
Proceedings of the 3rd International Conference on Music & Emotion (ICME3), Jyväskylä, Finland, 11th - 15th 
June 2013. Geoff Luck & Olivier Brabant (Eds.) 
 

 

ABSOLUTE OR RELATIVE? A NEW APPROACH TO 
BUILDING FEATURE VECTORS FOR EMOTION 

TRACKING IN MUSIC 

Vaiva Imbrasaitė, Peter Robinson 

Computer Laboratory, University of Cambridge, UK 
Vaiva.Imbrasaite@cl.cam.ac.uk 

 

Abstract 

 

It is believed that violation of or conformity to expectancy when listening to music is one of the main sources 
of musical emotion. To address this, we test a new way of building feature vectors and representing features 
within the vector for the machine learning approach to continuous emotion tracking systems. Instead of look-
ing at the absolute values for specific features, we concentrate on the average value of that feature across the 
whole song and the difference between that and the absolute value for a particular sample. To test this “rela-
tive” representation, we used a corpus of popular music with continuous labels on the arousal-valence space. 
The model consists of a Support Vector Regression classifier for each axis, with one feature vector for each 
second of a song. The relative representation, when compared to the standard way of building feature vectors, 
gives a 10% improvement on average (and up to 25% improvement for some models) on the explained vari-
ance for both the valence and arousal axes. We also show that this result is not due to having the average of a 
feature in the feature vector, but due to the actual relative representation. 
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1. Introduction  

Over the last twenty years or so, the interest in 
music as a research focus has been growing, 
and it is attracting attention from a wide range 
of disciplines: philosophy, psychology, sociol-
ogy, musicology, neurobiology, anthropology, 
and computer science. From the computer sci-
ence perspective there has been an increasing 
amount of research concerned with automatic 
information extraction from music that would 
allow us to manage our growing digital music 
libraries more efficiently. 

In addition to that, the birth of the Affective 
Computing field (Picard, 1997) together with a 
sparking interest in emotion research in gen-
eral led people to look into the relationship 

between music and emotion (Juslin & Sloboda, 
2001, 2010).  

After the early debate about whether or not 
music could express or induce emotions at all, 
both are now generally accepted with multi-
disciplinary backing. Not only that, but it has 
been shown that emotion in music is shared 
between different cultures (Peretz, 2010), and 
therefore is universal and related to the basic 
emotions in people. It also has as strong an 
effect on the brain, as everyday emotions, ac-
tivating the same or similar areas in the brain 
(Koelsch, Siebel, & Fritz, 2010). 

Since the first paper on automatic emotion 
detection in music (Li & Ogihara, 2003) was 
published nearly 10 years ago, the field has 
been growing quite rapidly, but there is still a 
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lot to be explored and a lot of guidelines for 
future work to be set. 

In this paper we aggregate and show sever-
al different sources of information (temporal, 
axis-dependency) that are present in music, 
but not in the basic approach to building fea-
ture vectors for machine learning approach to 
emotion tracking. We also test a novel feature 
representation technique that provides a sub-
stantial improvement to the results. 

2. Background 

There are several things that complicate music 
emotion research. One of the least recognized 
ones is that there are two types of musical 
emotions one can investigate – emotion “ex-
pressed” by the music, and emotion induced in 
the listener. The former is concerned with 
what the music sounds like and is mainly influ-
enced by the musical features and cultural un-
derstanding of music. It is also more objective, 
since the listener’s state and preferences have 
less of an effect on the perception of emotion 
in music. The later, on the other hand, de-
scribes the user's response to a piece of music. 
It clearly depends on the perceived (expressed 
by music) emotion, but is also heavily influ-
enced by the individual's experiences, history, 
personality, preferences and social context. It 
is therefore much more subjective and varies 
more between different people. 

Even though the vast majority of papers in 
Music Emotion Recognition (MER) do not 
make the distinction, there is clear evidence 
that the two are different. In their study, Zent-
ner et al. (Zentner, Grandjean, & Scherer, 
2008) have found a statistically significant dif-
ference between the (reported) felt and per-
ceived emotions in people's reported emo-
tional response to music. They have also found 
that certain emotions are more frequently per-
ceived than felt in response to music (particu-
larly the negative ones), and some are more 
frequently felt rather than perceived (e.g. 
amazement, activation, etc.).  

