
Tommi Kokko

Neural Networks for Computationally Expensive Problems

Master’s Thesis in Information Technology

May 30, 2013

University of Jyväskylä

Department of Mathematical Information Technology



Author: Tommi Kokko

Contact information: tommi.kokko@gmail.com

Supervisors: Jussi Hakanen, and Karthik Sindhya

Title: Neural Networks for Computationally Expensive Problems

Työn nimi: Neuroverkkojen käyttö laskennallisesti raskaissa optimointitehtävissä

Project: Master’s Thesis

Study line: Vaativien järjestelmien optimointi ja hallinta

Page count: 101+22

Abstract: Optimization often involves usage of a simulator, which can be computationally

expensive to use. Simulators can be replaced by surrogate models, which are computation-

ally cheaper and can be almost as accurate as the simulators. In this thesis we consider closer

a surrogate model, namely neural networks. We prepare surrogate assisted optimization by

building, training and validating different neural network models for a surrogate model. In

addition we compare how different training data sets, which are generated by different data

sampling techniques, effect the generalization accuracy of neural networks.

Keywords: surrogate model, MLP, recurrent MLP, RBF network, data sampling

Suomenkielinen tiivistelmä: Optimointiin tarvitaan usein simulaattoria, jotka voivat olla

laskennallisesti raskaita. Simulaattorit voidaan korvata sijaismalleilla, jotka ovat nopeampi

laskea ja voivat olla lähes yhtä tarkkoja kuin simulaattorit. Tässä työssä tarkastelemme

tarkemmin yhtä sijaismalli, neuroverkkoja. Valmistelemme sijaismalli avusteista optimointia

rakentamalla, opettamalla ja validoimalla erilaisia neuroverkkoja sijaismalliksi. Lisäksi ver-

tailemme eri data samplaustekniikoilla generoitujen opetusdatojen vaikutusta neuroverkko-

jen approksimointitarkkuuteen.

Avainsanat: sijaismalli, MLP, takaisinkytketty MLP, RBF verkko, data samplaus
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Glossary

NN neural network

SLP single layer perceptron

MLP multilayer perceptron

RBF radial basis function

RMLP recurrent multilayer perceptron

TF transfer function

x input of neural network

n number of inputs

y output of neural network

k number of outputs

w number of synaptic weights

b bias

t p training pattern

ep epoch

t center

η learning rate

α momentum

R Euclidean space

Lhs Latin hypercube

Ham Hammersley sampling

OA Orthogonal array
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1 Introduction

In this thesis we are studying effectiveness of different surrogates and in addition we study

the dependence on different data sampling techniques. Surrogates can be used in computa-

tionally expensive optimization problems. Optimization is a systematic search for minimum

or maximum values of a problem. The problem may be e.g. an industrial process or a prod-

uct. Optimization is often used to improve the performance, the cost efficiency or the design

of a problem. The process to be optimized may be for example, a plant [Fahmi and Cre-

maschi 2012; Sindhya et al. 2013] or a product to be optimized for example microprocessor

[Marianik et al. 2009] or airfoil shape [Park et al. 2009].

For optimization we need a simulation model for evaluating the performance with different

settings. For example a simulator, which is built to describe the process as accurately as

possible. As simulators have become more and more accurate they have also become more

and more expensive to operate. Here computationally expensive means computational time,

which is needed for a simulator to evaluate a single performance. Hence it might take several

days to complete the optimization process, because typically a large number of evaluations

is needed [Park et al. 2009].

To handle computationally expensive simulators researchers have started to find out ways to

decrease the computational time required for optimization. One way of doing it is to use

surrogate models to replace the expensive simulators. Different surrogates models are com-

monly used e.g. artificial neural networks, kriging and support vector machines [Jin 2005], as

they are very fast to compute. There are numerous successfully completed surrogate assisted

optimization problems in literature (see e.g. [Benedetti, Farina, and Gobbi 2006; Kusiak,

Zhang, and Li 2010; Simpson et al. 2001; Marianik et al. 2009; Fahmi and Cremaschi 2012].

We have chosen one surrogate model, namely artificial neural networks and let’s call those

just as neural networks, for a closer look, because they can be used for function approxima-

tion, classification, pattern recognition and control, among other purposes as well [Haykin

1999; Hassoun 1995]. Neural network consists of layers, namely input, hidden and output

layers, which consists of computation units called neurons. Neural network takes input val-

1



ues and after several operations it produces an output, these are called approximation values.

If the neural network is properly trained, approximation values will match the real function

values. For training we need a training data, which consists of the input values and the real

function values of the problem, which we want to approximation. Then neural network is

trained by using the training data. In Chapter 2, we present a broad introduction to neural

networks and their features.

In this thesis, our focus is in function approximation properties of the neural networks. Our

research problem is how to build an accurate neural network model for a function approxi-

mation problem and how does different data sampling techniques affect the accuracy of the

neural network. Building a neural network model, training it and validating it are essential

phases before it can be used in optimization. In this thesis, we do not deal with surrogate

based optimization, but instead concentrate on preparing surrogate model, that is neural net-

work, to be used. Our secondary goal is to give practitioners a practical introduction to

neural networks and show how to use them. Hence a reader would not need to spend months

of studying neural networks literature, before acquiring the knowledge to use them.

Structure of the thesis is as follows. In the following sections we firstly introduce single

objective optimization and how surrogates can be used in single objective optimization. Sec-

ondly we discuss about multiobjective optimization and give an example of wind turbine

optimization. In Chapter 2 we discuss about neural networks theory. In Chapter 3 we in-

troduce some heuristics found from literature, which can be useful when neural networks

are implemented. In Chapter 4 we give a numerical experiment about neural network design

using some heuristics and comparing different data sampling techniques and data sizes effect

on neural networks training. In Chapter 5 we provide conclusions about this work.

1.1 Single objective optimization

In this thesis our motivation is to study the surrogates and sampling techniques to be able

to finally use them for computationally expensive optimization problems. Hence, we first

provide a brief background on optimization to bring the thesis into the context. In this section

we discuss about basic concepts of single objective optimization. In addition we give an
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example of surrogate assisted single objective optimization study, found from literature.

1.1.1 Basic concepts

The goal of solving optimization problem is to find the best possible solution optimizing a

given objective with respect to given constraints. The problem can be basically anything,

whether we want to improve some existing feature of e.g. controls, machineries, plants,

distribution channels, etc. or we want to find out different designs for new creations. The

objective is illustrating the features, design parameters, performance parameters, etc. of

the optimization problem, which we want to improve. Modeling of the objective or the

optimization problem is not considered in this thesis. Hence the optimization problem is, in

general, formulated as

min
x

f (x)

subject to g(x)≤ 0

h(x) = 0

α ≤ xi ≤ β , α,β ∈ R,

(1.1)

where f is the objective function, g is inequality function constraint, h is equality function

constraint and α , β are bounds for variables x = [x1, . . . ,xn]. To avoid confusion, we are

only considering minimizing as maximizing is the same as min 1
f (x) or − f (x). Although

all of the problems might not look like this and they may contain only some or none of

the constraints. Let’s call the variables x as solutions and they belong to a decision space.

Corresponding objective (function) values f (x) ∈ R belong to an objective space, which, in

here, is same as the R. If problem consists of constraints, then feasible solutions are the ones

that are satisfying all of the constraints. Feasible solutions belong to a feasible decision space

S ∈ Rn. The objective value of the optimal solution is better than other objective values. We

have basically two different types of optimal solutions (see Figure 1)

• Local optimum: The solution (x∗) is a local optimum if f (x∗)≤ f (x) for all x∈ S, who

||x− x∗|| ≤ δ , δ > 0. We can have multiple local optima.

• Global optimum: The solution (x∗) is a global optimum if f (x∗) ≤ f (x) for all x ∈ S.

We have only one global optimum objective value, but multiple optimum solutions,
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consider e.g. f (x) = sin(x).

The optimal solutions are said to be true optima if ≤ → <. For further information see e.g.

[Deb 2001; Branke et al. 2008].

Figure 1: Local and global optima for single function.

For solving single objective optimization we have basically two classes of methods. The

classes are

• Classical methods. These methods are evaluating surrounding of the current objective

value. According to surrounding the method then decides, which direction it continues.

• Population based methods. These methods generate a population and evaluate the

solutions. Then different operators are performed to alter solutions. Operators are

usually stochastically. Then the best objective values of the altered solutions are picked

to next generation. This is done as long as the fixed number of generations is obtained.

Classical methods are iterative and follow, roughly, the next algorithm [Branke et al. 2008]:

1. Generate a starting point x0 and set h = 0.

2. Generate direction dh

3. Calculate step size λh

4. Set xh+1 = xh +λhdh

5. Stop if termination condition is fulfilled or go back to step (2).

Classical methods can be divided into two subclasses according how it generates the direc-
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tion. Direct search methods are evaluating surrounding of the current objective value and by

that decide, which way to continue. This kind of methods are e.g. Hooke and Jeeves [Hooke

and Jeeves 1961] and Powell [Powell 1964]. Gradient based methods evaluate gradients of

the current objectives. According to gradients the method decides, which direction it con-

tinues. If we are minimizing, the direction is towards negative gradient value and vice versa

when maximizing. This kind of methods are e.g. Newton and conjugate-gradient [Haykin

1999].

Population based methods are also iterative and follow, roughly, the next algorithm [Deb

2001]:

1. Generate a starting population x0.

2. Evaluate all solutions in population f (x0).

3. Pick the best solutions for operators.

4. Generate next population x1, using altered solutions and no altered solutions.

5. Stop if termination condition is fulfilled or go back to step (2).

Different population based methods are e.g. Differential Evolution [Price, Storn, and Lampinen

2005] and Genetic Algorithms [Mitchell 1999]. In single objective optimization surrogates

can be used to replace expensive objective function evaluations done by a simulator, since we

can point out the global optimum objective value. In the next subsection we give an example

how surrogate have been used in single objective optimization.

1.1.2 Example: A biodiesel plant design

Single objective optimization example [Fahmi and Cremaschi 2012] is about determining an

optimal flow sheet for a biodiesel production plant, which minimizes the costs of the plant in

10 years. In this study they used neural networks to replace simulation models of different

processes. The problem is to choose the best option of three different reactors, determine

the optimal flow sheet and operating conditions, which are minimizing the total costs of

the biodiesel plant in 10 years when production goal is 8000 tons of biodiesel per year. In

previous studies biodiesel plant optimization is shown to be computationally expensive e.g.

one process simulation with exact model took 200-500 CPU seconds, although this was done
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using Pentium III 667 MHz processor so computation time is not comparable using todays

machinery, but later studies have shown that even with a faster CPU the problem is expensive

to solve.

The training data for neural networks was produced with simulator. The number of needed

training data points for different processes was very diverse, some processes needed only

700 training points as some needed 8000 training points to form an accurate surrogate model.

Input dimension reducing technique, namely principal component analysis, was tested but

because of independent nature of inputs it could not be applied. Mathematical modification

was done to inputs so that it got uniform distribution. Different neural network models were

built and the best models measured via sum of squared error were chosen. It is noted that

building and choosing neural network models can be very time consuming.

For optimization they used GAMS - DICOPT, which can be used for mixed-integer nonlinear

programming. As a result 48 local optimum objective values (top3 see Table. 1) were found

and computational time was between 5 and 23 CPU seconds. The best solution was built and

simulated with simulator and result was 41,45 m$ (vs. 41,07m$), hence the difference was

0,96%.

No. Total cost (m$) Solution time (CPU s)

1 41.068 5.302

2 42.811 9.992

3 44.905 5.240

Table 1: Optimal results from various initial guesses for a biodiesel production plant. [Fahmi and

Cremaschi 2012]

1.2 Multiobjective optimization

When compared to single objective optimization, multiobjective optimization has more than

one objective that should be optimized simultaneously. Usually those objectives are conflict-

ing and the best solution might also be the matter of opinion, hence we might need a decision

maker for further information about the problem. [Branke et al. 2008]
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1.2.1 Basic concepts

The multiobjective optimization problem is, in general, formulated as

min
x

F(x) = { f1(x), . . . , fm(x)}

subject to g(x)≤ 0

h(x) = 0

α ≤ xi ≤ β , α,β ∈ R,

(1.2)

where F is the set of objective functions and m is the number of objectives. Solutions, which

are satisfying the constraints, are creating a feasible decision space S. The objectives, which

are calculated from the feasible solutions, are creating an image of the feasible decision space

F(S) = Z ∈ Rm. The Z is not usually known in explicit, but only through S.

Figure 2: Feasible decision space S, which contains all feasible solutions. B.) Objective space Z by

the feasible solutions. Pareto optimal front is a set of nondominated objectives, which are created

from nondominated solutions. Only a few nondominated objectives are drawn, but Pareto-optimal

front contains numerous amount of them.

Defining the optimal solutions in multiobjective optimization we can use concept of partial

ordering [Deb 2001]. For partial ordering we need to define domination of solutions. A

solution x1 is dominating solution x2 (x1 ≺ x2) when

• fi(x1)≤ fi(x2), for all i = 1, . . . ,m

• and at least one fk(x1)< fk(x2), for some k ∈ {1, . . . ,m}.
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The solution, which is not dominated by any other solution, is a nondominated solution and

objective value of that is a nondominated objective value. A nondominated objective value

of Z is a Pareto optimal (PO) objective value, hence the set of nondominated objective values

is a PO front and corresponding nondominated solutions are PO solutions (see Figure 2). PO

objectives are mathematically equally good. A feature of PO objectives is that if we want to

improve value of one objective then at least one objective value needs to be weakened. There

can be a number of numerous of PO objective values. Hence without knowledge from the

application area Pareto-optimal objectives cannot be put in order. For more formal definition

of Pareto optimality see e.g. [Deb 2001; Branke et al. 2008].

For finding PO solutions in multiobjective optimization we have four different method classes.

In most of those a decision maker (DM) is needed, who is the domain expert of the optimiza-

tion problem. The methods [Branke et al. 2008] are

1. No-preference methods: This is used when we do not have DM or DM has no prefer-

ence about solutions. Hence we only need to find some PO solution. The solution can

be used as a starting point in an interactive method, which is discussed later.

2. A posteriori methods: We are generating the whole set of PO solutions or approxima-

tion of it. After the set has been completed the DM picks the solution, which is the

most satisfactory for him.

3. A priori methods: DM gives some a priori preference information about the solutions,

which are most suitable for him. Then the search of PO solutions is performed by

using those preferences.

4. Interactive methods: The most preferred PO solution is found by using iterative inter-

action between a method and a DM. Starting from some PO solution, the DM evaluates

the solution(s) presented to him. If he is satisfied with some PO solution, the search

is stopped. Otherwise, the DM expresses preferences on how solution(s) should be

improved and new solution(s) are computed based on the preferences.

Our motivation is to build a surrogate model to be used in optimization, but optimization

itself is not done in this thesis, although some preliminary work is done towards the opti-

mization. In the next subsection we introduce how surrogates can be used in multiobjective

optimization and what optimization method might benefit the most of from it.
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1.2.2 Surrogate based multiobjective optimization

When compared to single objective optimization we have multiple choices to use surrogate

models in multiobjective optimization. In multiobjective optimization the surrogate models

can be used for four different purposes.

1. They can be used to approximate the objective functions (see e.g. [Kusiak, Zhang, and

Li 2010]).

2. They can be used to approximate the Pareto front, when multiple conflicting objectives

are involved (see e.g. [Wilson et al. 2001]).

3. They can be used to approximate the decision space, which produces the Pareto front

(see e.g. [Fahmi and Cremaschi 2012]).

4. They can be used to replace the decision maker in multiobjective optimization (see e.g.

[Sun, Stam, and Steuer 1996]).

Firstly using surrogate model to approximate the objective functions is quite obvious way,

since by that we can directly replace the computationally expensive simulator. Secondly we

can use a simulator to generate a PO front, when we obtain it we train a surrogate model

to approximate the PO front. Hence we do not need to repeat the optimization process to

generate new PO objective values. Thirdly as shown in Figure 2 the PO solutions might be

gathered in some part of the feasible decision space, hence we may train the surrogate model

by using those solutions. Then we may explore the surrounding of PO solution to see the

objective values behavior in that area. Fourthly, when we are using an interactive method,

the DM is giving us preferences, then he might become tired, he might not be able to apply or

he might got some other reason, which is disturbing his preferences. Hence we can provide

PO solutions to DM and he can decide, which he prefers, then we can train a surrogate model

to approximate those preference solutions. Thus the surrogate model can give us consistent

preference and replace the DM.

Our opinion is that population based methods e.g. evolutionary optimization algorithms

(EO) would benefit the most when using surrogate models. Since they involve a number of

numerous of objective value evaluations as population size can be hundreds and the number

of generations can be hundreds of thousands. The EOs have found to be effective and they
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have become popular [Deb 2001], hence there is no reason not to use them.

When using surrogate models for multiobjective optimization, practitioners have to consider

about model management, which means techniques to make sure that the optimization pro-

cess converge to right optimum, as a surrogate model might not be as accurate as the original

model. According to [Jin 2005, 2011] there are three different ways to do it.

• No model management. The surrogate is assumed to be accurate enough and the orig-

inal objective function is not used.

• Fixed model management. For model management there are three different tech-

niques to do it, namely individual-based, generation-based and population-based. In

individual-based technique some fixed individuals in the fixed generation are evaluated

with the original objective function. In generation-based technique a fixed generations

are evaluated with the original objective function. In population-based technique more

than one sub-population co-evolves, every population is using its own surrogate.

• Adaptive model management. The frequency of using the original objective function

is determined by the fidelity of the surrogate model.

In the next subsection we give an example of surrogate based multiobjective optimization.

