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Abstract

In this thesis we study the Higgs sector of the Standard Model and compare
it to the latest data from the LHC and Tevatron experiments. Then we
consider two extensions of the Higgs sector. First we extend the Standard
Model Higgs sector with one real SU(2) singlet and then we consider two-Higgs-
doublet model and extend also it with one real singlet. In both extensions
the singlet scalar is considered as a potential dark matter candidate. We
find that the parameter space of the so called two-Higgs-doublet-inert-singlet
model includes regions which could provide a dark matter candidate which
constitutes significant amount of the total dark matter mass density.
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Chapter 1

Introduction

Nowadays the understanding of the elementary particle physics is largely based
on the Standard Model (SM). The success of the SM has been astonishing. It
predicted the existence of the heaviest quarks (charm [1] , bottom [2] and top
[3]) and gauge bosons Z, W [4, 5] before they were experimentally observed.
In the last few decades it has been tested in many experiments and shown
to successfully describe the high energy physics phenomena. For a long time
the Higgs sector has been the only unverified part of the SM. However, the
newly found neutral boson [6, 7] seems to be well consistent with the SM Higgs
boson.

Despite the great success we are not fully pleased with the SM. First of
all there are some problems with the Higgs sector. The SM does not explain
why the weak force is so much stronger than gravity. The central challenges in
elementary particle physics today are Higgs physics, dark matter problem and
baryon asymmetry problem. For some reason there seems to be much more
matter than antimatter in the Universe. To explain the asymmetry one would
need sufficient amount of C'P violation in the elementary particle physics
model. The SM does not offer enough C'P violation and can not explain the
baryon asymmetry. Moreover, measurements [8] have shown that only less
than 5% of the energy density of the observable universe consists of ordinary
baryonic matter. The rest of the matter-energy content is dark matter (27%)
and dark energy (68%). The nature of dark matter is still one of the biggest
mysteries in physics. New weakly interacting massive particles (WIMPs) are
probably the most favorable candidates for the dark matter, but there are no
WIMP candidates in the SM. Also the nature of dark energy is not understood,
but we will ignore the dark energy problem in this thesis.

There is no way SM could explain the dark matter or the baryon asymmetry
problem, thus we need to search for a model beyond the SM. In this thesis we
will concentrate mainly on the dark matter problem, keeping in mind also the
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baryon asymmetry problem. One way to approach the dark matter problem is
to try to understand the physics of the Higgs sector. Extensions of the Higgs
sector could provide dark matter candidates as well as sources for the C'P
violation which could explain the baryon asymmetry. We will consider two
extensions of the Higgs sector: first we consider the SM Higgs sector with an
additional real scalar singlet, and then we study the two-Higgs-doublet model
with an additional real singlet. In both cases the singlet field is considered as a
dark matter candidate. We constrain these models with Higgs decay data from
the LHC and Tevatron experiments, and with the electroweak precision data.
Moreover we calculate relic abundances of the dark matter particle candidates.
We begin with the SM Higgs sector.



Chapter 2

The Standard Model Higgs sector

2.1 Electroweak symmetry breaking

The SM is a gauge theory, which describes fundamental particles and their
electroweak and strong interactions. The gauge symmetry of the SM is
SU(3)c x SU(2), x U(1)y . We will focus on the electroweak sector SU(2), X
U(1)y introduced by Glashow, Weinberg and Salam [9, 10| . The gauge
symmetry prevents us from adding mass terms for gauge bosons and fermions.
In the SM masses are obtained through spontaneous symmetry breaking (SSB)
[11, 12| , that via the Higgs mechanism gives masses to gauge bosons W and
Z and leaves only U(1)gy as a manifest symmetry of the vacuum. The idea of
the Higgs mechanism is to introduce scalar fields and a scalar potential, which
gives a non-zero vacuum expectation value (VEV) to one of the scalar fields,
leading to massive gauge bosons, quarks and charged leptons through their
couplings with the scalar fields.

In the SM the scalar sector consists of one SU(2) doublet (with hypercharge

Y = 1)
o= (%) 1)

The Lagrangian describing the scalar sector is

EHiggs = (Du¢)T(DN¢) - V(Cb) ) (2'2)
where v
. 7_ y -/
D, =0,+ ngJAfL +ig EB“ (2.3)

is the covariant derivative and
A
V(9) = 6o+ (60 (24)
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is the scalar potential. Due to hermiticity of the Lagrangian the parameters ;i
and A are real. Stability of the vacuum requires the potential to be bounded
from below, which means that X is positive. To obtain a non-zero minimum of
the potential, which is essential in order to break the symmetry, we also take
p? > 0. Then we choose a particular minimum

(9) = ( % ) , (2.5)

where v = 2u/+/\ , so that the doublet ¢ acquires a VEV (¢) .
To find out the tree-level mass eigenstates we calculate the mass matrices,

oV
M? = 2.6
(3@8(@@ ¢:<¢>> 7 ( )

for charged and neutral scalar fields, and diagonalize them. In the SM the full
mass matrix in the basis {¢™, Re (¢°),Im (¢°)} is

0 0
0 22 0 (2.7)
0 0 0

Hence, after the symmetry breaking we obtain one neutral massless scalar field
Im (¢°) and two charged massless scalar fields ¢* , which are the Goldstone
bosons eaten by the gauge fields leading to massive gauge bosons Z and W¥ |
and one neutral massive scalar boson Re (¢°) , which is the Higgs boson.

To see in detail how we get rid of the Goldstone bosons we write

¢=c T ( \/%(hOJr o) ) , (2.8)

where n; and h are real scalar fields with VEVs (n;) = 0 = (h) , and 77
are the SU(2) generators. Now we transform to the so called unitary gauge
by performing a SU(2);, gauge transformation U = €™ . Expanding the
Lagrangian of the Higgs sector Lyges We get

Litiggs = 70°0° + 29" W°W-WT 4 S oW W 4 2 g% W W™

1
1 1 1

+ g(g2 +g*)h*Z% + 1(92 + ¢*)hvZ? + g(g2 + ¢ 2? (2.9)
A1 1 v
A iy e W

T TatvAT 16 °



where |
Wt = _— (Al 74A? , 2.10

Z\ [ cosby —sinby A3
( A ) - < sinfy  cos Oy ) ( B ) ’ (2.11)
The Weinberg angle 6y, is defined such that
e , e

— = 2.12
g sin Oy g cos Oy ( )

and

in order to obtain the correct electron-photon and neutrino-photon interactions.

From the equation (2.9) we can easily identify mass terms for W and Z bosons

as well as for the Higgs boson h , and see that there are no Goldstone bosons.
The parameter v is attached by the Z boson mass

My =+/g>+ g"%v/2, (2.13)

which has a measured value Mz = 91.19 GeV . For coupling constant values
g(Mz) = 0.650 , ¢'(M,) = 0.358 we obtain v ~ 246 GeV . Now pu = vv/A/2 so
the only unknown parameter in the SM Higgs sector is A or equivalently the
mass of the Higgs boson m? = v?)\/2 .

SSB also leads to massive fermions through the Yukawa interactions

Y, T Y., —T . Y -1
Lyukawa = ?¢Z,L¢¢6,R + 7¢q,L(—172¢)1/1u,R + 7d¢q,L¢¢d,R +he . (2.14)

After SSB the interactions of the Higgs boson with the gauge bosons and
fermions are summarized by the Lagrangian

2M32, M3 Miy 1
U2

M2
MWWVIW— 4+ —Zh2% + —Zp?
v

202

'Cint == WJrWi + Z2

v
— —h + h.c) ,
%j oy (Prtr +he)
where the sum is taken over charged leptons e, u, 7 and quarks w,d, s, c,b,t .

Note that coupling of any massive particle to the Higgs boson is proportional
to its mass, so the top quark has the strongest fermion-Higgs boson coupling.

2.2 Discovery of a new neutral boson at the
LHC

One of the main goals of the Large Hadron Collider (LHC) has been to search for
the SM Higgs boson in the proton-proton collisions. On July 4th 2012 ATLAS
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and CMS collaborations announced that they had found a clear evidence of a
neutral boson with mass of approximatively 125.7 GeV |6, 7] . The significance
of the observation was 4.90 (see appendix A for summary of statistics). Since
then the significance has increased and is already more than 7o . More recently
also CDF and CO collaborations have found similar evidences for the new
boson from the Tevatron data [13] . Hence it is now obvious that there is a new
neutral boson. The mass of the new particle can be obtained from the position
of the observed peaks in the h — ZZ — 4] and h — 7y channels. Latest
results for the mass of the new boson are 125.2 4 0.3(stat.) = 0.6(syst.) from
the ATLAS experiment [14] and 125.7 £ 0.3(stat.) £ 0.3(syst.) from the CMS
experiment [15] . Next we will look at the Higgs couplings and see whether
the new boson is the SM Higgs boson.

2.3 LHC and Tevatron data fit

There are five dominant Higgs boson production channels in the proton-proton
collisions in the mass range around 125 GeV in the SM. These production
channels are presented in figure 2.1 and the corresponding cross-sections for
Vs =2,7,8TeV are collected in table 2.1 . Likewise, there are nine dominant
Higgs decay channels which are presented in figure 2.2 corresponding to
branching ratios presented in table 2.2 . The Higgs boson does not directly
couple to photons, because it is neutral, so the leading order contribution to
h — ~~ arises from the top and W loop diagrams. The h — WW and h — ZZ
decay channels are followed by the decay of the gauge bosons to leptons. For the
experiments, the most important decay channels are h — ZZ — 4l (I = e, p)
and h — v due to the excellent mass resolution for the reconstructed ~v and
4] final states [16].

(a) ggF (b) VBF (c) VH (d) ttH

Figure 2.1. Dominating Higgs boson production channels in the SM.

Experimental collaborations give signal strength values for different decay
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Figure 2.2. Dominating Higgs boson decay channels in the SM.

channels of the Higgs!. The ATLAS and CMS collaborations have measured
the signal strength for five different decay channels and from the Tevatron data
we get signal strengths for three decay channels. Latest results are presented
in table 2.3 . The LHC results are combined from experiments with center
of mass energies /s = 7TeV and /s = 8 TeV . For the Tevatron results
Vs =2TeV .

