JYVASKYLA STUDIES IN COMPUTING 4

Jussi Koskinen

Automated Transient Hypertext
Support for Software Maintenance

)

UNIVERSITY OF I:| JYVASKYLA

JYVASKYLA 2000

Editors

Seppo Puuronen

Department of Computer Science and Information Systems, University of Jyvaskyla
Kaarina Nieminen

Publishing Unit, University Library of Jyvaskyla

ISBN 951-39-0673-6 (nid.), 978-951-39-5482-6 (PDF)
ISSN 1456-5390

Copyright © 2000, by University of Jyvaskyla

Jyvaskyla University Printing House, Jyvaskyld and
ER-Paino Ky, Lievestuore 2000

ABSTRACT

Koskinen, Jussi

Automated Transient Hypertext Support for Software Maintenance
Jyviskyla: University of Jyvaskyld, 2000, 98 p. (+included articles)
(Jyvaskyld Studies in Computing

ISSN 1456-5390; 4)

ISBN 951-39-0673-6 (nid.), 978-951-39-5482-6 (PDF)

Finnish summary

Diss.

The purpose of the study is to develop and evaluate a hypertext-based ap-
proach for legacy software maintenance support. Program text is viewed as
transient hypertext, consisting of program parts connected by links enabling
fast nonlinear browsing. Transient hypertextual access structures (THASs) are
formed automatically to satisfy the situation-dependent information needs of
software maintainers. We develop a layered model called HyperSoft for this
purpose, implement the approach, and evaluate its hypothesized usefulness
empirically. The formation of THASs is based on applying program analysis
techniques. The approach is implemented in the HyperSoft system, which is an
experimental software maintenance support tool. The implementation of the
system is guided by representatives from our industrial partner enterprises. The
target language (C) and the implemented THAS set is selected according to the
needs of the enterprises. The supported THAS set includes definition refer-
ences, occurrence lists, call graphs, and program slices. The usefulness of the
approach, the system, and the implemented THAS types is evaluated in three
different ways: first, by small-scale testing in the partner companies; second, by
comparing the HyperSoft's capability to the information needs of software
maintainers revealed in a series of earlier empirical studies; and third, by two
independent test series. The test series compare information retrieval task per-
formance effects of using HyperSoft and Borland C/C++. The results clearly
support our hypothesis regarding the usefulness of the approach.

Keywords: hypertext, software maintenance, CASE (Computer Assisted/
Aided Software Engineering), reverse engineering, program analy-
sis, program comprehension, program slicing

ACM Computing Review Categories

D.2.2. Software Engineering: Tools and Techniques, Computer-aided software en-
gineering (CASE), User interfaces

D.2.5. Software Engineering: Testing and Debugging, Tracing

D.2.7. Software Engineering: Distribution and Maintenance, Corrections,
Enhancement

D.3.4. Software: Programming Languages, Parsing

E.1. Data structures, Graphs

F.3.3. Theory of Computation, Studies of program constructs

H.3.3. Information Search and Retrieval, Retrieval models

H.5.1. Multimedia Information Systems, Hypertext navigation and maps

Author Assistant professor Jussi Koskinen,
Department of Computer Science and Information Systems,
University of Jyvaskyla,
P.O. Box 35, FIN-40351, Jyvéskyld, Finland.
Email: koskinen@cs jyu.fi

Supervisors Professor Airi Salminen,
Department of Computer Science and Information Systems,
University of Jyvaskyld, Jyvaskyld, Finland.

Professor Jukka Paakki,
Department of Computer Science,
University of Helsinki, Helsinki, Finland.

Reviewers Professor Kaisa Sere,
Department of Computer Science,
Abo Akademi University, Turku, Finland.

Professor Carolyn Watters,
Faculty of Computer Science,
DalTech, Dalhousie University, Halifax, Nova Scotia, Canada.

Opponent Professor Kai Koskimies,
Department of Software Engineering,
University of Tampere, Tampere, Finland.

ACKNOWLEDGMENTS

This research originated out of discussions with Professor Airi Salminen (Uni-
versity of Jyvaskyld, Dept. of Computer Science and Information Systems;
DCSIS). It was clear from the beginning that transient hypertext support could
be useful. Of the decisive importance was the insight of applying transient hy-
pertext to software maintenance. Professor Jukka Paakki (currently at the Uni-
versity of Helsinki, Dept. of Computer Science and at Nokia Research Center)
joined the team, and was the central figure in leading the HyperSoft project.
Airi and Jukka were my mentors and coauthors. Mika Nieminen MSc. (cur-
rently managing director of SupraSoft) was my colleague in the course of im-
plementing the HyperSoft system. Together, we formed the HyperSoft team.
Thus I especially wish to thank Airi, Jukka, and Mika. This earlier work has
since continued as my PhD project.

I thank the reviewers of the thesis, Professor Kaisa Sere (Abo Akademi
University) and Professor Carolyn Watters (Dalhousie University, Canada) as
well as Professor Kai Koskimies (University of Tampere) for their comments
and remarks. Series editor, Dr Seppo Puuronen (DCSIS), provided many useful
remarks related to the summary part of the thesis. The steering group of the
HyperSoft project provided helpful comments during the implementation of
the HyperSoft system. The group consisted of the representatives of our partner
enterprises: Dr Antero Taivalsaari (senior researcher, Nokia Research Center),
Paavo Holopainen (system chief, Novo Group), Jyrki Saarivaara (project man-
ager, Tieto Corporation), and Marita Tolvanen (customer service chief, Tieto
Corporation).

The work done on parsers related to the AnaGram™ parser generator by
Jerome Holland (Parsifal Software, MA, USA) provided a good basis for the
construction of the C parser part of the HyperSoft system. Dr Annaliisa Kanka-
inen and Lecturer Anna-Liisa Lyyra (both from the Univ. of Jyvdskyld, Dept. of
Statistics) provided helpful support related to the use of statistical methods. I
remember the useful discussions I had on program slicing with Mr. Veli-Matti
Risku and on ESQL with Mr. Timo Suominen while they were writing their
master's theses. Professor Jari Veijalainen (DCSIS) and Professor Markku Sakki-
nen (DCSIS) both took a positive attitude towards the empirical testing of the
HyperSoft system at their courses on software engineering. Dr Steven Kelly
(DCSIS) and Lecturer Michael Freeman (Univ. of Jyvaskyld, English Dept.)
proof-read some of the critical parts of the text. These language revisions have
helped to improve the style of the thesis. I also wish to extend my thanks to my
long-time friend, Matti Kukkonen Doctor of Law, Lic. of Econ. (Helsinki School
of Economics and Business Administration) for innumerable general discus-
sions on science and life during the years leading to this dissertation.

Katriina Bystrém L.Soc.Sc. (University of Tampere), Professor Erkki Maki-
nen (University of Tampere), Professor Norman Wilde (University of West Flor-
ida, FL, USA), Professor Anneliese von Mayrhauser (Colorado State University,
CO, USA), Dr Terence Parr (MageLang Institute, USA), Dr Harri Oinas-
Kukkonen (University of Oulu), Professor Frank Wm. Tompa (University of

Waterloo, Canada), and Dr Eila Kuikka (University of Kuopio) provided useful
material and/or comments related to reverse engineering, for which I thank
them. I'm grateful to those who participated in the evaluation of the HyperSoft
system: 8 persons from the partner enterprises during summer 1995 and sum-
mer 1996 and 70 students of computer science at the University of Jyvaskyla
during fall 1998 and spring 1999. Last, but not least, I thank all my friends, my
mother, and my sister, who provided support for the fulfillment of this project.
This work has been funded by the Jyvdskyldn Kauppalaisseuran Saitio
(1994) and by COMAS (Jyviskyld Graduate School in Computing and Mathe-
matical Sciences, at the University of Jyvaskyld, 1997-1999). The HyperSoft pro-
ject (1994-1996) was funded by TEKES (National Technology Agency of
Finland) together with the University of Jyvdskyld and our partner enterprises:
Nokia Research Center, Novo Group (formerly: KT-Tietokeskus) and TietoEna-
tor (formerly: Tieto Corporation, TT-Kuntajarjestelmit and VTKK). The re-
search related to the HyperSoft project was mainly carried out within the
Information Technology Research Institute (TITU/ University of Jyvaskyla).

Jyvaskyld, Finland. April 2000.

Jussi Koskinen

CONTENTS

1 INTRODUCTION ...ttt i 13
2 SOFTWARE MAINTENANCE: CHARACTERISTICS,
PROBLEMS, AND SOLUTIONSccvoiiiiiiiiiiiiiii e 16
2.1 Software and program texXtc.eiiiiiiiiiiiiii i 16
2.2 Software maintenance and program comprehension 17
2.2.1 Classifications of maintenance tasks 18
2.2.2 Program comprehensioncooiiiiiiiiiii, 18
2.2.3 Economic significancecoiiiiiiiiiiiiiiiiniiiia 20
2.3 S0IUONS L.uviiii it 20
2.3.1 Algorithmic solutions for program analysis 21
2.3.2 Hypertext and software hypertext systems 23
3 TRANSIENT HYPERTEXT SUPPORT FOR SOFTWARE
MAINTENANCE ... 26
3.1 Research objectives and problems 26
3.2Principles ...t 28
3.3 The HyperSoft systemcooiviiiiiiiiiiiiii 28
3.3.1 Static program analyzercoiiiiinnn 30
3.3.2 Program databaseooiiiiiiiiiiiii 31
333 THAS generatorccooviiiiiiiiiiiiiiiiniiieieeieieia... 31
3.3.4 Generic user interfaceoooiii L 32
3.4 Example HyperSoft sessionsoooceeiiiiiiiiiiiiiiin, 33
3.4.1 Call graph exampleccooviiiiiiiiiiiiiiii e, 34
3.4.2 Backward slicing exampleoooii 39
3.4.3 Forward slicing exampleooooo 40
3.5 Evaluation of the approachoooooi 42
3.5.1 Proposed benefits and probable drawbacks 42
3.5.2 Solutions related to HyperSoftcl. 45
4 OVERVIEW OF THE ARTICLEScoooiiiiiiiiii 50
4.1 "Program Text as Hypertext: Using Program Dependences
for Transient Linking" ... 51

4.2 "HyperSoft: An Environment for Hypertextual Software
Maintenance” ... 52

4.3 "Creating Transient Hypertextual Access Structures for C
Programs”t 53

4.4 "Automated Hypertext Support for Software Maintenance" 54
4.5 "From Relational Program Dependencies to Hypertextual

Access SITUCEUTeS” ooiiiiiiiiiiiiiiiii i 55
4.6 "Hypertext Support for Information Needs of Software
Maintainers” i 57
4.7 "Evaluations of Hypertext Access from C Programs" 58
4.8 About the joint articles and other publications 59
5 DISCUSSION ON RESEARCH DIRECTIONSooiiviiiennn 60
5.1 Model extensionsc.ovveviiiiiiiiiiiii 61
5.2 Query mechanisms ... 62
5.3 Technical optimizationscocoiiiiiiiiiiii . 62
5.4 New access structurescoooiiiiiiiiiiiiniieeianiiao... 63
5.5 Language extensionsooooiiiiiii 64
5.6 View enhancementsooiiiiiiiiiiiiiiiiiiiin 64
5.7 Empirical studies ... 65
CONCLUSION ...t 66
REFERENCESo i 68
APPENDIX 1 ALGORITHMIC SOLUTIONS FOR SOFTWARE
ANALYSIS .o e 91
APPENDIX 2 SURVEYED SOURCESooiiiiiiiiiiiiiiiiiiiin, 95

FINNISHSUMMARY ... 98

LIST OF INCLUDED ARTICLES

II

III

v

VI

VII

Koskinen, J., Paakki, J. & Salminen, A. 1994a. Program text as hypertext -
using program dependences for transient linking. In Proc. 6th Int. Conf. on
Software Engineering and Knowledge Engineering (SEKE’'94). Skokie, IL:
Knowledge Systems Institute, 209-216.

Salminen, A., Koskinen, J. & Paakki, J. 1994a. HyperSoft: an environment
for hypertextual software maintenance. In B. Magnusson, G. Hedin & S.
Minér (Eds.) Proc. Nordic Workshop on Programming Environment Research
(NWPER’94). LU-CS-TR: 94-127. Lund, Sweden: Lund Univ., 25-37.

Koskinen, J. 1996¢. Creating transient hypertextual access structures for C
programs. In Proc. 7th Israeli Conf. on Computer Systems and Software Engi-
neering (ICCSSE’96). Los Alamitos, CA: IEEE Computer Soc., 56-65.

Paakki, J., Salminen, A. & Koskinen, J. 1996. Automated hypertext support
for software maintenance. The Computer Journal 39 (7), 577-597.

Paakki, J., Koskinen, J. & Salminen, A. 1997. From relational program de-
pendencies to hypertextual access structures. Nordic Journal of Computing 4
(1), 3-36.

Koskinen, J., Salminen, A. & Paakki, J. 1999. Hypertext support for infor-
mation needs of software maintainers. Univ. of Jyvaskyld, Jyvaskyld, Fin-
land. Computer Science and Information Systems Reports, Working paper
WP-37. Submitted (Dec. 1999) for publication to IEEE Transactions on Soft-
ware Engineering.

Koskinen, J. 1999c¢. Evaluations of hypertext access from C programs. Sub-
mitted (July 1999) and conditionally accepted (Jan. 2000) to be published
in Journal of Software Maintenance: Research and Practice.

(VII') An earlier version of the paper has been published as: Koskinen, J.
1999b. Empirical Evaluations of Hypertextual Information Access from Program
Text. University of Jyvaskyld, Jyvaskyld, Finland. Computer Science and
Information Systems Reports, Working paper WP-36.

(VII") The results of the 1st experiment has been published as: Koskinen,
J. 1999a. Empirical evaluation of hypertextual information access from
program text. In Proc. 7th Int. Workshop on Program Comprehension
(IWPC’99). IEEE Computer Soc., 162-169.

INTRODUCTION AND OVERVIEW

1 INTRODUCTION

The problems of software maintenance are prominent and well-known. Surpris-
ing amounts of resources are needed in order to obtain adequate comprehen-
sion of the structure and behavior of software systems. Program comprehension
is needed in finding information in programs and in modifying them without
introducing undesired side-effects. Reverse engineering techniques attack these
problems. Reverse engineering comprises the process of identifying the compo-
nents of a software system and their relations and of creating alternative (often
abstracted) representations for the system. Reverse engineering tools are an im-
portant research area owing to the considerable costs involved in software
maintenance.

This dissertation studies one way of supporting software maintenance via
reverse engineering techniques. The name of our approach, model and corre-
sponding implementation is HyperSoft. HyperSoft combines the techniques of
hypertextual information representation and retrieval with those of automated
software and program analysis (see Figure 1). HyperSoft can be motivated by
the possibilities to form hypertext based on program text, by congruence with
the central issues of program comprehension theories, by focused support for
information needs of practical importance, and by task performance effects.
These issues will later be discussed in detail.

Program text is viewed as hypertext in which the division into relevant
fragments and dependencies between the fragments is made explicit. Until the
present the hypertextual representation scheme and program analysis tech-
niques have been employed in software hypertext systems and reverse-engineering
tools, respectively, and usually separately. The HyperSoft approach is based on
the idea that hypertext is formed automatically. The hypertextual nodes corre-
spond to the syntactical fragments of the program text and the links to the pro-
gram dependencies' characteristic of the programming language.

The terms dependence (plural: dependenc(i)es) and dependency (plural: dﬁ;:endencies) have the
same meaning and both are used in the literature - we mainly utilize the latter form.

14

Congruence with:
Transient - "golden rules of hypertext formation"
hypertext - central issue's of program
representation \ / comprehension theories
Hyp erSoft —» Support for practically important
information needs
Automated
(static program) Task performance effects:
analysis - increased efficiency

FIGURE 1 The HyperSoft approach

The HyperSoft model is a specialization and extension of a general, abstract,
language-independent model for textual databases (Salminen & Watters, 1992).
The HyperSoft model separates the syntactic and access structure layers from
each other. The transient hypertextual access structures (THASs) are composed of
those program parts which are linked together on the basis of the existing pro-
gram dependencies. THASs are transient, which means that they are not stored
permanently, but are instead generated on user request for the duration of the
tool usage session. THASs help software maintainers to focus their attention on
those parts of the program which are relevant, c¢f. for example (Mizzaro, 1997;
JASIS, 1994), to the current software maintenance situation and to browse
through the THASs by following the hypertextual links formed by the support
tool. THASs are represented to the user as textual, hypertextual, and graphical
views.

The work contains theoretical, constructive, and empirical elements. The
implementability and practical applicability of the ideas presented is demon-
strated with an experimental software maintenance support tool, the HyperSoft
system (Paakki et al., 1996; Koskinen et al., 1997), which was constructed during
the HyperSoft project. Thus, the work includes a relatively large constructive
part (Koskinen, 1997; Koskinen et al., 1997). HyperSoft was a TEKES (National
Technology Agency of Finland) project during 1994-97. Since then, HyperSoft
has continued as my PhD project. The HyperSoft project has been guided by an
industrial steering group, consisting of representatives of three large Finnish
software houses: Nokia, Novo Group and Tieto Corporation. The steering
group has participated in the guidance of the project by reviewing the proposed
functionality of the HyperSoft system. The implemented THAS set and the sup-
ported programming language, C (Kernighan & Ritchie, 1988), were chosen by
the steering group.

The work done in relation to HyperSoft is also reported in various papers
or reports (Koskinen ef al., 1994a; 1994b; Salminen ef al., 1994a; 1994b; Koskinen,
1995; Koskinen, 1996a; 1996b; 1996c; Paakki et al., 1996; 1997; Koskinen 1999a;
1999b), in submitted papers (Koskinen et al., 1999; Koskinen 1999¢) and in form
of a bibliography (Koskinen, 1999d). Moreover, there is the HyperSoft system
itself (Koskinen et al., 1997). The technical and user documentation of the

15

HyperSoft system includes a report (Koskinen, 1997), which contains the design
documentation of the back-end parts of the system, a Master's thesis (Nieminen,
1996) (which describes the front-end), and the HyperSoft user manual (Niemi-
nen & Koskinen, 1997). Other works related to HyperSoft include Risku (1995),
Tuovinen (1995), Suominen (1997) and Sillanpda (1997).

This part contains a general overview and a summary of the thesis. An up-
dated and extended discussion is provided based on the existing literature as an
attempt to bind the results obtained in a potentially fruitful way to the related
research and possible extensions of the HyperSoft system (v. 1.0) (Koskinen et
al., 1997). The survey part includes efforts made to understand the processes of
software maintenance and program comprehension and the support mecha-
nisms of those processes.

First, the application area - software maintenance and program compre-
hension - is characterized and the branches of solutions and concepts which
constitute the background to HyperSoft are briefly surveyed in Chapter 2.
There exists a lot of research related to the aspects of reverse engineering and
hypertext support for software engineering, but only little or no research di-
rectly related to all of the aspects relevant for supporting software maintenance
via transient hypertext. The approach is potentially very fruitful. Those readers
who prefer more details are directed to the material provided in Appendix 1.
The literature survey is focused on the sources represented in Appendix 2. The
approach is described in Chapter 3, which presents the research objectives and
problems, principles, example sessions and evaluation (benefits, drawbacks,
and comparisons to other approaches).

Overviews of the articles forming the main part of the dissertation are
given in Chapter 4. A discussion on the scope of the approach and further re-
search directions are provided in Chapter 5. Finally, the conclusions are pre-
sented. The original articles are included. It should be noted that this overview
part extends the discussion, particularly in relation to the literature survey (Sec-
tion 2.3), the HyperSoft system (Section 3.3), and research directions (Chapter
5), whereas many of the other important aspects are noted only in passing. The
articles provide the detailed level information.

2 SOFTWARE MAINTENANCE: CHARACTERISTICS,
PROBLEMS, AND SOLUTIONS

The term software engineering - see e.g. Sommerville (1996); Pressman (1997) -
suggests a discipline resembling that of other engineering fields. However,
compared to the established fields of engineering, the area in which certain soft-
ware engineering techniques can be applied is less well-defined. The same tech-
niques can be applied in numerous areas of application (Glass & Vessey, 1995).
This diversity of domains of application introduces many of the problems re-
lated to software engineering. Compared to other fields of engineering general
libraries of ready-made or reusable components (see Weide et al., 1991) are not
so widely applied. Thus, old software in particular consists, in the most part, of
non-standard functions and elements, whose understanding and interfacing re-
lated to their maintenance and reuse (Prieto-Diaz, 1991) is problematic. A gen-
eral introduction to the main aspects of the area is provided, for instance, by
(Sommerville, 1996/ Sections 24.3 Static analysis tools; pp. 493-496, 25.1 CASE
classification; pp. 507-511, 26.3 Testing workbenches; pp. 538-539, 32 Software
maintenance; pp. 659-674, and 34.4 Reverse engineering; pp. 711-714).

