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Abstract

Chaos and nonlinear dynamics of single-particle Hamiltonian systems have
been extensively studied in the past; however, less is known about interacting
many-body systems in this respect even though all physical systems include
particle-particle interactions in one way or another. To study Hamiltonian chaos,
two-dimensional billiards are usually employed, and due to the realization of
billiards in semiconductor quantum dots, the electrostatic Coulomb interaction is
the natural choice for the interparticle interaction. Yet, surprisingly little is known
about chaos and nonlinear dynamics of Coulomb-interacting many-body billiards.

To address the challenging problems of interacting many-body billiards, we have
developed a flexible and expandable code implementing methods previously used
in molecular dynamics simulations. The code is generic in sense that it is readily
applicable to most two-dimensional billiards — including periodic systems — with
different types of interparticle interactions. In this work, insights into Coulomb-
interacting billiards are gained by applying the methods to two relevant systems:
a two-particle circular billiards and a few-particle diffusion, the latter of which is
studied only as a closed system. Also general implications of the results for other
systems are discussed.

The circular billiards is studied with the interaction strength varying from the weak
to the strong-interaction limit. Bouncing maps show quasi-regular features in the
weak and strong-interacting limits. In the strong-interaction regime an analytical
model for the phase space trajectory is derived, and the model is found to agree
with the simulated data. At intermediate interaction strengths the bouncing maps
get filled.

To obtain a quantitative view on the hyperbolicity and stickiness of the circular
billiards, we calculate escape-time distributions of open circular billiards. At
weak interactions the escape-time distributions show a power-law tail owing
to the quasi-regular dynamics arising from the integrable non-interacting limit.
At intermediate interaction strengths the distributions are exponential implying
hyperbolicity within the studied time-scales.

As the second application, the diffusion process between two square containers
connected by a short channel is studied under a homogeneous magnetic field
perpendicular to the table. During the propagation, over half of the particles —all
initially in the same container — travel from one container to the other. The time
this process takes is defined here as the relaxation time.

The average relaxation times (t.) are calculated as a function of the effective
Larmor radius rgrr, which describes the average effect of the magnetic field on
the particles. The behavior of the rgr-(t.1) graphs is studied thoroughly for
different interaction strengths and channel widths. Interestingly, the graphs show
a universal minimum for all interaction strengths, and in the weak-interaction
limit also other extrema appear. The new extrema in the weak-interaction limit
are explained by calculating properties of open single-particle magnetic square
billiards for different Larmor radii.
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Tiivistelma

Hamiltonisten yksihiukkasjdrjestelmien kaoottisuus ja dynaaminen epélineaari-
suus tunnetaan suhteellisen hyvin. Vuorovaikuttavien monihiukkasjarjestelmien
kaoottisuus puolestaan tunnetaan suhteellisen heikosti, vaikka kaikki fysikaaliset
jarjestelmét ovat tavalla tai toisella vuorovaikuttavia. Hamiltonisen kaaoksen tut-
kimiseen kdytetddn tyypillisesti biljardijarjestelmid. Biljardeissa sdhkostaattinen
Coulomb-vuorovaikutus on luonnollinen valinta hiukkasten viliselle vuorovaiku-
tukselle, silld biljardit toimivat myo6s malleina kokeellisesti toteutettaville puoli-
johdekvanttipisteille. Kuitenkin erityisesti Coulomb-vuorovaikuttavien biljardien
kaoottisuus tunnetaan ylldttavan huonosti.

Paastaksemme kasiksi vuorovaikuttavien monihiukkasjirjestelmien haastaviin
kaaosongelmiin kehitimme joustavan ja laajennettavan laskentakoodin, joka kayt-
tdd aiemmin molekyylidynamiikan simuloinnissa kdytettyja menetelmid. Koodi on
yleispdteva siind mielessd, ettd sitd voi kdyttdd suoraan useimpien biljardijarjestel-
mien — mukaanlukien periodisten jdrjestelmien — simulointiin erilaisilla hiukkasten
vélisilld vuorovaikutuksilla. Menetelmia sovellettiin kahteen kaaostutkimuksen
kannalta oleelliseen jdrjestelm&dan: kahden hiukkasen ympyrébiljardiin ja muu-
taman hiukkasen diffuusioon suljetussa jarjestelméssa. Tuloksilla saatiin uutta
tietoa Coulomb-vuorovaikuttavien jarjestelmien kaoottisuudesta ja dynamiikasta.
Lisdksi tyodssd arvioitiin tuloksista saatujen johtopdatosten soveltuvuutta muihin
jarjestelmiin.

Ympyrébiljardia tutkittiin eri vuorovaikutusvoimakkuuksilla heikon vuorovaiku-
tuksen rajalta vahvan vuorovaikutuksen rajalle. Torméayskartoissa ndhtiin ndennai-
sesti sddnnollisid rakenteita sekd heikoilla ettd vahvoilla vuorovaikutuksilla. Lisdksi
vahvasti vuorovaikuttavan jarjestelmén faasiavaruusradoille johdettiin analyytti-
nen malli, joka tdsmaési numeerisesti laskettujen ratojen kanssa. Keskivahvoilla
vuorovaikutuksilla tormédyskartat tayttyivat.

Ympyrébiljardin hyperbolisuuden ja tahmaisuuden kvantitatiiviseen tutkimiseen
kdytettiin avointa ympyrabiljardia, jonka pakoaikajakaumia laskettiin eri vuoro-
vaikutusvoimakkuuksille. Heikon vuorovaikutuksen rajalla pakoaikajakaumat
noudattivat asymptoottisesti potenssilakia, mika johtui ndenndisesti sadannollisistd
radoista pienilld vuorovaikutusvoimakkuuksilla. Keskivahvoilla vuorovaikutus-
voimakkuuksilla jakaumat olivat eksponentiaalisia, mihin perustuen jarjestelman
paételtiin olevan hyperbolinen tutkitulla aikaskaalalla.

Toinen tutkittava ilmio oli muutaman hiukkasen diffuusioprosessi kahden kana-
valla yhdistetyn neliosdilion valillda magneettikentdssd. Aluksi hiukkaset olivat
samassa sdilidossd, mutta ajan kuluessa ne liikkuivat kohti tilannetta, jossa yli
puolet hiukkasista oli siirtynyt toiseen sdilioon. Prosessiin kuluva aika nimettiin
relaksaatioajaksi.

Relaksaatioaikojen ensemble-keskiarvot (t.) laskettiin hiukkasten tehollisen syk-
lotronisdteen rgrr (magneettikentdn keskimddrdinen vaikutus hiukkasten ratoihin)
funktiona useille eri vuorovaikutusvoimakkuuksille ja kanavan leveyksille. rgr-
(tre1)-kuvaajissa havaittiin universaali minimi kaikille vuorovaikutusvoimakkuuk-
sille. Lisdksi heikon vuorovaikutuksen rajalla rgrr-(tre1)-kuvaajiin ilmestyi myos
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muita ddriarvoja, jotka selitettiin laskemalla avoimen magneettisen neliobiljardin
ominaisuuksia eri syklotronisateille.
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1 Introduction

1.1 Towards many-body billiards

Chaos is a phenomenon where deterministic systems — even simple ones — exhibit
complex dynamics that appear random from all practical points of view [1-3].
The random-like behavior is the result of predictability of chaotic systems being
inherently unstable to any uncertainty in our knowledge of the current state of
the system. In practice we never know the current state precisely, and hence the
long-term evolution seems random.

There are several different phenomena grouped under chaos theory. What distin-
guishes chaos from other physical theories is its universality: the same phenomena
can be found in several systems throughout nature and different sciences including,
e.g., nonlinear differential equations, electrical circuits, chemical reactions, and
biological systems [1-10].

Chaos is also inherently included in classical mechanics, especially in Hamiltonian
mechanics [1,3,5,11]]. Hamiltonian chaos is usually studied within two-dimensional
billiards, where a point particle moves typically in a straight line or a circular
arc between elastic collisions with the boundary. Popularity of billiards is due to
easy visualization combined with their ability to produce the chaotic phenomena
found in Hamiltonian systems. Furthermore, billiards are the easiest route to study
correspondence between classical and quantum chaos.

Instead of being only mathematical idealizations, nanoscale billiards can also be
manufactured in experiments by confining electrons in semiconductor quantum
dots and quantum point contacts [12}[13], where the electron motion can be
made ballistic, i.e., fully determined by the confining potential [13]. In these
structures, the number of electrons can be controlled precisely, and the confining
potential can be made extremely steep so that hard wall billiards form natural
models for them [14]. Furthermore, even though the systems are inherently
quantum mechanical, it is possible — at least in theory — to produce billiards where
classically explainable phenomena can be observed before quantum mechanical
effects become important [15].

Single-particle billiards have been extensively studied with varying shapes of
billiard tables ranging from simple rectangles to, e.g., fractal-like honey mushrooms]|
where one takes a mushroom-shaped billiard table and attaches yet another
mushroom to its foot and so on [16]. Also open single-particle billiards, where
the particle can escape the system through a hole, have been addressed in, e.g.,
mushroom [17], stadium [[18], drivebelt [19], and circular billiards [20].

Interacting many-body billiards, however, have attracted less attention even though
all physical systems are interacting in one way or another. Two-particle billiards
have been studied with hard-sphere interactions in two dimensions [21-23] and
with Yukawa interactions in both one-dimensional [24-26] and two-dimensional

"Honey mushrooms are fractals only in the limit where the described process is repeated
infinitely many times.



systems [27,28]. Due to the realization of billiards in confined semiconductor
structures [12,129,[30], the natural choice for the interaction would, however, be
the Coulomb interaction [31,32]. Most studies on Coulomb-interacting billiards
have been restricted to soft potentials [33-37], but also periodic systems have been
addressed [38-40]. In addition, some studies on Yukawa-interacting billiards have
also included a few remarks in the Coulombic limit for one-dimensional [24-26]
and two-dimensional systems [28]. Recently, also the Coulomb-interacting two-
particle rectangular billiards in magnetic fields has been studied [41]. For a more
detailed review on these recent advances in many-body billiards, see Sec.

To study chaos and nonlinear dynamics of Coulomb-interacting billiards, we have
developed a flexible and extensible C++ code that implements methods previously
used in molecular dynamics simulations. The author of this thesis wishes to
acknowledge Perttu Luukko for significant initial development of the code. The
code is generic in sense that it is readily applicable to most billiard systems from
one to a few hundred particles with varying interaction types. In this thesis we
detail the methods and the implementation of our code and apply it to two systems
relevant to the study of Coulomb-interacting billiards. The results give novel
insights into the effects of the Coulomb interaction in billiards in general, not just
in these systems.

First, we study the Coulomb-interacting two-particle circular billiards with the
focus on its chaotic properties for different interaction strengths. The circular table
was chosen since

e it is geometrically simple, and thus the effects of the Coulomb-interaction
are easier to interpret,

e the single-particle limit of the system is well known [42], and

e the circular table represents a simple model for two-dimensional quantum
dots.

Chaoticity of the system is addressed by calculating bouncing maps of closed
circular billiards and escape-time distributions of open circular billiards.

Our second study is about a few-particle diffusion process in a two-container
billiard table in a magnetic field. The choice of the system draws motivation
from quantum-Hall devices, especially from quantum point contacts [43] and their
classical limit. We focus on the behavior of average relaxation times as a function
of the magnetic field, but also open single-particle magnetic square billiards is
studied to explain the behavior of average relaxation times at weak interactions.

This thesis is organized as follows. In Sec. we further illustrate the meaning
of chaos with several examples. The theoretical framework of the Hamiltonian
formalism is introduced in Sec.[2| In Sec.|3, we give a brief introduction to chaos in
closed and open Hamiltonian systems. Section 4] details the numerical methods.
The results on the circular billiards are given in Sec. 5.1/ and the results on the
diffusion process in Sec. Summaries of the results are presented in Secs.[5.1.5]
and Finally, in Sec. |6}, we conclude this thesis with a discussion and outlook.



1.2 What is chaos?

Intuitively, chaos is imagined as unpredictable, random-like behavior. There is no
strict definition of chaos, but we think the following extract captures the essentials.

Chaos is aperiodic long-term behavior in a deterministic system
that exhibits sensitive dependence on initial conditions.

— Strogatz [1]

According the the above definition, in order for motion to be considered chaotic it
needs to satisfy the following criteria:

e Aperiodicity. This is a natural requirement in the sense that periodic move-
ment would imply predictability of trajectories.

e Determinism. The unpredictability must arise not from randomness of time
evolution as in stochastic processes but from some other dynamical reason.

e Sensitive dependence on initial conditions. The dynamical structure of
chaotic systems results in exponential separation of two initially nearby
trajectories. This idea is used when we introduce a quantitative measure for
chaos in Sec.

Chaotic behavior is schematically visualized in Fig. [1, where two initially (t)
nearby orbits start to separate and at some time f,, the separation blows up
exponentially. To further familiarize the reader with the concept of chaoticity, we
briefly review a few classic examples of chaotic systems in the following.

The motion of a regular pendulum, a stiff massless rod with a weight attached
to one end and a rotating axis to the other end, is governed in the small angle

approximation by the ordinary differential equation (ODE)
d*6 ’
2= 1.1
dt? w0, ( )

where 0 is the angle from the equilibrium position and w is the angular velocity
determined by the system parameters. This ODE can be solved analytically to

ty: Exponential
separation visible

to: Two initially
nearby orbits

Figure 1: Chaoticity is seen as exponential separation of initially nearby orbits.



Figure 2: Two trajectories of the far end of the double pendulum. The trajectories
are initially close in phase space (i.e., nearly same positions and velocities of the
rods) but diverge fast away from each other. This is characteristic behavior for
chaotic systems.

- _|_ — -

Figure 3: Circuit diagram of Chua’s circuit

obtain the solution 0 = Onax sin(wt + ¢). The system is regular (not chaotic) in
sense that all perturbations to initial conditions result in only slight changes
in the system trajectory. Also the nonlinear pendulum, i.e., without the small
angle approximation, is regular, but numerical methods would be required to
demonstrate this.

The idea of the pendulum can be extended to the double pendulum, where there
is yet another rod attached to the end of the first rod (with a weight). The double
pendulum exhibits chaotic motion as shown in Fig. 2, where two initially close
positions of rods diverge after a short period of time.

Also chemical reactions can exhibit chaotic behavior as demonstrated by the
Belousov-Zhabotinsky reaction [6}[7]. The reaction takes place, for example, in a
mixture of KBrO3, Ce(SO,),, CH,(COOH),, H,S0,, and water [44]. In the solution,
a series of chemical reactions occur causing the catalysts of the reactions, Ce
ions, to oscillate between two states, Ce** and Ce>* [8]. In essence, the relative

Figures of components from Wikimedia Commons. User Eadthem is to be attributed for the
inductor symbol.



Figure 4: One trajectory of Chua’s circuit with parameters 2 = 15.6, b = 28,
my = —1.143, and m; = —0.714 [see Eqgs. (1.2) — (1.4)]. The trajectory reveals the
strange attractor of Chua’s circuit.

concentration of these two ions oscillates in a chaotic fashion. The oscillation can
also be seen with bare eyes since Ce** gives the solution a yellowish color and Ce>*
is colorless [45].

Chaos can also be seen and, more importantly, measured in some electrical circuits
such as Chua’s circuit shown in Fig. 3l The essential part of Chua’s circuit and the
cause of the chaotic behavior is the nonlinear resistor R,; [9]. The system can be
described by the (dimensionless) coupled differential equations [10]

dx
= =aly—x- f(x)] (1.2)
Y _ 13
yr =xX—-y+z (1.3)
dz
E:_ﬁy’ (1.4)

where a and f§ are system parameters and f(x) = mjx + (my — mq)(|x + 1| = |x — 1])
describes the electric response of the nonlinear resistor with parameters my and m;.
The variables x,y, and z essentially describe the voltages across the capacitors C;
and C, and the current in the inductor L, respectively [9]. The circuit demonstrates
chaotic oscillating behavior in the variables, and when visualizing the system
trajectory in xyz-coordinates as in Fig.[d the plot reveals the strange attractor of
Chua'’s circuit [9].

As last example, we introduce perhaps the best known chaotic system, the Lorenz

5
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Figure 5: One trajectory of the Lorenz system with parameters p = 28, ¢ = 10,
and B = 8/3 [see Egs. — (I.7)]. The trajectory draws the pattern of the strange
attractor, which is often called the Lorenz butterfly [1].

system, which was originally invented to describe convection in the atmosphere
[46]. The system can be described by the coupled differential equations [46]]

dx
i oy — ox (1.5)
Ay _ 16
o S PX-xz-y (1.6)
dz
prink A Bz, (1.7)

where p, 0, and f are system parameters. At certain parameter ranges the Lorenz
system has a strange attractorﬁ also called the Lorenz Butterfly, which is shown
in Fig.pl As Lorenz correctly observed from his model [4], weather can not be
predicted far in the future due to sensitive dependence on initial conditions.

One can already see from the previous examples that even very simple systems
might exhibit chaotic motion, not to speak of more complex dynamical systems.
This emphasizes how chaos is a fundamental part of natural phenomena.

3Strictly speaking, the Lorenz attractor has not been proven to be a strange attractor despite
numerous attempts.



2 Hamiltonian systems

2.1 Principle of stationary action and Lagrangian formalism

The most conventional way to describe classical mechanics is via Newton’s laws
of motion. However, if the system has constraints, the Lagrangian formulation
often turns out to be more useful in practice. In the Lagrangian formulation the
constraints are incorporated either by using the Lagrange multipliers or by a
transformation to a new set of coordinates called the generalized coordinates, which
take the constraints into account.

Suppose that our system is d-dimensional and has k particles. This means that the
positions of the particles can be described by vectors r4, ..., r¢ of a d-dimensional
Euclidean space RY. If there exists p holonomic constraints fi({r;},#) = 0 on the
system, the number of coordinates needed to describe the configuration space
is reduced to kd — p [47]. We can then describe the system with just N = kd — p
generalized coordinates q" in such a way that

r1 =ri({g"})
2.1)

ry = rn({g")).

From now on we denote the set of generalized coordinates {7}, ..., 4"} by just 4°
and similarly for other variables. It will be clear from the context whether by g°
we mean the set of coordinates or just one of them. Also, to shorten the notation,
we will often use the notation f to denote the time derivative of a function f.

The basic idea behind the Lagrangian formulation, in addition to the use of
generalized coordinates, is to introduce the action functional

tp

Sl = f LIg(), (6, 1] dt, 22)

tA

where L (g°(t), §°(t), t) is the Lagrangian (function) and the integral is taken over
some path {g'(t),...,q" ()} = ¢°(t). Later we will deduce the form of the Lagrangian.

The Hamilton’s principle is the cornerstone of the Lagrangian formulation. It
postulates that the path g°(t) the system follows is the one for which the action S is

stationary ie.,
tp

JL_, JL _,
0=6S= f(8_q“6q + 8q“6q ) dt. (2.3)

ta

Here we begin to use the Einstein summation convention, i.e., if the same index

4The original idea was formulated by Pierre-Louis de Maupertuis [48}49] despite Sir William
Rowan Hamilton often being credited for the idea.
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appears in a term twice it is understood that we sum over that index (from 1 to
N). We proceed by integration by parts and use 64" = £5¢" to obtain

tp
oL .
dt + / a—qaéq. (2.4)

tA

tp

oL ., d(dL\_,
o-as= [ |5por = (55 o

tA

With fixed endpoints 64°(ta) = 64°(tg) = 0, the substitution term goes to zero, and

we get
tp

oL d(JL\]. .
0=06S= fla_q“ — % (a—qa):l 6[] dt. (25)

ta

The stationarity requirement must hold for all perturbations 64°(t), and therefore,
we get the Euler-Lagrange equations

JL d (8L

dq°  dt\ oy

):OVazl,...,N. (2.6)
Should one wonder why there are no Lagrange multipliers here, we remind that
the constraints have already been incorporated in the generalized coordinates.

All we need to do now is to connect the Euler-Lagrange equations to the Newtonian
mechanics so that they yield the same results. To do this, we require that Newton’s
second law is obeyed. For simplicity, we do this only in a single-particle case with
{g°} = {r',r*,7*}. Newton’s second law with external potential V(r, t) yields then

mi = —VV(r, t) 2.7)
o %(mr’“) _ —%V(r, 9 2.8)

d| d (m. _d
o=l (sz)l = 2 [-V(r, D) 2.9)

If we compare this with the Euler-Lagrange equations (2.6), we see that they are
equivalent if

AL d (m 4,

o = om (5’” ) (210
and

)

o =5 [Vl (2.11)

From these relations we conclude that the form of the Lagrangian should be (up to

a constant)
L= Sl - Ver,H) =T -V, (212)

where T is the kinetic energy of the system and V the potential energy. This form

Once in a co index (lower index) and once in a contra index (upper index).
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of the Lagrangian, L = T — V, is completely general [47] although we only deduced
it for a simple unconstrained system.

2.2 Hamiltonian formalism

To go even further, we next reformulate the Lagrangian mechanics by doing a
Legendre transformation {¢°,§°,t} — {4, p., t}. First, we define the generalized
momenta

oL
and the Hamiltonian (function)
H(", pa,t) = §°po — L. (2.14)

To get the Hamiltonian equations of motion, we look at the differential of the

Hamiltonian,

OH  oH.. oH
dH = a—padpa + a—qad[] + W dt. (215)

On the other hand, the definition of the Hamiltonian in Eq. (2.14) gives

dH = °dp, + pdq® — dL
L ., oL oL , . L

= g§"dp, + 8q”dq — 8_17”dq - 8_q”dq - gdt (2.16)
. JL ,, JL
=q dp,l - a_q”dq - Edt

By comparing Egs. (2.15) and (2.16), we get the Hamiltonian equations of motion
(HEOM)

., OH
§ = . (2.17)
and
oH = JL gasEm
P R (2.18)

Also note that
dH oJH _, JH , oH

TS
Emeem HOH OHIH oH _ oH
29" dp, Ip,dq° ot  It’
which gives — together with Egs. and — the last of the Hamiltonian
equations of motion,

(2.19)

dH _ JL

- =" (2.20)

9



In the Hamiltonian formalism we work in the phase space (4, p,) € P rather than
in the configuration space as in the Lagrangian formalism. This means that g* and
p. are treated on equal footing. Furthermore, one could wonder if it is possible to
develop a variational principle in the phase space.

To find the variational principle, remember that we defined the Hamiltonian as
the Legendre transformation of the Lagrangian,

H(q", pa,t) = §"pa — L.