1.2.3 Example: Wind turbine optimization

This study [Kusiak, Zhang, and Li 2010] presents a surrogate based optimization of a wind

turbine. In this study there were three objectives, maximization of the power output, and

minimization of the vibrations in the turbine’s drive train and in the tower. Authors claim

that numerous studies have been reported but those have fallen into parametric and physics-

based models. Therefore surrogate based approach is tried, which has been successfully

applied to industrial optimization. To present vibrations, drive train acceleration and tower

acceleration are selected to be modeled and the output power of the tower is modeled also

as a third objective. All of the objectives are replaced with a neural network surrogate. For

training two different datasets are used, 10 second length and 60 second length. Data was

collected from supervisory control and data acquisition (SCADA) and sample frequency was

0.1Hz. Data is preprocessed, incorrect values are deleted, and data is denoised using wavelet
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analysis and normalized. Both datasets are split into training set 2
3 of the data and testing

set 1
3 of the data. Surrogate models trained with 10 second dataset are achieving accuracies,

drive train acceleration 98% accuracy, tower acceleration surrogate 94% accuracy and power

output surrogate 96% accuracy. Training with 60 second dataset achieves accuracies, in

order, 99%, 97% and 97%. The Strength Pareto Evolutionary Algorithm [Zitzler and Thiele

1998] was employed for optimization. The optimization problem gets form

min F(y1,y2,y3) = w1y1(t)+w2y2(t)+w3
1

y3(t)

subject to y1(t) = f1(y1(t−1),v1(t),v1(t−1),x1(t),x1(t−1),x2(t),x2(t−1)),

y2(t) = f2(y2(t−1),v1(t),v1(t−1),x1(t),x1(t−1),x2(t),x2(t−1)),

y3(t) = f3(v1(t),v1(t−1),x1(t),x1(t−1),x2(t),x2(t−1)),

max{0,currentsettings−50} ≤ x1(t)≤ min{100,currentsettings+50},

max{−5,currentsettings−5} ≤ x2(t)≤ min{15,currentsettings+5},

(1.3)

where w1, w2 and w3 are weights for optimization and in this study only three different

weights sets were used w1 = 1,w2 = w3 = 0, w2 = 1,w1 = w3 = 0 and w3 = 1,w1 = w2 = 0.

Results for optimization are shown in Figure 2. Author conclude that with a more accurate

data the results might have been even better and this method will be employed again, when

it is available. "The objective of this paper, building accurate data-driven models to study

the impact of turbine control on their vibrations and power output and demonstrating the

optimization results of wind turbine performance, was accomplished" [Kusiak, Zhang, and

Li 2010].
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Table 2: Wind turbine optimization results. [Kusiak, Zhang, and Li 2010]

Mean Value

Minimize Optimized Original

Drive Train acceleration Drive Train acceleration Drive Train acceleration Gain

10-s data set 119,53 131,49 9,10 %

1-min data set 124,06 131,79 5,87 %

Tower acceleration Tower acceleration Tower acceleration Gain

10-s data set 87,22 127,82 31,76 %

1-min data set 106,26 130,32 18,46 %

Power Output Power Output Power Output Gain

10-s data set 1497,99 1481,72 1,10 %

1-min data set 1497,99 1482,57 1,03 %
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2 Neural Networks

Brains are very complex, nonlinear and parallel computing units. Brains are built from

neurons. A neuron contains cell body and different types of synaptic branches, which are

connected to other neurons, reception or response organs. A different type of knowledge is

stored to different parts of neuron. It is estimated that, in brain, there are about 10 billion

neurons and 60 trillion synaptic connections. The structure of neurons connected to other

neurons is called a neural network, hence our brains are basically just a huge neural network

with huge computational capability. Hence imitating brain is very ambitious goal to achieve.

[Haykin 1999]

In 1943, McCulloch a psychiatrist/self-trained neuroanatomist and Pitts a mathematician de-

cided to do a study together. In their study they united neurophysiology and mathematical

logic to build an artificial neuron, which was similar to ones in brain [McCulloch and Pitts

1943] and was called McCulloch and Pitts -model. They also proved, that with an adequate

number of neurons and properly set synchronously operating synaptic weights can approx-

imate any function. This proof led to the birth of artificial neural networks and artificial

intelligence. [Haykin 1999]

Our main objective is to build a framework for practitioners to choose a satisficing neural

network surrogate model. Neural networks (NN) are interconnected groups of artificial neu-

rons. NNs are used to model inputs to corresponding outputs. Those inputs and outputs can

be obtained from some function y = f (x), some process, some physical phenomenon and

so on. Then NN is trained to match those input/output relationships, training a NN means

that synaptic weights are altered to give the best result. Therefore training NN we need data

containing inputs and corresponding outputs. Trained NN can be as accurate as the data,

thus it is important that the training data is as diverse as possible, since the NNs are good in

interpolation, but not very good in extrapolation [Haley and Soloway 1992]. A well trained

NN can represent the input-output relation very accurately [Cybenko 1989; Kusiak, Zhang,

and Li 2010].

Some definitions is needed before we start. A training pattern is known input/output pair
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which illustrates the input/output behavior of the problem. A set of training patterns is a

training set. An epoch is one iteration when all of the training patterns are presented to

network. A time step is an interval which we use for going through the time. Feed f orward

means that work flow of the network goes from input to output and feedbacks occur. In some

literature is referred as feedforward single layer/multilayer neural network, which means

same as our single layer neural network, multilayer neural network. Structures discovered

here are all feedforward networks, but Recurrent Multilayer Perceptron is not.

In this chapter, we first discuss neurons in section 2.1 and neural network structures in section

2.2. In section 2.3, we discuss about NNs training techniques and data sampling techniques

for generating a training data. In section 2.4, we discuss about different error metrics, theo-

retic accuracy of NNs and one way to measure algorithmic complexity.

2.1 Neurons

In this section we present the model of a neuron and the model of a radial basis function with

their important features and applicability.

2.1.1 Neuron

An artificial neuron is an information processing unit and it is the basic building block for

NN. It can be presented as

y = f (
n

∑
j=1

w jx j +b), (2.1)

where y is the output, w= [w1, ...,wn] is the synaptic weight vector, x = [x1, ...,xn] is the input

vector, n is the number of inputs, b is the bias and f (...) is the transfer function. The bias is

an offset and it determines the output of the neuron when the input is 0, this helps to make

affine transformation to the data. By setting the bias to one of the inputs we can represent

the neuron as

y = f (
n

∑
j=0

w jx j), (2.2)

where w0 is value of the bias and x0 is constant 1.
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Figure 3: A model of an artificial neuron

An artificial neuron comprises of three components (see Figure 3)

1. Synaptic weight (w): Inputs are connected to the adder and each of them has own

synaptic weight. It determines the strength of the connection. Weight can be either

positive or negative. For simplicity we will be calling synaptic weight as weight.

2. Adder (∑): This is where the weighted inputs are added together.

3. Transfer function ( f (z)): This is also called as activation function, but we use transfer

function (TF) in this thesis. A TF denotes neurons activation and limits its output value

to some finite value.

A few TFs (see Figure 4) are shortly presented next.

Threshold function:

f (z) =

1 , if z≥ 0

0 , if z < 0
(2.3)

Neuron with this TF is called McCulloch and Pitts -model. It is used when output is needed

to be binary or in other words it is {0, 1}.

Linear function:

f (z) = mz+ c, (2.4)

where m and c are constants and z is the variable. This TF is usable when we are trying to

fit a straight line to match some data, we can vary lines slope by altering c and gradient by
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altering m. Linear function can be bound to some minimum and maximum values.

f (z) =


mz+ c , if −bo < z < bo

−bo , if z <−bo

bo , if z > bo

(2.5)

, where bo ∈ R.

Log-sigmoid function:

f (z) =
1

1+ exp(−az)
. (2.6)

Log-Sigmoid function is the most commonly used TF. It is an S-shaped function and can

take values between 0 and 1. This function is nonsymmetric, nonlinear, differentiable and

monotonically increasing. The function of a in exp(−az) is that by change in the log-sigmoid

function can obtained slope shapes from threshold function to linear function. Nonlinear

feature is needed for capturing nonlinear behavior of a problem.

Hyperbolic tangent function:

f (z) = atanh(bz), (2.7)

where a,b > 0, a determines the maximum and minimum values of sigmoid. Hyperbolic

tangent function has the same features as log-sigmoid function but it can take values between

-1 to +1 and it is antisymmetric.
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Figure 4: Transfer functions for an artificial neuron

2.1.2 Radial Basis Function

A neuron based on a radial basis function (RBF). It differs from the McCulloch & Pitts

-model in a way that here we measure the distance of an input to a fixed center and the

inputs are not weighted. The center can be one of the inputs. The distance metric is usually

Euclidean. The mathematical formulation for the RBF is

y(x) = f (
n

∑
i=1
‖xi− t‖), (2.8)

where f (...) is radial basis function, x = [x1, ...,xn] is the input vector and t is the center.

Later on we need the N-by-N matrix of RBFs to be nonsingular. In [Micchelli 1986] is

shown that a set of distinct points xi
n
i=1 ∈ RN , where N is the dimension of input space and

n is the number of inputs, the N-by-N matrix, whose ji-th elements is f ji = f‖x j− xi‖, is

nonsingular. Micchelli’s theorem covers a large class functions, hence a few of them (see
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Figure 5) used here as RBFs are multiquadrics

f (r) = (r2 + c2)
1
2 , (2.9)

inverse multiquadrics

f (r) =
1

(r2 + c2)
1
2

(2.10)

and Gaussian function

f (r) = exp(− r2

2c2 ), (2.11)

where r = ‖x− t‖ is the distance between the input x = [x1, ...,xn] and the center is t, c > 0

and it determines how diverse the function will be. The RBF is used in the hidden layer(s)

of the RBF network.

Figure 5: Radial Basis Functions
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2.2 Neural Network models

In this section some neural network models are described. We illustrate their structure, how

to train them and when to use them. These should help one to choose a proper neural network

structure. Structures are chosen so that practitioners have more than one choice for a surro-

gate model. Three of surrogate models are for (nondynamic) single point approximations,

which are single layer neural network, multilayer neural network and radial basis function

network. One model is for (dynamic) sequence approximations, namely recurrent multilayer

neural network.

2.2.1 Single Layer Neural Network

McCulloch and Pitts (1943) introduced the idea of neural networks. In 1949, Hebb a neuro-

scientist proposed a first self-organized learning rule [Hebb 1949]. According to the Hebb’s

learning rule the value of the synaptic weight is increased when it is activated and decreased

when it is not activated. Hebb’s rule was more from biological point of view and based on

assumptions made in there. Rosenblatt introduced the perceptron as the first model, which

could be trained [Rosenblatt 1958]. Rosenblatt’s perceptron is a neuron with nonlinear TF,

weights and bias (see Figure 3). Hence we will be calling single layer neural network as

single layer perceptron (SLP).

A SLP contain one layer of neurons and the number of neurons is determined by the number

of outputs, as shown in Figure 6. Mathematically it can be formulated as

yk = f (
n

∑
j=1

wk jx j +bk), (2.12)

where y = [y1, ...,yk] is the output vector, w is the weight matrix, x = [x1, ...,xn] is the input

vector, b is the bias, f (...) is the transfer function. Any TF discovered in previous section

can be used here.

Every neural network can be classified either as a fully connected network, where every input

and output of the neuron is connected to every neuron or as a partially connected network,

where every input and output of the neuron is not connected to every neuron. This implies

to other neural networks as well. It is shown in [Hüsken, Jin, and Sendhoff 2005] that a
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Figure 6: The single layer perceptron with n inputs and k outputs.

fully connected network might not give the best approximation result. The SLP is suitable

for classifying linearly separable problems. Linearly separable means that we can draw a

straight line between two sets of data points. This network can also be used to estimate

linear datasets by fitting a straight line to the set of data (see Figure 7). SLPs outputs are

linear combinations of its inputs, hence it is difficult to capture nonlinearity in data.

Figure 7: An approximation of linear dataset with single layer perceptron.

Examples, which illustrate SLP applicability, are shown in subsection 2.5.1.

2.2.2 Multilayer Neural Network

In 1985 the first successful realization of a multilayer neural network and it was called the

Boltzmann machine [Ackley, Hinton, and Sejnowski 1985]. A popular training algorithm for

multilayer neural network, back-propagation algorithm, was developed in 1986 [Rumelhart,
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Hinton, and Williams 1986]. They proposed that it could be used for machine learning and

demonstrated how it could work. The basic idea of back-propagation algorithm was found

much earlier [Haykin 1999].

Multilayer neural network is also referred to as Multilayer Perceptron (MLP) as it is multiple

layers of Rosenblatt’s Perceptrons. In MLP there are more than one layer and the layers are

called hidden layer(s) and output layer. Figure 8 illustrates MLP with two hidden layers con-

taining p and q neurons, and the output layer containing k neurons. The number of neurons

in the output layer is equal to the number of outputs. There can be any number of neurons

in the hidden layers and such neurons are called hidden neurons. The number of hidden

neurons determines network’s ability to learn and store knowledge from the input/output -

relationships in its weights. In the hidden neurons, it is a common practice to use either

the log-sigmoid TF or the hyperbolic tangent TF [Duch and Jankowski 1999]. If a linear

TF is used is the hidden layers the MLP reduces to SLP, this is proved in Theorem 1. The

mathematical formulation of a MLP is

yk = f o(
q

∑
j=1

wo
k j( f II(

p

∑
t=1

wII
jt( f I(

n

∑
i=1

wI
tixi +bI

i )+bII
t )+bo

j))), (2.13)

where f o, f I and f II are the TFs of layers, wo, wI and wII are the weight matrices of layers,

b0, bI and bII are layers bias vectors and x = [x1, ...,xn] is the input vector. Eq. (2.13) can be

also formulated in a different way by using eq. (2.2),

yk = f o(
q

∑
j=0

wo
k j( f II(

p

∑
t=0

wII
jt( f I(

n

∑
i=0

wI
tixi))))), (2.14)

where only difference is that biases are now included in the weight matrices as one of the

inputs. The input for bias is x0 and its weight is wk0.

Theorem 1. Multilayer Perceptron will reduce to Single Layer Perceptron if linear transfer

functions are used in hidden layers. Let yk be some arbitrary output of the MLP containing

arbitrary number V ∈ N of layers and hidden neurons k, j, t, . . . ,g,a ∈ N,

yk = f o(
q

∑
j=1

wo
k j( fV (

p

∑
t=1

wV
jt(. . .( f I(

n

∑
i=1

wI
aixi +bI)) . . .)+bV ))+bo) = f o(

n

∑
i=1

wX
kixki +bX).

(2.15)
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Figure 8: A multilayer perceptron with three layers, n inputs and k output.

Proof. Let the yk be some output of a MLP with arbitrary number V ∈N of layers and hidden

neurons k, j, t, . . . ,a∈N, where hidden neurons contain a linear TF and output layer contains

any TF

yk = f o(
q

∑
j=1

wo
k j( fV (

p

∑
t=1

wV
jt(. . .( f I(

n

∑
i=1

wI
aixi +bI)) . . .)+bV ))+bo). (2.16)

As all TFs except f o are linear f (x) = mx+ c the yk can be written as

yk = f o(
q

∑
j=1

wo
k j(m

V (
p

∑
t=1

wV
jt(. . .(m

I(
n

∑
i=1

wI
aixi +bI)+ cI) . . .)+bV )+ cV )+bo). (2.17)

When we foil input layer, we get

yk = f o(
q

∑
j=1

wo
k j(m

V (
p

∑
t=1

wV
jt(. . .(

n

∑
i=1

mIwI
aixi +mIbI + cI) . . .)+bV )+ cV )+bo), (2.18)

then by combining mIwI = ŵI and mIbI + cI = b̂I , which are some constant ∈ R, we get

yk = f o(
q

∑
j=1

wo
k j(m

V (
p

∑
t=1

wV
jt(. . .(

n

∑
i=1

ŵI
aixi + b̂I) . . .)+bV )+ cV )+bo). (2.19)

Performing such actions for every layer we get

yk = f o(
q

∑
j=1

wo
k j(

p

∑
t=1

ŵV
jt(. . .(

n

∑
i=1

ŵI
aixi + b̂I) . . .)+ b̂V )+bo). (2.20)
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When we foil the first hidden layer and the second hidden layer

a

∑
z=1

ŵII(
n

∑
i=1

ŵI
zixi + b̂I)+ b̂II =

a

∑
z=1

ŵII
n

∑
i=1

ŵI
zixi +

a

∑
z=1

ŵII b̂I + b̂II (2.21)

and by combining ∑
a
z=1 ŵII

∑
n
i=1 ŵIxzi = ∑

n
i=1 w̄IIxgi and ∑

a
z=1 ŵII b̂I + b̂II = b̄II ,

hence we may write

yk = f o(
q

∑
j=1

wo
k j(

p

∑
t=1

ŵV
jt(. . .(

n

∑
i=1

w̄II
gixi + b̄II) . . .)+ b̂V )+bo), (2.22)

where g is the number of neurons in the third hidden layer. By iterating such actions to each

layer we finally get ∑
n
i=1 w̄X

i xki + b̄X , hence we get may now write the MLP formula as

yk = f o(
n

∑
i=0

w̄X
kixi + b̄X). (2.23)

For a MLP, it is difficult to set the number of hidden layers and the number of hidden neurons.

In [Cybenko 1989] it is shown that network with one hidden layer can encode any arbitrary

function. However, [Tamura and Tateishi 1997] proved that MLP with one hidden layer

and t p− 1 hidden neurons can approximate t p input/output relations exactly, where t p is

the number of training patterns, and a MLP with two hidden layer and t p/2 + 3 hidden

neurons can approximate input-output relations with arbitrarily small error. Although in

every problem this kind of accuracy is not needed or wanted and the generalization ability is

a more important feature. Generalization is NNs ability to approximate input point to output

in case that this input/output pair has not been used for training data. The number of hidden

layers will affect the training time. Additionally, a higher number of hidden layers can also

cause overtraining. On the other hand with too few hidden neurons neural network might not

capture the relationships between inputs and outputs. In Chapter 3, we discuss about a few

heuristics for the number of layers and neurons.

As said earlier the MLP with one hidden layer can encode any arbitrary function, hence
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MLP is suitable for function approximation, pattern recognition and classification, shown in

examples (see subsection 2.5.2). Downside of the MLP is that optimal structure is hard to

find and it always depends on problem. A few ways find it are trial and error, pruning and

growing. The pruning technique means that we start from a large MLP and then we prune

it by weakening or eliminating weights e.g. see [Hassibi, Stork, and Wolff 1993]. Growing

means that we start from a small MLP and then grown it until it the performance is good

enough.

2.2.3 Recurrent Multilayer Perceptron

Hopfield tried to understand the calculation performed by a recurrent network with symmet-

ric synaptic weights via the cost function E(n) [Hopfield 1982]. Doing this he showed the

isomorphism between neural networks and an Ising model, which is used in physics. This

got the attention of physicists and they started to use neural networks. Hopfield was not the

first in the field of the recurrent networks, but he was the first to present it in explicit the way

of storing information to dynamic networks, thus the specific class of recurrent networks is

called Hopfield networks. In general, recurrent network consists parts of MLP or the whole

MLP but they contain at least one feedback loop. The feedback loop is feeding the output of

the neuron or the layer back to inputs with some time delay. The feedback loop is local, if it

is around the neuron, or global, if it is around the layer(s).