Let us see how the SM Higgs boson fits with the most recent results of
the ATLAS, CMS and Tevatron experiments. Similar analysis for different
models is done for example in references [21-25] . We consider modified Higgs
couplings, where the couplings of the Higgs boson to fermions are multiplied by
a factor ay and to gauge bosons by a factor ay . Hence we study an effective

Henceforth we will refer the newly found neutral boson as the Higgs or the Higgs boson.



Table 2.1. Production cross-sections of the SM Higgs boson (my, = 125 GeV) for
Vs =8,7,2TeV [17, 18] .

| ggF VBF WH ZH ttH

ostev(pb) | 19.52 1.578 0.6966 0.3943 0.1302
ortev(pb) | 15.32 1.222 0.5729 0.3158 0.0863
gotev(pb) | 0.9493 0.0653 0.1295 0.0785 0.0043

Table 2.2. Decay branching ratios of the SM Higgs boson (mj, = 125 GeV) [19].
BR | BR | BR

h — bb 5771071 | h > 77 6321072 | h =y 2.28:1073
h—WW  215107L | h — cc 2911072 | h > Zy  1.54-1073
h = gg 8571072 | h — ZZ  2.64-1072 | h — up  2.20-107*

Lagrangian density

2 M2 M2 _
WAWHAW T+ ay —2hZZ —ap Y LR (2.16)
v v v

£eff = ay

We could also add for example an extra gauge boson W’ with coupling

2ay,m3y, /v to Higgs boson or a scalar boson Sy with coupling agm? /v to
the Higgs boson, but for our analysis here these are not important.

The signal strength corresponding to decay channel j is defined as
UtotBRj

= ————— | 2.17

7 osmiot BReuj (2.17)

where o and BR; are the measured total production cross-section of the

Higgs boson and branching ratio to the decay channel j , and ogwmytor, BRgw; are

Table 2.3. Observed signals strengths pi0ps ; for different Higgs decay channels from
the ATLAS [20], CMS [15] and Tevatron [18] experiments.

ATLAS CMS Tevatron
47 1.47+0.38 0.91 +0.27
vy 1.65 +0.34 1.11 £ 0.31 3.64 £2.78
WWw 0.96 + 0.30 0.76 + 0.21 0.33 + 0.86
TT 0.75 £+ 0.69 1.10 £ 0.40
bb —0.40 £1.02 1.08 £0.59 1.98 £0.75




the corresponding values calculated from the SM. We can use the formula (2.17)
also to calculate the signal strength values for any model just by replacing
the nominator by the production cross-section and branching ratio calculated
from the model. Note that for the SM p; = 1 for all decay channels.

Next we use the formula (2.17) to calculate y; values corresponding to the
Lagrangian (2.16) . Writing the branching ratio BR; in terms of the decay
width I'; and the total decay width iy = > Ui,

T,
BR; = tht , (2.18)
we get
-1
Otot Fj Lot )
= i 2.19
Hi TsMtot L'smj <FSMtot (2.19)
The total Higgs decay width in the SM is I'syitor = 4.07 . It is useful to define
G‘ fry J s S, = J 5 220
J FSMj J USMj ( )
whereby
Ftot
= G1LBR 2.21
- F e, =
and

Osmi Gj )
;= S . 2.22
Hi (; lUSMtot) (Zk GrBRgmir (2.22)

The k summations in the formulae (2.21) and (2.22) include the final states
(ff,VV,gg,vv,Zv) and the [ summation in formula (2.22) includes the initial
states (ggF,VBF,VH ttH).

The only thing we need to do now is to find out s; for different production
channels and G for different decay channels of the Higgs boson. We take
into account only the leading order interactions. By looking at the Feynman
diagrams shown in figure 2.1 , and remembering that we modify the higgs-
gauge boson interactions by a factor ay and higgs-fermion interactions by a
factor ay , it is easy to see that

SgeF = a?c , SVBF = a%/ , SWH = a%, ,S7H = a%/ . SttH = afc ) (2.23)
Similarly from the decay channel diagrams 2.2 we see that

be:affa G‘r‘r:afffa Gcc:aia G,u,u:afca

2

(2.24)
GWW:CL%/, GZZ:CL%/, Ggg:CL?, GZ'y:aV-
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The h — 77 decay channel is in turn more complicated, because top and W
loop diagrams give contribution of the same order of magnitude. Hence we
need to go to the amplitude level. By using the formulae given in [26] we write

azgzm% 4 2
Fw(af, av) = m gafFl/Q -+ avFl s (225)
where
4m? 4m? 4m?
= (1 (-0 ().
4]\}22 AM?Z ' AM?Z ' AM?2 (2.26)
F=2+3—7Y+3 2””(2— Qw)f( 2W>
my, My My my,
and

arcsin? \/;, T>1,
f(r) = (2.27)

4

Now using a = 7.30- 1073 , ¢ = 0.653 , My = 80.4GeV and m; = 125 GeV
we get

Iy (ay, av)
[yy(ap=1ay =1)

G,y = ~ 0.024 (1.83a; — 8.32ay)” . (2.28)

Using the SM values given in tables 2.1 and 2.2 we calculate the sig-
nal strength values e, (as, ay) corresponding to the Lagrangian (2.16) as a
function of the parameters ay and ay . We use the method of least squares
described in the appendix A to find the best fit values for the parameters a;
and ay . That is, we minimize

Vlagay) = Y enltatr) e (229)

with respect to ay and ay . From the SM we may expect that the best fit values
for a; and ay are close to one. Then calculating x2 = x2,, + 9, for §; = 2.3,
do = 6.18 and 93 = 11.83 we obtain the 1o = 68%, 20 = 95% and 30 = 99.7%
contours in the (ays, ay) -plane. Figure 2.3 shows the best fit point together
with the 1o, 20 and 30 confidence level (CL) regions. The best fit point
(af,ay) = (0.96,1.04) is very close to the SM prediction (af,ay) = (1,1) .

10



ay

06 08 1 12 14
ay

Figure 2.3. Two parameter ay, ay fit. Blue, yellow and red areas correspond 1o, 20
and 30 CL regions and cross corresponds to the best fit point. The SM corresponds
the intersection of the dotted lines.
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Chapter 3

Need to go beyond

Despite the success of the SM it is clear that it can not be the fundamental
theory of elementary particle interactions. There are phenomenological and
conceptual problems with the SM, of which we will next briefly explain the
hierarchy problem, the dark matter problem and the baryon asymmetry
problem. For more complete reviews on dark matter see references [27, 28] |
and on baryon asymmetry see e.g. [29] . The hierarchy problem is considered
for example in the references [30, 31] .

3.1 Hierarchy problem

It is clear that one needs spontaneous breaking of SU(2);, x U(1)y at the
energy scale ~ 100 GeV . Less clear is how the symmetry breaking happens.
In the SM one introduces fundamental scalar fields to break the symmetry.
This leads to the hierarchy problem. If we consider radiative corrections to the
Higgs boson mass arising from its self-interactions and couplings with gauge
boson and fermions, we find a quadratic divergence of the Higgs mass. This
leads to unnatural fine-tuning in order to obtain the observed mass and to not
break SM already at the few TeV scale.

There are at least three fundamental energy scales in nature: electroweak
scale, described in the SM by vyeax = 246 GeV, QCD scale Aqep ~ 0.1 GeV
where the perturbative QCD coupling constant diverges, and Planck scale
Mpiana ~ 1012 GeV | where gravity becomes as strong as the gauge interactions.
The smallness of the QCD scale compared to the Planck scale is understood:
Starting from the Planck scale, the running of the QCD coupling,

OC(A) —_ Oé(MI-Z’lanck) e ’ (31)
I+ Bo&(Ml?’lanck> In (M2 )

Planck
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naturally gives Aqep < Mplanck , since from the equation (3.1) we get

1n(AQCD)_L< L1 >—_—1 (3.2)
Mpianck 20 Oé(AQCD) Oé(Mplanck) 25004(MP1anck) ’ '

which for a(Mpranex) ~ 0.01 and By ~ 1 gives Aqen/Mpianck ~ 1072° . The
electroweak scale, in turn, is not understood within the SM.

Perhaps the fundamental Higgs boson should be replaced by some composite
particle. Technicolor theories [32, 30] provide a dynamical way of breaking the
electroweak symmetry. Similarly as in the QCD it would be nice if one could
generate the electroweak symmetry breaking scale ~ 100 GeV in a natural way.
This will lead to composite Higgsses. However, these composite particles can
be in effective models described by scalar fields. Hence the models we study
in this thesis may as well describe composite particles as fundamental scalar
particles.

There are also other theoretical problems in the SM. One may ask why
there are just three generations of fermions. Or how to explain the huge
hierarchy of the fermion masses. The SM does not give answers to these
questions.

3.2 Dark matter

There are plenty of astrophysical evidences for dark matter. The first signs of
dark matter emerged in the 1930s as Fritz Zwicky studied the movement of
galaxies within the Coma Cluster [33] . He determined the velocities of the
galaxies by measuring their Doppler shifts. According to the virial theorem

2FEkin = _Epot ) (33)

where Ly, is the average total kinetic energy and L. the average total
potential energy of particles interacting with each other through gravitational

force. Now
1

Eyin = §Mtotﬁ ; (3.4)
where M, is the total mass of the cluster and v2 is the average squared
velocity of the individual nebulae. Assuming that the nebulae are uniformly
distributed inside a sphere of radius R the average total potential energy of
the cluster is

~ —3GMZ,

E = 3.9
pot 5R ( )
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Thus the from the virial theorem (3.3) we get
5Rv?
3G
But the assumption of uniform distribution is actually not fulfilled. Looking
at the distribution of the brightest nebulae in the Coma Cluster Zwicky ended
up with the following approximation for the total mass of the cluster:
Rv?
Mgt > — . 3.7
> (37

He found that the average mass of one galaxy in the Coma Cluster is M =
4.5 - 1019M,, whereas the luminosity of an average galaxy is L = 8.5- 107 L, .
Hence he concluded that there must be some non-luminous matter which
accounts for most of the total mass of the Coma Cluster.