This can be inverted to get L in terms of the phase space variables. By using the
obtained Lagrangian, the action integral in Eq. (2.2) becomes

tp

§= f [4"pa — H(", pa, )] dt. (2.21)

tA

By requiring S to be stationary on the phase-space path (4°(t), p.(t)), we get a
variational equation

tp
o JH_, JH
0=0S= f(paéq + 470p. — a—qaéq Em, 6pa) dt. (2.22)

tA

As before, we use 6§° = 464" and integrate the first term of the integrand by parts
to get

tp tp

oH oH
O:(SS:f(— O + §'0pa — ==04" — =0 a)dt+/ WO, 2.23
Padq 4 08 = 500" = 5, OP Pa0q (2.23)

tA

tA

By fixing the end points g°(t4) and ¢°(tz), the substitution term vanishes, and
since the variations in 4° and p, are independent and arbitrary, they must vanish
independently. As a result we get the Hamiltonian equations of motion from a
variational principle,

., OH

7= (2.24)
oH

o = = (2.25)

Pe= 30

There are major differences between the variational principles of the Lagrangian
and Hamiltonian formalisms. First and foremost, the Lagrangian action is an
integral in the configuration space whereas the Hamiltonian action is an integral in
the phase space. This also means that in the Lagrangian formulation the variation
in the coordinate variables ¢* also determines the variation in the derivative
variables 47, but in the Hamiltonian formulation the coordinate variables 4 and
their conjugate momenta p, are allowed to vary independently. This also gives us
(in principle) the freedom not to fix the momenta at the end points.

10



One can deduce from the Hamiltonian formulation, e.g., that there are no attractors,
which were discussed in the introduction, in Hamiltonian systems. This is a
result of Liouville’s phase-space theorem, which states that the Liouville measure
du = dp,dq" is invariant under Hamiltonian dynamics [11].

From now on we will only work in Hamiltonian formulation and use the phase
space variables (47, p,) unless otherwise stated.

2.3 Poisson brackets

It is often useful to introduce new mathematical operators in order to simplify the
treatment of the problem and to emphasize some aspects of the theory. With this
in mind, let us consider how a general function of phase space variables and time
evolves:

d d

A _Of O, O

dt  Jg° pa ot

19df dH Jf dH Lo af

04" dp,  Op.dq° ot

- i)+ 2.

(2.26)

Here {, -} is the Poisson bracket, a bilinear operator defined for two functions f
and g of the phase space variables (and time) as

_df dg  Jf dg
{f/g} - aqg (9]9,1 - 8;9” aqa'

(2.27)

By using Eq. (2.26)), we can easily write the Hamiltonian equations of motion as

q" = {q", H) (2.28)
Pa = {Pa, H}. (2.29)

The result emphasizes that in the Hamiltonian formalism ¢* and p, are treated on
an equal footing and that the equations of motion are actually symmetrical.

It is important to note that for the canonical coordinates g* and p, we have the
fundamental Poisson brackets

(g9} =0 (2.30)
{Pa,po} =0 (2.31)
", pv} = 6y, (2.32)

where 67 is the Kroenecker delta tensor. This classical formulation should be
compared with the canonical commutation relations in quantum mechanics.

11



2.4 Canonical transformations

The canonical coordinates g° and p, are naturally not the only coordinates the
system can be described with. It is often useful to consider some other variables
that, e.g., make use of symmetries of the system.

Under a coordinate transformation (g%, py) — (Q°, P,), we would like the form of
the Hamiltonian equations of motion to remain the same, i.e., there would exist a
function K(Q*, P,, t) to act as the Hamiltonian for the new coordinates by

oK

=5 (2.33)
. oK
Po= =55 (2.34)

These transformations that keep the form of the Hamiltonian equations of motion
the same are called canonical transformations.

To find a way to generate canonical transformations, we proceed as in Ref. [47].
First, we observe that the Hamiltonian equations of motion for the new coordinates
must also be obtainable from the principle of a stationary action, i.e.,

tg tp
o f [4'pe = H@", pa, D] dt =0 = 6 f |QP. - K(Q, P, D] dt. (235)
tA tA

This means that there is a relation between §°p, — H(¢", p, t) and Q°P, — K(Q°, P,, 1).
The most general form of the relation is [47]

(2.36)

7 a Y a dG( a’ ar Qu,Pa, t)
qpa_H(q’pﬂ/t):AlQPﬂ_K(Q/Pa/t)'i' q p ]/

dt

where we can add the function

dG(q", pa, Q°, Py, t)
dt

since the value of its integral is independent of the path.

Multiplication with A is somewhat trivial as we can always make a scale transfor-
mation to variables for which A = 1 [47]. To see this, suppose we make a scale
transformation

Q" =uq" (2.37)
P, =vp,. (2.38)

12



The equations of motion for the new coordinates (Q“, P,) can be directly calculated:

. OH(q", pa, t) H(q(Q"), pi(Py), t) dP,,

Q=pi" =u e M oD, . 59
_ 9[wrHE@(@),pP). ] ak(Q, P, 1) |
N P, - oD,
and
a . 3H(ql/ pil t) aH((ql(Ql)/ pi(Pi)/ t) aQb
P'=vp, =—v o = -V 20" Y
o 2.40
9 [wvH (G (Q), piPi), )] _ OK(Q, P, t) (240
- aQa =" 8Qa /
where o
K(Q", Po, t) = uvH(q'(Q"), pi(P), t) (241)

is the Hamiltonian for the new coordinates (Q°, P,). Here A = uv when comparing
to Eq. (2.36).

In the following, we will discuss canonical transformations for which A = 1. This
is justified since we can always couple a canonical transformation with a scale
transformation if we have A # 1. The relation between the old and the new
coordinates for canonical transformations is

dG(qa/ Pa/ Qur Par t)
dt '

§'Pa — H(", pas t) = Q"Po = K(Q", Po, ) + (2.42)

The function G acts as a generating function for the transformation and can be used
to specity the transformation at hand.

Example 1
Let the generating function be G = G,(¢*, P,, t) — Q"P,. The relation-
ship between the old and the new variables can be calculated from

Eq. @22

3 Y 9Gs , Gy Gy
Tpo—H = QT — Kot G20 + 5520 + 52— QP - QP

Since ¢” and P, are independent, we get

Po= o (2.43)
. 9G,
Q' = 9D, (2.44)
090G,
H=K-=2 (2.45)

From this class of transformations we can obtain, for example, the
identity transformation p, = P, and gq° = Q" by setting G, = 4°P,.

13



We would still need some additional conditions to check whether a given transfor-
mation is canonical or not. First, we derive the so called direct conditions following
Refs. [47,50].

Suppose that the generator has no no explicit time-dependence, i.e.,

dG
5 0.
This means that K(Q“, P,) = H(Q", P,), and the Hamiltonian equations of motion

yield

. 0H 0oH 8Qb JoH 8Pb Q ban
Po= 00 = "oQt o ~ 9P, o Q'3 (2.46)
On the other hand, we have
. O Opa .,
Pa = anP” aQbQ' (2.47)

Since these two forms must be equal and Q" and P, are independent (because Q”
and P, are), we get the first set of direct conditions

op(Q,P) _ 9Py(q,p)

o= an (2.48)
Ip(Q,P) _ 9Q"(q,p)
- (2.49)

Here it is easy to get confused with what is a function and what is a variable. To
clarity, let us consider the first equation. On the left hand side, p, = p,(Q, P) is a
function of 2N variables and p”@ D is the partial derivative of the function p, with
respect to its bth variable. On the right hand side, P, = Py(g, p) is a function of 2N

variables and the partial derivative is taken with respect to its ath variable.

Other two direct conditions can be obtained by writing the Hamiltonian equations
of motion for the coordinate variables, i.e.,

JH 0H JdQ" oH P, p Q" . 9P,

= apa = agb 8pa + &Pb apa = —I apa + Qb apa . (250)
We also have
§ = &q o7 (5. (2.51)
aQb
Again, since Q" and P, are independent, we get
9q°(Q,P) _ 9Py(q,p)
e (2.52)
97"(Q,P)  9Q"4,p)
e (2.53)

14



To sum up, the direct conditions are

99°(Q,P) _ dPy(q,p)

9n e (2.54)
aqﬂa(gl: P) _ _8Q;§Z 28 (2.55)
819;(3 P) _ _(91’2(;“/ P), (2.56)
8]9aa(§b, P) _ &Q;f;, 2 (2.57)

The above derivation was done for time-independent transformations, but the
direct conditions hold also for time-dependent transformations [47]. The proof,
however, is rather technical and we omit it here.

Now, by using the direct conditions, we can easily verify that the fundamental

Poisson brackets (2.30), (2.31)), and (2.32) also hold for the new variables Q* and P,:

_9Q79Q"  9Q'IQ" gmeEsy 9Q" d°  IQ" Ip.
T 9q° dp.  dp. I Og dP, Ip. IP,
_ 9 _
=-S5 =

Q' Q"

0, (2.58)

_ 0P, 9P, IP,dP, g5&@5s) IP, aq° N dP, 9.

{Pa/ Pb}qp

- 94° dp.  Ipe I g dQY  Ip. QY

B gg[; =0 (2.59)
(Q, Py} = dQ" P,  JQ" IP, €59 & €57 dp. 9P, . o4 IP,
e Ipe X I, dp. 9P, I

B giﬁ = O (2.60)

Here we have used the chain rule in the second-to-last step for each of the
fundamental Poisson brackets.

This, in fact, allows us to use the fundamental Poisson brackets to check whether a
transformation is canonical or not: a transformation is canonical if, and only if, the
new variables obey the fundamental Poisson brackets [50].

Furthermore, all the Poisson brackets {f, g} are invariant (often called canonical
invariants) under canonical transformations. This can be verified by a direct
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calculation:
_9fdg 9fdg
Vrdle = 5030, ~ o ag
_ ( Jdf Q" If apb)( Jdg IQ° | 98 8PC)
dQl dq*  IPy dq° J\IQ° dp,  IP. dp,
_( df Qb N of an)( dg IQ° N g 8PC)
dQv dp,  IPy Ip, J\IQ° dq*  IP. dg*

— a_f ag b Me 8_f ag C

~9QP I {Q 8 }+8Pb IQ* {ﬁ,@ (2.61)
=0 =0},

of 98 ( aif &
+ 8_Qb8PC {Q 'PC}_(Q_Pha_PC {Pb/PC}
=sp =0

_odf dgdf dg

" 0QvIP,  IP, Qv

= {flg}QP'

2.5 Relationship between symmetries and conserved quantities

One would expect to find a relationship between symmetries of the system (which,
in this case, mean the symmetries of the Hamiltonian) and conserved quantities.
For example, a system of one particle in a central potential is spherically symmetric,
and for this reason, the angular momentum is conserved.

Following Refs. [47,50], let us consider a transformation induced by the generator
G=4q"P, +€F(¢", P, t) - QP, (2.62)

when ¢ is infinitesimal. Notice that this is just one possible type of a generator.
From Egs. (2.43) and (2.44) we get

OF
Q'=q"+e 3 (2.63)
Pa=P.+ egé;. (2.64)

Since € is infinitesimal, we can replace 3%“ ~ 3% + O(e) and keep only the first term
(since further expansions yields final terms of order €* and higher) to get

Q"=4"+09"=q"+ 65;, (2.65)
. B JF
P, =p,+ 0pa = pa — 6(9_q“' (2.66)
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In general, a time-independent generatmﬁ F creates a change in a phase space
function A(g%, p,) such that

A= A+ 64, (2.67)
where using Egs. (2.65) and (2.66) we get
JA _, OJA 8A oF 07A JF
0A = aéq . Opa = 8q 8;9 0719,1 &q = €A, F}. (2.68)

Here, A can naturally denote also ¢4* or p,. These kinds of transformations are
called infinitesimal canonical transformations (ICT) [47].

Now we have the tools to understand how a continuous symmetry of the Hamilto-
nian relates to conservation laws. Consider a change in the Hamiltonian under an
ICT generated by F,

SH = H(g" + 50, pa + pa) — Hig",po) B elH, F). (2.69)

If F has no explicit time dependence, then by Eq. (2.26) we have

F={FH} =-{HF). (2.70)

In other words, if F = 0, i.e., F is a constant of motion, then H is invariant, i.e.,
symmetric, under transformations generated by F. The reverse is also true: If H
has a continuous symmetry with the generator F, then F is a constant of motion.

Here continuity is implied by the infinitesimality of the transformations. The
information content of the above statement is the same as in Nother’s theorem. Let
us now consider a few examples.

Example 2 Momentum as a generator of translation

Let us use the generator
G =q"P,+€F(q",p.) — Q'P,, (2.71)
where we set F = p; for some i. From Egs. (2.32) and (2.68) we get
Q" =q"+de, (2.72)
where 67 is the Kroenecker delta tensor, and
P, =p,. (2.73)

Hence, momentum p; generates translation in g'. Similarly, —g'
generates translation in p;.

®In these kinds of infinitesimal transformations, we often call F the generator even if G is the
actual generator.
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Example 3 Hamiltonian as a generator of time evolution

Take
G =q'P, +€F(q", p.) — Q°P,, (2.74)

where F = H(¢", p,), as the generator. From Eq. (2.68) we see that a
general function A of 4” and p, transforms as

A > A+06A =AW, p.) + €lAW, pa), H)

Ay 4 e PAPH A 0H
= q ,Pa 8qc apc 8PC an (2 75)
0A | c9A.) :
= A(@",p)+e|l=—4 + ¢

(7", Pa) (ach .t

dA
= A", pa) + e = A (E+ ), palt + €)).

Thus, the Hamiltonian generates time evolution.

For completeness, let us see how to construct a finite canonical transformation from
ICTs. Previously, we have seen that under an ICT generated by F the quantities A

transform as
A—>A+0A=0+¢€l,FHA,

where {-, F]JA = {A, F}. Suppose that € is no longer infinitesimal. We could then
divide the transformation into 7 smaller transformations/|each of which would
approach an ICT as n — co:

A+AA:hm@+%hﬂ)A:f”m, (2.76)

n—00

where in the last step we have used the limit definition of the exponential function.
We see that these canonical transformations can be expressed as exponential
operators by using the Poisson brackets.

Example 4 Time evolution as a canonical transformation

From Example[3|above we know that the Hamiltonian is the generator
of time evolution. According to the above derivation for finite
canonical transformations, we can write the time evolution of the
system in the form

q'(t) = e (t = 0), (2.77)
pa(t) = etMpy(t = 0). (2.78)

"We can do this since the canonical transformations form a group [47].
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2.6 Billiards

Hamiltonian systems are often studied using billiards as model systems. A billiards
is a deterministic Hamiltonian system where a point particle (the billiard ball)

moves in a deterministic way described by the Hamiltonian H between elastic
collisions with the billiard boundary (billiard table) as in Fig.

Typically, the trajectory is a straight line between the collisions, but also, e.g.,
billiards in magnetic fields, where the trajectory is a circular arc between the
collisions, have been studied [41,551,52]. Despite the popularity of hard-wall
billiards, also soft billiards, i.e., billiards with no infinite potentials, have been
studied, e.g., in Ref. [53].

Billiards offer geometrically simple (in configuration space) Hamiltonian systems
suitable for the study of Hamiltonian chaos. By changing the geometry of the
billiard table, dimensionality, and the form of the trajectories (straight line, circular
arc, etc.), we can generate different Hamiltonian systems that can exhibit a vast
variety of different kinds of dynamics. In addition, often most chaotic phenomena
of Hamiltonian systems can be obtained already in two-dimensional billiards so
that the configuration space geometry of the trajectory is easy to visualize.

We can also give a more rigorous definition for a billiard system

Definition 1 A billiard table Q is an n-dimensional compact, con-
nected subset of R” with a piecewise smooth boundary JQ.

Definition 2 A billiards is a dynamical system where a point de-
scribed by the generalized coordinates 4 € Q moves according to
some Hamiltonian H inside the billiard table Q between elastic colli-
sions with the boundary dQ. The collisions result in a transformation

9—19

p—p-2n-pn, @7)

where n is the unit normal of the boundary pointing towards the
interior of Qf}

This definition has one obvious flaw: What happens when the trajectory collides
with the boundary at a point where the boundary curve is not differentiable, i.e., n
is not well defined? These trajectories are, however, very rare, and we need not
consider them at all.

The trajectories in the phase space constitute to the billiard flow, whereas the
mapping T : dQ — JQ from one collision with the boundary to next defines the so
called collision map. Properties of the collision map are analyzed in Sec.[3.2.1

8Here we have g = (¢',...,g") and p = (p1, ..., Pn)-
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3 Chaos in Hamiltonian systems

3.1 Lyapunov exponent

In the introduction in Sec. [I.2] we gave a definition for chaotic dynamics, the most
important part of which was the sensitivity to initial conditions. In this section we
develop, following Ref. [11], a quantitative measure for the sensitivity to initial
conditions.

Quantitative measure for chaoticity of a system trajectory is given by the separation
rate of two initially infinitesimally nearby trajectories. This divergence (or con-
vergence) rate is typically asymptotically exponential, and the exponent — called
the Lyapunov exponent — characterizes the stability of the trajectory as described in
detail in the following.

The Lyapunov exponent can be defined both for flows and maps. Here we focus
on the latter since it is most easily applicable to billiards.

In discrete systems, trajectories can be described by a numerable set of points
{x0, x1, x2, ...} where each point x; is an element of the phase space of the system
P c RN. Although the points of the trajectory are labeled here by natural numbers
i, it is sometimes useful also to consider a discrete time variable t; corresponding
to each discrete label i as is done later in Sec.

Let us consider a system where the system trajectory can be generated from the
initial point x) by a Cl-mapping T : P — Pin such way that x; = Txy, x, = Tx;, and
SO on.

We shall now see how a small perturbation &, of the initial point xy evolves. In the
first iteration we get

X1+ & = T(xo + &) ~ DT|_ & + Txo, (3.1)

where in the last step we have made a linear approximation justified by the small
perturbation. Since x; = Txp, we get &; = DT|XO§0, where DT xOcSO is the derivative

of T evaluated at x; acting on &,. Similarly for the next iteration,

% +& =T + &) ~ DT| & +Tx
= DT|, DT|_ &+ T°xo, (32)

where in the last step we have used the result for the perturbation from the previous
iteration. Here T?x = T(Txo). Thus, we get

&~ DT|x1DT

W&o (53)
Following this procedure, we get for the (n + 1)th iteration

X1 + &1 = T(xa + &,) ~ DT, &, + Tx,
=DT| - ~DT|xO§0 + T xy, (3.4)

Xn
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which gives us
&1 % DT|_ - DT| & = D™ T(x0)%,. (35)

We see that the evolution of an infinitesimally small perturbation & is governed
by the derivative (Jacobian) DT of the evolution mapping T. We now define the
Lyapunov exponents as

&) i Lo (15!
A ("0' ||5o||) =m0 (Iléoll) (3.6)

1
= lim - log [ID"T (xo)uol| -

From this definition we see that the Lyapunov exponents depend on (i) the initial
stateﬂ xo and (ii) the direction of the perturbation uy = &;/||&,ll. The existence of the
limit has been proven by Lyapunov [54] and Osedelet [55].

Actually, we can only get N (or fewer) distinct values for the limit (3.6) for a given
xo in a phase space of dimension N. To give an in-depth explanation of this, we
define a finite-time Lyapunov exponent

1
Au (X0, o) = - log ||ID"T (x0)uoll , (3.7)

which can easily be rewritten as

1
An (X0, 1g) = > log [[D"T (x)uo]™ D" T (x0) 10|
1
=5 log |u5[D”T(x0)]TD”T(x0)uO|
1 n
= %log|u5H (xo)u0|. (3.8)

The matrix H"(xo) is real and symmetric since it is of the form H"(xy) = ATA, where
A is a square matrix. Furthermore, due to its form H"(x)) is positive semi-definite,
ie.,

uTH"(xo)u = u”"ATAu = (Au)" (Au) > 0 Yu € RV,

All eigenvalues of a positive semi-definite matrix are real and nonnegative, and
since H"(xo) is also symmetric, it is possible to choose a complete set of orthonormal
eigenvectors e; with eigenvalues /;,. The direction of the initial perturbation u,
can be expanded in this basis,
Uy = Z ae;. (39)
1

In ergodic systems the Lyapunov exponents are independent of the initial state x. This is
addressed later in Sec.
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This gives us

1
An(xo, o) = 7 log Z aiajeleih,
i

1 2
=5, log Z azhiy,

i

(3.10)

7

where in the last step we used the orthonormality of the basis. Each eigenvector of
H" corresponds to one finite-time Lyapunov exponent

1
/\i,n = % IOg(I’li,n), (311)

where i labels the eigenvectors of H".

We can order these finite-time exponents A1, > Ay, > --- > An,. Asweletn — oo,
we get N (or fewer) different Lyapunov exponents (denoting A; . = A;)

A > > Ay (3.12)

Let us now see how a perturbation in a random direction evolves. The existence
of the limit (3.6) implies that for large 7 we have an approximate relation

1€all = lISoll exp(An). (3.13)

Furthermore, the exponent A can be approximated as

2
ML

1

Z az exp(2nA,;,)

i

1 1
A= /\n = % IOg = %log . (314)

Whennislarge, the sumis dominated by A, ,,, which in the limitn — oo corresponds
to the largest Lyapunov exponent A = A;. This is also called the maximal Lyapunov
exponent.

When at least one of the Lyapunov exponents is positive, the trajectory in question
is unstable to most small perturbations, and the larger the maximal Lyapunov
exponent the more unstable the trajectory is. On the other hand, when all Lyapunov
exponents are zero or negative, the trajectory is stable to small perturbations, i.e.,
the trajectory is regular. In this sense, we now have a quantitative measure for the
sensitivity to initial conditions, which was one requirement of chaotic motion in

Sec.

Hamiltonian systems and their maps (defined in the next section) are symplectic [11].
As a result, all the Lyapunov exponents of the flow and the maps come in
pairs £A, £A,, ..., £A,, [11]. Therefore, there can be no attracting trajectories in
Hamiltonian systems, and all regular trajectories in Hamiltonian systems have all
Lyapunov exponents equal to zero.

As the term "chaotic" is used in different contexts, we define more rigorous
terminology as in the literature [56]. We call a trajectory hyperbolic if one of its
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Lyapunov exponents is positive. Furthermore, an invariant (under the dynamics)
set is called hyperbolic if almost all its trajectories are hyperbolic[Y| Hyperbolic
sets are often called chaotic seas.

As an example, let us now calculate the Lyapunov exponent of the tent map.

Example 5 Lyapunov exponent of the tent map

Consider the one-dimensional tent map
T,:[0,1] > [0,1] : x = umin{x, 1 - x}, u € [0,2]. (3.15)

One dimensional maps T, have only one Lyapunov exponent, for
which the formula reduces to

.1
A—%l_r)?oglog

, En
Ty (xn—l) CE_O

&

1
= lim =1
Ylgl;lon Og

Ty, (xn-1) - - - T}, (x0) 3 (3.16)
1 n—1
= lim ~ Z_O: log | T, (x)|
If we apply this to the tent map, for which |T;1 ()| = |ul, we get
A =log|ul, (3.17)

which means that for y < 1 the tent map is regular and for u > 1itis
hyperbolic.