2.1 Software and program text

Software, written as program text, consists of the instructions to the computer and
is typically stored in an electronic form. A characteristic feature of program text
is that in addition to this linear structure it also has a hierarchic structure defined
by a grammar, and that the instructions follow the rules of the programming lan-
guage used. Modern commercial software systems are typically very large and
programmed by various people each with their own level of expertise, pro-
gramming styles (Straker, 1992) and, possibly, using multiple languages.
Moreover, because software describes the abstract relations between its parts, the
dependencies within it are essentially invisible (Brooks, F.P. Jr. 1987). Software
entities are characterized by the concepts related to the programming

17

(implementation) and problem (application) domains, representations through
which these concepts are expressed, and by the fact that the operation of the en-
tities depends on the conditions present at the time of execution. Much of the
complexity of software is of an arbitrary nature determined by the human insti-
tutions and computer systems to which the interfaces have to conform. These
issues are discussed in text books, such as Sommerville (1996).

Program text and some pieces of system documentation are structured
text, which has been studied in relation to the structured text databases, for ex-
ample, by Rossiter et al. (1990); Kuikka (1996). Program text often has to serve as
a document for maintainers, but it differs from other technical documentation
(Hopkins & Jernow, 1990) in that it is typically not tailored for that purpose. It
is however often annotated with comments and supplemented with other docu-
mentation including, for example, the requirements, functional, design and ar-
chitectural specifications, as well as user manuals (Garg, 1989). But, especially
for large, old undocumented legacy systems (IS, 1995; 1998; Ning et al., 1994; Ben-
nett, 1995), the source code is the only accurate description. So, in dealing with
software systems of this kind, the necessary information needs to be extracted
from the source code.

As noted e.g. by Lakhotia (1993a), the problems of program comprehen-
sion are often overwhelming. There is no single unique fragmentation or specific
type of representation by which it would be possible to grasp all the aspects of
software. It is typical of program text that there are a lot of interdependencies be-
tween parts belonging to different fragmentations. Unlike the text in printed
books or journals, the program text is typically not static and never fully
reaches its final form, but typically evolves through numerous changes and
modifications (Ramalingam & Reps, 1992). The fact that program text is essen-
tially a complex web of invisible interdependencies generates many of the prob-
lems of its maintenance.

2.2 Software maintenance and program comprehension

The program text is originally written during the process of programming. The
term software maintenance (Hagemeister et al., 1992; von Mayrhauser, 1994) is of-
ten used only with reference to making changes to programs after they have
been delivered to customers. The importance of software maintenance and pro-
gram comprehension has been recognized more readily during the last few
years, partly because of the potentially great effects of the Y2K problems; see
e.g. (Newcomb & Scott, 1997; Ragland, 1997; Sharon, 1997; Zvegintzov, 1997;
Marcoccia, 1998). There is also a shortage of empirical studies on software main-
tenance, which has been noted by Haworth et al. (1992).

Because even new software has to be changed, the entropy (i.e. disorder)
of aging software is always increasing. This is the so-called ripple effect. Changes
made to software based on an insufficient understanding of its structure and be-
havior make it more fragile. Because there is only a small chance of making

18

changes correctly on the first attempt, changes need to be designed and their
possible negative side-effects minimized. These problems are exacerbated by
the fact that the sizes of new applications have tended to increase as new techni-
cal solutions and methods have made this feasible.

2.2.1 Classifications of maintenance tasks

Software maintenance tasks are often classified, according to the purpose of the
needed program changes, into the large sub-categories represented in Table 1.
This classification has appeared - for instance - in the software engineering
books of Pressman (1997) and will be applied in Article VI. Note that the list of
the included articles appears after the table of contents. Classifications and the
meanings of the terms slightly differ in different text-books. Sommerville (1996)
uses only the three first categories: corrective, adaptive, and perfective. Soft-
ware maintenance is often most difficult to accomplish while large changes or
enhancements (Jones, 1989) of the adaptive maintenance category in case of in-
sufficient, unupdated or non-existent documentation are made to large legacy
systems.

Modifying programs on the basis of inadequate comprehension, then, eas-
ily leads to errors and, consequently, to tasks of the corrective maintenance
category (Regelson & Anderson, 1994; Duncan & Robson, 1996; Eisenstadt,
1997). Other ways of classifying maintenance activities have also been proposed
(Arunachalam & Sasso, 1996). If prototyping (Luqi, 1989; Davis, 1995) is used
according to the spiral model of software development (Boehm, 1988a), there
may be numerous "maintenance phases".

TABLE 1 The main maintenance task categories and their purposes

Maintenance category Purpose
Corrective Diagnosis, localization, and correction of errors.
Adaptive Interfacing software with a changing environment.

Enhancement or perfective Additions, enhancements, and modifications made
based on changing user needs.

Preventive Enhancement of future maintainability.

2.2.2 Program comprehension

Problems of software maintenance may be reduced via proper program com-
prehension. At a general level, program comprehension may be defined as a proc-
ess which aims to enhance the level of knowledge about issues which are
important to the fulfillment of programming and maintenance tasks. General,
important surveys of program comprehension research issues include (Corbi,
1989; Robson et al., 1991; JSS, 1999) and models for program comprehension
have been suggested or surveyed by Brooks (1977; 1983), Vessey (1989), von
Mayrhauser and Vans (1995a; 1995c¢), and Tilley et al. (1996).

19

The comprehension model of von Mayrhauser and Vans (1995a) is sup-
ported by a series of empirical studies (von Mayrhauser & Vans, 1995b; 1996;
1997a; 1997b; 1998; von Mayrhauser et al., 1997). Comprehension of specific pro-
gram components has been studied, for example, by Soloway et al. (1983), and
Iselin (1988). Program comprehension is based on general cognitive processes,
which have been studied by Letovsky (1986) and Iio et al. (1997).

More precisely, program comprehension is a process in which the pro-
grammer or maintainer interacts with the source code and tries to recreate the
design rationales and decisions (Rugaber et al., 1990) that the original program-
mers used while they were writing the program. In order to avoid the introduc-
tion of side-effects due to the changes made, program comprehension efforts
should precede the making of changes. The relation of program comprehension
and software maintenance is such that program comprehension is necessary in
order to fulfill software maintenance tasks successfully; see e.g. (Visaggio, 1997).

Programs are typically read both in sequential and nonlinear fashion.
Moreover, program comprehension is not only a text comprehension process, it
is more of a plan recognition process (Robertson & Yu, 1990) producing increased
knowledge about the original intentions. Because of their limited knowledge,
software maintainers constantly have information needs, which most often are
satisfied by examining the source code. Information needs have earlier mainly
been studied on a general, application domain independent level related to in-
formation science (Dervin & Nilan, 1986; Kulthau, 1991; Wilson, 1994).

The program comprehension theories referred to above suggest that com-
prehension is affected by the existence of the following kinds of elements:

o mental models, ie. representations within the mind of the programmer
about issues which are important to comprehension efforts (Pennington,
1987; Wiedenbeck & Fix, 1993; Corritore & Wiedenbeck, 1999),

o chunks (or cliches), i.e. meaningful program segments (Vessey, 1987; Rich &
Waters, 1988; Hartman, 1991; Burnstein & Roberson, 1997),

o program(ming) plans, i.e. stereotypic action sequences (Soloway & Ehrlich,
1984; Letovsky & Soloway, 1986; Davies, 1990; van Deursen et al., 1997),
and

e beacons, ie. easily observable program lines which may serve as starting
points for comprehension efforts (Wiedenbeck, 1986; 1991; Gellenbeck &
Cook, 1991).

Most notably, the comprehension process is difficult if the original pro-
gramming plans are delocalized (Letovsky & Soloway, 1986; Soloway et al., 1988),
meaning that program parts which should be read together are dispersed
among other, irrelevant parts. "Reading” program text has been compared, e.g.
to reading a murder mystery or solving a puzzle in which all the central infor-
mation is not explicitly presented. Maintainers have to generate the "implicit
story” in their mind to achieve their objectives. They thus have to extract from
the scattered information a "series of events" that will describe various aspects
of the program's operation. The process has also been compared to the tasks
faced by a historian, a detective, and a clairvoyant (Corbi, 1989).

The program comprehension theories suggest that programmers use some
systematic comprehension strategies (Koenemann & Robertson, 1991), such as

20

top-down and bottom-up strategies. While employing, for example, the top-
down strategy, the maintainer first tries to comprehend the main program, or
function, and then descends to the lower levels of the calling hierarchy. While
employing an "as-needed strategy", the maintainer uses a variety of strategies in
combination depending on the current situation. Program comprehension proc-
esses and their relation to the information needs of the software maintainer are
further analyzed in von Mayrhauser and Vans (1995b) and in other studies con-
ducted by them (von Mayrhauser & Vans, 1997b; 1998; von Mayrhauser et al.,
1997).

2.2.3 Economic significance

Software maintenance is the single most expensive software engineering activ-
ity. The effort expended on maintenance is between 65-75% of the total effort
targeted to information systems development (Sommerville, 1996, p. 660).
Moreover, the proportion of maintenance costs of total costs has increased over
the years (Edelstein, 1993), even though new improved design methodologies
and programming paradigms, such as object-oriented analysis, design, and pro-
gramming, have been introduced and have had some positive effects on soft-
ware maintenance (Mancl & Havanas, 1990; Henry & Humphrey, 1993).
Localization of the relevant lines of code (e.g. those which need to be changed)
is an important class of tasks causing costs, since localizations require both time
and other resources.

Edelstein (1993) has estimated that a sum of US $70 billion was used for
software maintenance in 1993. On the other hand, Jones (1997) has estimated
that the Year 2000 (Y2K) problem alone will potentially cause, worldwide, the
astonishingly large total of $1600 billion. The strategic importance of the Y2K
problem is also noted by Gunter et al. (1996). Thus, reverse engineering meth-
ods and tools improving the fulfillment of software maintenance tasks (and es-
pecially program comprehension and localization of the relevant program lines)
have considerable economic significance.

2.3 Solutions

The problems of software maintenance and program comprehension have been
attacked in various ways. The development of reverse engineering tools (Rock-
Evans & Hales, 1992; CACM, 1994) is motivated by their potential to increase
productivity. Since the HyperSoft approach combines the notions of hypertext
and reverse engineering (program analysis) techniques, mainly these ap-
proaches are briefly surveyed here. Since HyperSoft is based on the idea of
automated support, methods, techniques, and tools especially enabling that
purpose are noted and references given to the most important sources. A wider
bibliography is available (Koskinen, 1999d).

Reverse engineering, program analysis, and software hypertext systems
all represent various aspects of support which can be found in (integrated)

21

CASE (Computer Aided Software Engineering) tools and environments (Misra,
1990; Fuggetta, 1993; Sommerville, 1996/ Section 25, pp. 505-544). Our research
can be considered as belonging to CASE research, although the focus is on sup-
porting maintenance (via reverse-engineering; lower CASE tools), instead of
supporting actual systems development (forward engineering; upper CASE
tools).

2.3.1 Algorithmic solutions for program analysis

Reverse engineering means the process of identifying a system's components and
their interrelations and of creating representations of the system in another
form or at a higher level of abstraction (Chikofsky & Cross, 1990; Cross et al.,
1992; I]SEKE, 1994). Thus, in our context, the representations created are based
on automated transformations. Reverse engineering is a reverse process of for-
ward engineering (ordinary systems development) in which the activity proceeds
from various specifications to analysis and design modelling, and finally to im-
plementation (coding). The software source code is usually available as an input
to the reverse engineering process and the process is normally part of software
re-engineering (Sommerville/ Section 3.4.4, pp. 711-713). Established methods
of program analysis (Welsh & McKeag, 1980; Aho et al., 1986) are typically used
in producing the higher-level representations related to reverse engineering.
Program analysis may be static or dynamic. HyperSoft applies static analysis; cf.
for example, Wichman et al., (1995) and von Mayrhauser and Lang (1999). Dy-
namic analysis relies on information which is available only at the run-time of
the maintained program.

Since HyperSoft is based on the automatic generation of THASs, it is use-
ful to list here some of the algorithms and solutions to various reverse engineer-
ing and software analysis problems (in automatically analysing either the
source code or the related documentation, applicable in generating various
THAS types. From the view point of HyperSoft, these solutions can be grouped
according to whether they mainly support the identification of program compo-
nents (nodes) or their interrelations (dependencies). These algorithms corre-
spond to the possible content of the 'Algorithm' attribute of dependencies as
represented within our classification of program dependencies (see Article V/
Figure 2).

Relevant solutions for component identification include techniques for
program decomposition, various metrics and techniques which can be used to
identify interesting program parts, and text analysis and concept extraction
techniques which may be used as applied to the system documentation or com-
ments. Techniques related mainly to dependencies include general data flow
analysis, its variants, and techniques for producing trees and graphs which can
be used in storing program information. A classification of algorithmic solu-
tions is provided in Appendix 1. Here we will refer, as examples, to two of the
categories - program dependency analysis and program slicing (Appendix 1;
parts 5 and 6).

22
Program dependency analysis

Many of the reverse engineering tools available represent the target program to
the user on the basis of program dependencies, which can be automatically rec-
ognized from the source code. General models, classifications or characteriza-
tions for program dependencies have been proposed (Perry, 1987; Yau & Tsai,
1987; Podgurski & Clarke, 1990; Paakki et al., 1997). Some tools and techniques
(Moriconi & Hare, 1986; Gopal, 1991; Livadas & Roy, 1992; Muller et al., 1992;
Baratta-Perez et al., 1994; Linos et al., 1994) are based on program dependencies.
Control and data flow are the main examples of program dependencies ana-
lyzed in reverse-engineering and maintenance tools.

Since the main target language of our implementation is ANSI-C, it is rele-
vant also to view here the existing research done on C program analysis. A for-
mal method for reverse engineering C programs, including formal definition of
the semantics of the language is provided by Gannod and Cheng (1996). The
side-effect and modification analysis of C programs have been studied by Yur et
al. (1997). C has many special features affecting maintainability, which are dis-
cussed in some detail, for example, by Darnell and Margolis (1991). The hard
problems of analysing C programs - including handling of array and pointer
variables and unstructured flow of control - have been attacked by Jiang et al.
(1991). An environment for recognizing architectural cliches for C programs
based on abstract syntax trees has been developed by Fiutem et al. (1996).

Program slicing

Program slicing, as coined by Weiser (1982; 1984), can be defined as the extrac-
tion of relevant statements from the source programs. Some definitions of slic-
ing require that the slice is an executable subset of the program. Empirical
experiments (Weiser, 1982; Weiser & Lyle, 1986) suggest that slices are espe-
cially useful in debugging. General surveys of program slicing are provided by
Binkley and Gallagher (1996) and Harman and Gallagher (1998). Program slic-
ing techniques are surveyed by Tip (1995), compared by Kamkar (1995), and
program slicing tools are compared by Hoffner et al. (1995). IST (1998) is a re-
cent special issue on program slicing.

Slicing helps the maintainer to focus on program parts which are some-
how relevant to a certain maintenance situation. The focus of interest is indi-
cated by the slicing criterion, which typically is a variable occurrence within the
program text. Slices are formed on the basis of the analysis of the control and
data flows of the program. Backward slicing; see e.g. (Kamkar, 1993), reveals the
program parts which may affect the slicing criterion, whereas forward slicing
reveals the parts that may be affected by the slicing criterion. Hence, backward
~ slicing is typically used in debugging (Kamkar, 1998), whereas forward slicing
may be used, for example, in impact analysis; see e.g. (Turver & Munro, 1994;
Queille et al., 1994; Ajila, 1995; Fyson & Boldyreff, 1998). Many articles have
been written on impact analysis, of which some of the most important are re-
produced by Bohner and Arnold (1996).

23

Program slicing may also be used as an aid in regression testing (Harman
& Danicic, 1995; Gupta et al., 1996; Binkley, 1998). The slices may be formed on
the basis either of static (Choi & Ferrante, 1994) or of dynamic analysis (Korel &
Rilling, 1998) of the program. Variants which are related to slicing include
parametric slicing (Field et al., 1995), dicing (Chen, T. & Cheung, 1993;
Samadzadeh & Wichaipanitch, 1993), generalized slicing (Sloane & Holdsworth,
1996), sliving (Gupta, 1997), and chopping (Reps & Rosay, 1995). These special
techniques can be used in avoiding some of the problems related to traditional
slicing.

Efficiency problems related to program slicing are discussed, for instance,
by Reps et al. (1994). The time-efficiency problems of slicing can be alleviated by
storing the needed information into program dependency graphs or into some
other permanent structures. Program dependency graphs were introduced by
Ottenstein and Ottenstein (1984) and currently there exist many variants (Hor-
witz & Reps, 1992; Harrold & Malloy, 1993; Kinloch & Munro, 1993; 1994). Hy-
perSoft relies on the traditional way of producing the slices via iterative solving
of data flow equations, as in (Weiser, 1982).

Slicing tools include C-Debug (Samadzadeh & Wichaipanitch, 1993),
SLICE (Venkatesh, 1995) and those reported by Beck and Eichmann (1993) and
Hoffner et al. (1995). Some of the tools employ static and some dynamic analy-
sis. The intended application areas vary from debugging to program integra-
tion. Problematic areas include the analysis of pointers (Fiutem et al., 1999) and
the analysis of unstructured programs (Choi & Ferrante, 1994; Harman &
Danicic, 1998). Most of these problems of slicing from the view-point of C pro-
grams are noted by Samadzadeh and Wichaipanitch (1993).

2.3.2 Hypertext and software hypertext systems

Hypertext is surveyed by Conklin (1987). Nowadays, hypertext is a very widely
applied technique. Hypertext is text with nonlinear browsing capabilities, con-
sisting of text fragments called nodes and links connecting these nodes. Within
hypermedia systems the nodes may also contain non-textual information.

The usefulness of hypertext is often motivated by asserting that it comple-
ments the more traditional information retrieval based on search and querying
(see e.g. Belkin & Croft, 1992) with local navigation (Nielsen, 1990; Rivlin et al.,
1994) based on the linkage that it provides and by which it generates an open,
exploratory information space (Nielsen, 1989). One of the central problems in
forming hypertext is that it is often not clear what the most useful fragmenta-
tion and linkage would be. An example of this is the Oxford English Dictionary
project (Raymond & Tompa, 1988).

Empirical studies

A qualitative synthetic review of quantitative experimental studies on the use
of hypertext is provided by Chen, C. and Rada (1996). The areas of application
of the target hypertext systems are varied. On the basis of an analysis of 23
studies they made the following main observations: generally, hypertext

24

appears to enhance performance (although there is wide variation among the
studies, partly because of the different "benchmarks", different levels of sophis-
tication of the features provided and different kinds of experimental designs);
hypertext appears to benefit the users more in the case of open tasks (which de-
mand, for example, browsing and are typically more complex than closed ones,
for example, simple searches); the effect of cognitive styles appears to be small;
and the effect of spatial abilities appears to be great. Users clearly benefit from
the graphical overview maps.

The great importance of providing an overview map over large hypertext
structures has also been noted, for example, in the empirical experiments by
Monk et al. (1988), related to the browsing of literate programs. They compared
hypertextual browsing, scrolling (the text of documents is shown sequentially
within a single window) and folding (elision; section titles are shown and by
clicking them their text is shown). They found tentative evidence that hypertext
alone as compared to scrolling is a less efficient way to perform program com-
prehension tasks. Comparisons of searching and hypertext browsing also exist
(Rada & Murphy, 1992; Qiu, 1993), but not with software engineering as an area
of hypertext application.

Methods of hypertext formation

Since one of the main principles of HyperSoft is the automatic formation of hy-
pertext, the efforts of forming hypertext automatically are of interest here. In
most cases the (document-based) hypertext is constructed manually or semi-
automatically; see Carmel et al. (1989); Rada et al. (1992). The projects of forming
hypertext automatically on the basis of information retrieval techniques are sur-
veyed in Agosti et al. (1997). Efforts of automatic hypertext formation (Agosti et
al., 1996; Agosti & Allan, 1997; Fraisse, 1997; French et al., 1997; Tebbutt, 1999)
typically, apply statistical, document analysis or clustering techniques to link
parts of the documents together. Automatic formation includes automated link
typing (Allan, 1996; Cleary & Bareiss, 1996). Many of the efforts (Rada 1992;
Agosti et al., 1995; Allan 1995; 1997) do not specifically address or emphasize
the problems of software engineering as a target area of support.

