
Proceedings of the 3rd International Conference on Music & Emotion (ICME3), Jyväskylä, Finland, 11th - 15th 
June 2013. Geoff Luck & Olivier Brabant (Eds.) 

 

INDUCING RULES OF ENSEMBLE MUSIC 
PERFORMANCE: A MACHINE LEARNING APPROACH 

Marco Marchini, Rafael Ramirez, Panos Papiotis, Esteban Maestre 

Music Technology Group, Universitat Pompeu Fabra, Spain 
marco.marchini@upf.edu 

 

Abstract 

 

Previous research in expressive music performance has described how solo musicians intuitively shape each 
note in relation to local/global score contexts. However, expression in ensemble performances, where each 
individual voice is played simultaneously with other voices, has been little explored. We present an exploratory 
study in which the performance of a string quartet is recorded and analysed by a computer. We use contact 
microphones to acquire four audio signals from which a set of audio descriptors is extracted individually for 
each musician. Moreover, we use motion capture to extract bowing descriptors (bow velocity/force) from each 
of the four performers. The gathered multimodal data is used to align the performance to the score. Then, 
from the aligned data streams, we obtain a note-by-note description of the performance by extracting note 
performance parameters. We apply machine-learning algorithms to induce human-readable rules emerging 
from the data. The dataset consists of three performances of Beethoven’s quartet n° 4 in C minor by a group 
of professional musicians: a “normal”, a “mechanical” and an “over-emphasized” execution. We run our analy-
sis on the three conditions separately as well as jointly, deriving rules specific to each condition and rules of 
general domain. Apart from encoding knowledge of expressive performance, the results shed light on how 
musicians' roles in ensemble performance. 
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1. Introduction  

In western music tradition, the notation pro-
vides the height and the duration of each note 
in a fairly explicit way. However, intensity and 
tone quality are represented only approxi-
mately. This leaves to the performer enough 
freedom in deciding how to interpret the mu-
sic’s content. Deviations in timing are also in-
troduced, which render the performance more 
human and expressive. Musicians always in-
troduce such deviations, even when playing 
mechanically (Palmer 1997).  

The phenomena have been studied in the 
past from a computational approach leading to 
models of expressive performance capable of 
emulating human expression. Previous re-
search on expressive performance used ma-
chine learning techniques to build models from 

real data of piano performances (Widmer & 
Goebl 2004). Other instruments have been 
considered in few other works (L Mantaras et 
al. and Ramirez et al.) by also considering addi-
tional expressive transformations that are ab-
sent in piano technique (e.g. vibrato and glis-
sando). 

Despite the abundance of applications of 
machine learning to expressive performance, 
most works are focused on solo performance 
and do not address the problem of performing 
in an ensemble. In classical music ensembles, 
each performer interprets their own part as 
dictated by the score. Since it is the sum of the 
parts that makes the whole, relations among 
individual parts implicitly define the role and 
the task of each member within the group.  
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The problem of playing in ensemble has 

been studied by narrowing down music per-
formance to very specific tasks. Some studies 
focus on synchronization on the task of tap-
ping together (Repp 2005) or on very specific 
musical skills (Moore et al. 2010). In (Goebl & 
Palmer 2009) the synchronization among mu-
sicians is studied also taking into account the 
role and the auditory feedback. 

The only work addressing expressive per-
formance in ensemble is devoted to string 
quartets (Sundberg et. al 1989) but from an 
analysis-by-synthesis approach. This means 
that the rules that Sunberg defined were test-
ed directly by creating synthetic performances 
and were not evaluated on real recordings. 

In this work we use machine learning to de-
rive rules of expressive performance from re-
cording of string quartet performances. We 
aim to understand how relations among parts 
affect the performance of each musician. For 
this reason we extract a set of score contextual 
descriptors including information about the 
relationship of each note with other parts in 
the score. We use such score descriptors to 
predict several note level performance param-
eters. We compare the predictive power of the 
machine-learning algorithm in two cases: 
when relationships among parts are consid-
ered or ignored. We then discuss the results 
and present some rules derived by the system 
in the cases where relationship among parts 
proved useful for the prediction. 

The rest of the paper is structured as fol-
lows. Section 2 describes the recorded materi-
al and the acquisition of the data. Section 3 
introduces the descriptors extracted from the 
score and the parameters extracted from the 
performance. We then explain our method in 
Section 4, present the results in Section 5 and 
discuss them in Section 6. Finally, in Section 7, 
we conclude providing directions for future 
work. 

2. Data acquisition 

We recorded a professional string quartet exe-
cuting Beethoven’s quartet n° 4 in C minor 
(opus 19 n°4, allegro-prestissimo movement).  

