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Abstract 

 

The structural dimension of music plays an important role in its affective appreciation. One particular aspect is 
related to the temporal succession of moments, each characterized by particular musical properties. One clas-
sical approach in computational modelling of this aspect is based on similarity matrix representations, where 
successive states are visualized by successive squares along the main diagonal, bearing some resemblance to 
checkerboards. One referential method estimates a so-called novelty curve, representing the probability along 
time of the presence of transitions between successive states, as well as their relative importance. Novelty is 
traditionally computed by comparing – through cross-correlation – local configurations along the diagonal 
with an ideal checkerboard kernel. The method is limited by a strong dependency on kernel size, which impos-
es a single level of granularity in the analysis and fails to grasp common musical structures made of a succes-
sion of states of various sizes. We introduce a simpler but more powerful and general method that automati-
cally detects homogeneous segments of any size. Only half of the similarity matrix is retained, in order to 
compare each new instant solely with the past and exclude the future. For each instant in the piece, novelty is 
assessed by first determining the temporal scale of the preceding homogeneous part as well as the degree of 
contrast between that previous part and what just comes next. Detailed results show how and why this meth-
od offers a richer and more intuitive structural representation encompassing all granularity levels. 
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1. Introduction  

The structural dimension of music plays an im-
portant role in its affective appreciation. One 
particular aspect is related to the temporal 
succession of moments, each characterized by 
particular musical properties. The idea is to 
automatically segment audio files into a series 
of homogeneous sections, through the estima-
tion of temporal discontinuities along diverse 
alternative features such as timbre in particular 
(Foote & Cooper, 2003). 

One classical approach in computational 
modelling of this aspect is based on similarity 
matrix representations, where successive 
states are visualized by successive squares 
along the main diagonal, bearing some resem-

blance to checkerboards. The referential 
method estimates a so-called novelty curve, 
representing the probability along time of the 
presence of transitions between successive 
states, as well as their relative importance 
(Foote & Cooper, 2003). 

We show the limitation of the state of the 
art and introduce a new method that offers a 
richer and more intuitive structural representa-
tion encompassing all granularity levels. 

The model has been implemented in MIR-
toolbox (Lartillot & Toiviainen, 2007) and is 
available in the new version 1.5 of the toolbox. 
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2. Similarity matrix 

One common MIR method to describe the 
structural content of music is based on dissimi-
larity and similarity matrices, constructed from 
a selected audio or musical feature. A dissimi-
larity (resp., similarity) matrix shows the dis-
similarity (resp., similarity) between all possi-
ble pairs of frames from the input data. The 
matrix is constructed as follows: At each suc-
cessive instant of time (each column x in the 
matrix), numerical distance (in the case of dis-
similarity matrix) or numerical similarity (in the 
case of similarity matrix) is computed between 
that current instant (point (x,x) on the diagonal 
of the matrix) and previous instants (points 
(x,y<x) that are below point (x,x)), as well as 
succeeding instants (points (x,y>x) that are 
above point (x,x)). 

A graphical representation of the dissimilar-
ity (resp., similarity) matrix, as in Fig. 1, shows 
these numerical distances (resp., similarities) 
using a color convention. In MIRtoolbox, high 
values are indicated by warm colors (red, yel-
low) whereas low values are indicated with 
cold colors (dark blue, light blue). In a dissimi-
larity matrix, the main diagonal, representing 
the absence of dissimilarity between one time 
frame and itself, is by property dark blue (Fig. 
1). Similarly, the main diagonal of a similarity 
matrix is by property red (Fig. 2).  
 

 
Figure 1. Dissimilarity matrix (top right) show-
ing dissimilarities between frames of a spectro-
gram (represented both left and bottom). 