Hypertext models

Frisse and Cousins (1992) have compared three representative models of hyper-
text: Dexter (Gronbaek et al., 1994), IBIS (Conklin & Begeman, 1989), and Trellis
(Stotts & Furuta, 1989). In addition, there is the GHMI model represented by
Wan and Bieber (1996), which is based on Dexter and extends its storage layer.
These models do not emphasize the idea of automatic hypertext creation;
rather, the emphasis is on the notion that hypertext is authored by people. The
purpose of developing Dexter has been to capture the important abstractions
found in a wide range of current and possible future hypertext systems. Within
HyperSoft, we instead, attempt to capture the important abstractions found in
program text and combine them with the abstractions concerning dynamic,
transient hypertext. Some information models (Shepherd et al., 1990; Watters &

25

Shepherd, 1990; Tague et al., 1991; Salminen et al., 1995), support the idea of
automatically created (dynamic) transient hypertext, which can be used as a ba-
sis for our efforts. HyperSoft and Dexter will be compared in Article IV.

Software hypertext systems

Software hypertext systems support program development and maintenance
activities by allowing users to create links between the source code, related
documentation or their internal components (some cases, the links may by pro-
duced automatically), thus e.g. enabling redocumentation (Fletton & Munro,
1988; Younger & Bennett, 1993) of legacy systems. The impact of hypertext in
CASE environments is discussed by Kerola and Oinas-Kukkonen (1992), and
hypertext in software development environments by Ziv and Osterweil (1995).
After the links have been formed, they can be used as an aid in program com-
prehension efforts. These sorts of links are generally considered as important
aids in system development, cf. (Kerola & Oinas-Kukkonen, 1992).

There are innumerable commercial reverse-engineering tools. Nowadays,
some sort of hypertextual navigation has also found its way into some of them.
Typical structures are various cross-references. The most important of such sys-
tems for C include SHriMP (Storey & Muller, 1995), RIGI (Wong, 1996), Hind-
Sight (IntegriSoft, 2000), Cygnus Source Navigator (Red Hat, 2000), Discover
(SET, 2000), Imagix (2000), Logiscope (Verilog, 2000) and Sniff+ (TakeFive,
2000). Since these are commercial systems, the modelling aspect of hypertext is
not their focus area. Since hypertext features are evidently becoming more fre-
quently provided, the importance of having a well-thought out approach for
their application and a well-grounded model for the representation of the hy-
pertext structures is emphasized.

Systems having some important similarities with HyperSoft (and which
will be described in more detail in Section 3.5.2) include DynamicDesign (Bige-
low & Riley, 1987; Bigelow, 1988), HyperCASE (Cybulski & Reed, 1992), ISHYS
(Garg, 1989; Garg & Scacchi, 1989), and DIF (Garg & Scacchi, 1990). There are
also many other systems including those reported by Usterbye (1995), Oinas-
Kukkonen (1997a; 1997b) and Rajlich and Varadarajan (1999), which provide
mechanisms for creating hypertext for the purposes of forward engineering. Al-
though the capabilities of the above-cited systems are clearly useful in provid-
ing associations between the source code and the documentation (which
especially is an important part of creating program comprehension based on re-
vealing the connections between technical and application domains), their bene-
fits in relation to the maintenance of legacy systems are mainly confined to
documenting these systems. This is because most of them heavily rely on man-
ual hypertext formation, and for legacy systems such a pre-defined structure is
not available. The systems which have most important similarities with Hyper-
Soft are Whorf (Brade et al., 1994) and HyperPro (Jsterbye & Normark, 1993;
1994; Normark & Osterbye, 1994; 1995). These systems provide support for
viewing program text as hypertext.

3 TRANSIENT HYPERTEXT SUPPORT FOR
SOFTWARE MAINTENANCE

In this chapter we will describe our approach. First, we will describe the re-
search objectives and research problems (Section 3.1). Then we will represent
the principles (Section 3.2), describe the HyperSoft system, which is the imple-
mentation of our approach (Section 3.3), and provide example sessions of the
HyperSoft system in practice (Section 3.4). Finally, we will evaluate the ap-
proach from the theoretical point of view by proposing the potential benefits
and probable drawbacks on the basis of our experience, the results of the em-
pirical evaluations, and comparisons with other tools sharing similar features
(Section 3.5).

3.1 Research objectives and problems

The objectives of this study consist of the following: investigation of the possi-
bilities of viewing program text as transient hypertext in order to facilitate soft-
ware maintenance and program comprehension support, development of an
approach for these ends, implementation of the approach in the form of a tool,
and evaluation of both the tool and the approach.

By transient hypertext, we mean hypertext which is formed automatically
and which exists for only a relatively short period of time. The user is provided
with transient hypertextual access structures over the subject software system.
Although hypertext has been applied in the software engineering context to a
relatively large extent (see Section 2.3.2), source code and its internal structures
are seldom considered as hypertext. Because program text follows well the so-
called "golden rules of hypertext formation" (Shneiderman, 1989), it seems to be
reasonable and potentially useful to view program text as hypertext. The
golden rules assert that it is possible to form hypertext, if:

e there exists a large body of information organized into numerous
fragments,

27

. the fragments relate to each other, and
e the user needs only a small fraction at a time.

Program text clearly satisfies these conditions. Moreover, hypertext seems
to be a natural way in which to represent program text, because the program-
mer typically browses the text in various nonlinear ways while trying to com-
prehend it. Hypertext as a way of representing information within software
development environments has also been motivated by Ziv and Osterweil
(1995). Hypertext is usually formed manually, but in the case of program text
automatic formation is also quite possible. Because the automatic formation of
transient hypertext will eliminate the need for elaborate manual linking and en-
sures the currency of the hypertextual structures even if the software changes,
we have chosen to investigate that particular strategy.

Our research aims to achieve the following objectives.

1) Analyze whether and how program text can be viewed as transient hy-

pertext (Article I).

2) Determine what kind of model is suitable for representing program text

as transient hypertext (especially Articles I, IV).

3) Determine the proper form (and the related fragmentation of the program

text in case) of some of the important THAS types (Articles III, IV, V, VI).
4) Determine the nature of the program dependencies which can be used as

a basis on which to form the different hypertextual link types (Article V).
5) Determine the necessary static information and the convenient form of

storing that information in order to support some of the most prominent

THAS types (Articles II, III, VI).

6) Discuss how to deal with the possibly large amount of static information

needed (Sections 3.5.1, 5.3, Article III).

7) Analyze what kinds of THAS types can be formed automatically (espe-

cially Section 2.3.1, Appendix 1, Articles I, V).

8) Discuss how THASs can be utilized in software maintenance (especially

Section 3.4, Articles I, V, VI).

9) Determine the nature and technical architecture of a software mainte-
nance support environment (the HyperSoft system) in which program

text is represented via THASs (especially Section 3.3, Articles II, I, IV,

and the report; Koskinen, 1997).

10) Analyze what kind of THAS types can be used to satisfy the typical infor-

mation needs of software maintainers (mainly Article VI).

11) Determine the effects of the THAS-based approach on the information re-

trieval performance of software maintainers (Article VII).

12) Gather information about the subjective notions of users on THAS-based

maintenance support (Articles IV, VII).

Because there were no pre-existing models tailored to view program text
as automatically formed transient hypertext, we have developed one such gen-
eral model (Article I). This modelling has been one of the main aims. The model
has been refined and extended during the research process. Since our model
contains the grammar of the supported programming language, the hypertex-
tual nodes may correspond to any of the syntactical structures of the program.
In practice, however, only some of the node types and the structures composed

28

from them are useful. The implemented HyperSoft system makes it possible to
empirically evaluate the relative usefulness of the different THAS types.

3.2 Principles

We provide a model as a basis for the systematic hypertext-based support in
software environments. In the HyperSoft model a THAS is modeled as a di-
rected graph, that is, as a pair (N, L) where N is a set of nodes and L is a set of
ordered node pairs called links. Typically, the nodes are parts of specific syntac-
tical types and the link types correspond to program dependencies. The links
are formed to enable unlinear text browsing. We have described and classified
the program dependencies potentially applicable for creating links in Paakki et
al. (1997). A complete description of the HyperSoft model will be provided in
Article IV.

It is characteristic of the HyperSoft approach that the access structures are
transient (temporary), they are generated automatically, the source code is the
main input, and the maintenance support of legacy systems is the main target
area. The approach describes a hypertext support environment by four layers -
source code, syntactic structure, access structure, and user interface - which are
explained, for example, in Article IV. The source code layer deals with linear
text representations in files and related operations (retrieval and modification).
The syntactic structure layer deals with parse trees representing the information
needed by the support environment and related operations. The access struc-
ture layer deals with THASs and THAS operations. And, finally, the interface
layer is related to text and THAS representations as conveyed to the user and
interaction between the user and the support environment.

The syntactic parts of program text serve as the basis for forming the hy-
pertext nodes, program dependencies serve as the basis for forming the links,
and both the nodes and the links are generated by automatic analysis. It is im-
portant within the appoach to be able to focus on relevant program parts and
important dependencies. At the interface layer, graphical representations and
abstract views are used to deal with the disorientation and cognitive overhead
problems (Wright, 1991) often associated with hypertext systems.

3.3 The HyperSoft system

The HyperSoft system (Koskinen et al., 1997) is based on our approach. It is de-
scribed in Articles II, III, and IV and in Koskinen (1997). It can be characterized
as a reverse-engineering tool. HyperSoft supports the ANSI-C language (Ker-
nighan & Ritchie, 1988; Ritchie, 1993) and embedded SQL (Date, 1987). Hyper-
Soft runs under Microsoft Windows™ 3.1/95/NT. HyperSoft supports the
comprehension and maintenance processes by providing various THAS types

29

and view types. THASs are formed automatically by the tool (based on static
analysis). The academic objectives of the project have been attained. The set
main requirement has been the implementation of a tool to support the mainte-
nance of large software systems written in the C language by providing capa-
bilities to view these programs unlinearly via automatically generated
hypertext in accordance with typical maintenance situations. The requirements
are detailed in Koskinen (1997/ Section 1.2).

The architecture of the system is represented in Figure 2. The architecture
corresponds to our layered HyperSoft model. The main components of Hyper-
Soft are: 1) analyzer (static program analyzer), 2) generator (THAS generator), 3)
program database, 4) interface (generic user interface), and 5) editor (HyperSoft is
currently integrated with PFE; Programmer's File Editor). The analyzer corre-
sponds to the syntactic structure layer, generator to the access structure layer,
and interface to the interface layer. The source program collection contains the
source files for which the program database is generated. The program data-
base is a repository component storing the information passed through other
components. Components 1), 2) and 3) belong to the back-end of the system and
components 4) and 5) to the front-end. Users interact with the system by using
the front-end components. The back-end components are needed in generating
THASs. Detailed design and abstract implementation descriptions of the back-
end components are included in (Koskinen, 1997).

HyperSoft front-end

Source (\
change

. s
5ts,
\ Views

v /ﬁyperSoft back-end \ / / % %
Analysis —V ,
Analyzer e | Generator > Interface L/g;ag:és&‘),
Requests ?:;ig:gon
Users
\ Static / /

- pruned parse trees

- symbol tables

- position information
- stored THASSs

FIGURE 2 The general architecture of the HyperSoft system

30

HyperSoft consists of two programs: Analyzer (component 1) and HyperGenera-
tor (components 2 and 4). Database (component 3) is used by both programs.
HyperGenerator consists of two parts: the generator is written by the author
and the interface by Nieminen (1996). The analyzer analyzes the original source
programs and forms the program database, The generator then uses that infor-
mation to form THASs which are represented to the user as hypertext through
the interface-component. The size of the system (excluding PFE) is about 32,000
LOC (lines of code)* The general order of forming and representing the neces-
sary data structures is represented in Table 2. First, preprocessing is performed
including macro expansions. Then, parse tree is formed for each module and
compressed to spare memory. Next, symbol tables are formed based on parse
tree traversals and necessary cross-references are made. THAS generation is ini-
tiated by the generator. Finally, a THAS is represented to the user via the
interface.

TABLE 2 Overall schemata of the order of the main HyperSoft functionalities

Phase

Preprocessing, parsing, and parse tree formation.

Parse tree abstraction and compression.

W N = #®

Creation of symbol tables, based on the preorder traversal of the already
formed parse trees.

4 THAS generation, based on the static program database produced in the
phases 1, 2, and 3.

5 THAS representation to the user via a generic, graphical user interface
providing text and navigation views.

3.3.1 Static program analyzer

The analyzer has two parts: first one (Koskinen, 1997) supports ANSI-C and the
other one (Suominen, 1997) supports ESQL (Embedded Structured Query Lan-
guage). The analyzer creates the static parts of the program database for the
source programs that need to be (re)analyzed. This is a preliminary action pre-
ceeding the generation of the THASs. The analyzer also provides the necessary
parse tree and symbol table representations and operations. The analyzer is
built using the AnaGram™ metacompiler (Parsifal, 1993) and the C Macro Pre-
processor Package (CMPP) delivered with AnaGram. HyperSoft extensions are
built on top of the CMPP. The formation of the program database (see Section
3.3.2) is based on static analysis (cf. Section 2.3.1). The analyzer is implemented
as a DOS-program and supports the analysis of syntactically correct ANSI-C
programs’.

The analyzer is about 4,000 LOC and the generator about 5,000 LOC.
The analysis is subject to some limitations, which are detailed in (Koskinen, 1997).

31
AnaGram metacompiler

The AnaGram metacompiler (Parsifal, 1993) has been used to reduce the work
needed to code the analyzer. AnaGram is made by Parsifal Software and it con-
tains an LALR(I) parser generator; see (Aho & Johnson, 1974), which creates a
table-driven parser from a grammar written in a variant of BNF (Backus-Naur
Form). Compared to hand-made parsers, parsers generated by AnaGram are
more readable and thus more maintainable, yet not significantly slower.

C Macro Preprocessor Package

The C Macro Preprocessor (CMPP) delivered with the AnaGram metacompiler
includes the syntax descriptions for C parsers in the Kernighan and Ritchie
(1988, Section A13, pp. 234-239) form. The syntax (of programming languages)
is defined for AnaGram using a notation similar to BNF. The same notation can
be used both in the parser and in the lexer components of the system being im-
plemented. Components of the CMPP that are used in HyperSoft are described
in some detail in Article III. HyperSoft handles macros correctly. In cases where
the expanded macro text contains a symbol relevant for the current THAS, the
corresponding macro label will be included in the THAS which is currently un-
der construction. HyperSoft also shows the user those lines which are not
within the current (conditional) compilation with special highlighting, which is
useful feature since conditional compilation is heavily used in the C language.

3.3.2 Program database

The program database (PDB) is implemented as a set of DOS files, and it is cre-
ated by the analyzer component. There exist a parse tree, a local symbol table,
and static occurrence list files for each C (or ESQL) source or header file within
the user-defined project. Moreover, there exists a global symbol table which
gathers information about the symbols used in multiple files. The PDB files are
changed or deleted only when the corresponding source files are modified. In
that sense, the program database is permanent in contrast to the THASs. Since
all the intermodular information is gathered into the global symbol table, there
is no need for the time-consuming process of checking out the local PDB ele-
ments in the case of source modifications. This is in contrast with conventional
compilers which fetch the object files into main memory during the linking
phase.

3.3.3 THAS generator

THASs are formed by the generator component on the basis of various program
analysis techniques. The generator uses the static information stored in the pro-
gram database during the execution of the analyzer and passes information
about the THASs so-formed to the interface-component. All of the THASs are
transient/dynamic in a sense that the user specifies the criteria for generation
during a HyperSoft session. The life-cycle of the THASs is such that they are

32

created on user request and are removed permanently when the session ends.

The generator is a part of the HyperGenerator, which is a Microsoft Windows

program.

HyperGenerator supports partial "multiprocessing”. Within HyperSoft, it
is possible to move inside the text and map windows during THAS generations.
This is an especially useful capability when forming large THASs. It is also pos-
sible to initiate multiple THAS generations which will then be processed se-
quentially. HyperSoft is linked with the DBwin - a simple PD program - which
is used to show various items of status information and other messages to the
user during THAS generation in a separate window. Status information is
shown in order to give the maintainer an estimate of the time that the THAS
generation will take. The use of HyperSoft, however, does not require DBwin.

The generation of a THAS is initiated from the interface component by
sending a request to the generator's main function, which in turn calls the ade-
quate THAS generation functions. THAS formation constitutes of traversals of
occurrence lists and parse trees. When forming the occurrence list, it is only nec-
essary to traverse the static occurrence list of the selected symbol. Calling de-
pendency formations require both finding the function occurrences in the
occurrence lists and finding the function calls within a certain function body
based on the parse tree traversal (in forward call graphs). Slicing requires exten-
sive and complete traversals of the relevant parse (sub) trees.

The HyperSoft system currently supports the following THAS types:

1) Definition references (for variables, functions, and user-defined type
names), providing a link to the program part where the relevant compo-
nent is defined.

2) Occurrence lists (for variables, functions, and user-defined type names),
providing a chained list which can be used to check the symbol -
occurrences.

3) Instance lists (for syntactical constructs), providing a list of components of
a specified syntactical type, such as declarations or jump statements.

4) Forward calling dependency structures (complete, "traditional” call graph
and calling-level-wise partial variants).

5) Backward calling dependency structures (complete and calling-level-wise),
showing the functions (and places of their implementation) which a func-
tion is called from.

6) Intraprocedural backward slices, containing information about the state-
ments within a function that may have effect on the value of a variable in a
specified program part.

7) Interprocedural forward slices (complete and calling-level-wise), contain-
ing information about statements that may be affected by the value of a
variable in a specified program part.

3.3.4 Generic user interface
Graphical representation of THASs and interaction with the user is a necessary

requirement in HyperSoft. The generator and the (generic user) interface of the
HyperSoft system are dependent on each other, since the interface would be

33

useless without information about the THASs, and the generator would be

practically useless without a graphical way of representing the THASs. The in-

terface has been implemented by Nieminen (1996).

The MVC (Model-View-Controller) model (Krasner & Pope, 1988) has
been used as the underlying architectural model in HyperSoft. According to
Booch et al. (1999) the responsibilities of the layers are as follows: the Model
layer manages the state of the model (in this case THASs); the View layer ren-
ders the model on the screen, manages movement and resizing of the view and
intercepts user events; and the Controller synchronizes changes in the model
and its views. HyperSoft provides various views for the program text and for
the THASs formed. The clear importance of (overview) maps has been re-
ported, for instance, by Chen, C. and Rada (1996), and McDonald and Steven-
son (1998). Examples of implemented views are gathered in Figure 8. The views
are linked to the program text such that from within them a user can directly
move to the appropriate program part. Thus, these links are hypertextual/ hy-
permedial links between different representations of the same objects. The
views include the following.

1) Project file window, listing the modules which are related to the current
project and providing a way to move focus to their active element (at first,
to the beginning of the file).

2) Structured map view, for hierarchic examination of a THAS, showing the
modules, functions and the nodes within a THAS as embedded in the pro-
gram text. There is also a special structured map view for the integrated
editor (PFE), supporting code modifications in an integrated fashion.

3) Function dependency view, showing graphically the functions and the de-
pendencies between them within a THAS.

4) Module dependency view, showing graphically the active modules (which
are files in case of C) and relations between them within a THAS.

5) Miniature view, showing the code in a tiny font, for a quick overview of
the dispersion of the nodes of a THAS within the program text.

The hypertext nodes are highlighted in different colors. The color of nodes
represents the number of originating links (0, 1, more) or their target (whether
the dependency exists within or between functions or modules). Hypertext
links are optionally shown graphically on top of the program text.

3.4 Example HyperSoft sessions

HyperSoft runs under Microsoft Windows. The tool provides the user with sev-
eral different views on program text with hypertextual navigation capabilities
within the THASs generated by the tool. We will provide three examples of us-
ing non-trivial THAS types - call graphs and program slices. The use of the Hy-
perSoft system is described in more detail in the user manual (Nieminen &
Koskinen, 1997), and within the documentation distributed with the HyperSoft
system (Koskinen et al., 1997).

