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Abstract

In this thesis we study the Higgs sector of the Standard Model and compare
it to the latest data from the LHC and Tevatron experiments. Then we
consider two extensions of the Higgs sector. First we extend the Standard
Model Higgs sector with one real SU(2) singlet and then we consider two-Higgs-
doublet model and extend also it with one real singlet. In both extensions
the singlet scalar is considered as a potential dark matter candidate. We
find that the parameter space of the so called two-Higgs-doublet-inert-singlet
model includes regions which could provide a dark matter candidate which
constitutes significant amount of the total dark matter mass density.
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Chapter 1

Introduction

Nowadays the understanding of the elementary particle physics is largely based
on the Standard Model (SM). The success of the SM has been astonishing. It
predicted the existence of the heaviest quarks (charm [1] , bottom [2] and top
[3]) and gauge bosons Z,W [4, 5] before they were experimentally observed.
In the last few decades it has been tested in many experiments and shown
to successfully describe the high energy physics phenomena. For a long time
the Higgs sector has been the only unverified part of the SM. However, the
newly found neutral boson [6, 7] seems to be well consistent with the SM Higgs
boson.

Despite the great success we are not fully pleased with the SM. First of
all there are some problems with the Higgs sector. The SM does not explain
why the weak force is so much stronger than gravity. The central challenges in
elementary particle physics today are Higgs physics, dark matter problem and
baryon asymmetry problem. For some reason there seems to be much more
matter than antimatter in the Universe. To explain the asymmetry one would
need sufficient amount of CP violation in the elementary particle physics
model. The SM does not offer enough CP violation and can not explain the
baryon asymmetry. Moreover, measurements [8] have shown that only less
than 5% of the energy density of the observable universe consists of ordinary
baryonic matter. The rest of the matter-energy content is dark matter (27%)
and dark energy (68%). The nature of dark matter is still one of the biggest
mysteries in physics. New weakly interacting massive particles (WIMPs) are
probably the most favorable candidates for the dark matter, but there are no
WIMP candidates in the SM. Also the nature of dark energy is not understood,
but we will ignore the dark energy problem in this thesis.

There is no way SM could explain the dark matter or the baryon asymmetry
problem, thus we need to search for a model beyond the SM. In this thesis we
will concentrate mainly on the dark matter problem, keeping in mind also the
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baryon asymmetry problem. One way to approach the dark matter problem is
to try to understand the physics of the Higgs sector. Extensions of the Higgs
sector could provide dark matter candidates as well as sources for the CP
violation which could explain the baryon asymmetry. We will consider two
extensions of the Higgs sector: first we consider the SM Higgs sector with an
additional real scalar singlet, and then we study the two-Higgs-doublet model
with an additional real singlet. In both cases the singlet field is considered as a
dark matter candidate. We constrain these models with Higgs decay data from
the LHC and Tevatron experiments, and with the electroweak precision data.
Moreover we calculate relic abundances of the dark matter particle candidates.
We begin with the SM Higgs sector.
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Chapter 2

The Standard Model Higgs sector

2.1 Electroweak symmetry breaking
The SM is a gauge theory, which describes fundamental particles and their
electroweak and strong interactions. The gauge symmetry of the SM is
SU(3)C × SU(2)L × U(1)Y . We will focus on the electroweak sector SU(2)L ×
U(1)Y introduced by Glashow, Weinberg and Salam [9, 10] . The gauge
symmetry prevents us from adding mass terms for gauge bosons and fermions.
In the SM masses are obtained through spontaneous symmetry breaking (SSB)
[11, 12] , that via the Higgs mechanism gives masses to gauge bosons W and
Z and leaves only U(1)EM as a manifest symmetry of the vacuum. The idea of
the Higgs mechanism is to introduce scalar fields and a scalar potential, which
gives a non-zero vacuum expectation value (VEV) to one of the scalar fields,
leading to massive gauge bosons, quarks and charged leptons through their
couplings with the scalar fields.

In the SM the scalar sector consists of one SU(2) doublet (with hypercharge
Y = 1)

φ =

(
φ+

φ0

)
. (2.1)

The Lagrangian describing the scalar sector is

LHiggs = (Dµφ)†(Dµφ)− V (φ) , (2.2)

where
Dµ = ∂µ + ig

τj
2
Ajµ + ig′

Y

2
Bµ (2.3)

is the covariant derivative and

V (φ) = −µ2φ†φ+
λ

4
(φ†φ)2 (2.4)
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is the scalar potential. Due to hermiticity of the Lagrangian the parameters µ2

and λ are real. Stability of the vacuum requires the potential to be bounded
from below, which means that λ is positive. To obtain a non-zero minimum of
the potential, which is essential in order to break the symmetry, we also take
µ2 > 0 . Then we choose a particular minimum

〈φ〉 =

(
0
v√
2

)
, (2.5)

where v = 2µ/
√
λ , so that the doublet φ acquires a VEV 〈φ〉 .

To find out the tree-level mass eigenstates we calculate the mass matrices,

M2 =

(
∂2V

∂φj∂φk

∣∣∣∣
φ=〈φ〉

)
, (2.6)

for charged and neutral scalar fields, and diagonalize them. In the SM the full
mass matrix in the basis {φ+,Re (φ0) , Im (φ0)} is 0 0 0

0 v2λ
2

0
0 0 0

 . (2.7)

Hence, after the symmetry breaking we obtain one neutral massless scalar field
Im (φ0) and two charged massless scalar fields φ± , which are the Goldstone
bosons eaten by the gauge fields leading to massive gauge bosons Z and W± ,
and one neutral massive scalar boson Re (φ0) , which is the Higgs boson.

To see in detail how we get rid of the Goldstone bosons we write

φ = e−iηjτ
j

(
0

1√
2
(h+ v)

)
, (2.8)

where ηj and h are real scalar fields with VEVs 〈ηj〉 = 0 = 〈h〉 , and τ j

are the SU(2) generators. Now we transform to the so called unitary gauge
by performing a SU(2)L gauge transformation U = eiηjτ

j . Expanding the
Lagrangian of the Higgs sector LHiggs we get

LHiggs =
1

4
∂2h2 +

1

4
g2h2W−W+ +

1

2
g2hvW−W+ +

1

4
g2v2W−W+

+
1

8
(g2 + g′2)h2Z2 +

1

4
(g2 + g′2)hvZ2 +

1

8
(g2 + g′2)v2Z2

+
h4λ

16
+

1

4
h3vλ+

1

4
h2v2λ− v4λ

16
,

(2.9)
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where
W± =

1√
2

(
A1 ∓ iA2

)
, (2.10)

and (
Z
A

)
=

(
cos θW − sin θW
sin θW cos θW

)(
A3

B

)
. (2.11)

The Weinberg angle θW is defined such that

g =
e

sin θW
, g′ =

e

cos θW
(2.12)

in order to obtain the correct electron-photon and neutrino-photon interactions.
From the equation (2.9) we can easily identify mass terms for W and Z bosons
as well as for the Higgs boson h , and see that there are no Goldstone bosons.

The parameter v is attached by the Z boson mass

MZ =
√
g2 + g′2v/2 , (2.13)

which has a measured value MZ = 91.19 GeV . For coupling constant values
g(MZ) = 0.650 , g′(MZ) = 0.358 we obtain v ≈ 246 GeV . Now µ = v

√
λ/2 so

the only unknown parameter in the SM Higgs sector is λ or equivalently the
mass of the Higgs boson m2

h = v2λ/2 .
SSB also leads to massive fermions through the Yukawa interactions

LYukawa =
Ye
2
ψ
T

l,Lφψe,R +
Yu
2
ψ
T

q,L(−iτ2φ)ψu,R +
Yd
2
ψ
T

q,Lφψd,R + h.c. . (2.14)

After SSB the interactions of the Higgs boson with the gauge bosons and
fermions are summarized by the Lagrangian

Lint =
2M2

W

v
hW+W− +

M2
Z

v
hZ2 +

M2
W

v2
h2W+W− +

M2
Z

2v2
h2Z2

−
∑
ψ

mψ√
2v
h
(
ψLψR + h.c

)
,

(2.15)

where the sum is taken over charged leptons e, µ, τ and quarks u, d, s, c, b, t .
Note that coupling of any massive particle to the Higgs boson is proportional
to its mass, so the top quark has the strongest fermion-Higgs boson coupling.

2.2 Discovery of a new neutral boson at the
LHC

One of the main goals of the Large Hadron Collider (LHC) has been to search for
the SM Higgs boson in the proton-proton collisions. On July 4th 2012 ATLAS
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and CMS collaborations announced that they had found a clear evidence of a
neutral boson with mass of approximatively 125.7 GeV [6, 7] . The significance
of the observation was 4.9σ (see appendix A for summary of statistics). Since
then the significance has increased and is already more than 7σ . More recently
also CDF and C0 collaborations have found similar evidences for the new
boson from the Tevatron data [13] . Hence it is now obvious that there is a new
neutral boson. The mass of the new particle can be obtained from the position
of the observed peaks in the h → ZZ → 4l and h → γγ channels. Latest
results for the mass of the new boson are 125.2± 0.3(stat.)± 0.6(syst.) from
the ATLAS experiment [14] and 125.7± 0.3(stat.)± 0.3(syst.) from the CMS
experiment [15] . Next we will look at the Higgs couplings and see whether
the new boson is the SM Higgs boson.

2.3 LHC and Tevatron data fit

There are five dominant Higgs boson production channels in the proton-proton
collisions in the mass range around 125 GeV in the SM. These production
channels are presented in figure 2.1 and the corresponding cross-sections for√
s = 2, 7, 8 TeV are collected in table 2.1 . Likewise, there are nine dominant

Higgs decay channels which are presented in figure 2.2 corresponding to
branching ratios presented in table 2.2 . The Higgs boson does not directly
couple to photons, because it is neutral, so the leading order contribution to
h→ γγ arises from the top andW loop diagrams. The h→ WW and h→ ZZ
decay channels are followed by the decay of the gauge bosons to leptons. For the
experiments, the most important decay channels are h→ ZZ → 4l (l = e, µ)
and h→ γγ due to the excellent mass resolution for the reconstructed γγ and
4l final states [16].

g
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q

q

q

(a) ggF

q

q

q

h

q
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V

(b) VBF

q

q

h

VV
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t

t

t

(d) ttH

Figure 2.1. Dominating Higgs boson production channels in the SM.

Experimental collaborations give signal strength values for different decay
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Figure 2.2. Dominating Higgs boson decay channels in the SM.

channels of the Higgs1. The ATLAS and CMS collaborations have measured
the signal strength for five different decay channels and from the Tevatron data
we get signal strengths for three decay channels. Latest results are presented
in table 2.3 . The LHC results are combined from experiments with center
of mass energies

√
s = 7 TeV and

√
s = 8 TeV . For the Tevatron results√

s = 2 TeV .
Let us see how the SM Higgs boson fits with the most recent results of

the ATLAS, CMS and Tevatron experiments. Similar analysis for different
models is done for example in references [21–25] . We consider modified Higgs
couplings, where the couplings of the Higgs boson to fermions are multiplied by
a factor af and to gauge bosons by a factor aV . Hence we study an effective

1Henceforth we will refer the newly found neutral boson as the Higgs or the Higgs boson.
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Table 2.1. Production cross-sections of the SM Higgs boson (mh = 125 GeV) for√
s = 8, 7, 2 TeV [17, 18] .

ggF VBF WH ZH ttH

σ8 TeV(pb) 19.52 1.578 0.6966 0.3943 0.1302

σ7 TeV(pb) 15.32 1.222 0.5729 0.3158 0.0863

σ2 TeV(pb) 0.9493 0.0653 0.1295 0.0785 0.0043

Table 2.2. Decay branching ratios of the SM Higgs boson (mh = 125 GeV) [19].