In the dissimilarity matrix, the distance at 
each point can be computed using various dis-
tance measures. Cosine distance seems to be a 
good choice for most features, because it ena-
bles to compare profile of feature vectors 
without focusing on the absolute amplitude of 
the elements of those vectors. For instance, 
when comparing key strengths (Krumhansl, 
1990; Gómez, 2006) between two frames, 
what is of relevance is the relative importance 
of tonal centers, not the actual energy in each 
of those. This distance is chosen my default in 
MIRtoolbox: 

ks = mirkeystrength(filename, ‘Frame’) 
dm = mirsimatrix(ks, ‘Dissimilarity’); 

On the contrary, for other features such as 
Mel-Frequency Cepstral Coefficients (MFCCs), 
the absolute values are of importance for the 
comparison. In such case, Euclidean distance, 
for instance, is more suitable: 

cc = mirmfcc(filename, ‘Frame’) 
dm = mirsimatrix(cc, ‘Dissimilarity’, 

‘Distance’, ‘Euclidean’); 
In similarity matrices, similarity at each 

point is computed by turning the dissimilarity 
measure into a similarity measure based on a 
transformation. One simple choice is a linear 
transformation of the type y = 1-x; a common 
alternative is an exponential transformation of 
the type exp(-x), which emphasizes a small dis-
similarity through a more important drop of 
similarity than in the linear transformation. In 
the following, we will use this exponential simi-
larity measure, which is chosen by default in 
MIRtoolbox when computing the similarity ma-
trix: 

sm = mirsimatrix(dm, ‘Similarity’) 
Dissimilarity and similarity matrices reveal 

homogeneous parts: successive homogeneous 
states are visualized by successive squares 
along the main diagonal, bearing some resem-
blance to checkerboards. 

3. Previous “kernel approach” for novelty 
curve estimation 

The main idea behind the notion of novelty is 
that the structure that can be seen from the 
similarity matrix, with the succession of ho-
mogeneous states, could be explicitly repre-
sented in a temporal curves where peaks indi-
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cate the position of those transitions, and the 
height of the peaks would correspond to some 
kind of structural importance. 

In a seminal approach (Foote & Cooper, 
2003), the estimation of novelty curve is based 
on the observation that important structural 
transitions can be seen in the matrix as a suc-
cession of squares along the diagonal. For that 
reason, the novelty curve at each time frame t 
is estimated by comparing the subpart of the 
matrix around the corresponding point on the 
diagonal, i.e., (t,t), with an ideal representation 
of a structural transition, modelled as a 2*2 
checkerboard made of two red squares on the 
diagonal (representing high similarity between 
a same segment) and two blue squares outside 
the diagonal (representing low similarity be-
tween successive segments). More precisely, 
the novelty curve results from the cross-
correlation of a Gaussian smoothed checker-
board kernel along the diagonal of the similari-
ty matrix. 

 
Figure 2. In the kernel approach, segmentations 
are detected by comparing each successive 
subpart of the similarity matrix along the diago-
nal with a checkerboard kernel, idealizing a per-
fect succession of two segments of same size. 

The method is strongly dependent on the 
specification of the size of the checkerboard 
kernel. Fig. 4c, 5c, 6c, 7c, 8c and 9c show ex-
amples of novelty curves extracted using a 
kernel of size 64 samples, based on the follow-
ing MIRtoolbox command: 

mirnovelty(sm,’KernelSize’,64) 
Fig. 4d, 5d, 6d, 7d, 8d and 9d show exam-

ples of novelty curves extracted using a kernel 
of size 16 samples: 

mirnovelty(sm,’KernelSize’,16) 

As we will see more in detail in Section 5, 
this kernel-based method imposes a single 
level of granularity in the analysis, thus failing 
to grasp common musical structures made of a 
succession of states of various sizes. 

4. New approach 

We introduce a simpler but in the same 
more powerful and more general method. The 
idea is to automatically detect homogeneous 
segments of any size (or temporal scale). Fu-
ture events are excluded in order to focus on 
the temporal causality of music perception. 
This means that only half of the similarity ma-
trix, below the main diagonal, is retained.  

For each successive column in the similarity 
matrix, corresponding to a time frame t, the 
novelty value at that time is estimated by de-
tecting whether a homogeneous segment 
ends just before t (cf. Fig. 3). More precisely, 
the idea is to estimate the temporal scale of the 
previous ending segment as well as the con-
trastive change before and after the ending of 
the segment. The novelty value is then repre-
sented as a combination of the temporal scale 
and the amount of contrast. 