The recurrent network that we present here is a Recurrent Multilayer Perceptron (RMLP)

as presented in [Puskorius, Feldkamp, and Davis 1996], where it was used as on-vehicle

idle speed controller. Other useful recurrent networks are Nonlinear Autoregressive with

eXogenous input (NARX) -model [Narendra and Parthasarathy 1990], State-space model

[Zamarreño and Vega 1998] and Second-order network [Pollack 1991]. The RMLP is similar

to MLP with an addition of a feedback loop around every layer. The RMLP with three layers

is illustrated in Figure 9 and can be mathematically formulated as

yo(t +1) = Fo(yo(t),FII(yII(t),FI(yI(t),x(t)))),

where Fo, FI and FII are layers containing weights and transfer functions, yo, yI and yII are

the layers output, x = [x0, ...,xt ] is the input vector through time and t is time step.
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Figure 9: A Recurrent Multilayer Perceptron with three layers

Recurrent network can be used for input-output mapping and associative memory. In input-

output mapping we provide an input sequence to the network. Every input corresponds

to one time step and they vary from each other. For a given input sequence an output is

calculated for every time step and every output in turn affects the next output. As a result we

get an output sequence for the input sequence. Recurrent networks can be used for in system

identification [Narendra and Parthasarathy 1990], control [Puskorius, Feldkamp, and Davis

1996] and prediction [Xie, Tang, and Liao 2009]. In associative memory we give an input

pattern to the network, the input pattern is static over time. The output will change over time

but eventually it will convergence to a point and the point is considered as a result.

2.2.4 Radial Basis Function Network

The last network model is a Radial Basis Function network. The basic idea leads back to

1965 when Cover introduced his theorem [Cover 1965]. Theorem says that there are many

dichotomies to classify points and as dimension of the function grows the number of di-

chotomies grows. In Figure 10 it is shown one of those dichotomies, quadratically separable

dichotomy and for those five points there are 32 different dichotomies for classification. Two

main ideas from Cover’s theorem are nonlinearity from input space to hidden neuron space

and high dimensionality of hidden space compared to input, thou in study he used polyno-

mial functions but those results implies to RBFs too. And these are saying that we are more

likely to find linearly separable problem when input space is mapped to hidden space the

XOR-example done with RBFs shows this. In 1988, Broomhead and Lowe introduced the
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RBF network as an alternative for MLP [Broomhead and Lowe 1988]. The network consists

two layers, a hidden layer and an output layer, in the hidden layer there are RBFs and in the

output layer there are linear neurons, so the output is a linear combination of RBFs.

Figure 10: Quadratically separable dichotomy. [Broomhead and Lowe 1988]

A RBF network is a fully connected network. Here only the weights between the RBFs and

the output neurons exists as shown in Figure 11 and output neurons may contain bias. The

mathematical presentation for the RBF network is

yk(x) = w0k +
t p

∑
i=1

wik f (‖xi− t‖), (2.24)

where w is the weight matrix between the hidden layer and the output layer, x = [x1, ...,xn] is

the input vector, t = [t1, ..., tn] is the center vector, f (...) is some of the RBFs discovered in

subsection 2.1.2 and t p is the number of training patterns.

Figure 11: Architecture of Radial Basis Function network.
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RBF network is good in interpolation and for interpolation we need, in case we have only

one output,

F =


f11 f12 . . . f1n

f21 f22 . . . f2n
...

...
...

fn1 fn2 . . . fnn

 ,
where fi j = f (‖xi− t j‖), so every input is taken to be as a center. Notice that diagonal of F

is 1. We also need the weight matrix

W =


w11 w12 . . . w1n

w21 w22 . . . w2n
...

...
...

wk1 wn2 . . . wkn

 ,

and the desired output vector Y = [y1, ...yn]
T . Hence we get equation

WF = Y (2.25)

and because we need to know W , it can be solved as

W = F−1Y (2.26)

and for RBFs in subsection 2.1.2 the F is nonsingular and therefore F−1 exists. We may

also start with only one center and add a center as long as the approximation error is desired,

hence we do not need all of the t p to be as centers.

If dimensionality of the data set is large and every part is taken for training, in [Broomhead

and Lowe 1988] it is shown that a poor generalization performance can be obtained. Addi-

tionally, when the quality of the data is unknown, then the problem can ill-posed. To define

the ill-posed problem we need to define a well-posed problem first. There are three condi-

tions which we need to satisfy for the well-posed problem [Tikhonov and Arsenin 1977].

1. Existence. For every x ∈ X there is y ∈ Y , when y = f (x), where X is the input space and

Y is the feature space.
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2. Uniqueness. For every input pair x,z ∈ X , we have f (x) = f (z) if and only if x = z, where

X is the input space.

3. Continuity. For any ε > 0 there exists δ > 0 such that the condition d(x,z) < δ implies

that d( f (x), f (z))< ε , where d implies to distance.

Hence if one of these conditions is violated the problem is ill-posed. Thus in RBF network

we want to use distinct inputs as a center even if the training set consists several equivalent

inputs. To overcome this problem regularization and generalized RBF networks were intro-

duced by [Poggio and Girosi 1989]. As the regularized network tents to be high dimensional

and it is shown by [Wettschereck and Dietterich 1992] that generalized RBF network can be

as accurate as MLP. Although in this thesis we will stay in "basic" version of RBF network.

As we have discussed about interpolation with RBF network, almost whole section, we can

summary that they are good for approximating function, especially smooth functions, and

noise removal [Craven and Wahba 1979]. RBF networks can be used for classification prob-

lems as well [Cover 1965]. RBF networks disadvantage is the high dimensionality.

2.3 Training a neural network

Training methods for NN can be separated to two classes:

• Supervised training: For supervised training we need the inputs and corresponding

outputs, these i/o-pairs are called training patterns. Using training patterns we train

the NN so that output produced by NN match to given outputs. This training method

is suitable for function approximation.

• Unsupervised training: For unsupervised training we need only the inputs. Using

certain rules we train the NN to produce some outputs from inputs. This training

method is suitable for classification problems.

As we are interested about function approximation in this thesis the main topic will consider

about supervised training method. In the first subsection we introduce a few data sampling

techniques, which can be used to create an input space for a training data. In the second

subsection we introduce an error correction training method as a supervised training and its
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applications to structures discovered in section 2.2. In the third subsection we introduce

briefly some unsupervised training methods. In the fourth subsection we discuss about pre-

senting training as an optimization problem.

2.3.1 Training Data generation

Before we can begin training, we need to generate training data, which is typically made

with a simulator. To ensure that an input space is as diverse as possible so that results

from the simulator are as diverse as possible, we need to generate the input space by using

some systematic sampling technique rather than randomly sampled inputs [Simpson, Lin,

and Chen 2001]. When the inputs are created then those can be given to the simulator, which

calculates the corresponding outputs.

We introduce three data sampling techniques. The techniques are Latin Hypercube sam-

pling, Hammersley sampling and Orthogonal array sampling. Basic principle of techniques

is pretty much the same. Firstly the sampling area is divided into segments and secondly the

segments are filled with a point. In next each of the techniques are introduced briefly and

then an example is given.

Latin Hypercube sampling

Latin hypercube sampling in its basic form as shown in [Stein 1987] is

X jk = F−1
k (N−1(p jk−1+ξ jk)), (2.27)

where X is the value, F is the cumulative distribution function of X , N is the number of

sample points, p jk is the place in matrix P, which size is N x K, K is the number of

variables and ξ is uniformly distributed random variable, which takes values from 0 to 1.

The values in P are permutated independently and they are defining the segment of X and ξ

defines the value of X . An example of this (see Figure 12), where we can see that there is

only one point in each row.

Hammersley sampling

Idea of Hammersley sampling is that every nonnegative integer k can be presented as com-
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Figure 12: A Latin Hypercube Sample with N = 6, K = 2 for X Distributed Uniformly on the Unit

Square. [Stein 1987]

bination of prime p [Wong, Luk, and Heng 1997].

k = a0 +a1 p+a2 p2 + . . .+ar pr, (2.28)

where a takes values 0 or 1 according to binary value of k e.g. when k = 1 then a = (0001)

and when k = 2 then a = (0010). For sampling we need a function

φp(k) =
a0

p
+

a1

p2 + . . .+
ar

pr+1 . (2.29)

Now the Hammersley point for k in d-dimension is

(
k
n
,φp1(k),φp2(k), . . . ,φpd−1(k)), for k = 0,1, . . . ,n−1, (2.30)

where n is the number of points. For algorithm see e.g. [Wong, Luk, and Heng 1997].

Example when d = 2, p = 2 and n = 4, which is also a special case of Hammersley sampling

called Van der Corput sampling.
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k d1 = k/n binary d2 = φ2(k)

1 1
4 = 0.25 001 1

2 = 0.5

2 2
4 = 0.5 010 1

4 = 0.25

3 3
4 = 0.75 011 1

2 +
1
4 = 0.75

4 4
4 = 1 100 1

8 = 0.125

Table 3: Example of Hammersley sampling.

Orthogonal array

The orthogonal array is denoted by OA(n,m,s,r), where size of the matrix is n x m, s is the

number of elements and r is strength. A n x m matrix A is an orthogonal array design with

strength r with entries forming sets of s≤ 2 elements, if each n x r submatrix of A contains

all possible row vectors with the same frequency λ = n/sr [Tang 1993]. Let the elements s

be denoted by 1,2, . . . ,s and the objects n be denoted by 1,2, . . . ,n. Now we can map objects

n to

Z(i) =



1 i = 1,2, . . . ,q,

2 i = q+1,q+2, . . . ,2q,
...

...

s i = (s−1)q+1,(s−1)q+2, . . . ,n,

(2.31)

where q = n/s. Then objects in the space Z are permutated so that all possible combinations

are shown in rows at λ times. Consider example as OA(4,2,2,2), when we have matrix 1 2 3 4

1 2 3 4

T

and

Z(i) =

1 i = 1,2,

2 i = 3,4.
(2.32)

We get  Z(1) Z(2) Z(3) Z(4)

Z(1) Z(2) Z(3) Z(4)

T

=

 1 1 2 2

1 1 2 2

T
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and then we perform permutation, we get Z(1) Z(2) Z(3) Z(4)

Z(1) Z(3) Z(2) Z(4)

T

=

 1 1 2 2

1 2 1 2

T

, hence the matrix  1 2 3 4

1 3 2 4

T

is orthogonal array, but e.g. Z(2) Z(1) Z(3) Z(4)

Z(1) Z(2) Z(4) Z(3)

T

=

 1 1 2 2

1 1 2 2

T

is not orthogonal array. For more information see e.g. [Tang 1993].

Picking Sampling Technique

Above we have introduced a few sampling techniques, but in literature we can find numerous

other techniques as well. Hence how to pick the best sampling technique for problem in

hand. As we remember the training data must be as diverse as possible so that NN learns the

whole problem as good as possible since it is not good for extrapolation. In our numerical

experiment we are trying to answer this question as discovered sampling techniques are used

to create inputs for simulator to work the outputs.

In [Simpson, Lin, and Chen 2001] it is shown that Hammersley sampling is the most appro-

priate choice for sampling technique when we are building a surrogate model. As it achieved

accurate approximation error globally, although it did not perform so good in maximum er-

ror. The global error tent to lower when sample set gets larger when using Hammersley. The

orthogonal array sampling got low maximum error, but author recommend that low global

error is better than lower maximum error in single approximation.

Next we show simple visualization of Latin hypercube sampling, Hammersley sampling and

Orthogonal array. In example the number of points is 100 and the number of variables is 2,

hence orthogonal design is OA(100,2,10,2) and they are bounded to [0,1], for visualization
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see Figure 13. As we see in visualization Hammersley sampling is covering the sampling

area more efficiently than Latin Hypercube and Orthogonal array. Although Latin Hypercube

and Orthogonal array might be covering the minimum and maximum points more efficiently.

Figure 13: Visual comparisons of Latin Hypercube sampling, Hammersley sampling and Orthogonal

array sampling. ’o’ are points from Latin Hypercube sampling, ’x’ are points from Hammersley

sampling and � are points from Orthogonal array sampling.

2.3.2 Supervised training

Error correction method

One way to train a NN is by minimizing the error between the computed output y and the

desired output d. Training the NN with this method is done by using delta− rule [Widrow

and Hoff 1960]. Where we need an error e(ep) as

ei(ep) = di(ep)− yi(ep), i = 1, ...,k (2.33)
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where y is the computed output, d is the desired output and ep is the number of epochs and

k is the number of neurons. A cost function E(ep) to be minimized

E(ep) =
1
2

k

∑
i=1

ei(ep)2, (2.34)

where ep is the number of epochs and k is the number of outputs.

4wk j(ep) = ηek(ep)x j(ep), (2.35)

where 4w(ep) is change in the weight matrix, η is learning-rate parameter, e(ep) is error

and x is input. This yields to weight update formulate

wk j(ep+1) = wk j(ep)+4wk j(ep), (2.36)

where w(ep + 1) is a new weight matrix and w(ep) is the current weight matrix. The

learning-rate parameter η (see eq. (2.35)) determines how fast or accurately weights con-

verge towards the optimum point. If η is too small the convergence will take longer time,

but if it is too large convergence might start oscillating around the optimum point. Definition

for too small or large depends on problem. We can consider the results from [Thimm and

Fiesler 1997] as a guideline. Thereby the bounds for the learning rates are

Linear TF [0.004, 0.7]

Log-sigmoid TF [0.1, 20.0]

Hyperbolic tangent TF [0.005, 2.5]

Table 4: Guidelines for the learning rate.
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Training a Multilayer Perceptron

There are two ways for updating the synaptic weights.

1. Sequential mode: In sequential mode the weights are updated instantly after an error

for training pattern, input/output pair, is calculated.

2. Batch mode: In batch mode the weights are updated after an error is calculated for

every training pattern.

As an example of a training algorithm we consider backpropagation algorithm [Rumelhart,

Hinton, and Williams 1986]. In [Rumelhart, Hinton, and Williams 1986; Haykin 1999, it

is shown that the sequential mode is computationally faster and require less memory than

the batch mode. Algorithm for sequential mode (see Algorithm 1) and for batch mode (see

Algorithm 2). The weight updates in training algorithms involves calculation of local gradi-

ents. The formulas to calculate local gradients, in general, for hidden and output neurons (see

Table 5) and local gradient derivations for log-sigmoid TF and hyperbolic tangent TF (see

Table 6). For a complete derivation of formulas to calculate local gradient see e.g. [Haykin

1999]

Layer Local Gradient

Output δk = e f ′k(z
o
k)

Hidden δ j = f ′j(z
l
j)∑

p1
i=0 δ

l+1
i wl+1

i j

Table 5: Local Gradients for neurons in output and hidden layers.

Layer Function Local Gradient

Output f (zk) =
1

1+exp(−azk)
δk = ayk[dk− yk][1− yk]

Hidden –"– δ j = ay j[1− y j]∑
k
i=0 δiwi j

Output f (zk) = atanh(bzk) δk =
b
a [dk− yk][a− yk][a+ yk]

Hidden –"– δ j =
b
a [a− y j][a+ yc

j]∑
k
i=0 δiwi j

Table 6: Local Gradient derivations for Log-Sigmoid TF and Hyperbolic Tangent TF
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Algorithm 1 Sequential mode backpropagation algorithm
Step 1: Initialization. Build a NN, preprocess inputs/outputs and initialize the weights so

that they are not zeros. Define maximum numbers of epochs.

Step 2: Error calculation. Error calculation for NN with current weights. Present training

set (x(t p),d(t p)), x is the input vector, d is the desired output vector and t p is the number of

training patterns, for NN. Approximate the output values y using initialized weights. Then

calculate an input value z for every neuron

z j(t p) =
p1

∑
i=0

wl
ji(t p)yl−1

i (t p), (2.37)

where superscript l = [I, II, ...,o] implies to the number of layers, p1 is the number of neurons

and yl−1 is the output from neurons in l− 1 layer. For simplicity let’s assume that in every

layer has the same number of neurons. Then calculate the error

e(t p) =
1
2

k

∑
i=1

(di(t p)− yi(t p))2. (2.38)

Step 3: Local gradients. Calculate the local gradients (δ ) for every neuron. Firstly, calculate

the local gradients for neurons in output layer. Secondly, calculate the local gradients for neu-

rons in the previous hidden layer and continue going backwards until the input layer is met.

For the local gradients see Table 5 and local gradient derivations for Hyperbolic tangent T F

and Log−Sigmoid T F see Table 6.

Step 4: U pdate weights. After all local gradients are calculated we can update weights using

wk j(t p+1) = wk j(t p)+ηδk(t p)x j(t p), (2.39)

where δ (t p) is the local gradient for a neuron and η is the learning rate. It may take any

value, for guideline see Table 4. An epoch (ep) is done when all the weights are changed

according the error for every training pattern (t p).

Step 5: Iterate. Repeat steps 2, 3 and 4 as long as the maximum number of epochs is met or

stopping criteria is met. For a stopping criteria see eq. (2.43).
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Algorithm 2 Batch mode backpropagation algorithm
Step 1: Initialization. Build a NN, preprocess inputs/outputs and initialize the weights so

that they are not zeros. Define maximum numbers of epochs.

Step 2: Error calculation. Error calculation for NN with current weights. Present training

set (x(t p),d(t p)), x is the input vector, d is the desired output vector and t p is the number of

training patterns, for NN. Approximate the output values y using initialized weights. Then

calculate an input value z for every neuron

z j(t p) =
p1

∑
i=0

wl
ji(t p)yl−1

i (t p), (2.40)

where superscript l = [I, II, ...,o] implies to the number of layers, p1 is the number of neurons

and yl−1 is the output from neurons in l− 1 layer. For simplicity let’s assume that in every

layer has the same number of neurons. Then calculate the error of current epoch (ep)

e(ep) =
1
2

t p

∑
i=1

k

∑
j=1

(d j(i)− y j(i))2. (2.41)

Step 3: Local gradients. Then calculate the local gradients (δ ) for every neuron. Firstly, cal-

culate the local gradients for neurons in output layer. Secondly, calculate the local gradients

for neurons in the previous hidden layer and continue going backwards until the input layer

is met. For the local gradients see Table 5 and derivations from Hyperbolic tangent T F and

Log−Sigmoid T F see Table 6.