Another issue that needs to be addressed is 
the granularity of the labels attached to a song. 
Even though there is no doubt that emotion in 
music can and does change over time (Schmidt 
& Kim, 2010a), the majority of research in MIR 

is aimed at classifying the whole musical piece, 
rather than tracking the emotion. In order to 
get around the dynamic nature of emotion and 
music, many researchers choose to look at a 
(usually) 30s segment of a piece, therefore 
making their systems less applicable in the real 
world. It has also been shown that emotion 
tracking can lead to an improvement in accu-
racy if classification of the whole musical piece 
is required (Carvalho & Chao, 2005).  

The last key choice is the representation of 
emotion. A growing number of researchers 
choose to use dimensional emotion models. 
These models disregard the notion of basic (or 
complex) emotions. Instead, they describe 
emotions in terms of affective dimensions. The 
theory does not limit the number of dimen-
sions that is used – it normally ranges between 
one (e.g. arousal) and three (valence, activa-
tion and power or dominance), but four and 
higher dimensional systems have also been 
proposed. The most commonly used model is 
Thayer's arousal-valence (AV) emotion space, 
where arousal describes how active/passive 
emotion is and valence - how positive/negative 
it is. In addition to being more flexible and less 
interpretation dependent than basic emotion 
(happy, sad, etc.) model, it has also been 
shown that classification which predicts AV 
values internally has higher accuracy than 
models that predict basic emotions directly. 

The dimensional representation offers, in 
our opinion, the best solution – time varying 
MER, or continuous emotion tracking. Even 
though it is clearly not restricted to the dimen-
sional approach (as has been shown by (Liu, 
2006) and (Schubert, Ferguson, Farrar, Taylor, 
& Mcpherson, 2012)), it is inherently more dif-
ficult to use, especially in user studies.  

Even within dimensional emotion tracking, 
there are different ways of approaching the 
problem. (Korhonen, Clausi, & Jernigan, 2006), 
(Panda & Paiva, 2011), (Schmidt & Kim, 2010a), 
(Schmidt, Turnbull, & Kim, 2010), and others 
have tried to infer the emotion label over a 
time window individually. Another solution is 
to incorporate temporal information in the 
feature vector either by using features extract-
ed over varying window length for each sec-
ond/sample (Schubert, 2004), or by using ma-
chine learning techniques that are adapted for 
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sequential learning (e.g. sequential stacking 
algorithm (Carvalho & Chao, 2005), Kalman 
filtering (Schmidt & Kim, 2010b) or conditional 
random fields (Schmidt & Kim, 2011). Interest-
ingly, it has also been reported (Panda & Paiva, 
2011; Schmidt et al., 2010) that taking the av-
erage of the time-varying emotion produces 
results that are statistically significantly better 
than simply performing emotion recognition 
on the whole piece of music. 

3. Methodology 

Dataset: The dataset that we have been using 
for our experiments is, to our knowledge, the 
only publicly available emotion tracking da-
taset of music extracts labelled on an arousal-
valence dimensional space. It also focuses on 
perceived emotion rather than the perceived 
one. The data has been collected by (Speck, 
Schmidt, Morton, & Kim, 2011) using Mechani-
cal Turk (MTurk, http://mturk.com), asking 
paid participants to label 15-second long ex-
cerpts with continuous emotion ratings on the 
AV space, with another 15 seconds given as a 
practice for each song. The songs in the da-
taset cover a wide range of genres – pop, vari-
ous types of rock, hip-hop/rap, etc., and are 
drawn from the “uspop2002” 
(http://labrosa.ee.columbia.edu/projects/music
sim/uspop2002.html) database containing 
Western popular songs. The dataset consists 
of 240 15-second clips (without the practice 
run) with 16.9 +/- 2.7 ratings for each clip. In 
addition, the dataset contains a standard set of 
features extracted from those musical clips: 
MFCCs, octave-based spectral contrast, statis-
tical spectrum descriptors, chromagram and a 
set of EchoNest (http://developer.echo 
nest.com/downloads) features. 

The design of the experiments: Using the 
audio analysis features provided in the MTurk 
dataset and LIBSVM (Chang & Lin, 2001) im-
plementation of support vector regression, we 
implemented a number of models for emotion 
tracking in music. The most basic model, 
based on the features provided and the 
LIBSVM library is also the common baseline 
model used in the field. We chose not to use 
the EchoNest features, since they have been 
extracted with proprietary software that does 

not provide clear documentation or explana-
tion of how the features are extracted. 