The Lyapunov exponent of the tent map with y = 1.2 is illustrated
in Fig.[6) where the solid (blue) curve corresponds to true evolution
of the absolute value of the perturbation and the dashed (red)
line corresponds to exponential evolution with Lyapunov exponent
A = log 1.2. We see that for low iteration numbers the curves are equal
which is due to the linearization being accurate. For larger iteration
numbers, the actual perturbation saturates due to boundedness of
the system coordinates.

9The requirement, that almost all trajectories of the set are hyperbolic, means that (possible)
nonhyperbolic trajectories of the set form a subset of zero measure.
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Figure 6: Evolution of a small perturbation for the tent map with y = 1.3 and the
initial condition x = 0.3 (blue) and the exponential separation rate calculated from
the Lyapunov exponent (red).

As a final note, let us give a geometrical interpretation for the meaning of Lyapunov
exponents. An infinitesimal N-sphere centered at x, in phase space evolves to an
N-ellipsoid after n iterations under the linearized dynamics given by DT" [11]. The
situation is illustrated with a two-dimensional ball in Fig.[7] We give the proof [57]
for two dimensional case to convince the reader. Notice, however, that this holds
only in the infinitesimal neighborhood of x, since the Jacobian DT changes as we
move from x; to its neighborhood.

Example 6 Evolution of a sphere under a linear map

Let T : R? — R? be an invertible linear map with the corresponding

matrix
. |la b
A—matT—[C dl. (3.18)
The boundary circle of a ball B,(0) centered at [0, 0]" can be parame-
terized by
cost
R | sin t ] . (3.19)
Let us now consider how the boundary circle transforms under T:
|x]=TR[C9St]. (3.20)
y sint
This can be inverted to yield
cost | x| 1 dx — by
R[sintl_T [y]_ad—bc|ay—cx ’ (3:21)
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Figure 7: Infinitesimal ball in phase space evolves into an ellipsoid under linearized
dynamics. Adapted from Ref. [11].

which gives

R? = R%(cos*t + sin’ t) = m [(dx — by)* + (ay — cx)z] (3.22)

(ad — bc)*R? = (d* + c)x* + (a* + b*)y? — 2(ac + db)xy. (3.23)

This is an equation for an ellipse.

Furthermore, since T is a continuous map and B,(0) is a compact set,
the image TB,(0) must also be compact. Since the origin is mapped to
the origin and TdB,(0) = dTB,(0) for linear maps, i.e., the boundary
maps to the boundary, we find that the interior of the circle must be
mapped to the interior of the ellipse to preserve compactness. We
can thus conclude that the 2-sphere is mapped to a 2-ellipsoid under
a linear, invertible map T.

Now consider again the infinitesimal N-sphere in phase space. The sphere is
mapped to an N-ellipsoid under the linearized dynamics of n iterations. The
lengths of the principal axes of the ellipsoid are given by the finite time Lyapunov
exponents so that they become approximately dr exp(A;n). There is, however, no
general connection between the directions of the principal axes and the Lyapunov
exponents as the orientation of the ellipsoid is not constant: it depends heavily on
the dynamics and, more importantly, the number of iterations n [58]].
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3.2 Structure of the phase space
3.2.1 Poincaré section

Often the full phase space is difficult to study, and one wishes to reduce the number
of dimensions without losing information on the dynamics. This can be done with
the help of a Poincaré surface of section.

In a phase space IP of dimension p, we can define a (p —1)-dimensional hypersurface
[P, (Poincaré surface of section or Poincaré section) in such a way that each point
in P, corresponds uniquely to a point (trajectory) in phase space. Not to lose any
information on the full phase space, all trajectories of the system should intersect
with the Poincaré section.

The Poincaré section defines the Poincaré map T : P, — P,, which maps a point on
the surface of section to the next crossing of the corresponding trajectory with the
Poincaré section. This allows us to analyze continuous trajectories (flow) with a
discrete mapping T.

In billiards (with fixed energy) it is convenient to choose the boundary JQ
accompanied by the tangential momentum p as the Poincaré section. The Poincaré
section can be parametrized by the Birkhoff coordinates, i.e., the arc length s and
the tangential momentum p; of the incoming (or the outgoing) particle at the
collision point. Often the norm of the momentum is fixed to unity so that the
tangential momentum is the cosine of the collision angle. In billiards, the Poincaré
map is often called the collision map. Note that the collision map preserves Poincaré
section area when parametrized with the Birkhoff coordinates [51]. This property
is essential for the KAM-theory introduced in Sec. 3.2.3

Poincaré sections are often used to visualize three-dimensional phase spaces as
two-dimensional figures by selecting a number of trajectories and calculating
all their crossings with the Poincaré section. Often the obtained figures are also
referred to as Poincaré sections.

Example 7 Consider a conservative system with the Hamiltonian

1
H= E(P% +p3) + Vg1, q2).

Restriction to an energy surface H = const = E allows us to describe
one of the coordinates as a function of the others, e.g.

P2 = J2E = V(g 0) - 13

where we have chosen to consider only positive values of p,.

We can further reduce the three-dimensional energy surface by choos-
ing a Poincaré section S = {(q1, 42, p1, p2) € P : H(q1, 92, p1,p2) = E, g2 = 0}.
Here S is a two-dimensional surface where every point corresponds

to a single trajectory of the system.
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Often it is also necessary to obtain temporal information on the dynamics in
addition to the the Poincaré map. If we attach temporal information to the map,
i.e., we keep track of the time of the crossings with the Poincaré section, we get
the true-time map [59]. In billiards language, the collision map T : JQ — JQ is
extended to the true-time map T, : JQ X R — JdQ X R, where the extra dimension
R keeps track of time at each collision. With the true-time map, the definition of
the Lyapunov exponent in Eq. should be modified to

1
A(xg, up) = lim - log ||ID" T (xo)uoll, (3.24)

where 7, is the time at nth collision.

In the following we see how regularity, periodic and quasiperiodic orbits, mixed
phase space, and chaoticity are seen in the Poincaré sections. The examples we
give are in form of two-dimensional Poincaré sections, but similar structures exist
also in higher dimensions.

3.2.2 Regular tori

Let us now consider an integrable or, in other words, a regular Hamiltonian system
with phase space IP of dimension 2N. In the following we introduce a fundamental
theorem on integrability in Hamiltonian systems.

Theorem 1 (Arnold-Liouville theorem on integrability [60])

A Hamiltonian system with phase space P of dimension 2N is
integrable if, and only if, there exist N independent constants of
motion f;(q°, p.) = ki, i = 1...N, which are in involution.

Since there are N conserved quantities f;(¢°, p,) = ki the trajectories corresponding
to constants {k;} are restricted to an N-dimensional hypersurface

S={@"pa) €P: filq",pa) =ki¥i=1,...,N}. (3.25)

Note that we can always choose f; = H so that in one-dimensional systems the
motion is always regular.

By independence of f; we mean linear independence of {Vf;} at all points in the
hypersurface. This requirement is necessary to guarantee the dimensionality of
the hypersurface S by means of the implicit function theorem. In essence, if we
had, e.g., only N — 1 linearly independent vectors in {V f;}, either the set would be
empty, it would contain only one point, or one of the constants of motion f; would
not bring any additional constraints to the system.

Furthermore, the conserved quantities must be compatible with each other in sense
that all conserved quantities must be invariant under symmetry transformations
generated by the other quantities. Mathematically this is incorporated into the
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theorem by requiring that they are in involution, i.e.,

{f f}:%%_%afl =0
Y ogrdpe dgdpe

(3.26)

for all pairs f;, f;. Consider for a moment that if this was not to the case for some i
and j, ie., {f;, f;} # 0. Then by Eq. (2.68) the transformations generated by f; would
not keep f; invariant.

The requirement that the conserved quantities are in involution fixes the topology
of the hypersurface S. It turns out that the hypersurface generated by the above
conditions is diffeomorphic with an N-torus [11]

TN = S! x --- x St (N-fold),

where each S! is a unit circle.

To simplify the treatment, we can consider the hypersurface to be actually the torus
since they are diffeomorphic. Naturally, we can reduce the number of variables
used to describe the points on the torus. A new set of canonical coordinates (6, J;)
can be chosen in which the new momenta J; are constants of motion [11}/61]], and
thus, the Hamiltonian depends only on the momentum J; since

JHO,J) . d ~
—e = Ji= $(c0nst) =0. (3.27)

One such choice is J; = fi(g", p,), but this transformation is not typically canonical.
The canonical coordinates (6, J;) are called the action-angle coordinates.

We can easily solve the Hamiltonian equations of motion in such coordinates:

Ji=0 3 B
Ji(t) = Ji(t = 0)
o= 2 = ) 7 { 0'(t) = 0'(t = 0) + i) £ (528)

In the action-angle coordinates, the values of J; fix the torus in question and 6’ are
angle-like coordinates that describe the position on the torus. The solution coils
around the torus with angular frequencies of each direction on the torus given by

wi({]a})'

Consider a 2-torus with a trajectory around it [Fig. 8(a)]. If we unfold the torus to a
rectangle [Fig.[8(D)], it is easy to see that in order for the motion to be periodic the
trajectory must make an integer number of laps in both directions during some
time t, i.e., w1/w, must be rational. Similar reasoning holds also for an N-torus,
but then the ratio between all frequencies w;/w; must be rational.

Quasiperiodicity, on the other hand, requires that there is no such rational depen-

dence, i.e., there are no integers m; for which }’ m;w; = 0.
i

The diffeomorphism exists only if the surface S is compact and connected [[60].
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Figure 8: (a) A regular 2-torus with an example trajectory and (b) the two-torus
and the orbit mapped onto [0, 27] X [0, 27].

Periodic orbits intersect the Poincaré section in a distinct set of points. Quasiperi-
odic orbits in turn fill the torus and thus we see a continuous curve in the Poincaré
section. The shape of the curve depends on the coordinates used to describe the
system.

3.2.3 KAM-theory and emergence of chaos

A natural question arises when considering small perturbations of the system:
How stable the regular tori are with respect to the perturbations? That is, if we
make a perturbation eH’ to an integrable Hamiltonian Hy,

Ho(I) — Ho(I) + eH'(1, 0), (3.29)

where € is small, what happens to the regular tori of the unperturbed Hamiltonian
Hy? If they persisted, there would exist a generator S that would generate a new
set of action-angle variables (0’,’) in which the perturbed Hamiltonian would
depend only on I'.

A simple series expansion of the generator leads to so called problem of small
denominators in classical mechanics where the series expansion of the generator S
has terms like

x(J)

Si(J;m) = m,

(3.30)

where mis a vector of integers and w is a vector of the frequencies of the tori [62]. This
procedure, however, fails since not all the tori survive the perturbation. Especially,
all the tori with rationally dependent frequencies (called rational tori) will be
destroyed since for them w - m = 0 for some m. For them terms such in Eq.
blow up.

A deeper insight to the effects of the perturbation can be obtained by considering
the following example, which we follow from Refs. [11,/63]. The following results
on the effects of perturbations on integrable systems are known as the Kolmogorov-
Arnold-Moser (KAM) theory [64-66]. Note that most systems that exhibit the
phenomena introduced in the following do not have a clear connection to some
integrable system. Parts of their phase space have intrinsically similar structures
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Figure 9: Poincaré section in three-dimensional phase space with regular tori.
The intersections of the tori with the Poincaré section are circles. Adapted from

Ref. .

to those that arise from perturbations to integrable systems.

Suppose we would have an unperturbed Hamiltonian with a three-dimensional
energy surface filled with a set of nested two-dimensional tori T? as in Fig. El We
set up a Poincaré section (and thus a Poincaré map) on which we will visualize the
effects of the perturbation on the structure of the phase space. The Poincaré map T
can be parametrized by the radial distance r and the angle 0; = 0:

Tnel = Ty (3.31)
0,41 = 0, + 21&(r,), (3.32)

where &(r) = @1/w, is the ratio of the angular frequencies of the tori labeled by r. This
can be obtained simply by unfolding the tori as in Fig. The map [with certain
conditions for £(r)] is called the Moser twist map. If we perturb the Hamiltonian,
then also the Poincaré map T is perturbed to T,

Tyl =¥y + €f(1”n, Qn) (333)
Ons1 = Oy + 21E(ry) + €4(1n, On). (3.34)

There are two kinds of tori that are of interest to us, namely rational tori and
irrational tori for which the frequencies are rationally or irrationally dependent,
respectively. First, we consider the effect of the perturbation on the rational tori
(also called resonant tori), for which @1/w, = /4 for some p,q € Z. All the points on
such torus, the radius of the cross section of which is 7 = r,,, are fixed points of the

gth iteration of the unperturbed Poincaré map T. Suppose now that % > 01in
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de(r)
dr

Figure 10: Moser twist map with > 0 twists points on circles with r > r,,

r=r

counterclockwise and r < r,,, clockwise. Adapted from Ref. [63].

the vicinity of » = r,, (similar reasoning holds for % < 0). With this choice, TY

maps points on a circle with r > r,, counterclockwise (increasing 6) and points on
a circle with r < r,, clockwise (decreasing 6) as in Fig.

For sufficiently small perturbations ¢, the system will have some areas r > 7,
and r < r,, that the perturbed map T{ still twists (maps in the angular direction)
in the same direction as in the unperturbed case. This is due to assuming the
perturbation to be continuous in ¢, i.e., we get regular dynamics in the limit € — 0.
Due to continuity, we find that for each value of 0 there exists some r = r.(0) that
is mapped purely in the radial direction by T7, i.e,

Ti(re(0), 0) = (r.(0), 0)

as shown in Fig.[ITwhere the arrows indicate the direction of the mapping.

The map T, results from a cross section of a flow in a Hamiltonian system. Therefore
the map T, and all its iterations are symplectic [11]. All symplectic maps preserve
the area, and so the mapping of the curve r.(0), i.e., TI(r.(0), 0), will intersect the
original curve at even number of points as visualized in Fig. |11} These intersection
points are the fixed points of TY.

By considering both the direction of the twist and the direction of the radial
mapping near the intersections, as shown by arrows in Fig.[12} we find that the
fixed points of T{ are alternating hyperbolic and elliptic fixed points. Hyperbolic
points are those that repel the "flow" of the map and elliptic points are those with
a stable neighborhood.

To find out the number of fixed points, we observe — following Ref. [63] — that if
there is one fixed point (r¢, 0¢), then also Tc(r¢, O), ..., TZ‘l(rf, Oy) are fixed points
of T! since, e.g.,

T |Te(rs, 05)| = Te | Tiry, 09)] = Te(ry, 0)). (3.35)
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Figure 11: In the perturbed twist map there exists a curve (r.(0), 0) which is
mapped purely in the radial direction.Adapted from Ref. [63]].

This way, we get at least g distinct fixed points of T.. As already mentioned
above, the fixed points come in pairs of elliptic and hyperbolic points. The
previous construction does not map elliptic fixed points to hyperbolic fixed points
because they represent totally different kinds of trajectories (they are topologically
inequivalent) [63]. We conclude that we get at least 2q (or some multiple of it)
fixed points.

An elliptic fixed point of T{ is always surrounded by closed curves that are
invariant under T! as proven by Moser [63}66]. It turns out that the neighborhood
of an elliptic fixed point behaves like a perturbed integrable system: Some curves
remain and some curves are destroyed giving arise to yet a new set of elliptic and
hyperbolic fixed points of some higher iterate of the Poincaré map, (T{)". The
structure repeats ad infinitum, i.e., the neighborhood of KAM islands is structurally
self—simila as can, to some extent, be seen, e.g., in Fig.[13|for elliptic billiards in a
magnetic field.

The above consideration shows that the rational tori are destroyed giving arise
to a self-similar structure in the phase space. However, the fate of the irrational
tori is also answered by the KAM theorem stating that a torus with the frequency
vector w is preserved if for all nonzero integer vectors m

lm - w| > K(w)|m|~"Y (3.36)

holds, where |c| = [c1|+- - - +|c,| is the taxicap norm [11]. Here K(w) is some function
of which not much is typically known for a given system. This can be thought as a
condition for sufficient irrationality of a torus to survive the perturbation.

To give an idea on how common the surviving and destroyed tori are, we first

12Gelf-similar in the sense that the characteristics remain the same regardless of how small details
we are looking at, not in a strict mathematical sense.
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Ti(re(0), 0)

Figure 12: Fixed points of the perturbed map T¢ can be found at the intersection
points of the curve r.(0), which is mapped purely radially, and its image. Fur-
thermore, one can easily sketch the "flow" of the map near the fixed points by
considering the radial mapping direction and the twist directions around r.(0) in
Fig.[T1] Adapted from Ref. [63].

point out that rational tori, which are destroyed, are dense in the phase space of
the unperturbed Hamiltonian [11]. Secondly, the tori that do not satisfy the KAM
condition form a set of zero Lebesque measure in w-space [11]. This means that
preserved tori are also quite common [11].

Generally speaking, a Poincaré map T : R? — R? might have yet another kind
of fixed point in addition to elliptic and hyperbolic fixed points. Naturally, we
can attempt to analyze the stability of a fixed point x € R? by propagating a small
perturbation in the linearized dynamics as done by Berry for billiard systems [67].
Letx,...,x;beag-cycle ie. x, = Tx,_; and x, = x;. Consider a small perturbation
&, that evolves according to (calculation similar compared to Sec.

6’1 - DT'xq—l o DT|xzDT|x1 & =DT78, (3.37)

where DT is a linear map. By assuming that it has two linearly independent
eigenvectors e, with the corresponding eigenvalues A., we can expand the initial
perturbation as a linear combination of the eigenvectors,

&, =Ale. + Bl e_. (3.38)
The jth iteration of the linearized version of the map TY evolves the perturbation to
&, =AlMe. +BA e, (3.39)
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i.e., the eigenvalues of DT determine the stability of the fixed point. The eigenval-
ues of a 2 X 2 matrix
a b
=le ]

det(A - /\12><2) =0
A>—@+d)A+(ad —cb) =0

N—— ———
=TrA =detA

A = %lTrA + \J(Tr AY: —4detAl.

can be easily solved to yield

Since the map T is symplectic and thus area-preserving, we have det(DT7)=1 [11].
In addition, the eigenvalues of a symplectic map are reciprocal to each other [68].

In conclusion, the eigenvalues of DT are

Ay = % [Tr DT? + +/(Tr DT¥)? — 4] . (3.40)

This result gives us three different scenarios:

1. If [Tr DT1| < 2, the eigenvalues are complex conjugates of each other, and we
can write A} = e*/? for some 6 € [0, 27[. The perturbations oscillate, but since
they are bounded, the fixed point is stable. Such fixed points correspond to
elliptic fixed points as discussed above.

2. If [Tr DT| > 2, the eigenvalues are real (and reciprocal as mentioned earlier),
and we get |1, = ¢*/ for some y € R. The absolute value of the larger
eigenvalue is greater than one, i.e. the flow of the map diverges in this
direction whereas the absolute value of the other eigenvalue is smaller than
one, i.e., the map flow is contracting in this direction. This kind of an unstable
tixed point is called a hyperbolic fixed point.

3. |Tr DTY| = 2 is a marginal case where there is only one distinct eigenvalue
+1. In linearized dynamics A = —1 corresponds to the trajectory oscillating
between two points on the opposite sides of the fixed point. A =1 in the
other hand corresponds to a dense set of fixed points near the original fixed
point. These fixed points are called parabolic.

In two-dimensional maps, the results of the linear stability analysis are guaranteed
to hold also for the nonlinear dynamics. For hyperbolic fixed points this is
guaranteed by the Hartman-Grobman theorem [69] and for elliptic fixed points by
the existence of invariant curves around them according to KAM theory. Should
the linearized dynamics yield a parabolic fixed point, the nature of the fixed point
in the nonlinear dynamics can not be deduced just by the linear analysis.

To summarize, in a perturbed system we have hyperbolic sets originating from
rational tori and irrational tori that do not satisfy the KAM condition. In addition
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cos(0)

Figure 13: A numerically calculated Poincaré section of elliptic billiards in a
magnetic field with semi-minor and -major axes 1 and 3/4, and the Larmor radius
rir = 3. The Poincaré section shows several elliptic KAM islands (connected
families of closed curves), parabolic KAM-islands (bottom and topmost islands),
and chaotic sea(s) (irregularly filled regions). This system has been extensively
studied - including the first calculation of the Poincaré section shown here — in
Ref. [51]. Here the Poincaré section is parameterized by the arc length s counter-
clockwise along the boundary of length £ and cos(0), cosine of the collision
angle.

to these hyperbolic sets, we also have connected sets of surviving KAM tori, KAM
islands, which give arise to regular dynamics in the system. Such a system is called
mixed in the sense that its phase space has both hyperbolic and regular components.
As e is increased, i.e., with a stronger perturbation, more and more of the KAM tori
are destroyed until we are left with only the hyperbolic component of the phase
space.

An example of a numerically calculated Poincaré section of a mixed system is
shown in Fig. The regular component of the system consists of (1) elliptic
KAM islands, i.e., sets of closed invariant curves caused by an elliptic periodic
orbit as described by the KAM theory, and (2) parabolic KAM islands, i.e., sets of
marginally stable curves. The chaotic component, i.e., the chaotic sea is seen as
irregularly filled regions. In the outskirts of the large elliptic islands, the remnants
of the destroyed tori can be seen forming new elliptic islands.

We point out that in two-dimensional maps the KAM tori separate the phase space
into parts inside the tori and outside the tori. This, however, is not the case in
higher-dimensional systems [11].
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3.2.4 Transition to full chaos

As the strength of the perturbation, €, is increased, more and more of the KAM tori
are destroyed. When there is still a large regular component in the phase space,
the dynamics of the trajectories in the chaotic sea are restricted. As mentioned
above, in low-dimensional systems it may even be that the chaotic seas are isolated
by regular tori so that the chaotic trajectories are bounded to a small portion of
the phase space [11]. In such a mixed system the regular dynamics dominate
the long-time behavior, and we may consider the bounded chaotic seas as weakly
chaotic.

At some point all the KAM tori are destroyed and the system becomes strongly
chaotic, i.e., the phase space P becomes hyperbolic. Even if the system is strongly
chaotic, there are still several different aspects related to complete chaoticity.

First, the system might be ergodic, which means that trajectories visit arbitrarily
close to any point in phase space in such a way that all temporal averages may
be replaced by spatial averages (with respect to a certain measure) [11]. One
important consequence of ergodicity is that for almost all initial conditions the
Lyapunov exponents are the same [11}55].