Later in the 1970s similar phenomena was observed also in galaxies. It
was observed that the galactic rotation curves are not in agreement with the
theoretical calculations which take into account only the luminous matter.
Assuming that the total mass M of the galaxy is centrally concentrated it
follows, according to Newtonian gravity, that the velocity distribution far from
the center of the galaxy is

MG 1
v(r) = ”T x NG (3.8)

However, as shown in figure 3.1, the measured velocity distribution turns out
to be constant at large distances. Hence the mass distribution of the galaxy is
M(r) <1, so

Mtot — (36)

1
4mr?p(r) = const. = p(r) o R (3.9)

This density distribution is just the distribution given by a non-interacting
isothermal gas. The pressure of the gas must be in equilibrium with gravitation,

w0 dp  GM(r)p(r)

dr r? ’
where M(r) = [ p(r)dr . Now the pressure of the gas can be calculated using
the ideal gas law

(3.10)

p(r) = pr) 2L (311)

where the temperature T is constant and m is the mass of an individual gas
particle. Combining equations (3.10) and (3.11) we obtain

kgT d (r*dp 9
— L) =—r?). 12
drGm dr (p dr) nr (3.12)
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Figure 3.1. Rotation curve of the spiral galaxy NGC 3198 [34].

So the density distribution of a non-interacting isothermal gas is p oc 772 .

The observation of missing matter in the galaxy clusters and galaxies
could be explained by a halo consisting of non-interacting particles, but also
by modified Newtonian dynamics [35] . However, there is more convincing
evidences for the dark matter, most importantly from the observations of
the Bullet Cluster [36] . The Bullet Cluster consists of two colliding galaxy
clusters. In the collision of two galaxy clusters stars (visible component) are
not greatly affected but the hot intra-cluster baryonic gas (X-ray component)
is slowed down and left behind. The mass of the baryonic gas is much larger
than the total mass of the stars, thus the gravitational lensing would be
expected to be strongest from the collision center. Composite image 3.2 of the
Bullet Cluster shows the locations of the baryonic gas detected by Chandra
X-ray Observatory and the regions where the observed gravitational lensing
is strongest. Observations show that the lensing is strongest near the visible
galaxies, which favors the idea of collisionless dark matter halo. Furthermore
structure formation and results from the WMAP [37] and Planck [8] satellites
support the existence of dark matter.

There are several dark matter candidates including massive compact halo
objects (MACHOs), axions and weakly interacting massive particles (WIMPs).
Analysis of structure formation indicates that dark matter should be cold (i.e.
non-relativistic). Dark matter candidate particles should interact very weakly
with photons because otherwise it would not be non-luminous. Moreover the
dark matter candidate should be stable (or very long-lived), so it would not
have decayed by now. We will now concentrate on WIMPs, which provide the

15



Figure 3.2. Composite image of the Bullet Cluster 1E 0657-56. Red areas corre-
spond to the baryonic gas detected by Chandra X-ray Observatory and blue areas
show where the most of the mass of the clusters is located.

most favorable candidates for the dark matter.

According to the WIMP-scenario dark matter consists of new elementary
particles with masses roughly between 10 GeV and a few TeV | and with
annihilation cross-section of approximatively weak strength. In the early
Universe, WIMPs were in thermal equilibrium with visible matter. Due to the
rapid expansion of the Universe, the mean free path of the WIMPs grew larger
than the size of the Universe and dark matter froze out of the equilibrium. It
can be shown that the relic density of WIMPs today is

1 m?

(vo) " gt

where (vo) is the thermally-averaged annihilation cross-section of the WIMPs,
m is the mass of the WIMP and g is the coupling constant characterizing the
annihilation. If the mass of the WIMPs is m ~ 100 GeV and the coupling
is weak ¢ ~ Gweax = 0.65 then €2 ~ 0.23 . Remarkably this is very close to
the measured value Qops = 0.26 [8] . This is often called the WIMP miracle:
WIMPs naturally produce the observed dark matter relic density. The SM
does not provide a WIMP candidate, but in its extensions various WIMP
candidates have been proposed including lightest supersymmetric particle,
sterile neutrinos and different new scalar particles.

Dark matter sector may consist of only a single new particle, but it could
also be larger. In principle there is no evident reason why there would not

0 x (3.13)
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exist a new sector manifesting some gauge symmetry and consisting of fields
that transform as singlets under the SM gauge group. Fields that are singlets
under SM gauge group can not couple to SM gauge bosons nor SM fermions,
but they can couple to Higgs boson. Hence the Higgs boson provides a portal
between the SM and the hidden sector. These so-called Higgs portal models
have been studied for example in the references [38, 39] . The coupling of
Higgs boson with the hidden sector may modify the couplings of Higgs with
the SM particles and may provide an invisible decay channel of the Higgs
boson. These can be constrained using the Higgs coupling data available from
the LHC and Tevatron experiments.

WIMPs interact only through gravitational and weak interactions so they
are very difficult to detect. There are, however, many experiments attempting
to observe WIMPs directly. Direct measurement of WIMPs is based on elastic
scattering of WIMPs on nuclei. One can try to look for the annual modulation
of scattering events due to Earth’s rotation around the Sun or one may reduce
the background events (mostly due to cosmic rays) near zero and measure just
the WIMP-nucleon scattering.

10
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Figure 3.3. Spin-independent upper limits for the WIMP-nucleon cross-section
as a function of WIMP mass from various different experiments. Also the DAMA,
CoGent and CRESST-II favored WIMP signal regions are shown [40].

WIMPs have not been directly observed yet. This gives upper limits
for the WIMP-nucleon cross-section. The scattering of the WIMP off of
nuclei is generally divided in two classes: spin-dependent and spin-independent
scattering. For spin-independent scattering the cross-section is approximatively
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proportional to the WIMP-proton cross-section, o o< A%o, , where A is the
mass number of the nucleus. In the spin-dependent case the cross-section
depends on the nuclear spin rather than the mass number. Current direct
searches use heavy target nuclei, so the spin-independent cross-section is
dominating over the spin-dependent cross-section and the direct searches give
upper limits on the spin-independent cross-section. In figure 3.3 upper limits
for the spin-independent cross-section arising from the direct searches are
shown.

T 1 T T T T T T T T T T T T

I
! [] MSSMincl. XENON (2012) ATLAS +CMS (2012)

-351— DAMA no channeling (2008) —
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Figure 3.4. Spin-dependent upper limits for the WIMP-nucleon cross-section as a
function of WIMP mass from various different experiments [41].

There are also experiments attempting to observe WIMPs indirectly. Indi-
rect searches based on the annihilation of WIMPs are trying to observe the
annihilation products. Celestial objects like the Sun and the Earth can slow
down WIMPs and capture them, so the annihilation probability in the core of
the Sun can be larger than in the surrounding space. The annihilation products
may include for example neutrinos. Large neutrino telescopes including Super-
Kamiokande and IceCube have tried to measure these neutrinos. However,
no significant excess over the expected atmospheric neutrino background is
observed yet. Because the Sun is mostly made of light elements, the indirect
searches give bounds on the spin-dependent cross-section. These limits are
shown in figure 3.4 .
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3.3 Baryogenesis

Astrophysical evidences have shown that our galaxy and its neighborhood are
predominantly made of matter. Moreover it has been shown that the Universe
can not consist of distinct regions of matter and antimatter [42] . Hence there
is a clear asymmetry between matter and antimatter. The asymmetry is
characterized by baryon-to-photon ratio
n="20"" (3.14)
Ty

where n, and n; are the number densities of baryons and antibaryons, re-
spectively, and n. is the number density of photons. According to WMAP
observations n = 6.19 - 10719 [43] . The goal of baryogenesis is to explain why
7 is not zero as one would a priori expect, assuming that the Universe was out
baryon-symmetric after inflation.

There are three ingredients, known as Sakharov conditions [44] , which
should be fulfilled in order to produce the baryon asymmetry:

1. baryon number violation,
2. C' and CP violation,

3. departure from thermal equilibrium.

The first ingredient is trivial: There has to be at least one process which
does not conserve the baryon number (= number of baryons — number of
antibaryons), otherwise the baryon number would be zero forever. However,
the existence of baryon number violating process is not enough to produce
baryon asymmetry, since the baryon number is odd under C' and C'P , and if
the C' and C'P symmetries are satisfied the baryon number violating process
would have the same cross-section as its C- and C P-conjugate processes. Thus
C and C'P symmetries must be violated. The third condition is clear because
initially the number densities of baryons and antibaryons were the same and
the mass of particle is the same as the mass of the corresponding antiparticle,
so in the thermal equilibrium the number densities evolve similarly. Hence the
number densities would be the same forever if there would not be a departure
from thermal equilibrium.

There are many different mechanisms for baryogenesis [45-49| , most pop-
ular of which are electroweak baryogenesis (EWBG), leptogenesis and GUT
baryogenesis. In particular EWBG is very attractive both theoretically and
experimentally. In the EWBG the baryogenesis occurs during the electroweak
phase transition, thus the energy scale of the processes is ~ 100 GeV . Ac-
cording to EWBG during the electroweak phase transition the baryon number
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violating processes took place at the interphase and due to C' and C'P vio-
lation the baryon generating processes were dominating over the antibaryon
generating processes.