34
3.4.1 Call graph example

In this session, the user (unfamiliar with the program) is interested in obtaining
a general overview of a chess program and more detailed knowledge of how
individual chess moves are handled by it. The example project (Koskinen, 1993)
consists of 7 files and contains about 2,700 lines of code. This is the program
which has been used as a sample in Article VII, in the empirical evaluation of
the HyperSoft system. When starting HyperSoft the user defines the program
files from which the program database is to be formed. These files are included
in the project file. The program analyzer then forms the static program database
for these files. Figure 3 shows the contents of the project file window, a list of
the files from which the database is made, and status information on the forma-
tion of the static program database. The name of the file currently being ana-
lyzed is given in the window. The figure shows the situation when all 7 files of
the chess program have been analyzed.

Navigation Query

HypersSoft: |

-program preprocessor, parser & |
tatic program database generator |
|

|

|

0 o

Jussi Koskinen (1994-1995),
University of Jyvaskyla,
Parsifal Software (1993).

Analyzing C programs specified in the project file.
‘¢:/hsoft/input/chp/main.c’. ..
‘c:/hsoft/input/chp/main.h'. ..
‘c:/hsoft/input/chp/eval.c’. ..
‘c:/hsoft/input/chp/dialog.c’ ...
‘c:/hsoft/input/chp/try.c'...
‘c:/hsoft/input/chp/try.h' ...
‘c:/hsoft/input/chp/opening.c’. ..

No errors encountered.

HyperSoft has now completed the formation of the static program database.
Program database is stored on directory ‘c:/hsoft/output’.

Elapsed time: 00:00:15

cihsoftiinputichpidialog.c
cihsoftiinputichpleval.c
cihsoftiinputichpimain.c
cihsoftlinputichpimain.h

| I |
FIGURE 3 The project file window and the formation of the static program database

The user may open multiple program files, views, and dependency diagrams
simultaneously on screen within a single HyperSoft session. The system can
also be used "simultaneously” (in batch mode) with other Microsoft Windows
applications (e.g. with an editor or a compiler). In Figure 4 two of the files,
main.c and main.h, have been opened, the program text being shown on the
windows. The user may browse the source files and select the sizes of the win-
dows and the fonts used. Within C, a program starts from the function called

35

main, which typically is located at the beginning of the module main.c. The left
pane of Figure 4 shows the beginning of the function main, which is supple-
mented with general comments, serving as a general overview of the purpose
of the program and as a starting point (beacon) for further comprehension
efforts.

e list: main.c - main]

* CEESS-93 (vermiom 0.95, 31-De.
/% The king of the wide whcee move is undexr evaluation im ir % (C) AUTHOR: Jummi Kewkinen, Jyvmmkyla, Finland, email:kcakinen@es.jps.fi
nove is matusl ox mersly swaluated */ - - *
i /% Mether kings or rocks have keen moved */ i

B #inalude "a:/hacEt/;
vo-g-0 i #inalude <mtdic. b

Himalude <omio o : P
FIIE *gmneOutpat=NULL; #inalude <mtring.hs r i
7+ axtam int snowa[3%]) + e —— cihsoftiinputichpieval.c

#inalude <proseas.h 7 cihsoftinputichpimain.c
Hinslude cmlves B2 cihsoftiinputichpimain.h
ahese . /% MacROS */ cihsoftiinputichplopening.c

pexfoxmed for the mides ('white', ''klmck') #define NORGL /* ¥ . AL+ 7/
e EL O cihsoftinputichpitry.c
faefine 225 =0 cthsoffiinputichpitry.h
| the opening likmry im used if 'phame’ im #aeFine SGN (x)
U st mtming the muvrent game @itumticn. $aefine T 30000 /* Batimated mimbex of cveluated moves / mea. o
itmine the infoamation of tha move (try) mumker #define ML MOVES 116 /* Maximum mimber of peamikle movem in mny asrtad
Forward Calls The level im expressed in half-moves, so level #define MAX MOVE STR 9 /* Mamioum length of the move mtxing */
B R Rl =t let=l poamikle movma of the mctive playes, #dsfine MAX WRIANI STR 30 /* Maximum length of the opening veximnt name %/
* = N ment, 3. - eand level -"- mative player eta. #define MAX GME MOVES 200 /% Maximun allowed rmmber of moves within the gar
» Forward Slice ed on emdh deeper lewel for the Hdefine MAX OPENMDVES 200 /* Moximum mllowsd munber of moves within the
c ope
* " am judged mt the time) #define MAX OPENIIE DEPTE 35 /% -"- length of the cpening likrmry move-chmina
* Backward [l < ination related to the judged computex mowes, #define MIN_EDST_OUTETT 3 /% Number of hemt moves shown mfter m computex-mc
whidh txies the poesikle moves =nd smanines #asfine NAX RANKS /% -v- kypem of piesem */
dhecke on either mide #daFine MAX X /* The width of the homrd */
e

e tries for the cppment half-noves ave sinilar as for the Hamfine ML Y
motioe mide, coly the vmlue-
Sinding the mowve hawing = m

The height of the koaxd %/

bewa

naten axe nagated. So inmtead of #define FIRST ROW
al value, a mowe hawing & mimimal #define TAST ROW o x

- (i.c. often a negative) value in mearched. #de Fine MOVELTST ARER 14 /% e mowea are show m moreen based an this we
* The walue of the uppex-level half-nowes i gotten by adding the /% VIILITY VAIUES Fox the move haragte:
» mluem of the deeper level half-r #define VALUE PAWN 1000 /% St £ n pewn is Gane = uelus (PAYN]

#dafine VALUE CERCK (90+2%mnamcue) /% Static valustion of the dhack
- fdefine VAIUD PANGNCE 100 /* Pawn sdvemoe towsrds the eneny lines %/
- #dafine VALVD PRUST + ram = acilun
B (nee 'ahow_gane', 'ahow output!, 'mhow] fdefine VALV KSTARTR (200-2%gmmemove) /% Kolding the king's peeition */
* Nota: Drio fmotion should be plitted into parts. #define VALUD CASTLING 200 /% Camtling */
+/ . #define VALUD KATTOCK (5042%mmemcue) /* Attmok towarda the enemy king, this
#deFine VALUE CENTIR ¢ /* Movement towards the center of the komrd #/
e #define VALUE MOEIITTY ¢ /* D hange in munker of poasill P
e k=0, pronoticu=0, tine_Limit; __ Wdefine VALUR CINGE -300 /* Statio valusticn of dunging pi end
Long dnt Lindt=1; ¥ #acrine DI PRADION 300 /* Value of doing the pronoticn (inediately), pe |
o] s e ¥

Generate new forward calls (Hotkey CTRL-6)

FIGURE 4 THAS specification

The user may give THAS generation commands over the source files by select-
ing (pointing) the relevant program elements and the desired operations. Figure
4 shows the way that THAS generation is initiated by the user. In the example
the user has decided to generate a forward calling THAS (complete, traditional
"call graph") initiated from the top of the calling hierarchy, the main function (at
the corner of the pop-up window). The THAS type is selected from a pop-up
menu. Examining forward calls is a typical way to follow the systematic top-
down comprehension strategy. The THAS type shows the calling relations be-
tween the functions, and it is useful in gaining an overall understanding of the
functionality of the program, or in finding all the functions whose behaviour is
potentially affected by an intended change in the program.

Figure 5 shows part of the THAS created (the THAS extends to several
files). Status information about the generation of the THAS is shown in the "De-
bug Messages" window. The hypertextual nodes within the hypertextual views
are shown in reverse color. The figure shows, for example, a function call node
find_moves within the module main.c (at the center of the left pane) from

36

which there is a link to another module, eval.c, where the function is imple-
mented. If the user clicks the find_moves function call area (anchor), the cursor
moves to the destination of that hypertext link. In this way the user may browse
back and forth, by following the links set by the system (or via backtracking
along them). Since the links may (and typically do) indicate the program de-
pendencies which connect program parts somehow belonging together, com-
prehension of "delocalized program plans" is supported. The user may limit the
levels to which THAS generation will expand. In the example the user has
specified that the analysis should extend to the fifth calling level (see the "De-
bug Messages" window; there are various ways to limit the expansion of the
analysis within the system). The program files into which the THAS has ex-
panded are annotated with " in the project file window. This feature helps to
reduce time and cognitive complexity in relation to the maintenance situation.

HyperSoft [Forward calls: main.c - main]
File Navigation Query View Window Help
= N\,
mAE=E T Ana
= cihsoftlinputichpimain.c cihsoffiinputichpieval.c Debug Messages
if(phase==0OPENING) { int FTRENEN(int i,int s) { File Edit Options Help
openind [gamemove] ~EENHBISERM () ; | /* . - -
if(openind[gamemove] >0) { * Operation: Checks all the moves Creating new access structure. j:j
AEPT (movestr, gamemaves [gamemow * Input: The side (s) I:I Level1 completed (83 nodes) |:|
/> printf("Opening: '%s'\n',movestx | Y U Level 2 completed (196 nodes)
B (movestr, &x1, &yl , &x2, &y2) ; int x,y; Level 3 completed (217 nodes)
/> printf("Opening: xl=%d,yl=%d,x2= for (x=1;x<=MAX X;x++) { t:z;:;‘gmg:::;g ggg 22;‘:;
mannd:l;mm.ms 1=, fn?(rl;ﬁ —Y".Y*'ﬂ t Generation interrupted by the user!
movas [1] [maxind] .xl=xl;movas [1] [:.:)if* if(movatest) printf{*%d,* Do § 10 acmacs stuctre is only partiallyformedl
moves [1] [maxind] .x2=x2 ;moves [1] [if (M (board[x] [y])==s && bc 85 module changes performed
moves [1] [maxind] . capt=hoard[x2] [b 283 access structure nodes formed,
moves [1] [maxind] . value=100; } Elapsed ime: 00:01:45
s=-s5; raeturn 0;
H H
H
if(phase!=OPENING) { int TPTIETRAP(int ml) (
orint {[CRVN f ¥
if(ml==1) { * Operation: Sorts the moves of t
movetest=1;freedom=0; 0 * Purpose: 'emoves[]' (evaluatc
ETEETN, s) ; frhedoml=freedom * moves that will be ¢
/* getch(); */ * are first sorted in
movetest=0; * Input: The side (s) o " ” :
} * Hote: Bubble sort used, st Project Files
do { K o AR f i
if(nmoves [ml]1==0) { int 1,3,x1,y1,%2,y2,max,maxind,n o C:\hSOﬂ'\!nput\Chp\dlalog.c
[£ind moves[ENRESN if(output>=2) { |1 cihsoftiinputichpleval.c
if (rmoves [m11>0) { IR (+ \n<<<nmoves [3d]=3a>>>' T cihsoffinputichpimain.c
if(output>=3) { . cihsoftlinputichpimain.h
MEEEEG (' \n<<<Found moves :> for (i=1;i<=nmoves [ml] ;i++) { 9 cihsoftinputichplopening.c
} max-MAXINT jmaxind=i; ¥ cihsoftlinputichpitry.c
if(ml<MAX_DEPTH) (for (J=i;j<-nmoves [ml] ;3 ++) { _ cihsoftinputichpitry.h
if(emoves [ml1]>1) if(moves [ml] [j].value>max) { - P pAry.
else { max=moves [ml1] [] .value;mar__
maxind-[EEYETEE (ml) ; } b
bl |
#l L=
[5levels, 0st, 78 mec, 283 nodes 0:01:46 | 0:00:00] 22427][|

FIGURE 5 THAS formation

Figure 6 shows some of the links which exist between the THAS nodes. Hyper-
Soft supports different levels of link viewing, namely: 1) links are not high-
lighted, only the nodes, 2) if a cursor is set on top of a node, the links
originating from it are shown, 3) selected links are shown, 4) interprocedural
links are shown, or 5) all the links are shown. In the figure all the defined links
are shown. These options also help to reduce the amount of information repre-
sented and thus to overcome the cognitive bottleneck related to focusing

attention.

37

HyperSoft [Forward calls: main.c - main]

a try of all possibla s
'try piece'

77 B fhe 'eval move' for each }
d be good for efficiency
be removed from all 'try
@ to define the board mat
nstead of 8)

cthsoftiinputichpitry.c
PP (int s int v) _{

all possible moves of a piece N * J! : ;
« Topat: RO A cca, colann 'x' and zow 'y, L1 : vzdsln(sn “king) (

* Atry.c(32) try_queen (SRR ERd ry_ ch i y.s,LONG CAST) ;
* Mathod: . ; the type of the piece, then ca i — ‘
. Atry.c(33 try,r?ok | funotion
- Atry.c(34) try_bishop
i Atry.c(39) try_knight
1:;‘;‘:‘;‘ Mry.c(36) try_pawn
/'p prinlt:f Mry.c(37) printf i cy ol t x,int y,int side,int cast
TAREEFC NI \try.c(37) exit
switch(p) {
case KING:
case QUEEN:
case ROOK:
case BISHOP:

L
“l

[8 links defined. | 0:01:46 | 0:00.00] 17:11

rms a try of a castling mos
osltlon side and castli:

FIGURE 6 Links and navigation within the THAS

In the example the user has followed the links from main to find_moves, and
further to the function try_piece, which calls the proper handler of each cate-
gory of chess piece. These in turn call the move evaluator - eval_move - with
proper square parameters. The function eval_move is the most central function
within the example application, determining the relative goodness of individual
chess moves. Thus, at this stage the user has arrived at the most central
component.

If there is only a single link originating from the active node, that link is
obviously the default. If there are multiple links, a pop-up menu is shown from
which the user may select the link to follow. As usual in hypertext systems, the
user may backtrack along the active link-chain one step at a time or go back to
the first ("home") node simply by pressing the corresponding icons (the icons
are located on the third row down from the top of the screen).

Graphical views and maps can be used to manage large THASs and to
provide direct access to the source files on an abstract level. The importance of
this was mentioned in relation to the empirical studies of hypertext in Section
2.3.2. It is also possible to view many THASs simultaneously within the Hyper-
Soft system. As noted earlier, in the case of program text, a single fragmentation
or linkage is not sufficient for describing all the relevant aspects.

Figure 7 shows two THASs using different methods: on the left the for-
ward calling THAS described above is represented as a dependency diagram,
and on the right a backward calling THAS from the function eval_move is rep-
resented as a structured map view. The backward calling structure shows the

38

functions which the initial function is called from. By following these links the
user may combine the applied top-down comprehension strategy with the
bottom-up strategy. Moreover, since the different kind of THAS types can be
used in various combinations, the "as-needed comprehension strategies" are
also supported. The backward calling information is useful, for example, when
trying to understand the purpose of a function. The user may decide to let the
THAS generation continue in the background whilst continuing to navigate
through already generated THASs or program files, or using other applications.

HyperSoft [Backward calls: eval

Structured Map View
= Backward calls: eval.c - eval_move

B eval.c
LLLLL t{): int find_moves(int i,int s) {
4p int eval move(int x1,int yl,int =2

FB try.e

dp int try piece(int x, int y) {

Li¥int try king(x,y) {

4p int try castling(int x, int vy, int s

dp int try queen(int x, int y) {

4p int try rook(int x,int y) {

4p int try bishop(int x,int y) {

dp int try knight(int x,int y) {

dp int try pawn(int x,int y) {

LR main.c
Lr{}a int main(void) {

¥ cihsoftiinputichpimain.c
cihsoftinputichpimain.h
cihsoftlinputichplopening.c

¢ chsoftlinputichpitry.c

cihsoftiinputichpitry.h

[# | E
| 0:01:15 0:00:00] 9211 ||

FIGURE 7 Multiple THASs and multiple representations

Figure 8 summarizes various ways of viewing the program text through Hyper-
Soft. Starting from the left, the figure shows the so-called miniature view, hy-
pertextual views, the structured map view, the project file window, and the
graphical function dependency view. The general purposes of these views were
described in Section 3.3.4. The views are used to manage the systematic exami-
nation of the created THASs. The views are linked to each other so that the user
can move, for example, from the structured map view or the function depend-
ency view to the hypertextual view. Within the hypertextual view the user can
move along the transient links. This sort of view integration is important in or-
der to support cognitively smooth operation.

39

HyperSoft [Forward calls: main.c - main]

jint Edtidguges (ine 1,ant 9) ¢ = Forward calls:

g | F@ main.c
* Operation: Chetks all the moves of sl

=+ Im:u:?\ The sidE - dialog.c
=

FR eval.c

sort_moves(int ml) {
find_max(int ml) {

eval move(int x1,int y
is_check(int s) {
do_move (int ml, int move

undo_move (int ml,int

move_cas t_rook(int side i
set move(int ml,int mo
e e strempLe ft(char *stril

<
* Operatfons Performs a try of all p count_same_moves (char
* Input: §§ Pesition of the piece
= useg the 'board[][]'
Method: Checkg from board the sideindex(int side) {
* pproprigte 'try ' fun

find_kings(void) {

/% printf (™
/% if (moverest . ¥ D
switch(p) { \ - : "

e poie: _ . ¥ c:\hsoﬂ\!nput\chp\ma!n.c
case QUEEN: | A cihsoftinputichpimain.h
case ROOK: B ¢ cihsoftiinputichptopening.c
case BISHOP B | i
case KNIGHT:

FIGURE 8 Various THASs and representations within the HyperSoft system

The above example session dealt with the forward calling THAS type. Another
important THAS category within the HyperSoft system are program slices
(Weiser, 1982). Program slices are more specific THASs than the above-
described call graphs. When the user has first fixed the specific focus of interest
(on a certain situation, for example, via browsing through the source code using
other THAS types), slices may be used to restrict the subsequent area of interest.
The importance of program slices as THASs is discussed in Article VI.

3.4.2 Backward slicing example

Within this session, the user aims to understand a function that produces erro-
neous results. Here we assume that the static program database has been
formed properly, as in case of the previous example. Program slices can be
formed according the same principles as in the previous example. Two exam-
ples of intraprocedural backward slices as THASs are represented in Figure 9.
In this case the user is interested in examining the program parts which
may have an effect on some program part (slicing criterion). The example also
exemplifies that multiple THASs can fluently be viewed (and thus compared)
fluently simultaneously on screen. The slice in the left pane is started from the
occurrence of variable d (in statement ++d), and the slice at the right pane from
the occurrence of variable b (in statement --b). Statements that might have a
data flow effect on the slicing criterion variables are included in the THASs. The
analysis proceeds against the direction of the control flow. For example, in the

40

slice on the left, there is a link from the home node (statement ++d) to the place
where d immediately received its value (statement d=d+x). From there, accord-
ingly run links to the statements where d (statement d=e) and x (statements
x=x-1, x=a+b+d, ...) received their values. In cases where the cursor is set on
top of some of the anchors, a pop-up window (as in case of all THAS types) is
shown which the user can use to systematically traverse paths of interest.

=] HyperSoft [Backward Slice: hsoftb.c - fLast] ME
File Navigation Query View Window Help
= Structured Map View v|~ [Structured Map View | v l -~
= Backward S“ce:m.im:lude "c:\hsoft) input)hsoft.h” ¢ [finclude "c:\hsofe) input)hsofe. h” Y
lint fLest (int resule) ([[int fLast{int result) { i
@ hsoftb.c
R0, o) e=0, T=0,4=0; — SALRED, a7d, 4=0, e=0, y —
G-05px=0, y=0: g TRmatc, freQ3x=0, y=0;
7z5=0, z6=0, 27m0; . I ZES=0, 26=0, 27=0;
< /
+d; Z1=adh-z5%22; 2 & e atitetainail-z5¢z2;
z2:22=23;z4=2323%b; z3=z5+x-T+a; TREz2;z2=23; 24=23+23%b; 23=z5+x-f+a;
1f (3==1)
1 (lemm1) Yees
else y=e:
c=d:y=y+1;
A (lm=m) {
)t
1le(x<z2) ¥=k+1:
)
3 o=e d=g+x;cmc+leme+l; t=f41; i c+lie=e+l; f=141;
z1=x;:b=c;g=d; +: --b; z1mx; b d b
xmd+k: xmx—-1:bmx-12 xmdk; x=X—1;bmx-1;
a=b: t=y; a=h; tey:
x=b;x=x+1;a++; (| x=bix=x+1:a++; —
a=z1:b=z2; Yl a=zl;b=z2; ¥
] | + e 1 I+
* []+
hsoft6.c(31) d=d+x 0:00:00 0:00:00 32:19

FIGURE 9 Intraprocedural backward slices as THASs

The slices can be used, e.g. to find the statements from which the possibly incor-
rect values of the slicing variables originate. Thus the user is provided with a
view of the factors relevant to the current corrective maintenance or debugging
situation. Since the formation of intra-procedural backward slices is fast, the
user may constantly further specify the focus of interest (based on the existing
understanding at each moment). The process of forming program slices in the
HyperSoft system is described in (Koskinen, 1997).