Second, the system might be mixing. An area-preserving map T defined on a
compact region S is said to be (strongly) mixing in S if, and only if, for any two
subsets U, V C S of nonzero measure, the ratio of their measures can be written
as [70] )

u) _ L pUNTY)

WS " ime p(l)
This definition means that a subset V' gets evenly distributed in S as k — oo so that
after the mixing with T%, every subset W contains the same amount of the image of
V, T(V), as there was originally compared to the entire set S. Mixing is a stronger
property than ergodicity in the sense that mixing implies ergodicity but not vice
versa [11].

(3.41)

There are even more properties that can be attributed to chaotic systems, but the
above two will suffice in order to give an idea that even in a strongly chaotic
system there might be different degrees of chaoticity.
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3.3 Summary of terminology

The following list briefly summarizes the terminology introduced so far.

Invariant set
A set which is invariant under time evolution of the system.

Lyapunov exponent
Two initially close chaotic trajectories diverge exponentially, and the exponent
is called the Lyapunov exponent.

Hyperbolic orbit
An orbit that has at least one positive Lyapunov exponent.

Hyperbolic set
An invariant set where almost all orbits are hyperbolic. Hyperbolic sets are
also called chaotic seas.

KAM torus
A dynamically regular structure, diffeomorphic with a torus.

KAM island
A dynamically regular set formed by KAM tori.

Elliptic island
A KAM island formed due to an elliptic periodic orbit.

Parabolic island
A KAM island composed of marginally stable (parabolic) orbits.

Regular system
A system all orbits of which are integrable (regular).

Mixed system
A system whose phase space has both KAM islands and chaotic seas.

Strongly chaotic system
A system whose entire phase space is hyperbolic except perhaps for a set of
Zero measure.
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(a) Sinai billiard (b) Bunimovich stadium
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(c) Bunimovich mushroom

Figure 14: Different famous billiard systems.

3.4 Examples of billiards

In single-particle billiards the particle moves (typically) in straight lines between
elastic collisions with the boundary, so one might be tempted to think that the
motion will always be regular since between the collisions two trajectories will
separate linearly in time. This, however, is not the case since the boundary
collisions might diverge nearby trajectories.

The Sinai billiards is a single-particle billiards consisting of a rectangular table with
a circular scatterer [Fig.[14(a)]. The table is convex, and it has been proven that the
system is hyperbolic and ergodic [71,72]]. The hyperbolicity of this billiards is easy
to understand since the circular scatterer disperses nearby trajectories. Later it was
shown that there might also be concave tables that are hyperbolic. For example, the
Bunimovich stadium [Fig. is hyperbolic and ergodic [73}74].

As a generalization of the stadium, it is possible to introduce the Bunimovich
mushroom [Fig.[14(c)]. The mushroom has a mixed phase space with both a chaotic
sea and a single KAM island [16].
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3.5 Stickiness

Stickiness is a phenomenon where a chaotic trajectory gets stuck for long period of
time in some region of the chaotic sea, called a sticky region. There are many origins
for a sticky region in a chaotic sea. For example, the phase space could be mixed
and the region near the boundary between KAM islands and a chaotic sea might
become sticky. This section mostly summarizes the main concepts of Ref. [75].

Stickiness manifests itself, for example, as nearly zero finite-time Lyapunov
exponents, in temporal correlations, and survival probabilities of open systems.
Survival probabilities of chaotic seas with no sticky regions decay exponentially
whereas in the presence of sticky regions, they obtain power-law asymptotics.
These effects will be explained further in Sec. 3.6

Stickiness can be divided into two classes, external stickiness due to KAM tori and
internal stickiness, i.e., stickiness without KAM tori.

As an example of internal stickiness, consider a stadium billiards shown in Fig.
The stadium is a hyperbolic system, i.e., the phase space is free of KAM
tori. It has, however, a continuous family of marginally unstable periodic orbits
(CEMUPOQ). In case of stadium, they are the orbits bouncing between the parallel
lines of the boundary (often called bouncing-ball orbits). The CFMUPO forms an
invariant set of zero measure. A chaotic orbit might come arbitrarily close to some
of these MUPOs thus spending a long time bouncing between the parallel lines. In
other words, the region around the CFMUPO is a sticky region. This sticky region
is caused not by KAM tori but by the CFMUPO, which is an internal structure of
the chaotic sea.

We can give a more exact definition of internally sticky regions: A sticky region is
internally sticky if it is due to an invariant subset of positive codimension (i.e. the
dimension of the subset is smaller than that of the original phase space) which
resides completely inside a chaotic sea.

External stickiness, on the other hand, is due to the boundary between KAM
islands and chaotic seas. However, not all KAM islands cause stickiness in the
nearby chaotic seas. External stickiness is intuitively clear: the dynamics of the
chaotic sea in the vicinity of the border with a KAM island are only slightly
hyperbolic since orbits that get stuck in the sticky set tend to stay close to the KAM
islands. This can be seen for example in Fig.[15] The upper panel shows a sticky
orbit as red dots in the Poincaré section section together with the structure of the
rest of the phase space and the bottom panel depicts the sticky orbit in coordinate
space.

Elliptic KAM islands are typically sticky and parabolic KAM islands are typically
nonsticky. However, elliptic islands are nonsticky if the boundary is an unstable
invariant set that acts as a separatix between the regular dynamics of the KAM
island and the chaotic dynamics of the sea.
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(a) Phase space representation of a sticky trajectory (red dots) along with the chaotic sea of
the system (black dots).

(b) Coordinate space representation of the sticky trajectory in Fig.[15(a)

Figure 15: A sticky trajectory in magnetic square billiards with the Larmor radius
rir = 0.305 and lengths of the sides L = 1. In the Poincaré section in (a), the collisions
with the lower part of the boundary are shown, labeled by the x-coordinate of the
collision point and cos(6), cosine of the collision ang]le.

40



3.6 Open systems
3.6.1 Overview

We can always open up a closed Hamiltonian system by introducing a hole I in
the phase space [P via which the particles can escape from the system. This is an
important field of study since all experimental setups are open systems at least
due to the act of observation. In Hamiltonian systems, particularly in billiards,
the question is how the survival probability or equivalently the escape-time
distribution through the hole depends on the structure of the phase space of the
open system. Furthermore, what is the relation between the phase space of the
open system and the corresponding closed system? The following introduction is
mostly based on the review by Altmann et al. [76].

We define the escape for discrete mappings so that if at nth iteration a particle is at
the hole [, then in (n + 1)th iteration it will escape.

The quantities we are mostly interested are the survival probability and the escape-
time distribution. If we set a normalized initial density p(r,t = 0) in the phase
space and at some time f look at the phase space density p(r, t) that has not yet
escaped the system, the survival probability is defined as the integrated density
inside the system,

Pi(t) = f p(r, b) dr. (3.42)
P

The escape-time distribution P,(t) dt on the other hand gives the portion of trajec-
tories that leave the system in an infinitesimal time interval by

(0

Polt) = ——

(3.43)

Numerically the distributions can be estimated by first distributing a large number
Nj of initial points randomly according to the density p(r, t = 0). To calculate the
survival probability, one propagates the trajectories and compares the number of
trajectories that have not escaped up to time t, i.e., N(t), to the size of the initial

ensemble [77],
N@®)
Py(t) = —. 44
0= (3.44)
To get the escape-time distribution, one compares the number of escaping trajecto-
ries in a short time interval [t — 6t/2,t + 6t/2],

AN(t) = N(t — 6t/2) — N(t + 6t/2),
where 6t is the size of the histogram bin, to the size of the initial ensemble, i.e.,

AN(t)

Pt = =51

(3.45)

Lifetime of a trajectory is defined as the time it takes from the initial point for
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the trajectory to escape the system. In the following we often speak of time and
long-lived trajectories but actually refer to the number of iterations under some
discrete-time dynamics.

A structure of the phase space of a closed system is typically also found in the
corresponding open system as long as the structure does not vanish very quickly
due to the hole. As the size of the hole goes to zero, we can actually explain the
survival probability of the open system in terms of the properties of the closed
system [76,78].

3.6.2 Escape in chaotic systems

We first describe the properties of the survival probability in fully hyperbolic
systems, i.e., in systems without sticky regions. The survival probability is fully
exponential after some initial period [77].

The essential structure of the chaotic phase space that determines the exponential
behavior of the survival probability is the so called chaotic saddle that is the invariant
set of trajectories which do not leave the system for t — +co. The saddle is very
sparse in phase space [76], since, as one might expect, chaotic orbits typically travel
everywhere in the phase space thus leaving it at some point.

There are two invariant sets in the phase space which can be connected to the
saddle, namely its stable and unstable manifolds. The stable manifold is the set
of trajectories that approach the saddle as t — oco. The unstable manifold is the
set of trajectories that approach the saddle as t — —co. The saddle determines
the long-time behavior of the survival probability as long as the initial density
overlaps with the manifolds sufficiently [76]].

To gain insight into the long lived trajectories and the invariant sets, we introduce
the sprinkler method, explained in Ref. [77], that can be used to numerically
calculate the saddle and its manifolds. Suppose we set up a large number N of
initial points randomly in the phase space P. Then we propagate these trajectories
for a long time #* (many times longer than the typical lifetime of a trajectory) and
study only the trajectories that have not escaped the system.

These trajectories stay near the saddle for a long time during the considered
period , so especially at t = t*/2 we have points near the saddle [77]. The initial
points of these trajectories are close the the stable manifold since they come close
to the saddle during the propagation. The closer the initial points are to the
stable manifold the longer lifetime the trajectories have. Thus by increasing the
propagation time t*, we get a better approximation for the stable manifold by
cutting away trajectories that are further away from the stable manifold.

Of these long lived trajectories most will still leave the system if we continued
the propagation. They would, however, stay in the system for a long time in the
backward dynamics, and thus the end points of the trajectories are close to the
unstable manifold.

To obtain mathematical formulation for the escape in fully chaotic systems and to
understand some subtle differences between the Poincaré map and the true-time
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map, we now make some analytical considerations for the escape process of fully
hyperbolic systems as in Refs. [59,76,77].

Consider discrete dynamics given by the map T, which can be, e.g., a Poincaré
map. Following Ref. [79], we define P,(A) to be the probability that for a randomly
chosen x € PP the image T"(x) € A given that x has not escaped the system up to n
iterations. The limiting measure

() = lim 22

lim 5 (3.46)

is called the conditionally invariant measure (c-measure)[| The density p. of
the c-measure y. (du. = p.dx) is concentrated on the unstable manifold since, as
discussed above, most trajectories are still about to leave the system, i.e., they are
in the vicinity of the unstable manifold.

To understand the meaning of the c-measure, consider the following. Assuming we
have initially Nj trajectories in the ensemble and remembering the escape process
is exponential, the number of trajectories that have not escaped is N(n1) = Noe™".
The number of trajectories that escape at (1 + 1)th iteration is N(n) — N(n + 1) =
Noe™7"(1 — e77), and the corresponding escape probability is given by

P.(n) ~ e7"(1 - 7). (3.47)

The trajectories that escape are at (n + 1)th iteration are in the hole I at the
nth iteration, and the probability for a trajectory to be in the leak I is given by
un(I) = uc(I) for sufficiently large n. We would thus expect that

te(I)
pe(P)

trajectories escape at the (n + 1)th iteration. If we normalize the measure so that
uc(P) =1, we get

N(n) (3.48)

e’ =1 - ul). (3.49)

We see that the c-measure and the corresponding density tell us how the particles
that will escape the system are distributed along the unstable manifold.

For true-time dynamics, the situation changes a bit although at first glance
everything looks the same. Consider for example a fully hyperbolic billiards with
a leak I on the boundary. Let us denote the c-measure of the true time map also
by p["| The average time between two collisions in the billiards for trajectories
which are about to escape is given by

(teon)e = f ) du, (3.50)

P,

3For our purposes it is not necessary to delve deeper into meaning of conditional invariance. For
more details see, e.g., Ref. [77].
Definition: P;(A) is the probability that ¢'(x) € A given that x has not escaped the system up to

time ¢. Then p, = tlim II?((?D;
—oo [

Here ¢'(x) denotes the time-evolution of the system.
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where the integral is taken over the natural Poincaré section on the boundary and
7(x) gives the time to the next collision.

The relation between the number of collisions 7 and the time ¢ is given by

t

~ TR (3.51)
Trajectories can escape only at collisions so as above we get
P.(n) e (1 —-e7), (3.52)
and in the time domain t
P(t) e T (1 —e7), (3.53)

where 77 = 1 — u.(I) as above but now with respect to the c-measure of the
true-time map.

The difference between the true-time dynamics and the discrete dynamics given
by the Poincaré map is easily understood by an example given by the stadium
billiards [76] [ The Poincaré map has arbitrarily long orbits with respect to n in
the circular caps. Thus they contribute to the discrete escape-rate distribution via
the c-measure of the Poincaré map. The c-measure of the true-time map, however,
has a totally different contribution from the same trajectories, since the actual time
the trajectory collides with the cap is always bounded. With this in mind, one
should always be careful when describing the escape-time distribution within
the Poincaré map since the c-measures may be drastically different, and thus, the
escape-time distributions of the two representations might be totally different as
well [59]. This also applies to sticky systems.

3.6.3 Escape in sticky systems

Stickiness of a chaotic sea modifies the survival probability. Suppose for simplicity
that the leak I is fully inside a chaotic sea, i.e., it does not extend to possible KAM
islands. If the initial density is nonzero only in the chaotic sea, then the survival
probability has the following structure [76]:

There is an initial period of time, up to t;, during which the survival probability is
affected by system-specific properties and the distribution of initial points. After
this initial period, there might be a period during which chaotic trajectories do not
typically enter a sticky region before leaving the system. We can thus expect based
on the results in the previous section that the survival probability is exponential.
After the (possible) exponential period up to ¢, the sticky region begins to influence
the dynamics giving a power law tail for the asymptotics. To summarize,

irregular, t<ts
Py(t) ~ et to<t<t, (3.54)
ae " +b(yt)F, L <t

15 Although the stadium is not fully hyperbolic, it is an excellent example to show the difference
between the true-time map and the Poincaré map.

44



Due to the form of the survival probability, one sees that the chaotic saddle is
divided into a hyperbolic component responsible for the exponentiality and a
nonhyperbolic component due to the stickiness giving arise to the power-law
asymptotics [76].

Regular dynamics give rise to power-law asymptotics so that Ps(t) ~ 1/t [76]. The
dynamics within the KAM tori are regular, and the survival probability obeys
power-law asymptotics [76]. If the leak intersects both a chaotic and a regular
component and the initial distribution also spreads over to the KAM tori one sees
an overall power-law behavior after some time ¢, in addition to the above Py(t) for
sticky chaotic systems [80].

3.7 Interacting many-body billiards

When motivated by realistic systems, it is important to consider the effects of the
interparticle interactions in many-body billiards. To set the context of the studies
of this thesis more thoroughly, we briefly review the some of the previous activity
on interacting many-body billiards.

What has been studied previously is typically few-particle billiards interacting
either via elastic hard-ball collisions or by the Yukawa-interaction,

e~ AMlr1=r2]]

V(ry,r) = (3.55)

llr1 — 1’2||'

Among one-dimensional systems, two-particle billiards with Yukawa interactions
typically show a mixed phase space and generally nonergodic behavior with
different ratios of the particle masses and range parameters A of the Yukawa-
interaction [24-26,28|]. The Poincaré section of two-particles in one dimensional
billiards interacting via the Coulomb interaction shown in Fig.[16|is qualitatively
similar to the Yukawa-interacting system studied in Ref. [26]. The figures shows
several KAM-islands and a chaotic sea. Details on the calculation of this figure and
a more detailed comparison between the Poincaré sections of the one-dimensional
Yukawa and Coulomb-interacting systems are given in Appx.

Two-particle billiards in two-dimensional tables have been previously studied with
both hard-ball and Yukawa-interactions. Hard-ball billiards have been studied
in rectangular [21,23], circular [21], and mushroom billiards [21]. These hard-
ball billiards can show regular characteristics despite being usually chaotic [21].
With Yukawa interactions, the systems have been studied, e.g., by analyzing the
maximal Lyapunov exponent [27], cross sections of the phase space [27], and the
distribution of the finite time Lyapunov exponents [28] with different ranges of the
length-parameter A and mass ratios. Some traces of stickiness has been found in the
two-particle circular billiards both with Yukawa and Coulomb-interactions [28].

Circular two-particle billiards have also been studied quantum-mechanically with
Yukawa-interactions [81] and, more relevantly to our studies, with Coulomb-
interactions [82]].
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Figure 16: Poincaré section of one-dimensional two-particle Coulomb-interacting
billiards in the intermediate interaction range (for details see Sec.[A). The system
has a mixed phase space that is qualitatively similar to the corresponding Yukawa-
interacting system.

Our studies focus on Coulomb-interacting many-body billiards with different
interaction strengths. With Coulomb-interactions, to best of our knowledge, only
oscillators [33-37] have been studied in addition to periodic systems [38-40]
and rectangular billiards in magnetic field [41]. Application vice, the Coulomb-
interacting systems are a natural extension to previous studies on two-dimensional
Yukawa-interacting billiards, where only a few remarks have been made in the
Coulombic limit [28].
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4 Numerical methods

4,1 Hamiltonian

In this thesis we are interested in billiard systems, especially Coulomb interacting
many-particle billiards without external potentials except for the billiard boundary.
The Lagrangian is given by

k= sze Z4neo||r1

where r; and v; are the position and velocity of the ith particle, m, and g, the mass
and the charge of the particles, and in the sums the indices i and j run over all the
particles.

(4.1)

By introducing Hartree atomic units (a.u.), such that g, = m, = = = 1, the
Lagrangian reduces to
=5 Z -2

= lIri - wII

We now transform the formulation into Hamiltonian formalism. By choosing the
generalized coordinates for the ith particle, gq,, as the cartesian coordinates r; we
get for the generalized momentum

p;= g—.L = v, (4.3)

i
i.e., the generalized momentum corresponds to the velocity in the cartesian frame.
From now on we can use (r;, v;) as the parametrization of the phase space P.

The Hamiltonian yielding the equations of motion between the collisions is
obtained from Eq. (2.14),

2Zv £y

(4.4)
i<j ”rl TJH

In order to simplify the treatment of geometrically similar systems with different
length and/or energy scales, we show that all systems with Hamiltonians of form

Hap.H= 22”1 My ] (+9)
i<j !

are reducible to a Hamiltonian system with a fixed length scale described by
coordinates (Q, P, T) of the extended phase space and the Hamiltonian

K(Q,P,T) = ZZP2+Z”Q ol (4.6)

i<j
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where a € R is a scaling parameter that is defined in the following.

We begin by a scale transformation of the original coordinates,

g, pi,t) = (Q;,=7q,P: = ﬁl/zpi, t). (4.7)

The Hamiltonian, which yields the equations of motion for the new coordinates

(Qi/ Pi/ t)/ iS giVen by ‘ ,

1/2 2
K(Q, P, t) = B*yH(q, p, t) = V2yP? + i 4.8
(Q. P 1) = p*yH (g, p 1) = ZZﬁ y ;” “oi 49
The equations of motion are obtained from Egs. (2.17) and (2.18) yielding
dQ.
Lgl = VpK =g "2yP; (4.9)
P, By
— =-VpK=-)Y ————(0.-0,). 4.10
T ]Z 022 (410

In order to further simplify these equations, we need to reparameterize time,
T(t) = 'y, (4.11)

which gives us

dQi _ ip. 19Q @ o,

T P TP 12
ip, ) dP o

ar P s Z IQ Q plQ-0Q) *13)

Denoting o = By, the Hamiltonian corresponding to equations of motion (4.12)

and (4.13) is
K(Q,P,T) = ZP2+Z”Q ol (4.14)

1<j

which can easily be checked with the Hamiltonian equations of motion in Egs.
(2.17) and (2.18).
In summary, we make a transformation in the extended phase space,

(@.p.t) > P=p"p,Q=yqT=p", (4.15)

which gives the Hamiltonian for the new variables (Q, P, T),

K(QP,T) = BH(g,p.1) = 5 sz Y g o (4.16)

l<]

Q]||

where a = fy.

As a concluding remark, all length and energy scales of geometrically similar
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systems can be reduced to a single constant energy surface, e.g. K(Q,P,T) =1, of
the system with Hamiltonian K(Q, P, T). Only the product of the scaling parameters
pand y,ie. a = By, is included as a parameter in the Hamiltonian.

In Appx.[B|we derive the scale transformations also for systems with vector and
scalar potentials and demonstrate the transformations with an example.

4.2 Molecular dynamics with velocity Verlet algorithm

Above in Examples 3|and {4 in Sec. 2.5/we noticed that the Hamiltonian H is the
generator of the time evolution, i.e., we can write any phase-space trajectory

z(t) = (9°(t), pa(t)) as
z(t) = e'"1z(0). (4.17)

To obtain a symplectic integration scheme we need to find an approximation for
e} in terms of canonical transformations as was done, e.g., in Ref. [83].

Let us first clarify the notation by denoting {-,A} = D4 for any function A.
Furthermore, we consider only the cases where the Hamiltonian separates into the
kinetic energy T depending only on the generalized momenta and the potential
energy V depending only on the generalized coordinates.

The propagator can be written as
e’ = Py, (4.18)

which we can rewrite using the symmetric Trotter formula [84] as

e'Prbv) = lim [e#Dve%DTeﬁD"]n : (4.19)

n—oo

By defining At = t/» and letting n < oo, we get an approximation
AP ~ @55V ' DrosiDy (4.20)

The approximation is of second order in At as can be seen by expanding both sides
as Taylor series,

eMP" =1+ AtDy + %AFD%I + O(AP)
and
e3PV Dresilv = (1 4 %AtDV + %AtzD%, +..)X
(1+ AtDr + %AtzDzT +..)0+ %AtDV + %AtzD%, +...)
=1+ AHDy + Dr) + %Atz(D%, + DyDr + DDy + D7) + O(AP).

We see that these are equal up to the second order in At (but not up to the third

16Symplectic means that it preserves the essential properties of the phase space. For more details,
see Ref. [11].
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order as can easily be checked), i.e., we have a second-order propagation scheme.