Step 4: U pdate weights. After all local gradients are calculated we can update weights using

wk j(ep+1) = wk j(ep)+ηδk(ep)x j(ep)+αwk j(ep−1), (2.42)

where δ (ep) is the local gradient for a neuron, η is the learning rate and α is the momentum

which determinate how much the weight change of previous epoch ep−1 effects on the new

weight. It may take values between 0 and 1.

Step 5: Iterate. Repeat steps 3 and 4 as long as the maximum number of epochs is met or

stopping criteria is met. For a stopping criteria see eq. (2.43).
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One way to define a stopping criteria is to set a small positive scalar value e.g. ε = 10−6 and

when

d(Eav(ep),Eav(ep−1))< ε (2.43)

the algorithm will stop, where d(...) is the Euclidean distance. Another way to do this is by

cross-validation [Stone 1974]. We divide data to two separate sets, then another set is used

for training and another for validating. After every epoch we test how the network generalize

some input-output pair from the validation set and when generalization performance is good

enough the training stops.

Training a Recurrent Multilayer Perceptron

For training a recurrent network we can use truncated back-propagation through time (BPTT(h))

algorithm [Williams and Peng 1990]. This is an extended version of standard sequential

back-propagation algorithm and truncation means that we store and track the outputs to some

time step h. Another version of BPTT is epochwise and it can be seen as an extended version

of standard batch back-propagation algorithm [Williams and Peng 1990]. For optimization

we can use same techniques than in MLP. The local gradient for neuron j in BPTT(h) is

δ j(tc) =

 f ′(v j(tc))e j(tc) , when tc = te

f ′(v j(tc))∑k∈A wk j(tc)δk(tc +1) , when te− th < tc < te,
(2.44)

where A indicates group of all synaptic weight, which include feedback loop weights and

ordinary connection weights, tc is the current time, th is the last time we remember and te is

the ending time. When we get back to time step te− th +1 the adjustment for the weights is

∆w ji(tc) = η

te

∑
tc=te−th+1

δ j(tc)xi(tc−1). (2.45)

When using gradient-based learning algorithms, like BPTT, recurrent networks may suffer

from gradient vanishing problem. It means that during the training the inputs might not

have any effect for training and training becomes impossible to finish. We can overcome

this problem by using more complex training algorithms e.g. real-time recurrent learning

[Williams and Peng 1990] and decoupled extend Kalman filter [Puskorius and Feldkamp

1994].
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Training a Radial Basis Function network

Training a RBF network is about selecting the centers and calculating optimal weights for

it. Centers can be chosen at least four different ways. First way is to set every input as to

a center. This is not very efficiently and dimensionality will be the same as the number of

inputs. Second approach is to select centers at random [Lowe 1989]. Let

f (‖x− ti‖2) = exp(− m
d2‖x− ti‖2), i = 1, ...,m, (2.46)

where m is the number of centers and d is the distance between centers. So basically there

is nothing random in this just that centers may not be in training data. Third method is

self-organized selection of centers [Moody and Darken 1989]. This method contains two

sections. First we estimate appropriate locations for the centers and secondly we train the

weights between hidden layer and output layer. Supervised selection of centers is the fourth

approach [Haykin 1999]. For this we need a cost function to be minimized

E =
1
2

t p

∑
j=1

e2
j (2.47)

and

e j = y j−
m

∑
i=1

wi f (‖x j− ti‖Ci), (2.48)

where t p is the number of training patterns, m is the number of centers and y is the desired

output. Parameters which we need obtain are weights w, centers t and spread C . The

formulas for updating weights, locations of the centers and spread of the centers [Haykin

1999]. Formula for update weights is

wi(ep+1) = wi(ep)−η1

n

∑
i=1

e j f (‖x j− ti(ep)‖Ci), (2.49)

for locations of the centers

ti(ep+1) = ti(ep)−η22wi(ep)
n

∑
j=1

e j(ep) f ′(‖x j− ti(ep)‖Ci)Σ
−1
i [x j− ti(ep)] (2.50)

and for spread of the centers

Σ
−1
i (ep+1) = Σ

−1
i (ep)+η3wi(ep)

n

∑
j=1

e j(ep) f ′(‖x j− ti(ep)‖Ci)[x j− ti(ep)][x j− ti(ep)]T ,

(2.51)
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where η1, η2 and η3 are learning rates, ep is the number of epochs, n is the number of inputs

and f ′(...) is the first derivative of the RBF with respect to its arguments. These updates

are done until the wanted error is obtained or generalized cross-validating by [Craven and

Wahba 1979], when it meets stopping criteria.

2.3.3 Unsupervised training

Unsupervised learning we have a training data, which contains only the inputs x. The ob-

jective is to categorize, discover features or regularities in the training data [Hassoun 1995].

We introduce briefly Hebbian learning and competitive learning for more comprehensive

descriptions see e.g. [Haykin 1999; Hassoun 1995].

Hebbian learning

Hebb’s postulate of learning is the oldest and the most famous of all the learning rules

[Haykin 1999]. The original rule of Hebb’s was that active synaptic weights, in brain, will

grow and inactive synaptic weights will weaken [Hebb 1949]. That has motivated the learn-

ing rules in the field of artificial neural networks. The simplest form of Hebbian learning

rule for weight update

wk j(ep) = wk j +ηyk(ep)x j(ep), (2.52)

where η > 0 is learning rate, y is the output and x is the input. In [Haykin 1999] is shown

that repeatedly active weight will same point saturate the TF. Hence the information stored

in weights and selectivity will be lost. Hence there is need for modified Hebb’s rules see e.g.

[Oja 1982].
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Competitive learning

Like the name implies the neurons are competing among each other’s to become active.

Unlike in the Hebbian learning only one neuron can be active at the time. The simplest

competitive network is a single layer network and it may contain feedback u among neurons.

A possible choice for u is [Hassoun 1995]

ui j =

1 , if i = j

−ε , i 6= j,
(2.53)

where 0 < ε < 1/N, N is the number of neurons. The neurons compete with the size of its

input z = ∑
n
i=0 wixi +u and the winner takes output signal to be 1 and others take 0. Hence

we may write

yk =

1 , if zk > z j, j 6= k

0 , otherwise.
(2.54)

Then the network learns be adding weight to the winner’s weights. Hence we get weight

update as

∆wk j =

η(x j−wk j) , if the neuron k wins

0 , otherwise.
(2.55)

Overall effect of this rule is that weights of the winning neuron are moving towards inputs x

[Hassoun 1995].

2.3.4 Supervised training as an optimization problem

Supervised learning can be seen as an optimization problem. The error is now seen as a

surface and it is a function of the weights. The error surface can be formulated using Taylor

series

E(w(ep)+∆w(ep)) = E(w(ep))+δ
T (ep)∆w(ep)+

1
2

∆wT (ep)H(ep)∆w(ep), (2.56)

where δ = ∂E(w)
∂w is the local gradient and H = ∂ 2E(w)

∂ 2w is the Hessian matrix [Haykin 1999].

As we optimize, we are searching the bottom of the error surface "bowl" (see Figure 14).
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Base optimization technique is the method of steepest descent, where the weight update take

formula

∆w(ep)) =−ηδ (ep). (2.57)

Figure 14: The fundamental of using steepest descent to find the optimal weight vector, which lie in

the bottom of the error surface bowl.

It is operating as a linear approximation in the local neighborhood of operating point w. Now

the δ is the only information about the error surface and convergence towards the optimum

weight vector will take a long time. To improve convergence speed we need higher-order

information about the error surface. It can be done by creating a quadratic approximation of

the error surface around the current point w(ep). This yields to optimal value

w∗(ep) = H−1(ep)δ (ep), (2.58)

where H−1 is inverse Hessian matrix, assuming that it exists [Haykin 1999]. This kind

of formula can be solved with Newton’s method using only one iteration. Although it is

impractical for three reasons [Haykin 1999]:

• H−1 can be computationally expensive to solve.

• There is no guarantee that H−1 exists.

• When E has nonquadratic formula, there is no guarantee for convergence with New-

ton’s method.

Quasi-Newton method can overcome those, when it only needs approximation of δ . How-

ever, quasi-Newton’s computational complexity is O(W 2), where W is the size of the weight
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vector, hence it is impractical for large problems. Conjugate-gradient method has been de-

veloped to overcome the computational complexity of Newton’s method and quasi-Newton

methods and to be faster than steepest descent method. Conjugate-gradient methods com-

putational complexity is O(W ), hence it is more suitable for large problems and therefore

suitable for training the MLP [Haykin 1999].

2.4 Performance

Performance of neural network depends on problem and purpose of the network, thus it is not

unambiguous. The generalization ability is typically the most important feature to achieve.

In case we need to retrain NN multiple times during the problem the time spend on NNs

training must be kept small, then generalization accuracy might not be that important. As

the training time is machine dependent the best choice for measuring it is CPU time used in

training [Prechelt 1994]. In some problems we might not be able produce the best NN for a

problem, but it is illustrating the problem behavior so that it can be used as a surrogate (see

Figure 15).

Figure 15: Examples of surrogates that have a large approximation error but are adequately good for

evolutionary search. Solid curves detonate the original function and dashed curves are their approxi-

mation. [Jin 2011]

A feature which is not problem dependent is overtraining of the NN. Basically overtraining

means that the NN has learned features of the training data, not the features of the problem.

Overtraining might happen when the NN has too many hidden layers or hidden neurons.

Illustration of the overtrained network, therefore the data is overfitted, is shown in Figure 16.
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Figure 16: (A) Properly fitted data (good generalization). (B) Overfitted data (poor generalization).

[Haykin 1999]

In next subsection we introduce some metrics to measure an error, some of them are already

used in previous sections. In subsection 2.4.2, we introduce some definitions of how accurate

NN can be and what is needed to achieve the wanted accuracy. In subsection 2.4.3, we

introduce technique to compare two equally performing NNs, in errorwise, which can be

compared via neural metrics [Leung and Simpson 2000] to determine their complexity. In

this work we are interested only about function approximation so these metrics might not be

applicable in pattern recognition and classification problems. For more information about

pattern recognition and classification see e.g. [Bishop 1995].

2.4.1 Error metrics

Error is measured when the NN is trained and validated. A measured error determines how

much the weights are altered and when to stop the training. The ones most commonly

used are mean absolute error (MAE) (2.59), mean squared error (MSE) (2.60), rooted mean

squared error (RMSE) (2.61) and sum of squared errors (SSE) (2.62). Any of these measures

can be used as a cost function when training a NN. The data could be corrupt with noise, out-

liers, etc., which might lead to unwanted result on capturing the properties of the data, so the

purpose of the metrics is to capture the "right" properties from the data and to abandon the

unwanted properties. In [Bishop 1995] it is suggested to use SSE for training the NN and

RMSE to test it. To use SSE for training, because it does not need a priori knowledge about

44



the outputs distribution. To use RMSE for testing, because its value does not grow with the

number of testing patterns and from value of RMSE you can see if the approximation is per-

fect, when RMSE=0, and if it is "in the mean", when RMSE is output distributions variation.

In [Twomey and Smith 1995] is recommend that practitioners should examine the minimum

obtained from the different metrics, thus that study is for classification problems. It would be

reasonable for function approximation problems as well, hence it was concluded that large

approximation values might be misleading the measured error. So that we might abandon a

NN, which might be good for most of the points, but it incorrectly approximates a few test

patterns.

Mathematical formulation for error are for MAE

E =
1
N

N

∑
i=1
|yi−di|, (2.59)

for MSE

E =
1
N

N

∑
i=1

(yi−di)
2, (2.60)

for RMSE

E = 2

√
1
N

N

∑
i=1

(yi−di)2, (2.61)

and for SSE

E =
1
2

N

∑
i=1

(yi−di)
2, (2.62)

where N is the number of data patterns, y = [y1, ...,yN ] is the approximated output and d =

[d1, ...,dN ] is the desired output. A metric used in accuracy section is integrated squared error

(ISE) and it takes form

E =
∫
( f (x)− fn(x))2dx, (2.63)

where f (x) is unknown density and fn(x) is the estimation function, e.g. a neural network.

2.4.2 Theoretic Accuracy

A most theorems considering accuracy in NNs are derivate to use in a single hidden layer

neural network. In 1993, Barron showed that for every choice of fixed basis functions
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h1, ...,hn there exists error bound measured via ISE

inf
h1,...,hn

sup
f∈ΓC

d( f ,span(h1, ...,hn))≥
C

8πτd

(
1
n

) 1
d

, (2.64)

where n is the number of hidden neurons, d is the dimension of input space, τ ≥ exp(π−1)

is a universal constant and C needs more definitions as follows. In here the unknown density

in ISE is a class of functions on Rd for which are Fourier presentation of the form

f (x) =
∫
Rd

exp(iωx) f̄ (ω)dω, (2.65)

C f =
∫
Rd

2
√

ω ∗ω f̄ (ω)dω. (2.66)

For each C > 0, let ΓC be the set of function f such that C f ≤ C. These results implies to

RBF network as well. [Barron 1993] Another proof results that∫
Rd
( f (x)− fm(x))2dx≤

c2−‖ f‖2
µ

m
, (2.67)

where c > ‖ f‖µ , ‖ f‖2
µ =

∫
Rd( f (x))2µdx and µ is a given positive measure on Rd . Roughly,

this says that 2m parameters can achieve an error of O(1/
√

m), where m is the number of

weights. [Dingankar and Sandberg 1997]

It is proved that NN with specific TF has no lower bound for error, thus the author’s claim

that TF is highly complex, hence it is not good for implementations. The structure of NN

was 3d neurons in the first hidden layer and 6d+3 neurons in the second hidden layer, where

d is the number of inputs. [Maiorov and Pinkus 1999]]

The size of training data has an effect to the accuracy as well. It is said in [Haykin 1999] that

N = O
(w

ε

)
, (2.68)

where N is the number of training patterns, w is the number of weights and ε is the wanted

error. In other words this says that if we have NN with 1000 weights and we want 10%

accuracy then we need 10000 training patterns to achieve the demanded accuracy.
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2.4.3 Neural metrics

A way to measure neural networks is via software metrics [Leung and Simpson 2000]. This

can be used when we have two or more equally performing NNs and in entity they are

measuring the complexity of the NN. These metrics are measuring neural networks un-

derstandability (UN), modifiability (MO), testability (TE), applicability (AP), consistency

(CS), structuredness (ST), scalability (SC), efficiency (EF) and complexity (CO). Parame-

ters, which are needed for measuring and what they correlate, are shown in Table 7.

Type Metric Definition Quality Measurement

Primitive n1 Number of inputs UN, ST, EF & CO

nk Number of hidden neurons on the kth layer UN, ST, EF & CO

nm Number of outputs UN, ST, EF & CO

m Number of layers UN, ST, EF & CO

M Number of epochs TE, AP, EF & CO

P Number of input patterns MO, TE, CS, SC, EF & CO

Computed Nk Number of hidden neurons on the kth layer UN, ST, EF & CO

Nm Number of output weights UN, ST, EF & CO

N Number of weights in network UN, ST, EF & CO

S Number of scaling operations SC, EF & CO

ACT Number of transfer function invocations EF & CO

ADD Number of additions and subtractions EF & CO

MUL Number of multiplication and divisions EF & CO

TOT Total number of operations EF & CO

Table 7: Neural metrics for Backpropagation Neural Networks. [Leung and Simpson 2000]

Mathematical formulations for ADD, MUL, ACT and TOT are in sequential backpropaga-

tion

ADD(M,m,n1, ...,nm) = M(
m−1

∑
s=2

ns(ns+1 +2ns−1−1)+nm(2nm−1 +1)), (2.69)

47



MUL(M,m,n1, ...,nm) = M(
m−1

∑
s=2

ns(ns+1 +3ns−1 +2)+nm(3nm−1 +2)), (2.70)

ACT (M,m,n1, ...,nm) = M(
m

∑
s=2

ns), (2.71)

TOT (M,m,n1, ...,nm) = M(
m−1

∑
s=2

ns(2ns+1 +5ns−1 +2)+nm(5nm−1 +4)), (2.72)

And in batch backpropagation

ADD(P,M,m,n1, ...,nm)=PM(
m−1

∑
s=2

ns(ns+1+ns−1)+nm(nm−1+2))+M
m

∑
s=2

nsns−1, (2.73)

MUL(P,M,m,n1, ...,nm) = PM(
m−1

∑
s=2

ns(ns+1 +3ns−1 +2)+nm(3nm−1 +1)), (2.74)

ACT (P,M,m,n1, ...,nm) = PM(
m

∑
s=2

ns), (2.75)

TOT (P,M,m,n1, ...,nm) =PM(
m−1

∑
s=2

ns(2ns+1+4ns−1+3)+nm(4nm−1+5))+M
m

∑
s=2

nsns−1).

(2.76)

As said earlier that exact training time can be compared when using same software and hard-

ware, thus this gives metrics to measure the training time, namely the number of calculations,

which is independent from software and hardware.
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2.5 Neural network applicability

In this section we give two examples for each NN structures discovered in section 2.2. Exam-

ples demonstrated their applicability for classification problem, namely XOR-problem (see

Table 8), and for function approximation (see eq. (2.79)). Examples are made with Matlab

2011 & Neural network toolbox and codes can be found in Appendix B.

In the XOR-problem, we have two inputs and an output, each of inputs may take value 0 or

1 and the output depends from those, if the inputs are equal the output is 0 and if the inputs

are unequal the output is 1.

Inputs Outputs

[0, 0] 0

[0, 1] 1

[1, 0] 1

[1, 1] 0

Table 8: XOR-problem values

The second example is about function approximation, which is append with some noise. Let

the real value of problem be

fr(x) = cos(x), (2.77)

the noise, which may come for different sources, cables, machineries, etc., and makes an

error to the measured data,

fn(x) =
1
2

sin(x2) (2.78)

and the summary of these

fs(x) = cos(x)+
1
2

sin(x2). (2.79)

In the next subsection the SLP is applied to solve these problems. In subsection the MLP is

applied. In subsection 2.5.3 the RMLP is applied. And in subsection 2.5.4 the RBF network

is applied.
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2.5.1 Single Layer Neural Network

In this subsection SLP is applied to solve two examples shown in previous section. In Figure

17 it is shown that a SLP cannot classify XOR-problem correctly. This happens because it

can only produce straight lines.