After the quartet had played their first ver-
sion (“normal”) we asked for a “mechanical” 

and an “exaggerated” execution. The three 
performances were 15 min. long in total. With-
in this time, we collected more than 10k indi-
vidual notes.  

Acquired data include four individual audio 
tracks (one for each musician) coming from 
piezoelectric contact microphones. Additional-
ly, we acquired bowing motion data via an 
EMF motion tracking system as carried out in 
(Maestre 2009). From the bowing motion data 
we obtain time series of bow velocity (Maestre 
2009) and bow force sampled at 240Hz 
(Marchini et al. 2011). From the audio we ex-
tract time series of energy and pitch. 

The extracted signals together with the 
score are given as input to a dynamic pro-
gramming algorithm (Maestre 2009) to pro-
duce a precise note-by-note segmentation of 
the performance. Note boundaries are in-
spected manually to correct eventual segmen-
tation errors. 

The score was segmented into phrases the 
help of a professional musicologist leading to 
an average phrase length of four bars. As in 
other works of expressive performance model-
ling (Widmer & Tubodic 2003) we removed the 
main effect of tempo modulations to study 
only residual deviations of timing on note du-
ration. The main effect of tempo modulation is 
obtained by fitting a parabolic tempo curve to 
the sequence of onsets of all instruments on 
each phrase. From this we calculate a value of 
tempo in beat per minutes (BPM) for each note 
that we later use as a reference for computing 
deviations on the duration of the performed 
note. 

3. Descriptors 

On each note we compute score contextual 
descriptors and parameters of the perfor-
mance. The former will serve as features vec-
tor for the machine-learning algorithm while 
the seconds as learning tasks. 

 
3.1. Score Contextual Descriptors 
 

We define two types of score contextual de-
scriptors: horizontal and vertical.  

Horizontal note descriptors are computed 
based solely on a musician’s individual part,  
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ignoring the parts of the other musicians. 
These include both properties of the note itself, 
and also properties of the neighbouring notes 
(preceding and subsequent) in the part. Differ-
ent temporal context windows sizes are con-
sidered by adding more or less neighbouring 
notes to the feature set. 

Melodic contour is represented by melodic 
intervals of one note to the next and by Nar-
mour implication realization class on each 
group of three notes (Narmour 1990).  

Note salience includes the melodic charge, 
which is defined as the smallest number of 
steps to get from the tonic to the note in the 
circle of fifths (a number from zero to six). 

Rhythmic information is represented by the 
metrical strength and rhythmic contour. Met-
rical strength depends on the position of the 
note relative to the bar and is encoded by an 
integer number from 0 to 5 from the strongest 
to the weakest metrical position. Rhythmic 
contour is characterized by the ratio between 
nominal durations of a neighbouring note and 
the note itself. 

Vertical note descriptors include infor-
mation from the score about the notes played 
by other musicians concurrently with the note 
being characterized. Each concurrent note is 
picked from others’ part by selecting the note 
simultaneous (if any) to the characterized note 
or the one active at the beat where the charac-
terized note is started. Vertical descriptors are 
then formed from the horizontal attributes of 
those picked notes (one for each other musi-
cian).  

Additionally within vertical descriptors we 
include harmonic relationships of the note with 
concurring notes: isHighestMC and harmonic-

Charge. The former is a boolean set to “yes” if 
the note presents the highest value of melodic 
charge among concurrent note. The latter is 
the harmonic charge (Friberg 1995) computed 
on all the notes active within the beat of the 
characterized note. We compute the harmonic 
charge on the list of notes by first estimating 
the chord root note and then computing the 
average melodic charge of all the notes re-
spect to the root note. To compute the chord 
root note we use the implementation from the 
open project music21 (http://mit.edu/music21/). 

Table 1 depicts a list of 29 descriptors divid-
ed in horizontal and vertical representing the 
totality of descriptors for the smallest context 
window size considered. We build larger fea-
ture sets by adding in an analogous way de-
scriptors (both horizontal and vertical) refer-
ring to additional neighbouring notes by ap-
pending to the descriptor name the string: 
“previous”, and “next” followed by the number 
of separating notes from the reference. 

 
3.2. Performance parameters 
 

We apply machine learning techniques to our 
data set in order to learn models for predicting 
note-level parameters of the performance. The 
performer parameters we focus on are: loud-
ness, duration ratio, vibrato amplitude, and 
bow velocity. Note loudness is the maximum 
RMS value (in dB) within the note boundaries. 
Duration ratio is the ratio between the duration 
of the performed note and the score duration 
considering the fitted phrase arc tempo as a 
reference. Vibrato amplitude is extracted from 
the pitch curve within the note boundaries by 

Table 1. Feature set with the smallest context 
length provided to the machine-learning algo-
rithm. 