The next step is to figure out how the operators eV and exPr operate on the

phase space coordinates. D can be rewritten using the definition of the Poisson

brackets as
or 0  JT
= — = —{-, p.}- (4.21)

DT = {'/ T} - a_paaqa apa

In our case we have T = 1Y p? so that gTT = p,. Since momentum generates
. a

1
translation as in Example 2]in Sec.2.5] we conclude that

eAtDT( q ) — ( q + Atp )’ (422)
p P

where we have denoted the coordinates and the momentum in vector notation,
ie,qg=1q%...,g"" and p = (p1,p2,---, pn)"-

Similarly we have V = V(q) and Dy = —g—;ﬁ {-,4"} (from the definition of the Poisson
brackets) leading to

atpy [ 9 | _ q

) e

When combining these results we get the following propagation algorithm:

plE+ 57 = p(t) = V,V(g(0) @29
q(t + At) = g(t) + Atp(t + 2)2) (4.25)
p(t+ Ab) = p(t + M) =V, V(q(t + At))%. (4.26)

They reduce even further to

q(t + At) = g + Atp(t) — %AtZVqV(q(t)) (4.27)
pt+A)=p-— %At [V, Via(t) + V,Vig(t + Ab)|. (4.28)

This is the classical velocity Verlet algorithm [85].

As seen from the derivation, the velocity Verlet algorithm corresponds to a canonical
transformation, and it is thus a symplectic integration scheme. It can also be easily
checked to be time-reversible. These two properties make it suitable for the study
of chaotic phenomena.

In the following we will also consider two-dimensional billiards in magnetic fields.
In such systems we do not directly propagate the Hamiltonian equations of motion,
but instead we replace the velocity Verlet scheme by the one developed by Spreiter
and Walter [86], which will explicitly incorporate the effect of the magnetic field
into the formulas so that we can use arbitrarily strong magnetic fields without
changing the time step. In their scheme the positions and velocities (in cartesian
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frame) are calculated from

re(t+ AE) = 1o(t) + é {o.(t) Sin(QA) — v,(#) [cos(QA) - 1]}

- é {aS(t) [cos(QAP) — 1] + a5 (1) [sin(QAF) — QAH]} + O(AF)

ry(t+ At) = ry(t) + é [vy(t) sin(QAt) + vy (t) [cos(QAL) — 1]}
- é [a5(8) [cos(QAR) — 1] + aS (t) [ sin(QAE) + QAL + O(AF)
Ox(t + At) = 0(F) cos(QA) + v, (f) sin(QAF) + é {~aS(t) [cos(QA) — 1] + aS(¢) sin(QAL))

e At) —aj
1 {ax(t+At) al (t) [COS(QAt)_1]+ﬂy(t+ f) —ay(®) [sin(QAt)—QAt]}

2 At At
+ O(AP)
0yt + Af) = vy(t) cOS(QAL) — vy(f) sin(QAL) + é {aS(t) [cos(QAL) — 1] + a5 (1) sin(QAL))

t+ At) —al(t _C
—é{ay( - A)t i ()[cos(QAt)—1]+”X(t+AAt)t 7 () [—sin(QAt)+QAt]}
+ O(AP)

Here Q = B is the magnetic field (or cyclotron frequency in SI units) and a© =
-V, V(r) is the velocity-independent part of the acceleration. Symplecticity of
the scheme has not been explicitly proven, but we have found the method to be
accurate when dealing with phase space properties. Also, the scheme has already
been used previously to study interacting magnetic billiards [41].
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4.3 Implementation — Bill2d

The software — Bill2d — used in the simulations of the billiards studied in this thesis is
written in C++ following the object-oriented paradigm to offer speed, expandability,
and easy-to-read source code. The implemented methods have been previously
used in molecular dynamics simulations and are well suited for the study of
interacting many-body billiards. We note that Bill2d has been already used to study,
e.g., the dynamics of classical Wigner molecules [87] and two-particle circular
billiards [88], and it is being further used to study diffusion in the soft Lorentz gas,
which is a model system motivated by both the fundamentals of classical chaos
and also recently fabricated artificial graphene-like structures [89-93].

The code has been separated into several C++-classes, each of which handles a
specific part of the program. This makes the code generic in sense that it can be
used for several different billiard tables, particle numbers, and interaction types.
The modularity also allows for an easy construction of stripped binaries, e.g., for
the calculation of statistical properties of the systems.

Bill2d uses several external libraries to handle tasks not related to the propaga-
tion. Boost C++ libraries are used to offer both command-line and configuration
tile interfaces. GSL libraries are used for special functions and random number
generators. Data from simulations is saved using HDFb5-libraries. All external
libraries are wrapped within C++ classes to offer an easy-to-use application pro-
gramming interface. Plotting and analysis tools are written using Python with the
help of additional libraries such as Numpy and Matplotlib. Also, compilation and
installation are automated using GNU Autotools.

The actual structure of the simulation package is rather complicated, and therefore
a detailed discussion is omitted here. For a more extensive review on the imple-
mentation of Bill2d, we refer to Appx. [D]and our previous work in Ref. [94]. Here
we describe only the relevant part of the program, i.e., the propagation procedure,
which is demonstrated as a flowchart in Fig.

First, we obtain the initial state of the system in the phase space by either manual
user input or by randomly choosing the state. The energy of the initial state is
always fixed. The random initial state is chosen by first randomizing the positions
of the particles in the energetically allowed part of the configuration space. We
then calculate the remaining energy and distribute it evenly among the particles.
The directions of the velocities are randomized as well. Distributing the speeds
evenly should not affect the results since the velocities are usually mixed shortly
after the propagation has been started due to chaotic properties of many-particle
billiards.

Next, we propagate the particles one time-step forward with one of the algorithms
described above in Sec. After each time-step, we check that the particles are
inside the billiard table. If some of the particles have crossed the boundary, we (i)
save the position, incoming velocity, and the collision angle if we are calculating
Poincaré sections and (ii) apply the following scheme to calculate the effect of the
collision with the boundary.
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1. The collision point and the time of the collision are calculated by approxi-
mating the trajectory backwards as a straight line in the configuration space.
The particle in question is then propagated backwards to the collision point,
which corresponds to some time between the actual time-steps.

2. The velocity is changed according to the billiard reflection law in Eq. (2.79).

3. The particle is propagated with the new velocity linearly to the end of the
time-step.

As we see from the description, we do not use the main integration scheme when
handling the boundary collisions. This results in increase in energy in interacting
many-particle systems. This is the most prominent approximation in the entire
propagation scheme, and therefore the propagation algorithm, i.e., the velocity
Verlet algorithm, is only of second order in our code. Nevertheless, we have found
that the method is sufficiently accurate for the purpose of our calculations.

For future reference, we describe here a more accurate way to handle the boundary
collisions. The time-step, during which the collision occurs, could be divided
into smaller intervals to get closer to the boundary with the main integration
scheme. The actual collision point could then be calculated in parallel using,
e.g., the bisection method. This way, the linear approximation step could be
either completely skipped or at least the corresponding system time would be
significantly shorter. This would also enable the use of higher order integrators
and a larger overall time-step.

After handling the boundary collisions of each particle, we check if the end criterion,
e.g., the maximum simulation time, is fulfilled. If it is fulfilled, the simulation
ends; otherwise we continue the propagation.
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Figure 17: Flowchart of the propagation scheme in the Bill2d code
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Figure 18: Coordinate system of the circular billiards

5 Results

5.1 Coulomb-interacting billiards in circular cavities

51.1 System

We consider here two-dimensional circular billiards with two Coulomb-interacting
particles (electrons) (Fig.[18). The results shown here have been published in our
recent article [88]. As discussed above in Sec. the system is described by the
Hamiltonian that for our two-particle system reads

o

|71 —1’2||/

H= (o} +03)+ (5.1)

N~

where r; = (x;, y;) is the position and v; = (v;, v;,) the velocity of the ith particle.
Total energy of the system is fixed to E = 1 and the radius of the circular table to
R =1/2. These conditions restrict the interaction strengthto0 <a < 1. a = 0is
the noninteracting limit, where we have essentially two independent particles.
a =1, on the other hand, is the strong-interaction limit, where the kinetic energy is
zero and the particles are localized at the opposite sides of the circular table. We
remind that just by varying a we can study all the length and energy scales of the
two-particle circular billiards.

The collisions with the boundary are described by the oriented arc length s €
1-m/2, /2] from the chosen origin and the angle O between the velocity of the
incoming particle and tangent of the boundary as illustrated in Fig.[18| 0 < 1t/2 and
0 > 1/2 correspond to counterclockwise and clockwise directions, respectively.
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5.1.2 Bouncing maps

In Fig. (19| we show examples of trajectories and bouncing maps for billiards with
different interaction strengths a. The bouncing maps show s and cos(0) for each
collision of one of the particles. The bouncing maps are not Poincaré sections
per se, but they can be thought as projections of the six-dimensional Poincaré
sections (collision maps) to certain two-dimensional surfaces. Even if the bouncing
maps do not show the entire structure of the phase space, they can be used to get
qualitative information on the dynamics. The bouncing maps in Fig.[19| consist
of 14 000 (@« = 10™°) and 5 600 (« = 0.2 and 0.7) collisions with the boundary for
one of the particles in the system. In the figure, only a short time interval of the
corresponding trajectory is shown.

The noninteracting system with o = 0 is a classical example of regular billiards [42]
where all the trajectories are marginally stable and form straight lines in the
bouncing maps. In the configuration space the trajectories draw a pattern that
fills only a portion of the table leaving a central circle of the table untraveled. The
weak-interaction limit &« = 10~ (upper panel of Fig.[19) should be compared to the
noninteracting case. The bouncing map shows deviations from the noninteracting
case as seen by several different straight lines. Only when the particles pass
very close to each other, the interaction is strong enough to affect the trajectories.
Depending on how close the particles pass each other and at which angles, the
effect ranges from small to drastic jumps from one quasi-regular trajectory to
another. These jumps are are seen as parallel lines with irregular spacing in the
bouncing map.

In the intermediate interaction range (middle panel of Fig.[19), the behavior of the
trajectories seems chaotic, and the bouncing map gets filled. On the average, the
particles hit the wall perpendicular to the boundary. As the interaction strength «
is increased, the maximum of the probability distribution for 0 splits into two for
some trajectories as seen in the bottom panel in Fig.[19, The splitting corresponds
to trajectories in which the particles are bouncing on the opposite sides of the
circle while in a collective circulating motion so that the dominant collision angles
slightly differ from 0 = /2. This effect, however, is smoothed out when a large
ensemble of trajectories is taken into account. When « is increased further, we find
close to the strong-interaction limit @ = 1 that the system becomes (quasi)regular.
The transition to (quasi)regularity is analyzed in the following section.
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Figure 19: Bouncing maps and trajectories for two-particle circular billiards with
interaction strengths & = 107 (top), a = 0.2 (middle), and & = 0.7 (bottom). Only a
small section of the trajectories corresponding to the bouncing maps is shown.

57



Figure 20: Polar coordinates used to describe the strong-interaction limit of the
system.

5.1.3 Strong-interaction limit

At strong interactions, i.e., with @ < 1, the effect of the interaction between the
particles varies only slightly in time since the particles are nearly localized at the
opposite sides of the table. For simplicity, we consider only the case of zero angular
momentum in the strong-interaction limit.

Due to zero angular momentum, the particles oscillate around an axis that goes
through the center of the table. Also, due to full rotational symmetry, we can
choose — without any loss of generality — this axis to be the y-axis. With this choice
of coordinates we have one particle in the upper part of the table (y > 0) and one
in the lower part (y < 0).

In the following we will make use of polar coordinates (7, ¢) defined by

r=L[x%+ Y2 (5.2)

¢ = arcsin S (5.3)
VX2 + y?
as shown in Fig. 20l The unit vectors in the polar coordinates are
e, = sin X — cos ¢ 5.4)
ey = cos Px + sin @y, (5.5)

where & and # are the unit vectors in cartesian coordinates. They can also be
rewritten as

X = sin e, + cos pe 5.6)
§ = —cos e, + sin P&y, (5.7)
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The total angular momentum can be written as
L = ri(t)vg1(t) + r2(t)ve2(t), (5.8)

where 7;(t) are the distances of the particles from the center of the table and vy, (t)
the tangential velocities. Since r1(t) = r,(t), Eq. — together with conservation of
angular momentum — shows that the particles must have nearly equal tangential
speeds at all times. In particular, the tangential velocities must have opposite signs
at all times to ensure zero angular momentum. We can therefore conclude that
P1(f) = Po(t) leading to x1(t) = x,(t) since r1(t) = ra(t).

Since x1(t) = x,(t), the force acting on the particle in the lower part of the table can

be approximated by
a

ORI
where 7 is the unit vector in the y-direction. As @ — 1, also |[[r1(t) — r2(t)|| — 1, and
thus, we can estimate

(5.9)

!

llr1.(£) — r2(D)II?

in the strong-interaction limit. This approximation becomes exact as @ — 1. In
total, the force can be written as

~1

F~-j. (5.10)

Collisions with the boundary are easiest to take into account in polar coordinates
where only the radial velocity is reversed in a collision. In the strong-interaction
limit ¢ is small, and we can make a small-angle approximation to Eq. (5.7), i.e.,
cosp ~ 1 + O(¢p?) and sin¢ ~ ¢ + O(¢p?). This gives the force acting on the lower
particle in polar coordinates,

F~ 2, — e, (5.11)

Next, we use Newtonian dynamics to calculate the equations of motion in polar
coordinates. The position of the lower particle in polar coordinates is just

r=re, (5.12)
The velocity can be directly calculated as

de

r=re, + rﬁ, (5.13)
where using Egs. (5.2), (5.4), and we get
% = P(t) cos P + P(t) sin oy = P(t)ey, (5.14)
i.e.,
i(t) = H1)e, + r(H)P(t)ey. (5.15)
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Continuing further, we get for the acceleration

N W Y a2y
= fe, + I—— + 7P, + rQe, + ro——
F=re + i pey +rpey + rd pr

= (¥ - rd)z)ér + (rq'i + 21"qb)é¢,

(5.16)

where we have used
dey
T e
which was calculated from Eq. (5.5).

Equations (5.11)) and (5.16)) together give the equations of motion in polar coordi-
nates,

P—rdp* =1 (5.17)
1) +2ip = . (5.18)

They can not be solved analytically, but since the kinetic energy of the particle will
be small in the strong-interaction limit, we may expect centrifugal [second term in
Eq. (5.17)] and coriolis [second term in Eq. (5.18)] termﬂ to be negligible, i.e., the

equations of motion would be

F=1 (5.19)
rd = —¢. (5.20)

Finally, we decouple these differential equations by assuming that the small
variation of r in Eq. will not have a dramatic effect on the solution for ¢(t).
Thus, we replace r in the lower equation by its average 7,,5, which can be calculated
from the solution of r(t) in Eq. (5.19). Later we will show that these assumptions
are valid by numerically solving Egs. and and comparing them to our
simplified model.

Solution to Eq. (5.19) is
1
r(t) = r(0) + #(0)t + 5t2, (5.21)

where r(0) and 7(0) are the initial values for r and its time derivative. This solution
is only valid up to the first collision. At each collision the sign of 7 is changed and
thus r(t) is actually a periodically repeating parabola. To express r(t) for all times
in a closed form, we first calculate the time t; when the particle last collided (before
t = 0) with the boundary in the time-reversed dynamics [where r(t;) = R] yielding

t, = —1(0) — v/#(0)? + 2[R — r(0)], (5.22)

where R = 1/2 is the radius of the circle. On the other hand, the period T between
collisions is

T = 2+/#(0)? + 2[R — r(0)]. (5.23)

7Notice that despite their names, these terms are not due to a noninertial frame of reference but
due to the polar basis in the inertial frame of reference.
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Using t; and T, we can construct a periodic sawtooth wave

t—T—ts_V—T—tsﬂ (5.24)

T(t):T[ T T

that has a period T, minimum value 0, maximum value T, and a shift {; in time so
that 7(t;) = 0 and 7(0) = |t;|. Here | -] is the floor function. After each collision we
have 7 = 0 and just before each collision 7 = T.

The radial velocity of the particle when colliding with the boundary is
(T = 0) = #(t;) = #(0) + t,. (5.25)

The equation (5.25) can be used to write the periodic solution for the radial distance
ras

1
r(t) = R + #(t = 0)t(t) + ET(t)z. (5.26)
For the angular equation we need the cycle average of the radius,

T
Tavg = %fr(’c) dt =R+ %T[T + 37(t = 0)]. (5.27)
0

Let us now concentrate on the angular equation

ravg(‘f) = _¢- (528)
It has the solution

t

V ran

where ¢(0) and qb(O) are the initial values for the polar angle and its time derivative.
To calculate the bouncing maps, we also need the tangential velocity

o(t) = ¢(0) Cos( )+ N sin( \/:_) (5.29)

avg

R

avg

vy = RP(t) = — ¢(0) sin( ) + R (0) cos( ) (5.30)

t t
vV Tavg V¥ avg

Our model predicts the collisions with the boundary to take place at t = nT + £,
where 1 € Z. We can thus write the cosine of the collision angle of the nth collision
as

ve(nT + t5) ve(nT + t5)

cos[O(n)] = = ,
VU (nT + £ + 0y(nT + £,)2 /(T = 0)2 + v5(nT + £,)?

(5.31)

where the cosine has been calculated by simple trigonometry of the collision.

In Fig.[21jwe compare our model calculated with Egs. and (red curves
and dots) with simulated, numerically exact data calculated with the time-step
At = 107° (blue curves and dots), and the full solution to Egs. and
(dashed black curves and dots). Figs.21(a)land 21(b)|show an example trajectory
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Figure 21: (a) Radial coordinate, (b) angular coordinate, and (c) bouncing map for
zero angular momentum circular billiards with a = 0.98. The analytical model
is in red, the numerically solved model in black, and the simulated data in blue.
At extremely strong interaction strengths the model produces well the temporal

dynamics of the system.
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Figure 22: Bouncing map for a = 0.9 with zero angular momentum. The analytical
model is shown in red, the numerically solved model in black, and the simulated
data in blue. The model produces the form of the bouncing map well down to
a2 0.9.

with @ = 0.98. Our model agrees well with the simulated data, and the difference
in longer times is mostly seen due to slight overestimation of the collision period
in our model. The full solution of the Egs. and (blue curve) does
not yield better results than our model implying that the difference between the
simulated data and our model is due to approximations of the force rather than
due to neglecting the centrifugal and coriolis terms of the acceleration.

The full trajectory is reproduced well down to a 2 0.98 for several bounces. The
form of the bouncing map of our model agrees with the simulated data at « 2 0.9
(Fig.[22) even if the temporal dynamics are reproduced only at larger values of a.
In some specific cases, the model produces the form of the bouncing map with
even lower values of a.

Our analytical model is a regular, non-hyperbolic system. Furthermore, asa — 1,
our model becomes more and more accurate, and in the limit « — 1 all our
approximations become exact. To emphasize, this means the since the true system
reduces to our model as @ — 1 and since our model is regular, also the true system
with nonzero angular momentum becomes regular in the strong-interaction limit
a—1.

We note that it is also possible to deduce the form of the bouncing maps in the
strong a limit by using conservation laws [88}95]. The advantage of the approach
we have used here is that (i) we can also model temporal dynamics and (ii) we can
have a clear understanding of the approximations used. Both approaches have the
same applicability range in @« when reproducing the form of the bouncing map.

Here we have restricted the calculations to zero angular momentum. Due to
complications caused by the collective rotation, the analytical model was not
extended to nonzero angular momenta. However, we note that the bouncing maps
show quasi-regular behavior also in the case of nonzero angular momentum in the
strong-interaction limit.
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5.1.4 Escape-time distributions

Next, we study the changes in the system dynamics as the interaction strength
is varied from the noninteracting (a = 0) to the intermediate-interaction regime
(a < 0.5). The structure of the phase space can not be studied directly since the
calculation of six-dimensional Poincaré sections is not possible in practice. As
an alternative method we open up the billiards and consider the escape-time
distributions. As discussed in Sec. power-law asymptotics of the distributions
would indicate sticky or KAM regions in the phase space whereas exponential
distributions would indicate nonsticky, i.e., fully hyperbolic behavior at the
calculated time scales. However, since the escape-time distributions are statistical
properties of the system and they reflect the amount of stickiness in the system
rather than regular and chaotic components of the phase space, we can not draw
any conclusions about the detailed structure of the phase space.

The circular table is opened by placing ten holes at even distances in the boundary
covering total of 1/50 of the length of the boundary, the same amount as in Ref. [96].
The two-particle trajectories escape when either particle hits the hole. We choose
to express the escape-time distributions P as a function of the total number of
collisions 1, i.e., the sum of collisions of both particles, rather than as a function
of time due to different time scales of systems with different a. In principle, this
might affect the form of P as explained in Sec. However, we have numerically
checked that the behavior of the escape-time distributions P is the same both as a
function of 7 and as a function of time.

To calculate the escape-time distributions P(n), we set up an ensemble of Ny =
2.5...6 x 10° random initial points for each . The trajectories in the ensemble are
propagated in time and the escape-time distributions are calculated from

_ AN(n)

P(D) = == (5.32)

where AN(n) is the number of escaping trajectories at nth total number of collisions.
For each a the time step of the propagation is chosen in range At = 1078...107 so
that a sufficiently accurate simulation of the trajectories is guaranteed.

In Fig.[23(a)) we show escape-time distributions of the noninteracting (a = 0) and
moderately interacting (o = 0.1, 0.3, 0.5) systems. The noninteracting system has
a power-law tail as expected due to the regularity of the system. A power-law
tit P ~ n™ + const to the tail of the distribution yields y = 3.46 The moderately
interacting systems, on the other hand, exhibit purely exponential escape-time
distributions at these time scales. The numerically obtained distributions are in
perfect agreement with
4911—1
50"’
which can be obtained by assuming that there is no correlation between two
successive collisions and the probability to escape at each collision is the ratio of

P(n) = (5.33)

8To ensure a good fit, all the fits have been calculated by minimizing the relative error between
the fitted function and the data using the least squares minimization procedure.
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holes on the boundary (1/50). In essence, this means that at these time scales the
moderately interacting systems can be classified as chaotic.

The escape-time distribution of a weakly interacting system with a = 107 is
compared with the noninteracting case in Fig. The tail of the distribution
of the weakly interacting system also follows a power law P ~ n™” + const with
y = 4.08. The escape is slightly faster than in the noninteracting case, but still
the system exhibits sticky behavior. This effect was already seen in the bouncing
maps in Sec. At small time scales the trajectories of the weakly interacting
system follow (quasi-)regular trajectories similar to noninteracting trajectories,
and therefore the distributions for both systems are similar at small time scales.
The interaction, however, reduces the lengths of the quasi-regular parts of the
trajectories, as already seen from the bouncing maps, and thus the survival
probability (and escape-time distribution) is decreased at long time scales.

Finally, we make some assessments on the transition from regularity to chaoticity in
the noninteracting limit at moderate interaction strengths. In Fig. 24| we show the
escape-time distributions divided by the noninteracting distribution for different a.
We see a clear transition to chaoticity represented by the exponential distribution
of Eq. as & — 107°. The transition occurs first at long numbers of collisions
as seen in Figs. and This is due to the interaction affecting the long
quasiregular trajectories more easily and thus reducing the stickiness in long times
as already explained above.