Figure 17: XOR-problem solved with single layer perceptron network. ’O’s are valued as 0 and ’X’s

are valued as 1.

It is shown in Figure 18 that SLP cannot approximate nonlinear function. In addition effect

of the bias is demonstrated that produces an affine transformation to approximation.

Figure 18: Function approximation using a SLP and effect of the bias. Solid (blue) line is the function,

solid (red) line is approximation with bias and dashed (red) line is approximation without bias.
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2.5.2 Multilayer Neural Network

In this subsection MLP is applied to solve examples shown in section 2.5. The MLP with one

hidden layer and two hidden neurons can be used for solving the XOR-problem, which can

be seen as a classification problem, whereas SLP could not do it. Result for XOR-problem is

shown in Figure 19, where point ’x’ is result 1 and ’o’ is 0 and Pink (dark) area is classified

as 1 and teal (light) area is classified as 0.

Figure 19: XOR problem solved with MLP. Pink (dark) area is classified as 1 and teal (light) area is

classified as 0.

Another example is the function approximation (see (2.79)). Firstly a MLP with one hidden

layer containing t p−1= 100 neurons is used for approximation. The performance measured

via mean squared error (MSE) is 9.20e-8 after 192 epochs and as shown in Figure 20 the

approximation is exactly the function. Secondly a MLP with two hidden layers consisting

t p/2 = 50 neurons in first hidden layer and 3 neurons in second hidden layer. After 1000

epochs the MSE is 0.000820 and as shown in Figure 21 the approximation is not as good as

above. Although the number of epochs was multiplied from 192 to 1000. Thirdly a MLP

with two hidden layers, where the number of hidden neurons is chosen randomly and let the

number hidden neurons in first hidden layer be 10 and in second hidden layer 5. For this

MLP a MSE is 0.0311 and it is obtained after 10000 epochs and as shown in Figure 22 the
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approximation is not as good as in the first MLP and the second MLP.

Figure 20: Function approximation using MLP one hidden layer. Line is the approximation and ’X’s

are the real values.

Figure 21: Function approximation using MLP with two hidden layers. Line is the approximation

and ’X’s are the real values.
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Figure 22: Function approximation using MLP with two hidden layers. Number of hidden neurons is

random. Line is the approximation and ’X’s are the real values.

2.5.3 Recurrent Multilayer Neural Network

In this subsection RMLP is applied only for function approximation example, because we

are mainly interested about function approximation features of the NNs. The XOR-problem

can be done e.g. by using Hopfield network [Brouwer 1997]. In Figure 23 (A) is the result

of sequence identification and as we see the result follows nicely the original sequence and

also removes the noise. The sequence prediction is illustrated in Figure 23 (B), where we

see that the prediction is following the original sequence pass the last training time step but

not very accurately. Although this result is not guaranteed and it took about 30 retraining to

achieve. The real problem, where we do not know the future, it will be very hard to choose

the right prediction.

2.5.4 Radial Basis Function Network

In this section we apply RBF network to solve examples shown in section 2.5. For solving

the XOR-problem we need two RBFs and two centers. Let the centers be t1 = [0,0], t2 = [1,1]

and let the RBFs be Gaussian f1(x, t1) = exp(−‖x− t1‖2) and f2(x, t2) = exp(−‖x− t2‖2)

when doing calculations we get results (see Table 9). Now the XOR-problem has returned to
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Figure 23: Recurrent Multilayer Perceptron example. A) Identification of the sequence B) Prediction

of the sequence to +1 second.

linearly separable problem as shown in Figure 24 and points are easy to classify.

The function approximation is solved using two different RBF networks are employed and

two different approximation error goals are set. Results are shown in Figure 25, where Xs are

real values of the function, solid (blue) line is approximation using network (A) and dashed

(red) line is approximation using network (B).

A RBF networks approximation error goal was set to 0,2 measured via MSE. Supervised

selection of centers is performed and to reach the error goal only three centers was

needed and therefore size of the network is pretty small. In Figure 25 these results can

be seen as solid (blue) line and as we see the approximation is following the original

function very smoothly.

B RBF networks approximation error goal was set to 0. Obtained error was 0.062375

and for that every input was needed to be as centers so the dimension of network is as
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x f1 f2

[0,0] 0.135 1

[1,0] 0.368 0.368

[0,1] 0.368 0.368

[1,1] 1 0.135

Table 9: XOR-problem results obtained using RBF network

Figure 24: XOR-problem solved with RBF network. ’X’s are valued as 1 and ’O’ is valued as 0.

Points are now linearly separable.

high as in similar example using MLP, but the error achieved is much bigger here. In

Figure 25 dashed (red) line illustrates approximation result and we can clearly see that

is not even nearly as good as in Figure 20.

In next chapter we present heuristics for improving the performance of NNs and backpropa-

gation algorithm.
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Figure 25: Function approximation using RBF network. ’X’s are illustrating the real values of the

function, solid (blue) line approximation when the goal was reach 0,2 error and dashed (red) line is

the approximation when goal was to reach 0 error both measured via MSE.
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3 Heuristics for improving the performance of Neural

Networks

In this chapter we introduce some heuristics found in literature, which should help building

a proper neural network. Heuristics might not give the best solution for each problem, but

we are providing a starting point for neural network design. In the first section, we discuss

about importance of inputs and their effect to NNs structure and learning. In the second

section, we discuss about heuristics for structure of the NN and the number of neurons. In

the last section, we discuss about how you can make the backpropagation algorithm to work

efficiently.

3.1 Input dimension reduction

As NN are imitating brains some might think that they can somehow sort the training data to

relevant and irrelevant data, then learn the relevant data only. This is not true, because when

we are training the NN the main feature effecting to training is the error between the training

data and the values calculated with NN. Hence, if we give irrelevant training data to NN, it

will learn irrelevant features of the data and produce approximations according to those. In

the next section, we present heuristics to determine structure of the NN and some of those

are based on the number of inputs. Hence more inputs yields to more neurons and as the

inputs are connected to the neurons via weights, this yields to increased number of weights.

The less we have weights to train the less we need training patterns to make it more accurate

or with same amount of training patterns we can make a smaller NN to be more accurate

than a larger NN (see eq. (2.68)).

Reducing the number of inputs is not an easy task to complete. In [Fahmi and Cremaschi

2012], it could not be done because independent nature of the inputs. In [Jain and Nag 1995],

reducing inputs resulted the performance to decrease rather than increase. The performance

was found improving by 47% when the number of inputs was reduced from 51 to 5 [Schleiter

et al. 1999]. In [Muknahallipatna and Chowdhury 1996] it is shown that dimension reduction

maintain the same level of accuracy or improve it in MLP and RBF network. In [Zhu et

57



al. 1998] it is shown that decreasing inputs, in recurrent neural network, the performance

of the recurrent neural network maintained in the same level. Hence, reducing the input

dimension may increase the performance of the NN, but it can also decreased it, if it is

applied incorrectly.

How can we determine the inputs, which we keep and which we reduce? Firstly, because

NN designer cannot be an expert of all the domains, where NNs are used, designer has to

discuss with domain experts. Their a priori knowledge of the domain might help to determine

relevance of the inputs to the problem. Thereby the decision whether to keep or discard an

input can be made. In [Walczak 1994], where the problem was to recognize students who

apply to university and who do not, the number of inputs was reduced from 26 to 16 and the

number of outputs was reduced from 3 to 2 with help of the domain experts.

Secondly, correlation of the inputs need to be calculated e.g. Pearson correlation matrix (see

eq. (3.1) or [Pearson 1920]) or chi-square test (see [Chernoff and Lehmann 2012]).

ρx,y =
cov(X ,Y )

σxσy
=

E[(X− x̄)(Y − ȳ)
σxσy

, (3.1)

where X and Y are variables, σx and σy are standard deviations of the X and Y , x̄ and ȳ are

expected values and E is expected value operator. Pearson correlation takes values between

-1 to 1, illustrations for different correlation coefficient see Figure 26. Hence, if there is high

correlation between two inputs, then one of those two can be kept and other is reduced with-

out adversely affecting NNs performance. High correlation is problem dependent and must

be determined individually for every problem. In [Walczak and Cerpa 1999] it is suggested,

that correlation |ρ|> 0.2 indicates a noise source, hence it can be taken as a guideline for a

high correlation.

Thirdly, other statistical techniques can be applied e.g. regression [Sykes 1993] and factor

analysis [Tryfos 1998]. Technique to be used depends on the distribution of the inputs.

Multiple regression and factor analysis are working better for normally distributed data and

logistic regression for a curvilinear data [Walczak and Cerpa 1999].
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Figure 26: Correlation coefficient for Pearson correlation matrix. [ http://en.wikipedia.

org/wiki/Pearson_product-moment_correlation_coefficient]

3.2 Structure of the neural network

Neural networks with single hidden layer (MLP, RBF) are universal approximators and as

shown in examples they can learn the data perfectly. In examples we were using heuristics,

which will provide a perfect match for learning the training data, but those will not guarantee

the accuracy for the data, which is not included in training data. On the other hand, if we

have very large dataset (> 1000 t p), it makes no sense to have network with t p−1 hidden

neurons. The problem in hand determines some setups for neural network design e.g. the

number of output neurons. In the first section, we will give some heuristics for the number

of hidden layers. In the second section, we will provide some heuristics for the number of

hidden neurons. The size of RBF network is determined with the number of radial basis

functions, which are chosen with different method than neurons in MLP, hence this heuristic

do not imply to it.

3.2.1 Number of hidden layers

A base model for NN is SLP, but it can be used to classify linearly only separable problems,

hence for real world problems it has limited applications. A MLP with a hidden layer is a

universal approximator, so it can approximate any arbitrary function, although this feature

might not guarantee the generalization abilities and it gives no guidelines for structure. As
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said earlier a MLP with two hidden layers can approximate function with lesser number of

neurons than MLP with one hidden layer.

The number of hidden layers is the trade-off between smoothness and accuracy. As a small

number of hidden layers increases the smoothness of approximation and a greater number

of hidden layers increases the accuracy of approximation. The complexity of the problem

corresponds to the number of hidden layers, hence as the complexity of the problem grows

should the number of hidden layers grow. According to [Walczak and Cerpa 1999] the MLP

with certain numbers of hidden layers can approximate different types of planes:

• MLP with 1 hidden layer: can create a hyperplane.

• MLP with 2 hidden layers: can combine hyperplanes to form convex decision areas.

• MLP with 3 hidden layers: can combine convex decision areas to form convex decision

areas that contain concave regions.

The most functions can be approximated with MLP with one hidden layer [Walczak and

Cerpa 1999; Basheer and Hajmeer 2000], hence we suggest that designing structure of the

MLP should start from single hidden layer and, if it cannot provide proper behavior, the size

of hidden layers should be increased. This implies to design of recurrent MLPs as well.

3.2.2 Number of hidden neurons

The number of hidden neurons is a trade-off between training time and accuracy [Walczak

and Cerpa 1999]. A greater number of hidden neurons will take longer time to train, but

it can be more accurate than having a smaller number of hidden neurons, which takes less

time to train. On the other hand, too many hidden neurons may yield to overtraining and

generalization accuracy will be poor. Too few hidden neurons cannot learn the training data

and generalization accuracy will be poor also. Heuristics for the number of neurons is based

on the number of inputs/outputs, the number of training patterns or some mixture of these

(see Table 10).

If we compare structure used in MLP example 1, where we had 101 training patterns and

300 weights and 1 output, to heuristic provided by Widrow, we get 300 ≤ 101 ≤ 2469 and

from that we see the structure of MLP is too large. Although examples purpose was to show
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Heuristic formula Reference

HN = 50%∗ (n+ k) Piramuthu, Shaw, and Gentry

1994

HN = 75%∗n Jain and Nag 1995

HN = 2∗n+1 Fletcher and Goss 1993

HN ≤ t p
R∗(n+k) Jadid and Fairbairn 1996

0.11∗ t p≤ HN ∗ (n+1)≤ 0.3∗ t p Lachtermacher and Fuller

1995

HN =
√

n∗ k Masters 1993

w = t p∗ log2(t p) Walczak and Cerpa 1999
w
k ≤ t p≤ w

k log2(
w
k ) Widrow and Lehr 1990

Table 10: Heuristics for the number of hidden neurons. Descriptions for variables: HN is the number

of neurons, n is the number of inputs, k is the number of outputs, w is the number of weights, t p is

the number of training patterns and R takes values from 5 to 10.

that MLP can approximate a nonlinear function perfectly. Hence our suggestion is to pick

some of these heuristics to determine an upper bound and a lower bound for the number of

hidden neurons. Then by using those bounds start to search the best network structure for the

problem and when an upper is reached then add a hidden layer and append it with a lower

bound of neurons.

3.3 Backpropagation to work efficiently

In this section we introduce some heuristics for backpropagation algorithm to perform bet-

ter. In first subsection we discuss about choice of neuron model. In second subsection we

discuss about importance of initializing weights and how to do it. And in third subsection

we introduce heuristics for determining learning rate and momentum.
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3.3.1 Choice of transfer function

To build a NN we have basically two transfer functions, discovered in section 2.1, which we

may choose: log-sigmoid TF and hyperbolic tangent TF. In [LeCun, Kanter, and Solla 1990]

it is shown that neurons with an antisymmetric TF yield to faster convergence than neurons

with nonsymmetric TF. TF is antisymmetric when f (−z) = − f (z) and hyperbolic tangent

TF meets this requirement. In [LeCun et al. 1998], a good choice for TF (see Figure 27) is

founded to be

f (z) = 1.7159∗ tanh(
2
3

z) (3.2)

and it has following features:

• f (1) = 1 and f (−1) =−1.

• At the origin the slope of the TF is close to unity.

• The second derivative of f (z) attains its maximum value at z = 1.

Figure 27: Specified hyperbolic tangent transfer function.

The learning time of backpropagation algorithm is sensitive to condition number λmax/λmin,

where λmax is the largest eigenvalue of the Hessian matrix and λmin is the smallest eigenvalue.

The inputs with nonzero mean have a larger ratio of λmax/λmin than zero mean inputs, hence

the smaller the ratio the better the result. The TF, which takes values in the interval [ -1, 1 ],

is more likely to get zero mean than TF, which takes values in the interval [ 0, 1 ]. [LeCun,

Kanter, and Solla 1990].

Hence it can be suggested that TF to be used should be hyperbolic tangent TF and in partic-

ular TF eq. (3.2).
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3.3.2 Initialization of the weights

Some might think that initialization of the weights is just a common practice in field of

NN. In [Li et al. 1993] it is shown, that properly set initial weights have an effect to speed

up backpropagation algorithm. In [Lee, Oh, and Kim 1991] it is shown that too large initial

weight values cause premature saturation to neurons, which leads to slow learning even if the

error is large and it is suggested that initial weights should be small. Although in [Hassoun

1995] it is shown that small initial weights produce a flat error surface and training will be

slow. What is proper initial weight then? In [LeCun et al. 1998] formula for initial weights

formula is derived by

σ
2
z = wσ

2
w, (3.3)

where σz is standard deviation of neurons inputs, w is number of weights and σw is standard

deviation of initialized weights. If using TF as specified in eq. (3.2), then σz = 1 and we get

σw =
1√
w
. (3.4)

In [Walczak and Cerpa 1999] it is shown that a good interval for initial weights is [ -0.3, 0.3

].

3.3.3 Learning rate and Momentum

The learning rate affects on how much the weights are altered due to the error. A large

learning rate will make changes to be big and convergence will be fast, but this may result

in oscillation near the optimum point and it may not be obtained. A small learning rate

will make changes to be small and convergence will be slow towards the optimal points, but

obtaining it might take a long time.

The learning rate can be a constant for all the time. Some heuristics for constant learning

rates are shown in Table 11,

which are very similar to results in [Thimm and Fiesler 1997]. The learning rate may also

vary over time (epochs) and in [Jacobs 1988] it is shown that adaptive learning rate makes

backpropagation algorithm perform better than constant learning rate. The methods for adap-

63



Heuristic values for learning rate Reference

0.1 - 10 Walczak and Cerpa 1999

0.1 - 0.9 Gasteiger and Zupan 1993

0 - 1 Walczak and Cerpa 1999

Table 11: Heuristics for constant learning rate.

tive learning rates are:

• Every parameter should have individual learning rate.

• Every learning rate should be allowed to vary over epochs.

• If parameters derivative is constant over several epochs then its learning rate should be

increased.

• If parameters derivative alternates over several epochs then its learning rate should be

decreased.

Here parameter mean weights and biases. Another term affecting the weight change is the

momentum term. It has same kind of effect to learning process than learning rate. It can

accelerate the weight updates when high learning rate might lead to oscillating, but too high

momentum might lead to oscillating as well [Walczak and Cerpa 1999]. Heuristics for the

momentum are shown in Table 12.

Heuristics for momentum Reference

0.4 - 0.9 Walczak and Cerpa 1999

0 - 1 Hassoun 1995

1 Walczak and Cerpa 1999

Table 12: Heuristics for momentum.

As learning rate (η) and momentum (α) are related to each other, it is suggested in [Gasteiger

and Zupan 1993] that η +α ≈ 1. Using η = 0.9 and α = 0.25 has been found to be useful

if no better solution is in hand [Walczak and Cerpa 1999].
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4 Numerical experiments of Neural Network design.

Our numerical experiment is about creating a surrogate model for a control model as it is in

[Sindhya et al. 2013], where APROS, a dynamic process simulator, is used. APROS takes

about 15 seconds for single evaluation.

4.1 The Control Model

The control model consists of a mixing tank, a feed inlet, an outlet and a concentration

control loop. The flow sheet of the control model is shown in Figure 28.

Figure 28: Flow sheet of the control model. [Sindhya et al. 2013]

The concentration dynamic in the mixing tank is

m
dc
dt

= m2c2(t)−m4c4(t), (4.1)

where m is the total mass in the tank, m2 and c2 are mass and concentration of the inlet flow,

m4 and c4 are mass and concentration of the outlet flow and t is time. The total mass m is

m = ρAL, (4.2)

where ρ is fluid density, A is the cross-sectional area of the tank and L is liquid level. The

mass flow is fixed to 100 kg/s and liquid level L is adjusted to 0.75 h (h is height of the tank),

the concentration is allowed to vary over time. The inlet feed flow is diluted with pure water,
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before it enters to mixing tank. The water addition m3 is determined by the concentration

controller QIC using the PI control law

m3 = Kp

[
(cre f

2 − c2(t))+
1
TI

∫
∞

0
(cre f

2 − c2(t)dt
]
, (4.3)

where Kp is the controller gain parameter, TI is the controller integration time parameter and

cre f
2 is the desired value for c2.

