
Pro Gradu

Implementing the 3-Omega
Technique for Thermal

Conductivity Measurements

Tuomas Hänninen
April 2013

university of jyväskylä
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Abstract

Thermal conductivity of the constituent materials is one
of the most important properties affecting the performance
of micro- and nanofabricated devices. These devices often
make use of thin films with thicknesses ranging from some
nanometers to few micrometers. The thermal conductivity
of thin films can be measured with the three-omega method.
In three-omega technique a metal wire acting as a resistive
heater is microfabricated on the sample. Alternating current
passing through the metal heater at a frequency ω heats the
sample periodically and generates oscillations in the resistance
of the metal line at a frequency 2ω. The oscillating resistance
component is coupled with the driving current to create a
third harmonic (3ω) voltage component over the heater. The
magnitude and frequency dependence of the 3ω voltage can be
used to obtain the thermal properties of the sample.

The measurement setup consisted of a vacuum chamber
with a custom sample mount, lock-in amplifiers to supply the
voltage and to record the output, and various other electrical
components. Custom LabVIEW programs were used for data-
acquisition and input signal modification.

The goal of the project was to build and validate a 3ω-
measurement setup by measuring the thermal conductivities of
300 nm thick SiO2 thin films. Bismuth and gold were used as
the heater materials because they have noticeable temperature
coeffcients of resistivity, bismuth even at temperatures of a few
kelvin. Data analysis revealed that the output of the examined
measurement setups can not be used to calculate the thermal
properties of the samples. This is most probably due to spurious
3ω-signal in the measurement circuit, originating from the
components and voltage sources.
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Tiivistelmä

Valmistusaineiden lämmönjohtavuus on yksi tärkeimmistä mikro-
ja nanovalmistettujen laitteiden toimintaan vaikuttavista ominaisuuk-
sista. Usein näissä laitteissa materiaaleja käytetään ohuina kerrok-
sina tai kalvoina, joiden paksuus voi vaihdella muutamista nano-
metreistä muutamiin mikrometreihin. Ohutkalvojen lämmönjohta-
vuutta voidaan mitata kolme-omega-menetelmällä. Kolme-omega-
menetelmässä näytteen pinnalle valmistettu metallijohdin toimii re-
sistiivisenä lämmittimenä. Metallilämmittimen läpi taajuudella ω
kulkeva vaihtovirta lämmittää metallia jaksollisesti ja aiheuttaa os-
killaatioita metallilangan resistanssissa taajuudella 2ω. Oskilloiva
resistanssikomponentti yhdessä langan läpi kulkevan virran kanssa
aiheuttaa 3ω-taajuisen jännitekomponentin langan päiden välille. Tä-
män 3ω-jännitteen suuruutta ja taajuusriippuvuutta voidaan käyttää
näytteen termisten ominaisuuksien määrittämiseen.

Mittausjärjestely koostui tyhjiökammiosta ja räätälöidystä näytea-
lustasta, tarvittavista sähköisistä komponenteista ja lukitusvahvisti-
mista, joilla syötettiin piiriin vaihtojännite ja mitattiin saatu ulostulos-
ignaali. Datankeruu ja syöttösignaalin ohjaus suoritettiin erityisillä
LabVIEW-ohjelmilla.

Projektin tarkoituksena oli rakentaa ja validoida kolme-omega-
mittausjärjestely mittaamalla 300 nanometriä paksujen piidioksidi-
kalvojen lämmönjohtavuuksia. Vismuttia ja kultaa kokeiltiin lämmi-
tinlangan materiaalina, koska niillä on huomattava resistiivisyyden
lämpötilavaste, vismutilla aina muutaman kelvinin lämpötiloihin as-
ti. Data-analyysi paljasti, että saatua mittausdataa ei voida käyttää
näytteiden lämpöominaisuuksien määrittämiseen. Syy tälle on toden-
näköisesti mittauspiiristä ja signaalilähteistä aiheutuva häiriösignaali.
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1 Introduction

Thin films are routinely used in microfabricated devices in electronics and
micromechanical applications. The thickness of the film can be as low
as a couple of nanometers, it can be crystalline or amorphous, it can be
suspended or a piece in a multilayer stack, and its purpose can be anything
from a wear-resistant coating to a conductive layer. Along electrical, optical,
and mechanical properties, thermal properties are a major factor affecting
the performance of the devices. Often the operational temperature range of
devices can range even hundreds of degrees or the operational temperatures
are extremely high or low. Because of the low height dimension, the thermal
conductivity of the thin film can differ drastically from the bulk material
value. These factors result in a need to identify the thermal properties,
most importantly the thermal conductivity, of films precisely over a wide
temperature regime.

The thermal conductivity of the sample can be defined either by a
steady-state or a time-dependent (transient) method. Steady-state thermal
conductivity measurement methods require long equilibration times, are
prone to radiation errors, and are not suitable for film-like specimens as
multiple contacts into the sample are required to extract the relevant data.
Transient techniques generally require only a single contact into the surface
of the sample and are remarkably faster than the steady-state methods.
Two transient methods have been used extensively for measuring thermal
conductivity of thin films, time-domain thermoreflectance (TDTR) and the
three-omega method [1, 2].

Time-domain thermoreflectance utilizes a femtosecond or picosecond
pulsed laser to probe the sample. A “pump” beam is used to heat up a spot
on the sample surface and the cooling is monitored by the reflectivity of the
low-energy “probe” beam. The sample should be metallic or coated with a
thin metal layer, and the change in temperature affects the reflectivity of the
metal film and the obtained cooling curve is then compared into theoretical
model. The fine resolution of TDTR makes it possible to distinguish the
thermal conductance of interfaces from the thermal conductivity of the
films. The cost of a picosecond laser equipment makes the method quite
expensive and limits its availability. [1, 2]

For electrically insulating materials the three omega method provides
an affordable thermal conductivity measurement over a wide temperature
range [3]. It is based on the detection of a small third-harmonic voltage
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that is created while passing an alternating current through a heater. The
third harmonic generation in a metal heater was first observed in the 1910’s
[4]. At first the method was used to probe the thermal diffusivity of metal
filaments used in light bulbs [5]. During the 1960’s the technique was used
to determine properties like the specific heat of the materials used as heaters
in the experiment [6, 7, 8]. In the 1980’s a planar heater was used to probe
the frequency dependent specific heat of liquids near the glass-transition
[9, 10].