BR BR BR

h→ bb 5.77·10−1 h→ ττ 6.32·10−2 h→ γγ 2.28·10−3

h→ WW 2.15·10−1 h→ cc 2.91·10−2 h→ Zγ 1.54·10−3

h→ gg 8.57·10−2 h→ ZZ 2.64·10−2 h→ µµ 2.20·10−4

Lagrangian density

Leff = aV
2M2

W

v
hW+W− + aV

M2
Z

v
hZZ − af

∑ mψ

v
hψψ . (2.16)

We could also add for example an extra gauge boson W ′ with coupling
2a′Vm

2
W ′/v to Higgs boson or a scalar boson S0 with coupling aSm2

S0
/v to

the Higgs boson, but for our analysis here these are not important.
The signal strength corresponding to decay channel j is defined as

µj =
σtotBRj

σSMtotBRSMj
, (2.17)

where σtot and BRj are the measured total production cross-section of the
Higgs boson and branching ratio to the decay channel j , and σSMtot,BRSMj are

Table 2.3. Observed signals strengths µobs,j for different Higgs decay channels from
the ATLAS [20], CMS [15] and Tevatron [18] experiments.

ATLAS CMS Tevatron

ZZ 1.47± 0.38 0.91± 0.27

γγ 1.65± 0.34 1.11± 0.31 3.64± 2.78

WW 0.96± 0.30 0.76± 0.21 0.33± 0.86

ττ 0.75± 0.69 1.10± 0.40

bb −0.40± 1.02 1.08± 0.59 1.98± 0.75
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the corresponding values calculated from the SM. We can use the formula (2.17)
also to calculate the signal strength values for any model just by replacing
the nominator by the production cross-section and branching ratio calculated
from the model. Note that for the SM µj = 1 for all decay channels.

Next we use the formula (2.17) to calculate µj values corresponding to the
Lagrangian (2.16) . Writing the branching ratio BRj in terms of the decay
width Γj and the total decay width Γtot =

∑
j Γj ,

BRj =
Γj

Γtot
, (2.18)

we get

µj =
σtot
σSMtot

Γj
ΓSMj

(
Γtot

ΓSMtot

)−1

. (2.19)

The total Higgs decay width in the SM is ΓSMtot = 4.07 . It is useful to define

Gj =
Γj

ΓSMj
, sj =

σj
σSMj

, (2.20)

whereby
Γtot

ΓSMtot
=
∑
k

GkBRSMk , (2.21)

and

µj =

(∑
l

sl
σSMl
σSMtot

)(
Gj∑

kGkBRSMk

)
. (2.22)

The k summations in the formulae (2.21) and (2.22) include the final states
(ff,VV,gg,γγ,Zγ) and the l summation in formula (2.22) includes the initial
states (ggF,VBF,VH,ttH).

The only thing we need to do now is to find out sj for different production
channels and Gj for different decay channels of the Higgs boson. We take
into account only the leading order interactions. By looking at the Feynman
diagrams shown in figure 2.1 , and remembering that we modify the higgs-
gauge boson interactions by a factor aV and higgs-fermion interactions by a
factor af , it is easy to see that

sggF = a2
f , sVBF = a2

V , sWH = a2
V , sZH = a2

V , sttH = a2
f . (2.23)

Similarly from the decay channel diagrams 2.2 we see that

Gbb = a2
f , Gττ = a2

f , Gcc = a2
f , Gµµ = a2

f ,

GWW = a2
V , GZZ = a2

V , Ggg = a2
f , GZγ = a2

V .
(2.24)

9



The h→ γγ decay channel is in turn more complicated, because top and W
loop diagrams give contribution of the same order of magnitude. Hence we
need to go to the amplitude level. By using the formulae given in [26] we write

Γγγ(af , aV ) =
α2g2m3

h

1024π3M2
W

∣∣∣∣43afF1/2 + aV F1

∣∣∣∣2 , (2.25)

where

F1/2 = −2
4m2

t

m2
h

(
1 +

(
1− 4m2

t

m2
h

)
f

(
4m2

t

m2
h

))
,

F1 = 2 + 3
4M2

W

m2
h

+ 3
4M2

W

m2
h

(
2− 4M2

W

m2
h

)
f

(
4M2

W

m2
h

)
,

(2.26)

and

f(τ) =

arcsin2
√

1
τ
, τ ≥ 1 ,

−1
4

(
log
(√

1−τ+1
1−
√

1−τ

)
− iπ

)2

, τ < 1 .
(2.27)

Now using α = 7.30 · 10−3 , g = 0.653 , MW = 80.4 GeV and mh = 125 GeV
we get

Gγγ =
Γγγ(af , aV )

Γγγ(af = 1, aV = 1)
≈ 0.024 (1.83af − 8.32aV )2 . (2.28)

Using the SM values given in tables 2.1 and 2.2 we calculate the sig-
nal strength values µexp(af , aV ) corresponding to the Lagrangian (2.16) as a
function of the parameters af and aV . We use the method of least squares
described in the appendix A to find the best fit values for the parameters af
and aV . That is, we minimize

χ2(af , aV ) =
∑ (µexp(af , aV )− µobs)2

(δµobs)
2 (2.29)

with respect to af and aV . From the SM we may expect that the best fit values
for af and aV are close to one. Then calculating χ2

n = χ2
min + δn for δ1 = 2.3 ,

δ2 = 6.18 and δ3 = 11.83 we obtain the 1σ = 68%, 2σ = 95% and 3σ = 99.7%
contours in the (af , aV ) -plane. Figure 2.3 shows the best fit point together
with the 1σ , 2σ and 3σ confidence level (CL) regions. The best fit point
(af , aV ) = (0.96, 1.04) is very close to the SM prediction (af , aV ) = (1, 1) .
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Figure 2.3. Two parameter af , aV fit. Blue, yellow and red areas correspond 1σ, 2σ
and 3σ CL regions and cross corresponds to the best fit point. The SM corresponds
the intersection of the dotted lines.
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Chapter 3

Need to go beyond

Despite the success of the SM it is clear that it can not be the fundamental
theory of elementary particle interactions. There are phenomenological and
conceptual problems with the SM, of which we will next briefly explain the
hierarchy problem, the dark matter problem and the baryon asymmetry
problem. For more complete reviews on dark matter see references [27, 28] ,
and on baryon asymmetry see e.g. [29] . The hierarchy problem is considered
for example in the references [30, 31] .

3.1 Hierarchy problem

It is clear that one needs spontaneous breaking of SU(2)L × U(1)Y at the
energy scale ∼ 100 GeV . Less clear is how the symmetry breaking happens.
In the SM one introduces fundamental scalar fields to break the symmetry.
This leads to the hierarchy problem. If we consider radiative corrections to the
Higgs boson mass arising from its self-interactions and couplings with gauge
boson and fermions, we find a quadratic divergence of the Higgs mass. This
leads to unnatural fine-tuning in order to obtain the observed mass and to not
break SM already at the few TeV scale.

There are at least three fundamental energy scales in nature: electroweak
scale, described in the SM by vweak = 246 GeV, QCD scale ΛQCD ∼ 0.1 GeV ,
where the perturbative QCD coupling constant diverges, and Planck scale
MPlanck ∼ 1019 GeV , where gravity becomes as strong as the gauge interactions.
The smallness of the QCD scale compared to the Planck scale is understood:
Starting from the Planck scale, the running of the QCD coupling,

α(Λ) =
α(M2

Planck)

1 + β0α(M2
Planck) ln

(
Λ2

M2
Planck

) , (3.1)
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naturally gives ΛQCD �MPlanck , since from the equation (3.1) we get

ln

(
ΛQCD

MPlanck

)
=

1

2β0

(
1

α(ΛQCD)
− 1

α(MPlanck)

)
= − 1

2β0α(MPlanck)
, (3.2)

which for α(MPlanck) ∼ 0.01 and β0 ∼ 1 gives ΛQCD/MPlanck ∼ 10−20 . The
electroweak scale, in turn, is not understood within the SM.

Perhaps the fundamental Higgs boson should be replaced by some composite
particle. Technicolor theories [32, 30] provide a dynamical way of breaking the
electroweak symmetry. Similarly as in the QCD it would be nice if one could
generate the electroweak symmetry breaking scale ∼ 100 GeV in a natural way.
This will lead to composite Higgsses. However, these composite particles can
be in effective models described by scalar fields. Hence the models we study
in this thesis may as well describe composite particles as fundamental scalar
particles.

There are also other theoretical problems in the SM. One may ask why
there are just three generations of fermions. Or how to explain the huge
hierarchy of the fermion masses. The SM does not give answers to these
questions.

3.2 Dark matter

There are plenty of astrophysical evidences for dark matter. The first signs of
dark matter emerged in the 1930s as Fritz Zwicky studied the movement of
galaxies within the Coma Cluster [33] . He determined the velocities of the
galaxies by measuring their Doppler shifts. According to the virial theorem

2Ekin = −Epot , (3.3)

where Ekin is the average total kinetic energy and Epot the average total
potential energy of particles interacting with each other through gravitational
force. Now

Ekin =
1

2
Mtotv2 , (3.4)

where Mtot is the total mass of the cluster and v2 is the average squared
velocity of the individual nebulae. Assuming that the nebulae are uniformly
distributed inside a sphere of radius R the average total potential energy of
the cluster is

Epot =
−3GM2

tot

5R
. (3.5)
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Thus the from the virial theorem (3.3) we get

Mtot =
5Rv2

3G
. (3.6)

But the assumption of uniform distribution is actually not fulfilled. Looking
at the distribution of the brightest nebulae in the Coma Cluster Zwicky ended
up with the following approximation for the total mass of the cluster:

Mtot >
Rv2

5G
. (3.7)

He found that the average mass of one galaxy in the Coma Cluster is M =
4.5 · 1010M� whereas the luminosity of an average galaxy is L = 8.5 · 107L� .
Hence he concluded that there must be some non-luminous matter which
accounts for most of the total mass of the Coma Cluster.