For the baseline method, the feature vector 
consists of the audio features averaged over a 
1s window – the mean and standard deviation 
for each feature. There is only one feature vec-
tor for each second of the song (so 15 train-
ing/testing samples for each song), labelled 
with the average valence or arousal value 
computed from the labels in the dataset for 
that second. Two support vector regressors are 
trained – one for the arousal and one for the 
valence axes. Both regressors use RBF kernels 
and use 5-fold cross-validation within the 
training set to choose the best values for the 
parameters used. 

Cross-validation: In all of our experiments 
we used 5-fold cross-validation to split the da-
taset into training and testing sets. This mini-
mizes the risk of accidentally choosing a par-
ticularly bad or good set of songs and there-
fore making the results more reliable.  

 

Table 1: Squared correlation of the baseline ap-
proach using different ways of splitting songs 
across folds. 

 
No 
con-
straints 

Song-
level 
split 

Album-
level 
split 

Artist-
level 
split 

Arousal 
0.69 0.64 0.65 0.64 

Valence 
0.34 0.25 0.26 0.23 

 
We experimented with three different ways 

of distributing the songs between the folds 
(the effect on the squared correlation of the 
baseline method is depicted in Table 1 and 
Table 2). The most obvious requirement is to 
keep all the feature vectors from a song in the 
same fold, to ensure that the model is not 
overfitting to individual songs. For the baseline 
method, this lowers the squared correlation 
coefficient (R2) from 0.34 to 0.25 for valence 
and 0.69 to 0.64 for arousal, and increases the 
mean squared error (MSE) from 0.038 to 0.045 
for valence and from 0.032 to 0.039 for arousal.  
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Table 2: Mean squared error of the baseline ap-
proach using different ways of splitting songs 
across folds. 

 
No 
con-
straints 

Song-
level 
split 

Album-
level 
split 

Artist-
level 
split 

Arousal 
0.033 0.039 0.038 0.038 

Valence 
0.038 0.045 0.045 0.046 

 
Another factor worth considering is making 

sure that songs from the same album are all 
within a single fold. It has been reported and 
widely accepted that the so called “album ef-
fect” can artificially improve the performance 
as machine learning models overfit to a partic-
ular set of post-production techniques used on 
an album (Kim, Williamson, & Pilli, 2006). Re-
moving the album effect made little difference 
to the results of the baseline method with the 
dataset we use. This is probably due to the fact 
that a large majority of songs come from 
unique albums – the 240 songs we am using 
come from 200 different albums. 

The third approach we used was to make 
sure that all the songs from the same artist are 
within the same fold. Unsurprisingly, there is 
often statistically significant correlation be-
tween artists and mood in music (Hu & Downie, 
2007), which, we expected, might lead to some 
overfitting. Again, it did not have a significant 
effect on the results, with the baseline method, 
which is most likely because the dataset is fair-
ly well balanced even for the artists – the 240 
songs used were recorded by 156 different art-
ists. It could also be argued that this restriction 
is unnecessarily strict – in real life, a fully 
trained system is unlikely to receive unseen 
songs from an album that it was trained on, 
but is definitely expected to analyse unseen 
songs from an artist that it has seen before. 
For these reasons, we decided to use album-
level cross-validation for all of the experiments. 

Further experiments: The next step we took 
was to exploit some of the dependency be-
tween the valence and arousal axis (Eerola & 
Vuoskoski, 2010). It has been reported that 
including the valence label in the feature vec-
tor for arousal prediction and the arousal label 
for valence prediction can improve the accura-

cy of the model both in emotion recognition in 
music (Schmidt et al., 2010) and affect predic-
tion from human behaviour (Nicolaou, Gunes, 
& Pantic, 2011a).  

Another dependency that we decided to 
exploit was time. Since the emotional ratings 
for each second are clearly dependent on the 
previous ratings, in the next experiment we 
included audio features from a several one-
second feature vectors. We experimented with 
varying sizes of windows – from 1s lag (just the 
audio features for the current second and all 
the audio features for the previous second) to 
5s lag (current second and five previous sec-
onds) for both the valence and the arousal axes. 

Expectancy is also a very important factor 
to consider. There is a theory that violation of 
or conformity to expectancy when listening to 
music is a (main) source of musical emotion. It 
has been at least partially proven across differ-
ent fields concerned with emotion in music 
(e.g. neuroimaging – (Koelsch et al., 2010), ex-
perimental aesthetics – (Hargreaves & North, 
2010), etc.). To address that, we tried three 
different approaches: adding a “future” win-
dow in addition to the delay (similar to that 
used by (Nicolaou, Gunes, & Pantic, 2011b)), 
including the average over a song for each au-
dio feature, and representing each feature as a 
difference between its (absolute) value at that 
second and the average over that song (which 
we will refer to as the relative representation). 