The major breakthrough happened in the late 1980’s when a thin line
heater deposited on the surface of the material of interest was used for the
first time [11]. An alternating current is passed through the heater at a
frequencyω, resistive heating generates an oscillating resistance component
at frequency 2ω. When the oscillating resistance component is coupled
with the driving current the result is a small 3ω voltage over the heater.
Thermal conductivity of the specimen can be calculated from the frequency
dependence of the oscillation amplitude and the phase of the 3ω voltage.
Heat affected region of the sample is reduced compared to steady-state
methods and the temperature oscillations in the specimen reach dynamic
equilibrium after few oscillation cycles. Applicable temperature range
for the 3ω method runs from 30 K to 1000 K, depending on the thermal
properties of the substrate and the heater geometry [3, 12]. The technique
has been used to measure the thermal conductivity of various different
materials, including dielectrics [3], porous materials [13], and even carbon
nanotubes [14].
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2 Theoretical Considerations for 3ω method

In the 3ω method a thin metal line is deposited on the specimen. The
metal line acts both as a heater and a resistance thermometer detector
(RTD). Alternating current (ac) is used in 3ω measurements because direct
current measurements require long equilibration times and are vulnerable
to radiation losses. The heater is assumed to be in intimate thermal contact
with specimen and its heat capacity is neglected, i.e., the heater is assumed
to be massless and/or infinitely good thermal conductor. A typical geometry
of the heater/thermometer, used also in this work, is shown in figure 1.
[3, 11]

l

2b

I

I

V

V

Figure 1: The geometry of the heater/thermometer used in the experiment.
The width of the line is 2b and the length l. Two bonding pads for
both the current input and the voltage readout.

When an ac current is passed through the heater, the power dissipated
by the heater due to resistive heating is

P = RI2, (1)

where R is the heater resistance and I is the current passing through the
heater. The alternating current is of the form

I = I0 cos(ωt). (2)
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Here I0 is the peak amplitude of the nominal heater current. Now the power
can be written as

P(t) =
1
2

I2
0R0 (1 + cos(2ωt)) = P0 + P0 cos(2ωt), (3)

where R0 is the nominal heater resistance and P0 = 1
2 I2

0R0. As it is seen in
equation (3), the power has a constant component independent of time
and an oscillating component. For a sinusoidal current, the rms ac power
dissipated over one cycle can be defined as

Prms =
1
2

I2
0R0, (4)

which equals P0.
For small temperature changes the response of the RTD can be written

as
R = R0(1 + β∆T), (5)

where β is the temperature coefficient of resistance (TCR), and R0 and R are
the resistances of the metal line at temperatures T0 and T0 + ∆T, respectively.

2.1 Fourier’s law and the heat diffusion equation

The Fourier’s law states that the heat flux, i.e., the flow rate of heat energy
through a surface is proportional to the negative temperature gradient
across the surface [15]:

~φ = −k∇T, (6)

where ~φ is the heat flux (W/m2), k is the thermal conductivity of the medium
(W/m·K), and ∇T is the temperature gradient in the specimen. In one
dimensional system the temperature gradient can be written simply as a
spatial derivative of the temperature, and the heat flux is then:

φ = −k
∂T
∂x
. (7)

The internal energy of the material per unit volume is related to the
temperature by

Q = ρcpT, (8)
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where ρ is the mass density of the material (kg/m3) and cp is the specific
heat capacity (J/kg·K).

The change in the internal energy in a differential spatial region

x − ∆x < ξ < x + ∆x

over a differential time period

t − ∆t < τ < t + ∆t

can be found by setting

cpρ

x+∆x∫
x−∆x

[T(ξ, t + ∆t) − T(ξ, t − ∆t)] dξ = cpρ

t+∆t∫
t−∆t

x+∆x∫
x−∆x

∂T
∂τ

dξdτ. (9)

If no work is done on or by the the specimen and there are no heat sinks or
sources, all the change in the internal energy is due to heat flux across the
boundaries. This can be expressed with the Fourier’s law as

k

t+∆t∫
t−∆t

[
∂T
∂x

(x + ∆x, τ) −
∂T
∂x

(x − ∆x, τ)
]

dτ = k

t+∆t∫
t−∆t

x+∆x∫
x−∆x

∂2T
∂x2 dξdτ. (10)

These integrals are different expressions for the same thing, the change in
the internal energy of the specimen. Due to conservation of energy these
must be equal and we can set

t+∆t∫
t−∆t

x+∆x∫
x−∆x

[cpρ
∂T
∂τ
− k

∂2T
∂ξ2 ] dξdτ = 0. (11)

For the integral to vanish it must hold that

∂T
∂t

=
k
ρcp

(
∂2T
∂x2

)
, (12)

which is the heat diffusion equation for a one dimensional system. The
coefficient k/ρcp is α, the thermal diffusivity and its unit is m2/s.
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2.2 Heat diffusion into specimen from an infinite planar
heater with sinusoidal heating

The sinusoidal current with frequency ω passing through the heater results
in a steady dc temperature rise and an oscillating ac temperature component
[16]. The dc component creates a constant temperature gradient into the
specimen while the ac part results in thermal waves diffusing into the
specimen at frequency 2ω. To write the ac temperature rise and its effect
on the heater resistance, we need to solve the heat diffusion equation for
the case of thin infinite planar heater on the surface of the specimen. The
system is visualized in figure 2.

z

A

Figure 2: One dimensional heat flow from a thin infinitely long plane heater
on a substrate. Heat enters the specimen uniformly over the
width of the heater and edge-effects are not considered. The zero
level of z-coordinate is located at the heater/specimen interface.