Horizontal Descriptors 
 nominalDuration 

 previousInterval 

 nextInterval 

 previousNoteRatio 

 nextNoteRatio 

 metricalStrenght 

 melodicCharge 

 narmour 

 nextNarmour 

 

Vertical Descriptors 

 

 harmonicCharge 

 isHighestMC 

 otherMusician1_nominalDuration 

… 

 otherMusician1_nextNarmour 

… 

 otherMusician2_nominalDuration 

… 

 otherMusician2_nextNarmour 

… 

 otherMusician3_nominalDuration 

… 

 otherMusician3_nextNarmour 

 

 

 

http://mit.edu/music21/
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taking only the part with the lowest aperiodici-
ty. A spectral analysis is performed on the se-
lected part, which looks for periodic compo-
nents in the range 4-8Hz. If no such compo-
nent is found the vibrato amplitude is set to 
zero, otherwise it is set to the corresponding 
amplitude value in pitch cents. Bow velocity is 
computed by taking the interquartile mean on 
the bow velocity values within the note 
boundaries (this means that the lowest 25% 
and higher 25% of the values are discarded to 
get only the central tendency for the note). 
The bow velocity is measured in cm/s can be 
either positive or negative depending on the 
bow direction. 

4. Method 

We used machine learning to predict the per-
former parameters using the introduced score 
contextual descriptors. We apply the C4.5 de-
cision tree induction algorithm (Quinlan 1992) 
to obtain a regression tree predicting each of 
the performance parameters described above. 
We use the implementation of provided by the 
Weka machine learning software (Hall et al. 
2009).  

In order to test all the combinations of fea-
tures we built a series of different datasets on 
which we run the algorithm independently. We 
form the mixed dataset by merging notes from 
the three expressive intentions into one unique 
dataset. Performing a regression on the mixed 
dataset means to find rules that are applicable 
to the three expressive intentions indistinctive-
ly.  

For each task and for each musician we 
have 40 different combinations. Those are ob-
tained by combining in all the possible ways 
two types of descriptors (horizontal or hori-
zontal+vertical); the four expressive intentions 
datasets (normal, mechanical, exaggerated or 
mixed); and different temporal context win-
dows sizes (from one to five neighbouring 
notes). Furthermore, considering the four 
learning tasks (loudness, bow velocity, dura-
tion ratio and vibrato amplitude) and the four 
musicians (violin 1, violin 2, viola and cello) we 
get a total number of 640 datasets.  

For each dataset we run the algorithm and 
compute a value of correlation coefficient us-

ing 10-fold cross validation. We use the ob-
tained correlation coefficient to quantify the 
predictive power of the decision tree algorithm 
on each musician, each task and each feature 
set.  

5. Results 

When training the system on the mixed inten-
tions we obtain a mean correlation coefficient 
of 69%, 87%, 72%, and 76% on the tasks of 
loudness, bow velocity, duration ratio, and vi-
brato amplitude respectively. All the previous 
values have been computed averaging the cor-
relation coefficients of all the musicians. Table 
2 shows the complete set of values obtained 
on each individual dataset for expressive inten-
tions. In general we see that on the mixed da-
taset we get a comparable correlation coeffi-
cient, when not better than the individual da-
tasets. This means that musicians did not radi-
cally change their playing style in the three 
expressive cases but rather modulated differ-
ently the ranges of the deviations (which do 
not affect correlation).  

Table 2. Average correlation coefficient for 
learning tasks (rows) and expressive intention 
(columns) pairs. 

 
Mechanical Normal Exaggerated Mixed 

Loudness 
65% 68% 72% 69% 

Bow Vel. 
60% 60% 60% 87% 

Duration 
52% 56% 45% 72% 

Vibrato 
48% 77% 74% 76% 

 
We run an ANOVA test on the correlation 

coefficients finding a significant effect of the 
following factors: musician, learning task and 
intention (p>0.05). The effect of temporal win-
dow size was not significant (p=0.76), which 
means that the smallest considered window of 
three is sufficient. We thus discard the effect of 
the temporal window size and focus for a mo-
ment on the effect of adding vertical features 
to the horizontal (feature type).  
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We now focus only on the improvement of 
predicting power when adding vertical de-
scriptors to the feature set. We present the 
results in terms of Percentage of Improvement 
(PoI) respect to the baseline of only horizontal 
descriptors. An ANOVA test on PoI shows that 
this improvement is significantly positive for 
loudness and bow velocity whereas it is not 
significant for duration ratio and vibrato ampli-
tude. The ANOVA also proves that the PoI de-
pends not only on the learning task, on the 
musician and the intention, but also on the 
interaction between learning task and the mu-
sician (all p<0.05). This means that the PoI for 
each learning task follows different directions 
depending on the musician. 