The SM fulfills the Sakharov conditions, but the SM mechanisms do not
produce large enough baryon-to-photon ratio. This is so because the only
source of C'P violation in the SM is the Kobayashi-Maskawa phase [50] , which
has been claimed to be too weak for the observed baryon-to-photon ratio
[51] . Moreover, the departure from thermal equilibrium in the SM occurs
during the electroweak phase transition, that is not a strong first order phase
transition [52] as required for successful electroweak baryogenesis. Hence, for
the baryogenesis the SM should be extended such that it includes new sources
of C'P violation and modifies the electroweak phase transition or introduces
new sources for departure from thermal equilibrium.
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Chapter 4

Standard Model with one real
singlet Higgs

Maybe the simplest way to extend the SM Higgs sector is to consider in addition

to one doublet scalar ¢ also a real singlet scalar S'. The main motivation to

study the singlet extension of the SM is the dark matter problem. The singlet

S could provide a good dark matter candidate. The first detailed analysis of

the singlet scalar dark matter model was presented by John McDonald [53]

and more recently it has been studied for example in the references [54, 55] .
The scalar potential of the singlet extension is

V(6,5) = V(6) ~ i38* + 258" + 22 5%t (1)

where V' (¢) is the SM scalar potential (2.4) . In principle we could add terms
S3 and SéT¢ to the potential, but we require stability of S , since we will
consider S as a dark matter particle, so it should not decay. Hence the potential
has Z symmetry S — —S .

The doublet ¢ acquires VEV as in the SM. To be general we first allow
also the singlet S to have a non-zero VEV (S) = w # 0. This will break the
Zy symmetry, but we will see that the LHC data actually forces w = 0. From
the conditions

ov ov
- 77 =0 4.2
8¢7' vacuum aS vacuum ( )
we get
1 1
p? = 1 (/\v2 + )\mwQ) , ,u?g =1 ()\mv2 + )\st) ) (4.3)

As in the SM there is no mixing between the real and imaginary parts of the
neutral component of the doublet

.
¢:(@ﬁm)7 (44
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and the imaginary component of the neutral part becomes the neutral Gold-
stone boson and the charged part becomes the charged Goldstone boson. These
give the longitudinal polarization degrees to the Z and W bosons. The mass
matrix for the neutral real scalar fields in the basis {¢,, S} is

1 DYIEID W
2 - m
M" = 2 ( Aptw  Asw? ) ' (4.5)

A general real symmetric 2 X 2 matrix

( o v ) (4.6)

can be diagonalized by a rotation

RQZ( cos 6 sm@) ’ (4.7)

—sinf cos®

through an angle 6 defined by

2B
Hence, with the rotation by angle 3 which satisfies
2\ vw
tan(28) = ———— 4.9
n(28) = 152 (1.9

we get to the mass eigenbasis where the mass matrix (4.5) is diagonal. The
mass eigenstates are

h=¢,cos3—Ssinf, Sy=¢,sinff+ Scospf . (4.10)

The singlet S does not couple to gauge bosons and fermions, whereas the
doublet ¢ couples with them as in the SM. Let us assume that h corresponds to
the observed Higgs boson. Now ¢, = h cos S+ Sy sin 3, thus the couplings of h
to the gauge bosons and fermions are given by the SM couplings multiplied with
the factor cos 8. Writing ay = ay := a we may use the analysis introduced in
section 2.3 to fit the angle 3 to the Higgs decay data. Minimizing x? gives the
best fit a = 1.02 so that the data prefers the angle g = 0 , that gives the SM
couplings. In figure 4.1 the 1o , 20 and 30 regions are shown.
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Figure 4.1. One parameter § fit. Blue, yellow and red lines correspond 1o, 20 and
30 CL regions. The angle 3 is measured in radians.

4.1 Invisible decay of Higgs boson

The angle 8 = 0 corresponds to the case where the VEV of the singlet is zero,
w = 0, which is also required for S to be dark matter. In the w = 0 case the
mass matrix of the neutral real fields is diagonal

1/ \? 0
2 _ —

and h = ¢, is the Higgs boson with mass m; = M\?/2. Now ay = 1 = ay
but if we assume that the mass of the singlet S,

A U2

2

is less than half of the Higgs mass there is a Higgs decay channel h — S5 .
This decay channel would be invisible for the experiments, because S does not
interact with the SM gauge bosons and fermions. The invisible decay channel
affects only to the total decay width I'y,; . We may write

— ol (4.12)

mg =

r o Finv
fot Z Gi.BRy + , (413)

1—WSMtot & SMtot

where the sum includes the SM Higgs decay channels. Now G = 1 for all SM
Higgs decay channels and s, = 1 for all production channels so
1—‘tot Finv

1—‘SMtot 1—‘SMtot

, (4.14)
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Figure 4.2. One parameter BRj,y fit. Blue, yellow and red lines correspond 1o, 20
and 30 CL regions. The dashed line at B Ry, = 0.17 shows the 20 value.

and

1—‘SMtot
=" —1+4+BRiy, 4.15
Ha Finv + 1—‘SMt’,ot ( )
where BRiny = Tine/(Tiny + Tsmitot) - Minimizing x? gives BRy,, = —0.04 thus
the data prefers no invisible decay channel. Figure 4.2 shows the 1o , 20 and
30 regions. The 20 limit for the branching ratio to the invisible decay channel
is
BRin(20) = 0.17 . (4.16)

We may also calculate the branching ratio for the invisible Higgs decay

channel from the model as a function of the singlet mass mg and the parameter
Am - Now

| My 55| 4m?,
Finv 16mm m2 "’ (4.17)
h h
and to the lowest order the amplitude is trivial,
AmU
Mh—)SS = T , (418)
thus
A2 v? 4m?
Ty = o2 -2 4.19
32mmy, mi ( )

In figure 4.3 the 1o , 20 and 30 contours in the (\,,, mg) -plane are shown. We
can write the 20 limit (4.16) as a constraint on the \,, parameter if 2mg < my, :
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Figure 4.3. 1o (blue), 20 (yellow) and 30 (red) CL regions in the (\,,, mg) -plane
corresponding to the constraints arising from the h — S5 decay.

1/4
ﬂ) _ (4.20)

A < 4.65
(mi — 4m?

4.2 Dark matter relic abundance

An interesting quantity, which we can calculate from the singlet extension
of the SM, is the relic abundance of the dark matter candidate. It tells us
how much of the total amount of the dark matter could be formed by the
singlet scalar candidate. Decoupling of dark matter particles (WIMPs) from
the visible matter is described by the Lee-Weinberg equation [56]

dn

i —3Hn + (vo) (n2, —n?) | (4.21)

where n is the particle number density of the WIMPs, n., is the particle
number density in the thermal equilibrium, (vo) is the flux-weighted thermally
averaged annihilation cross-section of the WIMPs and 3Hn describes the
reduction of the annihilation rate due to the expansion of the Universe. From
the Lee-Weinberg equation we can solve the relic abundance Qh? of the WIMPs.
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An approximative solution is given in the appendix B. The solution is
mg

Qh? = —5.196 - 10°* GeV ™' ———— . (4.22)
ACH)
where
™ m
Z(zr) =— 9 (f)Mplanckmsx_zwa)(x) . (4.23)
The parameter x; can be iteratively solved from the equation
Z o 2
% — Yeq(T)
f

where

() = 4—59&269”[( (x) (4.25)

T g ()" T |

Functions K,, are the modified Bessel functions of second kind. According
to the latest Planck data [8] the dark matter relic abundance is Qupsh? ~
0.1199 £ 0.0027 .

We only need to calculate the flux-weighted annihilation cross-section from
the model. There are three different types of annihilation channels: Higgs
channel SS — hh , vector boson channel SS — V'V and fermion channel
SS — ff . In the appendix C we have calculated these annihilation cross-
sections in a more general case. Now the interactions are described by the
Lagrangians

)\mv 2 AV 3 )\m 2 2

P = —h? == 4.2

,Cscala 1 hS* + 4h + 8hS ( 6)
2M?2 M2
Lomge = — g WW,IW, + =2g"hZ,7, (4.27)
and
m

Lfermion = Ehwﬂﬂf : (4.28)

Inserting the above couplings in the formulae given in the appendix C we get

vy, ()\ 3\nm3 A2 2 > 2

Ohh = 64msvg s — m% s — 2m%
vy A2 M s(s —4M3E) I
= 342 v '
ovv Srsvs (s_m%)g + I3 % 7 (4.29)
e (s dm)
1 512msvg (s — m%)Q ’
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where

2
4ms5

Vx = 1-— (430)

S

The flux-weighted thermally averaged annihilation cross-section can be calcu-
lated using the formula

x Vs
= — d —AmA) K, | Y= o 4.31
000 = gy [ SVEls k(S o), (430
4m?9
where
O'tot:O'h—i-O'Z—i-O'W—i-ZUf. (432)

The relic abundance divided by the observed value Qqpsh? ~ 0.12 for four
different )\, is shown in figure 4.4 .

1 L

i

l0g10 frel

50 75 100 125 150 175 200

mg( GeV)
Figure 4.4. Logarithm of f.q = Qh?/0.12 as a function of the singlet mass myg .
The curves from top to down correspond A, values 0.2, 0.5, 1.0 and 2.0, respectively.

Red region is excluded by the 20 limit for the h — SS decay branching ratio and
the gray region is excluded by the Planck data.
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Chapter 5

Two-Higgs-doublet model with
one real singlet Higgs

5.1 Two-Higgs-doublet model

The two-Higgs-doublet model (2HDM) includes two scalar doublets with
identical quantum numbers

~ -
¢1:(2§>,¢2:(§%§> (5.1)

giving eight real degrees of freedom. Three degrees of freedom are eaten by
the W and Z bosons and the remaining degrees of freedom are realized as five
massive scalar bosons. The scalar sector of the 2HDM is

Litiggs = (D)’ (D"¢1) + (D) (D) — V(1. 62) (5.2)

where the scalar potential V' (¢, ¢2) is a combination of gauge invariant terms
gzﬁ}qﬁj , 4,j = 1,2 . The scalar potential can be written as [57]

V1, d2) = 1011 + 13050s — 1iadlde — (115) dhen
AV A2 ) F oot to ot
+ 5 (¢1¢1> + 5 <¢2¢2> + X301 010502 + Ay P2y 1
A A\
+ 2 (dl0) + 2 (olon)
— olon (Aasloz + Niohor ) — olon (Mol + Aolon) .

(5.3)

where parameters p?, u3, A1, A2, A3, A4 are real due to hermiticity of the La-
grangian and parameters p2,, A5, \g, A7 are in general complex. Hence the
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potential includes 14 real parameters. We begin with the C'P conserving
case where also the parameters 12, A5, A, A7 are real, so the number of real
parameters reduces to 10. In section 5.2 we will consider the case with most
general complex parameters.