The heat generated in the heater diffuses into the specimen along
the positive z-axis, perpendicular to the plane of the heater. Oscillating
temperature inside the specimen is dependent both on the distance from
the heater and time, and can be written as

T = T(z, t). (13)

The heat diffusion equation (12) for the system then reads

ρcp

k
dT(z, t)

dt
−

d2T(z, t)
dz2 = 0. (14)

In the case of sinusoidal heating the temperature can be separated into time
and spatially dependent parts [15]:

T(z, t) = Tz exp(i2ωt). (15)

6



Plugging this into the heat equation, carrying out the differentiation with
respect to t and dividing by exp(i2ωt) yields

d2Tz

dz2 − i
2ω
α

Tz = 0 , (16)

where α is the thermal diffusivity, dimensions m2/s. Solution to the spatial
part inside the specimen, where z > 0, is

Tz = T0 exp(−qz), (17)

where q is the wavenumber of the thermal wave, defined as

q =
√

i2ω/α = (1 + i)

√
ω
α

=

√
2ω
α
· exp(iπ/4). (18)

Solution (17) vanishes at large z and yields the temperature of the heater T0

at z = 0. Now the time dependent periodic temperature inside the specimen
can be expressed as

T(z, t) = T0 exp(i2ωt − qz). (19)

The heat flux into the specimen right at the heater/sample interface can
be written as [17]

φ
∣∣∣
z=0+ = −k

dT(z, t)
dz

∣∣∣∣∣
z=0+

= kqT0 exp(i2ωt)

= kT0

√
2ω/α · exp(i2ωt + iπ/4). (20)

The flux equals the oscillating heat component produced in the heater per
unit area. The oscillating power component of the heater is seen in equation
(3). The oscillating power of the heater can be written in complex notation:

P0 cos(2ωt) = P0<
(
exp(i2ωt)

)
. (21)

Dividing the complex power by the heater area A and setting it equal to the
heat flux from equation (20) gives

P0

A
exp(i2ωt) = kT0

√
2ω/α exp(i2ωt + iπ/4). (22)
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This yields us an expression for T0, the oscillative heater temperature:

T0 =
P0

k
√

2ω/αA
· exp(−iπ/4) =

P0√
2ωcpkA

· exp(−iπ/4). (23)

Now we can express the specimen temperature oscillations with explicit
ω-dependence:

T(z, t) = T0 exp(i2ωt − qz) =
P0√

2ωcpkA
· exp(i2ωt − iπ/4 − qz). (24)

Temperature lags the heater current by π/4 and has ω−1/2-dependence.
Now we can calculate the effect of the oscillative heater temperature

to the heater resistance by using equation (5) and the real part of (24) just
below the heater where z = 0.

R(t) = R0(1 + β∆Tdc + β∆Tac cos(2ωt + π/4)), (25)

where ∆Tdc is the dc temperature rise and ∆Tac is P0/A · (2ωcpk)−1/2, the peak
amplitude of the ac temperature oscillations. The voltage across the RTD
can be obtained by multiplying the heater resistance with the input current,
resulting in

V(t) = I0R0

((
1 + β∆Tdc

)
cos(ωt) +

1
2
β∆Tac cos(ωt + π/4)

+
1
2
β∆Tac cos(3ωt + π/4)

)
. (26)

The 3ω and ω components in the voltage with phase shift result from
multiplying the 2ω term in the resistance with the input current oscillating
at the frequency ω. We can express the 3ω amplitude as

V3ω =
1
2

V0β∆Tac, (27)

where V0 = I0R0. By measuring the voltage at the frequency 3ω one is able
to deduce the in-phase and out-of-phase components of the temperature
oscillations.

The finite thermal diffusion time τD of the specimen affects both the
magnitude and the phase of the temperature oscillations. Required time
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for the thermal wave to propagate a distance L in the specimen is given by
equation

τD = L2/α , (28)

where α is the thermal diffusivity [18]. The angular frequency related to
the thermal diffusion is directly proportional to thermal diffusivity

ωD =
2π
τD

=
2πα

l2 ∝ α. (29)

If the thermal diffusivity is infinite, no temperature gradients will form into
the specimen and there would be no phase lag between the driving current
and the temperature oscillations. At the limit of zero thermal diffusivity
there would be no heat propagation into the sample.

2.3 One-dimensional line heater inside the specimen

To calculate the thermal conductivity of the material under a line heater, one
can first study the simplified model of temperature oscillations a distance
r = (x2 + y2)1/2 away from an infinitely narrow line source of heat on the
surface of an infinite half-volume.

First the form of the temperature oscillations has to be solved for the
case of infinite volume. The solution can be found in for example Carslaw
and Jaeger [15] and their arguments are repeated here. Picture of the
arrangement of the infinite case is shown in figure 3. Assuming that there is
no axial or circumferential temperature gradients, the spatial heat diffusion
equation for the temperature in the cylinder, T(r, t), can be written as

∂2T(r, t)
∂r2 +

1
r
∂T(r, t)
∂r

−
1
α

∂T(r, t)
∂t

= 0. (30)

The temperature function can be divided into spatial and time dependent
parts because the heating power is sinusoidal, as was the case for the
cartesian system in the previous subsection.