Later in the 1970s similar phenomena was observed also in galaxies. It
was observed that the galactic rotation curves are not in agreement with the
theoretical calculations which take into account only the luminous matter.
Assuming that the total mass M of the galaxy is centrally concentrated it
follows, according to Newtonian gravity, that the velocity distribution far from
the center of the galaxy is

v(r) =

√
MG

r
∝ 1√

r
. (3.8)

However, as shown in figure 3.1, the measured velocity distribution turns out
to be constant at large distances. Hence the mass distribution of the galaxy is
M(r) ∝ r , so

4πr2ρ(r) = const. =⇒ ρ(r) ∝ 1

r2
. (3.9)

This density distribution is just the distribution given by a non-interacting
isothermal gas. The pressure of the gas must be in equilibrium with gravitation,
so

dp

dr
= −GM(r)ρ(r)

r2
, (3.10)

where M(r) =
∫ r

0
ρ(r)dr . Now the pressure of the gas can be calculated using

the ideal gas law

p(r) = ρ(r)
kBT

m
, (3.11)

where the temperature T is constant and m is the mass of an individual gas
particle. Combining equations (3.10) and (3.11) we obtain

kBT

4πGm

d

dr

(
r2

ρ

dρ

dr

)
= −r2ρ . (3.12)

14



Figure 3.1. Rotation curve of the spiral galaxy NGC 3198 [34].

So the density distribution of a non-interacting isothermal gas is ρ ∝ r−2 .
The observation of missing matter in the galaxy clusters and galaxies

could be explained by a halo consisting of non-interacting particles, but also
by modified Newtonian dynamics [35] . However, there is more convincing
evidences for the dark matter, most importantly from the observations of
the Bullet Cluster [36] . The Bullet Cluster consists of two colliding galaxy
clusters. In the collision of two galaxy clusters stars (visible component) are
not greatly affected but the hot intra-cluster baryonic gas (X-ray component)
is slowed down and left behind. The mass of the baryonic gas is much larger
than the total mass of the stars, thus the gravitational lensing would be
expected to be strongest from the collision center. Composite image 3.2 of the
Bullet Cluster shows the locations of the baryonic gas detected by Chandra
X-ray Observatory and the regions where the observed gravitational lensing
is strongest. Observations show that the lensing is strongest near the visible
galaxies, which favors the idea of collisionless dark matter halo. Furthermore
structure formation and results from the WMAP [37] and Planck [8] satellites
support the existence of dark matter.

There are several dark matter candidates including massive compact halo
objects (MACHOs), axions and weakly interacting massive particles (WIMPs).
Analysis of structure formation indicates that dark matter should be cold (i.e.
non-relativistic). Dark matter candidate particles should interact very weakly
with photons because otherwise it would not be non-luminous. Moreover the
dark matter candidate should be stable (or very long-lived), so it would not
have decayed by now. We will now concentrate on WIMPs, which provide the
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Figure 3.2. Composite image of the Bullet Cluster 1E 0657-56. Red areas corre-
spond to the baryonic gas detected by Chandra X-ray Observatory and blue areas
show where the most of the mass of the clusters is located.

most favorable candidates for the dark matter.
According to the WIMP-scenario dark matter consists of new elementary

particles with masses roughly between 10 GeV and a few TeV , and with
annihilation cross-section of approximatively weak strength. In the early
Universe, WIMPs were in thermal equilibrium with visible matter. Due to the
rapid expansion of the Universe, the mean free path of the WIMPs grew larger
than the size of the Universe and dark matter froze out of the equilibrium. It
can be shown that the relic density of WIMPs today is

Ω ∝ 1

〈vσ〉
∼ m2

g4
, (3.13)

where 〈vσ〉 is the thermally-averaged annihilation cross-section of the WIMPs,
m is the mass of the WIMP and g is the coupling constant characterizing the
annihilation. If the mass of the WIMPs is m ∼ 100 GeV and the coupling
is weak g ∼ gweak ≈ 0.65 then Ω ∼ 0.23 . Remarkably this is very close to
the measured value Ωobs = 0.26 [8] . This is often called the WIMP miracle:
WIMPs naturally produce the observed dark matter relic density. The SM
does not provide a WIMP candidate, but in its extensions various WIMP
candidates have been proposed including lightest supersymmetric particle,
sterile neutrinos and different new scalar particles.

Dark matter sector may consist of only a single new particle, but it could
also be larger. In principle there is no evident reason why there would not
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exist a new sector manifesting some gauge symmetry and consisting of fields
that transform as singlets under the SM gauge group. Fields that are singlets
under SM gauge group can not couple to SM gauge bosons nor SM fermions,
but they can couple to Higgs boson. Hence the Higgs boson provides a portal
between the SM and the hidden sector. These so-called Higgs portal models
have been studied for example in the references [38, 39] . The coupling of
Higgs boson with the hidden sector may modify the couplings of Higgs with
the SM particles and may provide an invisible decay channel of the Higgs
boson. These can be constrained using the Higgs coupling data available from
the LHC and Tevatron experiments.

WIMPs interact only through gravitational and weak interactions so they
are very difficult to detect. There are, however, many experiments attempting
to observe WIMPs directly. Direct measurement of WIMPs is based on elastic
scattering of WIMPs on nuclei. One can try to look for the annual modulation
of scattering events due to Earth’s rotation around the Sun or one may reduce
the background events (mostly due to cosmic rays) near zero and measure just
the WIMP-nucleon scattering.
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Figure 3.3. Spin-independent upper limits for the WIMP-nucleon cross-section
as a function of WIMP mass from various different experiments. Also the DAMA,
CoGent and CRESST-II favored WIMP signal regions are shown [40].

WIMPs have not been directly observed yet. This gives upper limits
for the WIMP-nucleon cross-section. The scattering of the WIMP off of
nuclei is generally divided in two classes: spin-dependent and spin-independent
scattering. For spin-independent scattering the cross-section is approximatively
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proportional to the WIMP-proton cross-section, σ ∝ A2σp , where A is the
mass number of the nucleus. In the spin-dependent case the cross-section
depends on the nuclear spin rather than the mass number. Current direct
searches use heavy target nuclei, so the spin-independent cross-section is
dominating over the spin-dependent cross-section and the direct searches give
upper limits on the spin-independent cross-section. In figure 3.3 upper limits
for the spin-independent cross-section arising from the direct searches are
shown.
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Figure 3.4. Spin-dependent upper limits for the WIMP-nucleon cross-section as a
function of WIMP mass from various different experiments [41].

There are also experiments attempting to observe WIMPs indirectly. Indi-
rect searches based on the annihilation of WIMPs are trying to observe the
annihilation products. Celestial objects like the Sun and the Earth can slow
down WIMPs and capture them, so the annihilation probability in the core of
the Sun can be larger than in the surrounding space. The annihilation products
may include for example neutrinos. Large neutrino telescopes including Super-
Kamiokande and IceCube have tried to measure these neutrinos. However,
no significant excess over the expected atmospheric neutrino background is
observed yet. Because the Sun is mostly made of light elements, the indirect
searches give bounds on the spin-dependent cross-section. These limits are
shown in figure 3.4 .

18



3.3 Baryogenesis
Astrophysical evidences have shown that our galaxy and its neighborhood are
predominantly made of matter. Moreover it has been shown that the Universe
can not consist of distinct regions of matter and antimatter [42] . Hence there
is a clear asymmetry between matter and antimatter. The asymmetry is
characterized by baryon-to-photon ratio

η =
nb − nb
nγ

, (3.14)

where nb and nb are the number densities of baryons and antibaryons, re-
spectively, and nγ is the number density of photons. According to WMAP
observations η = 6.19 · 10−10 [43] . The goal of baryogenesis is to explain why
η is not zero as one would a priori expect, assuming that the Universe was out
baryon-symmetric after inflation.

There are three ingredients, known as Sakharov conditions [44] , which
should be fulfilled in order to produce the baryon asymmetry:

1. baryon number violation,

2. C and CP violation,

3. departure from thermal equilibrium.

The first ingredient is trivial: There has to be at least one process which
does not conserve the baryon number (= number of baryons − number of
antibaryons), otherwise the baryon number would be zero forever. However,
the existence of baryon number violating process is not enough to produce
baryon asymmetry, since the baryon number is odd under C and CP , and if
the C and CP symmetries are satisfied the baryon number violating process
would have the same cross-section as its C- and CP -conjugate processes. Thus
C and CP symmetries must be violated. The third condition is clear because
initially the number densities of baryons and antibaryons were the same and
the mass of particle is the same as the mass of the corresponding antiparticle,
so in the thermal equilibrium the number densities evolve similarly. Hence the
number densities would be the same forever if there would not be a departure
from thermal equilibrium.

There are many different mechanisms for baryogenesis [45–49] , most pop-
ular of which are electroweak baryogenesis (EWBG), leptogenesis and GUT
baryogenesis. In particular EWBG is very attractive both theoretically and
experimentally. In the EWBG the baryogenesis occurs during the electroweak
phase transition, thus the energy scale of the processes is ∼ 100 GeV . Ac-
cording to EWBG during the electroweak phase transition the baryon number
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violating processes took place at the interphase and due to C and CP vio-
lation the baryon generating processes were dominating over the antibaryon
generating processes.

The SM fulfills the Sakharov conditions, but the SM mechanisms do not
produce large enough baryon-to-photon ratio. This is so because the only
source of CP violation in the SM is the Kobayashi-Maskawa phase [50] , which
has been claimed to be too weak for the observed baryon-to-photon ratio
[51] . Moreover, the departure from thermal equilibrium in the SM occurs
during the electroweak phase transition, that is not a strong first order phase
transition [52] as required for successful electroweak baryogenesis. Hence, for
the baryogenesis the SM should be extended such that it includes new sources
of CP violation and modifies the electroweak phase transition or introduces
new sources for departure from thermal equilibrium.
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Chapter 4

Standard Model with one real
singlet Higgs

Maybe the simplest way to extend the SM Higgs sector is to consider in addition
to one doublet scalar φ also a real singlet scalar S . The main motivation to
study the singlet extension of the SM is the dark matter problem. The singlet
S could provide a good dark matter candidate. The first detailed analysis of
the singlet scalar dark matter model was presented by John McDonald [53]
and more recently it has been studied for example in the references [54, 55] .

The scalar potential of the singlet extension is

V (φ, S) = V (φ)− µ2
SS

2 +
λS
4
S4 +

λm
2
S2φ†φ , (4.1)

where V (φ) is the SM scalar potential (2.4) . In principle we could add terms
S3 and Sφ†φ to the potential, but we require stability of S , since we will
consider S as a dark matter particle, so it should not decay. Hence the potential
has Z2 symmetry S → −S .