The vacuum of the model is characterized by VEVs

<¢1>=(%>,<¢2>=(%). (5.4)

From the kinetic terms (D,ngl)T (D*¢q) and (D,J(bg)T (D#¢y) we obtain the W
boson mass My = ¢*(v? + v3)/8 , so vi + v3 = v? . Hence we write

vy =vcosf, vy =wvsinf, (5.5)

where 3 € [0,27[ . From the minimum condition® d4, V = 0 = 9, V we solve
parameters p? and p3 . We get

/1J2 . ’U%)\l + Vo (-2#%2 + ’Ul’UQ)\345 + 3“%)‘6 + U%/\7)
1= )

201 (5.6)
[LQ . _Ug)\g + v (—2/1%2 + 1111}2)\345 + U%)\(, + 3?)%)\7)
2 — .
2’02

where A3q5 = A3+ Ay + A5 .

Now, since all parameters A;, y1;, are real, the real and imaginary parts of
the neutral scalar fields, which are the C'P even sector and C'P odd sector,
respectively, are decoupled, whereby the potential (5.3) is C'P invariant. The
mass matrices of the neutral fields are

( 211?/\1 + vy (2#%2 + 3v%)\6) — ’US’)\7

20, (5.7)

21}%’)@ — U%)\G + v (2/@2 + 31)%)\7)
209

—p25 + v1vadsas + %U%AG + %Ug/\7 >

3 3
—p3y + v1v2Azas + Svide + Sv3N7

for the real parts in the basis {¢1., ¢2.} , and

< V2 (=202, + 2v1v2A5 + VI X6 + vEA7)
2u1

% (72#%2 + 2viv2 A5 + ’U%)\S =+ U%)ﬂ) 5 8
v (—2#%2 + 2v1v2 A5 + v%/\g + ’U%)W) ( . )
209

% (72;1%2 + 2viv2 A5 + v%)\g + vg/\7)

for the imaginary parts in the basis {¢1;, ¢2;} . For the charged fields the mass
matrix in the basis {¢], ¢35} is

v (—2p2, + v1vadas + vIX6 + VIA7
_ ( 12 o 1 227) 1 (—2p2, + vivadas + vEX6 + v3A7) (5 9)
1
v1 (=225 + vivedas +viXe + V37 ) :
1 (—2p2, + vivadas + vEX6 + v3A7) - ( 12 200 L 2A7)

'We denote real and imaginary parts of the neutral scalar fields by ¢, and ¢p; , k= 1,2,
respectively.
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where A\y5 = Ay + A5 .
We can diagonalize the mass matrix (5.7) by a rotation trough an angle «
defined by

tan(2«)

o V1V2 (-2#%2 + 21}11)2/\345 + 31)%/\6 + 31)%)\7)

23, (V3 — 2) + 203U\ — 201V3 g + ViNg + 3vI0E (Ng — A7) — UsA;
(5.10)

and the mass matrices (5.8) and (5.9) we can diagonalize by a rotation trough
an angle

1 2
p= 5 arctan (U%Uivig) = arctanZ—j : (5.11)

After the symmetry breaking we obtain five massive scalar bosons: two neural
CP even scalars h and H , one neutral C'P odd scalar Ay and two charged
scalars H* . The three m = 0 Goldstone bosons are removed from the physical
spectrum. The massive mass eigenstates are

h N\ [ cosa —sina D1y

(H)_<sina coS v > ((ﬁzr) ’ (5.12)
Ag = ¢1c08 8 — Py sin 3 (5-13>

and
H* = ¢F cos B — ¢35 sinf3 . (5.14)
The Yukawa sector of the 2HDM may be rather complicated. Either (or
both) of the doublets can in principle have Yukawa couplings with fermions.
In practice there are three different popular scenarios: type I 2HDM where
all the fermions couple to just one of the Higgs doublets [58], type II 2HDM
where down-type quarks and leptons couple to one of the Higgs doublets and
up-type quarks to the other Higgs doublet [59], and type III where both of the
Higgs doublets couple to all fermions [60]. In the following we will consider

type I 2HDM and choose that the doublet ¢5 couples to the fermions. Hence
the Yukawa Lagrangian is

Ly = Yoy 1 datbe r + Yally 1 (=726 0 + Yalhy 1 dotbap + e . (5.15)

5.2 Two-Higgs-doublet model with one real sin-
glet Higgs

Next we combine the type I 2HDM with the singlet model presented in chapter
4. This model could offer enough C'P violation for baryogenesis and the singlet
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S could provide a good WIMP candidate. We call this model two-Higgs-
doublet-inert-singlet model (2HDISM). We analyze the model constraining it
by the electroweak precision data and the Higgs decay data, and calculate the
relic abundance of the dark matter candidate as in section 4.2 .

The 2HDISM consists of two doublets ¢, and ¢, and a real singlet S . The
scalar potential of the model is

V($1, 02, 8) = pidldr + p3650s — 13261 d2 — (172)"dhn
A NP A2 (i) fo gl Fo o
+ 5 (elon) + 32 (eloa) + Asolorales + Mol gaslo
A 2 X 2
+ 5 (0le2) + 3 (olon)
— olor (Meolon + Nolon ) — olo (Aolen + Ajolon)
As
T
+ a0+ 5 (252016, + 252000, )

(5.16)

— 282 + 2281 4 X612 ¢y

and the VEVs of the doublets are

(1) = ( é) , (@) = < %) : (5.17)

By transforming the ¢; doublet with a U(1) transformation ¢; — e ¢, we
can remove the phase of the VEV (¢) and redefining the complex parameters
f12, As, Ag, A7 and Agi2 the form of the potential (5.16) is unchanged. Hence
we just set § = 0. The VEV of the singlet S is set zero, (S) = 0, because we
consider it as a WIMP candidate.

From the minimum conditions

8X V|vacuum =0 ) X = ¢1T7¢27’7¢1i7¢2i7 T;Qs;_,s, (518)

we can solve jiq, po and Imufz = N%Qi :

_U?)\l + v (QM%QT — V1V A345, + 37}%)\67' + v§>\7r)

2 __
My = 20,
u% _ —Ug/\2 + vy (219, — U1;12)\345r + U%/\Gr + SUS)W) (5.19)
V2

1
M%Qi = 5 (U1U2)\5i - U%)\& — v§>\7i) .
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The mass matrices of the neutral and charged sectors are symmetric 5 x 5 (N)
and 2 x 2 (C') matrices, respectively, with elements

v (2025, — 201095, + VI N6 + VEN7,)

N1 =
11 21}1 )
2 1, 1,

Nig = —pify, + V1025, — 501)\& — 5”2)% ;

1
Niz = §U2 (Uz)\sz‘ - 2U1)\6i) )

1
Ny = V2 (V1 A5i — 202A7;)

vy (203,, — 201095, + VNG + VA7)
N22 - 9 5

Vg
1

Noz = —50102)\52' + v A (5.20)

1
Noy = _57}%)\52' + V1027
203N1 + vy (2uy, — 3V N6, ) + VI A7,

Nan =
33 2, ’
2 3 2 3 .2
N3y = — 13y, + V12345, — 5”1/\67’ - 5“2)‘77“ )
21);2)))\2 + U?/\Gr + U1 (QM%QT‘ — 3?]%)\77")
Nag = 20 ’
2

N51:N52:N53:N54:07
N55 = 2/1% + U1U2/\%2T + U%/\Sl + U%)\SQ s

and
Cyy = 2 (2125, — V1V M5 + VNG, + VA7) |
2vq
Cip = % (—QM%QT + V1V A5 — Vi Agr — U%/\W) ) (5.21)
Coy = 2 (2u2,, — U1U2>\;57~ + v¥Ng + VEA7,) |
(%)

in bases {¢1;, Goi, P1r, P2r, S} and {@], ¢ } , respectively. As we can see from
the mass matrix of the neutral fields, there is mixing between the real and
imaginary parts of the neutral fields. That is, the mass eigenstates are not
C'P eigenstates, which provides a source for C'P violation. As the VEV of the
singlet S is zero, it does not mix with the other scalar fields and as a result, it
does not decay. Hence it may be a potential WIMP candidate. Remaining
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4 x 4 mass matrix can be diagonalized with the rotation

1 0 0 0 cg sz 0 0
Ry — 0 CyCs —CyS, Sy —sg cg 0 0
0 828yC; + CuS:  CpCr — 85545, —582Cy 0 0 10 ’
0 528, — CaSyCs  CySyS: + 52C.  CoCy 0 0 01
(5.22)
and we arrange the mass eigenbasis such that
Go b1
Ao P2
=R : 5.23
H ! ¢1r ( )
h ¢27’

Similarly as in the 2HDM the charged sector is diagonalized with the rotation
Ry — ( cos3  sinf3 ) 7 tanB:%, (5.24)

—sinf8 cos 3 v

and the mass eigenstates are

(gi>232(z§> . (5.25)

Here Gy and G are the neutral and charged Goldstone bosons.

5.3 Theoretical constraints

The scalar potential (5.16) includes 20 free parameters, three of which are
fixed by the minimum conditions (5.19) . Also the angle (5 is a free parameter.
So the 2HDISM includes all in all 20 — 3 + 1 = 18 free parameters. We would
like to constrain the parameter space of the 2HDISM. Let us first find out
theoretical constraints for the model.