3.4.3 Forward slicing example

In this session, the user aims to evaluate the potential effects of making a
change in a program. The user is interested in finding out which program parts
may be affected by the specific program part (to be changed). This sort of inves-
tigation is supported in HyperSoft via forward slicing. Figure 10 shows an ex-
ample of interprocedural forward slicing. The slicing criterion is variable g1
(second gl++ statement, function £21). Downward slicing consists of the

41

analysis of the functions called from the initial function, whereas upward slic-
ing consists of the analysis of the functions which the initial function may have
been called from. The names of the functions which are upward calling contexts
are always appended to the THAS since downward slicing must also be applied
to them. Downward slicing is performed for each function within the calling
trajectory (for those parts which appear after the call in a particular situation).
What functions will actually be analyzed is determined by the status of the
analysis. The process and terminology of slicing is described in more detail in
Article III.

HyperSoft [Forward Slice: hsoft20.c - 21]

File Navigation Query View Window Help

513() at++

g15=g13:91d
Creating a forward slice
return a; PLEASE WAIT...
Creating a BCD-control structure
Appending the BCD-structure into the slice.
int £12(voifl Counting the contexts.
int c,d; 9 upward slicing level(s).
21 alternative context function(s)
gll=g10: L TNA ‘21 (38 nodes)
. ~00:00:26 ‘fen' (46 nodes)
” B . ~00:00:18 15! (56 nodes)
JE1i24+;%f1pi3++; . ~00:00:13 11" (56 nodes)
il;f1pi3= &fll 1; i } . ~00:00:11 (56 nodes)
B) i .18 . ~00:00:09 'fe' (98 nodes)
. ~00:00:09 ‘'
. ~00:00:07
(21). ~00:00:06
). ~00:00:06
l‘14(gl,91); . ~00:00:07
114+ 1P+ 4 14+1;g14d++; . ~00:00:06
. ~00:00:05
). ~00:00:06
. ~00:00:05
. ~00:00:04
. ~00:00:03
). ~00:00:02 A " (134 nodes) |
, ~00:00:02 4 (134 nodes) |
. ~00:00:01 'f1' (134 nodes]
. ~00:00:00 i (134 nodes) |

1581 statement(s) analyzed.
89 module change(s) peformed.
134 access structure node(s) formed.

Elapsed time: 00:00:16

FIGURE 10 Interprocedural forward slice as a THAS

In the example, the slicing criterion is within the function £21. Thus, in this
case, the initial function is £21. Thus, upward calling contexts are the functions
which £21 may be called from. Note that the reason for appending a certain
node into the THAS or forming a link between two nodes may be indirect. The
reasons may be related to the downward and/or upward slicing analysis
and/or the usages of global variables. The example points out to the user that
the global variable g1 at the indicated program point cannot be changed with-
out wide effects on the rest of the program. The example also demonstrates the
form of the slices as THASs in cases of a very complex situation. The examina-
tion of large THASs is supported via the various views, which were shown in
Figure 8.

42

Those views help the user, e.. to view the large interprocedural slices at
an abstract, aggregated level. In case of realistic projects, complete slices often
are very large and their formation may take much time. Thus, in some cases, it
is useful to restrict the slicing analysis and form partial slices instead. In Hyper-
Soft this is supported such that the user may specify the number of upward and
downward calling levels into which the slicing analysis will expand. This re-
duces radically the time needed to form slices in the case of interprocedural
static slicing, which is described in Article IV. Thus, there exists a tradeoff be-
tween whether to form slices quickly or precisely. More examples of slicing are
given in Article V, and the subject is discussed in more detail in (Koskinen,
1997).

3.5 Evaluation of the approach

The general idea of THASs (as well as many other reverse engineering tech-
niques) is to provide support mechanisms for enhancing productivity by speed-
ing up the work flow and decreasing errors and effort. Many software
productivity models exist, including those represented by Boehm (1988b) and
Banker et al. (1991), which discuss programmer productivity in detail. Hyper-
Soft as a reverse engineering technique aims at increasing productivity, espe-
cially in the case of maintenance and comprehension tasks of legacy systems.
We will first evaluate the approach on the basis of our empirical results and
theoretical background (Section 3.5.1) and then compare it with other related
approaches (Section 3.5.2).

3.5.1 Proposed benefits and probable drawbacks

The issues discussed include empirical evaluations within partner enterprises,
studies conducted based on earlier empirical studies as reported in the litera-
ture, series of laboratory experiments conducted, interaction and representation
aspects, technical considerations and limitations, target area of the approach,
and congruence with the program comprehension theories.

Usefulness of HyperSoft

We have empirically evaluated the effects of using HyperSoft. The usefulness of
the approach, the system, and the selected THAS set has been evaluated in
three different ways: 1) by small-scale testing in the partner companies, 2) by
comparing the capabilities offered by HyperSoft to the information needs of
software maintainers as revealed in a series of earlier empirical studies, and 3)
by two test series. The results support our hypothesis regarding the usefulness
of the approach.

The results of the small-scale testing in the partner companies are pre-
sented in Article IV and the results of the analysis of the earlier empirical stud-
ies in Article VI. The appropriateness of the implemented THAS set has been

43

evaluated on the basis of comments received from the partner companies (Arti-
cle IV) and on analysis of four empirical studies on the information needs of
professional software maintainers (Article VI). The results suggest that the
THAS set which is currently implemented in HyperSoft satisfies well the typical
information needs of software maintainers for which static analysis is
applicable.

In relation to the test series, we have measured the number of correct an-
swers, wrong answers and time needed for the completion of given tasks. We
have modelled usefulness via task performance (efficiency, accuracy, complete-
ness, error rate, and time needed) and subjectively felt effort as well as subjec-
tive opinion of the usefulness of the maintenance support provided (Article
VII). We have obtained clear support for our hypothesis regarding the useful-
ness of our approach, as reported in Article VIL. The efficiency of task perform-
ance is clearly enhanced as compared to conventional program text browsing
and information seeking. Completeness and accuracy of searches and the local-
ization of the needed information are enhanced. Statistically almost significant
results have also been obtained regarding the reduction in the amount of time
needed to complete tasks.

These positive results can partly be explained by the way that interaction
and hypertext representation are organized in HyperSoft. Mental resources can
obviously be saved by using HyperSoft as compared to more elaborate ways of
interacting with the support environment, including querying, which requires
more elementary user operations. Thus, with HyperSoft, the comprehension
process is interrupted only to a minimal degree by the technical details of
searching for new information, owing to the simplicity of user interaction. Hy-
pertext and graphical views are integrated in HyperSoft, as suggested by Brade
et al. (1994), such that the graphical views contain links to the original program
text, which should be useful in program comprehension. Because many differ-
ent THAS types can be formed in HyperSoft, the text can be viewed from many
different points of view within a single paradigm of information representation.
Within HyperSoft, THASs are represented on top of the original text (as embed-
ded components) which probably helps in understanding the context and sur-
roundings of the nodes c¢f. Utting and Yankelovich (1989) as compared to
isolated views. HyperSoft includes standard features of hypertext, e.g. for back-
tracking, which probably is of use in relation to program browsing since pro-
grammers typically browse programs back and forth while trying to
comprehend them. Due to the automated analysis, relevant program compo-
nents can be found completely, and thus traversed and handled appropriately.
This is especially important with safety-critical applications, as well as, e.g. with
respect to the Y2K problems.

Technical considerations and limitations
Since hypertext structures are formed automatically, the problems related to la-

borious manual hypertext formation and maintenance (Kaplan & Maarek, 1990;
Osterbye, 1992) are avoided. This is essential, especially when changing source

44

programs. Also, for large programs the formation of many of the hypertextual
structures manually would be impossible or at least impractical.

Owing to the applied general model, the structure of the HyperSoft sys-
tem is modular, and thus the introduction of new THAS types is very straight-
forward (and the introduction of new programming languages is relatively
uncomplicated). Since THAS types can be tailored to meet the requirements of
specific maintenance tasks and related information needs, they can effectively
aid in focusing the attention of the user within a given situation. The method of
storing all of the global information in a global symbol table supports efficient
program analysis in cases of modifying sources, which is a good first step to-
wards incrementality.

In the case of realistically large source programs, the generation of some of
the THAS types (especially complete static forward slices) in HyperSoft is slow.
This is partly a matter of optimization. On the other hand, most of the THAS
types can be formed reasonably efficiently. In any case, the decision to use cer-
tain THAS types naturally results tradeoffs between usage of memory and time
and accuracy of results. An analysis of HyperSoft's space and time require-
ments and consumption is provided in Article IV. The topic is further discussed
in Section 5.3 and the technical limitations of the implemented HyperSoft sys-
tem are detailed in Koskinen (1997).

The application of HyperSoft in industrial settings in its present form
would necessitate some changes in working habits. For example, there would
be a need to use multiple tool environments, the compiler and the HyperSoft
system, "simultaneously”, and, possibly, the specific editor integrated with Hy-
perSoft to make source program modifications. Another, better, possibility
would be to use the HyperSoft ideas and to integrate the HyperSoft approach
with some CASE or compiler-environment. These requirements could give rise
to a certain amount of change-resistance among users or would necessitate
studying the way that integration is achieved effectively.

Congruence with program comprehension theories

Software maintenance requires program comprehension. The HyperSoft ap-
proach and the way that program text is represented is congruent with the cen-
tral issues of the main program comprehension theories. Program text is our
main focus, which is also always the main focus of software maintenance and
program comprehension. Support for delocalized program plans is achieved by
enabling smooth navigation based on linkage between various dispersed and
yet related program components. Support for systematic program comprehen-
sion strategies is supported by providing a way in which to browse through the
relevant program components, which helps in focusing attention. Support for
the top-down strategy is enabled via THASs that help to follow the order of
function calls and to associate program components and the documentation re-
lated to them. Support for the bottom-up strategy is achieved by making ex-
plicit the low-level meaningful structural components of the program text. The
composition of lower-lever elements into higher-level entities is, in particular,
supported by the abstract, graphical views. Support for identifying beacons

45

(which serve as starting points for further browsing) is achieved by making
them explicit as hypertextual nodes. Several different THASs and THAS types
can then be generated by using these as starting points.

3.5.2 Solutions related to HyperSoft

Related research has been surveyed in Section 2.3.1 for reverse engineering and
slicing and in Section 2.3.2 for software hypertext systems. Here we will pro-
vide a more detailed discussion of the similarities to and differences from the
most closely related solutions and implementations. We will first consider gen-
eral reverse engineering solutions and then software hypertext systems. We will
make some comparisons at the end of the section.

Reverse engineering tools

Surgeon's Assistant (Gallagher, 1997) is a tool for visualizing decomposition
slices of ANSI C programs. The tool is integrated with the Emacs text editor
which allows the changes to be made only to the chosen slice, thus eliminating
undesired change side-effects. The visualization component provides capabili-
ties for collapsing regions of the resultant graph and to marking nodes. Gal-
lagher (1997) notes the importance of providing complementary graphical
views to support the investigation of large program slices. Venkatesh (1995)
notes the need for showing that the program slices formed in realistic situations
are "thin" enough, meaning that to be practical they should not be too large.
Venkatesh has built a slicer for C programs (SLICE) and determined average
worst-case metrics for the size of the dynamic slices. The conclusion is that dy-
namic slices are generally thin enough.

EDATS (Extensible Dependency Analysis Tool Set) (Wilde et al., 1994) is a
PROLOG-based reverse engineering tool for heterogenous software environ-
ments. The tool includes a simple query-by-example type of query language via
which information about source code objects can be retrieved. The system has
been tested in form of a case study with a 25,000 LOC C program. The focus in
the EDATS project has been on back-end features. The data model behind the
tool consists of 12 entity subclasses and 22 dependency subclasses (and classes
for the inverse dependencies). The authors conclude that an important feature is
the possibility to retrieve information from chains of dependencies.

CARE (Linos et al., 1993Db) is a re-engineering tool for C programs, main-
taining a repository of entities and relations (control flow and data flow de-
pendencies). CARE focuses on visualization and incremental modifications of
programs. Linos et al. (1993b) emphasize the importance of an open architec-
ture, meaning that it should be possible for users to use their favorite tools (edi-
tor, debugger etc.) in an integrated fashion. They use so-called colonnade
graphs to represent data flow information. Colonnade graphs represent the re-
lated variables, types, parameters, functions, and constants organized so that
each category forms a column. The study of colonnade graphs is ongoing (Linos
et al., 1999). Control and data flow dependencies can be viewed either through
the so-called monolithic views (entailing complete code or control flow or

46

colonnade graph) or through so-called multiple-slice views (enabling variant
graphical representations of the dependencies). The features include the so-
called call graph and colonnade editors. The tool includes program slicing. The
features of the tool have been empirically evaluated using 40 senior computer
science students and a 2,000 LOC program. The results suggest that the most
useful features include having access to conventional, textual code representa-
tion from within the graphical representations, search, undo, zoom, highlight-
ing, program slices, and the ability to move graphical entities on display.

CIA (C Information Abstraction system) (Chen, Y.-F. et al., 1990) automati-
cally extracts relational information from C programs and stores it into a pro-
gram database. The created database can be processed and retrieved by any
relational database system. The conceptual data model of the system contains 5
data types (functions, global variables, types, files, and macros) and 11 relation-
ships between these component types (including file inclusion, function refer-
ences to other data types, variable references to other data types, references
among types, and type references to macros). The system applies relational, tex-
tual, and graphical views. The authors mention that with a proper interface the
described information could be represented as hypertext.

The approach of Heisler et al. (1993) provides so-called structural and
functionality views of C programs. The structural view shows relations among
structural elements such as code blocks and variables, whereas the functionality
view provides a hierarchical outline of the functionalities of the program. The
implemented tool supports ripple-effect analysis, program slicing and redocu-
mentation. The tool runs under UNIX and is implemented using Yacc and Lex.

Storey et al. (1997) have empirically compared three representative reverse
engineering tools which also contain some hypertext capabilities and which
were mentioned at the end of Section 2.3.2. These tools are Rigi (Muller &
Klashinsky, 1988), SHriMP (Storey & Muller, 1995), and Sniff+ (TakeFive, 1998).
The comparison comprised 30 subjects and a 1,700 LOC C program to be com-
prehended. Storey et al. conclude that the features that these reverse engineer-
ing tools possess may affect the program comprehension strategies applied, the
dependency relationships provided by all three tools were used by most of the
subjects, that searching features are needed, and that seamless integration be-
tween the higher-level views and the source code is desirable.

Nine representative static call graph extractors for C language, including
CIA (Chen, Y.-F. et al., 1990), Imagix (1998), Rigiparse/Cparse (Muller &
Klashinsky, 1988), and Cflow (which is distributed with the Unix operating sys-
tem), are compared in detail by Murphy et al. (1998). The main conclusion of the
paper is that there exists a significant difference between the content and form
of the call graphs produced by the different tools owing to the design choices
made.

As mentioned in Section 2.3.1, there are many intermediate program rep-
resentations. Those representations can also be used as a basis for the formation
of hypertextual structures. These representations include: program dependency
graphs (Ottenstein & Ottenstein, 1984), system dependency graphs (Horwitz et
al., 1990), unified interprocedural graphs (Harrold & Malloy, 1993), and com-
bined C graphs (CCGs) (Kinloch & Munro, 1994). These graphs typically

47

contain explicit representations of a program’s control and data dependencies.
CCG is a fine-grained intermediate program representation, which can be used
as a basis for forming e.g. program slices, call graphs, data flow information,
definition-use information, and control dependency views. CCG is composed of
Function CCGs (FCCGs), each representing an individual function of the C pro-
gram. Each FCCG is a directed graph containing several different types of
edges connecting its vertices. The content of the vertices typically corresponds
to elementary statements or their parts. The approach is implemented as a tool
named PERPLEX which produces a generic PROLOG fact base. Kinloch and
Munro (1994) state that one of the advantages of CCG, as compared to other
graphs, is that it eliminates redundant information.

Software hypertext systems

Whorf (Brade et al., 1994) is a hypertext tool for the maintenance of C programs,
targeted at supporting the recognition of delocalized program plans on the ba-
sis of an as-needed strategy via multiple, concurrent views of software. The
views provide capabilities for source code editing, and for representing call
graphs and variable and function cross-references. The supported structures in-
clude identifiers, calling dependencies, and containment. The usefulness of the
tool is motivated by stating that it focuses the search process, provides quick ac-
cess to the desired information and access to additional information (related to
functions and variables). The system has been evaluated with 12 subjects (pro-
fessional programmers and graduate students) with a 250 LOC program. The
evaluation of using the tool as compared to paper documentation suggests that
the applied approach is useful for accessing information related to software.

In the approach developed by Jsterbye and Nermark (1994) the key prin-
ciple is the separation between internal hypertext representation and external
screen representation. This approach is termed (semantically) rich hypertext,
and is implemented in the HyperPro system. HyperPro provides an interaction
engine governed by rules for representation, interpretation of events, and menu
setup, relative to the type hierarchy of nodes and links. One of the focus areas
has been the typing of nodes and links and the internal structures of hypertext
nodes.

The HyperCASE environment (Cybulski & Reed, 1992) is an architectural
framework for integrating a collection of tools. The system provides a visual,
integrated and customizable software engineering environment consisting of
loosely coupled tools for presentations involving both text and diagrams. Hy-
perCASE combines a hypertext-based user interface with a common
knowledge-based document repository. The tools include managers for reuse,
integrity, specification, documentation, and configuration, as well as abstract
trackers and analyzers.

Similarly, DynamicDesign (Bigelow, 1988) is a CASE environment con-
taining hypertext capabilities. Nodes contain project components and links de-
pict the relationships between components. The approach covers requirements
specifications, system and user documentation, and source code. Although the
system explicates such concepts as object code and symbol tables, the

48

relationships between source code elements are not emphasized nor discussed.
The work addresses the importance of integrated CASE as well as the automatic
generation of sequential and relational links, storage of fine-grained (intra
source code) information in a relational database and the formation of a rela-
tionally complete query language.

The focus of ISHYS (Garg, 1989; Garg & Scacchi, 1989) and DIF (Garg &
Scacchi, 1990) is on managing software documents. Through the development
process, DIF (Documents Integration Facility) stores the relevant information
about the target system (related to its design, development, use, and mainte-
nance) in textual objects as nodes of hypertext.

Comparisons

The possibility of representing C program information in the form of hypertext
is first suggested in Chen, Y.-F. ef al. (1990). Since then, the most notable and
comparable tool to HyperSoft in this regard has been Whorf (Brade et al., 1994).
The aims of HyperSoft and Whorf are similar in the following regards: both
support the C language, apply hypertext explicitly, aim at supporting the as-
needed comprehension strategy and comprehension of delocalized plans, and
apply multiple representations which are linked to each other. The motivation
given by the developers of Whorf applies also to HyperSoft. The graphical rep-
resentation of call graphs is different, which is quite typical of the different re-
verse engineering tools, as noted by Murphy et al. (1998). Whorf does not
include program slicing. As in the approach of Osterbye and Nermark (1994),
we have aimed at separating internal hypertext representation and external
screen representation. In addition we have aimed at providing a versatile set of
THAS types based on our model of hypertext representation.

Our approach differs from other software hypertext systems in the sense
that we focus solely on the source code. The HyperCASE environment (Cybul-
ski & Reed, 1992) does not specifically address the problems of source code
analysis and representation. The emphasis is rather on forward engineering
throughout the whole life-cycle of software. DynamicDesign (Bigelow, 1988) is
very similar to HyperCASE in regards relevant to HyperSoft.

Within the HyperSoft system openness, as suggested by the developers of
CARE (Linos et al., 1993b), has been approached by making it possible to inte-
grate the desired text editor with the system (Programmer's File Editor; PFE is
the current editor). The way that program slices are represented in CARE is dif-
ferent from that in HyperSoft. The possible differences in their relative usability
are unknown. Both represent slicing information in a sensible way. The func-
tionality view of the approach of Heisler et al. (1993) is analogous to the struc-
tured map view of the HyperSoft system. The slicing features of HyperSoft and
other slicing tools are compared in Article III. Like HyperSoft, HyperPro (Jster-
bye & Nermark, 1994) also aims at the separation of hypertext representation
and screen representations. The HyperPro project, however, is more focused on
the issues of the storage layer than HyperSoft. The suggestions and observa-
tions related to program data storage (Kinloch & Munro, 1994), dynamic pro-
gram slicing (Venkatesh, 1995), and program slice representation (Gallagher,

49

1997) are also relevant to HyperSoft. It should be noted that these and other
techniques introduced after the architecture of the HyperSoft system was de-
signed (1994) could not necessarily have been taken into account when the sys-
tem was implemented.

