)?
Backward Calls/ Function dependency view (3 sec./ 58 n.)
{main, find_moves}

(Tl.8) Which variables inside the function eval_move may have effect on the value of
the variable moves[ml][n].value in line 177 (eval.c)? (intraprocedural)
Backward Slice (1 sec./23 n.)
{ml, n, k, value, piece, x1, kx, x2, y1, ky, y2, kingx, kingy, s, p1, board, c,
gamemove, p2, check_out, capt_piece, side_index}

(T2.1) In which functions the variables (main.c/line 112) is used?
Occurrence list/ Structured map (3 sec./ 57 n.)
{main, try _piece, try _king, read_move, xy, eval_move, do_move, undo_move,
move_cast_rook}

(T2.2) In which functions appear a call of the function sideindex (eval.c/line 483)?
Occurrence list/ Structured map (1 sec./28 n.)
{eval_move, is_check, do_move, undo_move, move_cast_rook, find_kings,
try _king, try _castling}

(T2.3) Which functions are called either directly or indirectly from try_piece (try.c/line
17)?
Forward Calls/ Function dependency view (5 sec./132 n.)
{try_king, try_queen, try_knight, try_pawn, try_rook, try_bishop, eval_move,
try _castling, side_index, is_check, count_same_moves, cr, set_ move,
do_move, undo_move, output_move, show_board, strcmpLeft, move_cast_
rook}

(T2.4) Which functions either directly or indirectly call the function side_index
(eval.c/line 483)?
Backward Calls/ Function dependency view (9 sec./123 n.)
{try_castling, find_kings, move_cast_rook, is_check, undo_move, do_move,
main, game_end, eval_move, read_move, try_king, try_piece, find_moves,
try_pawn, try_knight, try_bishop, try_rook, try_queen}

(T2.5) Which variables inside the function eval_move may have effect on the value of
the variable moves[ml][n].value in line 182, column 8 (eval.c)? (intraprocedural)
Backward Slice (1 sec./ 54 n.)
{ml, n, same, x1, y1, x2, y2, k, gamemove, value, piece, kx, ky, kingx, kingy,
sideindex, s, c, check_out, capt_piece, p2, nmoves, p1, board}

	Jussi Koskinen, Automated Transient HypertextSupport for Software Maintenance
	ABSTRACT
	ACKNOWLEDGMENTS
	CONTENTS
	LIST OF INCLUDED ARTICLES
	INTRODUCTION AND OVERVIEW
	1 INTRODUCTION
	2 SOFTWARE MAINTENANCE: CHARACTERISTICS, PROBLEMS, AND SOLUTIONS
	2.1 Software and program text
	2.2 Software maintenance and program comprehension
	2.3 Solutions

	3 TRANSIENT HYPERTEXT SUPPORT FOR SOFTWARE MAINTENANCE
	3.1 Research objectives and problems
	3.2 Principles
	3.3 The HyperSoft system
	3.4 Example HyperSoft sessions
	3.5 Evaluation of the approach

	4 OVERVIEW OF THE ARTICLES
	4.1 "Program Text as Hypertext: Using Program Dependences for Transient Linking"
	4.2 "HyperSoft: An Environment for Hypertextual Software Maintenance"
	4.3 "Creating Transient Hypertextual Access Structures for C Programs"
	4.4 "Automated Hypertext Support for Software Maintenance"
	4.5 "From Relational Program Dependencies to HypertextualAccess Structures"
	4.6 "Hypertext Support for Information Needs of SoftwareMaintainers"
	4.7 "Evaluations of Hypertext Access from C Programs"
	4.8 About the joint articles and other publications

	5 DISCUSSION ON RESEARCH DIRECTIONS
	5.1 Model extensions
	5.2 Query mechanisms
	5.3 Technical optimizations
	5.4 New access structures
	5.5 Language extensions
	5.6 View enhancements
	5.7 Empirical studies

	CONCLUSION
	REFERENCES
	APPENDICES
	YHTEENVETO (FINNISH SUMMARY)
	ORIGINAL ARTICLES
	PROGRAM TEXT AS HYPERTEXT: USING PROGRAM DEPENDENCES FOR TRANSIENT LINKING
	HYPERSOFT: AN ENVIRONMENT FOR HYPERTEXTUAL SOFTWARE MAINTENANCE
	CREATING TRANSIENT HYPERTEXTUAL ACCESS STRUCTURES FOR C PROGRAMS
	AUTOMATED HYPERTEXT SUPPORT FOR SOFTWARE MAINTENANCE
	FROM RELATIONAL PROGRAM DEPENDENCIES TO HYPERTEXTUAL ACCESS STRUCTURES
	HYPERTEXT SUPPORT FOR INFORMATION NEEDS OF SOFTWARE MAINTAINERS
	EVALUATIONS OF HYPERTEXT ACCESS FROM C PROGRAMS