Most obvious theoretical constraints arise from the vacuum stability re-
quirement [61] . To calculate the vacuum stability constraints it is convenient
to write the doublets as

¢5 + i ¢7 +igs
= : , = . . 5.26
¢1 <¢1+1¢2 ¢2 ¢3+1¢4 ( )
For instance, along the direction where ¢; = 0 for all j # 1 and S = 0 the
potential behaves as \;¢}/2 for large ¢, . This gives a constraint A\; > 0.
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Similarly along the direction where only ¢; and ¢7 are non-zero the potential
behaves as

A A
3%‘1‘ + 7%‘% + Ag 22 (5.27)

Writing ¢y = rcosd , ¢7 = rsind we get from the boundedness requirement
that

A1 4 A2 .y 252

— cos 5—}-78111 0+ Azcos®dsin“d >0, (5.28)

for all § € [0,7/2] . Minimizing the left hand side of the equation (5.28) gives
a simple bound A3 > —/A\ Ay . Considering all the different simple cases,
where we vary only two fields keeping the other fields zero, we get the following
constraints:

M2s =0, A32> =V,

AMA Ao
Ats 2 —1/ 1257 A2s = —1\/ 2257

[ Aer + A7r| < 1 (A 4+ A2) + 3 (A3 4+ Ag + Asp)
1 1
[Aei + Azi| < 1 (A1 +A2) + B (As+ A1 — Asp)
and from the last two constraints in equation (5.29) it follows that
1
A3+A4+§(>\1+>\2) >0,
(5.30)

1
‘)\57»‘ < )\3 + )\4 + 5()\1 + )\2) .

Moreover, the vacuum stability and conditions (5.19) are not enough to
ensure the global minimum as the VEV of the singlet S is zero. If there is a
minimum where S = w # 0, then from the condition dg V| = 0 we can
solve w :

minimum

e 2uE + 21)12}2)\512; + vFAs1 + U3 As2 _ (5.31)
s

Now we require that the minimum where S = 0 is the global minimum, so

Viing < VI (5.32)

ming ming

where ming and min,, correspond to the minima where S = 0 and S = w ,

respectively. The condition (5.32) can be written as

1 1
‘TTL%‘ < U1’U2)\512T + 5@%)\51 + 51)5)\52 . (533)
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In the Monte Carlo calculation we will take into account all vacuum stability
constraints. To do that we write the potential in spherical coordinates

k—1
O = 1 COS O, Hsin d;
= (5.34)

8
S=r H sind; .
j=1
For large r the fourth order terms are dominant, thus the vacuum stability

condition is Vir s
min (lim (T—J>> > 0. (5.35)

7—00 7”4

where the minimum is taken over all angles d; .

More constraints can be set by requiring tree level unitarity [62, 63] . The
unitarity requirement reduces to a constraint on the quadratic coupling and
can be written as a upper limit on the eigenvalues A; of the 2 — 2 scattering
matrix: |A;| < 87 . By diagonalizing scattering matrices corresponding to the
sets of states

{G1r G2, Prioai, Drr2i, Gricar, 01 03, O1 b3 }
{D10-01r, Pri1is P2rBar, P2ihai, &7 OF, D5 D3 }

we obtain the following simple constraints:

(5.36)

|/\1 + /\2| < 8w, |/\3 + /\4| < 8w, |)\5r| < \/(47T+ /\1)(47T+ /\2) . (537)

These constraints are necessary but not sufficient for the unitarity requirement.
In principle we should diagonalize the full scattering matrix including also S
and gauge bosons. In the Monte Carlo calculation we ensure the unitarity by
diagonalizing the full scattering matrix numerically.

5.4 Oblique constraints

We would like to know if the model is consistent with the electroweak precision
data. For this purpose we use oblique parameters introduced by Peskin and
Takeuchi [64]. The oblique parameters are S, T, and U and their higher
order extensions V', W, and X [65] . These parameters quantify deviations of
electroweak precision data from the SM. Parameters S, T" and U can be used
to constrain effects of new physics if the following criteria are satisfied [65]:

1. The electroweak gauge group is SU(2), x U(1)y .
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2. Couplings of new particles to light fermions are suppressed compared to
their couplings to the gauge bosons.

3. The mass scale of the new physics is (much) larger than My .

If the third criterion is not satisfied, then also the higher order extensions V/,
W, and X should be used.

We assume that our model satisfies all the three criteria and for simplicity
we use only S and T parameters. This may constrain the model too strongly,
but at least the parameter sets satisfying these constraints are consistent with
the electroweak precision data. The experimental values for S and T" are [66]

S=004£0.09, T=0.07£0.08 (5.38)

with correlation between the experimental fits for S and T is p = 0.88.
In SM the values for S and T are fixed to S = T = 0 for the reference
Higgs mass 115.5GeV < my, < 127GeV [66] .The SM predictions for the
oblique parameters are well consistent with the experimental values, thus the
corrections from physics beyond the SM should be small.

The 1o, 20 and 30 regions are ellipses in the ST -plane as shown in figure
5.1 . The rotation angle is

1 2p0S 0T
6= 5 arctan (m) s (539)
and lengths of the semi axes ay, by satisfy the equations
(pdT cos® — §S sin 0)? N (0Scosf + pdTsinf)® 1
b g R (5.40)
6T? (=1 + p?) (af cos? 0 + b sin* 0) _ '
25 =5

where §; = 2.3, 05 = 6.18 and d3 = 11.83 correspondint to 1o, 20 and 3o
CLs.

In the reference [67] expressions for the S and T parameters are calculated
for a model with an arbitrary number of doublets and singlets in terms of the
masses and mass eigenstates. For the 2HDM with one singlet these can be
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-0.2r
Figure 5.1. 1o (blue), 20 (yellow) and 3o (red) CL regions of the oblique parameters
Sand T .

written as
247.‘_( UTU 22) G(m%{+am1211+7M§)

—2(UMU)g0In(m%:) — In(m?) — Gp(m?, M2)
4

+ Z (Im(VIV ) )2G(m3 My, M3) (5.41)

b=2 bv/=b+1

+ ) (VIV)epIn(m3y) + Im(VIV)1,)*Ga(mi,, M) )

b=2
and
1 ° t 2 2
W Z |(U V)2,b‘ F(mH+7 mN,b)
w b=2
—Z Z In((VIV )2 F (3 miey)
b=2 b'=b+1 (5.42)
5
+3) (Im(VIV)1)2(F(M3,m3,,) — F(Mg,, my,))
b=2
=M m) — FOMm) )
where

my = (0, ma,, my, mg, my) . (5.43)
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The matrices U and V' are defined so that U diagonalizes the charged sector,
UMZUT = diag(0, m%+) , (5.44)

and V' = (Vi, Va) +1(Vs, Vi) , where the lower indices refer to the rows of the
matrix V', diagonalizes the neutral sector,

VMEVT = diag(0,m?%,, m3;, m&, mj,) . (5.45)

Note that the summations in the formulae (5.42) and (5.41) explicitly leave
out the Goldstone modes. Functions GG, G}, and F' are defined as

16 x4y x—y)?
G(x,y,z):—g-kf) ~ _2( ~2 )
L2 2ety) + (@ —y)?)

2 (5.46)

fladty—2z22—22(x+y)+ (z —y)?)

22442 22 g2 —q)3 .
+{%<wi3_ zy+(3zg)>ln§’ IL‘?éy,

6%, r=y,
Gu(z,y) = G(2,y,y) + 12G:(2, y, y) (5.47)
and
Hy T |pz
F(fc,y)z{ TNy TEY (5.48)
0, T=Y,
where
Vrin Zﬁ : r>0,
ft,r)=<o0, r=0, (5.49)
24/ —r arctan@ , r<0,
and
—9 4 (2y — e g Setymet 2ty b)) oy
Gt ($, Y, Z) = f(2zxfz 22{74?;1) Y :
—4 4 LBz —len) rT=9y.

(5.50)

5.5 Monte Carlo analysis

Now we constrain the 2HDISM with the Higgs decay data. To do that we
need expressions for the parameters ay and ay in terms of the rotation angles
B and oy, . . The coupling of the Higgs boson h to fermions is

1§ COS (g COS Qryy

(5.51)

vsin 3
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whereas in the SM the coupling is m/v , thus

COS (g COS vy,

ay = Sinﬂ (552)

Similarly
ay = cos a,(sin oy sin v, cos § 4 cos ay sin 5) + sina, cosa, cos 5. (5.53)

But there are also charged scalar bosons H* in the model, so we should include
the term

—ag—H hH"H~ (5.54)

to the effective Lagrangian (2.16) . The hH ™ H~ coupling affects the h — v
channel, because the charged scalar boson interacts with photons, so the Higgs
boson can decay to two photons via H™ loop. In order to take the H* loop
into account we use the formula given in [26] :

a?g*m3 |4 2
Fw(af,av,ag) = 10%4g7r—3Mh%/ gafF1/2 +avF1 +CL5F0 y (555)
where 4m§{+ 4m§{+ 4m%,+
FO = B} ]_ - 2 f 2 9 (556)
my, mp, mp,

and the functions Fy, Fy/; and f are given by the formulae (2.26) and (2.27) .
The 2 fit is not very sensitive to the mass of the H* boson, so for the x? fit
we use my+ = 4TeV . Now

G, ~ 0.0238 (1.84as + 0.33ag — 8.32ay)* . (5.57)
We also need the expression for the ag parameter:

ag = [850502 (Alcg(—(cxsysz + 8.¢,)) — )\3C$8y523206 + )\4cwsyszséclg
—Agcxcys[gc% + )\4cxcys[gc% — )\Qcmcys% — Agsxczs%% + )\4sxczs%c/5
—2cwsyczs%c%)\5i + 23$szséc%/\5i — ZCwsyczsﬂc%/\Gi + 23:53,3850%)\&
_ZCxSyCZS%Cﬁ)\’ﬁ + 2590525?5’0,3)\72- + CzSySZS%C/g)\E,T + Cny85C%)\5r
+sxczs%cﬂ)\5r — Ca;SySZS@C%AﬁT + cmcycz)\ﬁr — sxczsﬂc%)\(sr
5570 (CaSyS255 — CaCyCs + 54C258))]

203, 4+ 0% (e (carer — 55 (A + Asr)) + 5327,)]
(5.58)

39



Scalar bosons H and A, do not affect the Higgs decay, because they are much
heavier than the Higgs boson. The mass of the singlet S might be less than half
of the Higgs mass, which would enable the invisible decay channel h — SS .
We studied the invisible decay channel already in the section 4.1 and saw that
it is disfavored by the Higgs decay data.