The doublet φ acquires VEV as in the SM. To be general we first allow
also the singlet S to have a non-zero VEV 〈S〉 = ω 6= 0 . This will break the
Z2 symmetry, but we will see that the LHC data actually forces ω = 0 . From
the conditions

∂V

∂φr

∣∣∣∣
vacuum

=
∂V

∂S

∣∣∣∣
vacuum

= 0 (4.2)

we get

µ2 =
1

4

(
λv2 + λmω

2
)
, µ2

S =
1

4

(
λmv

2 + λSω
2
)
. (4.3)

As in the SM there is no mixing between the real and imaginary parts of the
neutral component of the doublet

φ =

(
φ+

φr + iφi

)
, (4.4)

21



and the imaginary component of the neutral part becomes the neutral Gold-
stone boson and the charged part becomes the charged Goldstone boson. These
give the longitudinal polarization degrees to the Z and W bosons. The mass
matrix for the neutral real scalar fields in the basis {φr, S} is

M2 =
1

2

(
λv2 λmvω
λmvω λSω

2

)
. (4.5)

A general real symmetric 2× 2 matrix(
A B
B C

)
(4.6)

can be diagonalized by a rotation

R2 =

(
cos θ sin θ
− sin θ cos θ

)
, (4.7)

through an angle θ defined by

tan(2θ) =
2B

A− C
. (4.8)

Hence, with the rotation by angle β which satisfies

tan(2β) =
2λmvω

λv2 − λSω2
(4.9)

we get to the mass eigenbasis where the mass matrix (4.5) is diagonal. The
mass eigenstates are

h = φr cos β − S sin β , S0 = φr sin β + S cos β . (4.10)

The singlet S does not couple to gauge bosons and fermions, whereas the
doublet φ couples with them as in the SM. Let us assume that h corresponds to
the observed Higgs boson. Now φr = h cos β+S0 sin β , thus the couplings of h
to the gauge bosons and fermions are given by the SM couplings multiplied with
the factor cos β . Writing aV = af := a we may use the analysis introduced in
section 2.3 to fit the angle β to the Higgs decay data. Minimizing χ2 gives the
best fit a = 1.02 so that the data prefers the angle β = 0 , that gives the SM
couplings. In figure 4.1 the 1σ , 2σ and 3σ regions are shown.
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Figure 4.1. One parameter β fit. Blue, yellow and red lines correspond 1σ, 2σ and
3σ CL regions. The angle β is measured in radians.

4.1 Invisible decay of Higgs boson
The angle β = 0 corresponds to the case where the VEV of the singlet is zero,
ω = 0 , which is also required for S to be dark matter. In the ω = 0 case the
mass matrix of the neutral real fields is diagonal

M2 =
1

2

(
λv2 0
0 λmv

2 − 4µ2
S

)
(4.11)

and h = φr is the Higgs boson with mass m2
h = λv2/2 . Now af = 1 = aV ,

but if we assume that the mass of the singlet S ,

m2
S =

λmv
2

2
− 2µ2

S , (4.12)

is less than half of the Higgs mass there is a Higgs decay channel h → SS .
This decay channel would be invisible for the experiments, because S does not
interact with the SM gauge bosons and fermions. The invisible decay channel
affects only to the total decay width Γtot . We may write

Γtot

ΓSMtot
=
∑
k

GkBRk +
Γinv

ΓSMtot
, (4.13)

where the sum includes the SM Higgs decay channels. Now Gk = 1 for all SM
Higgs decay channels and sk = 1 for all production channels so

Γtot

ΓSMtot
= 1 +

Γinv

ΓSMtot
, (4.14)
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Figure 4.2. One parameter BRinv fit. Blue, yellow and red lines correspond 1σ, 2σ
and 3σ CL regions. The dashed line at BRinv = 0.17 shows the 2σ value.

and
µj =

ΓSMtot

Γinv + ΓSMtot
= 1 + BRinv , (4.15)

where BRinv = Γinv/(Γinv + ΓSMtot) . Minimizing χ2 gives BRinv = −0.04 thus
the data prefers no invisible decay channel. Figure 4.2 shows the 1σ , 2σ and
3σ regions. The 2σ limit for the branching ratio to the invisible decay channel
is

BRinv(2σ) = 0.17 . (4.16)

We may also calculate the branching ratio for the invisible Higgs decay
channel from the model as a function of the singlet mass mS and the parameter
λm . Now

Γinv =
|Mh→SS|2

16πmh

√
1− 4m2

S

m2
h

, (4.17)

and to the lowest order the amplitude is trivial,

Mh→SS =
λmv

2
, (4.18)

thus

Γinv =
λ2
mv

2

32πmh

√
1− 4m2

S

m2
h

. (4.19)

In figure 4.3 the 1σ , 2σ and 3σ contours in the (λm,mS) -plane are shown. We
can write the 2σ limit (4.16) as a constraint on the λm parameter if 2mS < mh :
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Figure 4.3. 1σ (blue), 2σ (yellow) and 3σ (red) CL regions in the (λm,mS) -plane
corresponding to the constraints arising from the h→ SS decay.

λm < 4.65

(
GeV

m2
h − 4m2

S

)1/4

. (4.20)

4.2 Dark matter relic abundance
An interesting quantity, which we can calculate from the singlet extension
of the SM, is the relic abundance of the dark matter candidate. It tells us
how much of the total amount of the dark matter could be formed by the
singlet scalar candidate. Decoupling of dark matter particles (WIMPs) from
the visible matter is described by the Lee-Weinberg equation [56]

dn

dt
= −3Hn+ 〈vσ〉

(
n2
eq − n2

)
, (4.21)

where n is the particle number density of the WIMPs, neq is the particle
number density in the thermal equilibrium, 〈vσ〉 is the flux-weighted thermally
averaged annihilation cross-section of the WIMPs and 3Hn describes the
reduction of the annihilation rate due to the expansion of the Universe. From
the Lee-Weinberg equation we can solve the relic abundance Ωh2 of the WIMPs.
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An approximative solution is given in the appendix B. The solution is

Ωh2 = −5.196 · 108 GeV−1 mS

xfZ(xf )
. (4.22)

where

Z(x) = −
√

π

45
g∗

(mS

x

)
MPlanckmSx

−2〈vσ〉(x) . (4.23)

The parameter xf can be iteratively solved from the equation

xf = ln

 Z(xf )yeq(xf )
2

dyeq
dx

∣∣∣
xf
− yeq(xf )

 , (4.24)

where
yeq(x) =

45

4π4g∗(
mS
x

)
x2exK2(x) . (4.25)

Functions Kn are the modified Bessel functions of second kind. According
to the latest Planck data [8] the dark matter relic abundance is Ωobsh

2 ≈
0.1199± 0.0027 .

We only need to calculate the flux-weighted annihilation cross-section from
the model. There are three different types of annihilation channels: Higgs
channel SS → hh , vector boson channel SS → V V and fermion channel
SS → ff . In the appendix C we have calculated these annihilation cross-
sections in a more general case. Now the interactions are described by the
Lagrangians

Lscalar =
λmv

4
hS2 +

λv

4
h3 +

λm
8
h2S2 (4.26)

Lgauge =
2M2

W

v
gµνhW+

µ W
−
ν +

M2
Z

v
gµνhZµZν (4.27)

and

Lfermion =
m2
f√

2v
hψfψf . (4.28)

Inserting the above couplings in the formulae given in the appendix C we get

σhh =
vh

64πsvS

(
λm +

3λmm
2
h

s−m2
h

− λ2
mv

2

s− 2m2
h

)2

,

σV V =
vV

8πsvS

λ2
mM

4
V

(s−m2
h)

2

(
3 +

s(s− 4M2
V )

4M4
V

)
·

{
1 , W
1
8

, Z
,

σff =
vfNc

512πsvS

λ2
mm

2
f

(
s− 4m4

f

)
(s−m2

h)
2 ,

(4.29)
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where

vX =

√
1− 4m2

X

s
. (4.30)

The flux-weighted thermally averaged annihilation cross-section can be calcu-
lated using the formula

〈vσ〉(x) =
x

8m5
SK

2
2(x)

∞∫
4m2

S

ds
√
s(s− 4m2

S)K1

(√
s

mS

x

)
σtot(s) , (4.31)

where
σtot = σh + σZ + σW +

∑
σf . (4.32)

The relic abundance divided by the observed value Ωobsh
2 ≈ 0.12 for four

different λm is shown in figure 4.4 .
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Figure 4.4. Logarithm of frel = Ωh2/0.12 as a function of the singlet mass mS .
The curves from top to down correspond λm values 0.2, 0.5, 1.0 and 2.0, respectively.
Red region is excluded by the 2σ limit for the h→ SS decay branching ratio and
the gray region is excluded by the Planck data.
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Chapter 5

Two-Higgs-doublet model with
one real singlet Higgs

5.1 Two-Higgs-doublet model
The two-Higgs-doublet model (2HDM) includes two scalar doublets with
identical quantum numbers

φ1 =

(
φ+

1

φ0
1

)
, φ2 =

(
φ+

2

φ0
2

)
(5.1)

giving eight real degrees of freedom. Three degrees of freedom are eaten by
the W and Z bosons and the remaining degrees of freedom are realized as five
massive scalar bosons. The scalar sector of the 2HDM is

LHiggs = (Dµφ1)† (Dµφ1) + (Dµφ2)† (Dµφ2)− V (φ1, φ2) , (5.2)

where the scalar potential V (φ1, φ2) is a combination of gauge invariant terms
φ†iφj , i, j = 1, 2 . The scalar potential can be written as [57]

V (φ1, φ2) = µ2
1φ
†
1φ1 + µ2

2φ
†
2φ2 − µ2

12φ
†
1φ2 − (µ2

12)∗φ†2φ1

+
λ1

2

(
φ†1φ1

)2

+
λ2

2

(
φ†2φ2

)2

+ λ3φ
†
1φ1φ

†
2φ2 + λ4φ

†
1φ2φ

†
2φ1

+
λ5

2

(
φ†1φ2

)2

+
λ∗5
2

(
φ†2φ1

)2

− φ†1φ1

(
λ6φ

†
1φ2 + λ∗6φ

†
2φ1

)
− φ†2φ2

(
λ7φ

†
1φ2 + λ∗7φ

†
2φ1

)
,

(5.3)

where parameters µ2
1, µ

2
2, λ1, λ2, λ3, λ4 are real due to hermiticity of the La-

grangian and parameters µ2
12, λ5, λ6, λ7 are in general complex. Hence the
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potential includes 14 real parameters. We begin with the CP conserving
case where also the parameters µ2

12, λ5, λ6, λ7 are real, so the number of real
parameters reduces to 10. In section 5.2 we will consider the case with most
general complex parameters.

The vacuum of the model is characterized by VEVs

〈φ1〉 =

(
0
v1√

2

)
, 〈φ2〉 =

(
0
v2√

2

)
. (5.4)

From the kinetic terms (Dµφ1)† (Dµφ1) and (Dµφ2)† (Dµφ2) we obtain the W
boson mass MW = g2(v2

1 + v2
2)/8 , so v2

1 + v2
2 = v2 . Hence we write

v1 = v cos β , v2 = v sin β , (5.5)

where β ∈ [0, 2π[ . From the minimum condition1 ∂φ1rV = 0 = ∂φ2rV we solve
parameters µ2

1 and µ2
2 . We get

µ2
1 = −v

3
1λ1 + v2 (−2µ2

12 + v1v2λ345 + 3v2
1λ6 + v2

2λ7)

2v1

,

µ2
2 = −v

3
2λ2 + v1 (−2µ2

12 + v1v2λ345 + v2
1λ6 + 3v2

2λ7)

2v2

.