4. Results 

The results achieved by our basic implementa-
tion fall within the area of the results achieved 
within the field (R2 of 0.65 for arousal and 0.26 
for valence, and MSE of 0.038 for arousal and 
0.045 for valence). Using the relative represen-
tation in the standard approach, on the other 
hand, showed a substantial improvement on 
the results (R2 of 0.74 for arousal and 0.34 for 
valence, and MSE of 0.028 for arousal and 
0.040 for valence). 

Adding the label of the other emotion axis 
to the feature vector, as expected, had a posi-
tive effect on the valence prediction, but no 
effect on arousal prediction – results that 
agree with the findings in the literature 
(Schmidt et al., 2010). The same effect was 
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seen both in the standard, basic representation 
and in the relative representation. 

Adding temporal information in the form of 
concatenating several seconds’ worth of previ-
ous vectors (delay window) improved the per-
formance of the basic representation models 
for both the valence and the arousal axes. For 
valence, the R2 peaks at 2-3s window size and 
then plateaus or drops slightly. For arousal the 
optimal window size appears to be 4s (Table 3 
and 4). For the relative representation, on the 
other hand, the effect is smaller or non-
existent. 

 

Table 3: R
2
 of the basic (basic) and relative rep-

resentations (rel) using delay windows of differ-
ent size for arousal (A) and valence (V) axes. 

 
1s 2s 3s 4s 5s 

A-basic 
0.68 0.69 0.69 0.70 0.71 

A-rel 
0.74 0.76 0.73 0.74 0.74 

V-basic 
0.26 0.29 0.31 0.29 0.29 

V-rel 
0.31 0.31 0.31 0.32 0.31 

 
 
Table 4: MSE of the basic (basic) and relative 
representations (rel) using delay windows of dif-
ferent size for arousal (A) and valence (V) axes. 

 
1s 2s 3s 4s 5s 

A-basic 
0.035 0.033 0.033 0.032 0.031 

A-rel 
0.028 0.026 0.029 0.028 0.028 

V-basic 
0.042 0.045 0.042 0.042 0.043 

V-rel 
0.042 0.042 0.041 0.041 0.042 

 
Concatenating the current frame with fea-

ture vectors of the “upcoming” frames (future 
window) was also tested. We kept the range of 
future window sizes the same as for the delay 
window and it led to an improvement (be-
tween 0.01 and 0.02 for the R2 value) when 
used on a standard feature representation for 
arousal at each window size. For the relative 
representation, adding the future window to 
the arousal model had no effect at all, and for 

valence model the results were inconsistent 
both in the standard and the relative represen-
tations. The addition of average was only test-
ed on the standard representation, as the rela-
tive representation already contains average 
values by definition. For the basic approach, it 
produced a similar effect to that of the addi-
tion of the future window – inconsistent results 
on the valence model and small improvement 
on the arousal model (though smaller than the 
addition of future window).  

5. Discussion 

The results we have achieved with our models 
are very encouraging. The performance of the 
baseline method falls within the expected 
range reported in the literature, which sug-
gests that the same techniques we used could 
be employed on other datasets. We have also 
managed to achieve the expected improve-
ments by incorporating valence-arousal and 
temporal dependence information, in a similar 
way that has been achieved in the field. This 
confirms that there is a dependency both be-
tween different frames (temporal information) 
and between the two axes, and that it is bene-
ficial to extract that information.  

In order to address the expectancy, we tried 
several different approaches. Using a future 
window and adding an average over the whole 
song showed little, if any, improvement on the 
results. The major improvement on the accu-
racy of our predictions was introduced by the 
use of relative representation in the feature 
vectors. Interestingly, it seems that this repre-
sentation makes a lot of other additions re-
dundant – the results are not improved by add-
ing the future window or the label of the other 
axis. This might be because the size of the fea-
ture vector grows too large, or because the 
information is somehow covered by this new 
representation. 

Another important observation can be 
made from the results of these experiments –
different modifications can have different lev-
els of improvement to the valence and arousal 
models. This seem to imply that in order to 
achieve the best results, different feature rep-
resentations and/or feature fusion techniques 
might need to be used for the two models, in 
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addition to potentially using or prioritizing dif-
ferent feature sets. 
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