Next we scan the 18 dimensional parameter space looking for points that
satisfy the theoretical constraints as well as the constraints arising from the
electroweak precision data and Higgs decay data. We consider only lambda
parameter values |\;| < 7, in order to maintain perturbativity, so the simplest
unitarity constraints (5.37) are automatically fulfilled. Moreover we fix one of
the parameters, p9, , by the Higgs boson mass m;, = 125 GeV | require that
the masses of the new scalar bosons are sufficiently large [68, 69] :

mug, ma, > 600GeV , my+ > 100GeV . (5.59)

and concentrate on the mass region mg < 200 GeV . So, we randomly gener-
ate parameter sets using constraints |\;| < 7, (5.29) and (5.33) as bounds,
diagonalize the mass matrices numerically and calculate S and 7T values using
formulae (5.41) and (5.42) for those parameter sets which satisfy the mass
bounds (5.59) . Distribution in the (S,7") plane together with 1o , 20 and 30
CL regions is shown in figure 5.2.

T

Figure 5.2. Randomly generated points of the 2HDISM together with the 1o (blue),
20 (yellow) and 30 (red) CL regions in the (S,T') plane. Higgs decay constraints
and complete unitary and vacuum stability constraints are not yet considered.

Then we calculate as , ay and ag values using formulae (5.52) , (5.53) and
(5.58) , taking only those points which hit inside the 20 region in the (S,T)
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plane. Figure 5.3 shows how these points are distributed. As expected, we
obtain only ay values less than one, since the mixing between h , H and A
reduces the gauge boson couplings. Note that the parameter space points are
distributed strictly around ag = 0 . Hence to constrain the parameter space
we consider the plane that passes through the SM point (af, av,as) = (1,1,0) .
We accept only points which are inside the 20 region in plot 5.3b .

1.4
1.4 5
1.2
1.2
1
Ly 0l ¥
- -
3 3 °
0.8 0.6
0.6 "+ 0.4
0.4 ; '2 0.2
0.2 o 0 AR
06 07 08 09 1 1.1 1.2 0.7 0.8 0.9 11 1.2 1.3 14
ay ay
(a) (b)
1.5 15
Sp
0.5
z 0 $ 0
0.5 0.5
-15 ‘ -15
~15  ~10 -5 0 5 10 5 0 5 10 15
as as
(c) (d)

Figure 5.3. Higgs decay data fit for the 2HDISM. Black points are the parameter
space points, which satisfy the 20 ST" bounds and the simplest vacuum stability
constraints. Blue, red and yellow areas correspond to the 1o, 20 and 30 CL regions,
respectively. Plots (a), (¢) and (d) are the intersections through the best fit point
(af,ay,as) = (1.02,0.96, —4.42) . Plot (b) shows the fit at ag =0 .

Finally, we check that the complete unitarity and vacuum stability con-
straints are fulfilled. This is the slowest part of the calculation so we want
to constrain the parameter space as much as possible before calculating the
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complete unitarity and vacuum stability constraints. The vacuum stability
and unitarity constraints decrease the number of acceptable points drastically.
Figure 5.4 shows how the vacuum stability and unitarity requirements con-
strain the parameter space and in figure 5.5 distributions of the masses and
mixing angles are shown.

1.4

1.2

af

061"

Sy
)

0.4

.
% o

oo o
L
—awee!

0.2

[en]
M

R I

0.7 08 09 1.1 1.2 1.3 1.4

ay

Figure 5.4. Viable points in the (ay,ay) and (S,T) planes together with the 1o
(blue), 20 (yellow) and 3o (red) CL regions. For the black points the full vacuum
stability and unitarity constraints are taken into account as well as the 20 ST bounds
and the 20 constraints from the Higgs decay data.
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Figure 5.5. (a),(b),(c): Rotation angles a; , ay and «, corresponding to points
which satisfy all constraints. (d): Parameter 8 before (yellow, scaled) and after (red)
the Higgs decay and full vacuum stability and unitarity constraints. Plots (e) and
(f) show the distributions of the masses of the new scalar bosons.
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5.6 Dark matter relic abundance

Using formulae given in the appendix C we calculate the annihilation cross-
section for the dark matter candidate S'. The annihilation channels are

SS s hh, SS— HH . SS— AgAy
SS — hH, SS—hAy, SS— HAy, SS— HYH™, (5.60)
SS —WtW~, SS—27Z, SS— ff.

Similarly as in the section 4.2 we now calculate the relic abundance taking into
account only points which satisfy the 20 ST bounds and the 20 constraints
from the Higgs decay data, and survive the complete vacuum stability and
unitarity constraints. Relative relic abundance for these points is shown in
figure 5.6 .

200 R . .‘ ...OQ .: e & )..:"‘o. 0. : . -
. . :. .. % S :.:-‘
....-.p;f'..... S . -;T . .:{. . ’. .
150+ .:'h,'.::. AEY ot |
— o e o % ° L [ M
= ' A :
() ° c°® ° °
U 100 [ .. . .o.: 7
A R I .
E - S °
a0 | 1
—6 —4 —2 0

lOglO(frel)

Figure 5.6. Logarithm of f,q = Qh%/0.12 for different dark matter candidate
masses mg .

From figure 5.6 we see that there are potential points in the parameter
space producing a dark matter candidate, that may account for a significant
amount of the total dark matter mass density. To proceed we could take for
example those points which may account for more than 1% of the total dark
matter mass density and check if they could provide required conditions for
the baryogenesis. We could also check how the constraints from the direct and
indirect dark matter searches would constrain the parameter space and up
to how large energies the model could maintain perturbativity and vacuum
stability. The work in order to take these constraints into account is in progress
[70] .
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Chapter 6

Conclusions

In this thesis we have studied the SM Higgs sector and compared it to the
latest data from the LHC and Tevatron experiments. We considered a modified
Lagrangian to study how much the Higgs boson couplings to the electroweak
gauge bosons and fermions can deviate from the SM. We concluded that the
SM is well in agreement with the Higgs boson measurements.

Then we considered two extensions of the Higgs sector. First we extended
the SM Higgs sector with one real singlet. We studied the invisible decay
channel of the Higgs boson and noticed that it significantly constraints the
parameter space in the region where the mass of the singlet is less than half of
the Higgs boson mass. The singlet could provide a good dark matter candidate,
so we also calculated its relic abundance.

Finally we examined the two-Higgs-doublet model extended with one real
singlet. We carried out Monte Carlo analysis of the model constraining the
parameter space with vacuum stability and unitarity requirements as well as
with electroweak precision data and Higgs decay data. Again we considered
the singlet as a dark matter candidate and calculated its relic abundance.
According to our analysis, there are potential regions in the parameter space
which fulfill both the theoretical and experimental constraints, and provide a
dark matter candidate which could constitute significant amount of the total
dark matter mass density. Checking the conditions for the baryogenesis and
taking into account the constraints from the direct and indirect dark matter
searches and from perturbativity and vacuum stability at high energies is left
for future work.

45



Appendix A

Summary of statistics

This is a brief summary of statistics needed in this thesis. For a more complete
review see for example chapters 35 and 36 of the reference [66] .
Experiments in particle physics, when searching for new particles, are
looking for excesses over the expected background. Hence a discovery requires
being convinced that the excess is not a statistical fluctuation of the background.
Usually particle physicists talk about a discovery when the significance of
the observation is more than 50 . This means that assuming a Gaussian

distribution,
1 N2 2
falz) = %e (@=p)%/20° (A.1)
for the statistical fluctuations of the background the excess is more than 6
standard deviations o from the expectation value p of the background. So
if the significance of the observation is zo the probability that the observed
excess arises from the fluctuations of the background is

u+zo

a=1- / fo(z)dr =1 — ext (%) : (A.2)

U—zo

which for z =5is a =5.73-1077 .

Let us suppose that we have N independent Gaussian random variables.
That is, We have a set of N measurements with expectation values p; and
variances o2 . The probability of finding a set {z;({6;})} , depending on M
parameters {9 }, such that x;({0;}) € [u; — d, p; + dz] for all ¢ is simply

—(1:1 {9 H—ws) /201 dr . (A3>

L({6;}) —2H

- 27mZ
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Table A.1. Values of [x2({8,})—x>({6;})| for M parameters for different confidence
levels S .

I54 \ M=1 M=2 M=3
0.6827 1.00 2.30 3.53
0.9545 4.00 6.18 8.02
0.9973 9.00 11.83 14.16

Now the set of parameters {;} describing best the measurements is the set
which maximizes L , or equally the set that minimizes

o =2 (m (HUoD) .y, <2H &;))

({8 — )

(A.4)

The method of finding best fit values éj for parameters ¢; by minimizing
x*({6;}) is known as the method of least squares.

In general, if we have n independent Gaussian distributed variables having
mean /; and variances o7 , then

-yt =

is distributed according to chi-squared distribution

n/2=1=2/2

= AT (A.6)

fx2 (Z, n)

Hence limits on the parameters ¢; at confidence level 5 can be obtained by
requiring

Ay
/ fe(z,M)dz =3, (A.7)
0

where Ax? = [x2({6;}) — x*({6;})| . In table A.1 we have calculated the values
of the difference Ax? in the cases M = 1,2,3 for confidence levels 0.6827 ,
0.9545 and 0.9973 , which correspond to the 1o , 20 and 3o limits for Gaussian
distribution, respectively.
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Appendix B

Solution of the Lee-Weinberg
equation

Decoupling of the dark matter particles S (WIMPs) from the visible matter is
described by the Lee-Weinberg equation

d
d—? = —3Hn + (vo) (nZ, —n?) , (B.1)
where H is the Hubble parameter, n is the particle number density of the
WIMPs, neq is the particle number density in the thermal equilibrium and
(vo) is the flux-weighted thermally averaged annihilation cross-section of the
WIMPs. The equilibrium number density is

d3p
oq = T B.2
where ¢ is the number of intrinsic degrees of freedom for the WIMP and f(p, T)
is the equilibrium distribution function, which at low temperatures can be
approximated as

fp.T) =57 (B:3)
Hence the equilibrium number density is
Ny = 9 EAJE2 —m2e BITQE = gmngK2 (ﬁ) . (B.4)
T 2m? s 272 T

Under the assumption (B.3) the flux-weighted thermally averaged annihilation
cross-section,

_ [ Ep1dPpaf(p1,T) f(p2, T)vo
[ Bp1d®paf(p1, T) f (2, T)
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where

v — \/(pl - p2)? — (mimgy)? 7 (B.6)

(pt +m3)(p3 + m3)

can be written as [71]

(vo) = gmgﬂlg (%)Jj dsv/s(s — 4m3) K, (\/?g) Trot(8) - (B.7)

In the equations (B.4) and (B.7) K,, are the modified Bessel functions of
second kind. In the radiation dominated Universe the Hubble parameter is

8T 473 T*

Ptot = — = Gx

H? = —5— (1)~
3MF2’1anck 45 Mlg’lanck

(B.8)

where g, is the effective number of degrees of freedom

v0= Y a(B) I ¥ alB) (8.9)

bosons fermions
Defining
n mg
Y = = — B.10
t e = (B.10)
where s is the entropy density

2m?
=" ¢..(TT?, B.11
5= g.(T) (B.11)

with

gs(T) =Y _ g (;)Zg > (;)3 , (B.12)

bosons fermions

the Lee-Weinberg equation (B.1) can be expressed as
dY

— =Z(Y?-Y? B.1
Y zvrovy) (B.13
where
Z(x)=— lﬁM m x’2<va> (B.14)
- 45 g*s(%) Planck//tS .
and
Yig(2) = —— 22K () (B.15)
ed 471'49*3(%) 2 . .