6. Discussion 

In Figure 1 we see that we achieve the biggest 
PoI for loudness followed by bow velocity, du-
ration and vibrato consistently across learning 
tasks. The second box of the first row of Figure 
1 shows that whereas the violins have the 
highest amount of PoI for loudness, the viola 
surpasses the others in bow velocity.  

The rules derived by the decision tree are 
sometimes difficult to interpret. We present 
here some rules derived on datasets where the 
machine learning algorithm performed signifi-
cantly better when vertical descriptors where 
included. Generally the algorithm discovers a 
set 10-20 rules for each dataset. We report 

here only the two rules leading to the two 
more extreme values of the prediction.  

We previously observed that the first violin-
ist prediction for loudness seriously improves 
when adding the vertical features. Rules on the 
normal intention include the following: 

 
IF 

nextNarmour=none > 0.5 

harmonicCharge <= 1.35 

THEN 

Loudness_vl1 = 59.8 dB 

 

IF 

vl2_narmour=IP > 0.5 

viola_narmour=VR_,IP,IR,D > 0.5 

cello_nominalDuration <= 1.5 

THEN 

Loudness_vl1 = 83.3 dB 

 
The first rule means the following: “if the note 
is the central of three notes that do not define 
a Narmour group and the harmonic charge is 
low than play it soft”. Regarding the second 
rule, it is worth noticing how the context of 
where to play a note loud is defined solely by 
the properties of other musicians’ notes. There 
is a difference of around 33 dB between the 
soft and the loud notes of this rule. 

In the learning task of bow velocity the sys-
tem achieves a very good correlation coeffi-
cient on the mixed dataset. The following two 
rules are part of the rules of general domain for 
the viola. 

Figure 1 The increase in predictive power of the machine-learning algorithm is shown for the considered 
learning tasks, musicians and expressive intentions in percentage of improvement (PoI). 
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IF 

 metricalStrenght_class=3 

vl1_nextNoteRatio <= 1.5 

 vl2_interval <= 0.5 

 cello_melodicCharge > 0.5 

THEN 

BowVel_Viola = -43.4775 cm/s 

 

IF 

 nextNoteRatio > 0.75 

 nominalDuration <= 0.75 

 vl1_nextInterval > -1.5 

THEN 

BowVel_Viola = + 49.2557 cm/s 

 
Those rules define two contexts: whether to 

use a clear up-bow or a clear down-bow re-
spectively.  Both rules use relationships with 
other parts. 

We have also shown how the PoI is not sig-
nificant in learning the vibrato amplitude. An-
yhow, the following two rules are derived by 
the system for the viola on the normal inten-
tion and use vertical descriptors: 

 
IF 

 harmonicCharge > 2.063 

THEN 

vibratoAmp_viola = 2.97 p.cents 

 

IF 

 nextNoteRatio <= 0.75 

THEN 

vibratoAmp_viola = 12.28 p.cents 

 
The latters have to be applied in the order 

(the first that matches is applied) and thus 
they mean: “If the following note is consistent-
ly shorter, render the note vibrato except when 
the harmonic charge is high”. 

7. Future Work 

The introduced approach has great potential 
for understanding roles in ensemble perfor-
mance and collaboration among musicians.  

We found a general improvement in the 
prediction of expressive deviation when con-
sidering the relationships among parts. The 
amount of improvement depended, however, 
on the specific performance parameter being 
predicted. Vertical relationships among parts 

proved useful for predicting individual musi-
cians’ behaviours on loudness and bow velocity. 

By considering different expressive inten-
tions we devised specific rules for each case 
and rules of general domain. A further ques-
tion still unanswered is how well these rules 
scale on a larger dataset consisting of more 
pieces. Also it would be interesting to repeat 
the same analysis on more experimental con-
ditions such as playing solo vs. playing in en-
semble. 

In this analysis we focused solely on score 
information to predict the expressive devia-
tions. We did not consider how the sequence 
of introduced deviations affects future devia-
tions (as in an autoregressive process). In fu-
ture work, a more general analysis could also 
take into account this aspect as a feature and 
compare how much the introduction of this 
feature improves the prediction in respect of 
just score descriptors. 
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