Multiobjective optimization problem

The problem is formulated such that we have three objectives, which are minimized. The

first objective is the ratio of inlet concentration c1 variations and outlet concentration c4. The

second objective is the investment cost of the mixing tank. The third objective is Integrated

Absolute Error of the outlet concentration c4 and the desired concentration cre f
2 , which de-

termines how well the system achieves the target dilution. The variables are cross-sectional

area of the mixing tank A, height of the mixing tank h, controller gain parameter Kp and a

coefficient kI , which is used to determine the integration time T1 of the controller as

T1 = kI
Ah
Q

, (4.4)

where Q = 0.1 m3/s is the volumetric flow rate through the tank. Hence multiobjective

optimization problem is described as

minimize f1 =
4

∑
κ=1

Aκ,4

Aκ,1
,

f2 = 10000(Ah)0,7,

f3 =
1
D

∫ D

0
| c4(t)− cre f

2 | dt,

subject to 0≤ A≤ 10m2,

1≤ h≤ 5m,

0≤ Kp ≤ 10,

0≤ kI ≤ 5,

| h−1.5d |< 0.5,

(4.5)
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where κ is the number of sinusoids of different cycle times, D is the simulation time (here

D= 6 hours) and d is diameter of the mixing tank’s cross-section. In f1, Aκ,4 is the amplitude

of the concentration of flow 4 at cycle time Tκ and Aκ,1 is the amplitude of the concentration

of flow 1. Tκ = [400,100,10,0.2]T are the sinusoid cycle times.

4.2 Experimental setting

Our experiment is about building a surrogate for multiobjective optimization problem, which

is described in the previous section. Our goal is to replace computationally expensive

APROS with NN, which is approximating the three objectives and one constraint. NN struc-

tures for experiment are MLP and RBF network as we are not trying to model the dynamics

of the problem, but just single objective values. Another goal is to compare how different

training data set affects on accuracy of the NN. Experiment is done with Matlab 2011 using

NN toolbox, computer is running with Windows 8 and it has 4-core i7-processor running at

2,2 GHz and 8 GB memory.

The problem determines some NN parameters, which are four inputs, namely A, h, Kp and

kI , and four outputs, namely f1, f2, f3 and constraint | h−1.5d |< 0.5. For NN structure we

have basically two choices:

• Common, all of the objectives share a NN, hence it consists four outputs.

• Individual, each of the objectives has its own NN, hence it consists one output. In total

we have four NNs.

These terms implies to MLP and RBF network and let’s call Common MLP as CMLP, Indi-

vidual MLP as IMLP and Common RBF network as CRBF and Individual RBF network as

IRBF.

As advised in Chapter 3, the structure for MLP is one hidden layer (see Figure 29A). In

addition, to see if there are differences in accuracy, MLP with two hidden layers (see Figure

29B) is also build and tested. The transfer function in hidden neurons is chosen to be hy-

perbolic tangent according the justification in Chapter 3 and output layer transfer functions

are linear. To determine the number of hidden neurons one heuristic is chosen, randomly,

67



where the number of hidden neurons in the first hidden layer is 2x inputs+ 1. The num-

ber of hidden neurons in the second layer is chosen to be six. Training method for MLP

is conjugate-gradient method, maximum epochs is set to 30000 and accuracy to achieve is

0.00001 measured via SSE.

Figure 29: The MLPs for the numerical experiment. A.) The MLP with one hidden layer. B.) The

MLP with two hidden layer. Dotted parts are illustrating the Common MLPs.

The structures for RBF network are a CRBF with all training points as centers (CRBF a),

a CRBF with supervised selected training points as centers (CRBF as) and a IRBF with su-

pervised selected training points as centers (IRBF as). Different accuracies to achieve are

0.1 and 0.5 measured via MSE, since Matlab RBF network uses it and it cannot be easily

changed. In the Matlab implementation we can set "spread", which determines the diversity

of radial basis function, and after some test-runs the spread 10 is found to be good choice for

this problem. Different data sampling techniques are discussed in Chapter 2. Techniques are

used to create input space for APROS, which then calculates corresponding outputs. Inputs

are bounded according to optimization problem (4.5). Data set sizes for Latin Hypercube

sampling and Hammersley sampling are 100, 500, 1000 and 1500 points and because of Or-

thogonal arrays optimal design it gives data sets of 100, 529, 1024 and 1521 points. Hence

Orthogonal array has little advance in sense of data points, as we remember for Chapter 2,

the accuracy of the NN depends, partly, on the number of training points. Then the data

sets are divided with ratio of 15:85, where 15% of the data points are used to validation and

85% of data points is used for training. Then the set of 85% is divided with ratio of 30:70,

where 30% is used for testing and 70% is used for training. Same sets are used to train and
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validate each NN. Validation error is measured via RMSE, as it was suggested previously

to training the network with different metric than validate. Then we pick the best networks

for the final validations, where validation set consists of 50 points from each of the biggest

validation sets. The training data, usually, needs some preprocessing e.g. normalization, out-

lier detection and removal to achieve flawless data. We are assuming that APROS generates

flawless data, which does not contain measure errors, noise or outliers. Hence we do not

perform any noise/outlier removal techniques to the training data. Although the input values

are normalized to [0,1] and output values are matched to range of transfer functions [-1,1],

as it is suggested in [LeCun et al. 1998], in test-runs this has found to have positive effect

on accuracy and training time. Output values of constraint are altered so that feasible results

take value of [-1] and not feasible results take [1], hence constraint approximation derives to

a classification problem. Hence we see if the function approximation methods implies to the

classification problem as well.

4.3 Results

In this section we introduce results of our experiment. In the next section we give some

analysis of the results. All of the results are shown in Appendix A. Figures 30 - 38 show

approximation values marked as blue ’x’ and desired values marked as red ’o’. Measure-

ments are done to values, which are given by the NNs and they are not scaled back to the real

values, because the real values consists of very large values (>70000) and very small values

(<0.1), thereby the comparison with scaled values would not be easy.

We have chosen two best designs given by CMLP and CRBF and also the best IMLP and

the best IRBF for each function. All of the training results can be found in Appendix A

and the best results for our experiment are shown in Table 13. The first column gives the

objective, where overall is average error of all of the objectives and individual error for each

objective is following the overall. The second column gives sampling technique (Lhs is

Latin hypercube, Oa is Orthogonal array and Ham is Hammersley sampling), sample size,

the number of layers (hl1 stands for one hidden layer and hl2 stands for two hidden layers)

and for RBF network it gives if all training points are selected for center (a) or if centers

are supervised selected (as) and the goal for RBF network to achieve e.g. g 0.1 stands for
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goal 0.1. Some design consists two different designs because their accuracy was the same.

The third column gives either RMSE for function approximation or classification percent for

correctly classified constraint. Constraint is the only one, which takes classification % as a

result. Results for final validation are shown in Table 14. Descriptions are the same as in

Table 13. The final validation results consists overall RMSE for each chosen candidate and

the individual results are shown for the most accurate NN designs. The individual constraint

is shown only once, since we have chosen only one NN design for final validation.
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Table 13: The best NN design in numerical experiment

The best Common MLP Design RMSE/Classification%

Overall Lhs 100 hl1 0,0349

Objective 1 Lhs 100 hl1 0,0393

Objective 2 Lhs 100 hl1 0,0396

Objective 3 Lhs 100 hl1 0,0234

Constraint (%) Lhs 100 hl1 66,6667

2. best Common MLP

Overall Ham 1500 hl2 0,0378

Objective 1 Ham 1500 hl2 0,0396

Objective 2 Ham 1500 hl2 0,0291

Objective 3 Ham 1500 hl2 0,0432

Constraint (%) Ham 1500 hl2 97,3333

The best Individual MLP

Overall Oa 1024 hl1/hl2 0,0788

Objective 1 Oa 1024 hl1/hl2 0,0743

Objective 2 Oa 1024 hl1/hl2 0,1304

Objective 3 Oa 1024 hl1/hl2 0,0317

Constraint (%) Oa 1024 hl1/hl2 26,6667

The best Common RBF

Overall Oa1024 as g 0.1 0,0393

Objective 1 Oa 1024 as g 0.1 0,0373

Objective 2 Oa 1024 as g 0.1 0,0072

Objective 3 Oa 1024 as g 0.1 0,0564

Constraint (%) Oa 1024 as g 0.1 15,5844

2. best Common RBF

Overall Oa1024 a g 0.1 0,0408

Objective 1 Oa 1024 a g 0.1 0,0368

Objective 2 Oa 1024 a g 0.1 0,0066

Objective 3 Oa 1024 a g 0.1 0,0600

Constraint (%) Oa 1024 a g 0.1 12,3377

The best Individual RBF

Overall Oa 1024 as g 0.1/0.5 0,0788

Objective 1 Oa 1024 as g 0.1/0.5 0,0743

Objective 2 Oa 1024 as g 0.1/0.5 0,1304

Objective 3 Oa 1024 as g 0.1/0.5 0,0317

Constraint (%) Oa 100 as g 0.1 26,6667
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Table 14: Final validation results

The best Common MLPs Design RMSE Classification %

Overall Lhs 100 hl1 0,2739 67,3333

Overall Ham 1500 hl2 0,2995 96,0000

Objective 1 Ham 1500 hl2 0,4160 0,0000

Objective 2 Ham 1500 hl2 0,0719 0,0000

Objective 3 Ham 1500 hl2 0,2162 0,0000

Constraint Ham 1500 hl2 0,0000 96,0000

The best Individual MLPs

Overall 0,1515

Objective 1 Oa 1024 hl1 0,3129 0,0000

Objective 2 Oa 1024 hl1 0,0184 0,0000

Objective 3 Oa 1024 hl1 0,1231 0,0000

Constraint Oa 100 hl1 0,0000 46,0000

Overall 0,2071

Objective 1 Oa 1024 hl2 0,4477 0,0000

Objective 2 Oa 1024 hl2 0,0150 0,0000

Objective 3 Oa 1024 hl2 0,1587 0,0000

The best Common RBFs Design RMSE Overall Classification %

Overall Oa 1024 a g 0.1 0,1631 16,6667

Overall Oa 1024 as g 0.1 0,1631 16,6667

Objective 1 Oa 1024 as g 0.1 0,1898 0,0000

Objective 2 Oa 1024 as g 0.1 0,0183 0

Objective 3 Oa 1024 as g 0.1 0,2084 0,0000

Constraint Oa 1024 as g 0.1 0,0000 16,6667

The best Individual RBFs

Overall 0,1918

Objective 1 Oa 1024 g 0.1 0,2102 0,0000

Objective 2 Oa 1024 g 0.1 0,1450 0,0000

Objective 3 Oa 1024 g 0.1 0,2201 0,0000

Constraint Oa 100 g 0.1 0,0000 4,6667

Overall 0,1918

Objective 1 Oa 1024 g 0.5 0,2102 0,0000

Objective 2 Oa 1024 g 0.5 0,1450 0,0000

Objective 3 Oa 1024 g 0.5 0,2201 0,0000
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Even though the best CMLP design (Lhs 100 with one hidden layer) performs nicely when

validated with its own validation set as it is shown in Table 13. When we use larger final

validation set, its accuracy decreases, although it is performing better than the second best

CMLP (Ham 1500 with two hidden layers). In Figure 30 it is shown the approximations of

the final validation set by the best CMLP, where upper figure gives as the approximation of

objective functions (RMSE 0,2739) and lower gives the classifications for the constraint. As

we can see from Figure 30 that for real it is not that good as there seems to be a systematic

error on every approximation, although the approximation value front is close to the real

objective function front. Hence the RMSE does not tell the whole truth. Also the best CMLP

is classifying the constraint function very poorly, only 67% correct classifications.

Figure 30: The best CMLP final validations results. This was obtained by training single hidden layer

Multilayer Perceptron with 100 training points generated by Latin hypercube sampling.

In Figure 31 it is shown the approximations of the final validation set by the second best

CMLP. The second best CMLP is approximating final validations solutions more accurately

(RMSE 0,2995), but there are a few approximations, which have a high error. Also classify-

73



ing the constraint is done very accurately (96%). Individual objective function approxima-

tions by the second best IMLP are shown in Figure 32, where the top figure is approximations

of the first objective function (RMSE 0,416), the middle figure is for the second objective

function (RMSE 0,0719) and the lowest figure is for the third objective function (RMSE

0,2162).

Figure 31: The second best CMLP final validations results. This was obtained by training two hidden

layer MLP with 1500 training points generated by Hammersley sampling.
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Figure 32: The second best CMLP final validations results, where objectives are shown individu-

ally. This was obtained by training two hidden layer MLP with 1500 training points generated by

Hammersley sampling.

When we are using IMLP (see Figure 33), we obtain better approximation error (0,1515)

than the CMLP (0,2995). Although IMLP, which is classifying the constraint, is not doing

it very correctly ( 46%). Individual approximations for each of the objectives from IMLPs

are shown in Figure 34, where the first objective surrogate takes error of 0,3129, the second

objective surrogate is approximating with accuracy of 0,0184 and third objective surrogate

takes error of 0,1231.
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Figure 33: The best IMLPs final validations results. All of these were obtained by training single

hidden layer MLP with 1000 training points generated by Orthogonal array sampling.

Figure 34: The best IMLPs final validations results, where objectives are shown individually. All

of these were obtained by training single hidden layer MLP with 1024 training points generated by

Orthogonal array sampling.
76



The best CRBF network (RMSE 0,1631) is performing almost as good as IMLP (RMSE

0,1515), although it is classifying constraint poorly 16,66%. Approximations of CRBF is

shown in Figure 35. And the individual objective results from the best CRBF are shown

in Figure 36, where first objective function approximation achieves RMSE 0,1898, the sec-

ond objective function approximation takes error of 0,0183 and the third objective function

approximation achieves RMSE 0,2084.

Figure 35: The best CRBF final validations results. This was obtained by supervised selection centers

when goal was 0.1 via MSE and 1024 training points generated by Orthogonal array sampling.
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Figure 36: The best CRBF final validations results, where objectives are shown individually. This

was obtained by supervised selection of centers when goal was 0.1 via MSE and 1024 training points

generated by Orthogonal array sampling.

The last results are from surrogate model IRBF (see Figure 37). RMSE (0,1918) of IRBF

is slightly worse than CRBF (0,1631), but a little bit better than CMLP (0,2995). The last

results, where objectives are individually, are shown in Figure 38, where the first objective

function surrogate takes RMSE 0,2102, the second objective function surrogate achieves

error of 0,1450 and the third objective function surrogate takes error of 0,2201. Classification

results are very poor 4,66% .
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Figure 37: The best IRBF network final validations results. All of these were obtained by supervised

selections of centers when goal was 0.1 via MSE and 1024 training points generated by Orthogonal

array sampling.

Figure 38: The best IRBF final validations, where results objectives are shown individually. All of

these were obtained by supervised selection of centers when goal was 0.1 via MSE and 1024 training

points generated by Orthogonal array sampling. 79



4.4 Result analysis

In this section we analyze the results. We start by analyzing the figures, the sampling tech-

niques and sample sizes, then we continue to analyze the NN designs. Since we have not

discussed about classification we do not analyze those results, but clearly function approxi-

mation approach does not work very well in a classification problem.

As shown in Figures 30 - 38 the output values of the training data would have need some

preprocessing, since objectives 1 and 3 values are concentrated on 0,5 and 0,9. The output

values were normalized to interval of [-1,1], hence the output values of the training data have

consisted a few outliers, which have deformed the normalized data. Those output values

should be analyzed to see, if they consist some crucial information about the control model

and remove them, if not. If those can be removed the models should be retrained and revali-

date. In Table 14 is shown that the second objective surrogates are the most accurate and in

corresponding figures we see that output values are the most diverse in the second objective.

Hence outlier detection for output values is crucial to the generalization accuracy of the NN.

In this thesis one of our goals was to compare different sampling techniques and their effect

to generalization performance. We provided three different sampling techniques, namely

Latin hypercube, Hammersley sampling and Orthogonal array. Each of those generated four

input sets and them were used to calculate the corresponding outputs using APROS. Hence

we got 12 different training sets, which were used to train neural networks. Data sets where

divided into training, testing and validation sets. Training and testing sets, where used to train

the network and validation set to validate it. Thus the built NNs are not comparable to each

other more than within the same sample technique and size, therefore three best networks

where taken and them where compared to final validation set, which was created by taking

50 points from each of the biggest validation sets randomly. Mean errors and their standard

deviations for different data sampling techniques are shown in Table 15. Accordingly the

Latin hypercube sampling gives the best mean error and is the most consistent.

Mean errors and standard deviations for different sample sizes are shown in Table 16, errors

are picked from each sampling technique sets. As seen from there sample size of 1000

training point seems to be enough for the NNs in this problem, as the mean error starts to
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Table 15: Mean error and standard deviation for each sampling technique

Technique Mean error (MLP) STD Mean error (RBF) STD

Latin Hypercube 0,0942 0,0188 0,1242 0,0481

Orthogonal Array 0,1936 0,0614 0,1363 0,01601

Hammersley 0,2227 0,0769 0,1790 0,0281

climb after it. Although sample sizes from 500 to 1500 are in the same range and in our

MLP designs the number of free parameters takes values 55, 85, 111 and 133. From this we

can conclude that the number of training patterns needed for MLP, should be at least four

times the number of free parameters and roughly 10 times the number of free parameters is

enough.

Table 16: Mean error and standard deviation for each sample size

Sample size Mean error (MLP) STD Mean error (RBF) STD

100 0,2867 0,3802 0,2277 0,1775

500 0,1216 0,0722 0,1288 0,0733

1000 0,0946 0,0546 0,1002 0,0690

1500 0,1097 0,0648 0,1110 0,0595

Mean errors and standard deviations for different MLP and RBF network designs are shown

in Table 17, where constraint classification results are excluded. As seen from the results the

mean error of NN designs is pretty much the same, but consistency of the results is lower

when we are using NN to approximate only one objective function. Another conclusions,

which can be made from this result, is that MLP and RBF network are performing equally

and there are no differences on MLPs performance, whether it consists of one or two hidden

layers.
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Table 17: Mean error and standard deviation for each neural network design.