(5.6)

where λ345 = λ3 + λ4 + λ5 .
Now, since all parameters λj, µk are real, the real and imaginary parts of

the neutral scalar fields, which are the CP even sector and CP odd sector,
respectively, are decoupled, whereby the potential (5.3) is CP invariant. The
mass matrices of the neutral fields are(

2v31λ1 + v2
(
2µ212 + 3v21λ6

)
− v32λ7

2v1
−µ212 + v1v2λ345 + 3

2
v21λ6 + 3

2
v22λ7

−µ212 + v1v2λ345 + 3
2
v21λ6 + 3

2
v22λ7

2v32λ2 − v31λ6 + v1
(
2µ212 + 3v22λ7

)
2v2

)
(5.7)

for the real parts in the basis {φ1r, φ2r} , and(
−
v2

(
−2µ212 + 2v1v2λ5 + v21λ6 + v22λ7

)
2v1

1
2

(
−2µ212 + 2v1v2λ5 + v21λ6 + v22λ7

)
1
2

(
−2µ212 + 2v1v2λ5 + v21λ6 + v22λ7

)
−
v1

(
−2µ212 + 2v1v2λ5 + v21λ6 + v22λ7

)
2v2

)
(5.8)

for the imaginary parts in the basis {φ1i, φ2i} . For the charged fields the mass
matrix in the basis {φ+

1 , φ
+
2 } is(

−
v2

(
−2µ212 + v1v2λ45 + v21λ6 + v22λ7

)
2v1

1
2

(
−2µ212 + v1v2λ45 + v21λ6 + v22λ7

)
1
2

(
−2µ212 + v1v2λ45 + v21λ6 + v22λ7

)
−
v1

(
−2µ212 + v1v2λ45 + v21λ6 + v22λ7

)
2v2

)
, (5.9)

1We denote real and imaginary parts of the neutral scalar fields by φkr and φki , k = 1, 2 ,
respectively.
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where λ45 = λ4 + λ5 .
We can diagonalize the mass matrix (5.7) by a rotation trough an angle α

defined by

tan(2α)

=
v1v2 (−2µ2

12 + 2v1v2λ345 + 3v2
1λ6 + 3v2

2λ7)

2µ2
12(v2

2 − v2
1) + 2v3

1v2λ1 − 2v1v3
2λ2 + v4

1λ6 + 3v2
1v

2
2 (λ6 − λ7)− v4

2λ7

,

(5.10)

and the mass matrices (5.8) and (5.9) we can diagonalize by a rotation trough
an angle

β =
1

2
arctan

(
2v1v2

v2
1 − v2

2

)
= arctan

v2

v1

. (5.11)

After the symmetry breaking we obtain five massive scalar bosons: two neural
CP even scalars h and H , one neutral CP odd scalar A0 and two charged
scalars H± . The three m = 0 Goldstone bosons are removed from the physical
spectrum. The massive mass eigenstates are(

h
H

)
=

(
cosα − sinα
sinα cosα

)(
φ1r

φ2r

)
, (5.12)

A0 = φ1i cos β − φ2i sin β (5.13)
and

H± = φ±1 cos β − φ±2 sin β . (5.14)
The Yukawa sector of the 2HDM may be rather complicated. Either (or

both) of the doublets can in principle have Yukawa couplings with fermions.
In practice there are three different popular scenarios: type I 2HDM where
all the fermions couple to just one of the Higgs doublets [58], type II 2HDM
where down-type quarks and leptons couple to one of the Higgs doublets and
up-type quarks to the other Higgs doublet [59], and type III where both of the
Higgs doublets couple to all fermions [60]. In the following we will consider
type I 2HDM and choose that the doublet φ2 couples to the fermions. Hence
the Yukawa Lagrangian is

LYuk = Yeψ
T

l,Lφ2ψe,R + Yuψ
T

q,L(−iτ2φ2)ψu,R + Ydψ
T

q,Lφ2ψd,R + h.c. . (5.15)

5.2 Two-Higgs-doublet model with one real sin-
glet Higgs

Next we combine the type I 2HDM with the singlet model presented in chapter
4. This model could offer enough CP violation for baryogenesis and the singlet
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S could provide a good WIMP candidate. We call this model two-Higgs-
doublet-inert-singlet model (2HDISM). We analyze the model constraining it
by the electroweak precision data and the Higgs decay data, and calculate the
relic abundance of the dark matter candidate as in section 4.2 .

The 2HDISM consists of two doublets φ1 and φ2 and a real singlet S . The
scalar potential of the model is

V (φ1, φ2, S) = µ2
1φ
†
1φ1 + µ2

2φ
†
2φ2 − µ2

12φ
†
1φ2 − (µ2

12)∗φ†2φ1

+
λ1

2

(
φ†1φ1

)2

+
λ2

2

(
φ†2φ2

)2

+ λ3φ
†
1φ1φ

†
2φ2 + λ4φ

†
1φ2φ

†
2φ1

+
λ5

2

(
φ†1φ2

)2

+
λ∗5
2

(
φ†2φ1

)2

− φ†1φ1

(
λ6φ

†
1φ2 + λ∗6φ

†
2φ1

)
− φ†2φ2

(
λ7φ

†
1φ2 + λ∗7φ

†
2φ1

)
− µ2

SS
2 +

λS
4
S4 + λS1S

2φ†1φ1

+ λS2S
2φ†2φ2 + S2

(
λS12

2
φ†1φ2 +

λ∗S12

2
φ†2φ1

)
(5.16)

and the VEVs of the doublets are

〈φ1〉 =

(
0

eiθv1√
2

)
, 〈φ2〉 =

(
0
v2√

2

)
. (5.17)

By transforming the φ1 doublet with a U(1) transformation φ1 → e−iθφ1 we
can remove the phase of the VEV 〈φ1〉 and redefining the complex parameters
µ12, λ5, λ6, λ7 and λS12 the form of the potential (5.16) is unchanged. Hence
we just set θ = 0 . The VEV of the singlet S is set zero, 〈S〉 = 0 , because we
consider it as a WIMP candidate.

From the minimum conditions

∂X V |vacuum = 0 , X = φ1r, φ2r, φ1i, φ2i, φ
+
1 , φ

+
2 , S , (5.18)

we can solve µ1, µ2 and Imµ2
12 = µ2

12i :

µ2
1 =
−v3

1λ1 + v2 (2µ2
12r − v1v2λ345r + 3v2

1λ6r + v2
2λ7r)

2v1

µ2
2 =
−v3

2λ2 + v1 (2µ12r − v1v2λ345r + v2
1λ6r + 3v2

2λ7r)

2v2

µ2
12i =

1

2

(
v1v2λ5i − v2

1λ6i − v2
2λ7i

)
.

(5.19)
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The mass matrices of the neutral and charged sectors are symmetric 5× 5 (N)
and 2× 2 (C) matrices, respectively, with elements

N11 =
v2 (2µ2

12r − 2v1v2λ5r + v2
1λ6r + v2

2λ7r)

2v1

,

N12 = −µ2
12r + v1v2λ5r −

1

2
v2

1λ6r −
1

2
v2

2λ7r ,

N13 =
1

2
v2 (v2λ5i − 2v1λ6i) ,

N14 =
1

2
v2 (v1λ5i − 2v2λ7i) ,

N22 =
v1 (2µ2

12r − 2v1v2λ5r + v2
1λ6r + v2

2λ7r)

2v2

,

N23 = −1

2
v1v2λ5i + v2

1λ6i ,

N24 = −1

2
v2

1λ5i + v1v2λ7i ,

N33 =
2v3

1λ1 + v2 (2µ2
12r − 3v2

1λ6r) + v3
2λ7r

2v1

,

N34 = −µ2
12r + v1v2λ345r −

3

2
v2

1λ6r −
3

2
v2

2λ7r ,

N44 =
2v3

2λ2 + v3
1λ6r + v1 (2µ2

12r − 3v2
2λ7r)

2v2

,

N51 = N52 = N53 = N54 = 0 ,

N55 = 2µ2
S + v1v2λ

2
12r + v2

1λS1 + v2
2λS2 ,

(5.20)

and

C11 =
v2 (2µ2

12r − v1v2λ45r + v2
1λ6r + v2

2λ7r)

2v1

,

C12 =
1

2

(
−2µ2

12r + v1v2λ45r − v2
1λ6r − v2

2λ7r

)
,

C22 =
v1 (2µ2

12r − v1v2λ45r + v2
1λ6r + v2

2λ7r)

2v2

,

(5.21)

in bases {φ1i, φ2i, φ1r, φ2r, S} and {φ+
1 , φ

+
2 } , respectively. As we can see from

the mass matrix of the neutral fields, there is mixing between the real and
imaginary parts of the neutral fields. That is, the mass eigenstates are not
CP eigenstates, which provides a source for CP violation. As the VEV of the
singlet S is zero, it does not mix with the other scalar fields and as a result, it
does not decay. Hence it may be a potential WIMP candidate. Remaining
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4× 4 mass matrix can be diagonalized with the rotation

R4 =


1 0 0 0
0 cycz −cysz sy
0 sxsycz + cxsz cxcz − sxsysz −sxcy
0 sxsz − cxsycz cxsysz + sxcz cxcy




cβ sβ 0 0
−sβ cβ 0 0

0 0 1 0
0 0 0 1

 ,

(5.22)
and we arrange the mass eigenbasis such that

G0

A0

H
h

 = R4


φ1i

φ2i

φ1r

φ2r

 . (5.23)

Similarly as in the 2HDM the charged sector is diagonalized with the rotation

R2 =

(
cos β sin β
− sin β cos β

)
, tan β =

v2

v1

, (5.24)

and the mass eigenstates are(
G+

H+

)
= R2

(
φ+

1

φ+
2

)
. (5.25)

Here G0 and G+ are the neutral and charged Goldstone bosons.

5.3 Theoretical constraints

The scalar potential (5.16) includes 20 free parameters, three of which are
fixed by the minimum conditions (5.19) . Also the angle β is a free parameter.
So the 2HDISM includes all in all 20− 3 + 1 = 18 free parameters. We would
like to constrain the parameter space of the 2HDISM. Let us first find out
theoretical constraints for the model.

Most obvious theoretical constraints arise from the vacuum stability re-
quirement [61] . To calculate the vacuum stability constraints it is convenient
to write the doublets as

φ1 =

(
φ5 + iφ6

φ1 + iφ2

)
, φ2 =

(
φ7 + iφ8

φ3 + iφ4

)
. (5.26)

For instance, along the direction where φj = 0 for all j 6= 1 and S = 0 the
potential behaves as λ1φ

4
1/2 for large φ1 . This gives a constraint λ1 ≥ 0 .
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Similarly along the direction where only φ1 and φ7 are non-zero the potential
behaves as

λ1

2
φ4

1 +
λ2

2
φ4

7 + λ3φ
2
1φ

2
7 . (5.27)

Writing φ1 = r cos δ , φ7 = r sin δ we get from the boundedness requirement
that

λ1

2
cos4 δ +

λ2

2
sin4 δ + λ3 cos2 δ sin2 δ ≥ 0 , (5.28)

for all δ ∈ [0, π/2] . Minimizing the left hand side of the equation (5.28) gives
a simple bound λ3 ≥ −

√
λ1λ2 . Considering all the different simple cases,

where we vary only two fields keeping the other fields zero, we get the following
constraints:

λ1,2,S ≥ 0 , λ3 ≥ −
√
λ1λ2 ,

λ1S ≥ −
√
λ1λS

2
, λ2S ≥ −

√
λ2λS

2
,

|λ6r + λ7r| ≤
1

4
(λ1 + λ2) +

1

2
(λ3 + λ4 + λ5r) ,

|λ6i + λ7i| ≤
1

4
(λ1 + λ2) +

1

2
(λ3 + λ4 − λ5r) ,

(5.29)

and from the last two constraints in equation (5.29) it follows that

λ3 + λ4 +
1

2
(λ1 + λ2) ≥ 0 ,

|λ5r| ≤ λ3 + λ4 +
1

2
(λ1 + λ2) .