Empirical studies on hypertext effects were listed in Section 2.3.2. When
comparing the evaluation of the HyperSoft system (see Section 4.8, Article VII)
to the evaluations of the related tools, the following observations can be made.
Whorf (Brade et al., 1994) is in many regards similar to HyperSoft. Thus, the re-
sults received from the evaluation of HyperSoft are relevant to the development
of tools like Whorf as well. Since Whorf has been evaluated with only a small
program (250 LOC) and only as compared to using paper documentation, the
results with HyperSoft complement the results received from the use of Whorf.

On the other hand, EDATS (Wilde et al., 1994) has been evaluated with a
larger program (25,000 LOC), but only as a case study. The observations of
Wilde et al. (1994) and Storey et al. (1997) support the usefulness of dependency-
based tool features. The related tool which is best evaluated is CARE (Linos et
al., 1993b) (2,000 LOC program, 40 subjects comparing the features of the tool).
The observations of the most important features are largely taken into account
within the implementation of the HyperSoft system: there are links from the
graphical views to the program text in HyperSoft. Storey et al. (1997) have also
drawn attention to the importance of this sort of integration. Hypertextual
nodes are represented as highlighted elements within the program text, and
program slices (which are considered as useful) have been implemented. The
importance of a search function (complementing browsing) has been noted by
Halasz (1988); Linos et al. (1993b); Storey et al. (1997). HyperSoft currently does
not include a search function, which, obviously, would be a simple but impor-
tant additional feature. A search function would clearly be a first step to the di-
rection of supplementing the approach with querying capabilities, an option to
be discussed in Section 5.2.

4 OVERVIEW OF THE ARTICLES

In this chapter we will summarize the main parts of the study. We will also
briefly characterize the purposes of the research and the applied research meth-
ods. The main part of the work is reported in the included articles. The Articles
I and IV-VI mostly deal with the HyperSoft model and approach, and Articles II
and III with the HyperSoft system. The HyperSoft system is also described at
some length in Section 3.3 and in Articles IV, and V. The empirical evaluations
presented in Article VII are relevant to both the system and the approach. Ow-
ing to the fact that the dissertation includes published articles, the treatment of
some issues is repeated in them. The HyperSoft model and system have been
developed gradually during the research process, which means that the most
detailed descriptions are to be found in the later articles. Since the approach is
potentially very versatile, much effort has been made to gather together refer-
ences to the applicable methods and algorithms as well as to the potential areas
of application, see Section 2.3. Since studies of program dependencies, their rep-
resentations, and their automatic extraction from the program text have been
extensively reported in the literature, we have focused on the problem of form-
ing hypertext based on program code (instead of inventing new program analy-
sis algorithms).

The methodological characterization is given in terms used by Haworth et
al. (1992) and, especially, Nunamaker et al. (1991), who have focused in their pa-
per on describing systems development as a research methodology. Systems
development research includes constructing a conceptual framework (theory
formation), developing a system architecture, systems analysis and design,
building the (prototype) system, and observing and evaluating the system.
Theories can suggest research hypotheses, as well as guide and enable research.
Systems development may take the role of 'proof-by-demonstration’. Haworth
et al. (1992) have represented a framework for classifying software maintenance
research applying three central targets of research: programmer, code, and re-
quirements. In our research, the emphasis has clearly been on code and on the
support of the interaction between code and programmer. With regard to pro-
grammers we need to chart their main attributes while empirically evaluating

51

our tool. Requirements mostly correspond to information needs. The informa-
tion needs of the programmers must be satisfied in order for them to be able to
fulfill the requirements set to the software.

4.1 "Program Text as Hypertext: Using Program Dependences for
Transient Linking"

Koskinen, J., Paakki, J. & Salminen, A. 1994a. Program text as hypertext - using
program dependences for transient linking. In Proc. 6th Int. Conf. Software Engi-
neering and Knowledge Engineering (SEKE’94). Skokie, IL: Knowledge Systems In-
stitute, 209-216.

Research problems and methods

The paper investigates the possibilities of viewing program text as transient hy-
pertext. The literature has been reviewed for that purpose and for identifying
meaningful research questions in the area. The formation of a conceptual frame-
work has been commenced. This formation entails the development of the first
version of the HyperSoft model for viewing program text as hypertext.

Content and results

The paper introduces a model for viewing program text as hypertext and ex-
plores the possibilities of creating hypertext automatically on the basis of well-
known program dependencies. The model is a specialization of a generic
domain-independent model for text databases (Salminen & Watters 1992). The
paper also presents examples of some of the possible access structures. The in-
tended application domain of the model is software maintenance.

One of the problems of representing program text as hypertext is that
there does not exist a unique fragmentation, nor a unique set of links that
would be suitable in all situations. Moreover, because program text is typically
not static, but frequently changes, the formation of all of the potentially needed
hypertextual structures manually is not practical. The idea of transient hypertext
is introduced. The user is provided with the possibilities for the dynamic speci-
fication of structures to support hypertext access. The syntactic structure is a
parse tree for the program with respect to the grammar, and the access struc-
ture is a graph or hypergraph consisting of a set of program parts and a set of
links connecting the parts.

Because program parts and their relationships have been extensively stud-
ied in programming language research, the automatic creation of hypertext is
possible. Many of the important program dependencies are typically repre-
sented in the form of different dependency graphs which are surveyed, and
their potential as a basis for hypertext generation is discussed. The structures
traditionally used to contain program dependency information include parse

52

trees, module dependency graphs, call graphs, data flow graphs, control flow
graphs, and program dependency graphs. The dependencies which exist be-
tween the elements of these structures include, for example, structural depend-
encies, cohesion, coupling, calling dependencies, data flow dependencies and
control flow dependencies. The possibilities of using the common properties of
program parts as a basis for this purpose are also discussed. The possible prop-
erties include the text type of a part, the value of the part, containment, intern-
esting level, and the complexity of the program part.

4.2 "HyperSoft: An Environment for Hypertextual Software
Maintenance"

Salminen, A., Koskinen, J. & Paakki, J. 1994a. HyperSoft: an environment for
hypertextual software maintenance. In B. Magnusson, G. Hedin & S. Minér
(Eds.) Proc. Nordic Workshop on Programming Environment Research (NWPER'94).
LU-CS-TR: 94-127. Lund, Sweden: Lund Univ., 25-37.

Research problems and methods

This paper tackles the problem of how to construct a support environment in
which program text can be viewed as hypertext. The HyperSoft model is used
as a basis for designing the architecture of the HyperSoft system. In this stage,
only system design exists, not actual implementation. System extensibility and
modularity are stressed as central goals.

Content and results

The paper presents the general architecture of the HyperSoft system (cf. Figure
2), which combines the techniques of static program analysis and dynamic hy-
pertext access. The architecture separates on one hand the back-end and the
front-end components, and on the other hand the components generating static
(permanent) and dynamic (transient) data.

There are static links between the components of the program database.
Links from the parse trees to the symbol tables enable fast retrieval of symbolic
information whereas the links from the symbol tables to the parse trees enable
the retrieval of the position and contextual information of the symbol occur-
rences. The THASs are formed by the generator component and are, like the
static structures, stored in the program database. When the generation of a
THAS has been completed it is passed to the interface component, whose archi-
tecture is described. Ways of dealing with the disorientation and cognitive
overhead problems, often related to hypertext systems, are discussed, as well as
the general ideas of navigation through THASs.

The main interconnections between the program database components
with some examples of link and node types are given. The aspects of source

53

code change and incremental updates of the database are discussed. The possi-
ble THAS set to be implemented is discussed. Examples of architectural THASs,
structures based on data flow, calling structures, and program slices are given.

4.3 "Creating Transient Hypertextual Access Structures for C
Programs"

Koskinen, J. 1996c¢. Creating transient hypertextual access structures for C pro-
grams. In M. Kavanaugh (Editorial production) Proc. 7th Israeli Conf. Computer
Systems and Software Engineering (ICCSSE’96). IEEE Computer Soc., 56-65.

Research problems and methods

This paper investigates the lessons learned from the HyperSoft prototype (v.
0.7), which was constructed during the first phase of the HyperSoft project. Sys-
tem requirements (including implemented THAS types) are mainly determined
on the basis of the information received from the private-sector partner compa-
nies. Experiences and observations using the prototype have further been taken
into account when refining the model and designing the system.

Content and results

The paper describes the implementation of the back-end components of the Hy-
perSoft system. The detailed architecture of the system, the contents of the pro-
gram database, and the process of creating the static and transient structures are
presented. The transient access structures (THASs) are formed on the basis of
the HyperSoft model and method. THASs are classified as singletons (refer-
ences), lists, trees, and general graphs.

Examples of occurrence lists, call graphs and program slices as THAS
types are given. Since the HyperSoft system is not only a slicing system, a ver-
satile set of THASs have to be supported and thus a more general approach
than is typical in pure slicers have to be taken. HyperSoft's slicing capabilities
are compared to the features of other slicing tools. The way of forming the slic-
ing THAS types is described. The most complex of the implemented THAS
types are static forward slices. In the longer version of the paper, published as
part of Koskinen (1996b), they are used as an in-depth example of building
THASs. In the included paper, the process of interprocedural static slicing is de-
scribed in detail. Some possibilities for improving its current implementation
are outlined in Koskinen (1997). Program parts, dependencies, and linkages re-
lated to slicing, as well as the formation and representation of the slices as
THASs are briefly discussed.

The main problem areas of the implementation of HyperSoft are dis-
cussed. These include the efficient execution of static interprocedural program
slicing and the reduction of the amount of static information needed. A much

54

wider discussion on these topics can be found in Koskinen (1997). In static inter-
procedural slicing there is a clear tradeoff between whether to produce precise
and complete slices slowly or to obtain partial results quickly.

4.4 "Automated Hypertext Support for Software Maintenance"

Paakki, J., Salminen, A. & Koskinen, J. 1996. Automated hypertext support for
software maintenance. The Computer |. 39 (7), 577-597.

Research problems and methods

An extended discussion of the HyperSoft model and its relation to the devel-
oped HyperSoft system is provided. More observations are made with respect
to HyperSoft's usability. The usability evaluation has been performed by ob-
taining feedback from the representatives of the partner enterprises (the num-
ber of participating subjects was 4) related to the suggested and implemented
HyperSoft functionalities and via questionnairies distributed to the test users
(3), who were professional software maintainers. Moreover, a more detailed ex-
amination of the system (v. 0.8) is performed with regard to the space and time
needed by using simulation with example programs. The lessons learned from
the development of the system and the feedback received from the partner com-
panies have served in improving the design of the later versions of the system
and the planning of its statistical empirical evaluations (Article VII).

Content and results

The model is extended to include four layers: the source code layer, the syntac-
tic structure layer, the access structure layer, and the user-interface layer. The
layered structure of the model makes the extension of the sets of supported pro-
gramming languages, THASs, and graphical user interface environments easier.
The original source code is retrieved from the source code layer to the syntactic
structure layer in order to create the static program database, and to the inter-
face layer in order to display the code. The syntactic structure layer determines
the possible THAS node types. The THASs are created at the access structure
layer on the basis of the information determined by the syntactic structure
layer. Finally, the visual representation of these structures is reached at the in-
terface layer. The use of the model is illustrated with an example program. The
model is also compared to Dexter, which is another hypertext model. See (Ha-
lasz & Schwartz, 1994; Leggett & Schnase, 1994; Grenbaek et al., 1994; Grenbaek
& Trigg, 1994) for information about Dexter.

The questions of source code storage and retrieval need to be answered at
the source code layer. The questions which need to be answered at the syntactic
structure layer include the determination of the information which is to be
stored statically and the method(s) of creating the program database and its
storage form. Issues which need to be resolved at the access structure layer

55

include the determination of useful THASs, the THAS seed and the method of
specifying it, the mixture of different node and link types within a single THAS,
the need to combine different THASs, and THAS storage mechanisms. The in-
terface layer gathers decisions concerning the necessary textual and graphical
windows and views, node and link visualizations, and the interaction between
the user and the system during navigation and THAS specification.

A relational characterization and classification of program dependencies is
presented to serve as a basis for concrete THAS formulations. This abstract clas-
sification includes, for example, matching, subordination, control, and data de-
pendencies. The dependencies are characterized with respect to their
reflexivity, symmetry, transitivity, and arity. Elementary THASs contain pro-
gram elements bound together on the basis of the relations subsisting between
the above types. Dependencies are characterized as navigation structures.

The paper introduces the implementation of the HyperSoft prototype and
characterizes its typical application area: adaptive maintenance of legacy sys-
tems. Preliminary THASs are characterized according to the dependency classi-
fication and are presented as they are shown to the user through the interface
component. The implemented THAS types include occurrence lists, calling
structures and program slices. An occurrence list reveals the points in the pro-
gram where a certain symbol is defined or used. Calling structures reveal the
forward or backward calling dependencies between function calls and function
implementations. A backward slice reveals the statements which may have an
effect on the value of a specified symbol occurrence(s). A forward slice shows
the statements which would be affected if the value of a specified symbol occur-
rence(s) were changed. The interface layer allows the display of the source code
in windows, the specification and manipulation of THASs, and navigation
within them.

4.5 "From Relational Program Dependencies to Hypertextual
Access Structures"

Paakki, J., Koskinen, J. & Salminen, A. 1997. From relational program depend-
encies to hypertextual access structures. Nordic Journal of Computing 4 (1), 3-36.

Research problems and methods

The focus area of the paper is on further theory building. A model of program
dependencies is developed, and the THAS types implemented in the HyperSoft
system (v. 0.85) are characterized using the terminology of the model.

Content and results

Program dependencies can be used as a basis on which to determine the hyper-
textual links to be formed between nodes (program parts) by binding together

56

related node pairs. The paper provides a relational characterization and classifi-
cation of program dependencies. The classification is represented as a lattice us-
ing the OMT notation (Rumbaugh et al.,, 1991). Subtypes within the class
hierarchy inherit the properties of their superclasses. Dependency classes have
the following attributes: start and destination types, arity, an algorithm for their
extraction/determination, and relation. The three relational properties, namely:
reflexivity, symmetry, and transitivity (and their inverses) are used as a basis for
characterizing program dependencies. The relation property specifies whether
all, some, or none of the dependencies within a category are reflexive, symmet-
ric, or transitive, respectively. The classification can be used, e.g. as a basis for
the systematic development and evaluation of the dependency features pro-
vided in the HyperSoft system and in other similar reverse-engineering tools.

Some of the classes are clearly more important than others in the sense
that conventional programming languages apply mechanisms which produce
dependencies belonging to these classes. These classes, termed as Essential, Inci-
dental, Symmetrical, Subordinative, Matching, Extrovert, Structural, and Imperative,
are discussed in detail in the paper. The most important dependency categories
are Matching and Subordinative. The subtypes of Matching are Lexical (pro-
gram parts share a similar textual representation), Syntactic (sub parse trees for
parts are isomorphic), Semantic (parts share some computational, run-time
value), and Qualitative (parts share some quality factor of software engineering).
Within the category of Subordinative, the clearly most important subtypes are
Control (part a is executed after b on condition c), and Data (the value of data on
part b is dependent on the value of data on part). The Matching dependencies
can be supported via THAS types, which are lists, whereas Control and Data
dependencies may be supported via program slice THAS types.

The process of forming THASs is represented using an example. Hyper-
text links are not needed for reflexive relations. For symmetric relations a unidi-
rectional linking is sufficient (because of the available backtracking features).
Indirect transitive relations should not usually be supported via linking, since
the linkage tends to become too dense. On the other hand, direct transitive rela-
tions require hypertextual linkage. There exist multiple combinations of these
three basic properties in the case of individual program dependencies. Elemen-
tary dependencies can be used as a basis for compound dependencies. These, in
turn, can be used as a basis for THAS types using set operations (union, inter-
section, difference, and restriction). Since THASs are graphs, a section is de-
voted to characterizing them from the graph-terminological view-point. The
HyperSoft system is used as an example environment whose THAS types are
characterized using the terminology of the dependency model. The dependen-
cies manifested within the currently implemented THAS types are described in
terms of the classification.

57

4.6 "Hypertext Support for Information Needs of Software
Maintainers"

Koskinen, J., Salminen, A. & Paakki, J. 1999. Hypertext support for information
needs of software maintainers. Univ. of Jyviaskyld, Jyvéskyld, Finland. Computer
Science and Information Systems Reports, Working paper WP-37. Submitted for
publication to IEEE Transactions on Software Engineering.

Research problems and methods

The research problem of the paper concerns the information needs of software
maintainers and their relationship to HyperSoft solutions. The paper analyzes
and classifies the information needs of software maintainers as revealed in a se-
ries of earlier empirical studies. The HyperSoft access structures (v. 1.0) are then
evaluated with respect to those information needs.

Content and results

In this paper information needs have been analyzed based on the data gathered
in the series of empirical studies conducted by von Mayrhauser, Vans and
Howe (von Mayrhauser & Vans, 1995b; 1997b; 1998; von Mayrhauser ef al.,
1997). Those studies provide data on the information needs of professional soft-
ware maintainers at the most detailed and comprehensive level available. These
information needs have been ranked, grouped, characterized, and analyzed
from the view point of supporting them via hypertext techniques. The nature
and the interpretation of the information needs are discussed. Certain kinds of
information are needed, especially in the case of certain kinds of maintenance
tasks: general, corrective, preventive, and adaptive. The information sought is
grouped on the basis of source from which it can be obtained and the type of
analysis required. The alternatives are static analysis of source code, dynamic
analysis/code execution, analysis of documentation and other textual material,
and recording of user operations and session history.

The way in which information needs relate to the formation of THASs is
described. Five large THAS categories, i.e., references, lists, sets, trees, and gen-
eral graphs are proposed as a way of gathering the data satisfying the most
prominent information needs. Most such needs are simple, and can thus be sat-
isfied on the basis of references or lists. For the satisfaction of some of the most
important needs, the convenient form, however, is a general graph. Individual
THAS types and THAS-type variants can be tailored to satisfy situation-
dependent information needs. Examples of THAS types are provided, most of
which are supported in some form by the HyperSoft system. This indicates the
appropriateness of the THAS set implemented. Possible extensions related to
hypertextual support based on dynamic analysis of programs and automated
analysis of system documentation are also briefly sketched.

58

4.7 "Evaluations of Hypertext Access from C Programs"

Koskinen, J. 1999c. Evaluations of hypertext access from C programs. Condi-
tionally accepted to be published in Journal of Software Maintenance: Research and
Practice.

Research problems and methods

The need to validate empirically the effectiveness of hypertext via usability
studies in the software engineering context has been addressed, e.g. by Ziv and
Osterweil (1995). In this paper the effectiveness of the support provided by the
HyperSoft system is evaluated. Our main hypothesis is that HyperSoft en-
hances information retrieval performance in case of typical tasks as compared
to conventional text browsing and search. The main part of the study consists of
two independent series of classical laboratory experiments using a control
group and a test task to find differences in performance between a HyperSoft
group and a control group. The subjects of the first experiment series (N=23)
were (on average) fourth-year computer science students, and the subjects of
the second experiment series (N=47) were (on average) second-year computer
science students. Thus, the subjects were novice programmers.

The test task and the sample program were the same in both experiments.
The subjects, however, were not the same and the actual task set was varied, al-
though the tasks were similar on both occasions. On each occasion, task per-
formance between the group using HyperSoft and the group using the Borland
C/C++ environment (its text browsing and search functions) were compared.
We measured task performance in the case of sample information requests. The
example program was a non-commercial chess program of about 2,500 LOC
written in ANSI-C (Koskinen, 1993). The task sets were based on the results of
the study by von Mayrhauser and Vans (1995b). The significance of the differ-
ences between the groups is determined using statistical methods (Student's ¢-
tests, Mann-Whitney U tests, and two-way variance analysis).

Content and results

The paper gives the results of empirical evaluations of the HyperSoft system us-
ing computer science students as subjects. The results of the first experiment
have been published in the proceedings of IWPC'99 (International Workshop on
Program Comprehension) (Koskinen, 1999a), which is the main international fo-
rum on program comprehension research.