Design Mean error STD

Common MLP hl1 0,1678 0,3068

Common MLP hl2 0,1802 0,2717

Individual MLP hl1 0,1679 0,0841

Individual MLP hl2 0,1679 0,0841

Common RBF a g 0.1 0,1607 0,1158

Common RBF as g 0.1 0,1216 0,0827

Common RBF a g 0.5 0,1607 0,1158

Common RBF as g 0.5 0,1732 0,0816

Individual RBF as g 0.1 0,1679 0,0841

Individual RBF as g 0.5 0,1679 0,0841

Results of final validation are quite interesting as they are reverse when they are compared

to results obtained when error was measured to their own validation set. Obviously there are

two reasons for this

1. The neural network has not learned the features of the training data. Namely the MLP

with one hidden layer and 100 training points generated by Latin hypercube sampling.

Hence we had an insufficient number of training points.

2. The neural network has overlearned the features of the training data. Namely the MLP

with two hidden layers and 1500 training points generated by Hammersley sampling.

Hence had too many training points.

Even if those were overtrained and not well enough trained, our opinion is that they could

be used as a surrogate by using certain cautions. Since (1) is approximation the landscape

of function, but there seems to be a systematic error in every approximation. Although we

would not know if the solution is feasible or not since it is classifying constraint function

very badly, so that would need some other handling. The (2) would be good enough, as

seen from Figure 32, that most of solutions are correctly approximated, but there are a few

solutions, which have big error to desired value. Although (2) is the only one that classifies
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the constraint well enough. Hence (2) would be our choice for a surrogate model to be used

in optimization. Single evaluation using (2) takes approximately 0,006 seconds with this

hardware, hence computationally costs is decreased significantly compared to the APROS.

A more accurate solution would be a combination of single function approximation NNs, but

it would still need some development to ensure that the constraint is classified correctly. For

example, for the first objective function surrogate model, RBF network with selected centers

and accuracy target of 0.1, which was trained using Orthogonal array sampled 1024 training

points. For the second and the third objective functions, surrogate models MLPs with one

hidden layer and they were trained by using Orthogonal array sampled 1000 training points.

Although in this setup we would need to study bit more about NNs for classification problem

or handle the constraint with some other way. Justification for choosing surrogate models,

which each of them approximates single function, is that this would made the surrogate

handling more versatile as each model could be modified as a unit and because of this would

be the most accurate model.

When summing up the results of this experiment, as it is a bit conflicting. Latin hypercube

sampling technique proved to be the best according to training, but the NN, which was trained

with it, was not that good after all. Then the other sampling techniques proved to be better at

the end. Hence after all the sampling techniques did not have a big effect on the performance

of the NNs. The sample size validated to be roughly about 10 times the free parameters.

Although one can make a surrogate model with a less training points, but it would not be

so accurate. When comparing the results from different structure, we saw that MLP and

RBF network are basically equal. And due to the fact that RBF network is much easier to

design than MLP, it might be more preferable model to practitioners to start working with.

Although dimension of RBF network climbed very high, in our experiment, and it might

yield to memory issues in some applications as we need to keep almost the complete training

set with us.
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5 Conclusion

In this thesis we have studied NNs for computationally expensive problems. Our main focus

in this thesis was about function approximation features of the NNs, hence we can use them

as surrogate models for computationally expensive simulators, in future. We have introduced

four different NNs for function approximation and discussed their features. Theory of NNs,

heuristics for the NNs structure design and training were studied. In addition, an example

of NN design using heuristics was presented and the effect of different sampling techniques

and sample sizes to NNs generalization accuracy was compared.

NNs seem to be quite simple and their implementations can be found in different program-

ming language and applications, but it is good for practitioners to study theory of NNs to

understand their features and applicability. This thesis is partly written so that other prac-

titioners could study theory of NNs easily and practically. Designing a NN might be time

consuming, because the optimal structure is different for each problem. Heuristics will help

in designing of a NN, but using heuristics one might not obtain the optimal NN design for the

problem in hand. Therefore it would be reasonable to implement some optimization method

for NN structure, thus automate the structure design. Although due to the experience practi-

tioners should learn the good structures for different problems. In our numerical experiment

we have verified the number of training patterns should be 4-10 times the number of free

parameters. The sample technique does not have a big effect in training. MLP and RBF

network seem to be equally good for function approximation.

In future we need to do outlier detection for training data and retrain and revalidate the NNs.

Then we need to study neural networks classification features and other surrogate models

as well. Then study more about multiobjective optimization and model management, hence

we can do the optimization with surrogate models and ensure that solutions evaluated by

surrogate model are leading us to right optimum. After the optimization we can continue our

research towards implementation of surrogate models to other ways than function approxi-

mation.

It is our interest to use NNs for optimization. The following steps need to be accomplished
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before actual optimization process can begin.

• Surrogate model: Final choice of the surrogate model.

• Constraint handling: At the end if we choose a surrogate model, which cannot handle

constraint. How can we make sure that we are using only the feasible solutions?

• Optimization method: We have to choose our optimization method, which in high

probability would be a posteriori method and some evolutionary algorithm would be

employed.

• Model management: We have to ensure that optimization algorithm convergence to

right optimum, since the surrogate models are not as accurate as the original simulator.

For example, after some number of iterations we could evaluate solutions with the

simulator and retrain the surrogate model.

• Optimization setup: For evolutionary algorithm we need to setup crossover, mutation,

population size, etc. Hence we need study, which are a good choices for these.

Hence further knowledge of at least these topics is needed before optimization can begin.

85



Bibliography

Ackley, D.H., G.E. Hinton, and T.J. Sejnowski. 1985. ”A Learning Algorithm for Boltzmann

Machines”. Cognitive Science 9:147–169.

Barron, A.R. 1993. ”Universal approximation bounds for superpositions of a sigmoidal func-

tion”. IEEE Transactions on Information Theory 39:930–945.

Basheer, I.A., and M. Hajmeer. 2000. ”Artificial neural networks: fundamentals, computing,

design, and application”. Journal of Microbiological Methods 43:3–31.

Benedetti, A., M. Farina, and M. Gobbi. 2006. ”Evolutionary multiobjective industrial de-

sign: the case of a racing car tire-suspension system”. IEEE Transactions on Evolutionary

Computation 10:230–244.

Bishop, C.M. 1995. Neural Networks for Pattern Recognition. Oxford University Press.

Branke, J., K. Deb, K. Miettinen, and R. Slowinski, editors. 2008. Multiobjective Optimiza-

tion: Interactive and Evolutionary Approaches. Springer.

Broomhead, D. S., and D. Lowe. 1988. ”Multivariable Functional Interpolation and Adaptive

Networks”. Complex Systems 2:321–355.

Brouwer, R. 1997. ”Implementation of the Exclusive-Or Function in a Hopfield Style Recur-

rent Network”. Neural Processing Letters 5:1–7.

Chernoff, H., and E.L. Lehmann. 2012. ”The Use of Maximum Likelihood Estimates in

χ2 Tests for Goodness of Fit”. In Selected Works of E. L. Lehmann, edited by Javier Rojo.

Springer.

Cover, T. M. 1965. ”Geometrical and Statistical Properties of Systems of Linear Inequali-

ties with Applications in Pattern Recognition”. IEEE Transactions on Electronic Computers

14:326–334.

Craven, P., and G. Wahba. 1979. ”Smoothing noisy data with spline functions: Estimating the

correct degree of smoothing by the method of generalized cross - validation”. Numerische

Mathematik 31:377–403.

86



Cybenko, G. 1989. ”Approximation by superpositions of a sigmoidal function”. Mathematics

of Control, Signals and Systems 2:303–314.

Deb, K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.

Dingankar, A.T., and I.W. Sandberg. 1997. ”A note on error bounds for function approxima-

tion using nonlinear networks”. In Proceedings of the 40th Midwest Symposium on Circuits

and Systems, 1248–1251. Volume 2.

Duch, W., and N. Jankowski. 1999. ”Survey of Neural Transfer Functions”. Neural Comput-

ing Surveys 2:163–213.

Fahmi, I., and S. Cremaschi. 2012. ”Process synthesis of biodiesel production plant using

artificial neural networks as the surrogate models”. Computers and Chemical Engineering

46:105–123.

Fletcher, D., and E. Goss. 1993. ”Forecasting with neural networks: An application using

bankruptcy data”. Information & Management 24:159–167.

Gasteiger, J., and J. Zupan. 1993. ”Neural Networks in Chemistry”. Angewandte Chemie

International Edition in English 32:503–527.

Haley, P.J., and D. Soloway. 1992. ”Extrapolation limitations of multilayer feedforward neu-

ral networks”. In International Joint Conference on Neural Networks, 25–30. Volume 4.

Hassibi, B., D.G. Stork, and G.J. Wolff. 1993. ”Optimal Brain Surgeon and general network

pruning”. In IEEE International Conference on Neural Networks, 293–299. Volume 1.

Hassoun, M.H. 1995. Fundamentals of Artificial Neural Networks. 1st. MIT Press.

Haykin, S. 1999. Neural Networks: A Comprehensive Foundation. 2nd. Prentice Hall PTR.

Hebb, D.O. 1949. The organization of behavior : a neuropsychological theory. Wiley.

Hooke, R., and T. A. Jeeves. 1961. ”Direct Search Solution of Numerical and Statistical

Problems”. Journal of the Association for Computing Machinery 8:212–229.

Hopfield, J.J. 1982. ”Neural networks and physical systems with emergent collective com-

putational abilities”. Proceedings of the National Academy of Sciences 79:2554–2558.

87



Hüsken, M., Y. Jin, and B. Sendhoff. 2005. ”Structure optimization of neural networks for

evolutionary design optimization”. Soft Computing 9:21–28.

Jacobs, R.A. 1988. ”Increased rates of convergence through learning rate adaptation”. Neural

Networks 1:295–307.

Jadid, M.N., and D.R. Fairbairn. 1996. ”Neural-network applications in predicting moment-

curvature parameters from experimental data”. Engineering Applications of Artificial Intel-

ligence 9:309–319.

Jain, B.A., and B.N. Nag. 1995. ”Artificial Neural Network Models for Pricing Initial Public

Offerings”. Decision Sciences 26:283–302.

Jin, Y. 2005. ”A comprehensive survey of fitness approximation in evolutionary computa-

tion”. Soft Computing 9:3–12.

. 2011. ”Surrogate-assisted evolutionary computation: Recent advances and future

challenges”. Swarm and Evolutionary Computation 1:61–70.

Kusiak, A., Z. Zhang, and M. Li. 2010. ”Optimization of Wind Turbine Performance With

Data-Driven Models”. IEEE Transactions on Sustainable Energy 1:66–76.

Lachtermacher, G., and J.D. Fuller. 1995. ”Backpropagation in time-series forecasting”.

Journal of Forecasting 14:381–393.

LeCun, Y., L. Bottou, G. Orr, and K. Muller. 1998. ”Efficient BackProp”. In Neural Net-

works: Tricks of the trade, edited by G. Orr and Muller K. Springer.

LeCun, Y., I. Kanter, and S.A. Solla. 1990. ”Second order properties of error surfaces: learn-

ing time and generalization”. Advances in neural information processing systems 3:918–924.

Lee, Y., S. Oh, and M.W. Kim. 1991. ”The effect of initial weights on premature saturation

in back-propagation learning”. Neural Networks 1:765–770.

Leung, W.K., and R. Simpson. 2000. ”Neural metrics-software metrics in artificial neural

networks”. In Fourth International Conference on Knowledge-Based Intelligent Engineering

Systems and Allied Technologies, 209–212. Volume 1.

88



Li, G., H. Alnuweiri, Y. Wu, and H. Li. 1993. ”Acceleration of back propagation through

initial weight pre-training with delta rule”. In IEEE International Conference on Neural

Networks, 580–585. Volume 1.

Lowe, D. 1989. ”Adaptive radial basis function nonlinearities, and the problem of generali-

sation”. In First IEEE International Conference on Artificial Neural Networks, 171–175.

Maiorov, V., and A. Pinkus. 1999. ”Lower Bounds for Approximation by MLP Neural Net-

works”. Neurocomputing 25:81–91.

Marianik, G., G. Palermo, C. Silvano, and V. Zaccaria. 2009. ”Meta-model Assisted Opti-

mization for Design Space Exploration of Multi-Processor Systems-on-Chip”. In 12th Eu-

romicro Conference on Digital System Design, Architectures, Methods and Tools, 383–389.

Masters, T. 1993. Practical neural network recipes in C++. Academic Press Professional,

Inc.

McCulloch, W.S., and W. Pitts. 1943. ”A logical calculus of the ideas immanent in nervous

activity”. The bulletin of mathematical biophysics 5:115–133.

Micchelli, C.A. 1986. ”Interpolation of scattered data: Distance matrices and conditionally

positive definite functions”. Constructive Approximation 2:11–22.

Mitchell, M. 1999. An Introduction to Genetic Algorithms. MIT Press.

Moody, J., and C.J. Darken. 1989. ”Fast learning in networks of locally-tuned processing

units”. Neural Computation 1:281–294.

Muknahallipatna, S., and B.H. Chowdhury. 1996. ”Input dimension reduction in neural net-

work training-case study in transient stability assessment of large systems”. In International

Conference on Intelligent Systems Applications to Power Systems, 50–54.

Narendra, K.S., and K. Parthasarathy. 1990. ”Identification and control of dynamical systems

using neural networks”. IEEE Transactions on Neural Networks 1:4–27.

Oja, E. 1982. ”Simplified neuron model as a principal component analyzer”. Journal of

Mathematical Biology 15:267–273.

89



Park, Ky., B.S. Kim, J. Lee, and K.S. Kim. 2009. ”Aerodynamics and optimization of airfoil

under ground effect”. International Journal of Mechanical Systems Science and Engineering

1:332–338.

Pearson, K. 1920. ”Notes on the history of correlation”. Biometrika 13:25–45.

Piramuthu, S., M.J. Shaw, and J.A. Gentry. 1994. ”A classification approach using multi-

layered neural networks”. Decision Support Systems 11:509–525.

Poggio, T., and F. Girosi. 1989. A Theory of Networks for Approximation and Learning.

Technical report. Artificial Intelligence Laboratory, Massachusetts Institute of Technology.

Pollack, J.B. 1991. ”The Induction of Dynamical Recognizers”. Machine Learning 7:227–

252.

Powell, M. J. D. 1964. ”An efficient method for finding the minimum of a function of several

variables without calculating derivatives”. The Computer Journal 7:155–162.

Prechelt, L. 1994. PROBEN1 - a set of neural network benchmark problems and benchmark-

ing rules. Technical report. Faculty of Computer Science, University of Karlsruhe.

Price, K., R.M. Storn, and J.A. Lampinen. 2005. Differential Evolution: A Practical Ap-

proach to Global Optimization. Springer.

Puskorius, G.V., and L.A. Feldkamp. 1994. ”Neurocontrol of nonlinear dynamical systems

with Kalman filter trained recurrent networks”. IEEE Transactions on Neural Networks

5:279–297.

Puskorius, G.V., L.A. Feldkamp, and Jr. Davis L.I. 1996. ”Dynamic neural network methods

applied to on-vehicle idle speed control”. Proceedings of the IEEE 84:1407–1420.

Rosenblatt, F. 1958. ”The perceptron: A probabilistic model for information storage and

organization in the brain.” Psychological Review - PSYCHOL REV 65:386–408.

Rumelhart, D. E., G.E. Hinton, and R.J. Williams. 1986. ”Learning representations by back-

propagating errors”. Nature 323:533–536.

90



Schleiter, I.M., D. Borchardt, R. Wagner, T. Dapper, K. Schmidt, H. Schmidt, and H. Werner.

1999. ”Modelling water quality, bioindication and population dynamics in lotic ecosystems

using neural networks”. Ecological Modelling 120:271–286.

Simpson, T.W., J.J. Korte, T.M. Mauery, and F. Mistree. 2001. ”Kriging Models for Global

Approximation in Simulation-Based Multidisciplinary Design Optimization”. AIAA Journal

39:2233–2241.

Simpson, T.W, D.KJ. Lin, and W. Chen. 2001. ”Sampling strategies for computer experi-

ments: design and analysis”. International Journal of Reliability and Applications 2:209–

240.

Sindhya, K., V. Ojalehto, J. Savolainen, H. Niemistö, J. Hakanen, and K. Miettinen. 2013.

”APROS-NIMBUS: Dynamic Process Simulator and Interactive Multiobjective Optimiza-

tion in Plant Automation.” In Proceedings of the ESCAPE 23, the 23rd European Symposium

on Computer Aided Process Engineering, edited by A. Kraslawski and I. Turunen. Elsevier,

to appear.

Stein, M. 1987. ”Large sample properties of simulations using latin hypercube sampling”.

Technometrics 29:143–151.

Stone, M. 1974. ”Cross-Validatory Choice and Assessment of Statistical Predictions”. Jour-

nal of the Royal Statistical Society. Series B (Methodological) 36:111–147.

Sun, M., A. Stam, and R.E. Steuer. 1996. ”Solving multiple objective programming problems

using feed-forward artificial neural networks: the interactive FFANN procedure”. Manage-

ment Science 42:835–849.

Sykes, A.O. 1993. An Introduction to Regression Analysis. Law School, University of Chicago.

Tamura, S., and M. Tateishi. 1997. ”Capabilities of a four-layered feedforward neural net-

work: four layers versus three”. IEEE Transactions on Neural Networks 8:251–255.

Tang, B. 1993. ”Orthogonal Array-Based Latin Hypercubes”. Journal of the American Sta-

tistical Association 88:1392–1397.

Thimm, G., and E. Fiesler. 1997. Optimal Setting of Weights, Learning Rate, and Gain.

Technical report. IDIAP Research Institute.

91



Tikhonov, A.N., and V.Y. Arsenin. 1977. Solutions of ill-posed problems. Translated by John

Fritz. V.H. Winston & SONS.

Tryfos, P. 1998. Methods for Business Analysis and Forecasting: Text and Cases. Wiley.

Twomey, J. M., and A. E. Smith. 1995. ”Performance measures, consistency, and power for

artificial neural network models”. Mathematical and Computer Modelling: An International

Journal 21:243–258.

Walczak, S. 1994. ”Categorizing university student applicants with neural networks”. In

IEEE International Conference on Neural Networks, 3680–3685. Volume 6.