T(r, t) = Tr exp(i2ωt). (31)

As previously, plugging this into the heat equation, carrying out the
differentiation with respect to t and dividing by exp(i2ωt) yields

d2Tr

dr2 +
1
r

dTr

dr
− i

2ω
α

Tr = 0. (32)
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r

y
x

z

Figure 3: The geometry of an infinite circular cylinder with one dimensional
line heater running through the cylinder axis.
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Here i2ω/α equals q2, the wavenumber of the thermal wave squared, found
in the previous subsection. Changing variables from r to y = qr yields

y2 d2T(y)
dy2 + y

dT(y)
dy

− y2T(y) = 0. (33)

This is a modified Bessel equation of zeroth order. The solution is a linear
combination of modified Bessel functions of first and second kind

Tr = AI0(qr) + BK0(qr), (34)

where A and B are constants and I0(qr) and K0(qr) are zeroth order modified
Bessel functions of first and second kind with arguments qr, respectively.
The functions behave oppositely, I0 grows exponentially and K0 decays
exponentially when increasing the argument, the behavior is shown in
figure 4.

0.5 1 1.5 2
0

10

20

30

X

(a) I0(x).

0.5 1 1.5 2 2.5
0

1

2

3

4

X

(b) K0(x).

Figure 4: The behavior of the zeroth order modified Bessel functions of
first and second kind when going along the positive x-axis. The
function of first kind I0 explodes, whereas the function of the
second kind K0 decays rapidly.

The coefficient A has to be zero because the temperature should decrease
when going away from the heater. Coefficient B can be found by requiring
the heat flux through a cylindrical surface at a distance r = r0, where r0 → 0
away from the heater to match the flux from the line source. From the
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Fourier’s equation (7):

φ
∣∣∣
r=r0

= −k
dT(r, t)

dr

∣∣∣∣∣
r=r0

= −kB
dK0(qr)

dr

∣∣∣∣∣
r=r0

· exp(i2ωt)

= kqBK1(qr0) · exp(i2ωt), (35)

where K1 is a first order modified Bessel function of second kind. On the
other hand, the heat flux from the heater through a cylindrical surface at
r = r0 is

φ
∣∣∣
r=r0

= P/A =
P0

2πlcylr0
· exp(i2ωt). (36)

Equaling these we get the coefficient B:

B =
P0

2kπlcylr0

1
qK1(qr0)

. (37)

Series expansion for qr0K1(qr0) at r0 = 0 yields

qr0K1(qr0) = 1 + O(r2
0). (38)

This gives the expression for the spatial part of the temperature oscillations:

T(r) =
P0

2kπlcyl
K0(qr). (39)

The total function for the temperature in the cylinder is then

T(r, t) =
P0

2kπlcyl
K0(qr) · exp(i2ωt). (40)

2.4 One-dimensional line heater at the surface of the spec-
imen

The result for infinite volume can used to express the temperature oscil-
lations for infinite half-volume. Halving the volume means that twice as
much of heat flux flows into the remaining volume, assuming no radiation,
convection or conduction on the surface. This is the case for the 3ω method
because measurements are done in vacuum and radiation losses are low
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due to the rapid decay of the temperature oscillations [3]. Half-infinite case
is seen in figure 5. Equation (39) then becomes

T(r) =
p0

πk
K0(qr), (41)

and the total temperature function (40)

T(r, t) =
p0

πk
K0(qr) · exp(i2ωt), (42)

where p0 equals P0/lcyl, the heater power per unit length. The real part of
the temperature function is visualized in figure 6.

r

y
x

z

Figure 5: The geometry of a half-infinite circular cylinder with one dimen-
sional line heater at the surface.

Even though the thermal oscillations decay rapidly because of the K0(qr),
one has to make sure that the oscillations are contained inside the sample.
This is done by calculating the penetration depth of the thermal wave in
the specimen. The thermal penetration depth λ relates to the wavenumber
of the thermal wave q by

λ =
1
|q|

=

√
α

2ω
. (43)

Specimen can be considered semi-infinite if its thickness exceeds 5 thermal
penetration depths [3].
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Figure 6: Visualization of the real part of equation (42). The oscillations
decay rapidly away from the heater and are even in the time-
domain.
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2.5 Finite heater width

Further, the heater in the experiment is not infinitely narrow but has a finite
width. The effect of the finite width has to be taken into account in the
analysis. This is done by constructing the heater from infinite number of
1D line heaters over the width of the heater [3]. This is visualized in figure
7. Mathematically this is done by taking a Fourier transform of (41) with
respect to x-coordinate. Only the oscillations at the surface are important,
so y = 0. Now Fourier cosine transformation can be used because the
temperature function is an even function. The Fourier cosine transform
pair is:

f̂ (η) =

∞∫
0

f (x) cos(ηx)dx, (44)

f (x) =
2
π

∞∫
0

f̂ (η) cos(ηx)dη. (45)

For the spatial temperature oscillations the cosine transform reads [19]

T(η) =

∞∫
0

T(x) cos(ηx)dx =
p0

πk

∞∫
0

K0(qx) cos(ηx)dx =
p0

2k
1√

η2 + q2
. (46)

The finite width can be added into (46) by multiplying it with the Fourier
transform of the heat source as a function of the x-coordinate. Heat enters
the specimen evenly over the width of the heater ranging from −b to b. This
behavior can be expressed as a rectangular function with values 1 for x < |b|
and 0 elsewhere. According to the convolution theorem, the multiplication
of the Fourier transforms of (46) and the rectangular function equals the
Fourier transform of the convolution of the functions in the x-space.

T(η) =
p0

2k
1√

η2 + q2

∞∫
0

rect(x) cos(ηx)dx =
p0

2k
sin(ηb)

ηb
√
η2 + q2

. (47)

Inverse transform gives

T(x) =
p0

πk

∞∫
0

sin(ηb) cos(ηx)

ηb
√
η2 + q2

dη. (48)
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Figure 7: The temperature inside the specimen at a certain point is result of
the heat flow from all the one dimensional line sources that make
up a heater of finite width.