The results clearly support our hypothesis as to the usefulness of the Hy-
perSoft system and of transient hypertext support for software maintenance.
Many of the differences in performance between the groups are statistically
highly significant. The hypothesis that HyperSoft enhances task performance as
compared to conventional text browsing and search was confirmed at a 0.000
level of risk. This means that the risk that the results are due to chance is

59

virtually non-existent. This result was achieved in both experiments, the results
of the two experiments also support each other very well in several important
regards. For the combined data, the same results were obtained both through
variance analysis and t-tests. The efficiency in performance of the HyperSoft
group was over two times better than that of the control group in both experi-
ments. In general, the subjects using HyperSoft were able to find more complete
answers to the questions posed and to perform the tasks more efficiently and in
less time than the subjects in the control groups. Task-wise results are also ana-
lyzed in detail. It is probable that in case of more complex (more open) tasks,
the benefits would be even greater, as has been reported by Chen, C. and Rada
(1996). In case of more complex tasks, it is also feasible to apply multiple
THASs.

The limitations of the empirical experiments are discussed. These limita-
tions include the fact that only the information-seeking behaviour of novices
was studied. Professional software maintainers may need more specified sup-
port than novices cf. (Soloway et al., 1982; Gugerty & Olson, 1986; Cunniff &
Taylor, 1987). However, especially program slices provide detailed information,
which is of value to professionals also (Weiser, 1982). Moreover, the HyperSoft
approach and system also make it possible to support flexibly other information
needs of professional maintainers (as noted in Article VI), since THAS types can
be tailored to meet emergent user needs. Although software modifications were
not made, the general importance of the localization activities studied is clearly
prominent even as such, since the selected task types were representative.

4.8 About the joint articles and other publications

The summarizing part and the Articles III (Koskinen, 1996c), and VII (Koskinen,
1999c) were written solely by the author. The author is the main contributor of
Article VI (Koskinen et al., 1999). The other joint work; Articles I (Koskinen et al.,
1994a), 11 (Salminen et al., 1994a), IV (Paakki et al., 1996), and V (Paakki et al.,
1997) were written in close collaboration by the authors. All the published arti-
cles included have been refereed by at least two international experts. All
published /submitted conference papers and journal articles have been edited
and revised for final publication by the author. Section 6 of article IV, and sec-
tion 7 of article V were written solely by the author. The implementation of the
HyperSoft system'’s back-end components, described in more detail in (Koski-
nen, 1996a; 1997), also represents the independent work of the author. The
front-end components of the HyperSoft system were implemented by Nieminen
(1996). The Articles I-IV appeared in the author's licentiate thesis (Koskinen,
1996b). This doctoral dissertation is an extension of that previous work. The
new work includes the Article IV in revised and published form, Articles V, VI,
VII, and the report (Koskinen 1997), which describes the design of the Hyper-
Soft system v. 1.0's back-end components, the final implementation of the Hy-
perSoft system (Koskinen et al., 1997), and the other recent manuscripts. The
research results have also been presented in the form of position papers (Salmi-
nen ef al. 1994b; Koskinen et al. 1994b; Koskinen 1995).

5 DISCUSSION ON RESEARCH DIRECTIONS

There are many interesting options for further research. This chapter aims at
proposing a further research agenda and describes some of the possible exten-
sions and enhancements related to different aspects of HyperSoft. The current
HyperSoft system is focused on supporting program comprehension and soft-
ware maintenance by providing various THASs over source programs written
in C. Further refined specialized support could be tailored for these purposes
by introducing new THAS types, new view types, or by integrating new sup-
plementary techniques into HyperSoft, see Figure 11.

Support
% Sof.tware environment
engineers
Front-end
Knowledge
Information needs Visualization Target system
mechanisms
Change
mechan%sms - 1 System |
(text editor) cumentagion
Back-end So:u:ce
"Static" and code
"dynamic" =
Ylaintenance tas mechanisms Run-time
requirements system

Accessories
Compiler,
other integratg 5—

CABSE tools, .[-

FIGURE 11 THAS-based maintenance support

61

The central elements (system components, databases, data sets, data flows, and
actors) in supporting software maintenance through our approach are depicted
in Figure 11. The target system is the one which is under maintenance. The sup-
port environment provides relevant information for its users (software engi-
neers or maintainers). It consists of the programs which are needed to view,
browse and change the source code of the target systems and other integrated
support mechanisms. The figure shows the main data flows between the com-
ponents by arrows. Data flows are represented at abstract level (internal da-
taflows of the HyperSoft system were depicted in Figure 2). The numerals (x) in
the figure refer to the sections (5.x) listed below. Discussed issues include 1)
model extensions of HyperSoft, 2) options to specify more complex information
requests, 3) optimizations in central areas, 4) some remarks on introducing new
THAS types, 5) language extensions, 6) visual representations of THASs, and 7)
evaluations of the features of HyperSoft in various ways.

5.1 Model extensions

We have focused on improving the ability to obtain information from the
source code on the basis of static analysis. The HyperSoft model underlying our
approach, however, allows for the extension of access structures to cover such
documentation, which is structured based on underlying grammar, as well, and
for the use of dynamic analysis in identifying the required program parts. Thus,
the numeral 1 in Figure 11 is located near the system documentation database.
From the theoretical point of view, this model extension issue (in relation to the
input information type) is the most important area of further research. One
problem is the typical unavailability of structured documentation in case of leg-
acy systems. The model extension issue is also discussed in Article VI.

Experiments on automatically transforming non-program text into hyper-
text are reported by Agosti and Allan (1997). Also, for example, parts of the
documentation associated with the source code could automatically be trans-
formed into hypertext. Documents may be marked-up by using, e.g. SGML
(Goldfarb, 1990; Cowan et al., 1994), or HTML (Musciano & Kennedy, 1998). In
addition, comments (Riecken et al., 1991) embedded within the source code
could be structured systematically and thus handled within the model.

Program text can be considered as a special case of text, since it is not
solely targeted at a human reader, but is also used to control the computer. This
means that unlike most other texts, program text contains information which
cannot be obtained without executing the program. Because of this, some of the
relevant THAS types cannot be formed without information which is available
only during the run-time of the program. Examples of these are dynamic pro-
gram slices (Kamkar, 1993).

62

5.2 Query mechanisms

Most of the empirically verified information needs of professional C program-
mers can be satisfied with simple mechanisms such as those currently provided
in HyperSoft, or by using QBE (Query By Example) (Zloof, 1977). If complex or
very detailed information requests need to be formed, a dedicated (textual)
query language is called for. For example, Paul and Prakash (1996) have pre-
sented a source code algebra which is stated to combine high expressive power
with a flexible query paradigm. One of the related general problems, however,
is the complexity of typical queries and required comprehension effort (Chan et
al., 1997). If query mechanisms (such as those represented in Appendix 1; part
7) were to be implemented in HyperSoft, they would probably mostly benefit
those maintainers who are very capable in formalizing their information needs
and have the necessary patience. Since forming a query interrupts the estab-
lished way in which most people perform their programming and maintenance
tasks, it is not clear whether such mechanisms would actually be called upon.

5.3 Technical optimizations

The main needs for optimizations lie in the areas of improving the efficiency of
the interprocedural slicing and of compressing/pruning the necessary static
structures, most notably parse trees. There is a clear tradeoff between whether
to form a slice precisely or fast. The need to be able to tradeoff between time
and precision in relation to whole-program analysis tools - and program slicing
in particular - has been addressed by Atkinson and Griswold (1996). They rec-
ommend features for demand-driven computation, discarding, persistent stor-
age of important data-structures, precision control, and termination control.
HyperSoft includes some mechanisms similar to these, as noted in Section 3.3.

THASs are relatively small compared to parse trees. Since sufficient mass
storage space is nowadays available at tolerable costs, the relatively large size of
parse trees has mostly only indirect importance in slowing down the operation
of the system, especially in case of interprocedural slicing. Because parse trees
comprise most of the static program database (90%), performance may be opti-
mized by compressing them. Regardless of the way that the static program da-
tabase is formed, it may be compressed by means of standard packages, such as
pkzip, gnu-zip, compress, or compact, which yield about 55-70 % compression rates
(Katajainen & Maikinen, 1990). Our simulations with the HyperSoft system and
the example chess program (described in Section 3.4) show that decompression
would slow down THAS formation by about 50 %. Hence, a tradeoff exists be-
tween whether to save disk space or to generate THASs faster.

Probably the most compact representation holding the same information
as abstract syntax trees is the so-called production tree (Waddle, 1990). These
structures are relatively simple to form and take only about 1/3 of the space of

63

abstract syntax trees. Special methods of coding the parsing process to be used
as an aid in compressing syntactical information has also been suggested. These
sorts of methods (Lelewer & Hirschberg, 1987; Cameron, 1988; Katajainen et al.,
1986; Peltola & Tarhio, 1991) yield at best a compression rate of about 85%
(compared to the original files), see also, e.g. (Gil & Itai, 1999) for packing tree
structures. The methods may rely, for example, on coding the program struc-
ture on the basis of the applied productions. These kinds of special methods are
not used in HyperSoft. It should be noted that even though some of the meth-
ods yield high compression rates, they often also lead to long (de)compression
times. If there is a tradeoff, time optimization should be preferred over space
optimization in a system such as HyperSoft.

One way of improving slicing efficiency is to store the needed program in-
formation in the form of program (or system) dependency graphs (Horwitz &
Reps, 1992) or combined C graphs (Kinloch & Munro, 1994). It is, however, not
clear whether using program dependency graphs (as intermediate representa-
tions) would be an optimal solution for HyperSoft, since in HyperSoft a very
large amount of program information has to be stored in order to support a suf-
ficiently versatile THAS set, ¢f. Horwitz et al. (1988). If graphs of this kind are
not used, the efficiency of (downward) slicing could nonetheless be improved
by applying the so-called in-out (definition-usage) sets (Kamkar 1993). If the pre-
defined in-out set for a specific function is available, it would only be necessary
to analyze the function once for each different content of the set of relevant vari-
ables when entering that function (see Article III for the details of downward
slicing and the set of relevant variables). The in-out sets would be determined
during a batch process for all functions. The current rules for determining the
contents of the relevant variable set within the HyperSoft system are described
in Koskinen (1997, pp. 106-107). Our experiences with the slicing features of Hy-
perSoft are such that there appears to be a general need for features such as the
incremental generation of partial slices, for both cognitive and efficiency rea-
sons. There also exist some additional options for optimizations which have
been reported and classified in Koskinen (1996b, pp. 25-27).

5.4 New access structures

The introduction of new THAS types to HyperSoft is straightforward, as only a
new THAS generation function needs to be implemented. Experiences with the
current simple THAS types support the hypothesis as to their usefulness. The
more complex THASs may be composed of elementary structures. Moreover,
by using set operations, ¢f. Garg (1988), more refined structures can be pro-
duced. Our experiences with slicing suggest that it is useful to supplement it
with less complete THASs, which can be generated more or less instantane-
ously. The simpler structures can be used to support the process in which the
user fixes the seed for the complete slicing analysis. In Article VI we analyze the
information needs which constitute the most important base for THAS types.
This analysis shows that the most useful additional THAS types for inclusion in

64

HyperSoft are probably domain concept descriptions and lists of browsed loca-
tions. Some suggestions are also provided in Koskinen (1996b). Basically, the
possibilities for extending the THAS set by introducing new THAS types based
on, for example, the algorithms surveyed in Appendix 1, are extensive.

5.5 Language extensions

The explicit technical separation of the components in HyperSoft makes it rela-
tively straightforward to extend the system with new languages. A new lan-
guage may be supported by implementing a new analyzer component to form
the static program database. The interface component focuses on the visualiza-
tion based on the THASs which it gets as input from the generator component.
If the relevant items of the new language can be described in the form which is
currently used to store the static information, the THAS generator may be up-
dated by simply extending its procedures. SQL extensions have already been
completed in the form of a spin-off project within one of our partner enterprises
(Suominen, 1997).

Versatile (multi-) language support is important. Possible object-oriented
extensions of the HyperSoft THAS set have been considered in Tuovinen (1995).
The possibilities of the analysis of C++ (Stroustrup, 1986; 1993) were considered
during the project, including the options of using ANTRL (Parr & Quong 1995)
or AnaGram (Parsifal, 1993) as the basis of parsing. Novel solutions would,
however, be needed to split the C++ grammar into non-ambigous parts and to
construct separate parsers for the sub-grammars. Although C++ is "merely" an
extension of the C language, the analysis is problematic. The main reasons for
this include the facts that it is difficult or impossible to form an LALR(1) gram-
mar for C++, ¢f. e.g. (Parr & Quong, 1996), and C++ is very liberal in its syntax,
making the identification of the semantic meaning of the symbols difficult. In
C++ it s, e.g., possible to have different symbols with the same name declared
in a scope because the identity of a symbol is determined by its name and type.
Unlike in C, declarations can be intermixed with statements, ¢f. Knapen et al.
(1999). Dynamic binding and polymorphism introduce their own peculiarities,
making the static analysis approach less promising, see e.g. Tonella et al. (1997).
Reverse engineering tools for C++ has been proposed by Grass (1992), Chen, X.
et al. (1996), Linos and Courtois (1996), and Yueh and Low (1997). The needs of
the partner enterprises would also include support for COBOL; ¢f. The COBOL
Center (1999) and even assembly language; cf. Chen, S. et al. (1990).

5.6 View enhancements

Software visualization requires human-computer interaction and use of graphi-
cal interfaces which are discussed, e.g. by Shneiderman (1992). There exists a

65

wide range of software visualization systems (Catalin-Roman & Fox, 1993;
Vilela et al., 1997). Our experiments support the hypothesis of the importance of
supplementing overviews. The need for visual support for program slicing is
also noted by Gallagher (1997). Various graphical views are provided by the
HyperSoft system to complement the hypertextual representation of THASs
(Nieminen, 1996).

Because slices can be very large, they may need to be sieved. The most
useful information within a slice is probably concentrated on the most immedi-
ate calling levels of the original context function. The observations of Atkinson
and Griswold (1996) support this hypothesis. Therefore, even if the slice is
formed completely, it would be useful to be able to view only the 7 most imme-
diate calling levels, first. Slicing structures can also be viewed in various ab-
stract forms so that a general view of module cohesion and coupling can be
formed, ¢f. the implemented module dependency views and (Ott & Thuss,
1989). HyperSoft is well suited to these kind of purposes, since the generation of
THASs is separated from their representation to the user, and THASs can be
augmented with the necessary information. Different ways to visually express
THASs in HyperSoft have been suggested by Sillanpdé (1997). One option is the
use of distortion-oriented visualizations to further improve focusing on rele-
vant items (Leung & Apperley, 1994). This could be useful, especially in the case
of large slices.

5.7 Empirical studies

Possible evaluations include empirical end-user evaluations of the system us-
ability. Further possible evaluations of HyperSoft should, in the ideal case, fo-
cus on professional maintainers performing real maintenance including
program modifications. As noted, we have already performed data gathering in
professional settings (Article IV). Truely reliable empirical evaluations with
professionals performing real maintenance tasks would encounter many organ-
izational and financial problems. These are the reasons why we decided to con-
duct laboratory experiments instead.

Another strategy is to continue performing controlled laboratory experi-
ments evaluating different aspects of hypertext support by using computer sci-
ence students as subjects for this purpose. There exist good methodological
summaries. Experimentation is discussed from the methodological point of
view, for instance, by Pfleeger (1997); Tichy (1998); Zelkowitz and Wallace
(1998) and empirical studies of programmers by Shneiderman (1986). Reverse
engineering tools have been evaluated, for example, by Storey et al. (1996) and
user interface solutions have been compared by Jeffries et al. (1991). Analyses of
the empirical software studies (Shneiderman, 1986) and theoretical frameworks
(Haworth et al., 1992) for software maintenance studies provide information
about the aspects which could be studied and the methodologies which can be
used by utilizing the existing HyperSoft system, according to our original inten-
tion of performing comparative empirical evaluations.

CONCLUSION

This dissertation represented a new approach to the support of software main-
tenance activities via enhancing information retrieval. It should be noted that
software maintenance accounts for over half of the resources spent on informa-
tion systems development. The approach combines automated (static program)
analysis and transient hypertextual representation. The approach focuses on
supporting the localization of relevant information from the source code.

In order to make changes to software without introducing side-effects, the
relevant program parts need to be comprehended. During program comprehen-
sion, the programmer tries to form a mental model about the structure, opera-
tion, and purpose of the relevant software components. Such an understanding
can be gained through viewing the source code and documentation. If adequate
documentation does not exist, the information has to be "reverse-engineered"
from the source code. The understanding is often hampered by the fact that the
information needed is dispersed throughout the source code. The process of ex-
tracting the information can, however, be supported by various reverse engi-
neering tools. During program comprehension efforts, the programmer
typically browses the source code back and forth trying to find meaningful pro-
gram segments and interdependencies between them. The process is clearly
such that it can be supported by viewing program text as hypertext.

We have developed the HyperSoft model, which makes it possible to sys-
tematically support software maintenance and program comprehension proc-
esses by representing the program text as hypertext to the maintainer. The
hypertext is formed automatically by analyzing the source programs and by ex-
tracting useful information which is stored in a program database. The transient
hypertextual structures which are created automatically, on user request, on the
basis of their situation-dependent information needs, are called THASs. THASs
are created based on the information which has been stored into the program
database. The use of transient structures instead of static structures eliminates
the elaborate manual linking which is typical of conventional hypertext sys-
tems, helps to ensure the validity of the hypertextual structures, and helps to
reduce the amount of static information needed. THASs are composed of the
relevant program parts linked together on the basis of existing program

67

dependencies. The existing literature on techniques and algorithms for extract-
ing the required program part and program dependency information have been
surveyed. The development of a relational classification of program dependen-
cies serves as a basis for the systematic planning of well-formed THAS types.

The HyperSoft system - an experimental software maintenance support
tool - is used to demonstrate the implementability and convenience of the ideas
presented and to experiment with various THASs. The system has been imple-
mented within a project guided by an industrial steering group. The target lan-
guage (C), and the currently provided THAS types have been selected by the
group. The THAS types include occurrence lists of variables, functions, and
user-defined types, forward and backward calling dependency structures, intra-
procedural backward slices, and interprocedural forward slices. The system
helps in focusing the maintainer’s attention on those program parts which are
relevant to the current maintenance task, and in navigating among those parts
by following the hypertextual links generated by the system. The various
graphical views can also be used to achieve the same purpose since they are
linked to the original program text.

We have evaluated the approach in three ways. First, by small-scale test-
ing in the partner companies, the results of which have suggested the useful-
ness of the approach. Second, by comparing the capabilities offered by
HyperSoft to the information needs of software maintainers as revealed in a se-
ries of earlier empirical studies. And third, by two series of empirical experi-
ments. The data on information needs derived from the earlier studies suggests
that the THAS types, which are currently implemented in the HyperSoft sys-
tem, provide a good coverage of support for the kinds of information typically
needed, which can be produced via static program analysis. We conducted two
separate experiments with computer science students as subjects. The outcome
of these experiments clearly supported our hypothesis regarding the usefulness
of the approach in typical information retrieval tasks, as compared to the con-
ventional information-seeking capabilities of a widely used compiler environ-
ment. We have modelled the effects on task performance in multiple ways, as
well as gathered subjective information related to the usability of the approach.

Finally, we have discussed some possible further research topics. We have
presented some ideas for extending the scope of application of the approach,
and ways to improve the formation of the THASs and to extend the set of sup-
ported THAS types. Most importantly, there are good possibilities for exten-
sions and for the introduction of new interesting THAS types in a
straightforward way. Since the support of multiple THASs during a session po-
tentially requires great amount of statically stored information, some methods
of dealing with this problem have been proposed. Parse tree abstraction and
pruning are among the best available ways of reducing the amount of static in-
formation needed and improving the efficiency of THAS generation. The most
effective way of applying HyperSoft ideas in practice would probably be via an
integrated CASE environment. Programmers and maintainers constantly use
compilers and editors in their work. Those tools have to deal with many of the
same problems as HyperSoft, most importantly, efficient automated source
code analysis and informative representation of the source code to the users.

68

REFERENCES*

Agosti, M. & Allan, J. 1997. Introduction to the special issue on methods and
tools for the automatic construction of hypertext. Information Processing &
Management 33 (2), 129-131.

Agosti, M., Crestani, F. & Melucci, M. 1996. Design and implementation of a
tool for the automatic construction of hypertexts for information retrieval.
Information Processing and Management 32 (4), 459-476.

Agosti, M., Crestani, F. & Melucci, M. 1997. On the use of information retrieval
techniques for the automatic construction of hypertext. Information Process-
ing and Management 33 (2), 133-144.

Agosti, M., Melucci, M. & Crestani, F. 1995. Automatic authoring and construc-
tion of hypertext for information retrieval. ACM Multimedia Systems 3 (1),
15-24.