(5.30)

Moreover, the vacuum stability and conditions (5.19) are not enough to
ensure the global minimum as the VEV of the singlet S is zero. If there is a
minimum where S = w 6= 0 , then from the condition ∂S V |minimum = 0 we can
solve w :

w2 = −2µ2
S + 2v1v2λS12r + v2

1λS1 + v2
2λS2

λS
. (5.31)

Now we require that the minimum where S = 0 is the global minimum, so

V |min0 < V |minw , (5.32)

where min0 and minw correspond to the minima where S = 0 and S = w ,
respectively. The condition (5.32) can be written as∣∣m2

S

∣∣ < v1v2λS12r +
1

2
v2

1λS1 +
1

2
v2

2λS2 . (5.33)
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In the Monte Carlo calculation we will take into account all vacuum stability
constraints. To do that we write the potential in spherical coordinates

φk = r cos δk

k−1∏
j=1

sin δj

S = r

8∏
j=1

sin δj .

(5.34)

For large r the fourth order terms are dominant, thus the vacuum stability
condition is

min

(
lim
r→∞

V (r, δj)

r4

)
> 0 . (5.35)

where the minimum is taken over all angles δj .
More constraints can be set by requiring tree level unitarity [62, 63] . The

unitarity requirement reduces to a constraint on the quadratic coupling and
can be written as a upper limit on the eigenvalues Λj of the 2→ 2 scattering
matrix: |Λj| < 8π . By diagonalizing scattering matrices corresponding to the
sets of states

{φ1rφ2r, φ1iφ2i, φ1rφ2i, φ1iφ2r, φ
−
1 φ

+
2 , φ

+
1 φ
−
2 } ,

{φ1rφ1r, φ1iφ1i, φ2rφ2r, φ2iφ2i, φ
−
1 φ

+
1 , φ

−
2 φ

+
2 }

(5.36)

we obtain the following simple constraints:

|λ1 + λ2| < 8π , |λ3 + λ4| < 8π , |λ5r| <
√

(4π + λ1)(4π + λ2) . (5.37)

These constraints are necessary but not sufficient for the unitarity requirement.
In principle we should diagonalize the full scattering matrix including also S
and gauge bosons. In the Monte Carlo calculation we ensure the unitarity by
diagonalizing the full scattering matrix numerically.

5.4 Oblique constraints
We would like to know if the model is consistent with the electroweak precision
data. For this purpose we use oblique parameters introduced by Peskin and
Takeuchi [64]. The oblique parameters are S, T , and U and their higher
order extensions V , W , and X [65] . These parameters quantify deviations of
electroweak precision data from the SM. Parameters S , T and U can be used
to constrain effects of new physics if the following criteria are satisfied [65]:

1. The electroweak gauge group is SU(2)L × U(1)Y .
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2. Couplings of new particles to light fermions are suppressed compared to
their couplings to the gauge bosons.

3. The mass scale of the new physics is (much) larger than MZ .

If the third criterion is not satisfied, then also the higher order extensions V ,
W , and X should be used.

We assume that our model satisfies all the three criteria and for simplicity
we use only S and T parameters. This may constrain the model too strongly,
but at least the parameter sets satisfying these constraints are consistent with
the electroweak precision data. The experimental values for S and T are [66]

S = 0.04± 0.09 , T = 0.07± 0.08 (5.38)

with correlation between the experimental fits for S and T is ρ = 0.88 .
In SM the values for S and T are fixed to S = T = 0 for the reference
Higgs mass 115.5 GeV < mh < 127 GeV [66] .The SM predictions for the
oblique parameters are well consistent with the experimental values, thus the
corrections from physics beyond the SM should be small.

The 1σ, 2σ and 3σ regions are ellipses in the ST -plane as shown in figure
5.1 . The rotation angle is

θ =
1

2
arctan

(
2ρ δS δT

δS2 − δT 2

)
, (5.39)

and lengths of the semi axes ak, bk satisfy the equations

(ρ δT cos θ − δS sin θ)2

b2
k

+
(δS cos θ + ρ δT sin θ)2

a2
k

=
1

δk
,

−
δT 2 (−1 + ρ2)

(
a2
k cos2 θ + b2

k sin2 θ
)

a2
k b

2
k

=
1

δk
,

(5.40)

where δ1 = 2.3 , δ2 = 6.18 and δ3 = 11.83 correspondint to 1σ , 2σ and 3σ
CLs.

In the reference [67] expressions for the S and T parameters are calculated
for a model with an arbitrary number of doublets and singlets in terms of the
masses and mass eigenstates. For the 2HDM with one singlet these can be
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Figure 5.1. 1σ (blue), 2σ (yellow) and 3σ (red) CL regions of the oblique parameters
S and T .

written as

S =
1

24π

(
2s2

W − (U †U)2,2)2G(m2
H+ ,m2

H+ ,M2
Z)

− 2(U †U)2,2 ln(m2
H+)− ln(m2

h)−Gh(m
2
h,M

2
Z)

+
4∑
b=2

5∑
b′=b+1

(Im(V †V )b,b′)
2G(m2

N,b,m
2
N,b′ ,M

2
Z)

+
5∑
b=2

(
(V †V )b,b ln(m2

N,b) + (Im(V †V )1,b)
2Gh(m

2
N,b,M

2
Z)
))

(5.41)

and

T =
1

16πs2
WM

2
W

( 5∑
b=2

∣∣(U †V )2,b

∣∣2 F (m2
H+ ,mN,b)

−
4∑
b=2

5∑
b′=b+1

Im((V †V )b,b′)
2F (m2

N,b,m
2
N,b′)

+ 3
5∑
b=2

(Im(V †V )1,b)
2(F (M2

Z ,m
2
N,b)− F (M2

W ,m
2
N,b))

− 3(F (M2
Z ,m

2
h)− F (M2

W ,m
2
h))

)
,

(5.42)

where
mN = (0,mA0 ,mH ,mS,mh) . (5.43)
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The matrices U and V are defined so that U diagonalizes the charged sector,

UM2
CU
† = diag(0,m2

H+) , (5.44)

and V = (Ṽ1, Ṽ2) + i(Ṽ3, Ṽ4) , where the lower indices refer to the rows of the
matrix Ṽ , diagonalizes the neutral sector,

Ṽ M2
N Ṽ

† = diag(0,m2
A0
,m2

H ,m
2
S,m

2
h) . (5.45)

Note that the summations in the formulae (5.42) and (5.41) explicitly leave
out the Goldstone modes. Functions G,Gh and F are defined as

G(x, y, z) = −16

3
+ 5

x+ y

z
− 2

(x− y)2

z2

+
z2 − 2z(x+ y) + (x− y)2)

z3

· f(x+ y − z, z2 − 2z(x+ y) + (x− y)2)

+

{
3
z
(x

2+y2

x−y −
x2−y2
z

+ (x−y)3

3z2
) ln x

y
, x 6= y ,

6y
z
, x = y ,

(5.46)

Gh(x, y) = G(x, y, y) + 12Gt(x, y, y) (5.47)
and

F (x, y) =

{
x+y

2
− xy

x−y ln x
y
, x 6= y ,

0 , x = y ,
(5.48)

where

f(t, r) =


√
r ln

∣∣∣ t−√rt+
√
r

∣∣∣ , r > 0 ,

0 , r = 0 ,

2
√
−r arctan

√
−r
t
, r < 0 ,

(5.49)

and

Gt(x, y, z) =

{
−2 + (x−y

z
− x+y

x−y ) ln x
y

+ f(x+y−z,z2−2z(x+y)+(x−y)2)
z

, x 6= y ,

−4 + f(2x−z,z2−4zx)
z

, x = y .

(5.50)

5.5 Monte Carlo analysis
Now we constrain the 2HDISM with the Higgs decay data. To do that we
need expressions for the parameters af and aV in terms of the rotation angles
β and αx,y,z . The coupling of the Higgs boson h to fermions is

mf cosαx cosαy
v sin β

(5.51)
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whereas in the SM the coupling is mf/v , thus

af =
cosαx cosαy

sin β
. (5.52)

Similarly

aV = cosαx(sinαy sinαz cos β + cosαy sin β) + sinαx cosαz cos β . (5.53)

But there are also charged scalar bosons H± in the model, so we should include
the term

−aS
2m2

H+

v
hH+H− (5.54)

to the effective Lagrangian (2.16) . The hH+H− coupling affects the h→ γγ
channel, because the charged scalar boson interacts with photons, so the Higgs
boson can decay to two photons via H+ loop. In order to take the H+ loop
into account we use the formula given in [26] :

Γγγ(af , aV , aS) =
α2g2m3

h

1024π3M2
W

∣∣∣∣43afF1/2 + aV F1 + aSF0

∣∣∣∣2 , (5.55)

where

F0 =
4m2

H+

m2
h

(
1−

4m2
H+

m2
h

f

(
4m2

H+

m2
h

))
, (5.56)

and the functions F1, F1/2 and f are given by the formulae (2.26) and (2.27) .
The χ2 fit is not very sensitive to the mass of the H+ boson, so for the χ2 fit
we use mH+ = 4 TeV . Now

Gγγ ≈ 0.0238 (1.84af + 0.33aS − 8.32aV )2 . (5.57)

We also need the expression for the aS parameter:

aS =
[
sβcβv

2
(
λ1c

3
β(−(cxsysz + sxcz))− λ3cxsyszs

2
βcβ + λ4cxsyszs

2
βcβ

−λ3cxcysβc
2
β + λ4cxcysβc

2
β − λ2cxcys

3
β − λ3sxczs

2
βcβ + λ4sxczs

2
βcβ

−2cxsyczs
2
βc

2
βλ5i + 2sxszs

2
βc

2
βλ5i − 2cxsyczsβc

3
βλ6i + 2sxszsβc

3
βλ6i

−2cxsyczs
3
βcβλ7i + 2sxszs

3
βcβλ7i + cxsyszs

2
βcβλ5r + cxcysβc

2
βλ5r

+sxczs
2
βcβλ5r − cxsyszsβc2

βλ6r + cxcyc
3
βλ6r − sxczsβc2

βλ6r

+s2
βλ7r(cxsyszsβ − cxcycβ + sxczsβ)

)]
·
[
2µ2

12r + v2
(
cβ (cβλ6r − sβ (λ4 + λ5r)) + s2

βλ7r

)]−1
.

(5.58)
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Scalar bosons H and A0 do not affect the Higgs decay, because they are much
heavier than the Higgs boson. The mass of the singlet S might be less than half
of the Higgs mass, which would enable the invisible decay channel h→ SS .
We studied the invisible decay channel already in the section 4.1 and saw that
it is disfavored by the Higgs decay data.