Equation (48) gives the form of temperature oscillations on the surface of
the specimen a distance x away from the center of the heat source that has a
finite width 2b. Since the thermometer and the heater are the same element
the measured temperature is some average temperature over the width of
the line. Expression (48) can be averaged by integrating it with respect to
x from 0 to b and dividing by b to give the temperature measured by the
thermometer:

Tavg =
1
b

b∫
0

T(x)dx =
p0

πk

∞∫
0

sin2(ηb)

(ηb)2
√
η2 + q2

dη. (49)

Equation (49) is plotted in figure 8. The linear (on logarithmic scale)
regime at the small frequencies is used to calculate the thermal conductivity
of the specimen. The expression (49) cannot be solved in closed form, but at
the limit of large thermal penetration depth an asymptotic solution exists.
To deem the thermal penetration depth large it has to be compared to the
heater half-width b, which is in the same length scale [3]. When the heater
half-width b is much smaller than the thermal penetration depth λ, we can
write

lim
b→0

sin(bη)
(bη)

= 1. (50)

Values of η between λ < η < 1/b dominate the integral and the upper limit
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can be set to 1/b [3]. After these, the expression can be approximated as

Tavg ≈
p0

πk

1/b∫
0

1√
η2 + q2

dη =
p0

πk

ln 1
b

+

√
1
b2 + q2

 − ln q


≈

p0

πk
(
ln 2 − ln(qb)

)
, (51)

where series expansion for the logarithm at b = 0 was used in the last
approximation. It is more convenient to express this in terms of the thermal
excitation frequency 2ω, remembering that q = (1 + i)

√
ω/α :

T(2ω) = −
p0

2πk

(
ln(2ω) + ln(b2/α) − 2 ln 2

)
− i

p0

4k
. (52)

2.6 The effect of a thin film

The effect of the thin film on the substrate can be added to equation (52) as a
thermal resistance independent of the driving frequency [20]. To ensure that
the edge effects do not become significant the width of the heater should be
large compared to thickness of the film being measured [21]. The boundary
resistance of the film/substrate interface adds to the thermal conductivity
value measured for the thin film [3]. When measuring thin film thermal
conductivity the heat flow from the heater should be perpendicular and
uniform through the film. The effect of the film is then

∆T f =
P0t

2blk f
, (53)

where l is the length of the heater wire, t is the thickness of the thin film,
and k f is the thermal conductivity of the film.

The amplitude of the temperature oscillations can be expressed in
measurable quantities with equation (27) :

T(2ω) =
2V3ω

βI0R0
. (54)
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Figure 8: Visualization of equation (49). The plot shows the magnitudes
of the real (in-phase) and imaginary (out-of-phase) components
of the thermal oscillations versus the temperature excitation
frequency 2ω. Prms was set to 1 W, l to 1 m, k to 1 W/m·K, b to 5µm
and α to 1 mm2/s.

18



Equations (52), (53) and (54) combine up into

T(2ω) = Ts + T f =
2V3ω

βI0R0
= −

P0

2πksl

(
ln(2ω) + ln(b2/α) − 2 ln 2

)
− i

P0

4ksl
+

P0t
2bk f l

, (55)

where the subscript s denotes the substrate. Thermal conductivity of the
thin film from (53) can now be expressed as

k f =
P0t

2bl(∆T − ∆Ts)
. (56)

The thermal response of the substrate Ts can be calculated directly from
equation (52) and subtracted from the measured ∆T. Thermal conductivity
of the substrate can also be calculated from the slope of ∆T versus ln 2ω as
only the ln(2ω)-term has frequency dependence.

The frequency range for thin film thermal conductivity measurement
depends on the applicable error level in the results when using the linear
regime approximation (52). The regime can be located by monitoring the
out-of-phase output, which should stay constant over the suitable frequency
range. The specimen thickness should exceed 5 thermal penetration depths
to contain the thermal oscillations in the sample whereas the heater half-
width should be small compared to the thermal penetration depth. Also
the film thickness should be small compared to the heater half-width to
maintain the heat flow in 1D through the film. Applicable boundary
restrictions can be set as [22]

5b < λ < ts/5 , (57)

where λ is the thermal penetration depth of the substrate, introduced in
subsection 2.4, and ts is the substrate thickness. This yields for the input
frequency

25α
4πt2

s
< f <

α
100πb2 . (58)

For a 800 µm thick silicon substrate with thermal diffusivity of 8.8 mm2/s
and the heater half-width of 2.5 µm the limits become

270 Hz < f < 45000 Hz.
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3 Experimental Methods

3.1 Overview

Materials used in the heater fabrication for the 3ω method have included
for example gold, aluminum, and silver [3, 23]. These materials have large
enough temperature coefficients of resistance to create a measurable 3ω
voltage signal. Gold and bismuth were used in the experiments of this work.
Bismuth was chosen because the resistivity of thin films has good response
to temperature changes also at low temperatures [24]. The resistivity of
bulk bismuth, 1.29 µΩm, is high compared to traditional heater metals like
gold with 22.14 nΩm and silver, 15.87 nΩm, all the values at 20 °C [25].
Thin bismuth films have negative TCR [24], whereas the previous studies
have used heater materials with positive coefficients [3, 21, 12].

Figure 9: SEM image of a bismuth heater/thermometer deposited on SiOx.
The length of the line is 1 mm and the width is 10 µm.

20



3.2 Sample fabrication

The films used in the experiments were vacuum deposited on thermally
oxidized boron doped silicon substrates. Oxide thickness of the films was
measured with Rudolph AUTO EL III ellipsometer and found to be around
300 nm. To achieve optimal thermal contact between the heater and the
substrate the chips were cleaned by sonicating them in hot acetone for 1− 2
minutes. After the sonication the chips were rinsed with isopropyl alcohol
(IPA) to remove the acetone residue and blow dried with nitrogen.