As a final note, we point out that these numerical results do not exclude the
possibility of small sticky regions that would not appear at time scales considered
here. Furthermore, the regime a > 0.5 is excluded from our studies since the
measure of the energetically allowed region of the configuration space tends to
zero as @ — 1. A smaller region would require smaller holes in the boundary
which in turn would require a smaller time-step and thus would increase the
computational requirements of the simulations. Hence, we have focused here only
on the range 0 < a < 0.5.

51.5 Summary

To summarize, we have studied Coulomb-interacting two-particle circular billiards
with different interaction strengths. Projections of the Poincaré sections, i.e., the
bouncing maps, show quasi-regular behavior both at weak (@ — 0) and strong-
interaction limits (¢« — 1), but otherwise the dynamics appear chaotic. Furthermore,
we have derived an analytical model showing that in the strong-interaction limit
the system becomes regular in the case of zero angular momentum.

To further analyze the dynamics, we have made use of escape-time distributions of
the corresponding open system. The distributions are exponential for a wide range
of interactions suggesting generally chaotic behavior at intermediate interaction
ranges. Only the range a < 107 appears to have sticky behavior at the time scales
considered here.
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Figure 23: Escape-time distributions in the two-particle circular billiards. Both the
noninteracting and weakly interacting cases show a power law tail whereas at
0.1 £ a < 0.5 the distributions are exponential.
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Figure 24: Escape-time distributions divided by the escape-time distribution of
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occurs as @ — 1073,

67



N\ ’K\
) N \
W\ N\
O N
2 N
o‘ )
\_
N
- // \
—) - / /
<\ > )
X V4
NI \ AN\ | ‘\7\
\ - "//\ -
e ] SN\
7 V SN [TAN

Figure 25: Example trajectories of a diffusion process including nine Coulomb-
interacting particles in a weak magnetic field. The circles and rectangles mark the
initial and final positions of the particles, respectively.

5.2 Diffusion
5.2.1 System

We introduce a billiard table composed of two unit square containers connected
by a channel of width A as demonstrated in Fig.[25| The geometry is motivated
by similar experimentally realizable systems such as quantum point contacts and
coupled quantum dots. The system consists of N = 9 Coulomb interacting charged
particles (electrons) in a homogeneous magnetic field B perpendicular to the table.
To justify the restriction to a specific particle number, we have checked that the
results are qualitatively similar also for N = 4, ..., 8 particles in the intermediate-
interaction regime. A posteriori we know that the results must be qualitatively
similar also in the weak-interaction regime.

Our study focuses on a relaxation process where all the particles are initially in
the left container (see Fig.[25, where the circles denote the initial positions). When
over half, i.e., five, of the particles are in the right container, the system has reached
an equilibrium with respect to the number of particles per container. We point
out that the particles are also allowed to travel back from the right to the left
container. The time it takes for the system to reach the equilibrium with respect
to the number of particles per container for the first time is called the relaxation
time t.;. The behavior of the averages of the relaxation times as a function of the
system parameters will be the focus of this study.

The total energy of the system is set to E = 90. The interaction strength «a scales so
that a = 0 is the noninteracting limit and a ~ 1.5 is close to the strong-interaction
limit for the initial conditions. Since the particles are initially in the same container,
which is less than half of the entire configuration space, initially strongly interacting
systems with a ~ 1.5 quickly become moderately interacting as the system begins
to relax. To propagate the particles, we use the modified velocity Verlet algorithm
for arbitrary magnetic fields (see Sec. [£.2), i.e.,, we propagate the Newtonian
equations of motion. The time step used is At = 107, although some results have
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also been calculated with At =5 - 107° to check the convergence of the results with
respect to the time step.

5.2.2 Relaxation process

Since the 35-dimensional phase space is vast, we are interested only in ensemble
averages. We set up a large ensemble of random initial configurations for each
value of the parameter set (A, a,B) Each configuration of the ensemble is
propagated until it reaches the equilibrium. Finally, the ensemble average of the
relaxation times (t,) is calculated. The size of the ensemble is increased until
sufficient convergence of the average is achieved.

We are interested in the behavior of the average relaxation times as a function
of the magnetic field B. However, since the effect of the magnetic field depends
heavily on a, we need to replace B with a variable that describes the effect of the
magnetic field on the trajectories. This in mind we define the effective Larmor radius

N trel
FELR = <% le f ”vi];t)lle(l - xi(t))dt>, (5.34)
=

where 0(x) is the heaviside step function, v; the velocity of the ith particle, and ()
denotes the average over the ensemble. In essence, rg r describes the average effect
of the magnetic field on the particles that are in the left container, i.e., still in the
progress of traveling to the right container. In the limit & — 0 the effective Larmor
radius rgr reduces to the conventional Larmor radius r;r of the particles since
the initial speeds are distributed evenly. Therefore, we can try to understand the
results at weak interactions in terms of single-particle properties of open magnetic
square billiards.

In essence, g r = const/B, where const depends on the system parameters. How-
ever, we find that const is independent of the magnetic field B (see Fig.[26) and the
channel width A. To emphasize, we have a bijective map between rg g and B, and
the map depends on only one parameter, the interaction strength a.

To demonstrate the effects of the interaction, we show (i) the total kinetic energy
as a function of time in Fig.[27|and (ii) speeds as a function of time and speed
histograms of two different particles (red and blue) in Fig. The calculated
systems have the channel width A = 0.3 and B = 9 corresponding to rg g ~ 0.23 at
a =1 and rgrr =~ 0.49 at a = 0.0001.

At a = 0.0001 the kinetic energy [Fig. is nearly a constant. The sharp drops
are caused by the particles passing close to each other thus interacting more
prominently. When the particles are away from each other, their speeds are almost
constant [left panel of Fig.[28(a)]]. However, when the particles come close to each
other, their speeds change rapidly to new values, which is also seen as only a
few almost discrete values for the speeds in the speed histograms [right panel of
Fig.[28(a)]l. The same behavior was seen in the bouncing maps of the two-particle

9See Sec. |4.3|for further details on the randomization procedure.
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Figure 26: The graph shows numerically calculated dependence between the
inverse of the effective Larmor radius, 1/rg g, and the magnetic field B in the
system with the channel width A = 0.3 and the interaction strength a = 1. Since
the relation between 1/rg r and B is bijective, also the relation between rg g and B
is bijective.

circular billiards in Sec.

In the intermediate-interaction regime with a = 1 the total kinetic energy [see
Fig. fluctuates due to complex dynamics. The initial increase in the total
kinetic energy is due to the particles being close to each other in the initial state
but as some of the particles travel to the right container, the potential energy of the
system decreases thus increasing the overall kinetic energy. The speed-time graphs
and the speed histograms in Fig. show that the interaction is important also
when the particles are far away from each other so that the particle speeds change
constantly in contrast to the weak-interaction regime.
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Figure 27: Total kinetic energy during one diffusion process for interaction strengths
(@) « = 0.001 and (b) @ = 1 in a system with the magnetic field B = 9 and the
channel width A = 0.3.

71



6 I I I I 6
— 1 —_— —_
54T 14 3
s s
2 122

O L L L L 0

0 1 2 3 4 5
t(a.u.) P(Ivll)
(a) a = 0.001
6 I I I 6
?— -
s
) E
0
0 1 2 3 4
t (a.u.) P(Ivll)
b)a=1

Figure 28: Speeds as a function of time (left panel) and speed histograms (right
panel) for two different particles (blue and red) for interaction strengths (a) a = 0.001
and (b) @ = 1 in a system with the magnetic field B = 9 and the channel width
A=0.3.
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5.2.3 Relaxation times

In Fig. we show the average relaxation times (t.) as a function of rgr for
interaction strengths a = 107%,...,1.5 and the channel width A = 0.3. The rgir-(t;e1)
graphs have general features across all interaction strengths.

The rapid decrease of the relaxation time at rg g < 0.3, i.e., before the first minimum,
is due to the magnetic field dominating over the Coulomb interaction in this regime:
at small 71 g the magnetic field strongly bends the particle trajectories (see Fig.
thus increasing the average relaxation time (t) .

The minimum at rgr & 0.3 exists for all interaction strengths a and channel
widths A. This universal minimum is the optimal balance between the Coulomb
interaction and the magnetic field allowing fast relaxation.

As rgrr is increased to rgr 2 4, (trer) quickly tends to a constant. This is easy to
understand since at large g r the dynamics are alike due to dominating role of the
Coulomb interaction over the magnetic field.

From Figs.[29(b)|and P9(c)| we see that as the interaction strength « is decreased to
less than o = 0.3, several new extrema appear in the rg r-(trer) graphs. In the range
a 5 0.3 the system is weakly interacting, and the new extrema can be attributed to

properties of the corresponding single-particle systems, i.e., open magnetic square
billiards. This is studied further in Sec.

The effective Larmor radii corresponding to the minima (blue) and maxima (red)
do not depend heavily on the interaction strength as seen in Fig.[31] The positions
of the extrema have been calculated from a fitted second or third order polynomial,
or a low-order Laurent polynomial of only negative powers around the minimum.
The error bars show visually estimated error limits for the calculated positions
of the extrema. The extrema due to single-particle properties seen at < 0.3
naturally change only little with a since the effect of the Coulomb interaction is
alike throughout the weak-interaction regime. Also, the position of the universal
minimum changes only slightly from rgr = 0.35 to rgr = 0.22 as the interaction
strength is increased from a = 107 to & = 1.5. We note that the overall increase in
the average relaxation time with increasing interaction strength « is expected due
to smaller kinetic energies at higher interaction strengths.

The general shape of the rg r-(tre1) graphs does not depend on the channel width
A. However, the dependence of the exact value of (t.) on the channel width for a
tixed rgrr is more complicated, and it is different for weak and strong interactions.
Also, rgrr of the extrema increase only slightly with increasing channel width. At
a =1 the effective Larmor radius rg g corresponding to the universal minimum
increases from 0.28 + 0.05 to 0.5 + 0.1 when A varies from 0.1 to 1 as seen in Fig.
Similarly for weak interactions, in Fig. |33 we see that the positions the extrema are
shifted to slightly larger rg r as A is increased.
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Figure 29: Dependence of the average relaxation time (t) on the effective Larmor
radius rgr for different interaction strengths a with the channel width A = 0.3.
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Figure 30: With effective Larmor radius rg g = 0.103 the magnetic field strongly
bends the particle trajectories and therefore increases the average relaxation time
compared to larger rgir.

0.0

Figure 31: The effective Larmor radii rg r for which the average relaxation time
(trer) finds its minima (blue) and maxima (red) with different interaction strengths

« for the gate width A = 0.3.
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Figure 32: The effective Larmor radii rg r for which the average relaxation time
(trer) finds its minima with different gate widths A in the intermediate-interaction
regime with the interaction strength o = 1.
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Figure 33: Dependence of the average relaxation time (t.) on the effective Larmor

radius rgr for different gate widths A in the weak-interaction regime with the
interaction strength a = 0.01.
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5.2.4 Extreme weak-interaction limit

As already seen in Fig. the more we decrease the interaction strength the
more prominent the single-particle features, i.e., the additional extrema at a < 0.3,
become. For example, the height of the peak at rg g = 0.5 increases rapidly as
a — 0. This is due to the perturbative nature of the Coulomb interaction in the
weak-interaction limit.

To explain the extrema that appear only at weak interactions, we study open single-
particle magnetic square billiards, which is the corresponding single-particle
system since the effective Larmor radius g r defined in Eq. tends to the
conventional Larmor radius of the particles ri g in the limit « — 0. The magnetic
square billiards, the sides of which are of unit length, is opened by placing a hole
of width A in the center of one side of the billiard table. Here we focus on the case
A=023.

In the single-particle case the average relaxation time (t.) is the average escape
time, which can be calculated from

[o¢]

() = f ot ) dt, (5.35)

0
where p(t, rr) is the escape-time distribution of the system.

For each r1 g we set up a large ensemblelzﬂ of initial points distributed uniformly in
the phase space. The trajectories of the ensemble are propagated in time, and the
escape-time distribution is calculated from

AN(t)

P() =

(5.36)

where Nj is the size of the ensemble and AN(t) is the number of escaping trajectories
in a small time interval [t — 6t/2,t + 0t/2[, where 6t is the size of the histogram bin.
Only the trajectories that escape the system are taken into account.

To explain the peak of (t.) at rgir ~ 0.5 at weak interactions in Fig. we
show escape-time distributions at r g = 0.49,...,0.53 in Fig. Perfect fits to the
escape-time distributions can be found with a combination of exponential and
algebraic functions as in Ref. [97],

P(t) = Adexp(—=At) + Ea(f — 1)(1 + at)F, (5.37)

where A + E = 1 due to normalization and A, «, 5, and A are the fitting parameters.
In the fits we neglect the initial, system dependent period. Furthermore, all
the fits have been calculated by minimizing the relative error between the fitted
function and the numerically calculated distribution with the least squares mini-
mization procedure. As an example, we show a numerically calculated escape-time
distribution (red) and the fitted function (blue) for iz = 0.5075 in Fig.

2The sizes of the ensembles are chosen such that the convergence of the escape-time distributions
is guaranteed in the chosen time interval.
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Figure 34: Escape-time distributions for open magnetic square billiards with
Larmor radii r g = 0.49,...,0.53.
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Figure 35: Numerically calculated escape-time distribution for open magnetic
square billiards with the Larmor radius r; g = 0.5075 (red) and a fit to a combination
of exponential and algebraic functions in Eq. (5.37) (blue).
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At rir = 0.49 the escape-time distribution decays fast. However, as 7y is increased,
we find that the power-law tail becomes more prominent. At rigr = 0.5075 the
power-law tail has the exponent g = 1.02, i.e., the average escape-time integral
in Eq. diverges. The most divergent behavior is found at 71z ~ 0.5075. As
the effective Larmor radius is increased to ri g = 0.53, the escape-time distribution
returns to similar faster decaying shape (in the calculated time scales) seen at
rir = 0.49. We interpret the rapid changes in the escape-time distributions around
rir = 0.5075 as the cause of the peak in (t.1) at rerr = 0.5 [Fig. 29(c)].

Next we attribute the changes in the escape-time distributions to changes in
the phase space of the billiards. To identify the structures causing the extreme
power-law tail, we calculate collision maps of the closed billiards and sections
of the phase space that have not escaped before time t = t* in the open billiards.
Trajectories that do not collide with the boundary are ignored since we concentrate
on rir 2 0.5, where such trajectories do not exist.

To calculate the collision maps, we propagate a few hand-picked particle trajectories
and calculate all their collisions with one side of the billiard table. The collisions
are labeled by s € [0, 1], the length along the selected side of the table, and cos(0),
cosine of the angle between the tangent of the boundary and the outgoing trajectory
at the collision point. The range s € [0.35,0.65] in the collision maps corresponds
to the hole in the open system.

To calculate the remaining phase space of the open billiards at t = t*, we set up a
uniformly distributed ensemble of initial points in the phase space. The trajectories
are propagated up to t = t, and the end points of the remaining trajectories,
i.e., trajectories that have not escaped, are shown with black dots. The end
points are labeled by the length along the boundary s € [0, 4] with s € [0.35,0.65]
corresponding to the hole and cos(0), cosine of the angle between the tangent
of the boundary and the outgoing trajectory at the collision point Notice that
due to the hole, the remaining phase space does not have a four-fold rotational
symmetry, and therefore we can not reduce the consideration only to s € [0,1] as
we do with the collision maps of the closed system. The scheme is the Sprinkler
scheme explained in Sec. but here we also consider the KAM islands.

In Fig.[37| the leftmost column shows the collision maps for ;g = 0.49,...,0.53 and
the middle and right columns show the remaining phase space at times t* = 30
and t* = 300, respectively. At rir = 0.49 the large KAM island shown in Fig.
is connected to the hole and escapes the system before t = 30, which is seen as four
large escaped areas (in white) in Fig. The small sections of the phase space
that do not escape, i.e., those that are still visible at ¢ = 300 in Fig. are due to
the self-similarity of KAM-islands: there are several small islands located near the
boundary of the large KAM island that are not connected to the opening in the
boundary.

As the Larmor radius is increased to ri g = 0.5075, the large KAM island breaks
down to several disjoint islands as seen in Fig. Some sections of these
disjoint islands are not connected to the hole as seen from the remaining phase
space at t* = 300 concentrated at certain sections of the KAM islands [Fig. [37(f)].

2IThe end point is the last collision point with the boundary before t = t*.
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(a) (b)

Figure 36: Examples of the families of trajectories responsible for the power-law
behavior at Larmor radii (a) r.,g = 0.5075 and (b) rig = 1.05. In (a) we have a
quasiperiodic KAM-orbit and in (b) a two-cycle MUPO.

Four of the sets of the remaining phase space seen in Fig. correspond to a
family of trajectories demonstrated in Fig. and the other four to a family of
trajectories that are mirror images of the trajectories of the first family. In Fig.
we see that as r.r — 0.53 the disjoint islands disappear and the remaining center
island is connected to the hole [Fig. B7()].

We remind that the escape-time distributions do not include trajectories that do
not escape the system, e.g., the remaining sections of the KAM islands at t — oo
for rgrr = 0.5075. We interpret that the emergence of the non-escaping sets in the
disjoint KAM islands is still the cause of the extremely slow power-law escape
at rir = 0.5075. More specifically, it is the trajectories near the non-escaping
sets that cause the change in the escape-time distributions. We conclude that
the slow single-particle escape and also the appearance of the non-escaping sets
at rir = 0.5075 are seen as the high peak in the average relaxation time (t,) at
rer ~ 0.5 at weak interactions in Fig.
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Figure 38: Around the Larmor radius iz = V5/2 ~ 1.118 the magnetic square
billiards goes through a squeeze bifurcation where the KAM island in (b) — plotted
here for ri g = 1.05 — disappears and reappears [52]. This causes the numerically
calculated area of the regular component of the Poincaré section in (a) to go to zero

atrir = \/5/2

Let us next consider the minimum of the average relaxation time at rg g = 1.05
[Fig.29(c)]l. The phase space of the magnetic square billiards undergoes a squeeze
bifurcation at rig = V5/2 ~ 1.118, i.e., the measure of the regular component of the
phase space goes to zero as shown in Fig. [52] Due to the measure of the
regular component going to zero, we may assume that around rig = V5/2 all the
regular components of the phase space are located near the KAM island shown
in Fig. All the trajectories of the KAM island are connected to the hole at
0.93 < rir S 1.34, and they escape the system during the four first collisions with
the boundary. Since the KAM-orbits escape the system fast and since there are no
other regular trajectories, the average escape times are expected to be convergent
for these r1g.

Since the KAM island escapes quickly and affects the escape-time distribution only
in short times, we must study the chaotic sea to understand the behavior of the
escape-time distributions. The chaotic sea splits into a hyperbolic region and a
sticky region. The sticky region is around the CEMUPO (see Sec. 3.5 for definitions)
seen as a horizontal line in the collision map in Fig. around cos(0) ~ —0.48.
The MUPOs are two-cycle orbits bouncing between the opposite sides of the table

as demonstrated in Fig.

As in Ref. [76]], the splitting can be better visualized by calculating numerical
approximations of the unstable manifold of the chaotic saddle at different time
instants t* = 5, 30, 50, and 100, which are shown in Fig. During the early
time-instants the hyperbolic component is dominant, but already at t* = 100 the
sticky set around the CFMUPO dominates the escape dynamics. The splitting of
the saddle leads to an escape-time distribution that is (i) exponential at ¢ < ¢, ~ 80,
apart from an initial, geometry dependent period t < t; = 5, and (ii) has a power-
law tail at t 2 t. ~ 80. We point out that the splitting of the saddle occurs for all

Z2The measure has been estimated by numerically estimating the area of the KAM island in the
Poincaré section.
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Figure 39: Numerical approximations of the unstable manifold of the open
magnetic square billiards with the Larmor radius rir = 1.05 calculated at different
times t".

rir around rir = 1.05, and the time-scales stay approximately the same.

An example escape-time distribution is shown for r g = 1.05 in Fig. @ where the
dashed vertical lines show the estimated time-instances t; = 5 and ¢, = 80. The red
curve is the numerically calculated distribution, and the blue curve is a fit with
Eq. yielding the power-law exponent 5 =~ 2.08. As before, the fit is done by
minimizing the relative error with the least squares method, and the initial period
t < t; = 5is not included in the fitting range. In contrast to the divergent average
escape times at ri g = 0.5075, here the average escape time seems convergent at
least for all 0.95 < rr S 1.2

Due to different time-scales (the initial period, the exponential period, and the
power-law tail) we write the average escape-time integral of Eq. (5.35) as

[ ts t, [

<tre1> = ftp(t/ rLR) dt = ftp(t/ 7"LR) dt + ftp(t/ rLR) dt + ftp(t/ rLR) dt/ (538)

0 0 ts t;

where we have split the integral over the different time-scales to see how the
hyperbolic and the nonhyperbolic components of the chaotic saddle affect the
average escape time. Numerically calculated values of the integrals are shown as
a function of ry in Fig.

84



107!

1073 |

107 |

sl

| L MR |

1079 L—— -
1071 100 10! 102 103 10%
t(a.u.)

Figure 40: Numerically calculated escape-time distribution for open magnetic
square billiards with the Larmor radius ri g = 1.05 (red) and a fit to a combination
of exponential and algebraic functions in Eq. (blue). The dashed vertical
lines show the time instants t; = 5 and ¢, = 80.

The behavior of the initial period [Fig. does not affect the behavior of
the average escape time as a function of rir since the variations of the initial
contribution for different 1 g are an order of magnitude smaller than the variations
in the contribution from the hyperbolic and non-hyperbolic time-scales [see
Fig.[1(a)]. The contribution to the integral from the hyperbolic component of
the saddle has a minimum at r g ~ 1.05 [Fig. . The contribution of the
power-law tail at the non-hyperbolic time-scale calculated up to t = 10° shows a
monotonically increasing contribution as a function of 7.y [Fig.#1(d)]. However,
we can not exclude the possibility that the contribution of the power-law tail would
change if we calculated the integrals to longer times. Longer times could not be
taken into account here due to (i) computational requirements when numerically
calculating the escape-time distributions in long time-scales and (ii) the instability
of extrapolation of the contribution of the power-law tail.

In total, the average escape time shows a minimum at r g = 1.05 [Fig. . This is
likely the cause of the minimum of (t,.) at g r = 1.05 in the weak-interaction limit
[Fig. . Furthermore, we point out that in the weak-interaction regime, the
interaction can be expected to remove or reduce the contribution of the CFMUPO of
the single-particle case so that it is indeed the changes in the hyperbolic component
of the chaotic saddle which cause the minimum of the average relaxation time at
VELR ~ 1.05.