 

 

 
Figure 3. Dissimilarity matrix (top) and its corre-
sponding novelty curve (bottom), computed us-
ing the new approach. For the three peaks at 
time t = 39, 41 and 43 s, the corresponding tri-
angular homogeneous segments are shown in 
the matrix. 

For the particular column at time t, in order 
to assess the temporal scale of the segment 
ending just before t, we consider the triangular 



Proceedings of the 3rd International Conference on Music & Emotion (ICME3), Jyväskylä, Finland, 11th - 15th 
June 2013. Geoff Luck & Olivier Brabant (Eds.) 
 

part of the similarity matrix that is below the 
main diagonal and left to the column t (cf. ex-
amples of triangular part highlighted in Fig.3). 
The idea is to detect how much of this triangle, 
starting from its apex at point (t,t), can be con-
sidered as a whole homogeneous segment 
that is globally of higher value than the new 
column on its right, at time t. The triangle is 
progressively constructed from its apex (t,t) 
downward, line by line, by checking whether 
each new line to be added to the triangle is 
globally of higher similarity values than the 
next point at time t. More precisely, for a given 
line, we check that both following conditions 
are fulfilled: 

- the new similarity value at time t is 
lower than the similarity value at time t 
– 1 (i.e., the rightmost point of the tri-
angle at that line). 

- the new similarity value at time t is 
lower than two standard deviations 
below the mean of the similarity values 
along the current line of the triangle. 

Once this does not hold true anymore, the 
construction is interrupted, and we keep the 
triangle above this unsuccessful line. We ob-
tain a triangle that corresponds to the “ending 
segment”, and the height of the triangle corre-
sponds to the temporal scale of this ending 
segment. 

The amount of contrast between this trian-
gular segment and the new column at time t is 
simply computed as the city-block distance 
between the last column of the triangle and 
the new column at time t for that particular 
temporal scale. 

As we will see in the examples in the next 
section, this method offers a structural repre-
sentation that encompasses all granularity lev-
els. This approach is integrated into MIR-
toolbox 1.5 and is used by default when calling 
mirnovelty. 

5. Detailed analysis of one piece of music 

This section presents various structural anal-
yses – spectral (Fig. 4 and 5), timbral (Fig. 6), 
tonal (Fig. 7 and 8) and metrical (Fig. 9) – of the 
first 160 seconds of a performance of the 
Scherzo of L. van Beethoven’s Symphony No.9 
in D minor, op.125. Each figure shows first the 

similarity matrix (Fig. 4a, 5a, etc.) – or more 
precisely the half, below the main diagonal, 
corresponding to the memory of the music 
already heard, with respect to each current 
time – followed by the novelty curve estimated 
using the new method introduced in the previ-
ous section (Fig. 4b, 5b, etc.), as well as two 
versions of the kernel-based method using two 
different granularity levels (Fig. 4c and 4d, 5c 
and 5d, etc.) 

Whereas in the kernel-based method, close 
points are highly correlated (Fig. 4c and 4d for 
instance), the curve produced by the new 
method (Fig. 4b for instance) precisely indi-
cates the temporal location of various segmen-
tations with relatively isolated pulses. 

 

 

 

 
Figure 4. Similarity matrix (4a) and novelty 
curves based on the new approach (4b) as well 
as the kernel-based approach with kernel size 
64 samples (4c) and 16 samples (4d), all based 
on a spectrogram with frame size 2 seconds, 
and a hop of 1 second. 
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In the kernel-based method, the choice of 
kernel size has a strong impact on the result. 
For large kernels, highest peaks in the curve 
might indicate important segmentation points 
in the piece, but lower peaks and the curves in-
between might be more difficult to interpret. 
When using a shorter kernel, the actual size of 
the larger homogeneous parts is not taken into 
account. In fact, peaks may indicate a transi-
tion between segments, an ending segment or 
a starting segment (such as around t = 55 s in 
Fig. 5d), which makes the result more difficult 
to interpret. 

 

 

 

 

 
Figure 5. Same as in Fig. 4 but with an autocor-
relation function as input, with frame size 2 sec-
onds, and a hop of 1 second. 