Agrawal, H. 1994. On slicing program with jump statements. ACM SIGPLAN
Notices 29 (6), 302-312. Proc. ACM SIGPLAN Conf. Programming Language
Design and Implementation (PLDI'94).

Aho, A.V. 1990. Algorithms for finding patterns in strings. In J. van Leeuwen
(Ed.) Handbook of Theoretical Computer Science (Vol. A). Elsevier & MIT
Press, 255-300.

Aho, A.V. & Johnson, S. 1974. LR parsing. ACM Computing Surveys 6 (2), 99-124.

Aho, A.V., Sethi, R., & Ullman, J. 1986. Compilers - Principles, Techniques, and
Tools. Reading, MA: Addison-Wesley.

Ajila, S. 1995. Software maintenance: an approach to impact analysis of objects
change. Software - Practice and Experience 25 (10), 1155-1181.

Allan, J. 1995. Automatic Hypertext Construction. Ithaca, NY: Department of Com-
puter Science, Cornell University (Diss.).

Allan, J. 1996. Automatic hypertext link typing. In Proc. 7th ACM Conf. Hyper-
text, 42-52. ACM Press.

Allan, J. 1997. Building hypertext using information retrieval. Information Proc-
essing & Management 33 (2), 145-159.

The acronyms used of the journal names are given at the end of the reference list.

69

Al-Zoubi, R. & Prakash, A. 1995. Program view generation and change analysis
using attributed dependency graphs. J. Software Maintenance: Research and
Practice 7 (4), 239-261.

Arunachalam, V. & Sasso, W. 1996. Cognitive processes in program comprehen-
sion: an empirical analysis in the context of software reengineering. The J.
Systems and Software 34 (3), 177-189.

Ashley, M. & Bybvig, R. 1998. A practical and flexible flow analysis for higher-
order languages. ACM TOPLAS 20 (4), 845-868.

Atkinson, D. & Griswold, W. 1996. The design of whole-program analysis tools.
In M. Kavanaugh (Ed. production) Proc. 18th Int. Conf. Software Engineer-
ing (ICSE'96). IEEE Computer Soc., 16-27.

Atkinson, D. & Griswold, W. 1998. Effective whole-program analysis in the
presence of pointers. ACM SIGSOFT Software Engineering Notes 23 (6),
46-55. ACM SIGSOFT 6th Int. Symp. Foundations of Software Engineering
(FSE’6).

Baeza-Yates, R. & Gonnet, G. 1992. A new approach to text searching. CACM 35
(10), 74-82.

Ball, T. & Horwitz, S. 1992. Slicing programs with arbitrary control-flow. In P.
Fritzson (Ed.) LNCS 749. Springer-Verlag, 206-222. First Int. Workshop on
Automated and Algorithmic Debugging (AADEBUG’92).

Banker, R., Datar, S. & Kemerer, C. 1991. A model to evaluate variables impact-
ing the productivity of software maintenance projects. Management Science
37 (1), 1-18.

Baratta-Perez, G., Conn, R., Finnell, C. & Walsh, T. 1994. Ada system depend-
ency analyzer tool. Computer 27 (1), 49-55.

Beck, J. & Eichmann, D. 1993. Program and interface slicing for reverse engi-
neering. In E. Straub (Ed. production) Proc. 15th Int. Conf. Software Engi-
neering (ICSE'93). Los Alamitos, CA: IEEE Computer Soc., 509-518.

Beeri, C. & Kornatzky, Y. 1990. A logical query language for hypertext systems.
In Hypertext: Concepts, Systems, and Applications. Proc. European Conf.
Hypertext’90 (ECHT'90). Cambridge: Cambridge Univ. Press., 67-80.

Belkin, N. & Croft, W.B. 1992. Information filtering and information retrieval:
two sides of the same coin? CACM 35 (12), 29-38.

Benedusi, P., Cimitile, A. & DeCarlini, U. 1989. A reverse engineering method-
ology to reconstruct hierarchical data flow diagrams for software mainte-
nance. In Proc. Int. Conf. Software Maintenance (ICSM’89). IEEE Computer
Soc., 180-191.

Bennett, K. 1995. Legacy systems: coping with success. IEEE Software 12 (1),
19-22.

Bergeretti, J.-F. & Carre, B. 1985. Information-flow and data-flow analysis of
while-programs. ACM TOPLAS 7 (1), 37-61.

Bertino, E., Rabitti, F. & Gibbs, S. 1988. Query processing in a multi-media envi-
ronment. ACM TOOIS 6 (1), 1-41.

Bieman, J. & Ott, L. 1994. Measuring functional cohesion. IEEE TOSE 20 (8),
644-657.

Bigelow, J. 1988. Hypertext and CASE. IEEE Software 5 (2), 23-27.

70

Bigelow, J. & Riley, V. 1987. Manipulating source code in dynamic design. In S.
Weiss & M. Shwartz (Ed.) Proc. Hypertext'87 (1st ACM Conf. Hypertext).
ACM Press.

Binkley, D. 1998. The application of program slicing to regression testing. Infor-
mation and Software Technology 40 (11/12), 583-594.

Binkley, D. & Gallagher, K. 1996. Program slicing. AIC 43, 1-50.

Bodik, R. & Gupta, R. 1997. Partial dead code elimination using slicing transfor-
mations. ACM SIGPLAN Notices 32 (5), 159-170. Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI'97).

Boehm, B. 1988a. A spiral model of software development and enhancement.
Computer 21 (5), 61-72.

Boehm, B. 1988b. Understanding and controlling software costs. IEEE TOSE 14
(10), 1462-1477.

Bohner, S. & Arnold, R. 1996. Software Change Impact Analysis. IEEE Computer
Soc.

Booch, G., Rumbaugh, J. & Jacobson, 1. 1999. The Unified Modeling Language User
Guide. Reading, MA: Addison-Wesley.

Brade, K., Guzdial, M., Steckel, M. & Soloway, E. 1994. Whorf: a hypertext tool
for software maintenance. Int.]. Software Engineering and Knowledge Engi-
neering 4 (1), 1-16.

Briand, L., Devanbu, P. & Melo, W. 1997. An investigation into coupling meas-
ures for C++. In Proc. 19th Int. Conf. Software Engineering (ICSE’97). New
York: ACM Press, 412-421.

Brooks, F.P. Jr. 1987. No silver bullet - essence and accidents of software engi-
neering. Computer 20 (4), 10-19.

Brooks, R. 1977. Towards a theory of the cognitive processes in computer pro-
gramming. IJMMS 9, 737-751.

Brooks, R. 1983. Towards a theory of the comprehension of computer programs.
IJMMS 18 (6), 543-554.

Burke, M. 1990. An interval-based approach to exhaustive and incremental in-
terprocedural data flow analysis. ACM TOPLAS 12 (3), 341-395.

Burke, M. & Ryder, B. 1990. A critical analysis of incremental iterative data flow
analysis algorithms. IEEE TOSE 16 (7), 723-728.

Burkowski, F. 1992. An algebra for hierarchically organized text-dominated da-
tabases. Information Processing & Management 28 (3), 333-348.

Burnstein, I & Roberson, K. 1997. Automated chunking to support program
comprehension. In P. Storms (Ed. production) Proc. 5th Int. Workshop on
Program Comprehension (IWPC’97). Los Alamitos, CA: IEEE Computer Soc.,
40-49.

CACM. 1994. CACM 37 (5). Theme issue on reverse engineering.

Caldiera, G. & Basili, V. 1991. Identifying and qualifying reusable software com-
ponents. Computer 24 (2), 61-70.

Cameron, R. 1988. Source encoding using syntactic information source models.
IEEE Trans. Inform. Theory 34 (4), 843-850.

71

Canfora, G. & Cimitile, A. 1992. Reverse-engineering and intermodular data
flow: a theoretical approach. J. Software Maintenance: Research and Practice 4
(1), 37-59.

Canfora, G., Cimitile, A. & Munro, M. 1993. A reverse engineering method for
identifying reusable abstract data types. In Proc. 1st Working Conf. Reverse
Engineering (WCRE'93), 73-82.

Canfora, G., Cimitile, A. & Munro, M. 1996a. An improved algorithm for identi-
fying objects in code. Software - Practice and Experience 26 (1), 25-48.

Canfora, G., Cimitile, A., Munro, M. & Taylor, C. 1996b. Extracting abstract data
types from C programs: a case study. In Proc. Int. Conf. Software Mainte-
nance (ICSM'96), 200-209.

Carmel, E., McHenry, W. & Cohen, Y. 1989. Building large, dynamic hypertexts:
how do we link intelligently?. J. Management Information Systems 6 (2),
33-50.

Catalin-Roman, G. & Fox, K. 1993. A taxonomy of program visualization sys-
tems. Computer 26 (12), 11-24.

Chan, H., Wei, K. & Siau, K. 1997. A system for query comprehension. Informa-
tion and Software Technology 39 (3), 141-148.

Chen, C. & Rada, R. 1996. Interacting with hypertext: a meta-analysis of experi-
mental studies. Human-Computer Interaction 11 (2), 125-156.

Chen, S., Heisler, K., Tsai, W., Chen, X. & Leung, E. 1990. A model for assembly
program maintenance. Software Maintenance 2, 3-32.

Chen, T. & Cheung, Y. 1993. Dynamic program dicing. In Proc. Int. Conf. Soft-
ware Maintenance - 1993 (ICSM’93), 378-385.

Chen, T. & Low, C. 1997. Error detection in C++ through dynamic data flow
analysis. Software - Concepts and Tools 18 (1), 1-13.

Chen, X., Tsai, W.-T., Huang, H., Poonawala, M., Rayadurgam, S. & Wang, Y.
1996. Omega: an integrated environment for C++ program maintenance.
In Proc. Int. Conf. Software Maintenance (ICSM'96), 114-123.

Chen, Y.-F., Gansner, E. & Koutsofios, E. 1998. A C++ data model supporting
reachability analysis and dead code detection. IEEE TOSE 24 (9), 682-694.

Chen, Y.-F., Nishimoto, M. & Ramamoorthy, C. 1990. The C information ab-
straction system. IEEE TOSE 16 (3), 325-334.

Chikofsky, E. & Cross, J. H. II. 1990. Reverse engineering and design recovery: a
taxonomy. IEEE Software 7 (1), 13-17.

Choi, J.-D., Cytron, R. & Ferrante, J. 1991a. Automatic construction of sparse
data flow evaluation graphs. In Conf. Record of the 18th ACM Symp. Princi-
ples of Programming Languages (POPL’91). ACM Press, 55-66.

Choi, J.-D., Miller, B. & Netzer, R. 1991b. Techniques for debugging parallel
programs with flowback analysis. ACM TOPLAS 13 (4), 491-530.

Choi, J.-D. & Ferrante, J. 1994. Static slicing in the presence of goto statements.
ACM TOPLAS 16 (4), 1097-1113.

Cimitile, A. & De Carlini, U. 1991. Reverse engineering: algorithms for program
graph production. Software - Practice and Experience 21 (5), 519-537.

72

Cimitile, A., De Lucia, A., Di Lucca, G. & Fasolino, A.R. 1999. Identifying objects
in legacy systems using design metrics. The]. Systems and Software 44 (3),
199-212.

Clarke, L., Cormack, G. & Burkowski, F. 1995. An algebra for structured text
search and a framework for its implementation. The Computer J. 38 (1),
43-56.

Cleary, C. & Bareiss, R. 1996. Practical methods for automatically generating
typed links. In Proc. 7th ACM Conf. Hypertext. ACM Press, 31-41.

Computer. 1999. Computer 32 (8). Theme issue on data mining.

Conklin, J. 1987. Hypertext: an introduction and survey. Computer 20 (9), 17-41.

Conklin, J. & Begeman, M. 1989. gIBIS: a tool for all reasons. JASIS 40, 200-213.

Consens, M., Mendelzon, A. & Ryman, A. 1992. Visualizing and querying soft-
ware structures. In Proc. 14th Int. Conf. Software Engineering (ICSE’'92). New
York: ACM Press, 138-156.

Corbi, T. 1989. Program understanding: challenge for the 1990s. IBM Systems].
28 (2), 294-306.

Corritore, C. & Wiedenbeck, S. 1999. Mental representations of expert proce-
dural and object-oriented programmers in a software maintenance task.
IJHCS 50 (1), 61-84.

Cowan, D., German, D., Lucena, C. & von Staa, A. 1994. Enhancing code for
readability and comprehension using SGML. In Proc. Int. Conf. Software
Maintenance (ICSM'94), 181-190.

Creech, M., Freeze, D. & Griss, M. 1991. Using hypertext in selecting reusable
software components. In J. Walker (Ed.) Proc. Hypertext'91: 3rd ACM Conf.
Hypertext. New York: ACM Press.

Cross, J. H. II, Chikofsky, E., May, C.H. Jr. 1992. Reverse engineering. AIC 35,
199-254.

Cunniff, C. & Taylor, C. 1987. Representation form effects on novice's program
comprehension. In Olson, G., Sheppard, S. & Soloway, E. (Ed.) Proc. 2nd
Workshop Empirical Studies of Programmers (ESP’87). Norwood, NJ: Ablex.

Cutillo, F., Fiore, R. & Visaggio, G. 1993. Identification and extraction of domain
independent components in large programs. In Proc. 1st Working Conf. Re-
verse Engineering (WCRE'93), 83-92.

Cybulski, J. & Reed, K. 1992. A hypertext-based software-engineering environ-
ment. IEEE Software 9 (2), 62-68.

Cytron, R., Ferrante, J., Rosen, B., Wegman, M. & Zadeck, F. 1991. Efficiently
computing static single assignment form and the control dependence
graph. ACM TOPLAS 13 (4), 451-490.

Darnell, P. & Margolis, P. 1991. C: A Software Engineering Approach. New York:
Springer.

Date, C. 1987. A Guide to the SQL Standard. Reading, MA: Addison-Wesley.

Davies, S. 1990. The nature and development of programming plans. [JMMS 32
(4), 461-481.

Davis, A. 1995. Software prototyping. AIC 40, 39-63.

73

Dervin, B. & Nilan, M. 1986. Information needs and uses. In M. Williams (Ed.)
Ann. Review of Information Science and Technology (ARIST) 21. Knowledge
Industry Publications, 3-33.

van Deursen, A., Woods, S. & Quilici, A. 1997. Program plan recognition for
Year 2000 tools. In P. Storms (Ed. production) Proc. 4th Working Conf. Re-
verse Engineering (WCRE’97). Los Alamitos, CA: IEEE Computer Soc.,
124-135.

Duncan, I. & Robson, D. 1996. An exploratory study of common coding faults in
C programs. J. Software Maintenance: Research and Practice 8 (4), 241-256.

Dunlop, M. & van Rijsbergen, C. 1993. Hypermedia and free text retrieval. Infor-
mation Processing & Management 29 (3), 287-298.

Edelstein, D. 1993. Report on the IEEE STD 1219 - 1993 - Standard for Software
Maintenance. ACM SIGSOFT Software Engineering Notes 18 (4), p. 94.

Eisenstadt, M. 1997. My hairiest bug war stories. CACM 40 (4), 30-37.

Eyre-Todd, R. 1993. The detection of dangling references in C++ programs.
ACM LOPLAS 2, 127-134.

Faustle, S., Fugini, M.G. & Damiani, E. 1996. Retrieval of reusable components
using functional similarity. Software - Practice and Experience 26 (5), 491-530.

Field, J., Ramalingam, G. & Tip, F. 1995. Parametric program slicing. In Proc.
22nd ACM SIGPLAN/SIGACT Symp. Principles of Programming Languages
(POPL’95). ACM Press, 379-392.

Fiutem, R., Tonella, P., Antoniol, G. & Merlo, E. 1996. A cliche-based environ-
ment to support architectural reverse engineering. In Proc. Int. Conf. Soft-
ware Maintenance (ICSM’96), 319-328. .

Fiutem, R., Tonella, P., Antoniol, G. & Merlo, E. 1999. Points-to analysis for pro-
gram understanding. The J. Systems and Software 44 (3), 213-228.

Fletton, N. & Munro, M. 1988. Redocumenting software systems using hyper-
text technologies. In IEEE Int. Conf. Software Maintenance 88 (ICSM'88),
54-59.

Fraisse, S. 1997. A task driven design method and its associated tool for auto-
matically generating hypertexts. In M. Bernstein, L. Corr & K. Usterbye
(Ed.) The 8th ACM Conf. Hypertext - Hypertext’97. ACM Press, 234-236.

French, J., Knight, J. & Powell, A. 1997. Applying hypertext structures to soft-
ware documentation. Information Processing & Management 33 (2), 219-231.

Frisse, M. & Cousins, S. 1992. Models for hypertext. JASIS 43 (2), 183-191.

Fuggetta, A. 1993. A classification of CASE technology. Computer 26 (12), 25-38.

Fyson, M. & Boldyreff, C. 1998. Using application understanding to support im-
pact analysis.]. Software Maintenance: Research and Practice 10 (2), 93-110.

Gallagher, K.B. 1992. Evaluating the Surgeon's Assistant: results of a pilot
study. In Proc. Int. Conf. Software Maintenance - 1992 (ICSM’92), 236-244.

Gallagher, K.B. 1997. Visual impact analysis. In Proc. Int. Conf. Software Mainte-
nance (ICSM’96). IEEE Computer Soc., 52-58.

Gannod, G. & Cheng, B. 1996. Using informal and formal techniques for the re-
verse engineering of C programs. In Proc. Int. Conf. Software Maintenance
(ICSM’96), 265-274.

Garg, P. 1988. Abstraction mechanisms in hypertext. CACM 31 (7), 862-870.

74

Garg, P. 1989. Information Management in Software Engineering: A Hypertext Based
Approach. Los Angeles: University of Southern California (Diss.).

Garg, P. & Scacchi, W. 1989. Ishys: designing an Intelligent Software Hypertext
System. IEEE Expert 4 (3), 52-63.

Garg, P. & Scacchi, W. 1990. A hypertext system to manage software lifecycle
documents. IEEE Software 7 (3), 90-98.

Gellenbeck, E. & Cook, C. 1991. An investigation of procedure and variable
names as beacons during program comprehension. In J. Koenemann-
Belliveau, T. Moher & S. Robertson (Ed.) Empirical Studies of Programmers:
4th Workshop (ESP’91). Norwood, NJ: Ablex, 65-81.

Gil, J. & Itai, A. 1999. How to pack trees.]. Algorithms 32 (2), 108-132.

Glass, R. & Vessey, 1. 1995. Contemporary application-domain taxonomies.
IEEE Software 12 (4), 63-76.

Goldfarb, C. 1990. The SGML Handbook. Y. Rubinsky (Ed.). Oxford: Oxford
Univ. Press.

Gopal, R. 1991. Dynamic program slicing based on dependence relations. In
Proc. IEEE Int. Conf. Software Maintenance (ICSM'91), 191-200.

Grass, J. 1992. Object-oriented design archaeology with CIA++. Computing Sys-
tems 5 (1), 5-67.

Griswold, W., Atkinson, D. & McCurdy, C. 1996. Fast, flexible syntactic pattern
matching and processing. In A. Cimitile & H. Muller (Ed.) Proc. 4th Int.
Workshop on Program Comprehension (IWPC’96). IEEE Computer Soc.,
144-153.

Griswold, W. & Notkin, D. 1993. Automated assistance for program restructur-
ing. ACM TOPLAS 2 (3), 228-269.

Griswold, W. & Notkin, D. 1995. Architectural tradeoffs for a meaning-
preserving program restructuring tool. IEEE TOSE 21 (4), 275-287.

Grove, D., DeFouw, G., Dean, J. & Chambers, C. 1997. Call graph construction
in object-oriented languages. ACM SIGPLAN Notices 32 (10), 108-124. Proc.
OOPSLA’97.

Gronbaek, K., Hem, J., Madsen, O. & Sloth, L. 1994. Systems: a Dexter-based ar-
chitecture. CACM 37 (2), 65-74.

Gronbaek, K. & Trigg, R. 1994. Design issues for a Dexter-based hypermedia
system. CACM 37 (2), 40-49.

Gugerty, L. & Olson, G. 1986. Comprehension differences in debugging by
skilled and novice programmers. In E. Soloway & S. Iyengar (Ed.) Empiri-
cal Studies of Programmers: Papers presented at the First Workshop (ESP’86).
Norwood, NJ: Ablex.

Gunter, C., Mitchell, J. & Notkin, D. 1996. Strategic directions in software engi-
neeri