Last, we note that even if relatively large sticky sets or KAM islands that are
disconnected from the hole appear at higher ri such as, e.g., around r g = 2.23,
these orbits are affected more by the Coulomb interaction due to large Larmor
radius, and thus high peaks similar to rg g = 0.5 do not appear for higher rgr.
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Figure 41: Contributions of different time-scales to the average escape-time integral
in Eq. as a function of the Larmor radius r;g. Minimum of the average escape
time in (a) is caused by the changes in the hyperbolic component of the chaotic
saddle [(b)]. Due to numerical reasons the integrals over the tail [(d)] have been
calculated only up to t = 10°.
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5.2.5 Summary

To summarize, we have studied a diffusion process of N = 9 Coulomb interacting
particles in a two-container billiards under a magnetic field. Initially all the
particles are in one of the containers, and an equilibrium is reached when over
half of the particles are in the other container.

We have demonstrated by the use of speed—time graphs and speed histograms
that in the weak-interaction limit the particle speeds are affected by the Coulomb
interaction only when the particles pass close to each other. In the intermediate-
interaction regime, the speed-time graphs and the speed histograms demonstrate
continuously changing speeds due to the interaction.

The average relaxation times have been calculated as of function the magnetic field
B. To better describe the effects of the magnetic field especially in the intermediate-
interaction regime, we have shown numerically that there exists a bijective map
B — rgir, where the effective Larmor radius rgr describes the average effect of
the magnetic field on the particles that are in the initial container. Furthermore,
we have shown that the bijection depends on only one parameter, the interaction
strength a.

The average relaxation times as a function of rg g were found to have general
features across all interaction strengths: a rapid decrease as ¢ r increases from 0,
a universal minimum around rg g = 0.3, and asymptotic tendency to a constant
value, which varies with a and the channel width A. The general features can
be explained as the magnetic field and the Coulomb interaction dominating in
different rgrr regimes. The universal minimum was interpreted as the optimal
balance between the magnetic field and the Coulomb interaction to allow for a fast
relaxation.

In the weak-interaction limit, several additional extrema appear in the rg r-(trel)
graphs. Due to perturbative nature of the Coulomb interaction, we were successful
in explaining these extrema using escape-time distributions of open single-particle
magnetic square billiards. Changes in the escape-time distributions for different
Larmor radii r g were attributed to changes in the phase space by calculating
not-escaped sections of the phase space at different time instances.
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6 Discussion

In this thesis we have addressed two systems relevant to the study of Coulomb-
interacting many-body billiards: a two-particle circular billiards, which is summa-
rized in Sec. and the results have already been published in Ref. [88] (also
found in Appx.[E), and a few-particle diffusion process summarized in Sec.[5.2.5
In the studies we adopted the molecular dynamics approach to propagation of
the systems, and when necessary, the results have been reproduced with different
time-steps and sizes of ensembles to ensure reliability. In the following we discuss
the insights into general Coulomb-interacting billiards obtained from our results.

At weak interactions the Coulomb interaction works as a perturbation in the
systems, and thus the weakly interacting systems retain many of the properties of
the underlying noninteracting system albeit slightly perturbed. This was seen as
quasiregular bouncing maps and sticky escape-time distributions in the circular
billiards, and in the diffusion process as the extrema in the average diffusion time
graphs that arose from the changes in the phase space of open single-particle
magnetic square billiards. This perturbative nature can be expected to be a general
property of the Coulomb-interaction, i.e., independent of the billiard table or the
confining potential. The perturbative nature also seems to be independent of the
number of particles — at least in the few-particle limit. Furthermore, we may also
expect to find perturbative behavior for other similar long-range interactions, such
as the Yukawa interaction, in the weak-interaction limit. We note that perturbative
nature of the Coulomb-interaction has been previously discussed, e.g., in Ref. [39]
for one-dimensional lattices.

In the circular billiards, the perturbative regime was found to end already at low
interactions strengths. However, in the noninteracting limit all the trajectories
of the circular billiards are parabolic (marginally stable), so it would be of further
interest to study whether systems with elliptic KAM islands in the noninteracting
limit would retain regular features to higher interaction strengths.

The intermediate-interaction regime was found to be hyperbolic in the circular bil-
liards in the studied time scales, and in the diffusion process the average relaxation
times as a function of the effective Larmor radius behave alike throughout the
intermediate-interaction regime. We expect the universal chaoticity at intermediate
interaction strengths to be a general property of Coulomb-interacting billiards also
in other tables; however, further studies should be conducted to confirm this.

We showed the strong-interaction limit of the two-particle circular billiards to
be regular by calculating bouncing maps and by deriving an analytical model
for the phase space trajectories. The analytical model is readily applicable to,
e.g., the stadium billiards, which is hyperbolic in the noninteracting limit. In
the strong-interaction limit of the stadium billiards, the particles will localize in
the semi-circular caps. Also the Coulomb-interacting two-particle billiards in a
square container has been shown to become (quasi)regular in the strong-interaction
limit [95]]. It is not known, however, if the (quasi)regularity at strong interactions
occurs in all billiard tables. Further studies would also be required to see how the
results of the strong-interaction limit change when considering more than two
particles.
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We note that also previous studies for interacting two-particle billiards have
demonstrated some traces of quasi-regularity: in Ref. [41] the Coulomb-interacting
two-particle square billiards in a magnetic field was shown to have some tra-
jectories with quasi-regular properties, and, e.g., in Ref. [28] some signatures of
sticky behavior were found both in the Coulomb-interacting and in the Yukawa-
interacting two-body circular billiards. In contrast to these previous studies, we
have thoroughly demonstrated the existence of sticky trajectories in the Coulomb-
interacting circular billiards both in the weak and strong-interaction limits and
shown the intermediate-interaction regime to be hyperbolic at the time scales we
have studied.

Also, our conjectures on the universal effect of the Coulomb-interaction for different
billiards in weak, intermediate, and possibly also in strong-interaction regime are
drastically different to what has been found in soft potentials. For example, in
a deformed harmonic oscillator chaoticity of Coulomb-interacting two-particle
dynamics was found to depend heavily on the shape of the confining potential for
all interaction strengths [34].

The diffusion process presented interesting phenomena as itself in addition to
contributions to the above insights. Our study focused on a case where we had
a uniquely corresponding single-particle system in the noninteracting limit. It
would be of further interest to extend this study to different ensembles, e.g.,
with the initial velocities following the Maxwell-Boltzmann distribution. Also, a
natural extension of the diffusion process would be to consider a transport process
through a point contact both with a billiard model and also with a smooth potential
landscape, which is a more realistic model for experimental setups.

Another significant contribution arising from this thesis is the Bill2d code, which
has been expanded vastly during this research. Bill2d offers a fast, flexible, and
expandable package applying the molecular dynamics approach to interacting
many-body billiards, and it is readily applicable to several systems ranging
from billiards to soft potentials and periodic lattices. The code is already being
further used to study, e.g., the soft Lorentz gas, which is a prototype model
that draws motivation from both the fundamentals of classical chaos (see, e.g.,
Ref. [98]) and also from recently fabricated artificial graphene-like structures [89-93].
Furthermore, we plan to publish the code in near future after implementing a few
minor improvements.
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Appendices

A Calculation of Poincaré section in one-dimensional
two-particle Coulomb-interacting billiards

In this section we demonstrate how to calculate a Poincaré section of a system. As
an example, we use one-dimensional two-particle Coulomb interacting billiards,
where the particles, labeled by 1 and 2, are confined to the interval g € [0,1]. The
Hamiltonian [Eq. (4.16)] describing the system is

_los a
H= 2(p1+p2)+ — (A.1)
where ¢; and ¢, are the generalized coordinates and p; and p, the generalized
momenta. Without any loss of generality, we have chosen g1 < g.

The energy of the system is fixed to H = 1 so that the interaction strength a has
the limits 0 < o < 1 (for details see Sec. [4.1). For our demonstration, we choose
a=1/2.

First thing to do is to use the available conservation laws to reduce the number
of coordinates. Restricting ourselves to the energy surface H = 1 allows us to

describe p; as
200
p2 = \/2 - P2, (A.2)

2 —q1
where we have chosen to consider only positive values of p.

We define the Poincaré section (collision map)

S ={(q1,92,p1,p2) |92 = 1}, (A.3)

which corresponds to collisions of the particle 2 with the boundary at g = 1. The
Poincaré section S is a two-dimensional surface that can be fully parametrized
with g; and p;.

First we propagate a large ensemble of trajectories with random initial conditions
and record all their crossings with the Poincaré section S. This allows us to see
the structure of the phase space. Next, to clear up the figure, we choose a few
trajectories with which the structures of the phase space are demonstrated clearly
and show only the crossings of these hand-picked trajectories with the Poincaré
section S.

The resulting Poincaré section is shown in Fig. The system has a mixed
phase space with multiple KAM-islands. It is noteworthy that the structure
of the phase space has qualitative similarities to the Poincaré section in one
dimensional system with two Yukawa-interacting particles for certain parameters.
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For Yukawa-interactions (screened Coulomb) the interaction potential is

exp(—Algr — q21)
191 — g2

V(g1 q2) = (A.4)

where A is the screening parameter.

To demonstrate the similarities, we show in Fig. 43| the Poincaré section for the
Yukawa-interacting billiards with the total energy H = 1.56 and the screening
parameter A = 0.6. We point out that the Yukawa-interacting system, including the
Poincaré section we show here, has already been studied in Ref. [26]. The KAM-
islands of the Yukawa-interacting system with these parameters are remarkably
similar to the islands in the Coulomb-interacting system: the positions and the
structure of the islands are roughly the same for both systems. However, there
are likely to be small scale differences in the structures of the phase spaces, as as
already seen in the islands at q; 2 0.4.
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0.0 0.1 0.2 0.3 0.4 0.5
q1

Figure 42: Poincaré section of one-dimensional two-particle Coulomb-interacting
billiards with the total energy H = 1 and the interaction strength & = 0.5.

0.3 0.4 0.5

Figure 43: Poincaré section of one-dimensional two-particle Yukawa-interacting
billiards with the total energy H = 1.56 and the screening parameter A = 0.6. This
was first calculated in Ref. [26].
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B Scale transformations for equalization of geomet-
rically similar Hamiltonian systems with magnetic
and electric fields

The essential difference between different energy and length scales of a Coulomb-
interacting many-body system is the effect of the Coulomb interaction on the
dynamics. For example, the Coulomb interaction has little effect on the system
if the total energy of the system is high compared to the (Coulomb) interaction
energy.

To obtain a variable to describe the strength of the Coulomb interaction, we show
in the following that every energy and length scale of a Coulomb-interacting many-
body system can be reduced to a fixed energy and length scale of a geometrically
similar system by (i) introducing a scale parameter in the Hamiltonian to describe
the strength of the Coulomb interaction and (ii) rescaling the scalar and vector
potentials, if present.

Note, however, that the theorem holds only for a specific form of the Hamiltonian.
To motivate the form, we first calculate the Hamiltonian of a Coulomb-interacting
many-body system of equally charged particles under stationary scalar and vector
potentials. The Lagrangian of such system is

b= szefz Z4neo||r_r|| qZ” Al - Z%W (B-1)

where r; and #; are the position and velocity of the ith particle, respectively; m,
and g, the mass and the charge of the particles; c the speed of light; A the vector
potential; and ¢ the scalar potential. In the sums, the indices i and j run over all
the particles.

By introducing Hartree atomic units (a.u.), such that g, = m, = R =1, the
Lagrangian reduces to

ED D W e

i<j Hrl -t ”

+ Z - A(r;) — Z (i), (B.2)

where we have absorbed the speed of light in a.u., ¢  137.036, into the vector
potential A.

Next we transform into the Hamiltonian formalism. By choosing the generalized
coordinates for the ith particle, g, as the cartesian coordinates r;, we get the

generalized momentum
p; = Vil = # + A(ry), (B.3)

i.e., the cartesian velocity corresponds to the generalized momentum minus the
vector potential.

The Hamiltonian yielding the equations of motion is obtained from Eq. (2.14),
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which gives

+ Z (ry). (BA4)

=5 Z A(rl

Motivated by the form of the Hamiltonian in Eq. (B.4), we will next derive the
following theorem.

i<j i 1"]”

Theorem 2
All systems with Hamiltonians of form
1 2 1
H 7 /t == i A i + + i BS
(q,p,1) ZZ[p 4)] ;‘Ilqi—qjll ZAJ(q) (B.5)

can be reduced to a fixed energy and length scale of a Hamiltonian
system that is described by a new set of coordinates (Q, P, T) of the
extended phase space and the Hamiltonian

kern=;Y[P-AQf Lo ontLe.  ®9

where «a is a scaling parameter called the interaction strength that
depends on the length and energy scales, and A and ¢ are rescaled
vector and scalar potentials.

Proof. To prove the theorem, we derive the scale transformations that yield the
desired form of the Hamiltonian. We begin by scale transformation of the phase
space coordinates

@, pst) = (Q; =g, P =B"p,t). (B.7)

Here y is defined by the desired length scale and 8 by the energy scale as we will
see during the proof. The Hamiltonian that yields the equations of motion for the
new coordinates (Q,, P;, t) is given by Eq. (2.41)), which yields

K(Q.Pu) =p QP = 5 ¥ 5y [P AQ)f

ﬁl /27/ 12
+ + 1 B8
Y Ta=ai T chp(Q (B.8)
where the vector potential has been rescaled by

A - AQ) = B17AQ)). (B.9)
Note the use of the notation f(4,(Q,), p,(P)) = f(Q;, P)).
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The equations of motion are obtained from Egs. (2.17) and (2.18) yielding
dQ;

= VeK ="y [P - AQ)] (B.10)
AP, ~ ‘31/2 2
e ‘; 0 —qr (%2

2y Z P,~AQ)] VoAQ) - FVod(@). (B

In order to further simplify these equations, we need to reparameterize time,
T(t) = p~'pt, (B.12)

which gives us

sz _ _ dQl ©.9) A
= =y [Pi- AQ)) (B.13)
ap; 4P @) _ By
P _pryndh @ ]Z G -aT (Qi-Q)
+ ) [Pi-AQ)] Vo AQ) - Vod(@), (B.14)

where we have absorbed g into the scalar potential ¢ by rescaling
P(Q) = P(Q)) = BH(Q)). (B.15)

Denoting o = fy, the Hamiltonian corresponding to equations of motion (4.12)

and (4.13)) is

K(Q,P,T) = 22[13 - A(Q)] Z”Q Q”+Z¢Ql (B.16)

1<j

which can easily be checked with Egs. (2.17) and (2.18).

In summary, to transform to the length and energy scale defined by y and g,
respectively, we make a transformation in the extended phase space,

(q.p.t) > P=8""p,Q=yq,T=p""p, (B.17)
which must be accompanied by rescaling of the vector and scalar potentials as

A — A(Q) = B'A(Q) (B.18)
¢ = H(Q) = BP(Qib), (B.19)
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which give the Hamiltonian for the new variables (Q, P, T),
K(Q,P,T) = BH(Q, P, 1)
=Y [P-A@)]+ Y Goan* L Q) (B.20)
i i j i

i<j

where a = fy. m]

To emphasize, all length and energy scales of geometrically similar systems can be
reduced to a single constant energy surface, e.g. K(Q, P, T) = 1, of the system with
the Hamiltonian K(Q, P, T).

We conclude our discussion on the scale transformations by a short demonstration.
The propagation scheme is the modified velocity Verlet algorithm for arbitrary
magnetic fields described in Sec. 4.2 with the time-step At = 107°. As a reference
system we take a square billiard table with the side length 2 under a magnetic field
of strength B = 3 perpendicular to the table. Two Coulomb-interacting particles
are given the total energy E = 3 (with @« = 1) and propagated up to t = 15. The

resulting trajectory is shown in Fig.

Next, we wish to calculate the same trajectory in a system where the length of
the side of the table is 1 and the total energy of the system E = 1. These give us
p=1/3and y = 1/2, and thus a = fy = 1/6. Using the scaling transformations of
Eq. (B.17), we obtain the propagation time ¢ ~ 13. Finally, to get the value of the
magnetic field, we remind that B = V X 4, i.e., the strength of the rescaled magnetic
field is B = y~1'/2B = 6/ V3, where the factor y~' comes from the rescaling of
length in the derivative and the factor /2 from the rescaling of the vector potential

according to Eq. (B.18).

The trajectory calculated in the rescaled system is shown in Fig. and it is the
equivalent of the trajectory in Fig. as it should be. Minor differences near
the end of the simulation are due to numerical errors in the simulation which are
important in the long run due to hyperbolicity of the trajectory.
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Figure 44: The same trajectories calculated by rescaling the length and energy
scales of the system. The initial positions are marked with circles and the final
positions with squares. The parameters are given in the text.
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C Efficient propagation algorithm for magnetic sin-
gle-particle rectangular billiards

We document here an efficient algorithm for the propagation of magnetic single
particle billiards with a rectangular table. The algorithm was originally developed
and implemented with Python by Visa Nummelin. For this thesis we have redone
the implementation to make it faster by rewriting the algorithm as a Python
module using C++ via the Python API defined in the C-header Python.h.

1. Asan input the algorithm takes the initial point in phase space, I = (xo, o, O9),
where x( and y, are the cartesian coordinates and 0, € [—T, 7t] is the oriented
angle of the direction of velocity v as shown in Fig. The lengths of the
sides of the rectangle are denoted by L, and L,, the Larmor radius by , and
the speed of the particle by v.

Input: I = (xo,yo, 60), Ly, Ly, r,and v

2. The centerpoint C of the circular trajectory is calculated [see Fig. for
the geometry from which this step is calculated]. Notice that the traveling
direction on the circular trajectory is chosen to be clockwise, i.e., we fix the
direction of the magnetic field.

C « (xo + rsin(0p), yo — 1 cos(0y))

3. All possible points of collision with the boundary are calculated. This is
done by considering a circle of radius r centered at C and calculating all its
crossings with the boundary. Due to fixing of the traveling direction, we
can eliminate one crossing with each side from the calculation. In Fig.
we visualize this step of the algorithm. The possible collision points are
marked with arrows, and the triangle, from which the coordinates of one of
the possible collision points can be calculated by Pythagorean theorem, is
shown.

If no crossings are found, the particle does not collide with the boundary.
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if |C,| < r then

possible_points_of_collision Zepend (0,C, — J1* = C2)
end if
if |C,| < r then

ossible_points_of_collision Zrperd (Cy + [r> = C2,0)
P p y
end if
if |L, — C,| < r then
possible_points_of_collision m (L., Cy + \/r2 —(Ly — Cy)?)
end if
if L, — Cy| < r then

possible_points_of_collision &l ey - V2= (L, - C))? Ly
end if

if possible_points_of_collision is empty then
End program: no collisions
end if

4. The correct point of collision is chosen from the list possible_points_of_collision.
This is done by first calculating the distance s when traveling clockwise along
the circular arc from the initial point I to each possible collision point P and
then selecting the point corresponding to the shortest path.

s = 2mr
for P; in possible_points_of_collision do
(I-C)-(Pi—C)
Stemp € T ArcCos [r—2
if (I - C)(P; - C), — (I-C),(P; — C); >0 then
Stemp — 27mr — Stemp
end if
if 0 < Semp < s then
5 Stemp
P« Pi
end if
end for

We comment that s is first initialized to largest possible value so that it is
always replaced in the loop. The first if-clause makes certain that the arc
length we get is always positive, and the second if-clause finds the point to
which the (clockwise) arc length is the shortest and eliminates the possibility
to erroneously return the initial point as the collision point.

5. Once the point of collision P is obtained, we must calculate the oriented
angle 0 to obtain full knowledge of the point in the phase space. Simple
trigonometric consideration gives us

C,~P
O « arccos (%)

6. The time the particle has advanced is

t«—s/v
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Figure 45: Schematic figures explaining the steps of the algorithm. In (a) we define
the coordinates used by the algorithm. In (b) we demonstrate the geometrical
consideration used to calculate the centerpoint C. Finally, in (c) we show the
geometry used to calculate the coordinates of one of the crossings of the circle
centered at C with the boundary.

7. Finally, the output
Output: (P,,P,,0),t

The entire algorithm is shown on page We note that when implementing the
algorithm, one must look out for rounding errors and correct them.

Finally, to check that the algorithm works, we have calculated the Poincaré section
of magnetic square billiards of unit length sides with the Larmor radius r = 0.49
both with the efficient algorithm in Fig. and with molecular dynamics within
the velocity Verlet scheme in Fig.[46(b)] The Poincaré section is parameterized by
the arc length s along one side of the table, e.g., the x-coordinate when colliding
with the bottom of the square, and cos(¢), cosine of collision angle. As seen
from the figures, the calculated Poincaré sections are equivalent, i.e., the efficient
algorithm works well.
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Figure 46: Poincaré sections for magnetic square billiards calculated with (a) the
efficient propagation algorithm and (b) molecular dynamics with the velocity
Verlet propagation algorithm.
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Algorithm 1 Propagation algorithm for magnetic single-particle rectangular bil-
liards
Input: I = (xo, yo, 00), Ly, Ly, and r

#Centerpoint:

C=(C,, Cy) « (x0 +rsin(6p), yo — r cos(6y))

#Calculate all possible points of collision P with the boundary:
if |C,| < r then

possible_points_of_collision m 0,C, - 1/1f2 - Ci)
end if
if |Cy| < r then
append

possible_points_of_collision T (Co+ (- C;, 0)
end if
if |L, — C,| < r then
possible_points_of_collision Zepend (Ly, Cy + P2 = (L, — Cy)?)
end if
if |L, — C,| < r then

possible_points_of_collision Zppend (Cx— r* = (L, - Cy)* L)

end if

if possible_points_of_collision is empty then
End program: no collisions
end if

#Select the point of collision:
s = 2mr
for P; in possible_points_of_collision do
(I-C)-(P,—C)
Stemp € T ArcCos [r—2
if (I -C),(P; - C), — (I-C),(P; - C), >0 then
Stemp « 2mr — Stemp
end if
if 0 < Stemp < s then
5 & Stemp
P« Pi
end if
end for

O « arccos (Cy ;Py)
t «—s/v
Output: (P,,P,,0),t
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D Bill2d - A molecular dynamics approach to bil-
liards

Our program, Bill2d, implements a molecular dynamics scheme for the study of
chaos in two-dimensional many-body billiards. Bill2d is written following the
object-oriented paradigm in C++ to offer speed, expandability, and flexibility. The
code is modular, i.e., there are several different classes that implement a specific
part of the program. This allows for an easy construction of stripped binaries, e.g.,
for the calculation of statistical properties of the systems. We note that Bill2d has
been previously used to study, e.g., the dynamics of classical Wigner molecules [87]
and two-particle circular billiards [88]; furthermore, Bill2d is currently used to
study, e.g., the soft Lorentz gas.