Fig. 6c and 6d eloquently show a main limi-
tation of the kernel approach: since the idea 
was to detect structure resembling checker-
board patterns, the transition between two 
squares of same size, in particular around t = 
30 s and t = 110 s, are considered as the most 

important segmentation points in the piece. 
The new approach, on the contrary, shows 
that this transition is not of high importance. It 
rather highlights the presence of more salient 
structural endings, related to homogeneous 
parts of larger temporal scale (such as the 30 s 
long part ending a little after t = 40 s, t = 70 s, 
etc.; or the 70 s long part ending at the half and 
at the end of the piece). 

 

 

 

 

 
Figure 6. Same as in Fig. 4 and 5 but with 
MFCCs as input, with frame size 3 seconds, and 
a hop of 1 second. The dissimilarity is based on 
Euclidean distance. 

On the other hand, Fig. 7b shows a limita-
tion of the current version of new approach, 
due to a hypersensitiveness to isolated col-
umns that are highly dissimilar to neighbor 
columns, such as around t = 90 s. This problem 
can be avoided by filtering out somewhat the 
isolated column through blurring: by consider-
ing a frame size of 5 s instead of 2 s (Fig 8a and 
8b), the isolated columns are less important, 
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and not detected anymore by the new ap-
proach. We notice also that these outlying col-
umns do not affect the kernel-based approach 
(cf. Fig. 7c and 7d, compared to Fig. 8c and 8d). 

This shows that the current version of the 
new approach cannot properly handle similari-
ty matrix with highly salient isolated columns.  

 

 

 

 
Figure 7. Same as in Fig. 4 to 6 but with key 
strength vectors as input, computing on a 2-
second long moving window with 1-second hop. 

The approach might be made more robust 
by finding more suitable conditions governing 
the construction of the triangle presented in 
section 4, in order to better treat such outlying 
columns and lines in the similarity matrices. 

 

 

 

 
Figure 8. Same as previous figure but with a 
window length of 5 seconds. 

Figure 9 shows another interesting property 
of the new approach for estimating novelty 
curve. The transition from one homogeneous 
state to the next one can sometimes be pro-
gressive, and each state can progressively de-
cay over several frames, as can be seen in Fig. 
9a with the progressive gradient of colors from 
dark red to dark blue at the right end of the 
triangular parts. This happens in particular 
when the frame decomposition is based on a 
smaller hop, such as .25 s in Fig. 9. In such case, 
the new approach for novelty curve shows not 
a single pulse, but a lobe, still very sharp, but 
with a width of several frames. Hence in the 
new approach, the importance of peaks in the 
novelty curve is indicated not only by height, 
but more generally by the area of such sharp 
lobes. 
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Figure 9. Same as in Fig. 4 to 8 but based on a 
metrical autocorrelogram with a hop  equal 
to .25 s.  (The first half of this metrical autocor-
relogram is shown in Fig. 6a in (Lartillot et al., 
2013).) 

As for a more qualitative and musical con-
clusion concerning the structural analysis of 
this performance of Beethoven’s Symphony 
No.9 Scherzo, we can notice the very interest-
ing differences and imbrications between the 
similarity matrices computed from the differ-
ent audio and musical features. 

6. Synchronicity between novelty curves 

In this paragraph, we evaluate the synchronici-
ty of the novelty curves computed from main 
audio and musical features, using the current 
version of the algorithms while writing the pa-
per, i.e., MIRtoolbox 1.4.1.5. The structural 
analysis is based on the following features: 

- spectrogram with frame size 2 seconds, 
and a hop of 1 second: 

a = mirspectrum(filename, ‘Frame’, 2, ‘s’, 1, ‘s’) 
 

- cepstrogram with frame size 2 seconds, 
and a hop of 1 second: 

b = mircepstrum(a) 
 
- autocorrelation function of the audio 

waveform with frame size 2 seconds, 
and a hop of 1 second: 

c = mirautocor(filename, ‘Frame’, 2, ‘s’, 1, ‘s’) 
 

- MFCC with frame size 3 seconds, and a 
hop of 1 second: 

d = mirmfcc(filename, ‘Frame’, 3, ‘s’, 1, ‘s’) 
 