Walczak, S., and N. Cerpa. 1999. ”Heuristic principles for the design of artificial neural

networks”. Information and Software Technology 41:107–117.

Wettschereck, D., and T. Dietterich. 1992. ”Improving the Performance of Radial Basis

Function Networks by Learning Center Locations”. Advances in neural information pro-

cessing systems 4:1133–1140.

Widrow, B., and M. E. Hoff. 1960. ”Adaptive switching circuits.”

Widrow, B., and M.A. Lehr. 1990. ”30 years of adaptive neural networks: perceptron, Mada-

line, and backpropagation”. Proceedings of the IEEE 78:1415–1442.

Williams, R.J., and J. Peng. 1990. ”An Efficient Gradient-Based Algorithm for On-Line

Training of Recurrent Network Trajectories”. Neural Computation 2:490–501.

Wilson, B., D. Cappelleri, T.W. Simpson, and M. Frecker. 2001. ”Efficient Pareto Frontier

Exploration using Surrogate Approximations”. Optimization and Engineering 2:31–50.

Wong, T., W. Luk, and P. Heng. 1997. ”Sampling with Hammersley and Halton points”.

Journal of Graphics Tools 2:9–24.

Xie, H., H. Tang, and Y. Liao. 2009. ”Time series prediction based on NARX neural net-

works: An advanced approach”. In International Conference on Machine Learning and Cy-

bernetics, 1275–1279. Volume 3.

Zamarreño, J.M., and P. Vega. 1998. ”State space neural network. Properties and applica-

tion”. Neural Networks 11:1099–1112.

92



Zhu, J., J. Zurcher, M. Rao, and M.Q-H. Meng. 1998. ”An on-line wastewater quality predi-

cation system based on a time-delay neural network”. Engineering Applications of Artificial

Intelligence 11:747–758.

Zitzler, E., and L. Thiele. 1998. An Evolutionary Approach for Multiobjective Optimization:

The Strength Pareto Approach. Technical report. Computer Engineering and Networks Lab-

oratory, Swiss Federal Institute of Technology Zurich.

93



Appendices

A Neural Network design experiment results

Result tables for MLP and RBF designs.
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Table 18: Training results for MLP designs (Latin hypercube sampling)
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Table 19: Training results for MLP designs (Orthogonal array)
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Table 20: Training results for MLP designs (Hammersley sampling)
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Table 21: Statistics for MLP designs

St
at

is
tic

s
(M

L
P)

A
ve

ra
ge

R
M

SE
fo

rh
l1

ST
D

m
in

va
lu

e
m

ax
va

lu
e

A
ve

ra
ge

R
M

SE
fo

rh
l2

ST
D

m
in

va
lu

e
m

ax
va

lu
e

C
om

m
on

O
ve

ra
ll

0,
16

77
60

0,
30

68
01

0,
03

49
31

1,
13

57
58

0,
18

02
17

0,
27

17
02

0,
03

77
66

0,
98

41
01

O
bj

ec
tiv

e
1

0,
16

87
34

0,
22

83
12

0,
03

93
24

0,
94

46
04

0,
24

41
91

0,
36

42
85

0,
03

96
00

1,
45

37
11

O
bj

ec
tiv

e
2

0,
06

32
93

0,
06

32
23

0,
01

99
74

0,
26

93
22

0,
05

43
40

0,
08

22
55

0,
01

81
12

0,
34

04
94

O
bj

ec
tiv

e
3

0,
21

19
65

0,
42

74
01

0,
02

33
76

1,
70

44
14

0,
17

85
45

0,
21

41
31

0,
03

97
65

0,
82

22
85

C
on

st
ra

in
t

73
,2

65
57

6
12

,1
66

46
9

40
,0

00
00

0
87

,5
55

55
6

87
,5

36
25

4
11

,7
06

75
3

60
,0

00
00

0
97

,3
33

33
3

In
di

vi
du

al

O
ve

ra
ll

0,
16

78
55

0,
08

40
85

0,
08

85
41

0,
40

98
21

0,
16

78
55

0,
08

40
85

0,
08

85
41

0,
40

98
21

O
bj

ec
tiv

e
1

0,
17

11
74

0,
12

78
83

0,
07

42
86

0,
55

54
31

0,
17

11
74

0,
12

78
83

0,
07

42
86

0,
55

54
31

O
bj

ec
tiv

e
2

0,
15

91
39

0,
01

92
94

0,
13

03
76

0,
18

79
17

0,
15

91
39

0,
01

92
94

0,
13

03
76

0,
18

79
17

O
bj

ec
tiv

e
3

0,
15

39
39

0,
10

60
73

0,
03

16
59

0,
40

00
54

0,
15

39
39

0,
10

60
73

0,
03

16
59

0,
40

00
54

C
on

st
ra

in
t

16
,5

37
62

6
5,

72
89

48
6,

66
66

67
26

,6
66

66
7

10
,9

51
74

5
5,

96
16

98
0,

00
00

00
22

,7
84

81
0

98



Table 22: Training results for RBF network designs (Latin hypercube sampling (1/2))
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Table 23: Training results for RBF network designs (Latin hypercube sampling (2/2))
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Table 24: Training results for RBF network designs (Orthogonal array (1/2))

Sa
m

pl
in

g
te

ch
ni

qu
e

an
d

no
.o

fp
oi

nt
s

E
rr

or
in

R
M

SE
C

on
st

ra
in

ti
s

cl
as

si
fic

at
io

n
%

go
al

O
a

10
0

O
a

52
9

O
a

10
24

O
a

15
21

A
ve

ra
ge

C
om

m
on

R
B

F
a

O
a=

O
rt

ho
go

na
la

rr
ay

O
ve

ra
ll

0,
1

0,
37

50
79

54
96

0,
10

53
32

13
08

0,
04

08
27

27
79

0,
13

56
57

46
33

0,
16

42
24

10
54

O
bj

ec
tiv

e
1

0,
31

70
64

69
42

0,
09

15
42

63
65

0,
03

68
09

88
99

0,
14

49
86

55
13

0,
14

76
00

94
3

O
bj

ec
tiv

e
2

0,
01

22
19

51
29

0,
00

65
02

05
29

0,
00

65
94

52
93

0,
00

51
88

46
7

0,
00

76
26

14
05

O
bj

ec
tiv

e
3

0,
56

68
99

16
98

0,
15

76
77

65
32

0,
06

00
17

86
44

0,
18

48
26

46
41

0,
24

23
55

28
79

C
on

st
ra

in
t

20
15

,1
89

87
34

17
7

12
,3

37
66

23
37

7
14

,0
35

08
77

19
3

15
,3

90
65

58
68

7

C
om

m
on

R
B

F
as

O
ve

ra
ll

0,
1

0,
09

17
19

42
43

0,
11

51
11

13
17

0,
03

92
51

91
41

0,
13

67
09

26
4

0,
09

56
97

93
35

O
bj

ec
tiv

e
1

0,
08

00
66

31
55

0,
11

68
28

88
97

0,
03

73
08

98
05

0,
14

80
91

44
07

0,
09

55
73

90
66

O
bj

ec
tiv

e
2

0,
03

72
64

18
78

0,
02

47
58

96
81

0,
00

72
23

12
63

0,
00

99
75

07
41

0,
01

98
05

33
91

O
bj

ec
tiv

e
3

0,
13

20
53

48
85

0,
15

96
55

00
92

0,
05

63
73

79
44

0,
18

44
93

06
68

0,
13

31
43

83
97

C
on

st
ra

in
t

0
20

,2
53

16
45

57
15

,5
84

41
55

84
4

14
,4

73
68

42
10

5
12

,5
77

81
60

88

In
di

vi
du

al
R

B
F

as

O
ve

ra
ll

0,
1

0,
13

29
64

58
01

0,
16

36
28

98
36

0,
08

85
41

06
78

0,
17

26
60

99
03

0,
13

94
48

90
55

O
bj

ec
tiv

e
1

0,
13

33
14

51
6

0,
15

20
50

57
12

0,
07

42
85

91
19

0,
17

64
85

31
02

0,
13

40
34

07
73

O
bj

ec
tiv

e
2

0,
17

13
44

66
28

0,
17

48
76

12
37

0,
13

03
75

96
54

0,
14

40
82

69
47

0,
15

51
69

86
17

O
bj

ec
tiv

e
3

0,
07

68
56

91
29

0,
16

31
63

40
87

0,
03

16
58

69
56

0,
19

37
22

90
8

0,
11

63
50

48
13

C
on

st
ra

in
t

26
,6

66
66

66
66

7
15

,1
89

87
34

17
7

12
,3

37
66

23
37

7
14

,0
35

08
77

19
3

17
,0

57
32

25
35

3

101



Table 25: Training results for RBF network designs (Orthogonal array (2/2))
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Table 26: Training results for RBF network designs (Hammersley sampling (1/2))
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Table 27: Training results for RBF network designs (Hammersley sampling (2/2))
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Table 28: Statistics for RBF designs
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B Matlab codes for Single layer network examples

Training algorithms might stuck on a local minimum point, hence achieving the same picture

than in examples it might take several runs. In some examples the plot might need some

’twisting’ as well.

% Curve fitting

x=[0 0 0 0.5 0.5 0.5 1 1 1 1.5 1.5 1.5 2 2 2 2.5 2.5 2.5 3 3 3];

y=[0 1 2 1 2 3 2 3 4 3 4 5 4 5 6 5 6 7 6 7 8];

net = perceptron;

net.layers{1}.transferfcn=’purelin’;

net.layers{1}.dimensions=1;

net.performfcn=’mse’;

net.trainfcn=’trainbfg’;

net=configure(net,X,Y);

net=train(net,X,Y);

plot(x,y,’o’);

hold on

xt=[0 1 2 3 ];

yt=net(xt);

plot(xt,yt,’r’);
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% XOR-problem

x=[0 0 1 1;0 1 0 1];

y=[0 1 1 0];

net=perceptron;

net.layers{1}.transferfcn=’purelin’;

X=repmat(con2seq(x),1,3);

Y=repmat(con2seq(y),1,3);

net=adapt(net,X,Y);

span = -0.5:.5:1.5;

[P1,P2] = meshgrid(span,span);

mt = [P1(:) P2(:)]’;

mr=net(mt);

mesh(P1,P2,reshape(mr,length(span),length(span))-5);

hold on;

plot3(0,0,0,’ko’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,’MarkerSize’,7)

plot3(1,1,0,’ko’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,’MarkerSize’,7)

plot3(0,1,0,’kx’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,’MarkerSize’,10)

plot3(1,0,0,’kx’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,’MarkerSize’,10)

colormap cool;
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% Function approximation

x=[0:.1:10];

y=cos(x)+0.5*sin(x.ˆ 2);

X=con2seq(x);

Y=con2seq(y);

net=perceptron;

net.layers{1}.transferfcn=’purelin’;

net.trainParam.epochs=10;

net=train(net,X,Y);

yt=net(X);

plot(cell2mat(Y));

hold on

plot(cell2mat(yt),’r’);

net.biasconnect=0;

yt2=net(X);

plot(cell2mat(yt2),’–r’);
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C Matlab codes for Multilayer network examples

% XOR-problem

x=[0 0 1 1;0 1 0 1];

y=[0 1 1 0];

net=feedforwardnet;

net.numlayers=2;

net.biasConnect= [1; 1];

net.inputConnect= [1; 0];

net.layerConnect= [0 0;1 0];

net.outputConnect= [0 1];

net.layers{1}.transferfcn=’tansig’;

net.layers{2}.transferfcn=’purelin’;

net.trainfcn=’trainbfg’;

net.layers{1}.dimensions=2;

net.divideparam.trainratio=1;

net.divideparam.valratio=0;

net.divideparam.testratio=0;

net=train(net,x,y);

span = -1:.005:2;

[P1,P2] = meshgrid(span,span);

mt = [P1(:) P2(:)]’;

mr=net(mt);

mesh(P1,P2,reshape(mr,length(span),length(span))-5);

hold on;

plot3(0,0,0,’ko’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,’MarkerSize’,7)

plot3(1,1,0,’ko’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,’MarkerSize’,7)

plot3(0,1,0,’kx’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,’MarkerSize’,10)

plot3(1,0,0,’kx’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,’MarkerSize’,10)

colormap cool;
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% Function approximation with one hidden layer

x=[0:.1:10];

y=cos(x)+0.5*sin(x.ˆ 2);

X=con2seq(x);

Y=con2seq(y);

net = feedforwardnet;

net.numlayers=2;

net.biasConnect= [1; 1];

net.inputConnect= [1; 0];

net.layerConnect= [0 0; 1 0];

net.outputConnect= [0 1];

net.layers{1}.transferfcn=’tansig’;

net.layers{2}.transferfcn=’purelin’;

net.trainfcn=’trainbfg’;

net.trainParam.epochs=1000;

net.trainParam.min_grad=1e-010;

net.trainparam.goal=0.0000001;

net.layers{1}.dimensions=100;

net.divideparam.trainratio=1;

net.divideparam.valratio=0;

net.divideparam.testratio=0;

net=configure(net,X,Y);

net=train(net,X,Y);

yt=net(X);

plot(cell2mat(Y),’kx’,’Markersize’,10);

hold on

plot(cell2mat(yt),’r’);
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% Function approximation with two hidden layer

x=[0:.1:10];

y=cos(x)+0.5*sin(x.ˆ 2);

X=con2seq(x);

Y=con2seq(y);

net = feedforwardnet;

net.numlayers=3;

net.biasConnect= [1; 1; 1];

net.inputConnect= [1; 0; 0];

net.layerConnect= [0 0 0; 1 0 0; 0 1 0 ];

net.outputConnect= [0 0 1];

net.layers{1}.transferfcn=’tansig’;

net.layers{2}.transferfcn=’tansig’;

net.layers{3}.transferfcn=’purelin’;

net.trainfcn=’trainbfg’;

net.trainParam.epochs=1000;

net.trainParam.min_grad=1e-010;

net.trainparam.goal=0.0000001;

net.layers{1}.dimensions=50;

net.layers{2}.dimensions=3;

net.divideparam.trainratio=1;

net.divideparam.valratio=0;

net.divideparam.testratio=0;

net=configure(net,X,Y);

net=train(net,X,Y);

yt=net(X);

plot(cell2mat(Y),’kx’,’Markersize’,10);

hold on

plot(cell2mat(yt),’r’);
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% Function approximation with random number of hidden neurons

x=[0:.1:10];

y=cos(x)+0.5*sin(x.ˆ 2);

X=con2seq(x);

Y=con2seq(y);

net = feedforwardnet;

net.numlayers=3;

net.biasConnect= [1; 1; 1];

net.inputConnect= [1; 0; 0];

net.layerConnect= [0 0 0; 1 0 0; 0 1 0 ];

net.outputConnect= [0 0 1];

net.layers{1}.transferfcn=’tansig’;

net.layers{2}.transferfcn=’tansig’;

net.layers{3}.transferfcn=’purelin’;

net.trainfcn=’trainbfg’;

net.trainParam.epochs=10000;

net.trainParam.min_grad=1e-010;

net.trainparam.goal=0.0000001;

net.layers{1}.dimensions=10;

net.layers{2}.dimensions=5;

net.divideparam.trainratio=1;

net.divideparam.valratio=0;

net.divideparam.testratio=0;

net=configure(net,X,Y);

net=train(net,X,Y);

yt=net(X);

plot(cell2mat(Y),’kx’,’Markersize’,10);

hold on

plot(cell2mat(yt),’r’);
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D Matlab code for Recurrent multilayer network example

Training algorithms might stuck on a local minimum point, hence achieving the same picture

than in examples it might take several runs. In some examples the plot might need some

’twisting’ as well.

% Function approximation

x=[0:.1:10];

y=cos(x)+0.5*sin(x.ˆ 2);

xp=[0:.1:11];

yv=cos(xp)+0.5*sin(xp.ˆ 2);

X=con2seq(x);

Y=con2seq(y);

XP=con2seq(xp);

YV=con2seq(yv);

net = feedforwardnet;

net.numlayers=3;

net.biasConnect= [1; 1; 1];

net.inputConnect= [1; 0; 0];

net.layerConnect= [1 0 0; 1 1 0; 0 1 1];

net.outputConnect= [0 0 1];

net.layers{1}.transferfcn=’tansig’;

net.layers{2}.transferfcn=’tansig’;

net.layers{3}.transferfcn=’purelin’;

net.trainfcn=’trainbfg’;

net.trainparam.goal=0.1;

net.layers{1}.dimensions=8;

net.layers{2}.dimensions=6;

% Continues in next page
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% Continue from previous page

net.layerWeights{1,1}.delays=1;

net.layerWeights{2,2}.delays=1;

net.layerWeights{3,3}.delays=1;

net.divideparam.trainratio=1;

net.divideparam.valratio=0;

net.divideparam.testratio=0;

net=configure(net,X,Y);

net=train(net,X,Y);

yt=net(X);

yp=net(XP);

subplot(2,1,1);

plot(cell2mat(Y));

hold on

plot(cell2mat(yt),’r’);

title(’A) Sequence recognition’);

subplot(2,1,2);

plot(cell2mat(YV));

hold on

plot(cell2mat(yp),’r’);

title(’B) Sequence prediction to +1s’);
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E Matlab code for RBF network examples

% XOR-problem

x=[0 0 1 1;0 1 0 1];

y=[0 1 1 0];

t=[1 0;1 0];

for i=1:4

f1(i)=exp(-distance(x(:,i)’,t(:,1)’)ˆ 2);

f2(i)=exp(-distance(x(:,i)’,t(:,2)’)ˆ 2);

hold on

if (f2(i) - f1(i))ˆ 2 <= 0.1 % For some reason Matlab calculates distance of [1,0]-[1,1] bit differently so correct plotting this is needed.

plot(f1(i),f2(i),’ko’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,’MarkerSize’,8)

end

if (f2(i) - f1(i))ˆ 2 >= 0.5

plot(f1(i),f2(i),’kx’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,’MarkerSize’,10)

end

end

axis([-0.25 1.25 -0.25 1.25]);

span = -0.5:.1:1.5;

f3=-span+1; % linear function separating classes

plot(f3,span)

% Function approximation

x=[0:.1:10];

y=cos(x)+0.5*sin(x.ˆ 2); net=newrb(x,y,0.2);

p=net(x);

net2=newrb(x,y);

z=net2(x);

plot(x,y,’kx’)

hold on

plot(x,p)

plot(x,z,’–r’)
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