Next we scan the 18 dimensional parameter space looking for points that
satisfy the theoretical constraints as well as the constraints arising from the
electroweak precision data and Higgs decay data. We consider only lambda
parameter values |λj| < π , in order to maintain perturbativity, so the simplest
unitarity constraints (5.37) are automatically fulfilled. Moreover we fix one of
the parameters, µ12r , by the Higgs boson mass mh = 125 GeV , require that
the masses of the new scalar bosons are sufficiently large [68, 69] :

mH ,mA0 > 600 GeV , mH+ > 100 GeV . (5.59)

and concentrate on the mass region mS < 200 GeV . So, we randomly gener-
ate parameter sets using constraints |λj| < π , (5.29) and (5.33) as bounds,
diagonalize the mass matrices numerically and calculate S and T values using
formulae (5.41) and (5.42) for those parameter sets which satisfy the mass
bounds (5.59) . Distribution in the (S, T ) plane together with 1σ , 2σ and 3σ
CL regions is shown in figure 5.2.

S

T

0.1 0.2 0.3−0.1−0.2

0.1

0.2

0.3

−0.1

−0.2

.3

Figure 5.2. Randomly generated points of the 2HDISM together with the 1σ (blue),
2σ (yellow) and 3σ (red) CL regions in the (S, T ) plane. Higgs decay constraints
and complete unitary and vacuum stability constraints are not yet considered.

Then we calculate af , aV and aS values using formulae (5.52) , (5.53) and
(5.58) , taking only those points which hit inside the 2σ region in the (S, T )
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plane. Figure 5.3 shows how these points are distributed. As expected, we
obtain only aV values less than one, since the mixing between h , H and A0

reduces the gauge boson couplings. Note that the parameter space points are
distributed strictly around aS = 0 . Hence to constrain the parameter space
we consider the plane that passes through the SM point (af , aV , aS) = (1, 1, 0) .
We accept only points which are inside the 2σ region in plot 5.3b .

´́

a
f

aV
1.11 1.20.6 0.7 0.8 0.9

1

1.2

1.4

0.2

0.4

0.6

0.8

(a)

´́

a
f

aV
1.11 1.2 1.3 1.40.7 0.8 0.9

0

1

1.2

1.4

0.2

0.4

0.6

0.8

(b)

´́

aS

a
V

0 5−10−15 −5

0

1

1.5

0.5

−1

−1.5

−0.5

(c)

´́

a
f

aS
0 10 155−10 −5

0

1

1.5

0.5

−1

−1.5

−0.5

(d)

Figure 5.3. Higgs decay data fit for the 2HDISM. Black points are the parameter
space points, which satisfy the 2σ ST bounds and the simplest vacuum stability
constraints. Blue, red and yellow areas correspond to the 1σ, 2σ and 3σ CL regions,
respectively. Plots (a), (c) and (d) are the intersections through the best fit point
(af , aV , aS) = (1.02, 0.96,−4.42) . Plot (b) shows the fit at aS = 0 .

Finally, we check that the complete unitarity and vacuum stability con-
straints are fulfilled. This is the slowest part of the calculation so we want
to constrain the parameter space as much as possible before calculating the
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complete unitarity and vacuum stability constraints. The vacuum stability
and unitarity constraints decrease the number of acceptable points drastically.
Figure 5.4 shows how the vacuum stability and unitarity requirements con-
strain the parameter space and in figure 5.5 distributions of the masses and
mixing angles are shown.
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Figure 5.4. Viable points in the (af , aV ) and (S, T ) planes together with the 1σ
(blue), 2σ (yellow) and 3σ (red) CL regions. For the black points the full vacuum
stability and unitarity constraints are taken into account as well as the 2σ ST bounds
and the 2σ constraints from the Higgs decay data.
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Figure 5.5. (a),(b),(c): Rotation angles αx , αy and αz corresponding to points
which satisfy all constraints. (d): Parameter β before (yellow, scaled) and after (red)
the Higgs decay and full vacuum stability and unitarity constraints. Plots (e) and
(f) show the distributions of the masses of the new scalar bosons.
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5.6 Dark matter relic abundance
Using formulae given in the appendix C we calculate the annihilation cross-
section for the dark matter candidate S . The annihilation channels are

SS → hh , SS → HH , SS → A0A0 ,

SS → hH , SS → hA0 , SS → HA0 , SS → H+H− ,

SS → W+W− , SS → ZZ , SS → ff .

(5.60)

Similarly as in the section 4.2 we now calculate the relic abundance taking into
account only points which satisfy the 2σ ST bounds and the 2σ constraints
from the Higgs decay data, and survive the complete vacuum stability and
unitarity constraints. Relative relic abundance for these points is shown in
figure 5.6 .
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Figure 5.6. Logarithm of frel = Ωh2/0.12 for different dark matter candidate
masses mS .

From figure 5.6 we see that there are potential points in the parameter
space producing a dark matter candidate, that may account for a significant
amount of the total dark matter mass density. To proceed we could take for
example those points which may account for more than 1% of the total dark
matter mass density and check if they could provide required conditions for
the baryogenesis. We could also check how the constraints from the direct and
indirect dark matter searches would constrain the parameter space and up
to how large energies the model could maintain perturbativity and vacuum
stability. The work in order to take these constraints into account is in progress
[70] .
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Chapter 6

Conclusions

In this thesis we have studied the SM Higgs sector and compared it to the
latest data from the LHC and Tevatron experiments. We considered a modified
Lagrangian to study how much the Higgs boson couplings to the electroweak
gauge bosons and fermions can deviate from the SM. We concluded that the
SM is well in agreement with the Higgs boson measurements.

Then we considered two extensions of the Higgs sector. First we extended
the SM Higgs sector with one real singlet. We studied the invisible decay
channel of the Higgs boson and noticed that it significantly constraints the
parameter space in the region where the mass of the singlet is less than half of
the Higgs boson mass. The singlet could provide a good dark matter candidate,
so we also calculated its relic abundance.

Finally we examined the two-Higgs-doublet model extended with one real
singlet. We carried out Monte Carlo analysis of the model constraining the
parameter space with vacuum stability and unitarity requirements as well as
with electroweak precision data and Higgs decay data. Again we considered
the singlet as a dark matter candidate and calculated its relic abundance.
According to our analysis, there are potential regions in the parameter space
which fulfill both the theoretical and experimental constraints, and provide a
dark matter candidate which could constitute significant amount of the total
dark matter mass density. Checking the conditions for the baryogenesis and
taking into account the constraints from the direct and indirect dark matter
searches and from perturbativity and vacuum stability at high energies is left
for future work.
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Appendix A

Summary of statistics

This is a brief summary of statistics needed in this thesis. For a more complete
review see for example chapters 35 and 36 of the reference [66] .

Experiments in particle physics, when searching for new particles, are
looking for excesses over the expected background. Hence a discovery requires
being convinced that the excess is not a statistical fluctuation of the background.
Usually particle physicists talk about a discovery when the significance of
the observation is more than 5σ . This means that assuming a Gaussian
distribution,

fG(x) =
1√
2πσ

e−(x−µ)2/2σ2

, (A.1)

for the statistical fluctuations of the background the excess is more than 6
standard deviations σ from the expectation value µ of the background. So
if the significance of the observation is zσ the probability that the observed
excess arises from the fluctuations of the background is

α = 1−
µ+zσ∫
µ−zσ

fG(x)dx = 1− erf
(
z√
2

)
, (A.2)

which for z = 5 is α = 5.73 · 10−7 .
Let us suppose that we have N independent Gaussian random variables.

That is, we have a set of N measurements with expectation values µi and
variances σ2

i . The probability of finding a set {xi({θj})} , depending on M
parameters {θj} , such that xi({θj}) ∈ [µi − dx, µi + dx] for all i is simply

L({θj}) = 2
N∏
i=1

1√
2πσi

e−(xi({θj})−µi)2/2σ2
i dx . (A.3)
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Table A.1. Values of |χ2({θj})−χ2({θ̂j})| forM parameters for different confidence
levels β .

β M = 1 M = 2 M = 3

0.6827 1.00 2.30 3.53

0.9545 4.00 6.18 8.02

0.9973 9.00 11.83 14.16

Now the set of parameters {θj} describing best the measurements is the set
which maximizes L , or equally the set that minimizes

χ2({θj}) =− 2

(
ln

(
L({θj})

dx

)
− ln

(
2

N∏
i=1

1√
2πσi

))

=
N∑
i=1

(xi({θj})− µi)2

σ2
i

.

(A.4)

The method of finding best fit values θ̂j for parameters θj by minimizing
χ2({θj}) is known as the method of least squares.

In general, if we have n independent Gaussian distributed variables having
mean µi and variances σ2

i , then

z =
n∑
i=1

(xi − µi)2

σ2
i

(A.5)

is distributed according to chi-squared distribution

fχ2(z, n) =
zn/2−1e−z/2

2n/2Γ(n/2)
. (A.6)

Hence limits on the parameters θj at confidence level β can be obtained by
requiring

∆χ2∫
0

fχ2(z,M)dz = β , (A.7)

where ∆χ2 = |χ2({θj})−χ2({θ̂j})| . In table A.1 we have calculated the values
of the difference ∆χ2 in the cases M = 1, 2, 3 for confidence levels 0.6827 ,
0.9545 and 0.9973 , which correspond to the 1σ , 2σ and 3σ limits for Gaussian
distribution, respectively.
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Appendix B

Solution of the Lee-Weinberg
equation

Decoupling of the dark matter particles S (WIMPs) from the visible matter is
described by the Lee-Weinberg equation

dn

dt
= −3Hn+ 〈vσ〉

(
n2
eq − n2

)
, (B.1)

where H is the Hubble parameter, n is the particle number density of the
WIMPs, neq is the particle number density in the thermal equilibrium and
〈vσ〉 is the flux-weighted thermally averaged annihilation cross-section of the
WIMPs. The equilibrium number density is

neq = g

∫
d3p

(2π)3
f(p, T ) (B.2)

where g is the number of intrinsic degrees of freedom for the WIMP and f(p, T )
is the equilibrium distribution function, which at low temperatures can be
approximated as

f(p, T ) = e−E/T . (B.3)

Hence the equilibrium number density is

neq =
g

2π2

∞∫
m

E
√
E2 −m2

S e−E/TdE =
gm2

ST

2π2
K2

(mS

T

)
. (B.4)

Under the assumption (B.3) the flux-weighted thermally averaged annihilation
cross-section,

〈vσ〉 =

∫
d3p1d3p2f(p1, T )f(p2, T )vσ∫

d3p1d3p2f(p1, T )f(p2, T )
(B.5)
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where

v =

√
(p1 · p2)2 − (m1m2)2

(p2
1 +m2

1)(p2
2 +m2

2)
, (B.6)

can be written as [71]

〈vσ〉 =
1

8m4
STK

2
2

(
mS
T

) ∞∫
4m2

S

ds
√
s(s− 4m2

S)K1

(√
s

T

)
σtot(s) . (B.7)