(a) Coat and bake copolymer resist. (b) Coat and bake PMMA.

(c) Exposure. (d) Development.

(e) Metal evaporation. (f) Lift-off.

Figure 10: Schematics of the lithographic process.

The sample pattern is shown in figure 9 and the lithography process
in figure 10. Electron beam lithography process was used to manufacture
the films. First, a copolymer resist P(MMA-MAA) EL9 or EL11 (9% or 11%
polymethyl methacrylate methacrylic acid solids in ethyl lactate) is spun
on the chips for 45 seconds at 2500 rpm and baked on a hot plate for 90
seconds at ∼ 160 °C. On top of that is spun a layer of PMMA C2 (2% solids
in chlorobenzene) with the same spinning recipe and bake time. Copolymer
resist is more easily exposed by the electron beam than the PMMA and
creates and undercut structure. Undercut eases the lift-off step as the metal
pattern is not adhered into the resist [26]. The sample pattern was designed
with Elphy Quantum 1.3 software and patterned with LEO 1430 scanning
electron microscope. After the exposure the top layer of the stack was
developed in a mixture of methyl isobuthyl ketone (MIBK) and isopropanol
alcohol (IPA) (1:2 v/v) for ∼ 30 − 45 seconds, rinsed with IPA and dried
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with nitrogen. The bottom layer was further developed in a 1:2 v/v mixture
of 2- methoxyethanol and methanol for ∼ 5 seconds, rinsed with IPA and
dried in nitrogen flow.

The gold films were evaporated with a custom-made ultra-high vacuum
e-beam evaporator at a rate of 2 nm/s. A 15 nm titanium layer was used
as an adhesion layer for the gold heater. Bismuth was evaporated by
Balzers BAE 250 vacuum e-beam evaporator at a base pressure of ∼ 5 mbar.
Bismuth used for the films is 99.9999% pure, obtained from Goodfellow Inc.
Evaporation rate was around 2 nm/s. The lift-off was done in hot acetone,
with a brief sonication if necessary. After the lift-off the chips were rinsed
with IPA and dried.

3.3 Measurement setup

The schematics of the measurement setups are shown in figures 11 and 12.
Stanford Research Systems SR830 lock-in amplifier is used to supply the
fundamental sinusoidal heater voltage and to read the ω and 3ω signals.

In the first setup the current bias is achieved by using a load resistor R0

in series with the sample, 10 kΩ for gold samples and 100 kΩ for bismuth.
Voltage drop across the sample is measured differentially with the lock-in
amplifier, both the 3ω and the fundamental 1ω voltages are measured
simultaneously by using separate lock-in amplifier to read the different
harmonics. The fundamental signal is fed as the reference signal to both of
the lock-in amplifiers. Temperature of the sample stage is measured with a
Pt100 resistance thermometer by reading its resistance with AVS resistance
bridge.

The second approach involves a Wheatstone bridge to extract the 3ω
voltage originating from the sample, as shown in figure 12. Resistor R2

is one hundred times larger than R1 to get almost all of the current pass
through the sample resistance Rs. With the bridge setup it is possible to
increase the resistive heating of the metal line as more current can be passed
through it. The bridge is balanced by tuning the variable resistor Rv and
monitoring the voltage between the bridge arms by SR830 lock-in amplifier.
The 3ω output of the balanced bridge W3ω is related to V3ω of the sample by

W3ω =
R1

Rs + R1
V3ω,
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Sample

Vacuum chamber
R0

Lock-in
amplifier

Signal in

Temperature

Lock-in amplifier

V

Sine out

Reference
     in

Read-out

Figure 11: Schematic of the measurement setup. Two lock-in amplifiers
make it possible to read the fundamental 1ω voltage and the 3ω
voltage simultaneously.
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V0 W3w

Rv

R2R1

Rs

Figure 12: Schematics of the Wheatstone bridge measurement setup. SR830
lock-in amplifiers were used to supply the fundamental voltage
and to read the 3ω response.

where Rs is the room temperature resistance of the sample and R1 is the
resistance of the in-series resistor [27].

3.4 Measurements

The 3ω measurements were performed at room temperature and above
by using a custom compiled measurement instrumentation. A picture of
the vacuum chamber, the electrical feedthrough and the sample stage is
seen in figure 13. The samples were mounted on the sample stage with
silver paint to ensure good thermal contact and easy removal. Electrical
contacts for the gold samples were made with Kulicke & Soffa 4523A wire
bonder with Al-wire. For bismuth samples the electrical contacts were
made by melting a piece of indium into the tip of a wire and pressing it to
the bonding pad with a scalpel tip. The bonding pads were made large for
this reason. This approach is required because bismuth is a soft material
and traditional ultrasonic bonding does not work properly on it. The Pt100
resistance thermometer was mounted on the stage with thermal grease to
measure the temperature of the system. The sample stage was inserted
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Figure 13: The vacuum chamber with the electrical feedthrough and the
sample stage.
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into a vacuum chamber to minimize the heat loss to the surroundings. A
vacuum of 10−3

− 10−4 mbar was achieved with a diffusion pump.
Measurement data were collected with a custom LabVIEW virtual

instrument capable of handling all the necessary input channels at the
same time. The temperature coefficient of resistance of the metal line
was measured prior to the 3ω measurements. The vacuum chamber was
heated up to 40 °C by blowing hot air into the walls with a hot-air gun.
Temperature response of the heater voltage was then measured during
the cooling of the vessel back to the room temperature. Small amplitude
signal of 0.1 V rms with 100 Hz frequency at lock-in output was used to
avoid resistive heating of the metal line. A 100 kΩ resistor in series with
the sample was used to limit the current in the circuit. Temperature of the
stage was simultaneously measured with the Pt100 to fix the heater data on
a temperature scale.