The main propagation procedure was already described in Sec. but we repeat
it here for convenience. This is also illustrated as a flowchart in Fig.

First, we obtain the initial state of the system in the phase space by
either manual user input or by randomly choosing the state. The
energy of the initial state is always fixed. The random initial state
is chosen by first randomizing the positions of the particles in the
energetically allowed part of the configuration space. We then calculate
the remaining energy and distribute it evenly among the particles.
The directions of the velocities are randomized as well. Distributing
the speeds evenly should not affect the results since the velocities are
usually mixed shortly after the propagation has been started due to
chaotic properties of many-particle billiards.

Next, we propagate the particles one time-step forward with one of
the algorithms described in Sec. After each time-step, we check
that the particles are inside the billiard table. If some of the particles
have crossed the boundary, we (i) save the position, incoming velocity,
and the collision angle if we are calculating Poincaré sections and (ii)
apply the following scheme to calculate the effect of the collision with
the boundary.

1. The collision point and the time of the collision are calculated by
approximating the trajectory backwards as a straight line in the
configuration space. The particle in question is then propagated
backwards to the collision point, which corresponds to some time
between the actual time-steps.

2. The velocity is changed according to the billiard reflection law in

Eq. (2.79).

3. The particle is propagated with the new velocity linearly to the
end of the time-step.

As we see from the description, we do not use the main integration
scheme when handling the boundary collisions. This results in increase
in energy in interacting many-particle systems. This is the most promi-
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nent approximation in the entire propagation scheme, and therefore,
the propagation algorithm, i.e., the velocity Verlet algorithm, is only
of second order in our code. Nevertheless, we have found that the
method is sufficiently accurate for the purpose of our calculations.

After handling the boundary collisions of each particle, we check if the
end criterion, e.g., the maximum simulation time, is fulfilled. If it is
tulfilled, the simulation ends; otherwise we continue the propagation.

( Initial state )4—

Y

Allowed
configuration?

* Yes

Propagate one
timestep

—>

Y

Is the configuration
inside the table?

¢N0

Handle boundary
collision(s)

Has the end
criterium been met?

Yes

Figure 47: Flowchart of the propagation scheme in the Bill2d code
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Next, we describe the structure of the actual implementation in detail. The structure
is roughly visualized in Fig. Notice that the chart shows both inheritance
diagrams and relations of different classes in the same figure.

The user-interface of Bill2d has been constructed using the Boost C++-libraries to
allow the use of both a command line and a configuration file to supply the user
input. One can even use them simultaneously, but in case of conflicts between
these two, the command-line arguments take precedence. The user-interface is
complete, i.e., no recompilation of the program is required when changing systems
or parameters. The user-interface is implemented within two classes:

Parser
Parser handles the user-interface and stores the user input into an instance
of ParameterList.

ParameterList
ParameterList is a container for the user input. It contains all the variables
needed to specify what to simulate, how to simulate, and what and how to
save.

Propagation of the billiard system is implemented within several classes:

Billiard

This is the base class for the time-evolution process: the propagation al-
gorithm is implemented in Billiard. Classes derived from Billiard expand
its functionality by replacing the propagation algorithm with ones suit-
able for magnetic fields (MagneticBilliard) and inter-particle interactions
(InteractingBilliards and InteractingMagneticBilliards). Furthermore, Bil-
liard class contains all the data buffers, such as trajectories and velocities of
the particles.

Table
Table is an interface class that defines how a billiard table should be imple-
mented. It has several children, most through the class CompoundShape.
CompoundShape implements methods to construct billiard tables from
elemental structures, such as lines and semi-circles, to allow for easy con-
struction of new tables. Boundary collisions and periodicity are handled by
Table, which is used by the propagation procedures of Billiard.

Potential
This class implements the interface for potential-particle interactions. Im-
plementing new potentials is easy, and currently we have implemented the
harmonic oscillator potential and a soft stadium.

Interaction
This class implementes the interface for interparticle interactions. Currently,
only Coulomb interaction is implemented, but also other interaction types
can be implemented with ease.
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The class System is used to initialize all the classes for the propagation according
to the specifications of an instance of ParameterList.

During the simulation, Bill2d outputs some information, e.g., the simulation
time, to the stdout-stream. After the simulation, the simulated data is saved to a
HDFb5-file according to user’s specifications. The file-output is handled within
the Datafile-class. One can ask to save trajectories; velocities; Poincaré sections;
energies (as a function of time); number of particles (as a function of time); and
position-, speed-, and velocity-histograms. The file-output routine is a C++-class
that uses the C++-interface of the HDFb5-library. Finally, the output can be analyzed
with several Python-scripts that can be used to visualize all the saved data.

Furthermore, Bill2d is bundled with GNU Autotools to make compilation and
installation easy. This means that the standard

./configure && make && make install

wizardry works. Furthermore, the software is supplemented with a few tests that
compare a few simulations to reference data to ensure that the code works as
expected.
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Abstract

We apply amolecular dynamics scheme to analyze classically chaotic properties
of a two-dimensional circular billiard system containing two Coulomb-
interacting electrons. As such, the system resembles a prototype model for
a semiconductor quantum dot. The interaction strength is varied from the
noninteracting limit with zero potential energy up to the strongly interacting
regime where the relative kinetic energy approaches zero. At weak interactions
the bouncing maps show jumps between quasi-regular orbits. In the strong-
interaction limit we find an analytic expression for the bouncing map. Its
validity in the general case is assessed by comparison with our numerical data.
To obtain a more quantitative view on the dynamics as the interaction strength
is varied, we compute and analyze the escape rates of the system. Apart from
very weak or strong interactions, the escape rates show consistently exponential
behavior, thus suggesting strongly chaotic dynamics and a phase space without
significant sticky regions within the considered time scales.

PACS numbers: 05.45.Pq, 82.40.Bj, 73.21.La

(Some figures may appear in colour only in the online journal)

1. Introduction

Classical billiard systems have attracted continuous interest for several decades due to
their applicability to demonstrate chaotic dynamics through (semi)analytic and numerical
calculations [1-3]. On the other hand, laboratory experiments on, e.g., microwave billiards
[2], quantum dots [3], and even more recently graphene [4] have rapidly extended the interest
in chaos across different fields in physics. Along this development, billiard systems have
become a key element in the studies of classical and quantum chaos both theoretically and
experimentally.

Most billiard studies have focused on single-particle properties of systems ranging
from regular (integrable) to chaotic (nonintegrable) systems, including also pseudointegrable
billiards [5] such as regular billiards with singular scatterers inside the system. Two-particle

1751-8113/13/235102+09$33.00 © 2013 IOP Publishing Ltd Printed in the UK & the USA 1



J. Phys. A: Math. Theor. 46 (2013) 235102 J Solanpéi et al

billiards have been studied with hard-sphere contact interactions in, e.g., circular [6, 7],
rectangular [6, 8] and mushroom-shaped [6] cavities. Also, two-particle billiards with Yukawa
interactions have been studied in one-dimensional [9—-11] and two-dimensional (2D) systems—
including a circular case within both a classical [12, 13] and quantum [14] treatment. The
quantum circular billiard with two particles has also been studied with Coulomb interactions
[15]. However, classical studies with Coulomb interactions have been restricted to 2D
harmonic oscillators [16—19] including an anharmonic oscillator [20]. Exceptions to this class
are periodic systems with focuses on ergodic and topological properties [21] and transport
phenomena [22, 23], as well as rectangular billiards in magnetic fields [24] studied with
molecular dynamics (MD).

The MD scheme is a computationally efficient approach to many-particle billiards that, in
principle, can be extended to large systems without compromising the numerical complexity
of the long-range Coulomb interaction. It is noteworthy that the Coulomb interaction is a
physically meaningful choice when considering similar systems in, e.g., quantum-dot physics
[3, 25, 26]. Experimentally, vertical or lateral semiconductor quantum dots can be tailored at
will with respect to the system shape, size, and number of confined electrons. In this respect
examination on the interaction effects in few-electron billiards have immediate relevance to
physical applications.

Here we adopt the MD approach to analyze the classical chaoticity of a 2D circular hard-
wall billiard with two Coulomb-interacting electrons. This particular system is chosen under
examination as it represents, alongside a harmonic oscillator, the simplest prototype model
for a quantum dot. Secondly, the noninteracting properties of the system are well known [1].
We may also expect to find analytic, approximate expressions for the bouncing map in the
strong-interaction limit. In the intermediate regime, the system is expected to exhibit chaotic
behavior. Due to these features the system provides a well-grounded path into examinations of
both classical and quantum chaos in Coulomb-interacting billiard systems. We point out that
soft billiards are better known in this respect; for example, the two-electron circular harmonic
oscillator is regular and becomes mixed (partly regular, partly chaotic) if ellipticity is added
in the external potential [19].

We can always introduce an open billiard corresponding to a given closed billiard by
generating holes in the boundary via which the particle(s) can escape the table. The escape
probability at some infinitesimal time interval (or at a certain number of collisions) is called
the escape rate. The form of the escape-rate distribution is governed by the structure of the
phase space [27] and the position(s) of the hole(s) [28]. If the phase space has sticky regions,
i.e., regions where a (possibly chaotic) trajectory gets stuck for a long period of time, the
escape rate and survival probability turn out to have an algebraic tail as time tends to infinity
[29-35]. On the other hand, if the phase space is fully chaotic and non-sticky, the escape rate
is asymptotically exponential. Sticky regions can result from several origins. For example,
internal stickiness—not due to Kolmogorov—Arnold—Moser (KAM) tori—can be induced by
marginally stable periodic orbits [36, 37]. External stickiness, on the other hand, is caused
by sticky KAM tori [29, 38, 39], although not all KAM tori are sticky. Different types of
stickiness have recently been reviewed by Bunimovich and Vela-Arevalo in [40].

The paper is organized as follows. In section 2 we briefly introduce the system and our
time-propagation scheme. In section 3.1 we show bouncing maps that demonstrate clear signals
of chaotic behavior through a large range of the interaction strength. At weak interactions,
bouncing maps are found to jump between quasi-regular trajectories. In section 3.2 we analyze
in detail the strong-interacting limit and find an approximate expression for the bouncing map.
The expression agrees with the numerical results, and at weaker interactions it becomes only
approximate. Finally, in section 3.3 we assess the degree of chaoticity by considering escape
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rates out of the system. Apart from very weak interactions, we find exponential escape in a
wide range of interaction strengths. This indicates strongly uncorrelated trajectories and thus
chaotic behavior. The paper is summarized in section 4.

2. System and methodology

We consider two Coulomb-interacting electrons in a circular hard-wall potential. The collisions
with the boundary are elastic and the system is described by the Hamiltonian

1 ) 2 o
H=-(vi|"+v2|") + ——— (D
2 [r| — 13

in Hartree atomic units (a.u.) (A = e = m, = (4mweg)~' = 1). Here r; is the position vector
of the ith electron from the center of the system, and « is a parameter that determines the
interaction strength. In all our simulations the total energy of the system is fixed to £ = 1 and
the radius of the circle to R = 1/2. The interaction strength is restricted to 0 < o < 1, where
o = 0 corresponds to noninteracting electrons, and « = 1 corresponds to electrons localized
at opposite sides of the circle with zero motion. We note that all Coulomb-interacting two-
particle circular billiards with different length and energy scales can be reduced to our system
by a suitable scaling of coordinates r' = yr, velocities vV = B'/?v, and time ¢’ = ~'/?y1.
The resulting Hamiltonian is similar to that in equation (1) with « = By (for detailed analysis
see [41]).

To propagate the electrons we use MD with the velocity Verlet [42] algorithm which, as
a symplectic and time-reversible algorithm is suitable for the study of (possibly chaotic)
Hamiltonian systems. A higher order integrator is not necessary for the system under
consideration: the numerical uncertainty resulting from a finite time step is dominated by
collisions with the boundary instead of the integration of Hamilton’s equations of motion. In
the velocity Verlet algorithm the positions and velocities of each electron are calculated from

r(t+ Ar) =r(t) + V() At + a@)Ar; )
vt + At/2) = v(t) + 3a(t) At 3)
a(t+ At =Y Filr(t + AD); )
vt + Ar) = vl(t + At/2) + Ja(t + Ar)At. )

We define cos 6 and s as the generalized coordinates describing the collisions with the boundary.
0 is the angle between the velocity vector of the incoming electron and the tangent of the
boundary, so that 6 < /2 and 6 > m /2 correspond to counterclockwise and clockwise
traveling directions, respectively. Here s €] — /2, 7 /2[ is the oriented arc length from the
chosen origin.

3. Results

3.1. Bouncing maps

In figure 1 we show examples of bouncing maps and electron trajectories for a two-electron
circular billiard with different interaction strengths «. In this case the bouncing maps consist of
14000 (@ = 1073) and 5500 (& = 0.2 and 0.7) collisions with the boundary. The noninteracting
circular system with @« = 0 is a well-known example of regular billiards [1] represented
by straight lines on the map (constant bouncing angle) and straight trajectories forming a
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_TI'/4 0 7r/4

Figure 1. Examples of bouncing maps (of one of the electrons) and trajectories for a two-electron
circular billiards with different interaction strengths: o = 1073 (up), @ = 0.2 (middle), « = 0.7
(bottom). Only a small section of the trajectories corresponding to the bouncing maps are shown.

star-shaped pattern, where the inner part of the circle remains empty. When o = 107> we find
emerging deviations from this limit as visualized in the inset of the upper panel of figure 1.
When the electrons pass each other the interaction is pronounced and we may find ‘jumps’
from one quasi-regular trajectory to another one (close-lying parallel lines in the inset).

In the intermediate-interaction range (middle panel of figure 1) the bouncing map shows
clear chaotic characteristics. As expected, the distribution of the bouncing map is centered
at & = m /2, so that, on average, the electrons hit the boundary along the normal vector.
If « is increased above o ~ 0.5 we find that for some trajectories the maximum of the
probability distribution for 6 splits into two. This is visible in the bottom panel in figure 1
for « = 0.7. The splitting is due to the fact that the particles are bouncing on the opposite
sides of the circle (in a collective circulating motion), so that the dominant collision angles
(for a large class of trajectories) are 7w /2 &+ §, where § is a small deviation. However, the
splitting is smoothed out when a large ensemble of trajectories is taken into account. When «
is increased further, the system gradually becomes (quasi)regular and eventually the bouncing
map reduces into a one-dimensional curve. In the following we carry out analytic calculations
in the strong-interaction limit.

3.2. Strong-interaction limit

In the strong-interaction limit ¢ — 1, the two-electron dynamics shows regular characteristics.
The electrons are confined at opposite sides of the circle as visualized in figure 2. Here we
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Figure 2. Two electrons oscillating at the opposite sides of the circle when the interaction is strong
(o Z 0.9). The initial positions and velocities are shown.

focus on the special case with total angular momentum L = 0 which is conserved due to the
rotational symmetry. Hence, according to the choice of coordinate axes in figure 2 we may
approximate x = r , ~ rp . We point out, however, that the y coordinate does not usually have
mirror-symmetry. Note also the position of s = 0 atx = 0 in figure 2, so that s € [—Smax, Smax]-

As the second approximation, the electron velocity perpendicular to the edge when a
collision takes place, v, , can be taken as a constant, i.e., it is approximately the same for
all possible values of s at all times. After a straightforward geometrical analysis, taking into
account the conservation of E and L, we can calculate v, and also vj(s), the tangential

velocity during the collision. Finally by using cos6 = v/ vf_ + vﬁ we obtain the following
strong-interaction approximation for the bouncing map of electron 1:

2K +2Uy — 2U, — L2/R2\ /?
U — Ue(s) + L2/R? ’

where K = [vlz’x(O) + vlzyv(O)]/Z is the initial kinetic energy of the electron, L =
x(0)vy,y(0) — y1(0)v; ,(0) is its initial angular momentum (note that x = x; ~ x; according
to our approximation above), Uy = «/[|y;(0)| + |y2(0)|] is the initial potential energy, and
R = 1/2 is the radius of the circle. Furthermore, equation (6) has three potential energy
components that have the expressions

cosb(s) = =% (1 + (6)

U, = , @)
[y2(0)| + v/R? — x(0)?
o
RN Y
o
Ue) = SR cos G/R) ©)

They correspond to the following situations where both E and L are conserved and x| = x;.
Firstly, U, is the potential energy corresponding to a situation where electron 1 touches the
boundary at# = 0 and electron 2 has its initial position and velocity. Secondly, Uy, corresponds
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Figure 3. Analytic result for the large-o limit (equation (6)) of the bouncing map (solid lines) for
a =0.99,0.95, and 0.9. The corresponding simulated, i.e., numerically exact values are shown by
points.

to a situation where both electrons touch the boundary at t+ = 0, and v; is the same as in
the previous (first) case. Finally, U, corresponds to a situation where both electrons touch
the boundary at s at unknown time, having the same v, as in the previous (second) case.
We point out that an alternative approximate formula for the full phase-space trajectory can
be obtained by using polar coordinates (within certain approximations) and by assuming a
constant Coulomb force. This simpler analytic scheme—explained in detail in [41]—Ieads to
a reasonable temporal agreement for several bounces at o > 0.99.

Figure 3 shows the results from equation (6) for « = 0.99, 0.95, and 0.9 (solid lines).
The simulated, i.e., the numerically exact values, are shown by points for comparison. As «
is decreased we find gradual deviation from the simulated data. At @« = 0.9 the deviation is
already clearly visible. We may thus state that equation (6) provides a reasonable approximation
for the bouncing map at « 2 0.9. This threshold slightly depends on the initial conditions;
the examples in figure 3 are chosen such that the deviations between the analytic expression
and the numerical data are relatively large. However, we point out that for longer times the
deviations between the applied strong-« approximation and the electron—electron interaction
effects will increase. As a result, we may expect that in large time scales the simulated points
in figure 2 will form a curve of a finite width.

3.3. Escape rates

Next we examine how the dynamics of the system changes as we move from the noninteracting
(o = 0) to the strongly interacting (¢ — 1) limit. A full description of the seven-dimensional
phase space, for example by means of a Poincaré section, would be difficult. Therefore, we
consider escape rates of the system by placing holes in the boundary. As already discussed in
the introduction, systems with sticky regions in phase space have power-law asymptotics of the
escape-rate distribution, whereas in fully chaotic systems without stickiness the escape-rate
distribution is exponential as t — oco. We remind the reader that escape rates are commonly
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Figure 4. (a) Histograms of the escape rates in a two-electron circular billiard. The noninteracting
case shows power-law behavior in the tail (curved solid line), whereas at 0.1 < « < 0.5 the escape
rate is exponential (straight solid line). (b) At very weak interactions o = 10~° we find a mixture
of these tendencies due to quasi-regular trajectories in the system.

governed by stickiness rather than regular/chaotic components of the phase space. Therefore,
we cannot make a complete assessment of the structure of the phase space, especially not close
to the limits« = 0 and ¢ — 1.

We set ten holes in the boundary covering together 1/50 of the boundary length—the
same fraction as in [43]. The escape rates are considered as a function of the total number
of collisions n, i.e., the sum of collisions of both particles, rather than the propagation time,
since the characteristic time scale strongly depends on the interaction strength «. For each o
we compute 2.5...6 x 107 respective trajectories with random initial conditions and store
the number of boundary collisions before the escape. Initial conditions are randomized in the
following way. First we pick random initial conditions for the particles in the energetically
allowed (Ei = 1) part of the configuration space. The remaining energy is then evenly
distributed as a kinetic energy for the particles. The directions of the initial velocity vectors are
randomized. The escape rate P(n) is defined as the ratio between the number of trajectories
escaping at the nth collision and the number of trajectories in the initial ensemble. Presenting
the escape rate as a function of the number of collisions instead of time might change the form
of the escape-rate distribution [44]. In our case, however, we have numerically checked that
the form of the escape-rate distribution is the same in both cases. The time steps are chosen
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in the range At = 107% ... 1077, so that the convergence is ensured in every calculation, while
the numerical efficiency is maximized.

Figure 4(a) shows the resulting histograms of the escape-rate calculations. First, the
noninteracting situation (¢ = 0) has a clear power-law tail with P(n) o« n=" 4 const, where
y =& 3.46. In contrast, when 0.1 < o < 0.5 an excellent fit to the exponential behavior
with P(n) = 49"~!/50" (straight line) can be found. This relation results from the system
geometry: each collision has an escape probability of 1/50, and thus for the nth collision to
lead to escape we find P(n) = (49/50)"~!(1/50). This essentially means that the correlation
with two successive bounces is completely lost, and hence the system can be classified as
chaotic.

In figure 4(b) we take a closer look at the weak-interaction limit with @ = 107%. A good
fit to the computed data is obtained with a power-law curve having y ~ 4.08, i.e., the escape
is slightly faster than in the noninteracting limit. However, at small time scales the behavior is
very similar to ¢ = 0 as the trajectories essentially follow the same (quasi-)regular patterns.
These quasi-stable trajectories also give rise to a power-law tail in the escape-rate distributions
for weak interactions. However, the interaction reduces the lengths of the quasi-regular parts
of the electron trajectories and thus decreases the survival probability (and escape rates) at
longer time scales.

In conclusion, our results on the escape probabilities show that the transition to exponential
escape rates is (i) smooth (not abrupt as a function of «), (ii) occurs first at large times
(large number of collisions) in the histogram, and (iii) generally appears at relatively small
values for a. Our tests indicate that at « ~ 1073 the most part of the calculated escape-rate
histogram is closer to an exponential behavior than to the power-law one. We point out that
these numerical experiments do not exclude the possibility of power-law escape rates with
intermediate interaction strengths as n tends to infinity. Also, the large-o regime is excluded
in this analysis due to numerical reasons: at @ > 0.5 we would need to decrease the size of
the holes due to small-scale motion close to the boundary, and thus the time step should also
be decreased. Hence, for the consistency of results we have focused here only on the range
0<a<05.

4. Summary

To summarize, we have looked thoroughly at the chaotic dynamics of circular billiards contain-
ing two Coulomb-interacting electrons with the full range of interaction strengths (0 < o < 1).
Close to both weak- and strong-interaction limits the bouncing maps show traces of quasi-
regular behavior, although the dynamics generally appears as chaotic. In the strong-interaction
limit we are able to find an analytic expression for the bouncing map that agrees very well with
the calculated data at « — 1. At smaller « the predictive power of the expression reduces,
although the agreement is reasonable down to o ~ 0.9. To assess the change in dynamics as
the interaction is increased we have calculated the escape rates as a function of « and found
similar exponential behavior through a wide range of interaction strengths. Thus, within the
examined time scales our results suggest universally chaotic behavior in Coulomb-interacting
hard-wall billiards apart from the noninteracting and possibly strong-interacting limits.
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