In the equations (B.4) and (B.7) Kn are the modified Bessel functions of
second kind. In the radiation dominated Universe the Hubble parameter is

H2 =
8π

3M2
Planck

ρtot =
4π3

45
g∗(T )

T 4

M2
Planck

, (B.8)

where g∗ is the effective number of degrees of freedom

g∗(T ) =
∑
bosons

gi

(
Ti
T

)4

+
7

8

∑
fermions

gi

(
Ti
T

)4

. (B.9)

Defining
Y =

n

s
, x =

mS

T
(B.10)

where s is the entropy density

s =
2π2

45
g∗s(T )T 3 , (B.11)

with

g∗s(T ) =
∑
bosons

gi

(
Ti
T

)3

+
7

8

∑
fermions

gi

(
Ti
T

)3

, (B.12)

the Lee-Weinberg equation (B.1) can be expressed as

dY

dx
= Z

(
Y 2 − Y 2

eq

)
, (B.13)

where

Z(x) = −
√

π

45

g∗(
mS
x

)√
g∗s(

mS
x

)
MPlanckmSx

−2〈vσ〉 (B.14)

and
Yeq(x) =

45

4π4g∗s(
mS
x

)
x2K2(x) . (B.15)

49



For a given 〈vσ〉(x) the equation (B.13) can be solved numerically.
However, we may do an approximation which speeds up the calculation

preserving good accuracy. We define

δ =
Y

Yeq
− 1 (B.16)

whereby

(δ + 1)
dYeq
dx

+ Yeq
d(δ + 1)

dx
= ZY 2

eqδ(δ + 2) . (B.17)

Now the approximation is that the departure from the equilibrium starts
slowly, thus before the freeze out, x ≤ xf , we have

d(δ + 1)

dx
=

d

dx

Y

Yeq
≈ 0 . (B.18)

Hence
dYeq
dx
≈ ZY 2

eq
δ(δ + 2)

δ + 1
, x ≤ xf . (B.19)

For the numerical solution it is useful to define yeq = exYeq . The equation
(B.19) can now be written as

x = ln

Zy
2
eq
δ(δ + 2)

δ + 1
dyeq

dx
− yeq

 . (B.20)

Next we pick up a reasonable value for δf and solve xf iteratively from (B.20) .
The solution is not very sensitive on the choice of δ and to simplify the equation
(B.20) we can choose δ = (

√
5− 1)/2 . Moreover we use an approximation

g∗(T ) =g∗s(T ) = 2 + 6 · θ(T −MW ) + 3 · θ(T −MZ) + 3 · 7

4

+
7

2
·
∑
e,µ,τ

θ(T −mi) +
∑
scalars

gi θ(T −mi)

+ θ(T − TQCD)

(
2 · 8 +

21

2
·
∑
quarks

θ(T −mi)

)
,

(B.21)

which is justified since the in the early universe most of the particles had
the same temperature. For the QCD phase transition temperature we use
TQCD = 0.25 GeV .
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After the freeze-out, x > xf we may assume that Y 2
eq � Y 2 . Hence

dY

dx
≈ ZY 2 , x > xf , (B.22)

thus
Y (x) =

Y (xf )

Y (xf )A(x, xf )− 1
≈ 1

A(x, xf )
, (B.23)

where

A(x, xf ) = −
x∫

xf

Z(x)dx . (B.24)

Now the relic abundance is

Ωh2 =
ρ

ρc
h2 , (B.25)

where

h = 0.673 ,

ρc = 1.054 · 10−5 h2 GeV cm−3 (B.26)

are the scale factor for the Hubble expansion rate [8] and the critical density
[66], respectively. The WIMP density ρ is

ρ = mSn(x0) = mSs(x0)Y (x0)

=
2π

45
g∗s

(
mS

x0

)
m4
S

x3
0

1

A(x0, xf )
.

(B.27)

Now
x = x0 =

mS

Tγ
, (B.28)

where Tγ = 2.725K = 2.348 · 10−13 GeV is the present day photon temperature
[72], so

Ωh2 =
2π

45

h2

ρc
T 3
γ g∗s (Tγ)︸ ︷︷ ︸

≈5.196·108 GeV−1

mS

− x0∫
xf

Z(x)dx


−1

. (B.29)

The Z integral can be evaluated numerically, but with good accuracy it can
be approximated as

x0∫
xf

Z(x)dx ≈ xfZ(xf ) . (B.30)
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Appendix C

SS annihilation cross-section

Let us assume, that we have a model which includes three neutral scalar bosons
h,H, S and one charged scalar boson H+ , with interactions described by the
Lagrangians

Lscalar = C1hS
2 + C2h

3 + C3h
2S2 + C4HS

2 + C5Hh
2 + C6H

3

+ C7H
2S2 + C8hH

2 + C9S
2hH + C10S

2H+H− + C11hH
+H−

+ C12HH
+H− ,

(C.1)

Lgauge = G1g
µνhW+

µ W
−
ν +G2g

µνhZµZν

+G3g
µνHW+

µ W
−
ν +G4g

µνHZµZν

+G5g
µνH+H−W+

µ W
−
ν ,

(C.2)

and
Lfermion = F1hψψ + F2Hψψ , (C.3)

where Cj, Gj, Fj are the coupling strengths.

(a)

h,H

(b)

S

(c)

S

(d)

Figure C.1. Lowest order Feynman diagrams for the annihilation SS → hh .
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We would like to calculate the cross-section for the SS annihilation. There
are four different two-body final state annihilation channels where the final
state particles are scalar bosons:

SS → hh , SS → HH , SS → hH , SS → H+H− . (C.4)

Let us first calculate the cross-section for the annihilation channel SS → hh .
The lowest order Feynman diagrams for the annihilation are shown in figure
C.1 . Now we may immediately write down the amplitude for the process

Mhh = 4C3 + 12C1C2
1

s−m2
h

+ 4C4C5
1

s−m2
H︸ ︷︷ ︸

=Ahh

+2C2
1

(
1

t−m2
S

+
1

u−m2
S

)
.

(C.5)
The differential cross-section is

dσhh
dt

=
|Mhh|2

16πs(s− 4m2
S)

=
|Mhh|2

16πs2v2
S

, (C.6)

where

v2
S = 1− 4

m2
S

s
. (C.7)

To get σhh we need to evaluate six integrals. First we need to find out the
integration limits. The Mandelstam variable t can be written as

t = m2
S +m2

h − 2ESEh + 2|pS||ph| cos θ (C.8)

where the scattering angle θ obtains values from the interval [0, π] . In the
CMS frame

|pS| =
1

2

√
s− 4m2

S , |ph| =
1

2

√
s− 4m2

h , (C.9)

thus the integration limits are

t± =
1

2

(
2m2

S + 2m2
h − s±

√
s− 4m2

S

√
s− 4m2

h

)
. (C.10)

Evaluating the integrals is rather easy. The integrals are

t+∫
t−

dt = svhvS , (C.11)

53



t+∫
t−

dt
1

u−m2
S

=

t+∫
t−

dt
1

t−m2
S

= ln

∣∣∣∣1− 2svhvS
s− 2m2

h + 2svhvS

∣∣∣∣
≈ − 2svhvS

s− 2m2
h

,

(C.12)

t+∫
t−

dt
1

(u−m2
S)2

=

t+∫
t−

dt
1

(t−m2
S)2

=
4svhvS

(s− 2m2
h − 2svhvS)(s− 2m2

h + 2svhvS)

≈ 4svhvS
(s− 2m2

h)
2
,

(C.13)

t+∫
t−

dt
1

(t−m2
S)(u−m2

S)

= − 2

s− 2m2
h

ln

∣∣∣∣1− 2svhvS
s− 2m2

h + 2svhvS

∣∣∣∣
≈ 4svhvS

(s− 2m2
h)

2
,

(C.14)

where we have assumed that s − 2m2
h � 2svhvS . If there are two identical

bosons in the final state we must take into account symmetry factor 1/2 .
Hence the cross-section for the SS → hh annihilation process is

σhh =
vh

32πvSs

(
Ahh − 8

C2
1

s− 2m2
h

)2

. (C.15)

The SS → HH process is identical to the SS → hh process. The annihilation
cross-section for the SS → HH process is

σHH =
vH

32πvSs

(
AHH − 8

C2
4

s− 2m2
H

)2

, (C.16)

where
AHH = 4C7 + 12C1C8

1

s−m2
h

+ 4C4C6
1

s−m2
H

. (C.17)
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Also the SS → hH channel is similar to the previous channels. The annihilation
cross-section for the SS → hH process is

σhH =
vhH

16πvSs

(
AhH − 16

C1C4

s−m2
h −m2

H

)2

, (C.18)

where
AhH = 2C9 + 4C1C5

1

s−m2
h

+ 4C4C8
1

s−m2
H

, (C.19)

and
v2
hH = 1− (mh +mH)2

s
. (C.20)

The SS → H+H− channel does not include t and u channel diagrams. The
annihilation cross-section for the SS → H+H− process is

σH+H− =
vH+

16πvSs
A2
H+H− , (C.21)

where
AH+H− = 2C10 + 2C1C11

1

s−m2
h

+ 2C4C12
1

s−m2
H

. (C.22)

The gauge boson channels include only s channel diagrams with h and H
propagators. The Feynman amplitude for the SS → W+W− process is

MWW = 4C1G1
1

s−m2
h

εa1 · εa2 + 4C4G3
1

s−m2
H

ε(k1, λ1) · ε(k2, λ2) , (C.23)

thus using ∑
λj

εµ(kj, λj)ε
ν(kj, λj) = −gµν +

kµj k
ν
j

M2
W

(C.24)

we get

|MWW |2 = 16

(
3 +

s(s− 4M2
W )

4M4
W

)(
C1G1

s−m2
h

+
C4G3

s−m2
H

)2

. (C.25)

Hence

σWW =
vW

2πvSs

(
3 +

s(s− 4M2
W )

4M4
W

)(
C1G1

s−m2
h

+
C4G3

s−m2
H

)2

. (C.26)

and similarly for the SS → ZZ process

σZZ =
vZ

4πvSs

(
3 +

s(s− 4M2
Z)

4M4
Z

)(
C1G2

s−m2
h

+
C4G4

s−m2
H

)2

. (C.27)
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Also for the fermionic final states there are only s channel diagrams. The
Feynman amplitude for the SS → ff process is

Mff = C1F1
1

s−m2
h

u(k1, h1)v(k2, h2) + C4F2
1

s−m2
H

u(k1, h1)v(k2, h2)

(C.28)
Making use of identities∑

h1

u(k1, h1)u(k1, h1) = /k1 +mf ,∑
h2

v(k2, h2)v(k2, h2) = /k2 −mf ,
(C.29)

and
Tr(/k1/k2) = 4k1 · k2 , (C.30)

we get

|Mff |2 = 2NCs(s− 4m2
f )

(
C1F1

1

s−m2
h

+ C4F2
1

s−m2
H

)2

, (C.31)

where NC = 1 for leptons and NC = 3 for quarks. Hence

σff =
NCvf

16πvSs
(s− 4m2

f )

(
C1F1

1

s−m2
h

+ C4F2
1

s−m2
H

)2

. (C.32)
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