Actual 3ω measurements were performed at room temperature or
during the cooldown after heating. Frequencies were scanned between
100 − 1000 Hz at 100 Hz intervals with a LabVIEW instrument specially
made for this purpose. Each frequency was maintained for 10 seconds to
stabilize the readings. However, the requirement of the stable readings led
into measurement times being over 2 minutes and the temperature of the
sample stage decreased by multiple degrees during the frequency sweep
from 100 to 1000 Hz. Maintaining stable temperature with the hot-air gun
proved to be challenging and so the measurements were performed near
the room temperature where the temperature change of the sample stage
was negligible. The magnitude of the driving current was set so that the
amplitude of the 1ω voltage was approximately 10000 times larger than
the 3ω voltage. At this ratio the fluctuations of the output signal remained
moderate so that the measurements could be performed.

The manual bonding method of the electrical contacts into bismuth
samples turned out to be problematic. Most of the contacts made into
the films did not survive long enough for he measurement cycles to be
performed. Some contacts were lost by accidentally heating the specimen
vessel too much and thus melting the indium contacts. The failing of the
electrical contact between the wire and the bismuth pads was observed as
increasing of the sample resistances.
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4 Results

The temperature coefficient of resistance of the metal heater was obtained
by linear regression from the measured temperature response. For bismuth
an example is shown in figure 14 and for gold in figure 15. Resistance of
the heater was obtained from the fundamental 1ω voltage measured over
the heater. The value of the TCR is obtained by dividing the slope of the
temperature response of the metal line with the heater resistance at ambient
temperature. For bismuth lines the TCR values are around 2 · 10−3 1/K and
for gold lines around 3 · 10−3 1/K.
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Figure 14: Resistance of a 5 µm wide and 300 nm thick bismuth line versus
temperature near the room temperature. Step-like behavior is
due to insufficient resolution.

The error in the temperature oscillations of the specimen builds up
mostly from the error in TCR measurement and the fluctuations in the
output of the 3ω voltage. Possible error sources can be seen in equation
(54), V3ω and the TCR dominate the error. The linear fit into heater data
for TCR is accurate, some error may arise from the lag between the heater
and the Pt100 sensor. If the response time of the Pt100 is multiple seconds
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Figure 15: Resistance of a 10 µm wide and 250 nm thick gold line versus
temperature near the room temperature.

behind that of the metal line the temperature scale of the linear fit is off by
some degrees. The measured temperature response of the metal lines is
however linear over a range of 10 degrees so a lag of some degrees would
not affect the value of TCR.

Measured 3ω voltages for a 5 µm wide and 300 nm thick bismuth
heater are seen in table 1. Temperature oscillations in the substrate are
calculated from equation (52). Values used for thermal conductivity and
thermal diffusivity of the silicon substrate are 149 W/m·K and 8.8 · 10−5

m2/s, respectively [25]. The values measured with the setup of figure 11 are
seen in table 1 along the results for the measured temperature oscillations,
the measured temperature oscillations in the thin film and the calculated
thermal conductivity of the film. The thermal conductivity of the silicon
dioxide film is calculated with equation (56), the film thickness set to 300
nm. Results for a 10 µm wide and 250 nm thick gold heater measured with
the setup of figure 11 are seen in table 2.

The calculated values for temperature oscillations in the substrate are
small when compared into values reported earlier [23, 20]. The oscillations
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Table 1: Output data for a 5 µm wide and 300 nm thick bismuth heater. The
driving frequency and the corresponding temperature oscillations
of the whole specimen, the film, and the substrate plus the thermal
conductivity of the thin film. Measurement was done with 0.75 V
input voltage to get a well reacting 3ω output. The heater power
per unit length is 121 µW/m.

f (Hz) V3ω (µV) ∆T (K) ∆Ts (µK) ∆T f (K) k f (W/m·K ·10−5)
100 2.77 0.140 1.52 0.140 5.18
200 2.80 0.142 1.42 0.142 5.13
300 2.79 0.141 1.37 0.141 5.14
400 2.81 0.142 1.33 0.142 5.11
500 2.81 0.142 1.30 0.142 5.12
600 2.84 0.144 1.27 0.144 5.06
700 2.85 0.144 1.25 0.144 5.05
800 2.89 0.146 1.24 0.146 4.98
900 2.88 0.145 1.22 0.145 5.01

1000 2.88 0.145 1.21 0.145 5.01

Table 2: Output data for a 10 µm wide and 250 nm thick gold heater. The
driving frequency and the corresponding temperature oscillations
of the whole specimen, the film, and the substrate plus the thermal
conductivity of the thin film. Measurement was done with 3.156 V
input voltage to get a well reacting 3ω output. The heater power
per unit length is 1.4 mW/m.

f (Hz) V3ω (µV) ∆T (K) ∆Ts (µK) ∆T f (K) k f (W/m·K ·10−5)
100 4.26 0.703 16.8 0.703 5.98
200 4.21 0.693 15.6 0.693 6.06
300 4.23 0.697 14.9 0.697 6.02
400 4.21 0.694 14.4 0.694 6.05
500 4.24 0.699 14.0 0.699 6.00
600 4.25 0.701 13.7 0.701 5.99
700 4.25 0.700 13.4 0.700 6.00
800 4.22 0.695 13.2 0.695 6.04
900 4.23 0.698 13.0 0.698 6.02

1000 4.31 0.710 12.8 0.710 5.91
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in the substrate should be of the same order of magnitude as the total
oscillations. The error in the measurement causes the calculated thermal
conductivity of the silicon dioxide film to be 5 orders of magnitude off from
an acceptable value about 1.3 W/m·K [23, 20]. The expected 3ω output of the
measurement can be calculated when the film thermal conductivity is fixed
to 1.3 W/m·K. The values obtained from equation (55) give values around
1 − 2 · 10−10 V. Measurements performed with the Wheatstone bridge setup
were unsuccessful. The circuit did not give reasonable readings for the 3ω
voltage over the bridge. This is probably due to third harmonic noise from
the components or the signal sources that were used in the setup.