For a given (vo)(z) the equation (B.13) can be solved numerically.
However, we may do an approximation which speeds up the calculation
preserving good accuracy. We define

Y
0= —1 B.1
- (B.16)
whereby
dYeq do+1) .,
(0+1) P + Yeq W ZY 6(6+2). (B.17)

Now the approximation is that the departure from the equilibrium starts
slowly, thus before the freeze out, x < xy , we have

dié+1) d Y
—F = ——~0. B.18
dx dzx Yeq ( )

Hence

dYeq 5(0 +2)

A .
dx o1 L=
For the numerical solution it is useful to define yq = €Y., . The equation
(B.19) can now be written as

(B.19)

, 6(5+2)

r=ln| ——0+1 | (B.20)
dyeq
do U

Next we pick up a reasonable value for d; and solve x ¢ iteratively from (B.20) .
The solution is not very sensitive on the choice of § and to simplify the equation
(B.20) we can choose § = (v/5 — 1)/2 . Moreover we use an approximation

7
9(T) =gus(T) =246 6(T — Myy) +3-6(T — Mz) +3 -

€, [, T scalars

—|—(9<T—TQCD) (284—% Z 9(T—m1)> ,

quarks

(B.21)

which is justified since the in the early universe most of the particles had
the same temperature. For the QCD phase transition temperature we use
TQCD = 0.25GeV .
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After the freeze-out, z > 2y we may assume that Y2 < Y2

. Hence
Y
d—zZYQ, T >y, (B.22)
T
thus Y(z)) .
Ly
Yi(z) = ~ B.23
(v Y(@)A(w,ap) -1 Az, ;) (B.23)
where N
Alx,xp) = —/Z(x)dw : (B.24)
zf
Now the relic abundance is
anz=Lp2 (B.25)
Pec
where
h=0.673, (B.26)
pe = 1.054-107° h? GeV cm ™ '

are the scale factor for the Hubble expansion rate [8] and the critical density
[66], respectively. The WIMP density p is

P— msn(zo) = mss(zg)Y (xo)
mg ) mg (B.27)
g*s — ) B A
xy ) xp xo,xf)
Now m
r=1x9= Tj : (B.28)

where T, = 2.725K = 2.348 - 10713 GeV is the present day photon temperature
[72], so

-1
o
271 h?
Qn? = %p_TS‘q*S (T,) ms —/Z(x)dx (B.29)
~5.196-108 GeV~! o

The Z integral can be evaluated numerically, but with good accuracy it can
be approximated as

zo

/Z(:p)da: ~arZ(xy) . (B.30)
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Appendix C

SS annihilation cross-section

Let us assume, that we have a model which includes three neutral scalar bosons
h, H, S and one charged scalar boson H* , with interactions described by the

Lagrangians
»Cscalar - CthQ + C12h3 + C’Bhgs2 + C4H52 + C5Hh2 + 06H3

+ CrH?S? + CshH? + CoS*hH + C10S*H"H™ + CyyhHTH- (C.1)
+ClHHYH™ |

'Cgauge = G1g“th/V:W; + Ggg“”hZuZ,,
+ Gag"™ HW, W, + Gug""HZ,Z, (C.2)
+ G5g“”H+H_W;WV_ ,
and

/Cfermion = Flhwa + FZH@Z)@ ) (C3>

where C}, G, Fj are the coupling strengths.

o - *---"TTTT T -
~e. . N . I !
T i % s ;

- L SRS S
(a) (b) (c) (d)

Figure C.1. Lowest order Feynman diagrams for the annihilation SS — hh .
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We would like to calculate the cross-section for the S'S annihilation. There
are four different two-body final state annihilation channels where the final
state particles are scalar bosons:

SS—hh, SS— HH, SS—hH, SS— H H . (C.4)

Let us first calculate the cross-section for the annihilation channel SS — hh .
The lowest order Feynman diagrams for the annihilation are shown in figure
C.1. Now we may immediately write down the amplitude for the process

1 1 1 1
My = 4Cy + 1201 Cy—— +4C4Cs—— +2cf( s 2) |

s —my s—m% t—m%  u—m}
— A
(C.5)
The differential cross-section is
donn _ | Mn)? _ | M |? (C.6)
dt 167s(s — 4m%)  16ms?v? '
where
2
2 =1-4"5 (C.7)
s

To get o, we need to evaluate six integrals. First we need to find out the
integration limits. The Mandelstam variable ¢ can be written as

t =m% +mi — 2E5E), + 2|ps]||pn| cos 6 (C.8)
where the scattering angle § obtains values from the interval [0, 7] . In the

CMS frame
1 1
|PS’=§\/8—4m%, |ph]:§\/s—4mi, (C.9)

thus the integration limits are

1
ti:§(2m%+2mi—si—\/s—4m§\/s—4m%) : (C.10)

Evaluating the integrals is rather easy. The integrals are

28

/dt = SURUS , (C.11)

t_
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ty ty
1 1
/dt 2:/dtt 2:1n1— Iz 42
u—m —-m s—2m SURU
4 & 7 5 h s (C.12)
N_QSUhUS

2sv,vVg

s—2m3’
ty ty
1 1
dt ———— = /dt—
/ T T
B 4svpvg (C.13)
(s — 2m? — 2svpvs) (s — 2m3 + 2svpUs)
N 4svpvg
T (s —2m2)2’
t+
1
dt
/ )
2 25005 (C.14)
- m|1- .
s —2mj 5 — 2mj + 2svpvg
4svpvg

- (s —2m2)% "’

where we have assumed that s — Qmi > 2sv,vg . If there are two identical
bosons in the final state we must take into account symmetry factor 1/2 .
Hence the cross-section for the SS — hh annihilation process is

2 2
Ohh = n (Ahh — 8L> . (C15)

32mvgs s—2m3

The SS — HH process is identical to the SS — hh process. The annihilation
cross-section for the SS — HH process is

Vg 02 2
_ Ay — 81 1
THH = Borugs < i 88 — 2m%1> ’ (C.16)
where 4
Apgg = 4C7 + 120108 5 + 40406 5 - (C17>
s—m3 s —m3
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Also the SS — hH channel is similar to the previous channels. The annihilation
cross-section for the SS — hH process is

2
onp = 1607?555 (AhH — 163—7761%—0—4771%) , (C.18)
where .
Apg = 2Cy + 4C1C5 5 + 4C4Cy 5 (C.19)
s —mj 5 —my
and )
Wy =1 M (C.20)

The SS — HTH~ channel does not include ¢ and u channel diagrams. The
annihilation cross-section for the SS — H*TH™~ process is

UH+ 2
=1 A _ C.21
oHtH 16mvgs HTTH™ ( )
where .
Apg+pg- =2C0 +2C,Cpy 7 + 2C4Ca 5 - (C.22)
s —mj 5 —my

The gauge boson channels include only s channel diagrams with h and H
propagators. The Feynman amplitude for the SS — W*W ™ process is

1, . 1
MWW = 401G18 — m}% €1 € + 4C4G38 — m%{E(k’l, )\1) : 6(]{72, )\2) y (023)
thus using
o v yng kfk;/
D (kg \)e (ks A) = =g + SR (C.24)
Y w
we get
s(s —AM2)\ [ C1Gy 4G5\’
Myww|* =16 (3 W : C.25
My ( + 4 M, )(s—m%+s—m§{ ( )
Hence
- s(s —AM2)\ [ C1Gy CuG3 \°
= 3 . C.26
TV = Srugs ( * 4 M, s—m3 L m? (C26)
and similarly for the SS — ZZ process
Vz S(S - 4M%) ClGQ C4G4 2
= i 2
07z dmvgs (3 * 4M3 s—m3 i s —m?2 (C-27)
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Also for the fermionic final states there are only s channel diagrams. The
Feynman amplitude for the SS — ff process is

1 1
Mff == OIFIS — m}%ﬂ(k}l, hl)U(kQ, hg) + C4F23 — m%[ﬂ(k’l, hl)U(kQ, hg)
(C.28)
Making use of identities
Zu(kla hl)ﬂ(kb hl) = kl + mf 9
M (C.29)
Zv(k27 hQ)E(k27 h2) - %2 - mf 9
ha
and
Tr(fiky) = 4k1 - ko (C.30)
we get
1 1\’
Ms|* = 2Ncs(s — 4m? F F. C.31
| M| os(s — 4my) (01 ls—m,%—i_al 23—m12q> 5 ( )
where N¢o = 1 for leptons and Ng = 3 for quarks. Hence
Nch 2 1 1 2
= —4 CF CyF: . C.32
arf 167rv53(8 mf)( 1 1s—mi+ 4 2s—m§{> ( )
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