- chromagram with frame size 2 seconds, 
and a hop of 1 second: 

e = mirchromagram(filename, 
‘Frame’, 2, ‘s’, 1, ‘s’) 

 
- key strength with frame size 2 seconds, 

and a hop of 1 second: 
f = mirkeystrength(e) 

 
- chromagram with frame size 5 seconds, 

and a hop of 1 second: 
g = mirchromagram(filename, 

‘Frame’, 5, ‘s’, 1, ‘s’) 
 

- and key strength with frame size 5 
seconds, and a hop of 1 second: 

h = mirkeystrength(e) 
 
All features were extracted from thirty-six 

musical excerpts covering a large range of mu-
sical styles from baroque to contemporary 
classical music (Eliard et al., 2013; Eliard & 
Grandjean, in preparation) with a mean dura-
tion of 155.83 ± 10.66 seconds. As indicated in 
section 2, similarity is based on cosine distance 
for all features: 

n1 = mirnovelty(a), n2 = mirnovelty(b), etc. 
except for MFCCs where Euclidean distance is 
used instead: 

n4 = mirnovelty(d, ‘Distance’, ‘Euclidean’) 
In order to evaluate the similarities be-

tween the different novelty curves, we com-
pute a normalized cross-correlation – without 
centering – between each pair of novelty 
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Table 1. Normalized cross-correlation – without centering – between each pair of novelty curves computed 
from the following features: spectrogram (spec), cepstrogram (ceps), autocorrelation function (ac), MFCCs 
(mfcc), chromagram with 2 second frame (chro2) and key strength (keys2), and same for 5 second frame 
(chro5 and keys5). 

 spec ceps acor mfcc chro2 keys2 chro5 keys5 

spec 1 .42 .78 .41 .7 .45 .25 .19 

ceps  1 .35 .35 .35 .26 .25 .18 

acor   1 .36 .65 .45 .22 .16 

mfcc    1 .3 .23 .26 .21 

chro2     1 .63 .21 .15 

keys2      1 .17 .12 

chro5       1 .66 

keys5        1 

 
curves. Due to the particular aspect of the 
novelty curves given by the new approach, 
where the presence of isolated peaks makes 
the distribution non-Gaussian, it would not 
make sense to assess the linearity between 
curves based on Pearson correlation. We note 
however that due to the fact that the novelty 
values are always positive, and that most val-
ues are low and very few are high, a direct 
cross-correlation between novelty curves will 
show whether their peaks are well synchro-
nized or not. The cross-correlation can be 
normalized in the same way as a traditional 
cross-correlation, except that in our case there 
is no centering, since the absolute magnitude 
(whether a point belongs to a peak, or is close 
to zero) plays an important role. 

The results of the correlations are shown in 
Table 1. We can see that spectrum-based and 
autocorrelation-based novelty curves are high-
ly similar, and similar to chromagram with 
same 2 s long frames. This may be intuitive 
since spectrum and autocorrelation function 
are two different but closely related low-level 
description of audio, and that chromagram is 
directly based on spectrum. Chromagram and 
key strength with same frame size are highly 
related, because keystrength is highly based 
on chromagram. On the other hand chroma-
grams (or keystrengths) with different frame 
sizes are not cross-correlated at all. This may 
be due to the problem related to excessive 
peaks using the 2 second long frame, as dis-
cussed in section 5. 

7. Discussion 

As explained in section 4, in the new approach, 
the novelty values correspond to a combina-
tion between two factors: the temporal scale of 
the previous ending segment and the amount 
of contrastive change before and after the end-
ing of the segment. We might consider in fu-
ture works a study of each factor separately, 
and a study of the optimal combination be-
tween these two factors. 

We also observed in section 5 that in high-
resolution similarity matrices, the new ap-
proach for novelty curve might include not 
solely single pulses, but also sharp lobes with a 
certain width. We noted that the importance 
of peaks in the novelty curve is indicated not 
only by height, but also more generally by the 
area of such sharp lobes. An alternative repre-
sentation would be to integrate the novelty 
curve, so that the obtained novelty values 
would indicate the total contrastive change 
before and after a progressive transition be-
tween segments. 
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