The vacuum does not affect the output value of the 3ω signal. This is not
desired behavior as the heat generated in the metal line should be conducted
into the surrounding air when measuring in atmospheric pressure. The
reason behind this is probably the noise in the circuit. The out-of-phase
signal, which can be used to locate the linear regime [3], did not show any
linear behavior. The signal was however smaller than the in-phase signal
by a factor of ten, which is somewhat proper behavior. Fluctuations in both
the magnitude and the phase of the out-of-phase signal were unpredictable
and the identification of the linear regime based on the out-of-phase output
proved implausible.
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5 Conclusions and Future Work

The goal of validation of the 3ω method for thermal conductivity measure-
ments was not achieved. Obtained 3ω signal did not contain information
about the thermal properties of the measured samples. At first this was
thought to be due to low power level in the metal line heater, but further
measurements with the Wheatstone bridge setup suggest that the cause is
spurious 3ω signals from the components. The actual source of this signal
remains unknown.

If the 3ω measurements are further pursued the measurement setup
should be rebuilt keeping in mind the requirement of accurate temperature
control of the stage and high enough power in the metal line heater. For
temperatures lower than room temperature a dipstick with vacuum would
be optimal. Raising the dipstick from liquid helium or liquid nitrogen
provides slow and controllable rate of temperature change and accurate
measurements at precise temperatures would be possible. A standardized
specimen mount with connections to the dipstick would ease the problems
with the electrical connections to the sample.

A more sophisticated LabVIEW instrument to sweep frequencies at
smaller intervals than 100 Hz would ease the locating of the linear regime.
At one frequency step the instrument should record the in-phase 1ω and
3ω voltages over the sample plus the out-of-phase 3ω signal with the phase
lag. For SR830 GPIB bus can be used to command the lock-in amplifier to
change the signal frequency and the channel output. A possible problem
may arise from the lock-in amplifier’s limited output signal magnitude. A
common multimeter can be used to monitor the 1ω voltage if the output
range of the lock-in amplifier is exceeded. Temperature measurements
below −200 °C require a temperature probe other than Pt100.

31



References

[1] D.G. Cahill et al., J. Appl. Phys. 93 (2003) 793.

[2] W.S. Capinski et al., Phys. Rev. B 59 (1999) 8105.

[3] D.G. Cahill, Rev. Sci. Instrum. 61 (1990) 802.

[4] O.M. Corbino, Phys. Z. 11 (1910) 413.

[5] O.M. Corbino, Phys. Z. 12 (1911) 292.

[6] L.R. Holland, J. Appl. Phys. 34 (1963) 2350.

[7] D. Gerlich, B. Abeles and R.E. Miller, J. Appl. Phys. 36 (1965) 76.

[8] L.R. Holland and R.C. Smith, J. Appl. Phys. 37 (1966) 4528.

[9] N.O. Birge and S.R. Nagel, Phys. Rev. Lett. 54 (1985) 2674.

[10] N.O. Birge and S.R. Nagel, Rev. Sci. Instrum. 58 (1987) 1464.

[11] D.G. Cahill and R.O. Pohl, Phys. Rev. B 35 (1987) 4067.

[12] S.M. Lee, D.G. Cahill and T.H. Allen, Phys. Rev. B 52 (1995) 253.

[13] G. Gesele et al., J. Phys. D 30 (1997) 2911.

[14] X.J. Hu et al., J. Heat Transfer 128 (2006) 1109.

[15] H. Carslaw and J. Jaeger, Conduction of heat in solids (Clarendon
Press, 1959).

[16] K. Banerjee et al., Reliability Physics Symposium Proceedings, 1999.
37th Annual. 1999 IEEE International, pp. 297 –302, 1999.

[17] U.G. Jonsson and O. Andersson, Meas. Sci. Technol. 9 (1998) 1873.

[18] N.O. Birge, Phys. Rev. B 34 (1986) 1631.

[19] A. Erdélyi, Tables of Integral Transforms (McGraw-Hill, 1954).

[20] S.M. Lee and D.G. Cahill, J. Appl. Phys. 81 (1997) 2590.

32



[21] D.G. Cahill, M. Katiyar and J.R. Abelson, Phys. Rev. B 50 (1994) 6077.

[22] D. de Koninck, Thermal conductivity measurements using the 3-omega
technique: Application to power harvesting microsystems, Master’s
thesis, Department of Mechanical Engineering, McGill University,
Montréal, Canada, 2008.

[23] T. Yamane et al., J. Appl. Phys. 91 (2002) 9772.

[24] R.A. Hoffman and D.R. Frankl, Phys. Rev. B 3 (1971) 1825.

[25] W. Haynes and D. Lide, CRC Handbook of Chemistry and Physics: A
Ready-Reference Book of Chemical and Physical Data .

[26] MicroChem PMMA Data Sheet, http://microchem.com/pdf/PMMA_
Data_Sheet.pdf, Accessed 12/2012.

[27] N.O. Birge, P.K. Dixon and N. Menon, Thermochim. Acta 304–305
(1997) 51 .

33

http://microchem.com/pdf/PMMA_Data_Sheet.pdf
http://microchem.com/pdf/PMMA_Data_Sheet.pdf

	Introduction
	Theoretical Considerations for 3 method
	Fourier's law and the heat diffusion equation
	Heat diffusion into specimen from an infinite planar heater with sinusoidal heating
	One-dimensional line heater inside the specimen
	One-dimensional line heater at the surface of the specimen
	Finite heater width
	The effect of a thin film

	Experimental Methods
	Overview
	Sample fabrication
	Measurement setup
	Measurements

	Results
	Conclusions and Future Work

